src/share/vm/opto/escape.cpp

Fri, 10 Feb 2012 12:53:43 -0800

author
kvn
date
Fri, 10 Feb 2012 12:53:43 -0800
changeset 3564
73df3733f2eb
parent 3406
e9a5e0a812c8
child 3604
9a72c7ece7fb
permissions
-rw-r--r--

7129284: +DoEscapeAnalysis regression w/ early build of 7u4 (HotSpot 23) on Linux
Summary: Removed code which tried to create edges from fields of destination objects of arraycopy to fields of source objects. Added 30 sec time limit for EA graph construction.
Reviewed-by: never

duke@435 1 /*
kvn@3564 2 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "ci/bcEscapeAnalyzer.hpp"
stefank@2314 27 #include "libadt/vectset.hpp"
stefank@2314 28 #include "memory/allocation.hpp"
stefank@2314 29 #include "opto/c2compiler.hpp"
stefank@2314 30 #include "opto/callnode.hpp"
stefank@2314 31 #include "opto/cfgnode.hpp"
stefank@2314 32 #include "opto/compile.hpp"
stefank@2314 33 #include "opto/escape.hpp"
stefank@2314 34 #include "opto/phaseX.hpp"
stefank@2314 35 #include "opto/rootnode.hpp"
duke@435 36
duke@435 37 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 38 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 39 if (_edges == NULL) {
duke@435 40 Arena *a = Compile::current()->comp_arena();
duke@435 41 _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
duke@435 42 }
duke@435 43 _edges->append_if_missing(v);
duke@435 44 }
duke@435 45
duke@435 46 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 47 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 48
duke@435 49 _edges->remove(v);
duke@435 50 }
duke@435 51
duke@435 52 #ifndef PRODUCT
kvn@512 53 static const char *node_type_names[] = {
duke@435 54 "UnknownType",
duke@435 55 "JavaObject",
duke@435 56 "LocalVar",
duke@435 57 "Field"
duke@435 58 };
duke@435 59
kvn@512 60 static const char *esc_names[] = {
duke@435 61 "UnknownEscape",
kvn@500 62 "NoEscape",
kvn@500 63 "ArgEscape",
kvn@500 64 "GlobalEscape"
duke@435 65 };
duke@435 66
kvn@512 67 static const char *edge_type_suffix[] = {
duke@435 68 "?", // UnknownEdge
duke@435 69 "P", // PointsToEdge
duke@435 70 "D", // DeferredEdge
duke@435 71 "F" // FieldEdge
duke@435 72 };
duke@435 73
kvn@688 74 void PointsToNode::dump(bool print_state) const {
duke@435 75 NodeType nt = node_type();
kvn@688 76 tty->print("%s ", node_type_names[(int) nt]);
kvn@688 77 if (print_state) {
kvn@688 78 EscapeState es = escape_state();
kvn@688 79 tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
kvn@688 80 }
kvn@688 81 tty->print("[[");
duke@435 82 for (uint i = 0; i < edge_count(); i++) {
duke@435 83 tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
duke@435 84 }
duke@435 85 tty->print("]] ");
duke@435 86 if (_node == NULL)
duke@435 87 tty->print_cr("<null>");
duke@435 88 else
duke@435 89 _node->dump();
duke@435 90 }
duke@435 91 #endif
duke@435 92
kvn@1989 93 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
kvn@679 94 _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
kvn@679 95 _processed(C->comp_arena()),
kvn@2556 96 pt_ptset(C->comp_arena()),
kvn@2556 97 pt_visited(C->comp_arena()),
kvn@2556 98 pt_worklist(C->comp_arena(), 4, 0, 0),
kvn@679 99 _collecting(true),
kvn@2276 100 _progress(false),
kvn@679 101 _compile(C),
kvn@1989 102 _igvn(igvn),
kvn@679 103 _node_map(C->comp_arena()) {
kvn@679 104
kvn@688 105 _phantom_object = C->top()->_idx,
kvn@688 106 add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
kvn@688 107
kvn@688 108 // Add ConP(#NULL) and ConN(#NULL) nodes.
kvn@688 109 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@688 110 _oop_null = oop_null->_idx;
kvn@3242 111 assert(_oop_null < nodes_size(), "should be created already");
kvn@688 112 add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 113
kvn@688 114 if (UseCompressedOops) {
kvn@688 115 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@688 116 _noop_null = noop_null->_idx;
kvn@3242 117 assert(_noop_null < nodes_size(), "should be created already");
kvn@688 118 add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@3242 119 } else {
kvn@3242 120 _noop_null = _oop_null; // Should be initialized
kvn@688 121 }
kvn@3309 122 _pcmp_neq = NULL; // Should be initialized
kvn@3309 123 _pcmp_eq = NULL;
duke@435 124 }
duke@435 125
duke@435 126 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
duke@435 127 PointsToNode *f = ptnode_adr(from_i);
duke@435 128 PointsToNode *t = ptnode_adr(to_i);
duke@435 129
duke@435 130 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 131 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
duke@435 132 assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
kvn@3318 133 if (to_i == _phantom_object) { // Quick test for most common object
kvn@3318 134 if (f->has_unknown_ptr()) {
kvn@3318 135 return;
kvn@3318 136 } else {
kvn@3318 137 f->set_has_unknown_ptr();
kvn@3318 138 }
kvn@3318 139 }
kvn@2276 140 add_edge(f, to_i, PointsToNode::PointsToEdge);
duke@435 141 }
duke@435 142
duke@435 143 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
duke@435 144 PointsToNode *f = ptnode_adr(from_i);
duke@435 145 PointsToNode *t = ptnode_adr(to_i);
duke@435 146
duke@435 147 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 148 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
duke@435 149 assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
duke@435 150 // don't add a self-referential edge, this can occur during removal of
duke@435 151 // deferred edges
duke@435 152 if (from_i != to_i)
kvn@2276 153 add_edge(f, to_i, PointsToNode::DeferredEdge);
duke@435 154 }
duke@435 155
kvn@500 156 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 157 const Type *adr_type = phase->type(adr);
kvn@500 158 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 159 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 160 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 161 // We are computing a raw address for a store captured by an Initialize
kvn@500 162 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 163 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 164 assert(offs != Type::OffsetBot ||
kvn@500 165 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 166 "offset must be a constant or it is initialization of array");
kvn@500 167 return offs;
kvn@500 168 }
kvn@500 169 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 170 assert(t_ptr != NULL, "must be a pointer type");
duke@435 171 return t_ptr->offset();
duke@435 172 }
duke@435 173
duke@435 174 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
kvn@3318 175 // Don't add fields to NULL pointer.
kvn@3318 176 if (is_null_ptr(from_i))
kvn@3318 177 return;
duke@435 178 PointsToNode *f = ptnode_adr(from_i);
duke@435 179 PointsToNode *t = ptnode_adr(to_i);
duke@435 180
duke@435 181 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 182 assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
duke@435 183 assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
duke@435 184 assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
duke@435 185 t->set_offset(offset);
duke@435 186
kvn@2276 187 add_edge(f, to_i, PointsToNode::FieldEdge);
duke@435 188 }
duke@435 189
duke@435 190 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
kvn@3242 191 // Don't change non-escaping state of NULL pointer.
kvn@3318 192 if (is_null_ptr(ni))
kvn@3242 193 return;
duke@435 194 PointsToNode *npt = ptnode_adr(ni);
duke@435 195 PointsToNode::EscapeState old_es = npt->escape_state();
duke@435 196 if (es > old_es)
duke@435 197 npt->set_escape_state(es);
duke@435 198 }
duke@435 199
kvn@500 200 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
kvn@500 201 PointsToNode::EscapeState es, bool done) {
kvn@500 202 PointsToNode* ptadr = ptnode_adr(n->_idx);
kvn@500 203 ptadr->_node = n;
kvn@500 204 ptadr->set_node_type(nt);
kvn@500 205
kvn@500 206 // inline set_escape_state(idx, es);
kvn@500 207 PointsToNode::EscapeState old_es = ptadr->escape_state();
kvn@500 208 if (es > old_es)
kvn@500 209 ptadr->set_escape_state(es);
kvn@500 210
kvn@500 211 if (done)
kvn@500 212 _processed.set(n->_idx);
kvn@500 213 }
kvn@500 214
kvn@1989 215 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n) {
duke@435 216 uint idx = n->_idx;
duke@435 217 PointsToNode::EscapeState es;
duke@435 218
kvn@500 219 // If we are still collecting or there were no non-escaping allocations
kvn@500 220 // we don't know the answer yet
kvn@679 221 if (_collecting)
duke@435 222 return PointsToNode::UnknownEscape;
duke@435 223
duke@435 224 // if the node was created after the escape computation, return
duke@435 225 // UnknownEscape
kvn@679 226 if (idx >= nodes_size())
duke@435 227 return PointsToNode::UnknownEscape;
duke@435 228
kvn@679 229 es = ptnode_adr(idx)->escape_state();
duke@435 230
duke@435 231 // if we have already computed a value, return it
kvn@895 232 if (es != PointsToNode::UnknownEscape &&
kvn@895 233 ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
duke@435 234 return es;
duke@435 235
kvn@679 236 // PointsTo() calls n->uncast() which can return a new ideal node.
kvn@679 237 if (n->uncast()->_idx >= nodes_size())
kvn@679 238 return PointsToNode::UnknownEscape;
kvn@679 239
kvn@1989 240 PointsToNode::EscapeState orig_es = es;
kvn@1989 241
duke@435 242 // compute max escape state of anything this node could point to
kvn@2556 243 for(VectorSetI i(PointsTo(n)); i.test() && es != PointsToNode::GlobalEscape; ++i) {
duke@435 244 uint pt = i.elem;
kvn@679 245 PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
duke@435 246 if (pes > es)
duke@435 247 es = pes;
duke@435 248 }
kvn@1989 249 if (orig_es != es) {
kvn@1989 250 // cache the computed escape state
kvn@3242 251 assert(es > orig_es, "should have computed an escape state");
kvn@3242 252 set_escape_state(idx, es);
kvn@1989 253 } // orig_es could be PointsToNode::UnknownEscape
duke@435 254 return es;
duke@435 255 }
duke@435 256
kvn@2556 257 VectorSet* ConnectionGraph::PointsTo(Node * n) {
kvn@2556 258 pt_ptset.Reset();
kvn@2556 259 pt_visited.Reset();
kvn@2556 260 pt_worklist.clear();
duke@435 261
kvn@559 262 #ifdef ASSERT
kvn@559 263 Node *orig_n = n;
kvn@559 264 #endif
kvn@559 265
kvn@500 266 n = n->uncast();
kvn@679 267 PointsToNode* npt = ptnode_adr(n->_idx);
duke@435 268
duke@435 269 // If we have a JavaObject, return just that object
kvn@679 270 if (npt->node_type() == PointsToNode::JavaObject) {
kvn@2556 271 pt_ptset.set(n->_idx);
kvn@2556 272 return &pt_ptset;
duke@435 273 }
kvn@559 274 #ifdef ASSERT
kvn@679 275 if (npt->_node == NULL) {
kvn@559 276 if (orig_n != n)
kvn@559 277 orig_n->dump();
kvn@559 278 n->dump();
kvn@679 279 assert(npt->_node != NULL, "unregistered node");
kvn@559 280 }
kvn@559 281 #endif
kvn@2556 282 pt_worklist.push(n->_idx);
kvn@2556 283 while(pt_worklist.length() > 0) {
kvn@2556 284 int ni = pt_worklist.pop();
kvn@2556 285 if (pt_visited.test_set(ni))
kvn@679 286 continue;
duke@435 287
kvn@679 288 PointsToNode* pn = ptnode_adr(ni);
kvn@679 289 // ensure that all inputs of a Phi have been processed
kvn@679 290 assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
kvn@679 291
kvn@679 292 int edges_processed = 0;
kvn@679 293 uint e_cnt = pn->edge_count();
kvn@679 294 for (uint e = 0; e < e_cnt; e++) {
kvn@679 295 uint etgt = pn->edge_target(e);
kvn@679 296 PointsToNode::EdgeType et = pn->edge_type(e);
kvn@679 297 if (et == PointsToNode::PointsToEdge) {
kvn@2556 298 pt_ptset.set(etgt);
kvn@679 299 edges_processed++;
kvn@679 300 } else if (et == PointsToNode::DeferredEdge) {
kvn@2556 301 pt_worklist.push(etgt);
kvn@679 302 edges_processed++;
kvn@679 303 } else {
kvn@679 304 assert(false,"neither PointsToEdge or DeferredEdge");
duke@435 305 }
kvn@679 306 }
kvn@679 307 if (edges_processed == 0) {
kvn@679 308 // no deferred or pointsto edges found. Assume the value was set
kvn@679 309 // outside this method. Add the phantom object to the pointsto set.
kvn@2556 310 pt_ptset.set(_phantom_object);
duke@435 311 }
duke@435 312 }
kvn@2556 313 return &pt_ptset;
duke@435 314 }
duke@435 315
kvn@536 316 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
kvn@536 317 // This method is most expensive during ConnectionGraph construction.
kvn@536 318 // Reuse vectorSet and an additional growable array for deferred edges.
kvn@536 319 deferred_edges->clear();
kvn@2556 320 visited->Reset();
duke@435 321
kvn@679 322 visited->set(ni);
duke@435 323 PointsToNode *ptn = ptnode_adr(ni);
kvn@3318 324 assert(ptn->node_type() == PointsToNode::LocalVar ||
kvn@3318 325 ptn->node_type() == PointsToNode::Field, "sanity");
kvn@3318 326 assert(ptn->edge_count() != 0, "should have at least phantom_object");
duke@435 327
kvn@536 328 // Mark current edges as visited and move deferred edges to separate array.
kvn@679 329 for (uint i = 0; i < ptn->edge_count(); ) {
kvn@500 330 uint t = ptn->edge_target(i);
kvn@536 331 #ifdef ASSERT
kvn@536 332 assert(!visited->test_set(t), "expecting no duplications");
kvn@536 333 #else
kvn@536 334 visited->set(t);
kvn@536 335 #endif
kvn@536 336 if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
kvn@536 337 ptn->remove_edge(t, PointsToNode::DeferredEdge);
kvn@536 338 deferred_edges->append(t);
kvn@559 339 } else {
kvn@559 340 i++;
kvn@536 341 }
kvn@536 342 }
kvn@536 343 for (int next = 0; next < deferred_edges->length(); ++next) {
kvn@536 344 uint t = deferred_edges->at(next);
kvn@500 345 PointsToNode *ptt = ptnode_adr(t);
kvn@679 346 uint e_cnt = ptt->edge_count();
kvn@3318 347 assert(e_cnt != 0, "should have at least phantom_object");
kvn@679 348 for (uint e = 0; e < e_cnt; e++) {
kvn@679 349 uint etgt = ptt->edge_target(e);
kvn@679 350 if (visited->test_set(etgt))
kvn@536 351 continue;
kvn@679 352
kvn@679 353 PointsToNode::EdgeType et = ptt->edge_type(e);
kvn@679 354 if (et == PointsToNode::PointsToEdge) {
kvn@679 355 add_pointsto_edge(ni, etgt);
kvn@679 356 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 357 deferred_edges->append(etgt);
kvn@679 358 } else {
kvn@679 359 assert(false,"invalid connection graph");
duke@435 360 }
duke@435 361 }
duke@435 362 }
kvn@3318 363 if (ptn->edge_count() == 0) {
kvn@3318 364 // No pointsto edges found after deferred edges are removed.
kvn@3318 365 // For example, in the next case where call is replaced
kvn@3318 366 // with uncommon trap and as result array's load references
kvn@3318 367 // itself through deferred edges:
kvn@3318 368 //
kvn@3318 369 // A a = b[i];
kvn@3318 370 // if (c!=null) a = c.foo();
kvn@3318 371 // b[i] = a;
kvn@3318 372 //
kvn@3318 373 // Assume the value was set outside this method and
kvn@3318 374 // add edge to phantom object.
kvn@3318 375 add_pointsto_edge(ni, _phantom_object);
kvn@3318 376 }
duke@435 377 }
duke@435 378
duke@435 379
duke@435 380 // Add an edge to node given by "to_i" from any field of adr_i whose offset
duke@435 381 // matches "offset" A deferred edge is added if to_i is a LocalVar, and
duke@435 382 // a pointsto edge is added if it is a JavaObject
duke@435 383
duke@435 384 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
kvn@3318 385 // No fields for NULL pointer.
kvn@3318 386 if (is_null_ptr(adr_i)) {
kvn@3318 387 return;
kvn@3318 388 }
kvn@679 389 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 390 PointsToNode* to = ptnode_adr(to_i);
kvn@679 391 bool deferred = (to->node_type() == PointsToNode::LocalVar);
kvn@3318 392 bool escaped = (to_i == _phantom_object) && (offs == Type::OffsetTop);
kvn@3318 393 if (escaped) {
kvn@3318 394 // Values in fields escaped during call.
kvn@3318 395 assert(an->escape_state() >= PointsToNode::ArgEscape, "sanity");
kvn@3318 396 offs = Type::OffsetBot;
kvn@3318 397 }
kvn@679 398 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 399 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 400 int fi = an->edge_target(fe);
kvn@3318 401 if (escaped) {
kvn@3318 402 set_escape_state(fi, PointsToNode::GlobalEscape);
kvn@3318 403 }
kvn@679 404 PointsToNode* pf = ptnode_adr(fi);
kvn@679 405 int po = pf->offset();
duke@435 406 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 407 if (deferred)
duke@435 408 add_deferred_edge(fi, to_i);
duke@435 409 else
duke@435 410 add_pointsto_edge(fi, to_i);
duke@435 411 }
duke@435 412 }
duke@435 413 }
duke@435 414
kvn@500 415 // Add a deferred edge from node given by "from_i" to any field of adr_i
kvn@500 416 // whose offset matches "offset".
duke@435 417 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
kvn@3318 418 // No fields for NULL pointer.
kvn@3318 419 if (is_null_ptr(adr_i)) {
kvn@3318 420 return;
kvn@3318 421 }
kvn@3318 422 if (adr_i == _phantom_object) {
kvn@3318 423 // Add only one edge for unknown object.
kvn@3318 424 add_pointsto_edge(from_i, _phantom_object);
kvn@3318 425 return;
kvn@3318 426 }
kvn@679 427 PointsToNode* an = ptnode_adr(adr_i);
kvn@3254 428 bool is_alloc = an->_node->is_Allocate();
kvn@679 429 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 430 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 431 int fi = an->edge_target(fe);
kvn@679 432 PointsToNode* pf = ptnode_adr(fi);
kvn@3254 433 int offset = pf->offset();
kvn@3254 434 if (!is_alloc) {
kvn@3254 435 // Assume the field was set outside this method if it is not Allocation
duke@435 436 add_pointsto_edge(fi, _phantom_object);
duke@435 437 }
kvn@3254 438 if (offset == offs || offset == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 439 add_deferred_edge(from_i, fi);
duke@435 440 }
duke@435 441 }
kvn@3309 442 // Some fields references (AddP) may still be missing
kvn@3309 443 // until Connection Graph construction is complete.
kvn@3309 444 // For example, loads from RAW pointers with offset 0
kvn@3309 445 // which don't have AddP.
kvn@3309 446 // A reference to phantom_object will be added if
kvn@3309 447 // a field reference is still missing after completing
kvn@3309 448 // Connection Graph (see remove_deferred()).
duke@435 449 }
duke@435 450
kvn@500 451 // Helper functions
kvn@500 452
kvn@500 453 static Node* get_addp_base(Node *addp) {
kvn@500 454 assert(addp->is_AddP(), "must be AddP");
kvn@500 455 //
kvn@500 456 // AddP cases for Base and Address inputs:
kvn@500 457 // case #1. Direct object's field reference:
kvn@500 458 // Allocate
kvn@500 459 // |
kvn@500 460 // Proj #5 ( oop result )
kvn@500 461 // |
kvn@500 462 // CheckCastPP (cast to instance type)
kvn@500 463 // | |
kvn@500 464 // AddP ( base == address )
kvn@500 465 //
kvn@500 466 // case #2. Indirect object's field reference:
kvn@500 467 // Phi
kvn@500 468 // |
kvn@500 469 // CastPP (cast to instance type)
kvn@500 470 // | |
kvn@500 471 // AddP ( base == address )
kvn@500 472 //
kvn@500 473 // case #3. Raw object's field reference for Initialize node:
kvn@500 474 // Allocate
kvn@500 475 // |
kvn@500 476 // Proj #5 ( oop result )
kvn@500 477 // top |
kvn@500 478 // \ |
kvn@500 479 // AddP ( base == top )
kvn@500 480 //
kvn@500 481 // case #4. Array's element reference:
kvn@500 482 // {CheckCastPP | CastPP}
kvn@500 483 // | | |
kvn@500 484 // | AddP ( array's element offset )
kvn@500 485 // | |
kvn@500 486 // AddP ( array's offset )
kvn@500 487 //
kvn@500 488 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 489 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 490 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 491 // Allocate
kvn@500 492 // |
kvn@500 493 // Proj #5 ( oop result )
kvn@500 494 // | |
kvn@500 495 // AddP ( base == address )
kvn@500 496 //
kvn@512 497 // case #6. Constant Pool, ThreadLocal, CastX2P or
kvn@512 498 // Raw object's field reference:
kvn@512 499 // {ConP, ThreadLocal, CastX2P, raw Load}
kvn@500 500 // top |
kvn@500 501 // \ |
kvn@500 502 // AddP ( base == top )
kvn@500 503 //
kvn@512 504 // case #7. Klass's field reference.
kvn@512 505 // LoadKlass
kvn@512 506 // | |
kvn@512 507 // AddP ( base == address )
kvn@512 508 //
kvn@599 509 // case #8. narrow Klass's field reference.
kvn@599 510 // LoadNKlass
kvn@599 511 // |
kvn@599 512 // DecodeN
kvn@599 513 // | |
kvn@599 514 // AddP ( base == address )
kvn@599 515 //
kvn@500 516 Node *base = addp->in(AddPNode::Base)->uncast();
kvn@500 517 if (base->is_top()) { // The AddP case #3 and #6.
kvn@500 518 base = addp->in(AddPNode::Address)->uncast();
kvn@1392 519 while (base->is_AddP()) {
kvn@1392 520 // Case #6 (unsafe access) may have several chained AddP nodes.
kvn@1392 521 assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
kvn@1392 522 base = base->in(AddPNode::Address)->uncast();
kvn@1392 523 }
kvn@500 524 assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
kvn@603 525 base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
kvn@512 526 (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
kvn@512 527 (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
duke@435 528 }
kvn@500 529 return base;
kvn@500 530 }
kvn@500 531
kvn@500 532 static Node* find_second_addp(Node* addp, Node* n) {
kvn@500 533 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 534
kvn@500 535 Node* addp2 = addp->raw_out(0);
kvn@500 536 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 537 addp2->in(AddPNode::Base) == n &&
kvn@500 538 addp2->in(AddPNode::Address) == addp) {
kvn@500 539
kvn@500 540 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 541 //
kvn@500 542 // Find array's offset to push it on worklist first and
kvn@500 543 // as result process an array's element offset first (pushed second)
kvn@500 544 // to avoid CastPP for the array's offset.
kvn@500 545 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 546 // the AddP (Field) points to. Which would be wrong since
kvn@500 547 // the algorithm expects the CastPP has the same point as
kvn@500 548 // as AddP's base CheckCastPP (LocalVar).
kvn@500 549 //
kvn@500 550 // ArrayAllocation
kvn@500 551 // |
kvn@500 552 // CheckCastPP
kvn@500 553 // |
kvn@500 554 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 555 // | ||
kvn@500 556 // | || Int (element index)
kvn@500 557 // | || | ConI (log(element size))
kvn@500 558 // | || | /
kvn@500 559 // | || LShift
kvn@500 560 // | || /
kvn@500 561 // | AddP (array's element offset)
kvn@500 562 // | |
kvn@500 563 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 564 // | / /
kvn@500 565 // AddP (array's offset)
kvn@500 566 // |
kvn@500 567 // Load/Store (memory operation on array's element)
kvn@500 568 //
kvn@500 569 return addp2;
kvn@500 570 }
kvn@500 571 return NULL;
duke@435 572 }
duke@435 573
duke@435 574 //
duke@435 575 // Adjust the type and inputs of an AddP which computes the
duke@435 576 // address of a field of an instance
duke@435 577 //
kvn@728 578 bool ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
kvn@500 579 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@658 580 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
duke@435 581 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 582 if (t == NULL) {
kvn@500 583 // We are computing a raw address for a store captured by an Initialize
kvn@728 584 // compute an appropriate address type (cases #3 and #5).
kvn@500 585 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 586 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@741 587 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 588 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 589 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 590 }
kvn@658 591 int inst_id = base_t->instance_id();
kvn@658 592 assert(!t->is_known_instance() || t->instance_id() == inst_id,
duke@435 593 "old type must be non-instance or match new type");
kvn@728 594
kvn@728 595 // The type 't' could be subclass of 'base_t'.
kvn@728 596 // As result t->offset() could be large then base_t's size and it will
kvn@728 597 // cause the failure in add_offset() with narrow oops since TypeOopPtr()
kvn@728 598 // constructor verifies correctness of the offset.
kvn@728 599 //
twisti@1040 600 // It could happened on subclass's branch (from the type profiling
kvn@728 601 // inlining) which was not eliminated during parsing since the exactness
kvn@728 602 // of the allocation type was not propagated to the subclass type check.
kvn@728 603 //
kvn@1423 604 // Or the type 't' could be not related to 'base_t' at all.
kvn@1423 605 // It could happened when CHA type is different from MDO type on a dead path
kvn@1423 606 // (for example, from instanceof check) which is not collapsed during parsing.
kvn@1423 607 //
kvn@728 608 // Do nothing for such AddP node and don't process its users since
kvn@728 609 // this code branch will go away.
kvn@728 610 //
kvn@728 611 if (!t->is_known_instance() &&
kvn@1423 612 !base_t->klass()->is_subtype_of(t->klass())) {
kvn@728 613 return false; // bail out
kvn@728 614 }
kvn@728 615
duke@435 616 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@1497 617 // Do NOT remove the next line: ensure a new alias index is allocated
kvn@1497 618 // for the instance type. Note: C++ will not remove it since the call
kvn@1497 619 // has side effect.
duke@435 620 int alias_idx = _compile->get_alias_index(tinst);
duke@435 621 igvn->set_type(addp, tinst);
duke@435 622 // record the allocation in the node map
kvn@1536 623 assert(ptnode_adr(addp->_idx)->_node != NULL, "should be registered");
duke@435 624 set_map(addp->_idx, get_map(base->_idx));
kvn@688 625
kvn@688 626 // Set addp's Base and Address to 'base'.
kvn@688 627 Node *abase = addp->in(AddPNode::Base);
kvn@688 628 Node *adr = addp->in(AddPNode::Address);
kvn@688 629 if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
kvn@688 630 adr->in(0)->_idx == (uint)inst_id) {
kvn@688 631 // Skip AddP cases #3 and #5.
kvn@688 632 } else {
kvn@688 633 assert(!abase->is_top(), "sanity"); // AddP case #3
kvn@688 634 if (abase != base) {
kvn@688 635 igvn->hash_delete(addp);
kvn@688 636 addp->set_req(AddPNode::Base, base);
kvn@688 637 if (abase == adr) {
kvn@688 638 addp->set_req(AddPNode::Address, base);
kvn@688 639 } else {
kvn@688 640 // AddP case #4 (adr is array's element offset AddP node)
kvn@688 641 #ifdef ASSERT
kvn@688 642 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@688 643 assert(adr->is_AddP() && atype != NULL &&
kvn@688 644 atype->instance_id() == inst_id, "array's element offset should be processed first");
kvn@688 645 #endif
kvn@688 646 }
kvn@688 647 igvn->hash_insert(addp);
duke@435 648 }
duke@435 649 }
kvn@500 650 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 651 record_for_optimizer(addp);
kvn@728 652 return true;
duke@435 653 }
duke@435 654
duke@435 655 //
duke@435 656 // Create a new version of orig_phi if necessary. Returns either the newly
kvn@2741 657 // created phi or an existing phi. Sets create_new to indicate whether a new
duke@435 658 // phi was created. Cache the last newly created phi in the node map.
duke@435 659 //
duke@435 660 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
duke@435 661 Compile *C = _compile;
duke@435 662 new_created = false;
duke@435 663 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 664 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 665 if (phi_alias_idx == alias_idx) {
duke@435 666 return orig_phi;
duke@435 667 }
kvn@1286 668 // Have we recently created a Phi for this alias index?
duke@435 669 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 670 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 671 return result;
duke@435 672 }
kvn@1286 673 // Previous check may fail when the same wide memory Phi was split into Phis
kvn@1286 674 // for different memory slices. Search all Phis for this region.
kvn@1286 675 if (result != NULL) {
kvn@1286 676 Node* region = orig_phi->in(0);
kvn@1286 677 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@1286 678 Node* phi = region->fast_out(i);
kvn@1286 679 if (phi->is_Phi() &&
kvn@1286 680 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
kvn@1286 681 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
kvn@1286 682 return phi->as_Phi();
kvn@1286 683 }
kvn@1286 684 }
kvn@1286 685 }
kvn@473 686 if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
kvn@473 687 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 688 // Retry compilation without escape analysis.
kvn@473 689 // If this is the first failure, the sentinel string will "stick"
kvn@473 690 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 691 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 692 }
kvn@473 693 return NULL;
kvn@473 694 }
duke@435 695 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 696 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 697 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
kvn@1286 698 C->copy_node_notes_to(result, orig_phi);
duke@435 699 igvn->set_type(result, result->bottom_type());
duke@435 700 record_for_optimizer(result);
kvn@1536 701
kvn@1536 702 debug_only(Node* pn = ptnode_adr(orig_phi->_idx)->_node;)
kvn@1536 703 assert(pn == NULL || pn == orig_phi, "wrong node");
kvn@1536 704 set_map(orig_phi->_idx, result);
kvn@1536 705 ptnode_adr(orig_phi->_idx)->_node = orig_phi;
kvn@1536 706
duke@435 707 new_created = true;
duke@435 708 return result;
duke@435 709 }
duke@435 710
duke@435 711 //
kvn@2741 712 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 713 // specified alias index.
duke@435 714 //
duke@435 715 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
duke@435 716
duke@435 717 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 718 Compile *C = _compile;
duke@435 719 bool new_phi_created;
kvn@500 720 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 721 if (!new_phi_created) {
duke@435 722 return result;
duke@435 723 }
duke@435 724
duke@435 725 GrowableArray<PhiNode *> phi_list;
duke@435 726 GrowableArray<uint> cur_input;
duke@435 727
duke@435 728 PhiNode *phi = orig_phi;
duke@435 729 uint idx = 1;
duke@435 730 bool finished = false;
duke@435 731 while(!finished) {
duke@435 732 while (idx < phi->req()) {
kvn@500 733 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
duke@435 734 if (mem != NULL && mem->is_Phi()) {
kvn@500 735 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 736 if (new_phi_created) {
duke@435 737 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 738 // processing new one
duke@435 739 phi_list.push(phi);
duke@435 740 cur_input.push(idx);
duke@435 741 phi = mem->as_Phi();
kvn@500 742 result = newphi;
duke@435 743 idx = 1;
duke@435 744 continue;
duke@435 745 } else {
kvn@500 746 mem = newphi;
duke@435 747 }
duke@435 748 }
kvn@473 749 if (C->failing()) {
kvn@473 750 return NULL;
kvn@473 751 }
duke@435 752 result->set_req(idx++, mem);
duke@435 753 }
duke@435 754 #ifdef ASSERT
duke@435 755 // verify that the new Phi has an input for each input of the original
duke@435 756 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 757 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 758 #endif
kvn@500 759 // Check if all new phi's inputs have specified alias index.
kvn@500 760 // Otherwise use old phi.
duke@435 761 for (uint i = 1; i < phi->req(); i++) {
kvn@500 762 Node* in = result->in(i);
kvn@500 763 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 764 }
duke@435 765 // we have finished processing a Phi, see if there are any more to do
duke@435 766 finished = (phi_list.length() == 0 );
duke@435 767 if (!finished) {
duke@435 768 phi = phi_list.pop();
duke@435 769 idx = cur_input.pop();
kvn@500 770 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 771 prev_result->set_req(idx++, result);
kvn@500 772 result = prev_result;
duke@435 773 }
duke@435 774 }
duke@435 775 return result;
duke@435 776 }
duke@435 777
kvn@500 778
kvn@500 779 //
kvn@500 780 // The next methods are derived from methods in MemNode.
kvn@500 781 //
never@2170 782 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
kvn@500 783 Node *mem = mmem;
never@2170 784 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 785 // means an array I have not precisely typed yet. Do not do any
kvn@500 786 // alias stuff with it any time soon.
never@2170 787 if( toop->base() != Type::AnyPtr &&
never@2170 788 !(toop->klass() != NULL &&
never@2170 789 toop->klass()->is_java_lang_Object() &&
never@2170 790 toop->offset() == Type::OffsetBot) ) {
kvn@500 791 mem = mmem->memory_at(alias_idx);
kvn@500 792 // Update input if it is progress over what we have now
kvn@500 793 }
kvn@500 794 return mem;
kvn@500 795 }
kvn@500 796
kvn@500 797 //
kvn@1536 798 // Move memory users to their memory slices.
kvn@1536 799 //
kvn@1536 800 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *igvn) {
kvn@1536 801 Compile* C = _compile;
kvn@1536 802
kvn@1536 803 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
kvn@1536 804 assert(tp != NULL, "ptr type");
kvn@1536 805 int alias_idx = C->get_alias_index(tp);
kvn@1536 806 int general_idx = C->get_general_index(alias_idx);
kvn@1536 807
kvn@1536 808 // Move users first
kvn@1536 809 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1536 810 Node* use = n->fast_out(i);
kvn@1536 811 if (use->is_MergeMem()) {
kvn@1536 812 MergeMemNode* mmem = use->as_MergeMem();
kvn@1536 813 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
kvn@1536 814 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
kvn@1536 815 continue; // Nothing to do
kvn@1536 816 }
kvn@1536 817 // Replace previous general reference to mem node.
kvn@1536 818 uint orig_uniq = C->unique();
kvn@1536 819 Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
kvn@1536 820 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 821 mmem->set_memory_at(general_idx, m);
kvn@1536 822 --imax;
kvn@1536 823 --i;
kvn@1536 824 } else if (use->is_MemBar()) {
kvn@1536 825 assert(!use->is_Initialize(), "initializing stores should not be moved");
kvn@1536 826 if (use->req() > MemBarNode::Precedent &&
kvn@1536 827 use->in(MemBarNode::Precedent) == n) {
kvn@1536 828 // Don't move related membars.
kvn@1536 829 record_for_optimizer(use);
kvn@1536 830 continue;
kvn@1536 831 }
kvn@1536 832 tp = use->as_MemBar()->adr_type()->isa_ptr();
kvn@1536 833 if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
kvn@1536 834 alias_idx == general_idx) {
kvn@1536 835 continue; // Nothing to do
kvn@1536 836 }
kvn@1536 837 // Move to general memory slice.
kvn@1536 838 uint orig_uniq = C->unique();
kvn@1536 839 Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
kvn@1536 840 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 841 igvn->hash_delete(use);
kvn@1536 842 imax -= use->replace_edge(n, m);
kvn@1536 843 igvn->hash_insert(use);
kvn@1536 844 record_for_optimizer(use);
kvn@1536 845 --i;
kvn@1536 846 #ifdef ASSERT
kvn@1536 847 } else if (use->is_Mem()) {
kvn@1536 848 if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
kvn@1536 849 // Don't move related cardmark.
kvn@1536 850 continue;
kvn@1536 851 }
kvn@1536 852 // Memory nodes should have new memory input.
kvn@1536 853 tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
kvn@1536 854 assert(tp != NULL, "ptr type");
kvn@1536 855 int idx = C->get_alias_index(tp);
kvn@1536 856 assert(get_map(use->_idx) != NULL || idx == alias_idx,
kvn@1536 857 "Following memory nodes should have new memory input or be on the same memory slice");
kvn@1536 858 } else if (use->is_Phi()) {
kvn@1536 859 // Phi nodes should be split and moved already.
kvn@1536 860 tp = use->as_Phi()->adr_type()->isa_ptr();
kvn@1536 861 assert(tp != NULL, "ptr type");
kvn@1536 862 int idx = C->get_alias_index(tp);
kvn@1536 863 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
kvn@1536 864 } else {
kvn@1536 865 use->dump();
kvn@1536 866 assert(false, "should not be here");
kvn@1536 867 #endif
kvn@1536 868 }
kvn@1536 869 }
kvn@1536 870 }
kvn@1536 871
kvn@1536 872 //
kvn@500 873 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 874 // is the specified alias index.
kvn@500 875 //
kvn@500 876 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *phase) {
kvn@500 877 if (orig_mem == NULL)
kvn@500 878 return orig_mem;
kvn@500 879 Compile* C = phase->C;
never@2170 880 const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
never@2170 881 bool is_instance = (toop != NULL) && toop->is_known_instance();
kvn@688 882 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@500 883 Node *prev = NULL;
kvn@500 884 Node *result = orig_mem;
kvn@500 885 while (prev != result) {
kvn@500 886 prev = result;
kvn@688 887 if (result == start_mem)
twisti@1040 888 break; // hit one of our sentinels
kvn@500 889 if (result->is_Mem()) {
kvn@688 890 const Type *at = phase->type(result->in(MemNode::Address));
kvn@2741 891 if (at == Type::TOP)
kvn@2741 892 break; // Dead
kvn@2741 893 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@2741 894 int idx = C->get_alias_index(at->is_ptr());
kvn@2741 895 if (idx == alias_idx)
kvn@2741 896 break; // Found
kvn@2741 897 if (!is_instance && (at->isa_oopptr() == NULL ||
kvn@2741 898 !at->is_oopptr()->is_known_instance())) {
kvn@2741 899 break; // Do not skip store to general memory slice.
kvn@500 900 }
kvn@688 901 result = result->in(MemNode::Memory);
kvn@500 902 }
kvn@500 903 if (!is_instance)
kvn@500 904 continue; // don't search further for non-instance types
kvn@500 905 // skip over a call which does not affect this memory slice
kvn@500 906 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 907 Node *proj_in = result->in(0);
never@2170 908 if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
twisti@1040 909 break; // hit one of our sentinels
kvn@688 910 } else if (proj_in->is_Call()) {
kvn@500 911 CallNode *call = proj_in->as_Call();
never@2170 912 if (!call->may_modify(toop, phase)) {
kvn@500 913 result = call->in(TypeFunc::Memory);
kvn@500 914 }
kvn@500 915 } else if (proj_in->is_Initialize()) {
kvn@500 916 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 917 // Stop if this is the initialization for the object instance which
kvn@500 918 // which contains this memory slice, otherwise skip over it.
never@2170 919 if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
kvn@500 920 result = proj_in->in(TypeFunc::Memory);
kvn@500 921 }
kvn@500 922 } else if (proj_in->is_MemBar()) {
kvn@500 923 result = proj_in->in(TypeFunc::Memory);
kvn@500 924 }
kvn@500 925 } else if (result->is_MergeMem()) {
kvn@500 926 MergeMemNode *mmem = result->as_MergeMem();
never@2170 927 result = step_through_mergemem(mmem, alias_idx, toop);
kvn@500 928 if (result == mmem->base_memory()) {
kvn@500 929 // Didn't find instance memory, search through general slice recursively.
kvn@500 930 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@500 931 result = find_inst_mem(result, alias_idx, orig_phis, phase);
kvn@500 932 if (C->failing()) {
kvn@500 933 return NULL;
kvn@500 934 }
kvn@500 935 mmem->set_memory_at(alias_idx, result);
kvn@500 936 }
kvn@500 937 } else if (result->is_Phi() &&
kvn@500 938 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@500 939 Node *un = result->as_Phi()->unique_input(phase);
kvn@500 940 if (un != NULL) {
kvn@1536 941 orig_phis.append_if_missing(result->as_Phi());
kvn@500 942 result = un;
kvn@500 943 } else {
kvn@500 944 break;
kvn@500 945 }
kvn@1535 946 } else if (result->is_ClearArray()) {
never@2170 947 if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), phase)) {
kvn@1535 948 // Can not bypass initialization of the instance
kvn@1535 949 // we are looking for.
kvn@1535 950 break;
kvn@1535 951 }
kvn@1535 952 // Otherwise skip it (the call updated 'result' value).
kvn@1019 953 } else if (result->Opcode() == Op_SCMemProj) {
kvn@1019 954 assert(result->in(0)->is_LoadStore(), "sanity");
kvn@1019 955 const Type *at = phase->type(result->in(0)->in(MemNode::Address));
kvn@1019 956 if (at != Type::TOP) {
kvn@1019 957 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@1019 958 int idx = C->get_alias_index(at->is_ptr());
kvn@1019 959 assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 960 break;
kvn@1019 961 }
kvn@1019 962 result = result->in(0)->in(MemNode::Memory);
kvn@500 963 }
kvn@500 964 }
kvn@682 965 if (result->is_Phi()) {
kvn@500 966 PhiNode *mphi = result->as_Phi();
kvn@500 967 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 968 const TypePtr *t = mphi->adr_type();
kvn@2741 969 if (!is_instance) {
kvn@682 970 // Push all non-instance Phis on the orig_phis worklist to update inputs
kvn@682 971 // during Phase 4 if needed.
kvn@682 972 orig_phis.append_if_missing(mphi);
kvn@2741 973 } else if (C->get_alias_index(t) != alias_idx) {
kvn@2741 974 // Create a new Phi with the specified alias index type.
kvn@2741 975 result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
kvn@500 976 }
kvn@500 977 }
kvn@500 978 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 979 return result;
kvn@500 980 }
kvn@500 981
duke@435 982 //
duke@435 983 // Convert the types of unescaped object to instance types where possible,
duke@435 984 // propagate the new type information through the graph, and update memory
duke@435 985 // edges and MergeMem inputs to reflect the new type.
duke@435 986 //
duke@435 987 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 988 // The processing is done in 4 phases:
duke@435 989 //
duke@435 990 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 991 // types for the CheckCastPP for allocations where possible.
duke@435 992 // Propagate the the new types through users as follows:
duke@435 993 // casts and Phi: push users on alloc_worklist
duke@435 994 // AddP: cast Base and Address inputs to the instance type
duke@435 995 // push any AddP users on alloc_worklist and push any memnode
duke@435 996 // users onto memnode_worklist.
duke@435 997 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 998 // search the Memory chain for a store with the appropriate type
duke@435 999 // address type. If a Phi is found, create a new version with
twisti@1040 1000 // the appropriate memory slices from each of the Phi inputs.
duke@435 1001 // For stores, process the users as follows:
duke@435 1002 // MemNode: push on memnode_worklist
duke@435 1003 // MergeMem: push on mergemem_worklist
duke@435 1004 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 1005 // moving the first node encountered of each instance type to the
duke@435 1006 // the input corresponding to its alias index.
duke@435 1007 // appropriate memory slice.
duke@435 1008 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 1009 //
duke@435 1010 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 1011 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 1012 // instance type.
duke@435 1013 //
duke@435 1014 // We start with:
duke@435 1015 //
duke@435 1016 // 7 Parm #memory
duke@435 1017 // 10 ConI "12"
duke@435 1018 // 19 CheckCastPP "Foo"
duke@435 1019 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 1020 // 29 CheckCastPP "Foo"
duke@435 1021 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 1022 //
duke@435 1023 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 1024 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 1025 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 1026 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 1027 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 1028 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 1029 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 1030 //
duke@435 1031 //
duke@435 1032 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 1033 // and creating a new alias index for node 30. This gives:
duke@435 1034 //
duke@435 1035 // 7 Parm #memory
duke@435 1036 // 10 ConI "12"
duke@435 1037 // 19 CheckCastPP "Foo"
duke@435 1038 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 1039 // 29 CheckCastPP "Foo" iid=24
duke@435 1040 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 1041 //
duke@435 1042 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 1043 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 1044 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 1045 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 1046 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 1047 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 1048 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 1049 //
duke@435 1050 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 1051 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 1052 // node 80 are updated and then the memory nodes are updated with the
duke@435 1053 // values computed in phase 2. This results in:
duke@435 1054 //
duke@435 1055 // 7 Parm #memory
duke@435 1056 // 10 ConI "12"
duke@435 1057 // 19 CheckCastPP "Foo"
duke@435 1058 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 1059 // 29 CheckCastPP "Foo" iid=24
duke@435 1060 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 1061 //
duke@435 1062 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 1063 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 1064 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 1065 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 1066 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 1067 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 1068 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 1069 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 1070 //
duke@435 1071 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 1072 GrowableArray<Node *> memnode_worklist;
duke@435 1073 GrowableArray<PhiNode *> orig_phis;
kvn@1536 1074
kvn@2276 1075 PhaseIterGVN *igvn = _igvn;
duke@435 1076 uint new_index_start = (uint) _compile->num_alias_types();
kvn@1536 1077 Arena* arena = Thread::current()->resource_area();
kvn@1536 1078 VectorSet visited(arena);
duke@435 1079
kvn@500 1080
kvn@500 1081 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 1082 // Create instance types for the CheckCastPP for allocations where possible.
kvn@679 1083 //
kvn@679 1084 // (Note: don't forget to change the order of the second AddP node on
kvn@679 1085 // the alloc_worklist if the order of the worklist processing is changed,
kvn@679 1086 // see the comment in find_second_addp().)
kvn@679 1087 //
duke@435 1088 while (alloc_worklist.length() != 0) {
duke@435 1089 Node *n = alloc_worklist.pop();
duke@435 1090 uint ni = n->_idx;
kvn@500 1091 const TypeOopPtr* tinst = NULL;
duke@435 1092 if (n->is_Call()) {
duke@435 1093 CallNode *alloc = n->as_Call();
duke@435 1094 // copy escape information to call node
kvn@679 1095 PointsToNode* ptn = ptnode_adr(alloc->_idx);
kvn@1989 1096 PointsToNode::EscapeState es = escape_state(alloc);
kvn@500 1097 // We have an allocation or call which returns a Java object,
kvn@500 1098 // see if it is unescaped.
kvn@3254 1099 if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
duke@435 1100 continue;
kvn@1219 1101
kvn@1219 1102 // Find CheckCastPP for the allocate or for the return value of a call
kvn@1219 1103 n = alloc->result_cast();
kvn@1219 1104 if (n == NULL) { // No uses except Initialize node
kvn@1219 1105 if (alloc->is_Allocate()) {
kvn@1219 1106 // Set the scalar_replaceable flag for allocation
kvn@1219 1107 // so it could be eliminated if it has no uses.
kvn@1219 1108 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 1109 }
kvn@1219 1110 continue;
kvn@474 1111 }
kvn@1219 1112 if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
kvn@1219 1113 assert(!alloc->is_Allocate(), "allocation should have unique type");
kvn@500 1114 continue;
kvn@1219 1115 }
kvn@1219 1116
kvn@500 1117 // The inline code for Object.clone() casts the allocation result to
kvn@682 1118 // java.lang.Object and then to the actual type of the allocated
kvn@500 1119 // object. Detect this case and use the second cast.
kvn@682 1120 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
kvn@682 1121 // the allocation result is cast to java.lang.Object and then
kvn@682 1122 // to the actual Array type.
kvn@500 1123 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@682 1124 && (alloc->is_AllocateArray() ||
kvn@682 1125 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
kvn@500 1126 Node *cast2 = NULL;
kvn@500 1127 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1128 Node *use = n->fast_out(i);
kvn@500 1129 if (use->is_CheckCastPP()) {
kvn@500 1130 cast2 = use;
kvn@500 1131 break;
kvn@500 1132 }
kvn@500 1133 }
kvn@500 1134 if (cast2 != NULL) {
kvn@500 1135 n = cast2;
kvn@500 1136 } else {
kvn@1219 1137 // Non-scalar replaceable if the allocation type is unknown statically
kvn@1219 1138 // (reflection allocation), the object can't be restored during
kvn@1219 1139 // deoptimization without precise type.
kvn@500 1140 continue;
kvn@500 1141 }
kvn@500 1142 }
kvn@1219 1143 if (alloc->is_Allocate()) {
kvn@1219 1144 // Set the scalar_replaceable flag for allocation
kvn@1219 1145 // so it could be eliminated.
kvn@1219 1146 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 1147 }
kvn@3254 1148 set_escape_state(n->_idx, es); // CheckCastPP escape state
kvn@682 1149 // in order for an object to be scalar-replaceable, it must be:
kvn@500 1150 // - a direct allocation (not a call returning an object)
kvn@500 1151 // - non-escaping
kvn@500 1152 // - eligible to be a unique type
kvn@500 1153 // - not determined to be ineligible by escape analysis
kvn@1536 1154 assert(ptnode_adr(alloc->_idx)->_node != NULL &&
kvn@1536 1155 ptnode_adr(n->_idx)->_node != NULL, "should be registered");
duke@435 1156 set_map(alloc->_idx, n);
duke@435 1157 set_map(n->_idx, alloc);
kvn@500 1158 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
kvn@500 1159 if (t == NULL)
kvn@3254 1160 continue; // not a TypeOopPtr
kvn@682 1161 tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
duke@435 1162 igvn->hash_delete(n);
duke@435 1163 igvn->set_type(n, tinst);
duke@435 1164 n->raise_bottom_type(tinst);
duke@435 1165 igvn->hash_insert(n);
kvn@500 1166 record_for_optimizer(n);
kvn@3254 1167 if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
kvn@598 1168
kvn@598 1169 // First, put on the worklist all Field edges from Connection Graph
kvn@598 1170 // which is more accurate then putting immediate users from Ideal Graph.
kvn@598 1171 for (uint e = 0; e < ptn->edge_count(); e++) {
kvn@679 1172 Node *use = ptnode_adr(ptn->edge_target(e))->_node;
kvn@598 1173 assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
kvn@598 1174 "only AddP nodes are Field edges in CG");
kvn@598 1175 if (use->outcnt() > 0) { // Don't process dead nodes
kvn@598 1176 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
kvn@598 1177 if (addp2 != NULL) {
kvn@598 1178 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@598 1179 alloc_worklist.append_if_missing(addp2);
kvn@598 1180 }
kvn@598 1181 alloc_worklist.append_if_missing(use);
kvn@598 1182 }
kvn@598 1183 }
kvn@598 1184
kvn@500 1185 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 1186 // the users of the raw allocation result and push AddP users
kvn@500 1187 // on alloc_worklist.
kvn@500 1188 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 1189 assert (raw_result != NULL, "must have an allocation result");
kvn@500 1190 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 1191 Node *use = raw_result->fast_out(i);
kvn@500 1192 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 1193 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 1194 if (addp2 != NULL) {
kvn@500 1195 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 1196 alloc_worklist.append_if_missing(addp2);
kvn@500 1197 }
kvn@500 1198 alloc_worklist.append_if_missing(use);
kvn@1535 1199 } else if (use->is_MemBar()) {
kvn@500 1200 memnode_worklist.append_if_missing(use);
kvn@500 1201 }
kvn@500 1202 }
kvn@500 1203 }
duke@435 1204 } else if (n->is_AddP()) {
kvn@2556 1205 VectorSet* ptset = PointsTo(get_addp_base(n));
kvn@2556 1206 assert(ptset->Size() == 1, "AddP address is unique");
kvn@2556 1207 uint elem = ptset->getelem(); // Allocation node's index
kvn@1535 1208 if (elem == _phantom_object) {
kvn@1535 1209 assert(false, "escaped allocation");
kvn@500 1210 continue; // Assume the value was set outside this method.
kvn@1535 1211 }
kvn@500 1212 Node *base = get_map(elem); // CheckCastPP node
kvn@1535 1213 if (!split_AddP(n, base, igvn)) continue; // wrong type from dead path
kvn@500 1214 tinst = igvn->type(base)->isa_oopptr();
kvn@500 1215 } else if (n->is_Phi() ||
kvn@500 1216 n->is_CheckCastPP() ||
kvn@603 1217 n->is_EncodeP() ||
kvn@603 1218 n->is_DecodeN() ||
kvn@500 1219 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 1220 if (visited.test_set(n->_idx)) {
duke@435 1221 assert(n->is_Phi(), "loops only through Phi's");
duke@435 1222 continue; // already processed
duke@435 1223 }
kvn@2556 1224 VectorSet* ptset = PointsTo(n);
kvn@2556 1225 if (ptset->Size() == 1) {
kvn@2556 1226 uint elem = ptset->getelem(); // Allocation node's index
kvn@1535 1227 if (elem == _phantom_object) {
kvn@1535 1228 assert(false, "escaped allocation");
kvn@500 1229 continue; // Assume the value was set outside this method.
kvn@1535 1230 }
kvn@500 1231 Node *val = get_map(elem); // CheckCastPP node
duke@435 1232 TypeNode *tn = n->as_Type();
kvn@500 1233 tinst = igvn->type(val)->isa_oopptr();
kvn@658 1234 assert(tinst != NULL && tinst->is_known_instance() &&
kvn@658 1235 (uint)tinst->instance_id() == elem , "instance type expected.");
kvn@598 1236
kvn@598 1237 const Type *tn_type = igvn->type(tn);
kvn@658 1238 const TypeOopPtr *tn_t;
kvn@658 1239 if (tn_type->isa_narrowoop()) {
kvn@658 1240 tn_t = tn_type->make_ptr()->isa_oopptr();
kvn@658 1241 } else {
kvn@658 1242 tn_t = tn_type->isa_oopptr();
kvn@658 1243 }
duke@435 1244
kvn@1535 1245 if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
kvn@598 1246 if (tn_type->isa_narrowoop()) {
kvn@598 1247 tn_type = tinst->make_narrowoop();
kvn@598 1248 } else {
kvn@598 1249 tn_type = tinst;
kvn@598 1250 }
duke@435 1251 igvn->hash_delete(tn);
kvn@598 1252 igvn->set_type(tn, tn_type);
kvn@598 1253 tn->set_type(tn_type);
duke@435 1254 igvn->hash_insert(tn);
kvn@500 1255 record_for_optimizer(n);
kvn@728 1256 } else {
kvn@1535 1257 assert(tn_type == TypePtr::NULL_PTR ||
kvn@1535 1258 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
kvn@1535 1259 "unexpected type");
kvn@1535 1260 continue; // Skip dead path with different type
duke@435 1261 }
duke@435 1262 }
duke@435 1263 } else {
kvn@1535 1264 debug_only(n->dump();)
kvn@1535 1265 assert(false, "EA: unexpected node");
duke@435 1266 continue;
duke@435 1267 }
kvn@1535 1268 // push allocation's users on appropriate worklist
duke@435 1269 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1270 Node *use = n->fast_out(i);
duke@435 1271 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@1535 1272 // Load/store to instance's field
kvn@500 1273 memnode_worklist.append_if_missing(use);
kvn@1535 1274 } else if (use->is_MemBar()) {
kvn@500 1275 memnode_worklist.append_if_missing(use);
kvn@500 1276 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 1277 Node* addp2 = find_second_addp(use, n);
kvn@500 1278 if (addp2 != NULL) {
kvn@500 1279 alloc_worklist.append_if_missing(addp2);
kvn@500 1280 }
kvn@500 1281 alloc_worklist.append_if_missing(use);
kvn@500 1282 } else if (use->is_Phi() ||
kvn@500 1283 use->is_CheckCastPP() ||
kvn@603 1284 use->is_EncodeP() ||
kvn@603 1285 use->is_DecodeN() ||
kvn@500 1286 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 1287 alloc_worklist.append_if_missing(use);
kvn@1535 1288 #ifdef ASSERT
kvn@1535 1289 } else if (use->is_Mem()) {
kvn@1535 1290 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
kvn@1535 1291 } else if (use->is_MergeMem()) {
kvn@1535 1292 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1293 } else if (use->is_SafePoint()) {
kvn@1535 1294 // Look for MergeMem nodes for calls which reference unique allocation
kvn@1535 1295 // (through CheckCastPP nodes) even for debug info.
kvn@1535 1296 Node* m = use->in(TypeFunc::Memory);
kvn@1535 1297 if (m->is_MergeMem()) {
kvn@1535 1298 assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1299 }
kvn@1535 1300 } else {
kvn@1535 1301 uint op = use->Opcode();
kvn@1535 1302 if (!(op == Op_CmpP || op == Op_Conv2B ||
kvn@1535 1303 op == Op_CastP2X || op == Op_StoreCM ||
kvn@1535 1304 op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
kvn@1535 1305 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 1306 n->dump();
kvn@1535 1307 use->dump();
kvn@1535 1308 assert(false, "EA: missing allocation reference path");
kvn@1535 1309 }
kvn@1535 1310 #endif
duke@435 1311 }
duke@435 1312 }
duke@435 1313
duke@435 1314 }
kvn@500 1315 // New alias types were created in split_AddP().
duke@435 1316 uint new_index_end = (uint) _compile->num_alias_types();
duke@435 1317
duke@435 1318 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 1319 // compute new values for Memory inputs (the Memory inputs are not
duke@435 1320 // actually updated until phase 4.)
duke@435 1321 if (memnode_worklist.length() == 0)
duke@435 1322 return; // nothing to do
duke@435 1323
duke@435 1324 while (memnode_worklist.length() != 0) {
duke@435 1325 Node *n = memnode_worklist.pop();
kvn@500 1326 if (visited.test_set(n->_idx))
kvn@500 1327 continue;
kvn@1535 1328 if (n->is_Phi() || n->is_ClearArray()) {
kvn@1535 1329 // we don't need to do anything, but the users must be pushed
kvn@1535 1330 } else if (n->is_MemBar()) { // Initialize, MemBar nodes
kvn@1535 1331 // we don't need to do anything, but the users must be pushed
kvn@1535 1332 n = n->as_MemBar()->proj_out(TypeFunc::Memory);
kvn@500 1333 if (n == NULL)
duke@435 1334 continue;
duke@435 1335 } else {
duke@435 1336 assert(n->is_Mem(), "memory node required.");
duke@435 1337 Node *addr = n->in(MemNode::Address);
duke@435 1338 const Type *addr_t = igvn->type(addr);
duke@435 1339 if (addr_t == Type::TOP)
duke@435 1340 continue;
duke@435 1341 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 1342 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 1343 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@500 1344 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
kvn@473 1345 if (_compile->failing()) {
kvn@473 1346 return;
kvn@473 1347 }
kvn@500 1348 if (mem != n->in(MemNode::Memory)) {
kvn@1536 1349 // We delay the memory edge update since we need old one in
kvn@1536 1350 // MergeMem code below when instances memory slices are separated.
kvn@1536 1351 debug_only(Node* pn = ptnode_adr(n->_idx)->_node;)
kvn@1536 1352 assert(pn == NULL || pn == n, "wrong node");
duke@435 1353 set_map(n->_idx, mem);
kvn@679 1354 ptnode_adr(n->_idx)->_node = n;
kvn@500 1355 }
duke@435 1356 if (n->is_Load()) {
duke@435 1357 continue; // don't push users
duke@435 1358 } else if (n->is_LoadStore()) {
duke@435 1359 // get the memory projection
duke@435 1360 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1361 Node *use = n->fast_out(i);
duke@435 1362 if (use->Opcode() == Op_SCMemProj) {
duke@435 1363 n = use;
duke@435 1364 break;
duke@435 1365 }
duke@435 1366 }
duke@435 1367 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 1368 }
duke@435 1369 }
duke@435 1370 // push user on appropriate worklist
duke@435 1371 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1372 Node *use = n->fast_out(i);
kvn@1535 1373 if (use->is_Phi() || use->is_ClearArray()) {
kvn@500 1374 memnode_worklist.append_if_missing(use);
duke@435 1375 } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@1535 1376 if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
kvn@1535 1377 continue;
kvn@500 1378 memnode_worklist.append_if_missing(use);
kvn@1535 1379 } else if (use->is_MemBar()) {
kvn@500 1380 memnode_worklist.append_if_missing(use);
kvn@1535 1381 #ifdef ASSERT
kvn@1535 1382 } else if(use->is_Mem()) {
kvn@1535 1383 assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
duke@435 1384 } else if (use->is_MergeMem()) {
kvn@1535 1385 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1386 } else {
kvn@1535 1387 uint op = use->Opcode();
kvn@1535 1388 if (!(op == Op_StoreCM ||
kvn@1535 1389 (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
kvn@1535 1390 strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
kvn@1535 1391 op == Op_AryEq || op == Op_StrComp ||
kvn@1535 1392 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 1393 n->dump();
kvn@1535 1394 use->dump();
kvn@1535 1395 assert(false, "EA: missing memory path");
kvn@1535 1396 }
kvn@1535 1397 #endif
duke@435 1398 }
duke@435 1399 }
duke@435 1400 }
duke@435 1401
kvn@500 1402 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@1535 1403 // Walk each memory slice moving the first node encountered of each
kvn@500 1404 // instance type to the the input corresponding to its alias index.
kvn@1535 1405 uint length = _mergemem_worklist.length();
kvn@1535 1406 for( uint next = 0; next < length; ++next ) {
kvn@1535 1407 MergeMemNode* nmm = _mergemem_worklist.at(next);
kvn@1535 1408 assert(!visited.test_set(nmm->_idx), "should not be visited before");
duke@435 1409 // Note: we don't want to use MergeMemStream here because we only want to
kvn@1535 1410 // scan inputs which exist at the start, not ones we add during processing.
kvn@1535 1411 // Note 2: MergeMem may already contains instance memory slices added
kvn@1535 1412 // during find_inst_mem() call when memory nodes were processed above.
kvn@1535 1413 igvn->hash_delete(nmm);
duke@435 1414 uint nslices = nmm->req();
duke@435 1415 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 1416 Node* mem = nmm->in(i);
kvn@500 1417 Node* cur = NULL;
duke@435 1418 if (mem == NULL || mem->is_top())
duke@435 1419 continue;
kvn@1536 1420 // First, update mergemem by moving memory nodes to corresponding slices
kvn@1536 1421 // if their type became more precise since this mergemem was created.
duke@435 1422 while (mem->is_Mem()) {
duke@435 1423 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 1424 if (at != Type::TOP) {
duke@435 1425 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 1426 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 1427 if (idx == i) {
duke@435 1428 if (cur == NULL)
duke@435 1429 cur = mem;
duke@435 1430 } else {
duke@435 1431 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 1432 nmm->set_memory_at(idx, mem);
duke@435 1433 }
duke@435 1434 }
duke@435 1435 }
duke@435 1436 mem = mem->in(MemNode::Memory);
duke@435 1437 }
duke@435 1438 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 1439 // Find any instance of the current type if we haven't encountered
kvn@1536 1440 // already a memory slice of the instance along the memory chain.
kvn@500 1441 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1442 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 1443 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 1444 if (nmm->is_empty_memory(m)) {
kvn@500 1445 Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
kvn@500 1446 if (_compile->failing()) {
kvn@500 1447 return;
kvn@500 1448 }
kvn@500 1449 nmm->set_memory_at(ni, result);
kvn@500 1450 }
kvn@500 1451 }
kvn@500 1452 }
kvn@500 1453 }
kvn@500 1454 // Find the rest of instances values
kvn@500 1455 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@1536 1456 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
kvn@500 1457 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 1458 if (result == nmm->base_memory()) {
kvn@500 1459 // Didn't find instance memory, search through general slice recursively.
kvn@1536 1460 result = nmm->memory_at(_compile->get_general_index(ni));
kvn@500 1461 result = find_inst_mem(result, ni, orig_phis, igvn);
kvn@500 1462 if (_compile->failing()) {
kvn@500 1463 return;
kvn@500 1464 }
kvn@500 1465 nmm->set_memory_at(ni, result);
kvn@500 1466 }
kvn@500 1467 }
kvn@500 1468 igvn->hash_insert(nmm);
kvn@500 1469 record_for_optimizer(nmm);
duke@435 1470 }
duke@435 1471
kvn@500 1472 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 1473 // the Memory input of memnodes
duke@435 1474 // First update the inputs of any non-instance Phi's from
duke@435 1475 // which we split out an instance Phi. Note we don't have
duke@435 1476 // to recursively process Phi's encounted on the input memory
duke@435 1477 // chains as is done in split_memory_phi() since they will
duke@435 1478 // also be processed here.
kvn@682 1479 for (int j = 0; j < orig_phis.length(); j++) {
kvn@682 1480 PhiNode *phi = orig_phis.at(j);
duke@435 1481 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 1482 igvn->hash_delete(phi);
duke@435 1483 for (uint i = 1; i < phi->req(); i++) {
duke@435 1484 Node *mem = phi->in(i);
kvn@500 1485 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
kvn@500 1486 if (_compile->failing()) {
kvn@500 1487 return;
kvn@500 1488 }
duke@435 1489 if (mem != new_mem) {
duke@435 1490 phi->set_req(i, new_mem);
duke@435 1491 }
duke@435 1492 }
duke@435 1493 igvn->hash_insert(phi);
duke@435 1494 record_for_optimizer(phi);
duke@435 1495 }
duke@435 1496
duke@435 1497 // Update the memory inputs of MemNodes with the value we computed
kvn@1536 1498 // in Phase 2 and move stores memory users to corresponding memory slices.
kvn@2810 1499
kvn@2810 1500 // Disable memory split verification code until the fix for 6984348.
kvn@2810 1501 // Currently it produces false negative results since it does not cover all cases.
kvn@2810 1502 #if 0 // ifdef ASSERT
kvn@2556 1503 visited.Reset();
kvn@1536 1504 Node_Stack old_mems(arena, _compile->unique() >> 2);
kvn@1536 1505 #endif
kvn@679 1506 for (uint i = 0; i < nodes_size(); i++) {
duke@435 1507 Node *nmem = get_map(i);
duke@435 1508 if (nmem != NULL) {
kvn@679 1509 Node *n = ptnode_adr(i)->_node;
kvn@1536 1510 assert(n != NULL, "sanity");
kvn@1536 1511 if (n->is_Mem()) {
kvn@2810 1512 #if 0 // ifdef ASSERT
kvn@1536 1513 Node* old_mem = n->in(MemNode::Memory);
kvn@1536 1514 if (!visited.test_set(old_mem->_idx)) {
kvn@1536 1515 old_mems.push(old_mem, old_mem->outcnt());
kvn@1536 1516 }
kvn@1536 1517 #endif
kvn@1536 1518 assert(n->in(MemNode::Memory) != nmem, "sanity");
kvn@1536 1519 if (!n->is_Load()) {
kvn@1536 1520 // Move memory users of a store first.
kvn@1536 1521 move_inst_mem(n, orig_phis, igvn);
kvn@1536 1522 }
kvn@1536 1523 // Now update memory input
duke@435 1524 igvn->hash_delete(n);
duke@435 1525 n->set_req(MemNode::Memory, nmem);
duke@435 1526 igvn->hash_insert(n);
duke@435 1527 record_for_optimizer(n);
kvn@1536 1528 } else {
kvn@1536 1529 assert(n->is_Allocate() || n->is_CheckCastPP() ||
kvn@1536 1530 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
duke@435 1531 }
duke@435 1532 }
duke@435 1533 }
kvn@2810 1534 #if 0 // ifdef ASSERT
kvn@1536 1535 // Verify that memory was split correctly
kvn@1536 1536 while (old_mems.is_nonempty()) {
kvn@1536 1537 Node* old_mem = old_mems.node();
kvn@1536 1538 uint old_cnt = old_mems.index();
kvn@1536 1539 old_mems.pop();
kvn@2810 1540 assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
kvn@1536 1541 }
kvn@1536 1542 #endif
duke@435 1543 }
duke@435 1544
kvn@679 1545 bool ConnectionGraph::has_candidates(Compile *C) {
kvn@679 1546 // EA brings benefits only when the code has allocations and/or locks which
kvn@679 1547 // are represented by ideal Macro nodes.
kvn@679 1548 int cnt = C->macro_count();
kvn@679 1549 for( int i=0; i < cnt; i++ ) {
kvn@679 1550 Node *n = C->macro_node(i);
kvn@679 1551 if ( n->is_Allocate() )
kvn@679 1552 return true;
kvn@679 1553 if( n->is_Lock() ) {
kvn@679 1554 Node* obj = n->as_Lock()->obj_node()->uncast();
kvn@679 1555 if( !(obj->is_Parm() || obj->is_Con()) )
kvn@679 1556 return true;
kvn@679 1557 }
kvn@679 1558 }
kvn@679 1559 return false;
kvn@679 1560 }
kvn@679 1561
kvn@1989 1562 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
kvn@1989 1563 // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
kvn@1989 1564 // to create space for them in ConnectionGraph::_nodes[].
kvn@1989 1565 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@1989 1566 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@1989 1567
kvn@1989 1568 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
kvn@1989 1569 // Perform escape analysis
kvn@1989 1570 if (congraph->compute_escape()) {
kvn@1989 1571 // There are non escaping objects.
kvn@1989 1572 C->set_congraph(congraph);
kvn@1989 1573 }
kvn@1989 1574
kvn@1989 1575 // Cleanup.
kvn@1989 1576 if (oop_null->outcnt() == 0)
kvn@1989 1577 igvn->hash_delete(oop_null);
kvn@1989 1578 if (noop_null->outcnt() == 0)
kvn@1989 1579 igvn->hash_delete(noop_null);
kvn@1989 1580 }
kvn@1989 1581
kvn@679 1582 bool ConnectionGraph::compute_escape() {
kvn@679 1583 Compile* C = _compile;
duke@435 1584
kvn@598 1585 // 1. Populate Connection Graph (CG) with Ideal nodes.
duke@435 1586
kvn@500 1587 Unique_Node_List worklist_init;
kvn@679 1588 worklist_init.map(C->unique(), NULL); // preallocate space
kvn@500 1589
kvn@500 1590 // Initialize worklist
kvn@679 1591 if (C->root() != NULL) {
kvn@679 1592 worklist_init.push(C->root());
kvn@500 1593 }
kvn@500 1594
kvn@3254 1595 GrowableArray<Node*> alloc_worklist;
kvn@3254 1596 GrowableArray<Node*> addp_worklist;
kvn@3309 1597 GrowableArray<Node*> ptr_cmp_worklist;
roland@3392 1598 GrowableArray<Node*> storestore_worklist;
kvn@1989 1599 PhaseGVN* igvn = _igvn;
kvn@500 1600
kvn@500 1601 // Push all useful nodes onto CG list and set their type.
kvn@500 1602 for( uint next = 0; next < worklist_init.size(); ++next ) {
kvn@500 1603 Node* n = worklist_init.at(next);
kvn@500 1604 record_for_escape_analysis(n, igvn);
kvn@679 1605 // Only allocations and java static calls results are checked
kvn@679 1606 // for an escape status. See process_call_result() below.
kvn@679 1607 if (n->is_Allocate() || n->is_CallStaticJava() &&
kvn@679 1608 ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@3318 1609 alloc_worklist.append(n);
kvn@3309 1610 } else if(n->is_AddP()) {
kvn@2276 1611 // Collect address nodes. Use them during stage 3 below
kvn@2276 1612 // to build initial connection graph field edges.
kvn@3254 1613 addp_worklist.append(n);
kvn@1535 1614 } else if (n->is_MergeMem()) {
kvn@1535 1615 // Collect all MergeMem nodes to add memory slices for
kvn@1535 1616 // scalar replaceable objects in split_unique_types().
kvn@1535 1617 _mergemem_worklist.append(n->as_MergeMem());
kvn@3309 1618 } else if (OptimizePtrCompare && n->is_Cmp() &&
kvn@3309 1619 (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
kvn@3309 1620 // Compare pointers nodes
kvn@3309 1621 ptr_cmp_worklist.append(n);
roland@3392 1622 } else if (n->is_MemBarStoreStore()) {
roland@3392 1623 // Collect all MemBarStoreStore nodes so that depending on the
roland@3392 1624 // escape status of the associated Allocate node some of them
roland@3392 1625 // may be eliminated.
roland@3392 1626 storestore_worklist.append(n);
kvn@1535 1627 }
kvn@500 1628 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1629 Node* m = n->fast_out(i); // Get user
kvn@500 1630 worklist_init.push(m);
kvn@500 1631 }
kvn@500 1632 }
kvn@500 1633
kvn@3318 1634 if (alloc_worklist.length() == 0) {
kvn@500 1635 _collecting = false;
kvn@679 1636 return false; // Nothing to do.
kvn@500 1637 }
kvn@500 1638
kvn@500 1639 // 2. First pass to create simple CG edges (doesn't require to walk CG).
kvn@679 1640 uint delayed_size = _delayed_worklist.size();
kvn@679 1641 for( uint next = 0; next < delayed_size; ++next ) {
kvn@500 1642 Node* n = _delayed_worklist.at(next);
kvn@500 1643 build_connection_graph(n, igvn);
kvn@500 1644 }
kvn@500 1645
kvn@2276 1646 // 3. Pass to create initial fields edges (JavaObject -F-> AddP)
kvn@2276 1647 // to reduce number of iterations during stage 4 below.
kvn@3254 1648 uint addp_length = addp_worklist.length();
kvn@3254 1649 for( uint next = 0; next < addp_length; ++next ) {
kvn@3254 1650 Node* n = addp_worklist.at(next);
kvn@2276 1651 Node* base = get_addp_base(n);
kvn@3309 1652 if (base->is_Proj() && base->in(0)->is_Call())
kvn@2276 1653 base = base->in(0);
kvn@2276 1654 PointsToNode::NodeType nt = ptnode_adr(base->_idx)->node_type();
kvn@2276 1655 if (nt == PointsToNode::JavaObject) {
kvn@2276 1656 build_connection_graph(n, igvn);
kvn@2276 1657 }
kvn@500 1658 }
kvn@500 1659
kvn@3254 1660 GrowableArray<int> cg_worklist;
kvn@500 1661 cg_worklist.append(_phantom_object);
kvn@2276 1662 GrowableArray<uint> worklist;
kvn@500 1663
kvn@500 1664 // 4. Build Connection Graph which need
kvn@500 1665 // to walk the connection graph.
kvn@2276 1666 _progress = false;
kvn@679 1667 for (uint ni = 0; ni < nodes_size(); ni++) {
kvn@679 1668 PointsToNode* ptn = ptnode_adr(ni);
kvn@500 1669 Node *n = ptn->_node;
kvn@500 1670 if (n != NULL) { // Call, AddP, LoadP, StoreP
kvn@500 1671 build_connection_graph(n, igvn);
kvn@500 1672 if (ptn->node_type() != PointsToNode::UnknownType)
kvn@500 1673 cg_worklist.append(n->_idx); // Collect CG nodes
kvn@2276 1674 if (!_processed.test(n->_idx))
kvn@2276 1675 worklist.append(n->_idx); // Collect C/A/L/S nodes
kvn@500 1676 }
duke@435 1677 }
duke@435 1678
kvn@2276 1679 // After IGVN user nodes may have smaller _idx than
kvn@2276 1680 // their inputs so they will be processed first in
kvn@2276 1681 // previous loop. Because of that not all Graph
kvn@2276 1682 // edges will be created. Walk over interesting
kvn@2276 1683 // nodes again until no new edges are created.
kvn@2276 1684 //
kvn@2276 1685 // Normally only 1-3 passes needed to build
kvn@2276 1686 // Connection Graph depending on graph complexity.
kvn@2409 1687 // Observed 8 passes in jvm2008 compiler.compiler.
kvn@2409 1688 // Set limit to 20 to catch situation when something
kvn@2276 1689 // did go wrong and recompile the method without EA.
kvn@3564 1690 // Also limit build time to 30 sec (60 in debug VM).
kvn@2276 1691
kvn@2409 1692 #define CG_BUILD_ITER_LIMIT 20
kvn@2276 1693
kvn@3564 1694 #ifdef ASSERT
kvn@3564 1695 #define CG_BUILD_TIME_LIMIT 60.0
kvn@3564 1696 #else
kvn@3564 1697 #define CG_BUILD_TIME_LIMIT 30.0
kvn@3564 1698 #endif
kvn@3564 1699
kvn@2276 1700 uint length = worklist.length();
kvn@2276 1701 int iterations = 0;
kvn@3564 1702 elapsedTimer time;
kvn@3564 1703 while(_progress &&
kvn@3564 1704 (iterations++ < CG_BUILD_ITER_LIMIT) &&
kvn@3564 1705 (time.seconds() < CG_BUILD_TIME_LIMIT)) {
kvn@3564 1706 time.start();
kvn@2276 1707 _progress = false;
kvn@2276 1708 for( uint next = 0; next < length; ++next ) {
kvn@2276 1709 int ni = worklist.at(next);
kvn@2276 1710 PointsToNode* ptn = ptnode_adr(ni);
kvn@2276 1711 Node* n = ptn->_node;
kvn@2276 1712 assert(n != NULL, "should be known node");
kvn@2276 1713 build_connection_graph(n, igvn);
kvn@2276 1714 }
kvn@3564 1715 time.stop();
kvn@2276 1716 }
kvn@3564 1717 if ((iterations >= CG_BUILD_ITER_LIMIT) ||
kvn@3564 1718 (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
kvn@3564 1719 assert(false, err_msg("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
kvn@3564 1720 time.seconds(), iterations, nodes_size(), length));
kvn@2276 1721 // Possible infinite build_connection_graph loop,
kvn@3564 1722 // bailout (no changes to ideal graph were made).
kvn@2276 1723 _collecting = false;
kvn@2276 1724 return false;
kvn@2276 1725 }
kvn@2276 1726 #undef CG_BUILD_ITER_LIMIT
kvn@3564 1727 #undef CG_BUILD_TIME_LIMIT
kvn@2276 1728
kvn@3318 1729 // 5. Propagate escaped states.
kvn@3318 1730 worklist.clear();
kvn@3318 1731
kvn@3318 1732 // mark all nodes reachable from GlobalEscape nodes
kvn@3318 1733 (void)propagate_escape_state(&cg_worklist, &worklist, PointsToNode::GlobalEscape);
kvn@3318 1734
kvn@3318 1735 // mark all nodes reachable from ArgEscape nodes
kvn@3318 1736 bool has_non_escaping_obj = propagate_escape_state(&cg_worklist, &worklist, PointsToNode::ArgEscape);
kvn@3318 1737
kvn@1535 1738 Arena* arena = Thread::current()->resource_area();
kvn@1535 1739 VectorSet visited(arena);
kvn@3254 1740
kvn@3318 1741 // 6. Find fields initializing values for not escaped allocations
kvn@3254 1742 uint alloc_length = alloc_worklist.length();
kvn@3254 1743 for (uint next = 0; next < alloc_length; ++next) {
kvn@3254 1744 Node* n = alloc_worklist.at(next);
roland@3392 1745 PointsToNode::EscapeState es = ptnode_adr(n->_idx)->escape_state();
roland@3392 1746 if (es == PointsToNode::NoEscape) {
kvn@3318 1747 has_non_escaping_obj = true;
kvn@3318 1748 if (n->is_Allocate()) {
kvn@3318 1749 find_init_values(n, &visited, igvn);
roland@3392 1750 // The object allocated by this Allocate node will never be
roland@3392 1751 // seen by an other thread. Mark it so that when it is
roland@3392 1752 // expanded no MemBarStoreStore is added.
roland@3392 1753 n->as_Allocate()->initialization()->set_does_not_escape();
kvn@3318 1754 }
roland@3392 1755 } else if ((es == PointsToNode::ArgEscape) && n->is_Allocate()) {
roland@3392 1756 // Same as above. Mark this Allocate node so that when it is
roland@3392 1757 // expanded no MemBarStoreStore is added.
roland@3392 1758 n->as_Allocate()->initialization()->set_does_not_escape();
kvn@3254 1759 }
kvn@3254 1760 }
kvn@3254 1761
kvn@3318 1762 uint cg_length = cg_worklist.length();
duke@435 1763
kvn@3318 1764 // Skip the rest of code if all objects escaped.
kvn@3318 1765 if (!has_non_escaping_obj) {
kvn@3318 1766 cg_length = 0;
kvn@3318 1767 addp_length = 0;
kvn@3318 1768 }
kvn@3318 1769
kvn@3318 1770 for (uint next = 0; next < cg_length; ++next) {
kvn@3318 1771 int ni = cg_worklist.at(next);
kvn@3318 1772 PointsToNode* ptn = ptnode_adr(ni);
kvn@3318 1773 PointsToNode::NodeType nt = ptn->node_type();
kvn@3318 1774 if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
kvn@3318 1775 if (ptn->edge_count() == 0) {
kvn@3318 1776 // No values were found. Assume the value was set
kvn@3318 1777 // outside this method - add edge to phantom object.
kvn@3318 1778 add_pointsto_edge(ni, _phantom_object);
kvn@3318 1779 }
kvn@3318 1780 }
kvn@3318 1781 }
kvn@3318 1782
kvn@3318 1783 // 7. Remove deferred edges from the graph.
kvn@3254 1784 for (uint next = 0; next < cg_length; ++next) {
kvn@500 1785 int ni = cg_worklist.at(next);
kvn@679 1786 PointsToNode* ptn = ptnode_adr(ni);
duke@435 1787 PointsToNode::NodeType nt = ptn->node_type();
duke@435 1788 if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
kvn@2276 1789 remove_deferred(ni, &worklist, &visited);
duke@435 1790 }
duke@435 1791 }
kvn@500 1792
kvn@3318 1793 // 8. Adjust escape state of nonescaping objects.
kvn@3254 1794 for (uint next = 0; next < addp_length; ++next) {
kvn@3254 1795 Node* n = addp_worklist.at(next);
kvn@3254 1796 adjust_escape_state(n);
duke@435 1797 }
duke@435 1798
kvn@3318 1799 // push all NoEscape nodes on the worklist
kvn@3254 1800 worklist.clear();
kvn@679 1801 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1802 int nk = cg_worklist.at(next);
kvn@3318 1803 if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape &&
kvn@3318 1804 !is_null_ptr(nk))
kvn@500 1805 worklist.push(nk);
kvn@500 1806 }
kvn@3318 1807
kvn@3254 1808 alloc_worklist.clear();
kvn@3318 1809 // Propagate scalar_replaceable value.
kvn@500 1810 while(worklist.length() > 0) {
kvn@3242 1811 uint nk = worklist.pop();
kvn@3242 1812 PointsToNode* ptn = ptnode_adr(nk);
kvn@679 1813 Node* n = ptn->_node;
kvn@3254 1814 bool scalar_replaceable = ptn->scalar_replaceable();
kvn@3254 1815 if (n->is_Allocate() && scalar_replaceable) {
twisti@1040 1816 // Push scalar replaceable allocations on alloc_worklist
kvn@3254 1817 // for processing in split_unique_types(). Note,
kvn@3254 1818 // following code may change scalar_replaceable value.
kvn@679 1819 alloc_worklist.append(n);
kvn@679 1820 }
kvn@679 1821 uint e_cnt = ptn->edge_count();
kvn@679 1822 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1823 uint npi = ptn->edge_target(ei);
kvn@3318 1824 if (is_null_ptr(npi))
kvn@3318 1825 continue;
kvn@500 1826 PointsToNode *np = ptnode_adr(npi);
kvn@500 1827 if (np->escape_state() < PointsToNode::NoEscape) {
kvn@3242 1828 set_escape_state(npi, PointsToNode::NoEscape);
kvn@3254 1829 if (!scalar_replaceable) {
kvn@3254 1830 np->set_scalar_replaceable(false);
kvn@3254 1831 }
kvn@3254 1832 worklist.push(npi);
kvn@3254 1833 } else if (np->scalar_replaceable() && !scalar_replaceable) {
kvn@3254 1834 np->set_scalar_replaceable(false);
kvn@679 1835 worklist.push(npi);
kvn@500 1836 }
kvn@500 1837 }
kvn@500 1838 }
kvn@500 1839
duke@435 1840 _collecting = false;
kvn@679 1841 assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
duke@435 1842
kvn@3318 1843 assert(ptnode_adr(_oop_null)->escape_state() == PointsToNode::NoEscape &&
kvn@3318 1844 ptnode_adr(_oop_null)->edge_count() == 0, "sanity");
kvn@3242 1845 if (UseCompressedOops) {
kvn@3318 1846 assert(ptnode_adr(_noop_null)->escape_state() == PointsToNode::NoEscape &&
kvn@3318 1847 ptnode_adr(_noop_null)->edge_count() == 0, "sanity");
kvn@3242 1848 }
kvn@3242 1849
kvn@3254 1850 if (EliminateLocks && has_non_escaping_obj) {
kvn@2951 1851 // Mark locks before changing ideal graph.
kvn@2951 1852 int cnt = C->macro_count();
kvn@2951 1853 for( int i=0; i < cnt; i++ ) {
kvn@2951 1854 Node *n = C->macro_node(i);
kvn@2951 1855 if (n->is_AbstractLock()) { // Lock and Unlock nodes
kvn@2951 1856 AbstractLockNode* alock = n->as_AbstractLock();
kvn@3406 1857 if (!alock->is_non_esc_obj()) {
kvn@2951 1858 PointsToNode::EscapeState es = escape_state(alock->obj_node());
kvn@2951 1859 assert(es != PointsToNode::UnknownEscape, "should know");
kvn@2951 1860 if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
kvn@3406 1861 assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
kvn@3406 1862 // The lock could be marked eliminated by lock coarsening
kvn@3406 1863 // code during first IGVN before EA. Replace coarsened flag
kvn@3406 1864 // to eliminate all associated locks/unlocks.
kvn@3406 1865 alock->set_non_esc_obj();
kvn@2951 1866 }
kvn@2951 1867 }
kvn@2951 1868 }
kvn@2951 1869 }
kvn@2951 1870 }
kvn@2951 1871
kvn@3309 1872 if (OptimizePtrCompare && has_non_escaping_obj) {
kvn@3309 1873 // Add ConI(#CC_GT) and ConI(#CC_EQ).
kvn@3309 1874 _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
kvn@3309 1875 _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
kvn@3309 1876 // Optimize objects compare.
kvn@3309 1877 while (ptr_cmp_worklist.length() != 0) {
kvn@3309 1878 Node *n = ptr_cmp_worklist.pop();
kvn@3309 1879 Node *res = optimize_ptr_compare(n);
kvn@3309 1880 if (res != NULL) {
kvn@3309 1881 #ifndef PRODUCT
kvn@3309 1882 if (PrintOptimizePtrCompare) {
kvn@3309 1883 tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
kvn@3309 1884 if (Verbose) {
kvn@3309 1885 n->dump(1);
kvn@3309 1886 }
kvn@3309 1887 }
kvn@3309 1888 #endif
kvn@3309 1889 _igvn->replace_node(n, res);
kvn@3309 1890 }
kvn@3309 1891 }
kvn@3309 1892 // cleanup
kvn@3309 1893 if (_pcmp_neq->outcnt() == 0)
kvn@3309 1894 igvn->hash_delete(_pcmp_neq);
kvn@3309 1895 if (_pcmp_eq->outcnt() == 0)
kvn@3309 1896 igvn->hash_delete(_pcmp_eq);
kvn@3309 1897 }
kvn@3309 1898
roland@3392 1899 // For MemBarStoreStore nodes added in library_call.cpp, check
roland@3392 1900 // escape status of associated AllocateNode and optimize out
roland@3392 1901 // MemBarStoreStore node if the allocated object never escapes.
roland@3392 1902 while (storestore_worklist.length() != 0) {
roland@3392 1903 Node *n = storestore_worklist.pop();
roland@3392 1904 MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
roland@3392 1905 Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
roland@3392 1906 assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
roland@3392 1907 PointsToNode::EscapeState es = ptnode_adr(alloc->_idx)->escape_state();
roland@3392 1908 if (es == PointsToNode::NoEscape || es == PointsToNode::ArgEscape) {
roland@3392 1909 MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
roland@3392 1910 mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
roland@3392 1911 mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
roland@3392 1912
roland@3392 1913 _igvn->register_new_node_with_optimizer(mb);
roland@3392 1914 _igvn->replace_node(storestore, mb);
roland@3392 1915 }
roland@3392 1916 }
roland@3392 1917
kvn@1989 1918 #ifndef PRODUCT
kvn@1989 1919 if (PrintEscapeAnalysis) {
kvn@1989 1920 dump(); // Dump ConnectionGraph
kvn@1989 1921 }
kvn@1989 1922 #endif
kvn@1989 1923
kvn@3254 1924 bool has_scalar_replaceable_candidates = false;
kvn@3254 1925 alloc_length = alloc_worklist.length();
kvn@3254 1926 for (uint next = 0; next < alloc_length; ++next) {
kvn@3254 1927 Node* n = alloc_worklist.at(next);
kvn@3254 1928 PointsToNode* ptn = ptnode_adr(n->_idx);
kvn@3254 1929 assert(ptn->escape_state() == PointsToNode::NoEscape, "sanity");
kvn@3254 1930 if (ptn->scalar_replaceable()) {
kvn@3254 1931 has_scalar_replaceable_candidates = true;
kvn@3254 1932 break;
kvn@3254 1933 }
kvn@3254 1934 }
kvn@3254 1935
kvn@679 1936 if ( has_scalar_replaceable_candidates &&
kvn@679 1937 C->AliasLevel() >= 3 && EliminateAllocations ) {
kvn@473 1938
kvn@679 1939 // Now use the escape information to create unique types for
kvn@679 1940 // scalar replaceable objects.
kvn@679 1941 split_unique_types(alloc_worklist);
duke@435 1942
kvn@679 1943 if (C->failing()) return false;
duke@435 1944
kvn@679 1945 C->print_method("After Escape Analysis", 2);
duke@435 1946
kvn@500 1947 #ifdef ASSERT
kvn@679 1948 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
kvn@500 1949 tty->print("=== No allocations eliminated for ");
kvn@679 1950 C->method()->print_short_name();
kvn@500 1951 if(!EliminateAllocations) {
kvn@500 1952 tty->print(" since EliminateAllocations is off ===");
kvn@679 1953 } else if(!has_scalar_replaceable_candidates) {
kvn@679 1954 tty->print(" since there are no scalar replaceable candidates ===");
kvn@679 1955 } else if(C->AliasLevel() < 3) {
kvn@500 1956 tty->print(" since AliasLevel < 3 ===");
duke@435 1957 }
kvn@500 1958 tty->cr();
kvn@500 1959 #endif
duke@435 1960 }
kvn@679 1961 return has_non_escaping_obj;
duke@435 1962 }
duke@435 1963
kvn@3254 1964 // Find fields initializing values for allocations.
kvn@3254 1965 void ConnectionGraph::find_init_values(Node* alloc, VectorSet* visited, PhaseTransform* phase) {
kvn@3254 1966 assert(alloc->is_Allocate(), "Should be called for Allocate nodes only");
kvn@3254 1967 PointsToNode* pta = ptnode_adr(alloc->_idx);
kvn@3254 1968 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
kvn@3254 1969 InitializeNode* ini = alloc->as_Allocate()->initialization();
kvn@1535 1970
kvn@1535 1971 Compile* C = _compile;
kvn@3254 1972 visited->Reset();
kvn@1535 1973 // Check if a oop field's initializing value is recorded and add
kvn@1535 1974 // a corresponding NULL field's value if it is not recorded.
kvn@1535 1975 // Connection Graph does not record a default initialization by NULL
kvn@1535 1976 // captured by Initialize node.
kvn@1535 1977 //
kvn@3318 1978 uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
kvn@3254 1979 uint ae_cnt = pta->edge_count();
kvn@3318 1980 bool visited_bottom_offset = false;
kvn@3254 1981 for (uint ei = 0; ei < ae_cnt; ei++) {
kvn@3254 1982 uint nidx = pta->edge_target(ei); // Field (AddP)
kvn@3254 1983 PointsToNode* ptn = ptnode_adr(nidx);
kvn@3254 1984 assert(ptn->_node->is_AddP(), "Should be AddP nodes only");
kvn@3254 1985 int offset = ptn->offset();
kvn@3318 1986 if (offset == Type::OffsetBot) {
kvn@3318 1987 if (!visited_bottom_offset) {
kvn@3318 1988 visited_bottom_offset = true;
kvn@3318 1989 // Check only oop fields.
kvn@3318 1990 const Type* adr_type = ptn->_node->as_AddP()->bottom_type();
kvn@3318 1991 if (!adr_type->isa_aryptr() ||
kvn@3318 1992 (adr_type->isa_aryptr()->klass() == NULL) ||
kvn@3318 1993 adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
kvn@3318 1994 // OffsetBot is used to reference array's element,
kvn@3318 1995 // always add reference to NULL since we don't
kvn@3318 1996 // known which element is referenced.
kvn@3318 1997 add_edge_from_fields(alloc->_idx, null_idx, offset);
kvn@3318 1998 }
kvn@3318 1999 }
kvn@3318 2000 } else if (offset != oopDesc::klass_offset_in_bytes() &&
kvn@3318 2001 !visited->test_set(offset)) {
kvn@1535 2002
kvn@1535 2003 // Check only oop fields.
kvn@3254 2004 const Type* adr_type = ptn->_node->as_AddP()->bottom_type();
kvn@1535 2005 BasicType basic_field_type = T_INT;
kvn@1535 2006 if (adr_type->isa_instptr()) {
kvn@1535 2007 ciField* field = C->alias_type(adr_type->isa_instptr())->field();
kvn@1535 2008 if (field != NULL) {
kvn@1535 2009 basic_field_type = field->layout_type();
kvn@1535 2010 } else {
kvn@1535 2011 // Ignore non field load (for example, klass load)
kvn@1535 2012 }
kvn@1535 2013 } else if (adr_type->isa_aryptr()) {
kvn@3254 2014 if (offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@3254 2015 const Type* elemtype = adr_type->isa_aryptr()->elem();
kvn@3254 2016 basic_field_type = elemtype->array_element_basic_type();
kvn@3254 2017 } else {
kvn@3254 2018 // Ignore array length load
kvn@3254 2019 }
kvn@3254 2020 #ifdef ASSERT
kvn@1535 2021 } else {
kvn@3254 2022 // Raw pointers are used for initializing stores so skip it
kvn@3254 2023 // since it should be recorded already
kvn@3254 2024 Node* base = get_addp_base(ptn->_node);
kvn@1535 2025 assert(adr_type->isa_rawptr() && base->is_Proj() &&
kvn@1535 2026 (base->in(0) == alloc),"unexpected pointer type");
kvn@3254 2027 #endif
kvn@1535 2028 }
kvn@1535 2029 if (basic_field_type == T_OBJECT ||
kvn@1535 2030 basic_field_type == T_NARROWOOP ||
kvn@1535 2031 basic_field_type == T_ARRAY) {
kvn@1535 2032 Node* value = NULL;
kvn@1535 2033 if (ini != NULL) {
kvn@1535 2034 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
kvn@1535 2035 Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
kvn@1535 2036 if (store != NULL && store->is_Store()) {
kvn@1535 2037 value = store->in(MemNode::ValueIn);
kvn@1535 2038 } else if (ptn->edge_count() > 0) { // Are there oop stores?
kvn@1535 2039 // Check for a store which follows allocation without branches.
kvn@1535 2040 // For example, a volatile field store is not collected
kvn@1535 2041 // by Initialize node. TODO: it would be nice to use idom() here.
kvn@3254 2042 //
kvn@3254 2043 // Search all references to the same field which use different
kvn@3254 2044 // AddP nodes, for example, in the next case:
kvn@3254 2045 //
kvn@3254 2046 // Point p[] = new Point[1];
kvn@3254 2047 // if ( x ) { p[0] = new Point(); p[0].x = x; }
kvn@3254 2048 // if ( p[0] != null ) { y = p[0].x; } // has CastPP
kvn@3254 2049 //
kvn@3254 2050 for (uint next = ei; (next < ae_cnt) && (value == NULL); next++) {
kvn@3254 2051 uint fpi = pta->edge_target(next); // Field (AddP)
kvn@3254 2052 PointsToNode *ptf = ptnode_adr(fpi);
kvn@3254 2053 if (ptf->offset() == offset) {
kvn@3254 2054 Node* nf = ptf->_node;
kvn@3254 2055 for (DUIterator_Fast imax, i = nf->fast_outs(imax); i < imax; i++) {
kvn@3254 2056 store = nf->fast_out(i);
kvn@3254 2057 if (store->is_Store() && store->in(0) != NULL) {
kvn@3254 2058 Node* ctrl = store->in(0);
kvn@3254 2059 while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
kvn@3254 2060 ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
kvn@3254 2061 ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
kvn@3254 2062 ctrl = ctrl->in(0);
kvn@3254 2063 }
kvn@3254 2064 if (ctrl == ini || ctrl == alloc) {
kvn@3254 2065 value = store->in(MemNode::ValueIn);
kvn@3254 2066 break;
kvn@3254 2067 }
kvn@3254 2068 }
kvn@1535 2069 }
kvn@1535 2070 }
kvn@1535 2071 }
kvn@1535 2072 }
kvn@1535 2073 }
kvn@1535 2074 if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
kvn@1535 2075 // A field's initializing value was not recorded. Add NULL.
kvn@3254 2076 add_edge_from_fields(alloc->_idx, null_idx, offset);
kvn@1535 2077 }
kvn@1535 2078 }
kvn@1535 2079 }
kvn@1535 2080 }
kvn@3254 2081 }
kvn@3254 2082
kvn@3254 2083 // Adjust escape state after Connection Graph is built.
kvn@3254 2084 void ConnectionGraph::adjust_escape_state(Node* n) {
kvn@3254 2085 PointsToNode* ptn = ptnode_adr(n->_idx);
kvn@3254 2086 assert(n->is_AddP(), "Should be called for AddP nodes only");
kvn@3254 2087 // Search for objects which are not scalar replaceable
kvn@3254 2088 // and mark them to propagate the state to referenced objects.
kvn@3254 2089 //
kvn@3254 2090
kvn@3254 2091 int offset = ptn->offset();
kvn@3254 2092 Node* base = get_addp_base(n);
kvn@3254 2093 VectorSet* ptset = PointsTo(base);
kvn@3254 2094 int ptset_size = ptset->Size();
kvn@1535 2095
kvn@1535 2096 // An object is not scalar replaceable if the field which may point
kvn@1535 2097 // to it has unknown offset (unknown element of an array of objects).
kvn@1535 2098 //
kvn@3254 2099
kvn@1535 2100 if (offset == Type::OffsetBot) {
kvn@1535 2101 uint e_cnt = ptn->edge_count();
kvn@1535 2102 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@1535 2103 uint npi = ptn->edge_target(ei);
kvn@3254 2104 ptnode_adr(npi)->set_scalar_replaceable(false);
kvn@1535 2105 }
kvn@1535 2106 }
kvn@1535 2107
kvn@1535 2108 // Currently an object is not scalar replaceable if a LoadStore node
kvn@1535 2109 // access its field since the field value is unknown after it.
kvn@1535 2110 //
kvn@1535 2111 bool has_LoadStore = false;
kvn@1535 2112 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1535 2113 Node *use = n->fast_out(i);
kvn@1535 2114 if (use->is_LoadStore()) {
kvn@1535 2115 has_LoadStore = true;
kvn@1535 2116 break;
kvn@1535 2117 }
kvn@1535 2118 }
kvn@1535 2119 // An object is not scalar replaceable if the address points
kvn@1535 2120 // to unknown field (unknown element for arrays, offset is OffsetBot).
kvn@1535 2121 //
kvn@1535 2122 // Or the address may point to more then one object. This may produce
kvn@3254 2123 // the false positive result (set not scalar replaceable)
kvn@1535 2124 // since the flow-insensitive escape analysis can't separate
kvn@1535 2125 // the case when stores overwrite the field's value from the case
kvn@1535 2126 // when stores happened on different control branches.
kvn@1535 2127 //
kvn@3254 2128 // Note: it will disable scalar replacement in some cases:
kvn@3254 2129 //
kvn@3254 2130 // Point p[] = new Point[1];
kvn@3254 2131 // p[0] = new Point(); // Will be not scalar replaced
kvn@3254 2132 //
kvn@3254 2133 // but it will save us from incorrect optimizations in next cases:
kvn@3254 2134 //
kvn@3254 2135 // Point p[] = new Point[1];
kvn@3254 2136 // if ( x ) p[0] = new Point(); // Will be not scalar replaced
kvn@3254 2137 //
kvn@1535 2138 if (ptset_size > 1 || ptset_size != 0 &&
kvn@1535 2139 (has_LoadStore || offset == Type::OffsetBot)) {
kvn@2556 2140 for( VectorSetI j(ptset); j.test(); ++j ) {
kvn@3254 2141 ptnode_adr(j.elem)->set_scalar_replaceable(false);
kvn@1535 2142 }
kvn@1535 2143 }
kvn@1535 2144 }
kvn@1535 2145
kvn@3254 2146 // Propagate escape states to referenced nodes.
kvn@3254 2147 bool ConnectionGraph::propagate_escape_state(GrowableArray<int>* cg_worklist,
kvn@3254 2148 GrowableArray<uint>* worklist,
kvn@3254 2149 PointsToNode::EscapeState esc_state) {
kvn@3254 2150 bool has_java_obj = false;
kvn@3254 2151
kvn@3254 2152 // push all nodes with the same escape state on the worklist
kvn@3254 2153 uint cg_length = cg_worklist->length();
kvn@3254 2154 for (uint next = 0; next < cg_length; ++next) {
kvn@3254 2155 int nk = cg_worklist->at(next);
kvn@3254 2156 if (ptnode_adr(nk)->escape_state() == esc_state)
kvn@3254 2157 worklist->push(nk);
kvn@3254 2158 }
kvn@3254 2159 // mark all reachable nodes
kvn@3254 2160 while (worklist->length() > 0) {
kvn@3318 2161 int pt = worklist->pop();
kvn@3318 2162 PointsToNode* ptn = ptnode_adr(pt);
kvn@3318 2163 if (ptn->node_type() == PointsToNode::JavaObject &&
kvn@3318 2164 !is_null_ptr(pt)) {
kvn@3254 2165 has_java_obj = true;
kvn@3318 2166 if (esc_state > PointsToNode::NoEscape) {
kvn@3318 2167 // fields values are unknown if object escapes
kvn@3318 2168 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
kvn@3318 2169 }
kvn@3254 2170 }
kvn@3254 2171 uint e_cnt = ptn->edge_count();
kvn@3254 2172 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@3254 2173 uint npi = ptn->edge_target(ei);
kvn@3318 2174 if (is_null_ptr(npi))
kvn@3318 2175 continue;
kvn@3254 2176 PointsToNode *np = ptnode_adr(npi);
kvn@3254 2177 if (np->escape_state() < esc_state) {
kvn@3254 2178 set_escape_state(npi, esc_state);
kvn@3254 2179 worklist->push(npi);
kvn@3254 2180 }
kvn@3254 2181 }
kvn@3254 2182 }
kvn@3254 2183 // Has not escaping java objects
kvn@3254 2184 return has_java_obj && (esc_state < PointsToNode::GlobalEscape);
kvn@3254 2185 }
kvn@3254 2186
kvn@3309 2187 // Optimize objects compare.
kvn@3309 2188 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
kvn@3309 2189 assert(OptimizePtrCompare, "sanity");
kvn@3309 2190 // Clone returned Set since PointsTo() returns pointer
kvn@3309 2191 // to the same structure ConnectionGraph.pt_ptset.
kvn@3309 2192 VectorSet ptset1 = *PointsTo(n->in(1));
kvn@3309 2193 VectorSet ptset2 = *PointsTo(n->in(2));
kvn@3309 2194
kvn@3309 2195 // Check simple cases first.
kvn@3309 2196 if (ptset1.Size() == 1) {
kvn@3309 2197 uint pt1 = ptset1.getelem();
kvn@3309 2198 PointsToNode* ptn1 = ptnode_adr(pt1);
kvn@3309 2199 if (ptn1->escape_state() == PointsToNode::NoEscape) {
kvn@3309 2200 if (ptset2.Size() == 1 && ptset2.getelem() == pt1) {
kvn@3309 2201 // Comparing the same not escaping object.
kvn@3309 2202 return _pcmp_eq;
kvn@3309 2203 }
kvn@3309 2204 Node* obj = ptn1->_node;
kvn@3309 2205 // Comparing not escaping allocation.
kvn@3309 2206 if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
kvn@3309 2207 !ptset2.test(pt1)) {
kvn@3309 2208 return _pcmp_neq; // This includes nullness check.
kvn@3309 2209 }
kvn@3309 2210 }
kvn@3309 2211 } else if (ptset2.Size() == 1) {
kvn@3309 2212 uint pt2 = ptset2.getelem();
kvn@3309 2213 PointsToNode* ptn2 = ptnode_adr(pt2);
kvn@3309 2214 if (ptn2->escape_state() == PointsToNode::NoEscape) {
kvn@3309 2215 Node* obj = ptn2->_node;
kvn@3309 2216 // Comparing not escaping allocation.
kvn@3309 2217 if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
kvn@3309 2218 !ptset1.test(pt2)) {
kvn@3309 2219 return _pcmp_neq; // This includes nullness check.
kvn@3309 2220 }
kvn@3309 2221 }
kvn@3309 2222 }
kvn@3309 2223
kvn@3309 2224 if (!ptset1.disjoint(ptset2)) {
kvn@3309 2225 return NULL; // Sets are not disjoint
kvn@3309 2226 }
kvn@3309 2227
kvn@3309 2228 // Sets are disjoint.
kvn@3309 2229 bool set1_has_unknown_ptr = ptset1.test(_phantom_object) != 0;
kvn@3309 2230 bool set2_has_unknown_ptr = ptset2.test(_phantom_object) != 0;
kvn@3309 2231 bool set1_has_null_ptr = (ptset1.test(_oop_null) | ptset1.test(_noop_null)) != 0;
kvn@3309 2232 bool set2_has_null_ptr = (ptset2.test(_oop_null) | ptset2.test(_noop_null)) != 0;
kvn@3309 2233
kvn@3309 2234 if (set1_has_unknown_ptr && set2_has_null_ptr ||
kvn@3309 2235 set2_has_unknown_ptr && set1_has_null_ptr) {
kvn@3309 2236 // Check nullness of unknown object.
kvn@3309 2237 return NULL;
kvn@3309 2238 }
kvn@3309 2239
kvn@3309 2240 // Disjointness by itself is not sufficient since
kvn@3309 2241 // alias analysis is not complete for escaped objects.
kvn@3309 2242 // Disjoint sets are definitely unrelated only when
kvn@3309 2243 // at least one set has only not escaping objects.
kvn@3309 2244 if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
kvn@3309 2245 bool has_only_non_escaping_alloc = true;
kvn@3309 2246 for (VectorSetI i(&ptset1); i.test(); ++i) {
kvn@3309 2247 uint pt = i.elem;
kvn@3309 2248 PointsToNode* ptn = ptnode_adr(pt);
kvn@3309 2249 Node* obj = ptn->_node;
kvn@3309 2250 if (ptn->escape_state() != PointsToNode::NoEscape ||
kvn@3309 2251 !(obj->is_Allocate() || obj->is_CallStaticJava())) {
kvn@3309 2252 has_only_non_escaping_alloc = false;
kvn@3309 2253 break;
kvn@3309 2254 }
kvn@3309 2255 }
kvn@3309 2256 if (has_only_non_escaping_alloc) {
kvn@3309 2257 return _pcmp_neq;
kvn@3309 2258 }
kvn@3309 2259 }
kvn@3309 2260 if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
kvn@3309 2261 bool has_only_non_escaping_alloc = true;
kvn@3309 2262 for (VectorSetI i(&ptset2); i.test(); ++i) {
kvn@3309 2263 uint pt = i.elem;
kvn@3309 2264 PointsToNode* ptn = ptnode_adr(pt);
kvn@3309 2265 Node* obj = ptn->_node;
kvn@3309 2266 if (ptn->escape_state() != PointsToNode::NoEscape ||
kvn@3309 2267 !(obj->is_Allocate() || obj->is_CallStaticJava())) {
kvn@3309 2268 has_only_non_escaping_alloc = false;
kvn@3309 2269 break;
kvn@3309 2270 }
kvn@3309 2271 }
kvn@3309 2272 if (has_only_non_escaping_alloc) {
kvn@3309 2273 return _pcmp_neq;
kvn@3309 2274 }
kvn@3309 2275 }
kvn@3309 2276 return NULL;
kvn@3309 2277 }
kvn@3309 2278
duke@435 2279 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
kvn@3318 2280 bool is_arraycopy = false;
duke@435 2281 switch (call->Opcode()) {
kvn@500 2282 #ifdef ASSERT
duke@435 2283 case Op_Allocate:
duke@435 2284 case Op_AllocateArray:
duke@435 2285 case Op_Lock:
duke@435 2286 case Op_Unlock:
kvn@500 2287 assert(false, "should be done already");
duke@435 2288 break;
kvn@500 2289 #endif
kvn@3318 2290 case Op_CallLeafNoFP:
kvn@3318 2291 is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
kvn@3318 2292 strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
kvn@3318 2293 // fall through
kvn@1535 2294 case Op_CallLeaf:
kvn@500 2295 {
kvn@500 2296 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@500 2297 // Adjust escape state for outgoing arguments.
kvn@500 2298 const TypeTuple * d = call->tf()->domain();
kvn@3318 2299 bool src_has_oops = false;
kvn@500 2300 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 2301 const Type* at = d->field_at(i);
kvn@500 2302 Node *arg = call->in(i)->uncast();
kvn@500 2303 const Type *aat = phase->type(arg);
kvn@3318 2304 PointsToNode::EscapeState arg_esc = ptnode_adr(arg->_idx)->escape_state();
kvn@1535 2305 if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr() &&
kvn@3318 2306 (is_arraycopy || arg_esc < PointsToNode::ArgEscape)) {
kvn@3564 2307 #ifdef ASSERT
kvn@500 2308 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@500 2309 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@3564 2310 if (!(is_arraycopy ||
kvn@3564 2311 call->as_CallLeaf()->_name != NULL &&
kvn@3564 2312 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 ||
kvn@3564 2313 strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
kvn@3564 2314 ) {
kvn@3564 2315 call->dump();
kvn@3564 2316 assert(false, "EA: unexpected CallLeaf");
kvn@3564 2317 }
kvn@3564 2318 #endif
kvn@3564 2319 if (arg_esc < PointsToNode::ArgEscape) {
kvn@3564 2320 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@3564 2321 Node* arg_base = arg;
kvn@3564 2322 if (arg->is_AddP()) {
kvn@3564 2323 //
kvn@3564 2324 // The inline_native_clone() case when the arraycopy stub is called
kvn@3564 2325 // after the allocation before Initialize and CheckCastPP nodes.
kvn@3564 2326 // Or normal arraycopy for object arrays case.
kvn@3564 2327 //
kvn@3564 2328 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@3564 2329 // pointer to the base (with offset) is passed as argument.
kvn@3564 2330 //
kvn@3564 2331 arg_base = get_addp_base(arg);
kvn@3564 2332 set_escape_state(arg_base->_idx, PointsToNode::ArgEscape);
kvn@3564 2333 }
kvn@3564 2334 }
kvn@3564 2335
kvn@3318 2336 bool arg_has_oops = aat->isa_oopptr() &&
kvn@3318 2337 (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
kvn@3318 2338 (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
kvn@3318 2339 if (i == TypeFunc::Parms) {
kvn@3318 2340 src_has_oops = arg_has_oops;
kvn@3318 2341 }
kvn@3318 2342 //
kvn@3318 2343 // src or dst could be j.l.Object when other is basic type array:
kvn@3318 2344 //
kvn@3318 2345 // arraycopy(char[],0,Object*,0,size);
kvn@3318 2346 // arraycopy(Object*,0,char[],0,size);
kvn@3318 2347 //
kvn@3564 2348 // Do nothing special in such cases.
kvn@3318 2349 //
kvn@3564 2350 if (is_arraycopy && (i > TypeFunc::Parms) &&
kvn@3564 2351 src_has_oops && arg_has_oops) {
kvn@3564 2352 // Destination object's fields reference an unknown object.
kvn@3564 2353 Node* arg_base = arg;
kvn@3564 2354 if (arg->is_AddP()) {
kvn@3564 2355 arg_base = get_addp_base(arg);
kvn@3564 2356 }
kvn@3564 2357 for (VectorSetI s(PointsTo(arg_base)); s.test(); ++s) {
kvn@3564 2358 uint ps = s.elem;
kvn@3564 2359 set_escape_state(ps, PointsToNode::ArgEscape);
kvn@3564 2360 add_edge_from_fields(ps, _phantom_object, Type::OffsetBot);
kvn@3564 2361 }
kvn@3564 2362 // Conservatively all values in source object fields globally escape
kvn@3564 2363 // since we don't know if values in destination object fields
kvn@3564 2364 // escape (it could be traced but it is too expensive).
kvn@3564 2365 Node* src = call->in(TypeFunc::Parms)->uncast();
kvn@3564 2366 Node* src_base = src;
kvn@3564 2367 if (src->is_AddP()) {
kvn@3564 2368 src_base = get_addp_base(src);
kvn@3564 2369 }
kvn@3564 2370 for (VectorSetI s(PointsTo(src_base)); s.test(); ++s) {
kvn@3564 2371 uint ps = s.elem;
kvn@3564 2372 set_escape_state(ps, PointsToNode::ArgEscape);
kvn@3564 2373 // Use OffsetTop to indicate fields global escape.
kvn@3564 2374 add_edge_from_fields(ps, _phantom_object, Type::OffsetTop);
kvn@3318 2375 }
kvn@500 2376 }
kvn@500 2377 }
kvn@500 2378 }
kvn@500 2379 break;
kvn@500 2380 }
duke@435 2381
duke@435 2382 case Op_CallStaticJava:
duke@435 2383 // For a static call, we know exactly what method is being called.
duke@435 2384 // Use bytecode estimator to record the call's escape affects
duke@435 2385 {
duke@435 2386 ciMethod *meth = call->as_CallJava()->method();
kvn@500 2387 BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@500 2388 // fall-through if not a Java method or no analyzer information
kvn@500 2389 if (call_analyzer != NULL) {
duke@435 2390 const TypeTuple * d = call->tf()->domain();
kvn@500 2391 bool copy_dependencies = false;
duke@435 2392 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 2393 const Type* at = d->field_at(i);
duke@435 2394 int k = i - TypeFunc::Parms;
kvn@1535 2395 Node *arg = call->in(i)->uncast();
duke@435 2396
kvn@1535 2397 if (at->isa_oopptr() != NULL &&
kvn@1571 2398 ptnode_adr(arg->_idx)->escape_state() < PointsToNode::GlobalEscape) {
duke@435 2399
kvn@500 2400 bool global_escapes = false;
kvn@500 2401 bool fields_escapes = false;
kvn@500 2402 if (!call_analyzer->is_arg_stack(k)) {
duke@435 2403 // The argument global escapes, mark everything it could point to
kvn@500 2404 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@500 2405 global_escapes = true;
kvn@500 2406 } else {
kvn@500 2407 if (!call_analyzer->is_arg_local(k)) {
kvn@500 2408 // The argument itself doesn't escape, but any fields might
kvn@500 2409 fields_escapes = true;
kvn@500 2410 }
kvn@500 2411 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 2412 copy_dependencies = true;
kvn@500 2413 }
duke@435 2414
kvn@2556 2415 for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
kvn@500 2416 uint pt = j.elem;
kvn@500 2417 if (global_escapes) {
kvn@3318 2418 // The argument global escapes, mark everything it could point to
duke@435 2419 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@3318 2420 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
kvn@500 2421 } else {
kvn@3318 2422 set_escape_state(pt, PointsToNode::ArgEscape);
kvn@500 2423 if (fields_escapes) {
kvn@3318 2424 // The argument itself doesn't escape, but any fields might.
kvn@3318 2425 // Use OffsetTop to indicate such case.
kvn@3318 2426 add_edge_from_fields(pt, _phantom_object, Type::OffsetTop);
kvn@500 2427 }
duke@435 2428 }
duke@435 2429 }
duke@435 2430 }
duke@435 2431 }
kvn@500 2432 if (copy_dependencies)
kvn@679 2433 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 2434 break;
duke@435 2435 }
duke@435 2436 }
duke@435 2437
duke@435 2438 default:
kvn@500 2439 // Fall-through here if not a Java method or no analyzer information
kvn@500 2440 // or some other type of call, assume the worst case: all arguments
duke@435 2441 // globally escape.
duke@435 2442 {
duke@435 2443 // adjust escape state for outgoing arguments
duke@435 2444 const TypeTuple * d = call->tf()->domain();
duke@435 2445 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 2446 const Type* at = d->field_at(i);
duke@435 2447 if (at->isa_oopptr() != NULL) {
kvn@500 2448 Node *arg = call->in(i)->uncast();
kvn@500 2449 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@2556 2450 for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
duke@435 2451 uint pt = j.elem;
duke@435 2452 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@3318 2453 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
duke@435 2454 }
duke@435 2455 }
duke@435 2456 }
duke@435 2457 }
duke@435 2458 }
duke@435 2459 }
duke@435 2460 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
kvn@679 2461 CallNode *call = resproj->in(0)->as_Call();
kvn@679 2462 uint call_idx = call->_idx;
kvn@679 2463 uint resproj_idx = resproj->_idx;
duke@435 2464
duke@435 2465 switch (call->Opcode()) {
duke@435 2466 case Op_Allocate:
duke@435 2467 {
duke@435 2468 Node *k = call->in(AllocateNode::KlassNode);
kvn@1894 2469 const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
duke@435 2470 assert(kt != NULL, "TypeKlassPtr required.");
duke@435 2471 ciKlass* cik = kt->klass();
duke@435 2472
kvn@500 2473 PointsToNode::EscapeState es;
kvn@500 2474 uint edge_to;
kvn@1894 2475 if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
kvn@1894 2476 !cik->is_instance_klass() || // StressReflectiveCode
kvn@1894 2477 cik->as_instance_klass()->has_finalizer()) {
kvn@500 2478 es = PointsToNode::GlobalEscape;
kvn@500 2479 edge_to = _phantom_object; // Could not be worse
duke@435 2480 } else {
kvn@500 2481 es = PointsToNode::NoEscape;
kvn@679 2482 edge_to = call_idx;
kvn@3254 2483 assert(ptnode_adr(call_idx)->scalar_replaceable(), "sanity");
duke@435 2484 }
kvn@679 2485 set_escape_state(call_idx, es);
kvn@679 2486 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 2487 _processed.set(resproj_idx);
duke@435 2488 break;
duke@435 2489 }
duke@435 2490
duke@435 2491 case Op_AllocateArray:
duke@435 2492 {
kvn@1894 2493
kvn@1894 2494 Node *k = call->in(AllocateNode::KlassNode);
kvn@1894 2495 const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
kvn@1894 2496 assert(kt != NULL, "TypeKlassPtr required.");
kvn@1894 2497 ciKlass* cik = kt->klass();
kvn@1894 2498
kvn@1894 2499 PointsToNode::EscapeState es;
kvn@1894 2500 uint edge_to;
kvn@1894 2501 if (!cik->is_array_klass()) { // StressReflectiveCode
kvn@1894 2502 es = PointsToNode::GlobalEscape;
kvn@1894 2503 edge_to = _phantom_object;
kvn@1894 2504 } else {
kvn@1894 2505 es = PointsToNode::NoEscape;
kvn@1894 2506 edge_to = call_idx;
kvn@3254 2507 assert(ptnode_adr(call_idx)->scalar_replaceable(), "sanity");
kvn@1894 2508 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@1894 2509 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@1894 2510 // Not scalar replaceable if the length is not constant or too big.
kvn@3254 2511 ptnode_adr(call_idx)->set_scalar_replaceable(false);
kvn@1894 2512 }
kvn@500 2513 }
kvn@1894 2514 set_escape_state(call_idx, es);
kvn@1894 2515 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 2516 _processed.set(resproj_idx);
duke@435 2517 break;
duke@435 2518 }
duke@435 2519
duke@435 2520 case Op_CallStaticJava:
duke@435 2521 // For a static call, we know exactly what method is being called.
duke@435 2522 // Use bytecode estimator to record whether the call's return value escapes
duke@435 2523 {
kvn@500 2524 bool done = true;
duke@435 2525 const TypeTuple *r = call->tf()->range();
duke@435 2526 const Type* ret_type = NULL;
duke@435 2527
duke@435 2528 if (r->cnt() > TypeFunc::Parms)
duke@435 2529 ret_type = r->field_at(TypeFunc::Parms);
duke@435 2530
duke@435 2531 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 2532 // _multianewarray functions return a TypeRawPtr.
kvn@500 2533 if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
kvn@679 2534 _processed.set(resproj_idx);
duke@435 2535 break; // doesn't return a pointer type
kvn@500 2536 }
duke@435 2537 ciMethod *meth = call->as_CallJava()->method();
kvn@500 2538 const TypeTuple * d = call->tf()->domain();
duke@435 2539 if (meth == NULL) {
duke@435 2540 // not a Java method, assume global escape
kvn@679 2541 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2542 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 2543 } else {
kvn@500 2544 BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
kvn@500 2545 bool copy_dependencies = false;
duke@435 2546
kvn@500 2547 if (call_analyzer->is_return_allocated()) {
kvn@500 2548 // Returns a newly allocated unescaped object, simply
kvn@500 2549 // update dependency information.
kvn@500 2550 // Mark it as NoEscape so that objects referenced by
kvn@500 2551 // it's fields will be marked as NoEscape at least.
kvn@679 2552 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@3254 2553 ptnode_adr(call_idx)->set_scalar_replaceable(false);
kvn@3318 2554 // Fields values are unknown
kvn@3318 2555 add_edge_from_fields(call_idx, _phantom_object, Type::OffsetBot);
kvn@679 2556 add_pointsto_edge(resproj_idx, call_idx);
kvn@500 2557 copy_dependencies = true;
kvn@3318 2558 } else {
duke@435 2559 // determine whether any arguments are returned
kvn@3254 2560 set_escape_state(call_idx, PointsToNode::ArgEscape);
kvn@742 2561 bool ret_arg = false;
duke@435 2562 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 2563 const Type* at = d->field_at(i);
duke@435 2564 if (at->isa_oopptr() != NULL) {
kvn@500 2565 Node *arg = call->in(i)->uncast();
duke@435 2566
kvn@500 2567 if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
kvn@742 2568 ret_arg = true;
kvn@679 2569 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 2570 if (arg_esp->node_type() == PointsToNode::UnknownType)
kvn@500 2571 done = false;
kvn@500 2572 else if (arg_esp->node_type() == PointsToNode::JavaObject)
kvn@679 2573 add_pointsto_edge(resproj_idx, arg->_idx);
duke@435 2574 else
kvn@679 2575 add_deferred_edge(resproj_idx, arg->_idx);
duke@435 2576 }
duke@435 2577 }
duke@435 2578 }
kvn@3254 2579 if (done) {
kvn@3254 2580 copy_dependencies = true;
kvn@3318 2581 // is_return_local() is true when only arguments are returned.
kvn@3318 2582 if (!ret_arg || !call_analyzer->is_return_local()) {
kvn@3318 2583 // Returns unknown object.
kvn@3318 2584 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@3318 2585 }
kvn@3254 2586 }
duke@435 2587 }
kvn@500 2588 if (copy_dependencies)
kvn@679 2589 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 2590 }
kvn@500 2591 if (done)
kvn@679 2592 _processed.set(resproj_idx);
duke@435 2593 break;
duke@435 2594 }
duke@435 2595
duke@435 2596 default:
duke@435 2597 // Some other type of call, assume the worst case that the
duke@435 2598 // returned value, if any, globally escapes.
duke@435 2599 {
duke@435 2600 const TypeTuple *r = call->tf()->range();
duke@435 2601 if (r->cnt() > TypeFunc::Parms) {
duke@435 2602 const Type* ret_type = r->field_at(TypeFunc::Parms);
duke@435 2603
duke@435 2604 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 2605 // _multianewarray functions return a TypeRawPtr.
duke@435 2606 if (ret_type->isa_ptr() != NULL) {
kvn@679 2607 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2608 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 2609 }
duke@435 2610 }
kvn@679 2611 _processed.set(resproj_idx);
duke@435 2612 }
duke@435 2613 }
duke@435 2614 }
duke@435 2615
kvn@500 2616 // Populate Connection Graph with Ideal nodes and create simple
kvn@500 2617 // connection graph edges (do not need to check the node_type of inputs
kvn@500 2618 // or to call PointsTo() to walk the connection graph).
kvn@500 2619 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
kvn@500 2620 if (_processed.test(n->_idx))
kvn@500 2621 return; // No need to redefine node's state.
kvn@500 2622
kvn@500 2623 if (n->is_Call()) {
kvn@500 2624 // Arguments to allocation and locking don't escape.
kvn@500 2625 if (n->is_Allocate()) {
kvn@500 2626 add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
kvn@500 2627 record_for_optimizer(n);
kvn@500 2628 } else if (n->is_Lock() || n->is_Unlock()) {
kvn@500 2629 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@500 2630 // the first IGVN optimization when escape information is still available.
kvn@500 2631 record_for_optimizer(n);
kvn@500 2632 _processed.set(n->_idx);
kvn@500 2633 } else {
kvn@1535 2634 // Don't mark as processed since call's arguments have to be processed.
kvn@500 2635 PointsToNode::NodeType nt = PointsToNode::UnknownType;
kvn@1535 2636 PointsToNode::EscapeState es = PointsToNode::UnknownEscape;
kvn@500 2637
kvn@500 2638 // Check if a call returns an object.
kvn@500 2639 const TypeTuple *r = n->as_Call()->tf()->range();
kvn@1535 2640 if (r->cnt() > TypeFunc::Parms &&
kvn@1535 2641 r->field_at(TypeFunc::Parms)->isa_ptr() &&
kvn@500 2642 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
kvn@1535 2643 nt = PointsToNode::JavaObject;
kvn@1535 2644 if (!n->is_CallStaticJava()) {
kvn@1535 2645 // Since the called mathod is statically unknown assume
kvn@1535 2646 // the worst case that the returned value globally escapes.
kvn@1535 2647 es = PointsToNode::GlobalEscape;
kvn@500 2648 }
duke@435 2649 }
kvn@1535 2650 add_node(n, nt, es, false);
duke@435 2651 }
kvn@500 2652 return;
duke@435 2653 }
kvn@500 2654
kvn@500 2655 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@500 2656 // ThreadLocal has RawPrt type.
kvn@500 2657 switch (n->Opcode()) {
kvn@500 2658 case Op_AddP:
kvn@500 2659 {
kvn@500 2660 add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
kvn@500 2661 break;
kvn@500 2662 }
kvn@500 2663 case Op_CastX2P:
kvn@500 2664 { // "Unsafe" memory access.
kvn@500 2665 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2666 break;
kvn@500 2667 }
kvn@500 2668 case Op_CastPP:
kvn@500 2669 case Op_CheckCastPP:
kvn@559 2670 case Op_EncodeP:
kvn@559 2671 case Op_DecodeN:
kvn@500 2672 {
kvn@500 2673 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2674 int ti = n->in(1)->_idx;
kvn@679 2675 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2676 if (nt == PointsToNode::UnknownType) {
kvn@500 2677 _delayed_worklist.push(n); // Process it later.
kvn@500 2678 break;
kvn@500 2679 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2680 add_pointsto_edge(n->_idx, ti);
kvn@500 2681 } else {
kvn@500 2682 add_deferred_edge(n->_idx, ti);
kvn@500 2683 }
kvn@500 2684 _processed.set(n->_idx);
kvn@500 2685 break;
kvn@500 2686 }
kvn@500 2687 case Op_ConP:
kvn@500 2688 {
kvn@500 2689 // assume all pointer constants globally escape except for null
kvn@500 2690 PointsToNode::EscapeState es;
kvn@500 2691 if (phase->type(n) == TypePtr::NULL_PTR)
kvn@500 2692 es = PointsToNode::NoEscape;
kvn@500 2693 else
kvn@500 2694 es = PointsToNode::GlobalEscape;
kvn@500 2695
kvn@500 2696 add_node(n, PointsToNode::JavaObject, es, true);
kvn@500 2697 break;
kvn@500 2698 }
coleenp@548 2699 case Op_ConN:
coleenp@548 2700 {
coleenp@548 2701 // assume all narrow oop constants globally escape except for null
coleenp@548 2702 PointsToNode::EscapeState es;
coleenp@548 2703 if (phase->type(n) == TypeNarrowOop::NULL_PTR)
coleenp@548 2704 es = PointsToNode::NoEscape;
coleenp@548 2705 else
coleenp@548 2706 es = PointsToNode::GlobalEscape;
coleenp@548 2707
coleenp@548 2708 add_node(n, PointsToNode::JavaObject, es, true);
coleenp@548 2709 break;
coleenp@548 2710 }
kvn@559 2711 case Op_CreateEx:
kvn@559 2712 {
kvn@559 2713 // assume that all exception objects globally escape
kvn@559 2714 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@559 2715 break;
kvn@559 2716 }
kvn@500 2717 case Op_LoadKlass:
kvn@599 2718 case Op_LoadNKlass:
kvn@500 2719 {
kvn@500 2720 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2721 break;
kvn@500 2722 }
kvn@500 2723 case Op_LoadP:
coleenp@548 2724 case Op_LoadN:
kvn@500 2725 {
kvn@500 2726 const Type *t = phase->type(n);
kvn@688 2727 if (t->make_ptr() == NULL) {
kvn@500 2728 _processed.set(n->_idx);
kvn@500 2729 return;
kvn@500 2730 }
kvn@500 2731 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2732 break;
kvn@500 2733 }
kvn@500 2734 case Op_Parm:
kvn@500 2735 {
kvn@500 2736 _processed.set(n->_idx); // No need to redefine it state.
kvn@500 2737 uint con = n->as_Proj()->_con;
kvn@500 2738 if (con < TypeFunc::Parms)
kvn@500 2739 return;
kvn@500 2740 const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
kvn@500 2741 if (t->isa_ptr() == NULL)
kvn@500 2742 return;
kvn@500 2743 // We have to assume all input parameters globally escape
kvn@500 2744 // (Note: passing 'false' since _processed is already set).
kvn@500 2745 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
kvn@500 2746 break;
kvn@500 2747 }
kvn@3309 2748 case Op_PartialSubtypeCheck:
kvn@3309 2749 { // Produces Null or notNull and is used in CmpP.
kvn@3309 2750 add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
kvn@3309 2751 break;
kvn@3309 2752 }
kvn@500 2753 case Op_Phi:
kvn@500 2754 {
kvn@688 2755 const Type *t = n->as_Phi()->type();
kvn@688 2756 if (t->make_ptr() == NULL) {
kvn@688 2757 // nothing to do if not an oop or narrow oop
kvn@500 2758 _processed.set(n->_idx);
kvn@500 2759 return;
kvn@500 2760 }
kvn@500 2761 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2762 uint i;
kvn@500 2763 for (i = 1; i < n->req() ; i++) {
kvn@500 2764 Node* in = n->in(i);
kvn@500 2765 if (in == NULL)
kvn@500 2766 continue; // ignore NULL
kvn@500 2767 in = in->uncast();
kvn@500 2768 if (in->is_top() || in == n)
kvn@500 2769 continue; // ignore top or inputs which go back this node
kvn@500 2770 int ti = in->_idx;
kvn@679 2771 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2772 if (nt == PointsToNode::UnknownType) {
kvn@500 2773 break;
kvn@500 2774 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2775 add_pointsto_edge(n->_idx, ti);
kvn@500 2776 } else {
kvn@500 2777 add_deferred_edge(n->_idx, ti);
kvn@500 2778 }
kvn@500 2779 }
kvn@500 2780 if (i >= n->req())
kvn@500 2781 _processed.set(n->_idx);
kvn@500 2782 else
kvn@500 2783 _delayed_worklist.push(n);
kvn@500 2784 break;
kvn@500 2785 }
kvn@500 2786 case Op_Proj:
kvn@500 2787 {
kvn@1535 2788 // we are only interested in the oop result projection from a call
kvn@500 2789 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@1535 2790 const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
kvn@1535 2791 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@1535 2792 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@1535 2793 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@1535 2794 int ti = n->in(0)->_idx;
kvn@1535 2795 // The call may not be registered yet (since not all its inputs are registered)
kvn@1535 2796 // if this is the projection from backbranch edge of Phi.
kvn@1535 2797 if (ptnode_adr(ti)->node_type() != PointsToNode::UnknownType) {
kvn@1535 2798 process_call_result(n->as_Proj(), phase);
kvn@1535 2799 }
kvn@1535 2800 if (!_processed.test(n->_idx)) {
kvn@1535 2801 // The call's result may need to be processed later if the call
kvn@1535 2802 // returns it's argument and the argument is not processed yet.
kvn@1535 2803 _delayed_worklist.push(n);
kvn@1535 2804 }
kvn@1535 2805 break;
kvn@500 2806 }
kvn@500 2807 }
kvn@1535 2808 _processed.set(n->_idx);
kvn@500 2809 break;
kvn@500 2810 }
kvn@500 2811 case Op_Return:
kvn@500 2812 {
kvn@500 2813 if( n->req() > TypeFunc::Parms &&
kvn@500 2814 phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2815 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@500 2816 add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
kvn@500 2817 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@679 2818 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2819 if (nt == PointsToNode::UnknownType) {
kvn@500 2820 _delayed_worklist.push(n); // Process it later.
kvn@500 2821 break;
kvn@500 2822 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2823 add_pointsto_edge(n->_idx, ti);
kvn@500 2824 } else {
kvn@500 2825 add_deferred_edge(n->_idx, ti);
kvn@500 2826 }
kvn@500 2827 }
kvn@500 2828 _processed.set(n->_idx);
kvn@500 2829 break;
kvn@500 2830 }
kvn@500 2831 case Op_StoreP:
coleenp@548 2832 case Op_StoreN:
kvn@500 2833 {
kvn@500 2834 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2835 adr_type = adr_type->make_ptr();
kvn@500 2836 if (adr_type->isa_oopptr()) {
kvn@500 2837 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2838 } else {
kvn@500 2839 Node* adr = n->in(MemNode::Address);
kvn@500 2840 if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
kvn@500 2841 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 2842 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 2843 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2844 // We are computing a raw address for a store captured
kvn@500 2845 // by an Initialize compute an appropriate address type.
kvn@500 2846 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 2847 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 2848 } else {
kvn@500 2849 _processed.set(n->_idx);
kvn@500 2850 return;
kvn@500 2851 }
kvn@500 2852 }
kvn@500 2853 break;
kvn@500 2854 }
kvn@500 2855 case Op_StorePConditional:
kvn@500 2856 case Op_CompareAndSwapP:
coleenp@548 2857 case Op_CompareAndSwapN:
kvn@500 2858 {
kvn@500 2859 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2860 adr_type = adr_type->make_ptr();
kvn@500 2861 if (adr_type->isa_oopptr()) {
kvn@500 2862 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2863 } else {
kvn@500 2864 _processed.set(n->_idx);
kvn@500 2865 return;
kvn@500 2866 }
kvn@500 2867 break;
kvn@500 2868 }
kvn@1535 2869 case Op_AryEq:
kvn@1535 2870 case Op_StrComp:
kvn@1535 2871 case Op_StrEquals:
kvn@1535 2872 case Op_StrIndexOf:
kvn@1535 2873 {
kvn@1535 2874 // char[] arrays passed to string intrinsics are not scalar replaceable.
kvn@1535 2875 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@1535 2876 break;
kvn@1535 2877 }
kvn@500 2878 case Op_ThreadLocal:
kvn@500 2879 {
kvn@500 2880 add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
kvn@500 2881 break;
kvn@500 2882 }
kvn@500 2883 default:
kvn@500 2884 ;
kvn@500 2885 // nothing to do
kvn@500 2886 }
kvn@500 2887 return;
duke@435 2888 }
duke@435 2889
kvn@500 2890 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
kvn@679 2891 uint n_idx = n->_idx;
kvn@1535 2892 assert(ptnode_adr(n_idx)->_node != NULL, "node should be registered");
kvn@679 2893
kvn@500 2894 // Don't set processed bit for AddP, LoadP, StoreP since
kvn@500 2895 // they may need more then one pass to process.
kvn@2276 2896 // Also don't mark as processed Call nodes since their
kvn@2276 2897 // arguments may need more then one pass to process.
kvn@679 2898 if (_processed.test(n_idx))
kvn@500 2899 return; // No need to redefine node's state.
duke@435 2900
duke@435 2901 if (n->is_Call()) {
duke@435 2902 CallNode *call = n->as_Call();
duke@435 2903 process_call_arguments(call, phase);
duke@435 2904 return;
duke@435 2905 }
duke@435 2906
kvn@500 2907 switch (n->Opcode()) {
duke@435 2908 case Op_AddP:
duke@435 2909 {
kvn@500 2910 Node *base = get_addp_base(n);
kvn@3309 2911 int offset = address_offset(n, phase);
kvn@500 2912 // Create a field edge to this node from everything base could point to.
kvn@2556 2913 for( VectorSetI i(PointsTo(base)); i.test(); ++i ) {
duke@435 2914 uint pt = i.elem;
kvn@3309 2915 add_field_edge(pt, n_idx, offset);
kvn@500 2916 }
kvn@500 2917 break;
kvn@500 2918 }
kvn@500 2919 case Op_CastX2P:
kvn@500 2920 {
kvn@500 2921 assert(false, "Op_CastX2P");
kvn@500 2922 break;
kvn@500 2923 }
kvn@500 2924 case Op_CastPP:
kvn@500 2925 case Op_CheckCastPP:
coleenp@548 2926 case Op_EncodeP:
coleenp@548 2927 case Op_DecodeN:
kvn@500 2928 {
kvn@500 2929 int ti = n->in(1)->_idx;
kvn@1535 2930 assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "all nodes should be registered");
kvn@679 2931 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2932 add_pointsto_edge(n_idx, ti);
kvn@500 2933 } else {
kvn@679 2934 add_deferred_edge(n_idx, ti);
kvn@500 2935 }
kvn@679 2936 _processed.set(n_idx);
kvn@500 2937 break;
kvn@500 2938 }
kvn@500 2939 case Op_ConP:
kvn@500 2940 {
kvn@500 2941 assert(false, "Op_ConP");
kvn@500 2942 break;
kvn@500 2943 }
kvn@598 2944 case Op_ConN:
kvn@598 2945 {
kvn@598 2946 assert(false, "Op_ConN");
kvn@598 2947 break;
kvn@598 2948 }
kvn@500 2949 case Op_CreateEx:
kvn@500 2950 {
kvn@500 2951 assert(false, "Op_CreateEx");
kvn@500 2952 break;
kvn@500 2953 }
kvn@500 2954 case Op_LoadKlass:
kvn@599 2955 case Op_LoadNKlass:
kvn@500 2956 {
kvn@500 2957 assert(false, "Op_LoadKlass");
kvn@500 2958 break;
kvn@500 2959 }
kvn@500 2960 case Op_LoadP:
kvn@559 2961 case Op_LoadN:
kvn@500 2962 {
kvn@500 2963 const Type *t = phase->type(n);
kvn@500 2964 #ifdef ASSERT
kvn@688 2965 if (t->make_ptr() == NULL)
kvn@500 2966 assert(false, "Op_LoadP");
kvn@500 2967 #endif
kvn@500 2968
kvn@500 2969 Node* adr = n->in(MemNode::Address)->uncast();
kvn@500 2970 Node* adr_base;
kvn@500 2971 if (adr->is_AddP()) {
kvn@500 2972 adr_base = get_addp_base(adr);
kvn@500 2973 } else {
kvn@500 2974 adr_base = adr;
kvn@500 2975 }
kvn@500 2976
kvn@500 2977 // For everything "adr_base" could point to, create a deferred edge from
kvn@500 2978 // this node to each field with the same offset.
kvn@500 2979 int offset = address_offset(adr, phase);
kvn@2556 2980 for( VectorSetI i(PointsTo(adr_base)); i.test(); ++i ) {
kvn@500 2981 uint pt = i.elem;
kvn@3309 2982 if (adr->is_AddP()) {
kvn@3309 2983 // Add field edge if it is missing.
kvn@3309 2984 add_field_edge(pt, adr->_idx, offset);
kvn@3309 2985 }
kvn@679 2986 add_deferred_edge_to_fields(n_idx, pt, offset);
duke@435 2987 }
duke@435 2988 break;
duke@435 2989 }
duke@435 2990 case Op_Parm:
duke@435 2991 {
kvn@500 2992 assert(false, "Op_Parm");
kvn@500 2993 break;
kvn@500 2994 }
kvn@3309 2995 case Op_PartialSubtypeCheck:
kvn@3309 2996 {
kvn@3309 2997 assert(false, "Op_PartialSubtypeCheck");
kvn@3309 2998 break;
kvn@3309 2999 }
kvn@500 3000 case Op_Phi:
kvn@500 3001 {
kvn@500 3002 #ifdef ASSERT
kvn@688 3003 const Type *t = n->as_Phi()->type();
kvn@688 3004 if (t->make_ptr() == NULL)
kvn@500 3005 assert(false, "Op_Phi");
kvn@500 3006 #endif
kvn@500 3007 for (uint i = 1; i < n->req() ; i++) {
kvn@500 3008 Node* in = n->in(i);
kvn@500 3009 if (in == NULL)
kvn@500 3010 continue; // ignore NULL
kvn@500 3011 in = in->uncast();
kvn@500 3012 if (in->is_top() || in == n)
kvn@500 3013 continue; // ignore top or inputs which go back this node
kvn@500 3014 int ti = in->_idx;
kvn@742 3015 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@742 3016 assert(nt != PointsToNode::UnknownType, "all nodes should be known");
kvn@742 3017 if (nt == PointsToNode::JavaObject) {
kvn@679 3018 add_pointsto_edge(n_idx, ti);
kvn@500 3019 } else {
kvn@679 3020 add_deferred_edge(n_idx, ti);
kvn@500 3021 }
duke@435 3022 }
kvn@679 3023 _processed.set(n_idx);
duke@435 3024 break;
duke@435 3025 }
kvn@500 3026 case Op_Proj:
duke@435 3027 {
kvn@1535 3028 // we are only interested in the oop result projection from a call
kvn@500 3029 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@1535 3030 assert(ptnode_adr(n->in(0)->_idx)->node_type() != PointsToNode::UnknownType,
kvn@1535 3031 "all nodes should be registered");
kvn@1535 3032 const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
kvn@1535 3033 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@1535 3034 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@1535 3035 process_call_result(n->as_Proj(), phase);
kvn@1535 3036 assert(_processed.test(n_idx), "all call results should be processed");
kvn@1535 3037 break;
kvn@1535 3038 }
kvn@500 3039 }
kvn@1535 3040 assert(false, "Op_Proj");
duke@435 3041 break;
duke@435 3042 }
kvn@500 3043 case Op_Return:
duke@435 3044 {
kvn@500 3045 #ifdef ASSERT
kvn@500 3046 if( n->req() <= TypeFunc::Parms ||
kvn@500 3047 !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 3048 assert(false, "Op_Return");
kvn@500 3049 }
kvn@500 3050 #endif
kvn@500 3051 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@1535 3052 assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "node should be registered");
kvn@679 3053 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 3054 add_pointsto_edge(n_idx, ti);
kvn@500 3055 } else {
kvn@679 3056 add_deferred_edge(n_idx, ti);
kvn@500 3057 }
kvn@679 3058 _processed.set(n_idx);
duke@435 3059 break;
duke@435 3060 }
duke@435 3061 case Op_StoreP:
kvn@559 3062 case Op_StoreN:
duke@435 3063 case Op_StorePConditional:
duke@435 3064 case Op_CompareAndSwapP:
kvn@559 3065 case Op_CompareAndSwapN:
duke@435 3066 {
duke@435 3067 Node *adr = n->in(MemNode::Address);
kvn@656 3068 const Type *adr_type = phase->type(adr)->make_ptr();
kvn@500 3069 #ifdef ASSERT
duke@435 3070 if (!adr_type->isa_oopptr())
kvn@500 3071 assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
kvn@500 3072 #endif
duke@435 3073
kvn@500 3074 assert(adr->is_AddP(), "expecting an AddP");
kvn@500 3075 Node *adr_base = get_addp_base(adr);
kvn@500 3076 Node *val = n->in(MemNode::ValueIn)->uncast();
kvn@3309 3077 int offset = address_offset(adr, phase);
kvn@500 3078 // For everything "adr_base" could point to, create a deferred edge
kvn@500 3079 // to "val" from each field with the same offset.
kvn@2556 3080 for( VectorSetI i(PointsTo(adr_base)); i.test(); ++i ) {
duke@435 3081 uint pt = i.elem;
kvn@3309 3082 // Add field edge if it is missing.
kvn@3309 3083 add_field_edge(pt, adr->_idx, offset);
kvn@3309 3084 add_edge_from_fields(pt, val->_idx, offset);
duke@435 3085 }
duke@435 3086 break;
duke@435 3087 }
kvn@1535 3088 case Op_AryEq:
kvn@1535 3089 case Op_StrComp:
kvn@1535 3090 case Op_StrEquals:
kvn@1535 3091 case Op_StrIndexOf:
kvn@1535 3092 {
kvn@1535 3093 // char[] arrays passed to string intrinsic do not escape but
kvn@1535 3094 // they are not scalar replaceable. Adjust escape state for them.
kvn@1535 3095 // Start from in(2) edge since in(1) is memory edge.
kvn@1535 3096 for (uint i = 2; i < n->req(); i++) {
kvn@1535 3097 Node* adr = n->in(i)->uncast();
kvn@1535 3098 const Type *at = phase->type(adr);
kvn@1535 3099 if (!adr->is_top() && at->isa_ptr()) {
kvn@1535 3100 assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
kvn@1535 3101 at->isa_ptr() != NULL, "expecting an Ptr");
kvn@1535 3102 if (adr->is_AddP()) {
kvn@1535 3103 adr = get_addp_base(adr);
kvn@1535 3104 }
kvn@1535 3105 // Mark as ArgEscape everything "adr" could point to.
kvn@1535 3106 set_escape_state(adr->_idx, PointsToNode::ArgEscape);
kvn@1535 3107 }
kvn@1535 3108 }
kvn@1535 3109 _processed.set(n_idx);
kvn@1535 3110 break;
kvn@1535 3111 }
kvn@500 3112 case Op_ThreadLocal:
duke@435 3113 {
kvn@500 3114 assert(false, "Op_ThreadLocal");
duke@435 3115 break;
duke@435 3116 }
duke@435 3117 default:
kvn@1535 3118 // This method should be called only for EA specific nodes.
kvn@1535 3119 ShouldNotReachHere();
duke@435 3120 }
duke@435 3121 }
duke@435 3122
duke@435 3123 #ifndef PRODUCT
duke@435 3124 void ConnectionGraph::dump() {
duke@435 3125 bool first = true;
duke@435 3126
kvn@679 3127 uint size = nodes_size();
kvn@500 3128 for (uint ni = 0; ni < size; ni++) {
kvn@679 3129 PointsToNode *ptn = ptnode_adr(ni);
kvn@500 3130 PointsToNode::NodeType ptn_type = ptn->node_type();
kvn@500 3131
kvn@500 3132 if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
duke@435 3133 continue;
kvn@1989 3134 PointsToNode::EscapeState es = escape_state(ptn->_node);
kvn@500 3135 if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
kvn@500 3136 if (first) {
kvn@500 3137 tty->cr();
kvn@500 3138 tty->print("======== Connection graph for ");
kvn@679 3139 _compile->method()->print_short_name();
kvn@500 3140 tty->cr();
kvn@500 3141 first = false;
kvn@500 3142 }
kvn@500 3143 tty->print("%6d ", ni);
kvn@500 3144 ptn->dump();
kvn@500 3145 // Print all locals which reference this allocation
kvn@500 3146 for (uint li = ni; li < size; li++) {
kvn@679 3147 PointsToNode *ptn_loc = ptnode_adr(li);
kvn@500 3148 PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
kvn@500 3149 if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
kvn@500 3150 ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
kvn@688 3151 ptnode_adr(li)->dump(false);
duke@435 3152 }
duke@435 3153 }
kvn@500 3154 if (Verbose) {
kvn@500 3155 // Print all fields which reference this allocation
kvn@500 3156 for (uint i = 0; i < ptn->edge_count(); i++) {
kvn@500 3157 uint ei = ptn->edge_target(i);
kvn@688 3158 ptnode_adr(ei)->dump(false);
kvn@500 3159 }
kvn@500 3160 }
kvn@500 3161 tty->cr();
duke@435 3162 }
duke@435 3163 }
duke@435 3164 }
duke@435 3165 #endif

mercurial