src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Mon, 27 Dec 2010 21:51:31 -0800

author
iveresov
date
Mon, 27 Dec 2010 21:51:31 -0800
changeset 2412
037c727f35fb
parent 2352
7601ab0e1e33
child 2432
55f868e91c3b
permissions
-rw-r--r--

7009231: C1: Incorrect CAS code for longs on SPARC 32bit
Summary: Fix CAS of longs on SPARC 32bit and cmove on SPARC 64bit.
Reviewed-by: kvn

duke@435 1 /*
trims@1907 2 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "c1/c1_Compilation.hpp"
stefank@2314 27 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 28 #include "c1/c1_MacroAssembler.hpp"
stefank@2314 29 #include "c1/c1_Runtime1.hpp"
stefank@2314 30 #include "c1/c1_ValueStack.hpp"
stefank@2314 31 #include "ci/ciArrayKlass.hpp"
stefank@2314 32 #include "ci/ciInstance.hpp"
stefank@2314 33 #include "gc_interface/collectedHeap.hpp"
stefank@2314 34 #include "memory/barrierSet.hpp"
stefank@2314 35 #include "memory/cardTableModRefBS.hpp"
stefank@2314 36 #include "nativeInst_sparc.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "runtime/sharedRuntime.hpp"
duke@435 39
duke@435 40 #define __ _masm->
duke@435 41
duke@435 42
duke@435 43 //------------------------------------------------------------
duke@435 44
duke@435 45
duke@435 46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 47 if (opr->is_constant()) {
duke@435 48 LIR_Const* constant = opr->as_constant_ptr();
duke@435 49 switch (constant->type()) {
duke@435 50 case T_INT: {
duke@435 51 jint value = constant->as_jint();
duke@435 52 return Assembler::is_simm13(value);
duke@435 53 }
duke@435 54
duke@435 55 default:
duke@435 56 return false;
duke@435 57 }
duke@435 58 }
duke@435 59 return false;
duke@435 60 }
duke@435 61
duke@435 62
duke@435 63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
duke@435 64 switch (op->code()) {
duke@435 65 case lir_null_check:
duke@435 66 return true;
duke@435 67
duke@435 68
duke@435 69 case lir_add:
duke@435 70 case lir_ushr:
duke@435 71 case lir_shr:
duke@435 72 case lir_shl:
duke@435 73 // integer shifts and adds are always one instruction
duke@435 74 return op->result_opr()->is_single_cpu();
duke@435 75
duke@435 76
duke@435 77 case lir_move: {
duke@435 78 LIR_Op1* op1 = op->as_Op1();
duke@435 79 LIR_Opr src = op1->in_opr();
duke@435 80 LIR_Opr dst = op1->result_opr();
duke@435 81
duke@435 82 if (src == dst) {
duke@435 83 NEEDS_CLEANUP;
duke@435 84 // this works around a problem where moves with the same src and dst
duke@435 85 // end up in the delay slot and then the assembler swallows the mov
duke@435 86 // since it has no effect and then it complains because the delay slot
duke@435 87 // is empty. returning false stops the optimizer from putting this in
duke@435 88 // the delay slot
duke@435 89 return false;
duke@435 90 }
duke@435 91
duke@435 92 // don't put moves involving oops into the delay slot since the VerifyOops code
duke@435 93 // will make it much larger than a single instruction.
duke@435 94 if (VerifyOops) {
duke@435 95 return false;
duke@435 96 }
duke@435 97
duke@435 98 if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
duke@435 99 ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
duke@435 100 return false;
duke@435 101 }
duke@435 102
iveresov@2344 103 if (UseCompressedOops) {
iveresov@2344 104 if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
iveresov@2344 105 if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
iveresov@2344 106 }
iveresov@2344 107
duke@435 108 if (dst->is_register()) {
duke@435 109 if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
duke@435 110 return !PatchALot;
duke@435 111 } else if (src->is_single_stack()) {
duke@435 112 return true;
duke@435 113 }
duke@435 114 }
duke@435 115
duke@435 116 if (src->is_register()) {
duke@435 117 if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
duke@435 118 return !PatchALot;
duke@435 119 } else if (dst->is_single_stack()) {
duke@435 120 return true;
duke@435 121 }
duke@435 122 }
duke@435 123
duke@435 124 if (dst->is_register() &&
duke@435 125 ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
duke@435 126 (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
duke@435 127 return true;
duke@435 128 }
duke@435 129
duke@435 130 return false;
duke@435 131 }
duke@435 132
duke@435 133 default:
duke@435 134 return false;
duke@435 135 }
duke@435 136 ShouldNotReachHere();
duke@435 137 }
duke@435 138
duke@435 139
duke@435 140 LIR_Opr LIR_Assembler::receiverOpr() {
duke@435 141 return FrameMap::O0_oop_opr;
duke@435 142 }
duke@435 143
duke@435 144
duke@435 145 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
duke@435 146 return FrameMap::I0_oop_opr;
duke@435 147 }
duke@435 148
duke@435 149
duke@435 150 LIR_Opr LIR_Assembler::osrBufferPointer() {
duke@435 151 return FrameMap::I0_opr;
duke@435 152 }
duke@435 153
duke@435 154
duke@435 155 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 156 return in_bytes(frame_map()->framesize_in_bytes());
duke@435 157 }
duke@435 158
duke@435 159
duke@435 160 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
duke@435 161 // we fetch the class of the receiver (O0) and compare it with the cached class.
duke@435 162 // If they do not match we jump to slow case.
duke@435 163 int LIR_Assembler::check_icache() {
duke@435 164 int offset = __ offset();
duke@435 165 __ inline_cache_check(O0, G5_inline_cache_reg);
duke@435 166 return offset;
duke@435 167 }
duke@435 168
duke@435 169
duke@435 170 void LIR_Assembler::osr_entry() {
duke@435 171 // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
duke@435 172 //
duke@435 173 // 1. Create a new compiled activation.
duke@435 174 // 2. Initialize local variables in the compiled activation. The expression stack must be empty
duke@435 175 // at the osr_bci; it is not initialized.
duke@435 176 // 3. Jump to the continuation address in compiled code to resume execution.
duke@435 177
duke@435 178 // OSR entry point
duke@435 179 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 180 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 181 ValueStack* entry_state = osr_entry->end()->state();
duke@435 182 int number_of_locks = entry_state->locks_size();
duke@435 183
duke@435 184 // Create a frame for the compiled activation.
duke@435 185 __ build_frame(initial_frame_size_in_bytes());
duke@435 186
duke@435 187 // OSR buffer is
duke@435 188 //
duke@435 189 // locals[nlocals-1..0]
duke@435 190 // monitors[number_of_locks-1..0]
duke@435 191 //
duke@435 192 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 193 // so first slot in the local array is the last local from the interpreter
duke@435 194 // and last slot is local[0] (receiver) from the interpreter
duke@435 195 //
duke@435 196 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 197 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 198 // in the interpreter frame (the method lock if a sync method)
duke@435 199
duke@435 200 // Initialize monitors in the compiled activation.
duke@435 201 // I0: pointer to osr buffer
duke@435 202 //
duke@435 203 // All other registers are dead at this point and the locals will be
duke@435 204 // copied into place by code emitted in the IR.
duke@435 205
duke@435 206 Register OSR_buf = osrBufferPointer()->as_register();
duke@435 207 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 208 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 209 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 210 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 211 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 212 // the oop.
duke@435 213 for (int i = 0; i < number_of_locks; i++) {
roland@1495 214 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 215 #ifdef ASSERT
duke@435 216 // verify the interpreter's monitor has a non-null object
duke@435 217 {
duke@435 218 Label L;
roland@1495 219 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
duke@435 220 __ cmp(G0, O7);
duke@435 221 __ br(Assembler::notEqual, false, Assembler::pt, L);
duke@435 222 __ delayed()->nop();
duke@435 223 __ stop("locked object is NULL");
duke@435 224 __ bind(L);
duke@435 225 }
duke@435 226 #endif // ASSERT
duke@435 227 // Copy the lock field into the compiled activation.
roland@1495 228 __ ld_ptr(OSR_buf, slot_offset + 0, O7);
duke@435 229 __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
roland@1495 230 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
duke@435 231 __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
duke@435 232 }
duke@435 233 }
duke@435 234 }
duke@435 235
duke@435 236
duke@435 237 // Optimized Library calls
duke@435 238 // This is the fast version of java.lang.String.compare; it has not
duke@435 239 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 240 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
duke@435 241 Register str0 = left->as_register();
duke@435 242 Register str1 = right->as_register();
duke@435 243
duke@435 244 Label Ldone;
duke@435 245
duke@435 246 Register result = dst->as_register();
duke@435 247 {
duke@435 248 // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
duke@435 249 // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
duke@435 250 // Also, get string0.count-string1.count in o7 and get the condition code set
duke@435 251 // Note: some instructions have been hoisted for better instruction scheduling
duke@435 252
duke@435 253 Register tmp0 = L0;
duke@435 254 Register tmp1 = L1;
duke@435 255 Register tmp2 = L2;
duke@435 256
duke@435 257 int value_offset = java_lang_String:: value_offset_in_bytes(); // char array
duke@435 258 int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
duke@435 259 int count_offset = java_lang_String:: count_offset_in_bytes();
duke@435 260
iveresov@2344 261 __ load_heap_oop(str0, value_offset, tmp0);
twisti@1162 262 __ ld(str0, offset_offset, tmp2);
duke@435 263 __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
twisti@1162 264 __ ld(str0, count_offset, str0);
duke@435 265 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
duke@435 266
duke@435 267 // str1 may be null
duke@435 268 add_debug_info_for_null_check_here(info);
duke@435 269
iveresov@2344 270 __ load_heap_oop(str1, value_offset, tmp1);
duke@435 271 __ add(tmp0, tmp2, tmp0);
duke@435 272
twisti@1162 273 __ ld(str1, offset_offset, tmp2);
duke@435 274 __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
twisti@1162 275 __ ld(str1, count_offset, str1);
duke@435 276 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
duke@435 277 __ subcc(str0, str1, O7);
duke@435 278 __ add(tmp1, tmp2, tmp1);
duke@435 279 }
duke@435 280
duke@435 281 {
duke@435 282 // Compute the minimum of the string lengths, scale it and store it in limit
duke@435 283 Register count0 = I0;
duke@435 284 Register count1 = I1;
duke@435 285 Register limit = L3;
duke@435 286
duke@435 287 Label Lskip;
duke@435 288 __ sll(count0, exact_log2(sizeof(jchar)), limit); // string0 is shorter
duke@435 289 __ br(Assembler::greater, true, Assembler::pt, Lskip);
duke@435 290 __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit); // string1 is shorter
duke@435 291 __ bind(Lskip);
duke@435 292
duke@435 293 // If either string is empty (or both of them) the result is the difference in lengths
duke@435 294 __ cmp(limit, 0);
duke@435 295 __ br(Assembler::equal, true, Assembler::pn, Ldone);
duke@435 296 __ delayed()->mov(O7, result); // result is difference in lengths
duke@435 297 }
duke@435 298
duke@435 299 {
duke@435 300 // Neither string is empty
duke@435 301 Label Lloop;
duke@435 302
duke@435 303 Register base0 = L0;
duke@435 304 Register base1 = L1;
duke@435 305 Register chr0 = I0;
duke@435 306 Register chr1 = I1;
duke@435 307 Register limit = L3;
duke@435 308
duke@435 309 // Shift base0 and base1 to the end of the arrays, negate limit
duke@435 310 __ add(base0, limit, base0);
duke@435 311 __ add(base1, limit, base1);
duke@435 312 __ neg(limit); // limit = -min{string0.count, strin1.count}
duke@435 313
duke@435 314 __ lduh(base0, limit, chr0);
duke@435 315 __ bind(Lloop);
duke@435 316 __ lduh(base1, limit, chr1);
duke@435 317 __ subcc(chr0, chr1, chr0);
duke@435 318 __ br(Assembler::notZero, false, Assembler::pn, Ldone);
duke@435 319 assert(chr0 == result, "result must be pre-placed");
duke@435 320 __ delayed()->inccc(limit, sizeof(jchar));
duke@435 321 __ br(Assembler::notZero, true, Assembler::pt, Lloop);
duke@435 322 __ delayed()->lduh(base0, limit, chr0);
duke@435 323 }
duke@435 324
duke@435 325 // If strings are equal up to min length, return the length difference.
duke@435 326 __ mov(O7, result);
duke@435 327
duke@435 328 // Otherwise, return the difference between the first mismatched chars.
duke@435 329 __ bind(Ldone);
duke@435 330 }
duke@435 331
duke@435 332
duke@435 333 // --------------------------------------------------------------------------------------------
duke@435 334
duke@435 335 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
duke@435 336 if (!GenerateSynchronizationCode) return;
duke@435 337
duke@435 338 Register obj_reg = obj_opr->as_register();
duke@435 339 Register lock_reg = lock_opr->as_register();
duke@435 340
duke@435 341 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 342 Register reg = mon_addr.base();
duke@435 343 int offset = mon_addr.disp();
duke@435 344 // compute pointer to BasicLock
duke@435 345 if (mon_addr.is_simm13()) {
duke@435 346 __ add(reg, offset, lock_reg);
duke@435 347 }
duke@435 348 else {
duke@435 349 __ set(offset, lock_reg);
duke@435 350 __ add(reg, lock_reg, lock_reg);
duke@435 351 }
duke@435 352 // unlock object
duke@435 353 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
duke@435 354 // _slow_case_stubs->append(slow_case);
duke@435 355 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 356 _slow_case_stubs->append(slow_case);
duke@435 357 if (UseFastLocking) {
duke@435 358 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 359 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 360 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 361 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 362 } else {
duke@435 363 // always do slow unlocking
duke@435 364 // note: the slow unlocking code could be inlined here, however if we use
duke@435 365 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 366 // simpler and requires less duplicated code - additionally, the
duke@435 367 // slow unlocking code is the same in either case which simplifies
duke@435 368 // debugging
duke@435 369 __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
duke@435 370 __ delayed()->nop();
duke@435 371 }
duke@435 372 // done
duke@435 373 __ bind(*slow_case->continuation());
duke@435 374 }
duke@435 375
duke@435 376
twisti@1639 377 int LIR_Assembler::emit_exception_handler() {
duke@435 378 // if the last instruction is a call (typically to do a throw which
duke@435 379 // is coming at the end after block reordering) the return address
duke@435 380 // must still point into the code area in order to avoid assertion
duke@435 381 // failures when searching for the corresponding bci => add a nop
duke@435 382 // (was bug 5/14/1999 - gri)
duke@435 383 __ nop();
duke@435 384
duke@435 385 // generate code for exception handler
duke@435 386 ciMethod* method = compilation()->method();
duke@435 387
duke@435 388 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 389
duke@435 390 if (handler_base == NULL) {
duke@435 391 // not enough space left for the handler
duke@435 392 bailout("exception handler overflow");
twisti@1639 393 return -1;
duke@435 394 }
twisti@1639 395
duke@435 396 int offset = code_offset();
duke@435 397
twisti@1730 398 __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
duke@435 399 __ delayed()->nop();
duke@435 400 debug_only(__ stop("should have gone to the caller");)
duke@435 401 assert(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 402 __ end_a_stub();
twisti@1639 403
twisti@1639 404 return offset;
duke@435 405 }
duke@435 406
twisti@1639 407
never@1813 408 // Emit the code to remove the frame from the stack in the exception
never@1813 409 // unwind path.
never@1813 410 int LIR_Assembler::emit_unwind_handler() {
never@1813 411 #ifndef PRODUCT
never@1813 412 if (CommentedAssembly) {
never@1813 413 _masm->block_comment("Unwind handler");
never@1813 414 }
never@1813 415 #endif
never@1813 416
never@1813 417 int offset = code_offset();
never@1813 418
never@1813 419 // Fetch the exception from TLS and clear out exception related thread state
never@1813 420 __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
never@1813 421 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
never@1813 422 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
never@1813 423
never@1813 424 __ bind(_unwind_handler_entry);
never@1813 425 __ verify_not_null_oop(O0);
never@1813 426 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 427 __ mov(O0, I0); // Preserve the exception
never@1813 428 }
never@1813 429
never@1813 430 // Preform needed unlocking
never@1813 431 MonitorExitStub* stub = NULL;
never@1813 432 if (method()->is_synchronized()) {
never@1813 433 monitor_address(0, FrameMap::I1_opr);
never@1813 434 stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
never@1813 435 __ unlock_object(I3, I2, I1, *stub->entry());
never@1813 436 __ bind(*stub->continuation());
never@1813 437 }
never@1813 438
never@1813 439 if (compilation()->env()->dtrace_method_probes()) {
never@2185 440 __ mov(G2_thread, O0);
never@2185 441 jobject2reg(method()->constant_encoding(), O1);
never@1813 442 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
never@1813 443 __ delayed()->nop();
never@1813 444 }
never@1813 445
never@1813 446 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 447 __ mov(I0, O0); // Restore the exception
never@1813 448 }
never@1813 449
never@1813 450 // dispatch to the unwind logic
never@1813 451 __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
never@1813 452 __ delayed()->nop();
never@1813 453
never@1813 454 // Emit the slow path assembly
never@1813 455 if (stub != NULL) {
never@1813 456 stub->emit_code(this);
never@1813 457 }
never@1813 458
never@1813 459 return offset;
never@1813 460 }
never@1813 461
never@1813 462
twisti@1639 463 int LIR_Assembler::emit_deopt_handler() {
duke@435 464 // if the last instruction is a call (typically to do a throw which
duke@435 465 // is coming at the end after block reordering) the return address
duke@435 466 // must still point into the code area in order to avoid assertion
duke@435 467 // failures when searching for the corresponding bci => add a nop
duke@435 468 // (was bug 5/14/1999 - gri)
duke@435 469 __ nop();
duke@435 470
duke@435 471 // generate code for deopt handler
duke@435 472 ciMethod* method = compilation()->method();
duke@435 473 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 474 if (handler_base == NULL) {
duke@435 475 // not enough space left for the handler
duke@435 476 bailout("deopt handler overflow");
twisti@1639 477 return -1;
duke@435 478 }
twisti@1639 479
duke@435 480 int offset = code_offset();
twisti@1162 481 AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
twisti@1162 482 __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
duke@435 483 __ delayed()->nop();
duke@435 484 assert(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 485 debug_only(__ stop("should have gone to the caller");)
duke@435 486 __ end_a_stub();
twisti@1639 487
twisti@1639 488 return offset;
duke@435 489 }
duke@435 490
duke@435 491
duke@435 492 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
duke@435 493 if (o == NULL) {
duke@435 494 __ set(NULL_WORD, reg);
duke@435 495 } else {
duke@435 496 int oop_index = __ oop_recorder()->find_index(o);
duke@435 497 RelocationHolder rspec = oop_Relocation::spec(oop_index);
duke@435 498 __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
duke@435 499 }
duke@435 500 }
duke@435 501
duke@435 502
duke@435 503 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
duke@435 504 // Allocate a new index in oop table to hold the oop once it's been patched
duke@435 505 int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
duke@435 506 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
duke@435 507
twisti@1162 508 AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
twisti@1162 509 assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
duke@435 510 // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
duke@435 511 // NULL will be dynamically patched later and the patched value may be large. We must
duke@435 512 // therefore generate the sethi/add as a placeholders
twisti@1162 513 __ patchable_set(addrlit, reg);
duke@435 514
duke@435 515 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 516 }
duke@435 517
duke@435 518
duke@435 519 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 520 Register Rdividend = op->in_opr1()->as_register();
duke@435 521 Register Rdivisor = noreg;
duke@435 522 Register Rscratch = op->in_opr3()->as_register();
duke@435 523 Register Rresult = op->result_opr()->as_register();
duke@435 524 int divisor = -1;
duke@435 525
duke@435 526 if (op->in_opr2()->is_register()) {
duke@435 527 Rdivisor = op->in_opr2()->as_register();
duke@435 528 } else {
duke@435 529 divisor = op->in_opr2()->as_constant_ptr()->as_jint();
duke@435 530 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 531 }
duke@435 532
duke@435 533 assert(Rdividend != Rscratch, "");
duke@435 534 assert(Rdivisor != Rscratch, "");
duke@435 535 assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
duke@435 536
duke@435 537 if (Rdivisor == noreg && is_power_of_2(divisor)) {
duke@435 538 // convert division by a power of two into some shifts and logical operations
duke@435 539 if (op->code() == lir_idiv) {
duke@435 540 if (divisor == 2) {
duke@435 541 __ srl(Rdividend, 31, Rscratch);
duke@435 542 } else {
duke@435 543 __ sra(Rdividend, 31, Rscratch);
duke@435 544 __ and3(Rscratch, divisor - 1, Rscratch);
duke@435 545 }
duke@435 546 __ add(Rdividend, Rscratch, Rscratch);
duke@435 547 __ sra(Rscratch, log2_intptr(divisor), Rresult);
duke@435 548 return;
duke@435 549 } else {
duke@435 550 if (divisor == 2) {
duke@435 551 __ srl(Rdividend, 31, Rscratch);
duke@435 552 } else {
duke@435 553 __ sra(Rdividend, 31, Rscratch);
duke@435 554 __ and3(Rscratch, divisor - 1,Rscratch);
duke@435 555 }
duke@435 556 __ add(Rdividend, Rscratch, Rscratch);
duke@435 557 __ andn(Rscratch, divisor - 1,Rscratch);
duke@435 558 __ sub(Rdividend, Rscratch, Rresult);
duke@435 559 return;
duke@435 560 }
duke@435 561 }
duke@435 562
duke@435 563 __ sra(Rdividend, 31, Rscratch);
duke@435 564 __ wry(Rscratch);
duke@435 565 if (!VM_Version::v9_instructions_work()) {
duke@435 566 // v9 doesn't require these nops
duke@435 567 __ nop();
duke@435 568 __ nop();
duke@435 569 __ nop();
duke@435 570 __ nop();
duke@435 571 }
duke@435 572
duke@435 573 add_debug_info_for_div0_here(op->info());
duke@435 574
duke@435 575 if (Rdivisor != noreg) {
duke@435 576 __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 577 } else {
duke@435 578 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 579 __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 580 }
duke@435 581
duke@435 582 Label skip;
duke@435 583 __ br(Assembler::overflowSet, true, Assembler::pn, skip);
duke@435 584 __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 585 __ bind(skip);
duke@435 586
duke@435 587 if (op->code() == lir_irem) {
duke@435 588 if (Rdivisor != noreg) {
duke@435 589 __ smul(Rscratch, Rdivisor, Rscratch);
duke@435 590 } else {
duke@435 591 __ smul(Rscratch, divisor, Rscratch);
duke@435 592 }
duke@435 593 __ sub(Rdividend, Rscratch, Rresult);
duke@435 594 }
duke@435 595 }
duke@435 596
duke@435 597
duke@435 598 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 599 #ifdef ASSERT
duke@435 600 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 601 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 602 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 603 #endif
duke@435 604 assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
duke@435 605
duke@435 606 if (op->cond() == lir_cond_always) {
duke@435 607 __ br(Assembler::always, false, Assembler::pt, *(op->label()));
duke@435 608 } else if (op->code() == lir_cond_float_branch) {
duke@435 609 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 610 bool is_unordered = (op->ublock() == op->block());
duke@435 611 Assembler::Condition acond;
duke@435 612 switch (op->cond()) {
duke@435 613 case lir_cond_equal: acond = Assembler::f_equal; break;
duke@435 614 case lir_cond_notEqual: acond = Assembler::f_notEqual; break;
duke@435 615 case lir_cond_less: acond = (is_unordered ? Assembler::f_unorderedOrLess : Assembler::f_less); break;
duke@435 616 case lir_cond_greater: acond = (is_unordered ? Assembler::f_unorderedOrGreater : Assembler::f_greater); break;
duke@435 617 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual : Assembler::f_lessOrEqual); break;
duke@435 618 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
duke@435 619 default : ShouldNotReachHere();
duke@435 620 };
duke@435 621
duke@435 622 if (!VM_Version::v9_instructions_work()) {
duke@435 623 __ nop();
duke@435 624 }
duke@435 625 __ fb( acond, false, Assembler::pn, *(op->label()));
duke@435 626 } else {
duke@435 627 assert (op->code() == lir_branch, "just checking");
duke@435 628
duke@435 629 Assembler::Condition acond;
duke@435 630 switch (op->cond()) {
duke@435 631 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 632 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 633 case lir_cond_less: acond = Assembler::less; break;
duke@435 634 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 635 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 636 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 637 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 638 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 639 default: ShouldNotReachHere();
duke@435 640 };
duke@435 641
duke@435 642 // sparc has different condition codes for testing 32-bit
duke@435 643 // vs. 64-bit values. We could always test xcc is we could
duke@435 644 // guarantee that 32-bit loads always sign extended but that isn't
duke@435 645 // true and since sign extension isn't free, it would impose a
duke@435 646 // slight cost.
duke@435 647 #ifdef _LP64
duke@435 648 if (op->type() == T_INT) {
duke@435 649 __ br(acond, false, Assembler::pn, *(op->label()));
duke@435 650 } else
duke@435 651 #endif
duke@435 652 __ brx(acond, false, Assembler::pn, *(op->label()));
duke@435 653 }
duke@435 654 // The peephole pass fills the delay slot
duke@435 655 }
duke@435 656
duke@435 657
duke@435 658 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 659 Bytecodes::Code code = op->bytecode();
duke@435 660 LIR_Opr dst = op->result_opr();
duke@435 661
duke@435 662 switch(code) {
duke@435 663 case Bytecodes::_i2l: {
duke@435 664 Register rlo = dst->as_register_lo();
duke@435 665 Register rhi = dst->as_register_hi();
duke@435 666 Register rval = op->in_opr()->as_register();
duke@435 667 #ifdef _LP64
duke@435 668 __ sra(rval, 0, rlo);
duke@435 669 #else
duke@435 670 __ mov(rval, rlo);
duke@435 671 __ sra(rval, BitsPerInt-1, rhi);
duke@435 672 #endif
duke@435 673 break;
duke@435 674 }
duke@435 675 case Bytecodes::_i2d:
duke@435 676 case Bytecodes::_i2f: {
duke@435 677 bool is_double = (code == Bytecodes::_i2d);
duke@435 678 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 679 FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 680 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 681 if (rsrc != rdst) {
duke@435 682 __ fmov(FloatRegisterImpl::S, rsrc, rdst);
duke@435 683 }
duke@435 684 __ fitof(w, rdst, rdst);
duke@435 685 break;
duke@435 686 }
duke@435 687 case Bytecodes::_f2i:{
duke@435 688 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 689 Address addr = frame_map()->address_for_slot(dst->single_stack_ix());
duke@435 690 Label L;
duke@435 691 // result must be 0 if value is NaN; test by comparing value to itself
duke@435 692 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
duke@435 693 if (!VM_Version::v9_instructions_work()) {
duke@435 694 __ nop();
duke@435 695 }
duke@435 696 __ fb(Assembler::f_unordered, true, Assembler::pn, L);
duke@435 697 __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
duke@435 698 __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
duke@435 699 // move integer result from float register to int register
duke@435 700 __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
duke@435 701 __ bind (L);
duke@435 702 break;
duke@435 703 }
duke@435 704 case Bytecodes::_l2i: {
duke@435 705 Register rlo = op->in_opr()->as_register_lo();
duke@435 706 Register rhi = op->in_opr()->as_register_hi();
duke@435 707 Register rdst = dst->as_register();
duke@435 708 #ifdef _LP64
duke@435 709 __ sra(rlo, 0, rdst);
duke@435 710 #else
duke@435 711 __ mov(rlo, rdst);
duke@435 712 #endif
duke@435 713 break;
duke@435 714 }
duke@435 715 case Bytecodes::_d2f:
duke@435 716 case Bytecodes::_f2d: {
duke@435 717 bool is_double = (code == Bytecodes::_f2d);
duke@435 718 assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
duke@435 719 LIR_Opr val = op->in_opr();
duke@435 720 FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
duke@435 721 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 722 FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
duke@435 723 FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 724 __ ftof(vw, dw, rval, rdst);
duke@435 725 break;
duke@435 726 }
duke@435 727 case Bytecodes::_i2s:
duke@435 728 case Bytecodes::_i2b: {
duke@435 729 Register rval = op->in_opr()->as_register();
duke@435 730 Register rdst = dst->as_register();
duke@435 731 int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
duke@435 732 __ sll (rval, shift, rdst);
duke@435 733 __ sra (rdst, shift, rdst);
duke@435 734 break;
duke@435 735 }
duke@435 736 case Bytecodes::_i2c: {
duke@435 737 Register rval = op->in_opr()->as_register();
duke@435 738 Register rdst = dst->as_register();
duke@435 739 int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
duke@435 740 __ sll (rval, shift, rdst);
duke@435 741 __ srl (rdst, shift, rdst);
duke@435 742 break;
duke@435 743 }
duke@435 744
duke@435 745 default: ShouldNotReachHere();
duke@435 746 }
duke@435 747 }
duke@435 748
duke@435 749
duke@435 750 void LIR_Assembler::align_call(LIR_Code) {
duke@435 751 // do nothing since all instructions are word aligned on sparc
duke@435 752 }
duke@435 753
duke@435 754
twisti@1730 755 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
twisti@1730 756 __ call(op->addr(), rtype);
twisti@1919 757 // The peephole pass fills the delay slot, add_call_info is done in
twisti@1919 758 // LIR_Assembler::emit_delay.
duke@435 759 }
duke@435 760
duke@435 761
twisti@1730 762 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
duke@435 763 RelocationHolder rspec = virtual_call_Relocation::spec(pc());
duke@435 764 __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
duke@435 765 __ relocate(rspec);
twisti@1730 766 __ call(op->addr(), relocInfo::none);
twisti@1919 767 // The peephole pass fills the delay slot, add_call_info is done in
twisti@1919 768 // LIR_Assembler::emit_delay.
duke@435 769 }
duke@435 770
duke@435 771
twisti@1730 772 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
twisti@1730 773 add_debug_info_for_null_check_here(op->info());
iveresov@2344 774 __ load_klass(O0, G3_scratch);
twisti@1730 775 if (__ is_simm13(op->vtable_offset())) {
twisti@1730 776 __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
duke@435 777 } else {
duke@435 778 // This will generate 2 instructions
twisti@1730 779 __ set(op->vtable_offset(), G5_method);
duke@435 780 // ld_ptr, set_hi, set
duke@435 781 __ ld_ptr(G3_scratch, G5_method, G5_method);
duke@435 782 }
twisti@1162 783 __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
duke@435 784 __ callr(G3_scratch, G0);
duke@435 785 // the peephole pass fills the delay slot
duke@435 786 }
duke@435 787
iveresov@2344 788 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
duke@435 789 int store_offset;
duke@435 790 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 791 assert(!unaligned, "can't handle this");
duke@435 792 // for offsets larger than a simm13 we setup the offset in O7
twisti@1162 793 __ set(offset, O7);
iveresov@2344 794 store_offset = store(from_reg, base, O7, type, wide);
duke@435 795 } else {
iveresov@2344 796 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 797 __ verify_oop(from_reg->as_register());
iveresov@2344 798 }
duke@435 799 store_offset = code_offset();
duke@435 800 switch (type) {
duke@435 801 case T_BOOLEAN: // fall through
duke@435 802 case T_BYTE : __ stb(from_reg->as_register(), base, offset); break;
duke@435 803 case T_CHAR : __ sth(from_reg->as_register(), base, offset); break;
duke@435 804 case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
duke@435 805 case T_INT : __ stw(from_reg->as_register(), base, offset); break;
duke@435 806 case T_LONG :
duke@435 807 #ifdef _LP64
duke@435 808 if (unaligned || PatchALot) {
duke@435 809 __ srax(from_reg->as_register_lo(), 32, O7);
duke@435 810 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 811 __ stw(O7, base, offset + hi_word_offset_in_bytes);
duke@435 812 } else {
duke@435 813 __ stx(from_reg->as_register_lo(), base, offset);
duke@435 814 }
duke@435 815 #else
duke@435 816 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 817 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 818 __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
duke@435 819 #endif
duke@435 820 break;
iveresov@2344 821 case T_ADDRESS:
iveresov@2344 822 __ st_ptr(from_reg->as_register(), base, offset);
iveresov@2344 823 break;
duke@435 824 case T_ARRAY : // fall through
iveresov@2344 825 case T_OBJECT:
iveresov@2344 826 {
iveresov@2344 827 if (UseCompressedOops && !wide) {
iveresov@2344 828 __ encode_heap_oop(from_reg->as_register(), G3_scratch);
iveresov@2344 829 store_offset = code_offset();
iveresov@2344 830 __ stw(G3_scratch, base, offset);
iveresov@2344 831 } else {
iveresov@2344 832 __ st_ptr(from_reg->as_register(), base, offset);
iveresov@2344 833 }
iveresov@2344 834 break;
iveresov@2344 835 }
iveresov@2344 836
duke@435 837 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
duke@435 838 case T_DOUBLE:
duke@435 839 {
duke@435 840 FloatRegister reg = from_reg->as_double_reg();
duke@435 841 // split unaligned stores
duke@435 842 if (unaligned || PatchALot) {
duke@435 843 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 844 __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
duke@435 845 __ stf(FloatRegisterImpl::S, reg, base, offset);
duke@435 846 } else {
duke@435 847 __ stf(FloatRegisterImpl::D, reg, base, offset);
duke@435 848 }
duke@435 849 break;
duke@435 850 }
duke@435 851 default : ShouldNotReachHere();
duke@435 852 }
duke@435 853 }
duke@435 854 return store_offset;
duke@435 855 }
duke@435 856
duke@435 857
iveresov@2344 858 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
iveresov@2344 859 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 860 __ verify_oop(from_reg->as_register());
iveresov@2344 861 }
duke@435 862 int store_offset = code_offset();
duke@435 863 switch (type) {
duke@435 864 case T_BOOLEAN: // fall through
duke@435 865 case T_BYTE : __ stb(from_reg->as_register(), base, disp); break;
duke@435 866 case T_CHAR : __ sth(from_reg->as_register(), base, disp); break;
duke@435 867 case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
duke@435 868 case T_INT : __ stw(from_reg->as_register(), base, disp); break;
duke@435 869 case T_LONG :
duke@435 870 #ifdef _LP64
duke@435 871 __ stx(from_reg->as_register_lo(), base, disp);
duke@435 872 #else
duke@435 873 assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
duke@435 874 __ std(from_reg->as_register_hi(), base, disp);
duke@435 875 #endif
duke@435 876 break;
iveresov@2344 877 case T_ADDRESS:
iveresov@2344 878 __ st_ptr(from_reg->as_register(), base, disp);
iveresov@2344 879 break;
duke@435 880 case T_ARRAY : // fall through
iveresov@2344 881 case T_OBJECT:
iveresov@2344 882 {
iveresov@2344 883 if (UseCompressedOops && !wide) {
iveresov@2344 884 __ encode_heap_oop(from_reg->as_register(), G3_scratch);
iveresov@2344 885 store_offset = code_offset();
iveresov@2344 886 __ stw(G3_scratch, base, disp);
iveresov@2344 887 } else {
iveresov@2344 888 __ st_ptr(from_reg->as_register(), base, disp);
iveresov@2344 889 }
iveresov@2344 890 break;
iveresov@2344 891 }
duke@435 892 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
duke@435 893 case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
duke@435 894 default : ShouldNotReachHere();
duke@435 895 }
duke@435 896 return store_offset;
duke@435 897 }
duke@435 898
duke@435 899
iveresov@2344 900 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
duke@435 901 int load_offset;
duke@435 902 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 903 assert(base != O7, "destroying register");
duke@435 904 assert(!unaligned, "can't handle this");
duke@435 905 // for offsets larger than a simm13 we setup the offset in O7
twisti@1162 906 __ set(offset, O7);
iveresov@2344 907 load_offset = load(base, O7, to_reg, type, wide);
duke@435 908 } else {
duke@435 909 load_offset = code_offset();
duke@435 910 switch(type) {
duke@435 911 case T_BOOLEAN: // fall through
duke@435 912 case T_BYTE : __ ldsb(base, offset, to_reg->as_register()); break;
duke@435 913 case T_CHAR : __ lduh(base, offset, to_reg->as_register()); break;
duke@435 914 case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
duke@435 915 case T_INT : __ ld(base, offset, to_reg->as_register()); break;
duke@435 916 case T_LONG :
duke@435 917 if (!unaligned) {
duke@435 918 #ifdef _LP64
duke@435 919 __ ldx(base, offset, to_reg->as_register_lo());
duke@435 920 #else
duke@435 921 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 922 "must be sequential");
duke@435 923 __ ldd(base, offset, to_reg->as_register_hi());
duke@435 924 #endif
duke@435 925 } else {
duke@435 926 #ifdef _LP64
duke@435 927 assert(base != to_reg->as_register_lo(), "can't handle this");
roland@1495 928 assert(O7 != to_reg->as_register_lo(), "can't handle this");
duke@435 929 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
roland@1495 930 __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
duke@435 931 __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
roland@1495 932 __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
duke@435 933 #else
duke@435 934 if (base == to_reg->as_register_lo()) {
duke@435 935 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 936 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 937 } else {
duke@435 938 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 939 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 940 }
duke@435 941 #endif
duke@435 942 }
duke@435 943 break;
iveresov@2344 944 case T_ADDRESS: __ ld_ptr(base, offset, to_reg->as_register()); break;
duke@435 945 case T_ARRAY : // fall through
iveresov@2344 946 case T_OBJECT:
iveresov@2344 947 {
iveresov@2344 948 if (UseCompressedOops && !wide) {
iveresov@2344 949 __ lduw(base, offset, to_reg->as_register());
iveresov@2344 950 __ decode_heap_oop(to_reg->as_register());
iveresov@2344 951 } else {
iveresov@2344 952 __ ld_ptr(base, offset, to_reg->as_register());
iveresov@2344 953 }
iveresov@2344 954 break;
iveresov@2344 955 }
duke@435 956 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
duke@435 957 case T_DOUBLE:
duke@435 958 {
duke@435 959 FloatRegister reg = to_reg->as_double_reg();
duke@435 960 // split unaligned loads
duke@435 961 if (unaligned || PatchALot) {
roland@1495 962 __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
roland@1495 963 __ ldf(FloatRegisterImpl::S, base, offset, reg);
duke@435 964 } else {
duke@435 965 __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
duke@435 966 }
duke@435 967 break;
duke@435 968 }
duke@435 969 default : ShouldNotReachHere();
duke@435 970 }
iveresov@2344 971 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 972 __ verify_oop(to_reg->as_register());
iveresov@2344 973 }
duke@435 974 }
duke@435 975 return load_offset;
duke@435 976 }
duke@435 977
duke@435 978
iveresov@2344 979 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
duke@435 980 int load_offset = code_offset();
duke@435 981 switch(type) {
duke@435 982 case T_BOOLEAN: // fall through
iveresov@2344 983 case T_BYTE : __ ldsb(base, disp, to_reg->as_register()); break;
iveresov@2344 984 case T_CHAR : __ lduh(base, disp, to_reg->as_register()); break;
iveresov@2344 985 case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
iveresov@2344 986 case T_INT : __ ld(base, disp, to_reg->as_register()); break;
iveresov@2344 987 case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
duke@435 988 case T_ARRAY : // fall through
iveresov@2344 989 case T_OBJECT:
iveresov@2344 990 {
iveresov@2344 991 if (UseCompressedOops && !wide) {
iveresov@2344 992 __ lduw(base, disp, to_reg->as_register());
iveresov@2344 993 __ decode_heap_oop(to_reg->as_register());
iveresov@2344 994 } else {
iveresov@2344 995 __ ld_ptr(base, disp, to_reg->as_register());
iveresov@2344 996 }
iveresov@2344 997 break;
iveresov@2344 998 }
duke@435 999 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
duke@435 1000 case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
duke@435 1001 case T_LONG :
duke@435 1002 #ifdef _LP64
duke@435 1003 __ ldx(base, disp, to_reg->as_register_lo());
duke@435 1004 #else
duke@435 1005 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 1006 "must be sequential");
duke@435 1007 __ ldd(base, disp, to_reg->as_register_hi());
duke@435 1008 #endif
duke@435 1009 break;
duke@435 1010 default : ShouldNotReachHere();
duke@435 1011 }
iveresov@2344 1012 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 1013 __ verify_oop(to_reg->as_register());
iveresov@2344 1014 }
duke@435 1015 return load_offset;
duke@435 1016 }
duke@435 1017
duke@435 1018 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 1019 LIR_Const* c = src->as_constant_ptr();
duke@435 1020 switch (c->type()) {
duke@435 1021 case T_INT:
iveresov@2344 1022 case T_FLOAT: {
iveresov@2344 1023 Register src_reg = O7;
iveresov@2344 1024 int value = c->as_jint_bits();
iveresov@2344 1025 if (value == 0) {
iveresov@2344 1026 src_reg = G0;
iveresov@2344 1027 } else {
iveresov@2344 1028 __ set(value, O7);
iveresov@2344 1029 }
iveresov@2344 1030 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
iveresov@2344 1031 __ stw(src_reg, addr.base(), addr.disp());
iveresov@2344 1032 break;
iveresov@2344 1033 }
roland@1732 1034 case T_ADDRESS: {
duke@435 1035 Register src_reg = O7;
duke@435 1036 int value = c->as_jint_bits();
duke@435 1037 if (value == 0) {
duke@435 1038 src_reg = G0;
duke@435 1039 } else {
duke@435 1040 __ set(value, O7);
duke@435 1041 }
duke@435 1042 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
iveresov@2344 1043 __ st_ptr(src_reg, addr.base(), addr.disp());
duke@435 1044 break;
duke@435 1045 }
duke@435 1046 case T_OBJECT: {
duke@435 1047 Register src_reg = O7;
duke@435 1048 jobject2reg(c->as_jobject(), src_reg);
duke@435 1049 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1050 __ st_ptr(src_reg, addr.base(), addr.disp());
duke@435 1051 break;
duke@435 1052 }
duke@435 1053 case T_LONG:
duke@435 1054 case T_DOUBLE: {
duke@435 1055 Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1056
duke@435 1057 Register tmp = O7;
duke@435 1058 int value_lo = c->as_jint_lo_bits();
duke@435 1059 if (value_lo == 0) {
duke@435 1060 tmp = G0;
duke@435 1061 } else {
duke@435 1062 __ set(value_lo, O7);
duke@435 1063 }
duke@435 1064 __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
duke@435 1065 int value_hi = c->as_jint_hi_bits();
duke@435 1066 if (value_hi == 0) {
duke@435 1067 tmp = G0;
duke@435 1068 } else {
duke@435 1069 __ set(value_hi, O7);
duke@435 1070 }
duke@435 1071 __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
duke@435 1072 break;
duke@435 1073 }
duke@435 1074 default:
duke@435 1075 Unimplemented();
duke@435 1076 }
duke@435 1077 }
duke@435 1078
duke@435 1079
iveresov@2344 1080 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
duke@435 1081 LIR_Const* c = src->as_constant_ptr();
duke@435 1082 LIR_Address* addr = dest->as_address_ptr();
duke@435 1083 Register base = addr->base()->as_pointer_register();
iveresov@2344 1084 int offset = -1;
iveresov@2344 1085
duke@435 1086 switch (c->type()) {
duke@435 1087 case T_INT:
roland@1732 1088 case T_FLOAT:
roland@1732 1089 case T_ADDRESS: {
duke@435 1090 LIR_Opr tmp = FrameMap::O7_opr;
duke@435 1091 int value = c->as_jint_bits();
duke@435 1092 if (value == 0) {
duke@435 1093 tmp = FrameMap::G0_opr;
duke@435 1094 } else if (Assembler::is_simm13(value)) {
duke@435 1095 __ set(value, O7);
duke@435 1096 }
duke@435 1097 if (addr->index()->is_valid()) {
duke@435 1098 assert(addr->disp() == 0, "must be zero");
iveresov@2344 1099 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
duke@435 1100 } else {
duke@435 1101 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
iveresov@2344 1102 offset = store(tmp, base, addr->disp(), type, wide, false);
duke@435 1103 }
duke@435 1104 break;
duke@435 1105 }
duke@435 1106 case T_LONG:
duke@435 1107 case T_DOUBLE: {
duke@435 1108 assert(!addr->index()->is_valid(), "can't handle reg reg address here");
duke@435 1109 assert(Assembler::is_simm13(addr->disp()) &&
duke@435 1110 Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
duke@435 1111
iveresov@2344 1112 LIR_Opr tmp = FrameMap::O7_opr;
duke@435 1113 int value_lo = c->as_jint_lo_bits();
duke@435 1114 if (value_lo == 0) {
iveresov@2344 1115 tmp = FrameMap::G0_opr;
duke@435 1116 } else {
duke@435 1117 __ set(value_lo, O7);
duke@435 1118 }
iveresov@2344 1119 offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
duke@435 1120 int value_hi = c->as_jint_hi_bits();
duke@435 1121 if (value_hi == 0) {
iveresov@2344 1122 tmp = FrameMap::G0_opr;
duke@435 1123 } else {
duke@435 1124 __ set(value_hi, O7);
duke@435 1125 }
iveresov@2344 1126 offset = store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
duke@435 1127 break;
duke@435 1128 }
duke@435 1129 case T_OBJECT: {
duke@435 1130 jobject obj = c->as_jobject();
duke@435 1131 LIR_Opr tmp;
duke@435 1132 if (obj == NULL) {
duke@435 1133 tmp = FrameMap::G0_opr;
duke@435 1134 } else {
duke@435 1135 tmp = FrameMap::O7_opr;
duke@435 1136 jobject2reg(c->as_jobject(), O7);
duke@435 1137 }
duke@435 1138 // handle either reg+reg or reg+disp address
duke@435 1139 if (addr->index()->is_valid()) {
duke@435 1140 assert(addr->disp() == 0, "must be zero");
iveresov@2344 1141 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
duke@435 1142 } else {
duke@435 1143 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
iveresov@2344 1144 offset = store(tmp, base, addr->disp(), type, wide, false);
duke@435 1145 }
duke@435 1146
duke@435 1147 break;
duke@435 1148 }
duke@435 1149 default:
duke@435 1150 Unimplemented();
duke@435 1151 }
iveresov@2344 1152 if (info != NULL) {
iveresov@2344 1153 assert(offset != -1, "offset should've been set");
iveresov@2344 1154 add_debug_info_for_null_check(offset, info);
iveresov@2344 1155 }
duke@435 1156 }
duke@435 1157
duke@435 1158
duke@435 1159 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 1160 LIR_Const* c = src->as_constant_ptr();
duke@435 1161 LIR_Opr to_reg = dest;
duke@435 1162
duke@435 1163 switch (c->type()) {
duke@435 1164 case T_INT:
roland@1732 1165 case T_ADDRESS:
duke@435 1166 {
duke@435 1167 jint con = c->as_jint();
duke@435 1168 if (to_reg->is_single_cpu()) {
duke@435 1169 assert(patch_code == lir_patch_none, "no patching handled here");
duke@435 1170 __ set(con, to_reg->as_register());
duke@435 1171 } else {
duke@435 1172 ShouldNotReachHere();
duke@435 1173 assert(to_reg->is_single_fpu(), "wrong register kind");
duke@435 1174
duke@435 1175 __ set(con, O7);
twisti@1162 1176 Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
duke@435 1177 __ st(O7, temp_slot);
duke@435 1178 __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
duke@435 1179 }
duke@435 1180 }
duke@435 1181 break;
duke@435 1182
duke@435 1183 case T_LONG:
duke@435 1184 {
duke@435 1185 jlong con = c->as_jlong();
duke@435 1186
duke@435 1187 if (to_reg->is_double_cpu()) {
duke@435 1188 #ifdef _LP64
duke@435 1189 __ set(con, to_reg->as_register_lo());
duke@435 1190 #else
duke@435 1191 __ set(low(con), to_reg->as_register_lo());
duke@435 1192 __ set(high(con), to_reg->as_register_hi());
duke@435 1193 #endif
duke@435 1194 #ifdef _LP64
duke@435 1195 } else if (to_reg->is_single_cpu()) {
duke@435 1196 __ set(con, to_reg->as_register());
duke@435 1197 #endif
duke@435 1198 } else {
duke@435 1199 ShouldNotReachHere();
duke@435 1200 assert(to_reg->is_double_fpu(), "wrong register kind");
twisti@1162 1201 Address temp_slot_lo(SP, ((frame::register_save_words ) * wordSize) + STACK_BIAS);
twisti@1162 1202 Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
duke@435 1203 __ set(low(con), O7);
duke@435 1204 __ st(O7, temp_slot_lo);
duke@435 1205 __ set(high(con), O7);
duke@435 1206 __ st(O7, temp_slot_hi);
duke@435 1207 __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
duke@435 1208 }
duke@435 1209 }
duke@435 1210 break;
duke@435 1211
duke@435 1212 case T_OBJECT:
duke@435 1213 {
duke@435 1214 if (patch_code == lir_patch_none) {
duke@435 1215 jobject2reg(c->as_jobject(), to_reg->as_register());
duke@435 1216 } else {
duke@435 1217 jobject2reg_with_patching(to_reg->as_register(), info);
duke@435 1218 }
duke@435 1219 }
duke@435 1220 break;
duke@435 1221
duke@435 1222 case T_FLOAT:
duke@435 1223 {
duke@435 1224 address const_addr = __ float_constant(c->as_jfloat());
duke@435 1225 if (const_addr == NULL) {
duke@435 1226 bailout("const section overflow");
duke@435 1227 break;
duke@435 1228 }
duke@435 1229 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
twisti@1162 1230 AddressLiteral const_addrlit(const_addr, rspec);
duke@435 1231 if (to_reg->is_single_fpu()) {
twisti@1162 1232 __ patchable_sethi(const_addrlit, O7);
duke@435 1233 __ relocate(rspec);
twisti@1162 1234 __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
duke@435 1235
duke@435 1236 } else {
duke@435 1237 assert(to_reg->is_single_cpu(), "Must be a cpu register.");
duke@435 1238
twisti@1162 1239 __ set(const_addrlit, O7);
iveresov@2344 1240 __ ld(O7, 0, to_reg->as_register());
duke@435 1241 }
duke@435 1242 }
duke@435 1243 break;
duke@435 1244
duke@435 1245 case T_DOUBLE:
duke@435 1246 {
duke@435 1247 address const_addr = __ double_constant(c->as_jdouble());
duke@435 1248 if (const_addr == NULL) {
duke@435 1249 bailout("const section overflow");
duke@435 1250 break;
duke@435 1251 }
duke@435 1252 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
duke@435 1253
duke@435 1254 if (to_reg->is_double_fpu()) {
twisti@1162 1255 AddressLiteral const_addrlit(const_addr, rspec);
twisti@1162 1256 __ patchable_sethi(const_addrlit, O7);
duke@435 1257 __ relocate(rspec);
twisti@1162 1258 __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
duke@435 1259 } else {
duke@435 1260 assert(to_reg->is_double_cpu(), "Must be a long register.");
duke@435 1261 #ifdef _LP64
duke@435 1262 __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
duke@435 1263 #else
duke@435 1264 __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
duke@435 1265 __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
duke@435 1266 #endif
duke@435 1267 }
duke@435 1268
duke@435 1269 }
duke@435 1270 break;
duke@435 1271
duke@435 1272 default:
duke@435 1273 ShouldNotReachHere();
duke@435 1274 }
duke@435 1275 }
duke@435 1276
duke@435 1277 Address LIR_Assembler::as_Address(LIR_Address* addr) {
duke@435 1278 Register reg = addr->base()->as_register();
twisti@1162 1279 return Address(reg, addr->disp());
duke@435 1280 }
duke@435 1281
duke@435 1282
duke@435 1283 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1284 switch (type) {
duke@435 1285 case T_INT:
duke@435 1286 case T_FLOAT: {
duke@435 1287 Register tmp = O7;
duke@435 1288 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1289 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1290 __ lduw(from.base(), from.disp(), tmp);
duke@435 1291 __ stw(tmp, to.base(), to.disp());
duke@435 1292 break;
duke@435 1293 }
duke@435 1294 case T_OBJECT: {
duke@435 1295 Register tmp = O7;
duke@435 1296 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1297 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1298 __ ld_ptr(from.base(), from.disp(), tmp);
duke@435 1299 __ st_ptr(tmp, to.base(), to.disp());
duke@435 1300 break;
duke@435 1301 }
duke@435 1302 case T_LONG:
duke@435 1303 case T_DOUBLE: {
duke@435 1304 Register tmp = O7;
duke@435 1305 Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1306 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1307 __ lduw(from.base(), from.disp(), tmp);
duke@435 1308 __ stw(tmp, to.base(), to.disp());
duke@435 1309 __ lduw(from.base(), from.disp() + 4, tmp);
duke@435 1310 __ stw(tmp, to.base(), to.disp() + 4);
duke@435 1311 break;
duke@435 1312 }
duke@435 1313
duke@435 1314 default:
duke@435 1315 ShouldNotReachHere();
duke@435 1316 }
duke@435 1317 }
duke@435 1318
duke@435 1319
duke@435 1320 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 1321 Address base = as_Address(addr);
twisti@1162 1322 return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
duke@435 1323 }
duke@435 1324
duke@435 1325
duke@435 1326 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 1327 Address base = as_Address(addr);
twisti@1162 1328 return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
duke@435 1329 }
duke@435 1330
duke@435 1331
duke@435 1332 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
iveresov@2344 1333 LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
duke@435 1334
duke@435 1335 LIR_Address* addr = src_opr->as_address_ptr();
duke@435 1336 LIR_Opr to_reg = dest;
duke@435 1337
duke@435 1338 Register src = addr->base()->as_pointer_register();
duke@435 1339 Register disp_reg = noreg;
duke@435 1340 int disp_value = addr->disp();
duke@435 1341 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1342
duke@435 1343 if (addr->base()->type() == T_OBJECT) {
duke@435 1344 __ verify_oop(src);
duke@435 1345 }
duke@435 1346
duke@435 1347 PatchingStub* patch = NULL;
duke@435 1348 if (needs_patching) {
duke@435 1349 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1350 assert(!to_reg->is_double_cpu() ||
duke@435 1351 patch_code == lir_patch_none ||
duke@435 1352 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1353 }
duke@435 1354
duke@435 1355 if (addr->index()->is_illegal()) {
duke@435 1356 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1357 if (needs_patching) {
twisti@1162 1358 __ patchable_set(0, O7);
duke@435 1359 } else {
duke@435 1360 __ set(disp_value, O7);
duke@435 1361 }
duke@435 1362 disp_reg = O7;
duke@435 1363 }
duke@435 1364 } else if (unaligned || PatchALot) {
duke@435 1365 __ add(src, addr->index()->as_register(), O7);
duke@435 1366 src = O7;
duke@435 1367 } else {
duke@435 1368 disp_reg = addr->index()->as_pointer_register();
duke@435 1369 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1370 }
duke@435 1371
duke@435 1372 // remember the offset of the load. The patching_epilog must be done
duke@435 1373 // before the call to add_debug_info, otherwise the PcDescs don't get
duke@435 1374 // entered in increasing order.
duke@435 1375 int offset = code_offset();
duke@435 1376
duke@435 1377 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1378 if (disp_reg == noreg) {
iveresov@2344 1379 offset = load(src, disp_value, to_reg, type, wide, unaligned);
duke@435 1380 } else {
duke@435 1381 assert(!unaligned, "can't handle this");
iveresov@2344 1382 offset = load(src, disp_reg, to_reg, type, wide);
duke@435 1383 }
duke@435 1384
duke@435 1385 if (patch != NULL) {
duke@435 1386 patching_epilog(patch, patch_code, src, info);
duke@435 1387 }
duke@435 1388 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1389 }
duke@435 1390
duke@435 1391
duke@435 1392 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1393 LIR_Address* addr = src->as_address_ptr();
duke@435 1394 Address from_addr = as_Address(addr);
duke@435 1395
duke@435 1396 if (VM_Version::has_v9()) {
duke@435 1397 __ prefetch(from_addr, Assembler::severalReads);
duke@435 1398 }
duke@435 1399 }
duke@435 1400
duke@435 1401
duke@435 1402 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1403 LIR_Address* addr = src->as_address_ptr();
duke@435 1404 Address from_addr = as_Address(addr);
duke@435 1405
duke@435 1406 if (VM_Version::has_v9()) {
duke@435 1407 __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
duke@435 1408 }
duke@435 1409 }
duke@435 1410
duke@435 1411
duke@435 1412 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1413 Address addr;
duke@435 1414 if (src->is_single_word()) {
duke@435 1415 addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1416 } else if (src->is_double_word()) {
duke@435 1417 addr = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1418 }
duke@435 1419
duke@435 1420 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
iveresov@2344 1421 load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
duke@435 1422 }
duke@435 1423
duke@435 1424
duke@435 1425 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 1426 Address addr;
duke@435 1427 if (dest->is_single_word()) {
duke@435 1428 addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1429 } else if (dest->is_double_word()) {
duke@435 1430 addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 1431 }
duke@435 1432 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
iveresov@2344 1433 store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
duke@435 1434 }
duke@435 1435
duke@435 1436
duke@435 1437 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
duke@435 1438 if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
duke@435 1439 if (from_reg->is_double_fpu()) {
duke@435 1440 // double to double moves
duke@435 1441 assert(to_reg->is_double_fpu(), "should match");
duke@435 1442 __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
duke@435 1443 } else {
duke@435 1444 // float to float moves
duke@435 1445 assert(to_reg->is_single_fpu(), "should match");
duke@435 1446 __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
duke@435 1447 }
duke@435 1448 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
duke@435 1449 if (from_reg->is_double_cpu()) {
duke@435 1450 #ifdef _LP64
duke@435 1451 __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
duke@435 1452 #else
duke@435 1453 assert(to_reg->is_double_cpu() &&
duke@435 1454 from_reg->as_register_hi() != to_reg->as_register_lo() &&
duke@435 1455 from_reg->as_register_lo() != to_reg->as_register_hi(),
duke@435 1456 "should both be long and not overlap");
duke@435 1457 // long to long moves
duke@435 1458 __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
duke@435 1459 __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
duke@435 1460 #endif
duke@435 1461 #ifdef _LP64
duke@435 1462 } else if (to_reg->is_double_cpu()) {
duke@435 1463 // int to int moves
duke@435 1464 __ mov(from_reg->as_register(), to_reg->as_register_lo());
duke@435 1465 #endif
duke@435 1466 } else {
duke@435 1467 // int to int moves
duke@435 1468 __ mov(from_reg->as_register(), to_reg->as_register());
duke@435 1469 }
duke@435 1470 } else {
duke@435 1471 ShouldNotReachHere();
duke@435 1472 }
duke@435 1473 if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
duke@435 1474 __ verify_oop(to_reg->as_register());
duke@435 1475 }
duke@435 1476 }
duke@435 1477
duke@435 1478
duke@435 1479 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
duke@435 1480 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
iveresov@2344 1481 bool wide, bool unaligned) {
duke@435 1482 LIR_Address* addr = dest->as_address_ptr();
duke@435 1483
duke@435 1484 Register src = addr->base()->as_pointer_register();
duke@435 1485 Register disp_reg = noreg;
duke@435 1486 int disp_value = addr->disp();
duke@435 1487 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1488
duke@435 1489 if (addr->base()->is_oop_register()) {
duke@435 1490 __ verify_oop(src);
duke@435 1491 }
duke@435 1492
duke@435 1493 PatchingStub* patch = NULL;
duke@435 1494 if (needs_patching) {
duke@435 1495 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1496 assert(!from_reg->is_double_cpu() ||
duke@435 1497 patch_code == lir_patch_none ||
duke@435 1498 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1499 }
duke@435 1500
duke@435 1501 if (addr->index()->is_illegal()) {
duke@435 1502 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1503 if (needs_patching) {
twisti@1162 1504 __ patchable_set(0, O7);
duke@435 1505 } else {
duke@435 1506 __ set(disp_value, O7);
duke@435 1507 }
duke@435 1508 disp_reg = O7;
duke@435 1509 }
duke@435 1510 } else if (unaligned || PatchALot) {
duke@435 1511 __ add(src, addr->index()->as_register(), O7);
duke@435 1512 src = O7;
duke@435 1513 } else {
duke@435 1514 disp_reg = addr->index()->as_pointer_register();
duke@435 1515 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1516 }
duke@435 1517
duke@435 1518 // remember the offset of the store. The patching_epilog must be done
duke@435 1519 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
duke@435 1520 // entered in increasing order.
duke@435 1521 int offset;
duke@435 1522
duke@435 1523 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1524 if (disp_reg == noreg) {
iveresov@2344 1525 offset = store(from_reg, src, disp_value, type, wide, unaligned);
duke@435 1526 } else {
duke@435 1527 assert(!unaligned, "can't handle this");
iveresov@2344 1528 offset = store(from_reg, src, disp_reg, type, wide);
duke@435 1529 }
duke@435 1530
duke@435 1531 if (patch != NULL) {
duke@435 1532 patching_epilog(patch, patch_code, src, info);
duke@435 1533 }
duke@435 1534
duke@435 1535 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1536 }
duke@435 1537
duke@435 1538
duke@435 1539 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 1540 // the poll may need a register so just pick one that isn't the return register
iveresov@2138 1541 #if defined(TIERED) && !defined(_LP64)
duke@435 1542 if (result->type_field() == LIR_OprDesc::long_type) {
duke@435 1543 // Must move the result to G1
duke@435 1544 // Must leave proper result in O0,O1 and G1 (TIERED only)
duke@435 1545 __ sllx(I0, 32, G1); // Shift bits into high G1
duke@435 1546 __ srl (I1, 0, I1); // Zero extend O1 (harmless?)
duke@435 1547 __ or3 (I1, G1, G1); // OR 64 bits into G1
iveresov@2138 1548 #ifdef ASSERT
iveresov@2138 1549 // mangle it so any problems will show up
iveresov@2138 1550 __ set(0xdeadbeef, I0);
iveresov@2138 1551 __ set(0xdeadbeef, I1);
iveresov@2138 1552 #endif
duke@435 1553 }
duke@435 1554 #endif // TIERED
duke@435 1555 __ set((intptr_t)os::get_polling_page(), L0);
duke@435 1556 __ relocate(relocInfo::poll_return_type);
duke@435 1557 __ ld_ptr(L0, 0, G0);
duke@435 1558 __ ret();
duke@435 1559 __ delayed()->restore();
duke@435 1560 }
duke@435 1561
duke@435 1562
duke@435 1563 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 1564 __ set((intptr_t)os::get_polling_page(), tmp->as_register());
duke@435 1565 if (info != NULL) {
duke@435 1566 add_debug_info_for_branch(info);
duke@435 1567 } else {
duke@435 1568 __ relocate(relocInfo::poll_type);
duke@435 1569 }
duke@435 1570
duke@435 1571 int offset = __ offset();
duke@435 1572 __ ld_ptr(tmp->as_register(), 0, G0);
duke@435 1573
duke@435 1574 return offset;
duke@435 1575 }
duke@435 1576
duke@435 1577
duke@435 1578 void LIR_Assembler::emit_static_call_stub() {
duke@435 1579 address call_pc = __ pc();
duke@435 1580 address stub = __ start_a_stub(call_stub_size);
duke@435 1581 if (stub == NULL) {
duke@435 1582 bailout("static call stub overflow");
duke@435 1583 return;
duke@435 1584 }
duke@435 1585
duke@435 1586 int start = __ offset();
duke@435 1587 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 1588
duke@435 1589 __ set_oop(NULL, G5);
duke@435 1590 // must be set to -1 at code generation time
twisti@1162 1591 AddressLiteral addrlit(-1);
twisti@1162 1592 __ jump_to(addrlit, G3);
duke@435 1593 __ delayed()->nop();
duke@435 1594
duke@435 1595 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 1596 __ end_a_stub();
duke@435 1597 }
duke@435 1598
duke@435 1599
duke@435 1600 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 1601 if (opr1->is_single_fpu()) {
duke@435 1602 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
duke@435 1603 } else if (opr1->is_double_fpu()) {
duke@435 1604 __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
duke@435 1605 } else if (opr1->is_single_cpu()) {
duke@435 1606 if (opr2->is_constant()) {
duke@435 1607 switch (opr2->as_constant_ptr()->type()) {
duke@435 1608 case T_INT:
duke@435 1609 { jint con = opr2->as_constant_ptr()->as_jint();
duke@435 1610 if (Assembler::is_simm13(con)) {
duke@435 1611 __ cmp(opr1->as_register(), con);
duke@435 1612 } else {
duke@435 1613 __ set(con, O7);
duke@435 1614 __ cmp(opr1->as_register(), O7);
duke@435 1615 }
duke@435 1616 }
duke@435 1617 break;
duke@435 1618
duke@435 1619 case T_OBJECT:
duke@435 1620 // there are only equal/notequal comparisions on objects
duke@435 1621 { jobject con = opr2->as_constant_ptr()->as_jobject();
duke@435 1622 if (con == NULL) {
duke@435 1623 __ cmp(opr1->as_register(), 0);
duke@435 1624 } else {
duke@435 1625 jobject2reg(con, O7);
duke@435 1626 __ cmp(opr1->as_register(), O7);
duke@435 1627 }
duke@435 1628 }
duke@435 1629 break;
duke@435 1630
duke@435 1631 default:
duke@435 1632 ShouldNotReachHere();
duke@435 1633 break;
duke@435 1634 }
duke@435 1635 } else {
duke@435 1636 if (opr2->is_address()) {
duke@435 1637 LIR_Address * addr = opr2->as_address_ptr();
duke@435 1638 BasicType type = addr->type();
duke@435 1639 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1640 else __ ld(as_Address(addr), O7);
duke@435 1641 __ cmp(opr1->as_register(), O7);
duke@435 1642 } else {
duke@435 1643 __ cmp(opr1->as_register(), opr2->as_register());
duke@435 1644 }
duke@435 1645 }
duke@435 1646 } else if (opr1->is_double_cpu()) {
duke@435 1647 Register xlo = opr1->as_register_lo();
duke@435 1648 Register xhi = opr1->as_register_hi();
duke@435 1649 if (opr2->is_constant() && opr2->as_jlong() == 0) {
duke@435 1650 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
duke@435 1651 #ifdef _LP64
duke@435 1652 __ orcc(xhi, G0, G0);
duke@435 1653 #else
duke@435 1654 __ orcc(xhi, xlo, G0);
duke@435 1655 #endif
duke@435 1656 } else if (opr2->is_register()) {
duke@435 1657 Register ylo = opr2->as_register_lo();
duke@435 1658 Register yhi = opr2->as_register_hi();
duke@435 1659 #ifdef _LP64
duke@435 1660 __ cmp(xlo, ylo);
duke@435 1661 #else
duke@435 1662 __ subcc(xlo, ylo, xlo);
duke@435 1663 __ subccc(xhi, yhi, xhi);
duke@435 1664 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 1665 __ orcc(xhi, xlo, G0);
duke@435 1666 }
duke@435 1667 #endif
duke@435 1668 } else {
duke@435 1669 ShouldNotReachHere();
duke@435 1670 }
duke@435 1671 } else if (opr1->is_address()) {
duke@435 1672 LIR_Address * addr = opr1->as_address_ptr();
duke@435 1673 BasicType type = addr->type();
duke@435 1674 assert (opr2->is_constant(), "Checking");
duke@435 1675 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1676 else __ ld(as_Address(addr), O7);
duke@435 1677 __ cmp(O7, opr2->as_constant_ptr()->as_jint());
duke@435 1678 } else {
duke@435 1679 ShouldNotReachHere();
duke@435 1680 }
duke@435 1681 }
duke@435 1682
duke@435 1683
duke@435 1684 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
duke@435 1685 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 1686 bool is_unordered_less = (code == lir_ucmp_fd2i);
duke@435 1687 if (left->is_single_fpu()) {
duke@435 1688 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
duke@435 1689 } else if (left->is_double_fpu()) {
duke@435 1690 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
duke@435 1691 } else {
duke@435 1692 ShouldNotReachHere();
duke@435 1693 }
duke@435 1694 } else if (code == lir_cmp_l2i) {
iveresov@1804 1695 #ifdef _LP64
iveresov@1804 1696 __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
iveresov@1804 1697 #else
duke@435 1698 __ lcmp(left->as_register_hi(), left->as_register_lo(),
duke@435 1699 right->as_register_hi(), right->as_register_lo(),
duke@435 1700 dst->as_register());
iveresov@1804 1701 #endif
duke@435 1702 } else {
duke@435 1703 ShouldNotReachHere();
duke@435 1704 }
duke@435 1705 }
duke@435 1706
duke@435 1707
iveresov@2412 1708 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
duke@435 1709 Assembler::Condition acond;
duke@435 1710 switch (condition) {
duke@435 1711 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1712 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1713 case lir_cond_less: acond = Assembler::less; break;
duke@435 1714 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1715 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 1716 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1717 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 1718 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 1719 default: ShouldNotReachHere();
duke@435 1720 };
duke@435 1721
duke@435 1722 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1723 Register dest = result->as_register();
duke@435 1724 // load up first part of constant before branch
duke@435 1725 // and do the rest in the delay slot.
duke@435 1726 if (!Assembler::is_simm13(opr1->as_jint())) {
duke@435 1727 __ sethi(opr1->as_jint(), dest);
duke@435 1728 }
duke@435 1729 } else if (opr1->is_constant()) {
duke@435 1730 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 1731 } else if (opr1->is_register()) {
duke@435 1732 reg2reg(opr1, result);
duke@435 1733 } else if (opr1->is_stack()) {
duke@435 1734 stack2reg(opr1, result, result->type());
duke@435 1735 } else {
duke@435 1736 ShouldNotReachHere();
duke@435 1737 }
duke@435 1738 Label skip;
iveresov@2412 1739 #ifdef _LP64
iveresov@2412 1740 if (type == T_INT) {
iveresov@2412 1741 __ br(acond, false, Assembler::pt, skip);
iveresov@2412 1742 } else
iveresov@2412 1743 #endif
iveresov@2412 1744 __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
duke@435 1745 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1746 Register dest = result->as_register();
duke@435 1747 if (Assembler::is_simm13(opr1->as_jint())) {
duke@435 1748 __ delayed()->or3(G0, opr1->as_jint(), dest);
duke@435 1749 } else {
duke@435 1750 // the sethi has been done above, so just put in the low 10 bits
duke@435 1751 __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
duke@435 1752 }
duke@435 1753 } else {
duke@435 1754 // can't do anything useful in the delay slot
duke@435 1755 __ delayed()->nop();
duke@435 1756 }
duke@435 1757 if (opr2->is_constant()) {
duke@435 1758 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 1759 } else if (opr2->is_register()) {
duke@435 1760 reg2reg(opr2, result);
duke@435 1761 } else if (opr2->is_stack()) {
duke@435 1762 stack2reg(opr2, result, result->type());
duke@435 1763 } else {
duke@435 1764 ShouldNotReachHere();
duke@435 1765 }
duke@435 1766 __ bind(skip);
duke@435 1767 }
duke@435 1768
duke@435 1769
duke@435 1770 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 1771 assert(info == NULL, "unused on this code path");
duke@435 1772 assert(left->is_register(), "wrong items state");
duke@435 1773 assert(dest->is_register(), "wrong items state");
duke@435 1774
duke@435 1775 if (right->is_register()) {
duke@435 1776 if (dest->is_float_kind()) {
duke@435 1777
duke@435 1778 FloatRegister lreg, rreg, res;
duke@435 1779 FloatRegisterImpl::Width w;
duke@435 1780 if (right->is_single_fpu()) {
duke@435 1781 w = FloatRegisterImpl::S;
duke@435 1782 lreg = left->as_float_reg();
duke@435 1783 rreg = right->as_float_reg();
duke@435 1784 res = dest->as_float_reg();
duke@435 1785 } else {
duke@435 1786 w = FloatRegisterImpl::D;
duke@435 1787 lreg = left->as_double_reg();
duke@435 1788 rreg = right->as_double_reg();
duke@435 1789 res = dest->as_double_reg();
duke@435 1790 }
duke@435 1791
duke@435 1792 switch (code) {
duke@435 1793 case lir_add: __ fadd(w, lreg, rreg, res); break;
duke@435 1794 case lir_sub: __ fsub(w, lreg, rreg, res); break;
duke@435 1795 case lir_mul: // fall through
duke@435 1796 case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
duke@435 1797 case lir_div: // fall through
duke@435 1798 case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
duke@435 1799 default: ShouldNotReachHere();
duke@435 1800 }
duke@435 1801
duke@435 1802 } else if (dest->is_double_cpu()) {
duke@435 1803 #ifdef _LP64
duke@435 1804 Register dst_lo = dest->as_register_lo();
duke@435 1805 Register op1_lo = left->as_pointer_register();
duke@435 1806 Register op2_lo = right->as_pointer_register();
duke@435 1807
duke@435 1808 switch (code) {
duke@435 1809 case lir_add:
duke@435 1810 __ add(op1_lo, op2_lo, dst_lo);
duke@435 1811 break;
duke@435 1812
duke@435 1813 case lir_sub:
duke@435 1814 __ sub(op1_lo, op2_lo, dst_lo);
duke@435 1815 break;
duke@435 1816
duke@435 1817 default: ShouldNotReachHere();
duke@435 1818 }
duke@435 1819 #else
duke@435 1820 Register op1_lo = left->as_register_lo();
duke@435 1821 Register op1_hi = left->as_register_hi();
duke@435 1822 Register op2_lo = right->as_register_lo();
duke@435 1823 Register op2_hi = right->as_register_hi();
duke@435 1824 Register dst_lo = dest->as_register_lo();
duke@435 1825 Register dst_hi = dest->as_register_hi();
duke@435 1826
duke@435 1827 switch (code) {
duke@435 1828 case lir_add:
duke@435 1829 __ addcc(op1_lo, op2_lo, dst_lo);
duke@435 1830 __ addc (op1_hi, op2_hi, dst_hi);
duke@435 1831 break;
duke@435 1832
duke@435 1833 case lir_sub:
duke@435 1834 __ subcc(op1_lo, op2_lo, dst_lo);
duke@435 1835 __ subc (op1_hi, op2_hi, dst_hi);
duke@435 1836 break;
duke@435 1837
duke@435 1838 default: ShouldNotReachHere();
duke@435 1839 }
duke@435 1840 #endif
duke@435 1841 } else {
duke@435 1842 assert (right->is_single_cpu(), "Just Checking");
duke@435 1843
duke@435 1844 Register lreg = left->as_register();
duke@435 1845 Register res = dest->as_register();
duke@435 1846 Register rreg = right->as_register();
duke@435 1847 switch (code) {
duke@435 1848 case lir_add: __ add (lreg, rreg, res); break;
duke@435 1849 case lir_sub: __ sub (lreg, rreg, res); break;
duke@435 1850 case lir_mul: __ mult (lreg, rreg, res); break;
duke@435 1851 default: ShouldNotReachHere();
duke@435 1852 }
duke@435 1853 }
duke@435 1854 } else {
duke@435 1855 assert (right->is_constant(), "must be constant");
duke@435 1856
duke@435 1857 if (dest->is_single_cpu()) {
duke@435 1858 Register lreg = left->as_register();
duke@435 1859 Register res = dest->as_register();
duke@435 1860 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 1861
duke@435 1862 switch (code) {
duke@435 1863 case lir_add: __ add (lreg, simm13, res); break;
duke@435 1864 case lir_sub: __ sub (lreg, simm13, res); break;
duke@435 1865 case lir_mul: __ mult (lreg, simm13, res); break;
duke@435 1866 default: ShouldNotReachHere();
duke@435 1867 }
duke@435 1868 } else {
duke@435 1869 Register lreg = left->as_pointer_register();
duke@435 1870 Register res = dest->as_register_lo();
duke@435 1871 long con = right->as_constant_ptr()->as_jlong();
duke@435 1872 assert(Assembler::is_simm13(con), "must be simm13");
duke@435 1873
duke@435 1874 switch (code) {
duke@435 1875 case lir_add: __ add (lreg, (int)con, res); break;
duke@435 1876 case lir_sub: __ sub (lreg, (int)con, res); break;
duke@435 1877 case lir_mul: __ mult (lreg, (int)con, res); break;
duke@435 1878 default: ShouldNotReachHere();
duke@435 1879 }
duke@435 1880 }
duke@435 1881 }
duke@435 1882 }
duke@435 1883
duke@435 1884
duke@435 1885 void LIR_Assembler::fpop() {
duke@435 1886 // do nothing
duke@435 1887 }
duke@435 1888
duke@435 1889
duke@435 1890 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
duke@435 1891 switch (code) {
duke@435 1892 case lir_sin:
duke@435 1893 case lir_tan:
duke@435 1894 case lir_cos: {
duke@435 1895 assert(thread->is_valid(), "preserve the thread object for performance reasons");
duke@435 1896 assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
duke@435 1897 break;
duke@435 1898 }
duke@435 1899 case lir_sqrt: {
duke@435 1900 assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
duke@435 1901 FloatRegister src_reg = value->as_double_reg();
duke@435 1902 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1903 __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 1904 break;
duke@435 1905 }
duke@435 1906 case lir_abs: {
duke@435 1907 assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
duke@435 1908 FloatRegister src_reg = value->as_double_reg();
duke@435 1909 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1910 __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 1911 break;
duke@435 1912 }
duke@435 1913 default: {
duke@435 1914 ShouldNotReachHere();
duke@435 1915 break;
duke@435 1916 }
duke@435 1917 }
duke@435 1918 }
duke@435 1919
duke@435 1920
duke@435 1921 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
duke@435 1922 if (right->is_constant()) {
duke@435 1923 if (dest->is_single_cpu()) {
duke@435 1924 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 1925 switch (code) {
duke@435 1926 case lir_logic_and: __ and3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1927 case lir_logic_or: __ or3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1928 case lir_logic_xor: __ xor3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1929 default: ShouldNotReachHere();
duke@435 1930 }
duke@435 1931 } else {
duke@435 1932 long c = right->as_constant_ptr()->as_jlong();
duke@435 1933 assert(c == (int)c && Assembler::is_simm13(c), "out of range");
duke@435 1934 int simm13 = (int)c;
duke@435 1935 switch (code) {
duke@435 1936 case lir_logic_and:
duke@435 1937 #ifndef _LP64
duke@435 1938 __ and3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1939 #endif
duke@435 1940 __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1941 break;
duke@435 1942
duke@435 1943 case lir_logic_or:
duke@435 1944 #ifndef _LP64
duke@435 1945 __ or3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1946 #endif
duke@435 1947 __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1948 break;
duke@435 1949
duke@435 1950 case lir_logic_xor:
duke@435 1951 #ifndef _LP64
duke@435 1952 __ xor3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1953 #endif
duke@435 1954 __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1955 break;
duke@435 1956
duke@435 1957 default: ShouldNotReachHere();
duke@435 1958 }
duke@435 1959 }
duke@435 1960 } else {
duke@435 1961 assert(right->is_register(), "right should be in register");
duke@435 1962
duke@435 1963 if (dest->is_single_cpu()) {
duke@435 1964 switch (code) {
duke@435 1965 case lir_logic_and: __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 1966 case lir_logic_or: __ or3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 1967 case lir_logic_xor: __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 1968 default: ShouldNotReachHere();
duke@435 1969 }
duke@435 1970 } else {
duke@435 1971 #ifdef _LP64
duke@435 1972 Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
duke@435 1973 left->as_register_lo();
duke@435 1974 Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
duke@435 1975 right->as_register_lo();
duke@435 1976
duke@435 1977 switch (code) {
duke@435 1978 case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
duke@435 1979 case lir_logic_or: __ or3 (l, r, dest->as_register_lo()); break;
duke@435 1980 case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
duke@435 1981 default: ShouldNotReachHere();
duke@435 1982 }
duke@435 1983 #else
duke@435 1984 switch (code) {
duke@435 1985 case lir_logic_and:
duke@435 1986 __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 1987 __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 1988 break;
duke@435 1989
duke@435 1990 case lir_logic_or:
duke@435 1991 __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 1992 __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 1993 break;
duke@435 1994
duke@435 1995 case lir_logic_xor:
duke@435 1996 __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 1997 __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 1998 break;
duke@435 1999
duke@435 2000 default: ShouldNotReachHere();
duke@435 2001 }
duke@435 2002 #endif
duke@435 2003 }
duke@435 2004 }
duke@435 2005 }
duke@435 2006
duke@435 2007
duke@435 2008 int LIR_Assembler::shift_amount(BasicType t) {
kvn@464 2009 int elem_size = type2aelembytes(t);
duke@435 2010 switch (elem_size) {
duke@435 2011 case 1 : return 0;
duke@435 2012 case 2 : return 1;
duke@435 2013 case 4 : return 2;
duke@435 2014 case 8 : return 3;
duke@435 2015 }
duke@435 2016 ShouldNotReachHere();
duke@435 2017 return -1;
duke@435 2018 }
duke@435 2019
duke@435 2020
never@1813 2021 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2022 assert(exceptionOop->as_register() == Oexception, "should match");
never@1813 2023 assert(exceptionPC->as_register() == Oissuing_pc, "should match");
duke@435 2024
duke@435 2025 info->add_register_oop(exceptionOop);
duke@435 2026
never@1813 2027 // reuse the debug info from the safepoint poll for the throw op itself
never@1813 2028 address pc_for_athrow = __ pc();
never@1813 2029 int pc_for_athrow_offset = __ offset();
never@1813 2030 RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
never@1813 2031 __ set(pc_for_athrow, Oissuing_pc, rspec);
never@1813 2032 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2033
never@1813 2034 __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
never@1813 2035 __ delayed()->nop();
never@1813 2036 }
never@1813 2037
never@1813 2038
never@1813 2039 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2040 assert(exceptionOop->as_register() == Oexception, "should match");
never@1813 2041
never@1813 2042 __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
never@1813 2043 __ delayed()->nop();
duke@435 2044 }
duke@435 2045
duke@435 2046
duke@435 2047 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 2048 Register src = op->src()->as_register();
duke@435 2049 Register dst = op->dst()->as_register();
duke@435 2050 Register src_pos = op->src_pos()->as_register();
duke@435 2051 Register dst_pos = op->dst_pos()->as_register();
duke@435 2052 Register length = op->length()->as_register();
duke@435 2053 Register tmp = op->tmp()->as_register();
duke@435 2054 Register tmp2 = O7;
duke@435 2055
duke@435 2056 int flags = op->flags();
duke@435 2057 ciArrayKlass* default_type = op->expected_type();
duke@435 2058 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 2059 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 2060
duke@435 2061 // set up the arraycopy stub information
duke@435 2062 ArrayCopyStub* stub = op->stub();
duke@435 2063
duke@435 2064 // always do stub if no type information is available. it's ok if
duke@435 2065 // the known type isn't loaded since the code sanity checks
duke@435 2066 // in debug mode and the type isn't required when we know the exact type
duke@435 2067 // also check that the type is an array type.
ysr@777 2068 // We also, for now, always call the stub if the barrier set requires a
ysr@777 2069 // write_ref_pre barrier (which the stub does, but none of the optimized
ysr@777 2070 // cases currently does).
ysr@777 2071 if (op->expected_type() == NULL ||
ysr@777 2072 Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
duke@435 2073 __ mov(src, O0);
duke@435 2074 __ mov(src_pos, O1);
duke@435 2075 __ mov(dst, O2);
duke@435 2076 __ mov(dst_pos, O3);
duke@435 2077 __ mov(length, O4);
duke@435 2078 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
duke@435 2079
duke@435 2080 __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
duke@435 2081 __ delayed()->nop();
duke@435 2082 __ bind(*stub->continuation());
duke@435 2083 return;
duke@435 2084 }
duke@435 2085
duke@435 2086 assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
duke@435 2087
duke@435 2088 // make sure src and dst are non-null and load array length
duke@435 2089 if (flags & LIR_OpArrayCopy::src_null_check) {
duke@435 2090 __ tst(src);
iveresov@2344 2091 __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2092 __ delayed()->nop();
duke@435 2093 }
duke@435 2094
duke@435 2095 if (flags & LIR_OpArrayCopy::dst_null_check) {
duke@435 2096 __ tst(dst);
iveresov@2344 2097 __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2098 __ delayed()->nop();
duke@435 2099 }
duke@435 2100
duke@435 2101 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 2102 // test src_pos register
duke@435 2103 __ tst(src_pos);
duke@435 2104 __ br(Assembler::less, false, Assembler::pn, *stub->entry());
duke@435 2105 __ delayed()->nop();
duke@435 2106 }
duke@435 2107
duke@435 2108 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 2109 // test dst_pos register
duke@435 2110 __ tst(dst_pos);
duke@435 2111 __ br(Assembler::less, false, Assembler::pn, *stub->entry());
duke@435 2112 __ delayed()->nop();
duke@435 2113 }
duke@435 2114
duke@435 2115 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 2116 // make sure length isn't negative
duke@435 2117 __ tst(length);
duke@435 2118 __ br(Assembler::less, false, Assembler::pn, *stub->entry());
duke@435 2119 __ delayed()->nop();
duke@435 2120 }
duke@435 2121
duke@435 2122 if (flags & LIR_OpArrayCopy::src_range_check) {
duke@435 2123 __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2124 __ add(length, src_pos, tmp);
duke@435 2125 __ cmp(tmp2, tmp);
duke@435 2126 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2127 __ delayed()->nop();
duke@435 2128 }
duke@435 2129
duke@435 2130 if (flags & LIR_OpArrayCopy::dst_range_check) {
duke@435 2131 __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2132 __ add(length, dst_pos, tmp);
duke@435 2133 __ cmp(tmp2, tmp);
duke@435 2134 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2135 __ delayed()->nop();
duke@435 2136 }
duke@435 2137
duke@435 2138 if (flags & LIR_OpArrayCopy::type_check) {
iveresov@2344 2139 if (UseCompressedOops) {
iveresov@2344 2140 // We don't need decode because we just need to compare
iveresov@2344 2141 __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
iveresov@2344 2142 __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
iveresov@2344 2143 __ cmp(tmp, tmp2);
iveresov@2344 2144 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
iveresov@2344 2145 } else {
iveresov@2344 2146 __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
iveresov@2344 2147 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
iveresov@2344 2148 __ cmp(tmp, tmp2);
iveresov@2344 2149 __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
iveresov@2344 2150 }
duke@435 2151 __ delayed()->nop();
duke@435 2152 }
duke@435 2153
duke@435 2154 #ifdef ASSERT
duke@435 2155 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 2156 // Sanity check the known type with the incoming class. For the
duke@435 2157 // primitive case the types must match exactly with src.klass and
duke@435 2158 // dst.klass each exactly matching the default type. For the
duke@435 2159 // object array case, if no type check is needed then either the
duke@435 2160 // dst type is exactly the expected type and the src type is a
duke@435 2161 // subtype which we can't check or src is the same array as dst
duke@435 2162 // but not necessarily exactly of type default_type.
duke@435 2163 Label known_ok, halt;
jrose@1424 2164 jobject2reg(op->expected_type()->constant_encoding(), tmp);
iveresov@2344 2165 if (UseCompressedOops) {
iveresov@2344 2166 // tmp holds the default type. It currently comes uncompressed after the
iveresov@2344 2167 // load of a constant, so encode it.
iveresov@2344 2168 __ encode_heap_oop(tmp);
iveresov@2344 2169 // load the raw value of the dst klass, since we will be comparing
iveresov@2344 2170 // uncompressed values directly.
iveresov@2344 2171 __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
iveresov@2344 2172 if (basic_type != T_OBJECT) {
iveresov@2344 2173 __ cmp(tmp, tmp2);
iveresov@2344 2174 __ br(Assembler::notEqual, false, Assembler::pn, halt);
iveresov@2344 2175 // load the raw value of the src klass.
iveresov@2344 2176 __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
iveresov@2344 2177 __ cmp(tmp, tmp2);
iveresov@2344 2178 __ br(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2179 __ delayed()->nop();
iveresov@2344 2180 } else {
iveresov@2344 2181 __ cmp(tmp, tmp2);
iveresov@2344 2182 __ br(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2183 __ delayed()->cmp(src, dst);
iveresov@2344 2184 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2185 __ delayed()->nop();
iveresov@2344 2186 }
duke@435 2187 } else {
iveresov@2344 2188 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
iveresov@2344 2189 if (basic_type != T_OBJECT) {
iveresov@2344 2190 __ cmp(tmp, tmp2);
iveresov@2344 2191 __ brx(Assembler::notEqual, false, Assembler::pn, halt);
iveresov@2344 2192 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
iveresov@2344 2193 __ cmp(tmp, tmp2);
iveresov@2344 2194 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2195 __ delayed()->nop();
iveresov@2344 2196 } else {
iveresov@2344 2197 __ cmp(tmp, tmp2);
iveresov@2344 2198 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2199 __ delayed()->cmp(src, dst);
iveresov@2344 2200 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2201 __ delayed()->nop();
iveresov@2344 2202 }
duke@435 2203 }
duke@435 2204 __ bind(halt);
duke@435 2205 __ stop("incorrect type information in arraycopy");
duke@435 2206 __ bind(known_ok);
duke@435 2207 }
duke@435 2208 #endif
duke@435 2209
duke@435 2210 int shift = shift_amount(basic_type);
duke@435 2211
duke@435 2212 Register src_ptr = O0;
duke@435 2213 Register dst_ptr = O1;
duke@435 2214 Register len = O2;
duke@435 2215
duke@435 2216 __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
roland@1495 2217 LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
duke@435 2218 if (shift == 0) {
duke@435 2219 __ add(src_ptr, src_pos, src_ptr);
duke@435 2220 } else {
duke@435 2221 __ sll(src_pos, shift, tmp);
duke@435 2222 __ add(src_ptr, tmp, src_ptr);
duke@435 2223 }
duke@435 2224
duke@435 2225 __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
roland@1495 2226 LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
duke@435 2227 if (shift == 0) {
duke@435 2228 __ add(dst_ptr, dst_pos, dst_ptr);
duke@435 2229 } else {
duke@435 2230 __ sll(dst_pos, shift, tmp);
duke@435 2231 __ add(dst_ptr, tmp, dst_ptr);
duke@435 2232 }
duke@435 2233
duke@435 2234 if (basic_type != T_OBJECT) {
duke@435 2235 if (shift == 0) {
duke@435 2236 __ mov(length, len);
duke@435 2237 } else {
duke@435 2238 __ sll(length, shift, len);
duke@435 2239 }
duke@435 2240 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
duke@435 2241 } else {
duke@435 2242 // oop_arraycopy takes a length in number of elements, so don't scale it.
duke@435 2243 __ mov(length, len);
duke@435 2244 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
duke@435 2245 }
duke@435 2246
duke@435 2247 __ bind(*stub->continuation());
duke@435 2248 }
duke@435 2249
duke@435 2250
duke@435 2251 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2252 if (dest->is_single_cpu()) {
duke@435 2253 #ifdef _LP64
duke@435 2254 if (left->type() == T_OBJECT) {
duke@435 2255 switch (code) {
duke@435 2256 case lir_shl: __ sllx (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2257 case lir_shr: __ srax (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2258 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2259 default: ShouldNotReachHere();
duke@435 2260 }
duke@435 2261 } else
duke@435 2262 #endif
duke@435 2263 switch (code) {
duke@435 2264 case lir_shl: __ sll (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2265 case lir_shr: __ sra (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2266 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2267 default: ShouldNotReachHere();
duke@435 2268 }
duke@435 2269 } else {
duke@435 2270 #ifdef _LP64
duke@435 2271 switch (code) {
duke@435 2272 case lir_shl: __ sllx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2273 case lir_shr: __ srax (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2274 case lir_ushr: __ srlx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2275 default: ShouldNotReachHere();
duke@435 2276 }
duke@435 2277 #else
duke@435 2278 switch (code) {
duke@435 2279 case lir_shl: __ lshl (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2280 case lir_shr: __ lshr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2281 case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2282 default: ShouldNotReachHere();
duke@435 2283 }
duke@435 2284 #endif
duke@435 2285 }
duke@435 2286 }
duke@435 2287
duke@435 2288
duke@435 2289 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2290 #ifdef _LP64
duke@435 2291 if (left->type() == T_OBJECT) {
duke@435 2292 count = count & 63; // shouldn't shift by more than sizeof(intptr_t)
duke@435 2293 Register l = left->as_register();
duke@435 2294 Register d = dest->as_register_lo();
duke@435 2295 switch (code) {
duke@435 2296 case lir_shl: __ sllx (l, count, d); break;
duke@435 2297 case lir_shr: __ srax (l, count, d); break;
duke@435 2298 case lir_ushr: __ srlx (l, count, d); break;
duke@435 2299 default: ShouldNotReachHere();
duke@435 2300 }
duke@435 2301 return;
duke@435 2302 }
duke@435 2303 #endif
duke@435 2304
duke@435 2305 if (dest->is_single_cpu()) {
duke@435 2306 count = count & 0x1F; // Java spec
duke@435 2307 switch (code) {
duke@435 2308 case lir_shl: __ sll (left->as_register(), count, dest->as_register()); break;
duke@435 2309 case lir_shr: __ sra (left->as_register(), count, dest->as_register()); break;
duke@435 2310 case lir_ushr: __ srl (left->as_register(), count, dest->as_register()); break;
duke@435 2311 default: ShouldNotReachHere();
duke@435 2312 }
duke@435 2313 } else if (dest->is_double_cpu()) {
duke@435 2314 count = count & 63; // Java spec
duke@435 2315 switch (code) {
duke@435 2316 case lir_shl: __ sllx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2317 case lir_shr: __ srax (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2318 case lir_ushr: __ srlx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2319 default: ShouldNotReachHere();
duke@435 2320 }
duke@435 2321 } else {
duke@435 2322 ShouldNotReachHere();
duke@435 2323 }
duke@435 2324 }
duke@435 2325
duke@435 2326
duke@435 2327 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 2328 assert(op->tmp1()->as_register() == G1 &&
duke@435 2329 op->tmp2()->as_register() == G3 &&
duke@435 2330 op->tmp3()->as_register() == G4 &&
duke@435 2331 op->obj()->as_register() == O0 &&
duke@435 2332 op->klass()->as_register() == G5, "must be");
duke@435 2333 if (op->init_check()) {
duke@435 2334 __ ld(op->klass()->as_register(),
duke@435 2335 instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
duke@435 2336 op->tmp1()->as_register());
duke@435 2337 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 2338 __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
duke@435 2339 __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
duke@435 2340 __ delayed()->nop();
duke@435 2341 }
duke@435 2342 __ allocate_object(op->obj()->as_register(),
duke@435 2343 op->tmp1()->as_register(),
duke@435 2344 op->tmp2()->as_register(),
duke@435 2345 op->tmp3()->as_register(),
duke@435 2346 op->header_size(),
duke@435 2347 op->object_size(),
duke@435 2348 op->klass()->as_register(),
duke@435 2349 *op->stub()->entry());
duke@435 2350 __ bind(*op->stub()->continuation());
duke@435 2351 __ verify_oop(op->obj()->as_register());
duke@435 2352 }
duke@435 2353
duke@435 2354
duke@435 2355 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 2356 assert(op->tmp1()->as_register() == G1 &&
duke@435 2357 op->tmp2()->as_register() == G3 &&
duke@435 2358 op->tmp3()->as_register() == G4 &&
duke@435 2359 op->tmp4()->as_register() == O1 &&
duke@435 2360 op->klass()->as_register() == G5, "must be");
duke@435 2361 if (UseSlowPath ||
duke@435 2362 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 2363 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
never@1813 2364 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2365 __ delayed()->nop();
duke@435 2366 } else {
duke@435 2367 __ allocate_array(op->obj()->as_register(),
duke@435 2368 op->len()->as_register(),
duke@435 2369 op->tmp1()->as_register(),
duke@435 2370 op->tmp2()->as_register(),
duke@435 2371 op->tmp3()->as_register(),
duke@435 2372 arrayOopDesc::header_size(op->type()),
kvn@464 2373 type2aelembytes(op->type()),
duke@435 2374 op->klass()->as_register(),
duke@435 2375 *op->stub()->entry());
duke@435 2376 }
duke@435 2377 __ bind(*op->stub()->continuation());
duke@435 2378 }
duke@435 2379
duke@435 2380
iveresov@2138 2381 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
iveresov@2138 2382 ciMethodData *md, ciProfileData *data,
iveresov@2138 2383 Register recv, Register tmp1, Label* update_done) {
iveresov@2138 2384 uint i;
iveresov@2138 2385 for (i = 0; i < VirtualCallData::row_limit(); i++) {
iveresov@2138 2386 Label next_test;
iveresov@2138 2387 // See if the receiver is receiver[n].
iveresov@2138 2388 Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
iveresov@2138 2389 mdo_offset_bias);
iveresov@2138 2390 __ ld_ptr(receiver_addr, tmp1);
iveresov@2138 2391 __ verify_oop(tmp1);
iveresov@2138 2392 __ cmp(recv, tmp1);
iveresov@2138 2393 __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
iveresov@2138 2394 __ delayed()->nop();
iveresov@2138 2395 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
iveresov@2138 2396 mdo_offset_bias);
iveresov@2138 2397 __ ld_ptr(data_addr, tmp1);
iveresov@2138 2398 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2399 __ st_ptr(tmp1, data_addr);
iveresov@2138 2400 __ ba(false, *update_done);
iveresov@2138 2401 __ delayed()->nop();
iveresov@2138 2402 __ bind(next_test);
iveresov@2138 2403 }
iveresov@2138 2404
iveresov@2138 2405 // Didn't find receiver; find next empty slot and fill it in
iveresov@2138 2406 for (i = 0; i < VirtualCallData::row_limit(); i++) {
iveresov@2138 2407 Label next_test;
iveresov@2138 2408 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
iveresov@2138 2409 mdo_offset_bias);
iveresov@2344 2410 __ ld_ptr(recv_addr, tmp1);
iveresov@2138 2411 __ br_notnull(tmp1, false, Assembler::pt, next_test);
iveresov@2138 2412 __ delayed()->nop();
iveresov@2138 2413 __ st_ptr(recv, recv_addr);
iveresov@2138 2414 __ set(DataLayout::counter_increment, tmp1);
iveresov@2138 2415 __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
iveresov@2138 2416 mdo_offset_bias);
iveresov@2138 2417 __ ba(false, *update_done);
iveresov@2138 2418 __ delayed()->nop();
iveresov@2138 2419 __ bind(next_test);
iveresov@2138 2420 }
iveresov@2138 2421 }
iveresov@2138 2422
iveresov@2146 2423
iveresov@2146 2424 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
iveresov@2146 2425 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
iveresov@2349 2426 md = method->method_data_or_null();
iveresov@2349 2427 assert(md != NULL, "Sanity");
iveresov@2146 2428 data = md->bci_to_data(bci);
iveresov@2146 2429 assert(data != NULL, "need data for checkcast");
iveresov@2146 2430 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 2431 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
iveresov@2146 2432 // The offset is large so bias the mdo by the base of the slot so
iveresov@2146 2433 // that the ld can use simm13s to reference the slots of the data
iveresov@2146 2434 mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
iveresov@2146 2435 }
iveresov@2146 2436 }
iveresov@2146 2437
iveresov@2146 2438 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 2439 // we always need a stub for the failure case.
iveresov@2138 2440 CodeStub* stub = op->stub();
iveresov@2138 2441 Register obj = op->object()->as_register();
iveresov@2138 2442 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 2443 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 2444 Register dst = op->result_opr()->as_register();
iveresov@2138 2445 Register Rtmp1 = op->tmp3()->as_register();
iveresov@2138 2446 ciKlass* k = op->klass();
iveresov@2138 2447
iveresov@2138 2448
iveresov@2138 2449 if (obj == k_RInfo) {
iveresov@2138 2450 k_RInfo = klass_RInfo;
iveresov@2138 2451 klass_RInfo = obj;
iveresov@2138 2452 }
iveresov@2138 2453
iveresov@2138 2454 ciMethodData* md;
iveresov@2138 2455 ciProfileData* data;
iveresov@2138 2456 int mdo_offset_bias = 0;
iveresov@2138 2457 if (op->should_profile()) {
iveresov@2138 2458 ciMethod* method = op->profiled_method();
iveresov@2138 2459 assert(method != NULL, "Should have method");
iveresov@2146 2460 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
iveresov@2146 2461
iveresov@2146 2462 Label not_null;
iveresov@2146 2463 __ br_notnull(obj, false, Assembler::pn, not_null);
iveresov@2138 2464 __ delayed()->nop();
iveresov@2138 2465 Register mdo = k_RInfo;
iveresov@2138 2466 Register data_val = Rtmp1;
iveresov@2138 2467 jobject2reg(md->constant_encoding(), mdo);
iveresov@2138 2468 if (mdo_offset_bias > 0) {
iveresov@2138 2469 __ set(mdo_offset_bias, data_val);
iveresov@2138 2470 __ add(mdo, data_val, mdo);
iveresov@2138 2471 }
iveresov@2138 2472 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
iveresov@2138 2473 __ ldub(flags_addr, data_val);
iveresov@2138 2474 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
iveresov@2138 2475 __ stb(data_val, flags_addr);
iveresov@2146 2476 __ ba(false, *obj_is_null);
iveresov@2146 2477 __ delayed()->nop();
iveresov@2146 2478 __ bind(not_null);
iveresov@2146 2479 } else {
iveresov@2146 2480 __ br_null(obj, false, Assembler::pn, *obj_is_null);
iveresov@2146 2481 __ delayed()->nop();
iveresov@2138 2482 }
iveresov@2146 2483
iveresov@2146 2484 Label profile_cast_failure, profile_cast_success;
iveresov@2146 2485 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2146 2486 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2138 2487
iveresov@2138 2488 // patching may screw with our temporaries on sparc,
iveresov@2138 2489 // so let's do it before loading the class
iveresov@2138 2490 if (k->is_loaded()) {
iveresov@2138 2491 jobject2reg(k->constant_encoding(), k_RInfo);
iveresov@2138 2492 } else {
iveresov@2138 2493 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@2138 2494 }
iveresov@2138 2495 assert(obj != k_RInfo, "must be different");
iveresov@2138 2496
iveresov@2138 2497 // get object class
iveresov@2138 2498 // not a safepoint as obj null check happens earlier
iveresov@2344 2499 __ load_klass(obj, klass_RInfo);
iveresov@2138 2500 if (op->fast_check()) {
iveresov@2138 2501 assert_different_registers(klass_RInfo, k_RInfo);
iveresov@2138 2502 __ cmp(k_RInfo, klass_RInfo);
iveresov@2138 2503 __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
iveresov@2138 2504 __ delayed()->nop();
iveresov@2138 2505 } else {
iveresov@2138 2506 bool need_slow_path = true;
iveresov@2138 2507 if (k->is_loaded()) {
iveresov@2138 2508 if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
iveresov@2138 2509 need_slow_path = false;
iveresov@2138 2510 // perform the fast part of the checking logic
iveresov@2138 2511 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
iveresov@2146 2512 (need_slow_path ? success_target : NULL),
iveresov@2138 2513 failure_target, NULL,
iveresov@2138 2514 RegisterOrConstant(k->super_check_offset()));
iveresov@2138 2515 } else {
iveresov@2138 2516 // perform the fast part of the checking logic
iveresov@2146 2517 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
iveresov@2138 2518 failure_target, NULL);
iveresov@2138 2519 }
iveresov@2138 2520 if (need_slow_path) {
iveresov@2138 2521 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 2522 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
iveresov@2138 2523 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
iveresov@2138 2524 __ delayed()->nop();
iveresov@2138 2525 __ cmp(G3, 0);
iveresov@2138 2526 __ br(Assembler::equal, false, Assembler::pn, *failure_target);
iveresov@2138 2527 __ delayed()->nop();
iveresov@2146 2528 // Fall through to success case
iveresov@2138 2529 }
iveresov@2138 2530 }
iveresov@2138 2531
iveresov@2138 2532 if (op->should_profile()) {
iveresov@2138 2533 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
iveresov@2138 2534 assert_different_registers(obj, mdo, recv, tmp1);
iveresov@2146 2535 __ bind(profile_cast_success);
iveresov@2138 2536 jobject2reg(md->constant_encoding(), mdo);
iveresov@2138 2537 if (mdo_offset_bias > 0) {
iveresov@2138 2538 __ set(mdo_offset_bias, tmp1);
iveresov@2138 2539 __ add(mdo, tmp1, mdo);
iveresov@2138 2540 }
iveresov@2344 2541 __ load_klass(obj, recv);
iveresov@2146 2542 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
iveresov@2138 2543 // Jump over the failure case
iveresov@2146 2544 __ ba(false, *success);
iveresov@2138 2545 __ delayed()->nop();
iveresov@2138 2546 // Cast failure case
iveresov@2138 2547 __ bind(profile_cast_failure);
iveresov@2138 2548 jobject2reg(md->constant_encoding(), mdo);
iveresov@2138 2549 if (mdo_offset_bias > 0) {
iveresov@2138 2550 __ set(mdo_offset_bias, tmp1);
iveresov@2138 2551 __ add(mdo, tmp1, mdo);
iveresov@2138 2552 }
iveresov@2138 2553 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
iveresov@2138 2554 __ ld_ptr(data_addr, tmp1);
iveresov@2138 2555 __ sub(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2556 __ st_ptr(tmp1, data_addr);
iveresov@2146 2557 __ ba(false, *failure);
iveresov@2138 2558 __ delayed()->nop();
iveresov@2138 2559 }
iveresov@2146 2560 __ ba(false, *success);
iveresov@2146 2561 __ delayed()->nop();
iveresov@2138 2562 }
iveresov@2138 2563
duke@435 2564 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 2565 LIR_Code code = op->code();
duke@435 2566 if (code == lir_store_check) {
duke@435 2567 Register value = op->object()->as_register();
duke@435 2568 Register array = op->array()->as_register();
duke@435 2569 Register k_RInfo = op->tmp1()->as_register();
duke@435 2570 Register klass_RInfo = op->tmp2()->as_register();
duke@435 2571 Register Rtmp1 = op->tmp3()->as_register();
duke@435 2572
duke@435 2573 __ verify_oop(value);
duke@435 2574 CodeStub* stub = op->stub();
iveresov@2146 2575 // check if it needs to be profiled
iveresov@2146 2576 ciMethodData* md;
iveresov@2146 2577 ciProfileData* data;
iveresov@2146 2578 int mdo_offset_bias = 0;
iveresov@2146 2579 if (op->should_profile()) {
iveresov@2146 2580 ciMethod* method = op->profiled_method();
iveresov@2146 2581 assert(method != NULL, "Should have method");
iveresov@2146 2582 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
iveresov@2146 2583 }
iveresov@2146 2584 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 2585 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 2586 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 2587
iveresov@2146 2588 if (op->should_profile()) {
iveresov@2146 2589 Label not_null;
iveresov@2146 2590 __ br_notnull(value, false, Assembler::pn, not_null);
iveresov@2146 2591 __ delayed()->nop();
iveresov@2146 2592 Register mdo = k_RInfo;
iveresov@2146 2593 Register data_val = Rtmp1;
iveresov@2146 2594 jobject2reg(md->constant_encoding(), mdo);
iveresov@2146 2595 if (mdo_offset_bias > 0) {
iveresov@2146 2596 __ set(mdo_offset_bias, data_val);
iveresov@2146 2597 __ add(mdo, data_val, mdo);
iveresov@2146 2598 }
iveresov@2146 2599 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
iveresov@2146 2600 __ ldub(flags_addr, data_val);
iveresov@2146 2601 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
iveresov@2146 2602 __ stb(data_val, flags_addr);
iveresov@2146 2603 __ ba(false, done);
iveresov@2146 2604 __ delayed()->nop();
iveresov@2146 2605 __ bind(not_null);
iveresov@2146 2606 } else {
iveresov@2146 2607 __ br_null(value, false, Assembler::pn, done);
iveresov@2146 2608 __ delayed()->nop();
iveresov@2146 2609 }
iveresov@2344 2610 add_debug_info_for_null_check_here(op->info_for_exception());
iveresov@2344 2611 __ load_klass(array, k_RInfo);
iveresov@2344 2612 __ load_klass(value, klass_RInfo);
duke@435 2613
duke@435 2614 // get instance klass
iveresov@2344 2615 __ ld_ptr(Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)), k_RInfo);
jrose@1079 2616 // perform the fast part of the checking logic
iveresov@2146 2617 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
jrose@1079 2618
jrose@1079 2619 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
jrose@1079 2620 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
duke@435 2621 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
duke@435 2622 __ delayed()->nop();
duke@435 2623 __ cmp(G3, 0);
iveresov@2146 2624 __ br(Assembler::equal, false, Assembler::pn, *failure_target);
duke@435 2625 __ delayed()->nop();
iveresov@2146 2626 // fall through to the success case
iveresov@2146 2627
iveresov@2146 2628 if (op->should_profile()) {
iveresov@2146 2629 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
iveresov@2146 2630 assert_different_registers(value, mdo, recv, tmp1);
iveresov@2146 2631 __ bind(profile_cast_success);
iveresov@2146 2632 jobject2reg(md->constant_encoding(), mdo);
iveresov@2146 2633 if (mdo_offset_bias > 0) {
iveresov@2146 2634 __ set(mdo_offset_bias, tmp1);
iveresov@2146 2635 __ add(mdo, tmp1, mdo);
iveresov@2146 2636 }
iveresov@2344 2637 __ load_klass(value, recv);
iveresov@2146 2638 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
iveresov@2146 2639 __ ba(false, done);
iveresov@2146 2640 __ delayed()->nop();
iveresov@2146 2641 // Cast failure case
iveresov@2146 2642 __ bind(profile_cast_failure);
iveresov@2146 2643 jobject2reg(md->constant_encoding(), mdo);
iveresov@2146 2644 if (mdo_offset_bias > 0) {
iveresov@2146 2645 __ set(mdo_offset_bias, tmp1);
iveresov@2146 2646 __ add(mdo, tmp1, mdo);
iveresov@2146 2647 }
iveresov@2146 2648 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
iveresov@2146 2649 __ ld_ptr(data_addr, tmp1);
iveresov@2146 2650 __ sub(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2146 2651 __ st_ptr(tmp1, data_addr);
iveresov@2146 2652 __ ba(false, *stub->entry());
iveresov@2146 2653 __ delayed()->nop();
iveresov@2146 2654 }
duke@435 2655 __ bind(done);
iveresov@2146 2656 } else if (code == lir_checkcast) {
iveresov@2146 2657 Register obj = op->object()->as_register();
iveresov@2146 2658 Register dst = op->result_opr()->as_register();
iveresov@2146 2659 Label success;
iveresov@2146 2660 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 2661 __ bind(success);
iveresov@2146 2662 __ mov(obj, dst);
duke@435 2663 } else if (code == lir_instanceof) {
duke@435 2664 Register obj = op->object()->as_register();
duke@435 2665 Register dst = op->result_opr()->as_register();
iveresov@2146 2666 Label success, failure, done;
iveresov@2146 2667 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 2668 __ bind(failure);
iveresov@2146 2669 __ set(0, dst);
iveresov@2146 2670 __ ba(false, done);
iveresov@2146 2671 __ delayed()->nop();
iveresov@2146 2672 __ bind(success);
iveresov@2146 2673 __ set(1, dst);
iveresov@2146 2674 __ bind(done);
duke@435 2675 } else {
duke@435 2676 ShouldNotReachHere();
duke@435 2677 }
duke@435 2678
duke@435 2679 }
duke@435 2680
duke@435 2681
duke@435 2682 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
duke@435 2683 if (op->code() == lir_cas_long) {
duke@435 2684 assert(VM_Version::supports_cx8(), "wrong machine");
duke@435 2685 Register addr = op->addr()->as_pointer_register();
duke@435 2686 Register cmp_value_lo = op->cmp_value()->as_register_lo();
duke@435 2687 Register cmp_value_hi = op->cmp_value()->as_register_hi();
duke@435 2688 Register new_value_lo = op->new_value()->as_register_lo();
duke@435 2689 Register new_value_hi = op->new_value()->as_register_hi();
duke@435 2690 Register t1 = op->tmp1()->as_register();
duke@435 2691 Register t2 = op->tmp2()->as_register();
duke@435 2692 #ifdef _LP64
duke@435 2693 __ mov(cmp_value_lo, t1);
duke@435 2694 __ mov(new_value_lo, t2);
iveresov@2412 2695 // perform the compare and swap operation
iveresov@2412 2696 __ casx(addr, t1, t2);
iveresov@2412 2697 // generate condition code - if the swap succeeded, t2 ("new value" reg) was
iveresov@2412 2698 // overwritten with the original value in "addr" and will be equal to t1.
iveresov@2412 2699 __ cmp(t1, t2);
duke@435 2700 #else
duke@435 2701 // move high and low halves of long values into single registers
duke@435 2702 __ sllx(cmp_value_hi, 32, t1); // shift high half into temp reg
duke@435 2703 __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
duke@435 2704 __ or3(t1, cmp_value_lo, t1); // t1 holds 64-bit compare value
duke@435 2705 __ sllx(new_value_hi, 32, t2);
duke@435 2706 __ srl(new_value_lo, 0, new_value_lo);
duke@435 2707 __ or3(t2, new_value_lo, t2); // t2 holds 64-bit value to swap
duke@435 2708 // perform the compare and swap operation
duke@435 2709 __ casx(addr, t1, t2);
duke@435 2710 // generate condition code - if the swap succeeded, t2 ("new value" reg) was
duke@435 2711 // overwritten with the original value in "addr" and will be equal to t1.
iveresov@2412 2712 // Produce icc flag for 32bit.
iveresov@2412 2713 __ sub(t1, t2, t2);
iveresov@2412 2714 __ srlx(t2, 32, t1);
iveresov@2412 2715 __ orcc(t2, t1, G0);
iveresov@2412 2716 #endif
duke@435 2717 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
duke@435 2718 Register addr = op->addr()->as_pointer_register();
duke@435 2719 Register cmp_value = op->cmp_value()->as_register();
duke@435 2720 Register new_value = op->new_value()->as_register();
duke@435 2721 Register t1 = op->tmp1()->as_register();
duke@435 2722 Register t2 = op->tmp2()->as_register();
duke@435 2723 __ mov(cmp_value, t1);
duke@435 2724 __ mov(new_value, t2);
duke@435 2725 if (op->code() == lir_cas_obj) {
iveresov@2344 2726 if (UseCompressedOops) {
iveresov@2344 2727 __ encode_heap_oop(t1);
iveresov@2344 2728 __ encode_heap_oop(t2);
duke@435 2729 __ cas(addr, t1, t2);
iveresov@2344 2730 } else {
never@2352 2731 __ cas_ptr(addr, t1, t2);
duke@435 2732 }
iveresov@2344 2733 } else {
iveresov@2344 2734 __ cas(addr, t1, t2);
iveresov@2344 2735 }
duke@435 2736 __ cmp(t1, t2);
duke@435 2737 } else {
duke@435 2738 Unimplemented();
duke@435 2739 }
duke@435 2740 }
duke@435 2741
duke@435 2742 void LIR_Assembler::set_24bit_FPU() {
duke@435 2743 Unimplemented();
duke@435 2744 }
duke@435 2745
duke@435 2746
duke@435 2747 void LIR_Assembler::reset_FPU() {
duke@435 2748 Unimplemented();
duke@435 2749 }
duke@435 2750
duke@435 2751
duke@435 2752 void LIR_Assembler::breakpoint() {
duke@435 2753 __ breakpoint_trap();
duke@435 2754 }
duke@435 2755
duke@435 2756
duke@435 2757 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 2758 Unimplemented();
duke@435 2759 }
duke@435 2760
duke@435 2761
duke@435 2762 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 2763 Unimplemented();
duke@435 2764 }
duke@435 2765
duke@435 2766
duke@435 2767 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
duke@435 2768 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 2769 Register dst = dst_opr->as_register();
duke@435 2770 Register reg = mon_addr.base();
duke@435 2771 int offset = mon_addr.disp();
duke@435 2772 // compute pointer to BasicLock
duke@435 2773 if (mon_addr.is_simm13()) {
duke@435 2774 __ add(reg, offset, dst);
duke@435 2775 } else {
duke@435 2776 __ set(offset, dst);
duke@435 2777 __ add(dst, reg, dst);
duke@435 2778 }
duke@435 2779 }
duke@435 2780
duke@435 2781
duke@435 2782 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 2783 Register obj = op->obj_opr()->as_register();
duke@435 2784 Register hdr = op->hdr_opr()->as_register();
duke@435 2785 Register lock = op->lock_opr()->as_register();
duke@435 2786
duke@435 2787 // obj may not be an oop
duke@435 2788 if (op->code() == lir_lock) {
duke@435 2789 MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
duke@435 2790 if (UseFastLocking) {
duke@435 2791 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2792 // add debug info for NullPointerException only if one is possible
duke@435 2793 if (op->info() != NULL) {
duke@435 2794 add_debug_info_for_null_check_here(op->info());
duke@435 2795 }
duke@435 2796 __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
duke@435 2797 } else {
duke@435 2798 // always do slow locking
duke@435 2799 // note: the slow locking code could be inlined here, however if we use
duke@435 2800 // slow locking, speed doesn't matter anyway and this solution is
duke@435 2801 // simpler and requires less duplicated code - additionally, the
duke@435 2802 // slow locking code is the same in either case which simplifies
duke@435 2803 // debugging
duke@435 2804 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2805 __ delayed()->nop();
duke@435 2806 }
duke@435 2807 } else {
duke@435 2808 assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
duke@435 2809 if (UseFastLocking) {
duke@435 2810 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2811 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 2812 } else {
duke@435 2813 // always do slow unlocking
duke@435 2814 // note: the slow unlocking code could be inlined here, however if we use
duke@435 2815 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 2816 // simpler and requires less duplicated code - additionally, the
duke@435 2817 // slow unlocking code is the same in either case which simplifies
duke@435 2818 // debugging
duke@435 2819 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2820 __ delayed()->nop();
duke@435 2821 }
duke@435 2822 }
duke@435 2823 __ bind(*op->stub()->continuation());
duke@435 2824 }
duke@435 2825
duke@435 2826
duke@435 2827 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 2828 ciMethod* method = op->profiled_method();
duke@435 2829 int bci = op->profiled_bci();
duke@435 2830
duke@435 2831 // Update counter for all call types
iveresov@2349 2832 ciMethodData* md = method->method_data_or_null();
iveresov@2349 2833 assert(md != NULL, "Sanity");
duke@435 2834 ciProfileData* data = md->bci_to_data(bci);
duke@435 2835 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 2836 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
iveresov@2138 2837 Register mdo = op->mdo()->as_register();
iveresov@2138 2838 #ifdef _LP64
iveresov@2138 2839 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
iveresov@2138 2840 Register tmp1 = op->tmp1()->as_register_lo();
iveresov@2138 2841 #else
duke@435 2842 assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
duke@435 2843 Register tmp1 = op->tmp1()->as_register();
iveresov@2138 2844 #endif
jrose@1424 2845 jobject2reg(md->constant_encoding(), mdo);
duke@435 2846 int mdo_offset_bias = 0;
duke@435 2847 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
duke@435 2848 data->size_in_bytes())) {
duke@435 2849 // The offset is large so bias the mdo by the base of the slot so
duke@435 2850 // that the ld can use simm13s to reference the slots of the data
duke@435 2851 mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
duke@435 2852 __ set(mdo_offset_bias, O7);
duke@435 2853 __ add(mdo, O7, mdo);
duke@435 2854 }
duke@435 2855
twisti@1162 2856 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
duke@435 2857 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 2858 // Perform additional virtual call profiling for invokevirtual and
duke@435 2859 // invokeinterface bytecodes
duke@435 2860 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
iveresov@2138 2861 C1ProfileVirtualCalls) {
duke@435 2862 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 2863 Register recv = op->recv()->as_register();
duke@435 2864 assert_different_registers(mdo, tmp1, recv);
duke@435 2865 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 2866 ciKlass* known_klass = op->known_holder();
iveresov@2138 2867 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 2868 // We know the type that will be seen at this call site; we can
duke@435 2869 // statically update the methodDataOop rather than needing to do
duke@435 2870 // dynamic tests on the receiver type
duke@435 2871
duke@435 2872 // NOTE: we should probably put a lock around this search to
duke@435 2873 // avoid collisions by concurrent compilations
duke@435 2874 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 2875 uint i;
duke@435 2876 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2877 ciKlass* receiver = vc_data->receiver(i);
duke@435 2878 if (known_klass->equals(receiver)) {
twisti@1162 2879 Address data_addr(mdo, md->byte_offset_of_slot(data,
twisti@1162 2880 VirtualCallData::receiver_count_offset(i)) -
duke@435 2881 mdo_offset_bias);
iveresov@2138 2882 __ ld_ptr(data_addr, tmp1);
duke@435 2883 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2884 __ st_ptr(tmp1, data_addr);
duke@435 2885 return;
duke@435 2886 }
duke@435 2887 }
duke@435 2888
duke@435 2889 // Receiver type not found in profile data; select an empty slot
duke@435 2890
duke@435 2891 // Note that this is less efficient than it should be because it
duke@435 2892 // always does a write to the receiver part of the
duke@435 2893 // VirtualCallData rather than just the first time
duke@435 2894 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2895 ciKlass* receiver = vc_data->receiver(i);
duke@435 2896 if (receiver == NULL) {
twisti@1162 2897 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
duke@435 2898 mdo_offset_bias);
jrose@1424 2899 jobject2reg(known_klass->constant_encoding(), tmp1);
duke@435 2900 __ st_ptr(tmp1, recv_addr);
twisti@1162 2901 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
duke@435 2902 mdo_offset_bias);
iveresov@2138 2903 __ ld_ptr(data_addr, tmp1);
duke@435 2904 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2905 __ st_ptr(tmp1, data_addr);
duke@435 2906 return;
duke@435 2907 }
duke@435 2908 }
duke@435 2909 } else {
iveresov@2344 2910 __ load_klass(recv, recv);
duke@435 2911 Label update_done;
iveresov@2138 2912 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
kvn@1686 2913 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 2914 // Increment total counter to indicate polymorphic case.
iveresov@2138 2915 __ ld_ptr(counter_addr, tmp1);
kvn@1686 2916 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2917 __ st_ptr(tmp1, counter_addr);
duke@435 2918
duke@435 2919 __ bind(update_done);
duke@435 2920 }
kvn@1686 2921 } else {
kvn@1686 2922 // Static call
iveresov@2138 2923 __ ld_ptr(counter_addr, tmp1);
kvn@1686 2924 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2925 __ st_ptr(tmp1, counter_addr);
duke@435 2926 }
duke@435 2927 }
duke@435 2928
duke@435 2929 void LIR_Assembler::align_backward_branch_target() {
kvn@1800 2930 __ align(OptoLoopAlignment);
duke@435 2931 }
duke@435 2932
duke@435 2933
duke@435 2934 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
duke@435 2935 // make sure we are expecting a delay
duke@435 2936 // this has the side effect of clearing the delay state
duke@435 2937 // so we can use _masm instead of _masm->delayed() to do the
duke@435 2938 // code generation.
duke@435 2939 __ delayed();
duke@435 2940
duke@435 2941 // make sure we only emit one instruction
duke@435 2942 int offset = code_offset();
duke@435 2943 op->delay_op()->emit_code(this);
duke@435 2944 #ifdef ASSERT
duke@435 2945 if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
duke@435 2946 op->delay_op()->print();
duke@435 2947 }
duke@435 2948 assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
duke@435 2949 "only one instruction can go in a delay slot");
duke@435 2950 #endif
duke@435 2951
duke@435 2952 // we may also be emitting the call info for the instruction
duke@435 2953 // which we are the delay slot of.
twisti@1919 2954 CodeEmitInfo* call_info = op->call_info();
duke@435 2955 if (call_info) {
duke@435 2956 add_call_info(code_offset(), call_info);
duke@435 2957 }
duke@435 2958
duke@435 2959 if (VerifyStackAtCalls) {
duke@435 2960 _masm->sub(FP, SP, O7);
duke@435 2961 _masm->cmp(O7, initial_frame_size_in_bytes());
duke@435 2962 _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
duke@435 2963 }
duke@435 2964 }
duke@435 2965
duke@435 2966
duke@435 2967 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 2968 assert(left->is_register(), "can only handle registers");
duke@435 2969
duke@435 2970 if (left->is_single_cpu()) {
duke@435 2971 __ neg(left->as_register(), dest->as_register());
duke@435 2972 } else if (left->is_single_fpu()) {
duke@435 2973 __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
duke@435 2974 } else if (left->is_double_fpu()) {
duke@435 2975 __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
duke@435 2976 } else {
duke@435 2977 assert (left->is_double_cpu(), "Must be a long");
duke@435 2978 Register Rlow = left->as_register_lo();
duke@435 2979 Register Rhi = left->as_register_hi();
duke@435 2980 #ifdef _LP64
duke@435 2981 __ sub(G0, Rlow, dest->as_register_lo());
duke@435 2982 #else
duke@435 2983 __ subcc(G0, Rlow, dest->as_register_lo());
duke@435 2984 __ subc (G0, Rhi, dest->as_register_hi());
duke@435 2985 #endif
duke@435 2986 }
duke@435 2987 }
duke@435 2988
duke@435 2989
duke@435 2990 void LIR_Assembler::fxch(int i) {
duke@435 2991 Unimplemented();
duke@435 2992 }
duke@435 2993
duke@435 2994 void LIR_Assembler::fld(int i) {
duke@435 2995 Unimplemented();
duke@435 2996 }
duke@435 2997
duke@435 2998 void LIR_Assembler::ffree(int i) {
duke@435 2999 Unimplemented();
duke@435 3000 }
duke@435 3001
duke@435 3002 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
duke@435 3003 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3004
duke@435 3005 // if tmp is invalid, then the function being called doesn't destroy the thread
duke@435 3006 if (tmp->is_valid()) {
duke@435 3007 __ save_thread(tmp->as_register());
duke@435 3008 }
duke@435 3009 __ call(dest, relocInfo::runtime_call_type);
duke@435 3010 __ delayed()->nop();
duke@435 3011 if (info != NULL) {
duke@435 3012 add_call_info_here(info);
duke@435 3013 }
duke@435 3014 if (tmp->is_valid()) {
duke@435 3015 __ restore_thread(tmp->as_register());
duke@435 3016 }
duke@435 3017
duke@435 3018 #ifdef ASSERT
duke@435 3019 __ verify_thread();
duke@435 3020 #endif // ASSERT
duke@435 3021 }
duke@435 3022
duke@435 3023
duke@435 3024 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3025 #ifdef _LP64
duke@435 3026 ShouldNotReachHere();
duke@435 3027 #endif
duke@435 3028
duke@435 3029 NEEDS_CLEANUP;
duke@435 3030 if (type == T_LONG) {
duke@435 3031 LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
duke@435 3032
duke@435 3033 // (extended to allow indexed as well as constant displaced for JSR-166)
duke@435 3034 Register idx = noreg; // contains either constant offset or index
duke@435 3035
duke@435 3036 int disp = mem_addr->disp();
duke@435 3037 if (mem_addr->index() == LIR_OprFact::illegalOpr) {
duke@435 3038 if (!Assembler::is_simm13(disp)) {
duke@435 3039 idx = O7;
duke@435 3040 __ set(disp, idx);
duke@435 3041 }
duke@435 3042 } else {
duke@435 3043 assert(disp == 0, "not both indexed and disp");
duke@435 3044 idx = mem_addr->index()->as_register();
duke@435 3045 }
duke@435 3046
duke@435 3047 int null_check_offset = -1;
duke@435 3048
duke@435 3049 Register base = mem_addr->base()->as_register();
duke@435 3050 if (src->is_register() && dest->is_address()) {
duke@435 3051 // G4 is high half, G5 is low half
duke@435 3052 if (VM_Version::v9_instructions_work()) {
duke@435 3053 // clear the top bits of G5, and scale up G4
duke@435 3054 __ srl (src->as_register_lo(), 0, G5);
duke@435 3055 __ sllx(src->as_register_hi(), 32, G4);
duke@435 3056 // combine the two halves into the 64 bits of G4
duke@435 3057 __ or3(G4, G5, G4);
duke@435 3058 null_check_offset = __ offset();
duke@435 3059 if (idx == noreg) {
duke@435 3060 __ stx(G4, base, disp);
duke@435 3061 } else {
duke@435 3062 __ stx(G4, base, idx);
duke@435 3063 }
duke@435 3064 } else {
duke@435 3065 __ mov (src->as_register_hi(), G4);
duke@435 3066 __ mov (src->as_register_lo(), G5);
duke@435 3067 null_check_offset = __ offset();
duke@435 3068 if (idx == noreg) {
duke@435 3069 __ std(G4, base, disp);
duke@435 3070 } else {
duke@435 3071 __ std(G4, base, idx);
duke@435 3072 }
duke@435 3073 }
duke@435 3074 } else if (src->is_address() && dest->is_register()) {
duke@435 3075 null_check_offset = __ offset();
duke@435 3076 if (VM_Version::v9_instructions_work()) {
duke@435 3077 if (idx == noreg) {
duke@435 3078 __ ldx(base, disp, G5);
duke@435 3079 } else {
duke@435 3080 __ ldx(base, idx, G5);
duke@435 3081 }
duke@435 3082 __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
duke@435 3083 __ mov (G5, dest->as_register_lo()); // copy low half into lo
duke@435 3084 } else {
duke@435 3085 if (idx == noreg) {
duke@435 3086 __ ldd(base, disp, G4);
duke@435 3087 } else {
duke@435 3088 __ ldd(base, idx, G4);
duke@435 3089 }
duke@435 3090 // G4 is high half, G5 is low half
duke@435 3091 __ mov (G4, dest->as_register_hi());
duke@435 3092 __ mov (G5, dest->as_register_lo());
duke@435 3093 }
duke@435 3094 } else {
duke@435 3095 Unimplemented();
duke@435 3096 }
duke@435 3097 if (info != NULL) {
duke@435 3098 add_debug_info_for_null_check(null_check_offset, info);
duke@435 3099 }
duke@435 3100
duke@435 3101 } else {
duke@435 3102 // use normal move for all other volatiles since they don't need
duke@435 3103 // special handling to remain atomic.
iveresov@2344 3104 move_op(src, dest, type, lir_patch_none, info, false, false, false);
duke@435 3105 }
duke@435 3106 }
duke@435 3107
duke@435 3108 void LIR_Assembler::membar() {
duke@435 3109 // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
duke@435 3110 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
duke@435 3111 }
duke@435 3112
duke@435 3113 void LIR_Assembler::membar_acquire() {
duke@435 3114 // no-op on TSO
duke@435 3115 }
duke@435 3116
duke@435 3117 void LIR_Assembler::membar_release() {
duke@435 3118 // no-op on TSO
duke@435 3119 }
duke@435 3120
iveresov@2138 3121 // Pack two sequential registers containing 32 bit values
duke@435 3122 // into a single 64 bit register.
iveresov@2138 3123 // src and src->successor() are packed into dst
iveresov@2138 3124 // src and dst may be the same register.
iveresov@2138 3125 // Note: src is destroyed
iveresov@2138 3126 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
iveresov@2138 3127 Register rs = src->as_register();
iveresov@2138 3128 Register rd = dst->as_register_lo();
duke@435 3129 __ sllx(rs, 32, rs);
duke@435 3130 __ srl(rs->successor(), 0, rs->successor());
duke@435 3131 __ or3(rs, rs->successor(), rd);
duke@435 3132 }
duke@435 3133
iveresov@2138 3134 // Unpack a 64 bit value in a register into
duke@435 3135 // two sequential registers.
iveresov@2138 3136 // src is unpacked into dst and dst->successor()
iveresov@2138 3137 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
iveresov@2138 3138 Register rs = src->as_register_lo();
iveresov@2138 3139 Register rd = dst->as_register_hi();
iveresov@2138 3140 assert_different_registers(rs, rd, rd->successor());
iveresov@2138 3141 __ srlx(rs, 32, rd);
iveresov@2138 3142 __ srl (rs, 0, rd->successor());
duke@435 3143 }
duke@435 3144
duke@435 3145
duke@435 3146 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
duke@435 3147 LIR_Address* addr = addr_opr->as_address_ptr();
duke@435 3148 assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
iveresov@2138 3149
iveresov@2138 3150 __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
duke@435 3151 }
duke@435 3152
duke@435 3153
duke@435 3154 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3155 assert(result_reg->is_register(), "check");
duke@435 3156 __ mov(G2_thread, result_reg->as_register());
duke@435 3157 }
duke@435 3158
duke@435 3159
duke@435 3160 void LIR_Assembler::peephole(LIR_List* lir) {
duke@435 3161 LIR_OpList* inst = lir->instructions_list();
duke@435 3162 for (int i = 0; i < inst->length(); i++) {
duke@435 3163 LIR_Op* op = inst->at(i);
duke@435 3164 switch (op->code()) {
duke@435 3165 case lir_cond_float_branch:
duke@435 3166 case lir_branch: {
duke@435 3167 LIR_OpBranch* branch = op->as_OpBranch();
duke@435 3168 assert(branch->info() == NULL, "shouldn't be state on branches anymore");
duke@435 3169 LIR_Op* delay_op = NULL;
duke@435 3170 // we'd like to be able to pull following instructions into
duke@435 3171 // this slot but we don't know enough to do it safely yet so
duke@435 3172 // only optimize block to block control flow.
duke@435 3173 if (LIRFillDelaySlots && branch->block()) {
duke@435 3174 LIR_Op* prev = inst->at(i - 1);
duke@435 3175 if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
duke@435 3176 // swap previous instruction into delay slot
duke@435 3177 inst->at_put(i - 1, op);
duke@435 3178 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3179 #ifndef PRODUCT
duke@435 3180 if (LIRTracePeephole) {
duke@435 3181 tty->print_cr("delayed");
duke@435 3182 inst->at(i - 1)->print();
duke@435 3183 inst->at(i)->print();
twisti@1919 3184 tty->cr();
duke@435 3185 }
duke@435 3186 #endif
duke@435 3187 continue;
duke@435 3188 }
duke@435 3189 }
duke@435 3190
duke@435 3191 if (!delay_op) {
duke@435 3192 delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
duke@435 3193 }
duke@435 3194 inst->insert_before(i + 1, delay_op);
duke@435 3195 break;
duke@435 3196 }
duke@435 3197 case lir_static_call:
duke@435 3198 case lir_virtual_call:
duke@435 3199 case lir_icvirtual_call:
twisti@1919 3200 case lir_optvirtual_call:
twisti@1919 3201 case lir_dynamic_call: {
duke@435 3202 LIR_Op* prev = inst->at(i - 1);
duke@435 3203 if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
duke@435 3204 (op->code() != lir_virtual_call ||
duke@435 3205 !prev->result_opr()->is_single_cpu() ||
duke@435 3206 prev->result_opr()->as_register() != O0) &&
duke@435 3207 LIR_Assembler::is_single_instruction(prev)) {
duke@435 3208 // Only moves without info can be put into the delay slot.
duke@435 3209 // Also don't allow the setup of the receiver in the delay
duke@435 3210 // slot for vtable calls.
duke@435 3211 inst->at_put(i - 1, op);
duke@435 3212 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3213 #ifndef PRODUCT
duke@435 3214 if (LIRTracePeephole) {
duke@435 3215 tty->print_cr("delayed");
duke@435 3216 inst->at(i - 1)->print();
duke@435 3217 inst->at(i)->print();
twisti@1919 3218 tty->cr();
duke@435 3219 }
duke@435 3220 #endif
iveresov@2138 3221 } else {
iveresov@2138 3222 LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
iveresov@2138 3223 inst->insert_before(i + 1, delay_op);
iveresov@2138 3224 i++;
duke@435 3225 }
duke@435 3226
iveresov@2138 3227 #if defined(TIERED) && !defined(_LP64)
iveresov@2138 3228 // fixup the return value from G1 to O0/O1 for long returns.
iveresov@2138 3229 // It's done here instead of in LIRGenerator because there's
iveresov@2138 3230 // such a mismatch between the single reg and double reg
iveresov@2138 3231 // calling convention.
iveresov@2138 3232 LIR_OpJavaCall* callop = op->as_OpJavaCall();
iveresov@2138 3233 if (callop->result_opr() == FrameMap::out_long_opr) {
iveresov@2138 3234 LIR_OpJavaCall* call;
iveresov@2138 3235 LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
iveresov@2138 3236 for (int a = 0; a < arguments->length(); a++) {
iveresov@2138 3237 arguments[a] = callop->arguments()[a];
iveresov@2138 3238 }
iveresov@2138 3239 if (op->code() == lir_virtual_call) {
iveresov@2138 3240 call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
iveresov@2138 3241 callop->vtable_offset(), arguments, callop->info());
iveresov@2138 3242 } else {
iveresov@2138 3243 call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
iveresov@2138 3244 callop->addr(), arguments, callop->info());
iveresov@2138 3245 }
iveresov@2138 3246 inst->at_put(i - 1, call);
iveresov@2138 3247 inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
iveresov@2138 3248 T_LONG, lir_patch_none, NULL));
iveresov@2138 3249 }
iveresov@2138 3250 #endif
duke@435 3251 break;
duke@435 3252 }
duke@435 3253 }
duke@435 3254 }
duke@435 3255 }
duke@435 3256
duke@435 3257
duke@435 3258
duke@435 3259
duke@435 3260 #undef __

mercurial