src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Thu, 28 Aug 2014 17:05:41 +0200

author
tschatzl
date
Thu, 28 Aug 2014 17:05:41 +0200
changeset 7100
edb5f3b38aab
parent 7091
a8ea2f110d87
child 7118
227a9e5e4b4a
permissions
-rw-r--r--

8054808: Bitmap verification sometimes fails after Full GC aborts concurrent mark.
Summary: The verification code that checked whether no bitmap mark had been found re-read HeapRegion::end() after the check on the bitmap. Concurrent humongous object allocation could have changed HeapRegion::end() in the meantime. Fix this by using the actual end of the region instead of HeapRegion::end() for comparison.
Reviewed-by: brutisso, jmasa

ysr@777 1 /*
tschatzl@6402 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/concurrentMark.hpp"
sla@5237 29 #include "gc_implementation/g1/evacuationInfo.hpp"
tonyp@2715 30 #include "gc_implementation/g1/g1AllocRegion.hpp"
tschatzl@6926 31 #include "gc_implementation/g1/g1BiasedArray.hpp"
tonyp@2975 32 #include "gc_implementation/g1/g1HRPrinter.hpp"
sla@5237 33 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
mgerdin@5811 34 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
sla@5237 35 #include "gc_implementation/g1/g1YCTypes.hpp"
tschatzl@7091 36 #include "gc_implementation/g1/heapRegionManager.hpp"
brutisso@6385 37 #include "gc_implementation/g1/heapRegionSet.hpp"
jmasa@2821 38 #include "gc_implementation/shared/hSpaceCounters.hpp"
johnc@3982 39 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
stefank@2314 40 #include "memory/barrierSet.hpp"
stefank@2314 41 #include "memory/memRegion.hpp"
stefank@2314 42 #include "memory/sharedHeap.hpp"
brutisso@4579 43 #include "utilities/stack.hpp"
stefank@2314 44
ysr@777 45 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
ysr@777 46 // It uses the "Garbage First" heap organization and algorithm, which
ysr@777 47 // may combine concurrent marking with parallel, incremental compaction of
ysr@777 48 // heap subsets that will yield large amounts of garbage.
ysr@777 49
johnc@5548 50 // Forward declarations
ysr@777 51 class HeapRegion;
tonyp@2493 52 class HRRSCleanupTask;
ysr@777 53 class GenerationSpec;
ysr@777 54 class OopsInHeapRegionClosure;
coleenp@4037 55 class G1KlassScanClosure;
ysr@777 56 class G1ScanHeapEvacClosure;
ysr@777 57 class ObjectClosure;
ysr@777 58 class SpaceClosure;
ysr@777 59 class CompactibleSpaceClosure;
ysr@777 60 class Space;
ysr@777 61 class G1CollectorPolicy;
ysr@777 62 class GenRemSet;
ysr@777 63 class G1RemSet;
ysr@777 64 class HeapRegionRemSetIterator;
ysr@777 65 class ConcurrentMark;
ysr@777 66 class ConcurrentMarkThread;
ysr@777 67 class ConcurrentG1Refine;
sla@5237 68 class ConcurrentGCTimer;
jmasa@2821 69 class GenerationCounters;
sla@5237 70 class STWGCTimer;
sla@5237 71 class G1NewTracer;
sla@5237 72 class G1OldTracer;
sla@5237 73 class EvacuationFailedInfo;
johnc@5548 74 class nmethod;
mgronlun@6131 75 class Ticks;
ysr@777 76
zgu@3900 77 typedef OverflowTaskQueue<StarTask, mtGC> RefToScanQueue;
zgu@3900 78 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
ysr@777 79
johnc@1242 80 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
johnc@1242 81 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
johnc@1242 82
ysr@777 83 enum GCAllocPurpose {
ysr@777 84 GCAllocForTenured,
ysr@777 85 GCAllocForSurvived,
ysr@777 86 GCAllocPurposeCount
ysr@777 87 };
ysr@777 88
zgu@3900 89 class YoungList : public CHeapObj<mtGC> {
ysr@777 90 private:
ysr@777 91 G1CollectedHeap* _g1h;
ysr@777 92
ysr@777 93 HeapRegion* _head;
ysr@777 94
johnc@1829 95 HeapRegion* _survivor_head;
johnc@1829 96 HeapRegion* _survivor_tail;
johnc@1829 97
johnc@1829 98 HeapRegion* _curr;
johnc@1829 99
tonyp@3713 100 uint _length;
tonyp@3713 101 uint _survivor_length;
ysr@777 102
ysr@777 103 size_t _last_sampled_rs_lengths;
ysr@777 104 size_t _sampled_rs_lengths;
ysr@777 105
johnc@1829 106 void empty_list(HeapRegion* list);
ysr@777 107
ysr@777 108 public:
ysr@777 109 YoungList(G1CollectedHeap* g1h);
ysr@777 110
johnc@1829 111 void push_region(HeapRegion* hr);
johnc@1829 112 void add_survivor_region(HeapRegion* hr);
johnc@1829 113
johnc@1829 114 void empty_list();
johnc@1829 115 bool is_empty() { return _length == 0; }
tonyp@3713 116 uint length() { return _length; }
tonyp@3713 117 uint survivor_length() { return _survivor_length; }
ysr@777 118
tonyp@2961 119 // Currently we do not keep track of the used byte sum for the
tonyp@2961 120 // young list and the survivors and it'd be quite a lot of work to
tonyp@2961 121 // do so. When we'll eventually replace the young list with
tonyp@2961 122 // instances of HeapRegionLinkedList we'll get that for free. So,
tonyp@2961 123 // we'll report the more accurate information then.
tonyp@2961 124 size_t eden_used_bytes() {
tonyp@2961 125 assert(length() >= survivor_length(), "invariant");
tonyp@3713 126 return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
tonyp@2961 127 }
tonyp@2961 128 size_t survivor_used_bytes() {
tonyp@3713 129 return (size_t) survivor_length() * HeapRegion::GrainBytes;
tonyp@2961 130 }
tonyp@2961 131
ysr@777 132 void rs_length_sampling_init();
ysr@777 133 bool rs_length_sampling_more();
ysr@777 134 void rs_length_sampling_next();
ysr@777 135
ysr@777 136 void reset_sampled_info() {
ysr@777 137 _last_sampled_rs_lengths = 0;
ysr@777 138 }
ysr@777 139 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
ysr@777 140
ysr@777 141 // for development purposes
ysr@777 142 void reset_auxilary_lists();
johnc@1829 143 void clear() { _head = NULL; _length = 0; }
johnc@1829 144
johnc@1829 145 void clear_survivors() {
johnc@1829 146 _survivor_head = NULL;
johnc@1829 147 _survivor_tail = NULL;
johnc@1829 148 _survivor_length = 0;
johnc@1829 149 }
johnc@1829 150
ysr@777 151 HeapRegion* first_region() { return _head; }
ysr@777 152 HeapRegion* first_survivor_region() { return _survivor_head; }
apetrusenko@980 153 HeapRegion* last_survivor_region() { return _survivor_tail; }
ysr@777 154
ysr@777 155 // debugging
ysr@777 156 bool check_list_well_formed();
johnc@1829 157 bool check_list_empty(bool check_sample = true);
ysr@777 158 void print();
ysr@777 159 };
ysr@777 160
tonyp@2715 161 class MutatorAllocRegion : public G1AllocRegion {
tonyp@2715 162 protected:
tonyp@2715 163 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@2715 164 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@2715 165 public:
tonyp@2715 166 MutatorAllocRegion()
tonyp@2715 167 : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
tonyp@2715 168 };
tonyp@2715 169
tonyp@3028 170 class SurvivorGCAllocRegion : public G1AllocRegion {
tonyp@3028 171 protected:
tonyp@3028 172 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@3028 173 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@3028 174 public:
tonyp@3028 175 SurvivorGCAllocRegion()
tonyp@3028 176 : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
tonyp@3028 177 };
tonyp@3028 178
tonyp@3028 179 class OldGCAllocRegion : public G1AllocRegion {
tonyp@3028 180 protected:
tonyp@3028 181 virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
tonyp@3028 182 virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
tonyp@3028 183 public:
tonyp@3028 184 OldGCAllocRegion()
tonyp@3028 185 : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
poonam@7045 186
poonam@7045 187 // This specialization of release() makes sure that the last card that has been
poonam@7045 188 // allocated into has been completely filled by a dummy object.
poonam@7045 189 // This avoids races when remembered set scanning wants to update the BOT of the
poonam@7045 190 // last card in the retained old gc alloc region, and allocation threads
poonam@7045 191 // allocating into that card at the same time.
poonam@7045 192 virtual HeapRegion* release();
tonyp@3028 193 };
tonyp@3028 194
johnc@5548 195 // The G1 STW is alive closure.
johnc@5548 196 // An instance is embedded into the G1CH and used as the
johnc@5548 197 // (optional) _is_alive_non_header closure in the STW
johnc@5548 198 // reference processor. It is also extensively used during
johnc@5548 199 // reference processing during STW evacuation pauses.
johnc@5548 200 class G1STWIsAliveClosure: public BoolObjectClosure {
johnc@5548 201 G1CollectedHeap* _g1;
johnc@5548 202 public:
johnc@5548 203 G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
johnc@5548 204 bool do_object_b(oop p);
johnc@5548 205 };
johnc@5548 206
ysr@777 207 class RefineCardTableEntryClosure;
johnc@3175 208
tschatzl@7051 209 class G1RegionMappingChangedListener : public G1MappingChangedListener {
tschatzl@7051 210 private:
tschatzl@7051 211 void reset_from_card_cache(uint start_idx, size_t num_regions);
tschatzl@7051 212 public:
tschatzl@7051 213 virtual void on_commit(uint start_idx, size_t num_regions);
tschatzl@7051 214 };
tschatzl@7051 215
ysr@777 216 class G1CollectedHeap : public SharedHeap {
stefank@6992 217 friend class VM_CollectForMetadataAllocation;
ysr@777 218 friend class VM_G1CollectForAllocation;
ysr@777 219 friend class VM_G1CollectFull;
ysr@777 220 friend class VM_G1IncCollectionPause;
ysr@777 221 friend class VMStructs;
tonyp@2715 222 friend class MutatorAllocRegion;
tonyp@3028 223 friend class SurvivorGCAllocRegion;
tonyp@3028 224 friend class OldGCAllocRegion;
ysr@777 225
ysr@777 226 // Closures used in implementation.
stefank@6992 227 template <G1Barrier barrier, G1Mark do_mark_object>
brutisso@3690 228 friend class G1ParCopyClosure;
ysr@777 229 friend class G1IsAliveClosure;
ysr@777 230 friend class G1EvacuateFollowersClosure;
ysr@777 231 friend class G1ParScanThreadState;
ysr@777 232 friend class G1ParScanClosureSuper;
ysr@777 233 friend class G1ParEvacuateFollowersClosure;
ysr@777 234 friend class G1ParTask;
ysr@777 235 friend class G1FreeGarbageRegionClosure;
ysr@777 236 friend class RefineCardTableEntryClosure;
ysr@777 237 friend class G1PrepareCompactClosure;
ysr@777 238 friend class RegionSorter;
tonyp@2472 239 friend class RegionResetter;
ysr@777 240 friend class CountRCClosure;
ysr@777 241 friend class EvacPopObjClosure;
apetrusenko@1231 242 friend class G1ParCleanupCTTask;
ysr@777 243
tschatzl@7019 244 friend class G1FreeHumongousRegionClosure;
ysr@777 245 // Other related classes.
ysr@777 246 friend class G1MarkSweep;
ysr@777 247
ysr@777 248 private:
ysr@777 249 // The one and only G1CollectedHeap, so static functions can find it.
ysr@777 250 static G1CollectedHeap* _g1h;
ysr@777 251
tonyp@1377 252 static size_t _humongous_object_threshold_in_words;
tonyp@1377 253
tonyp@2472 254 // The secondary free list which contains regions that have been
tschatzl@7050 255 // freed up during the cleanup process. This will be appended to
tschatzl@7050 256 // the master free list when appropriate.
brutisso@6385 257 FreeRegionList _secondary_free_list;
tonyp@2472 258
tonyp@3268 259 // It keeps track of the old regions.
brutisso@6385 260 HeapRegionSet _old_set;
tonyp@3268 261
tonyp@2472 262 // It keeps track of the humongous regions.
brutisso@6385 263 HeapRegionSet _humongous_set;
ysr@777 264
tschatzl@7019 265 void clear_humongous_is_live_table();
tschatzl@7019 266 void eagerly_reclaim_humongous_regions();
tschatzl@7019 267
ysr@777 268 // The number of regions we could create by expansion.
tonyp@3713 269 uint _expansion_regions;
ysr@777 270
ysr@777 271 // The block offset table for the G1 heap.
ysr@777 272 G1BlockOffsetSharedArray* _bot_shared;
ysr@777 273
tonyp@3268 274 // Tears down the region sets / lists so that they are empty and the
tonyp@3268 275 // regions on the heap do not belong to a region set / list. The
tonyp@3268 276 // only exception is the humongous set which we leave unaltered. If
tonyp@3268 277 // free_list_only is true, it will only tear down the master free
tonyp@3268 278 // list. It is called before a Full GC (free_list_only == false) or
tonyp@3268 279 // before heap shrinking (free_list_only == true).
tonyp@3268 280 void tear_down_region_sets(bool free_list_only);
tonyp@3268 281
tonyp@3268 282 // Rebuilds the region sets / lists so that they are repopulated to
tonyp@3268 283 // reflect the contents of the heap. The only exception is the
tonyp@3268 284 // humongous set which was not torn down in the first place. If
tonyp@3268 285 // free_list_only is true, it will only rebuild the master free
tonyp@3268 286 // list. It is called after a Full GC (free_list_only == false) or
tonyp@3268 287 // after heap shrinking (free_list_only == true).
tonyp@3268 288 void rebuild_region_sets(bool free_list_only);
ysr@777 289
tschatzl@7051 290 // Callback for region mapping changed events.
tschatzl@7051 291 G1RegionMappingChangedListener _listener;
tschatzl@7051 292
ysr@777 293 // The sequence of all heap regions in the heap.
tschatzl@7091 294 HeapRegionManager _hrm;
ysr@777 295
tonyp@2715 296 // Alloc region used to satisfy mutator allocation requests.
tonyp@2715 297 MutatorAllocRegion _mutator_alloc_region;
ysr@777 298
tonyp@3028 299 // Alloc region used to satisfy allocation requests by the GC for
tonyp@3028 300 // survivor objects.
tonyp@3028 301 SurvivorGCAllocRegion _survivor_gc_alloc_region;
tonyp@3028 302
johnc@3982 303 // PLAB sizing policy for survivors.
johnc@3982 304 PLABStats _survivor_plab_stats;
johnc@3982 305
tonyp@3028 306 // Alloc region used to satisfy allocation requests by the GC for
tonyp@3028 307 // old objects.
tonyp@3028 308 OldGCAllocRegion _old_gc_alloc_region;
tonyp@3028 309
johnc@3982 310 // PLAB sizing policy for tenured objects.
johnc@3982 311 PLABStats _old_plab_stats;
johnc@3982 312
johnc@3982 313 PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
johnc@3982 314 PLABStats* stats = NULL;
johnc@3982 315
johnc@3982 316 switch (purpose) {
johnc@3982 317 case GCAllocForSurvived:
johnc@3982 318 stats = &_survivor_plab_stats;
johnc@3982 319 break;
johnc@3982 320 case GCAllocForTenured:
johnc@3982 321 stats = &_old_plab_stats;
johnc@3982 322 break;
johnc@3982 323 default:
johnc@3982 324 assert(false, "unrecognized GCAllocPurpose");
johnc@3982 325 }
johnc@3982 326
johnc@3982 327 return stats;
johnc@3982 328 }
johnc@3982 329
tonyp@3028 330 // The last old region we allocated to during the last GC.
tonyp@3028 331 // Typically, it is not full so we should re-use it during the next GC.
tonyp@3028 332 HeapRegion* _retained_old_gc_alloc_region;
tonyp@3028 333
tonyp@3410 334 // It specifies whether we should attempt to expand the heap after a
tonyp@3410 335 // region allocation failure. If heap expansion fails we set this to
tonyp@3410 336 // false so that we don't re-attempt the heap expansion (it's likely
tonyp@3410 337 // that subsequent expansion attempts will also fail if one fails).
tonyp@3410 338 // Currently, it is only consulted during GC and it's reset at the
tonyp@3410 339 // start of each GC.
tonyp@3410 340 bool _expand_heap_after_alloc_failure;
tonyp@3410 341
tonyp@2715 342 // It resets the mutator alloc region before new allocations can take place.
tonyp@2715 343 void init_mutator_alloc_region();
tonyp@2715 344
tonyp@2715 345 // It releases the mutator alloc region.
tonyp@2715 346 void release_mutator_alloc_region();
tonyp@2715 347
tonyp@3028 348 // It initializes the GC alloc regions at the start of a GC.
sla@5237 349 void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
tonyp@3028 350
stefank@6992 351 // Setup the retained old gc alloc region as the currrent old gc alloc region.
stefank@6992 352 void use_retained_old_gc_alloc_region(EvacuationInfo& evacuation_info);
stefank@6992 353
tonyp@3028 354 // It releases the GC alloc regions at the end of a GC.
sla@5237 355 void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
tonyp@3028 356
tonyp@3028 357 // It does any cleanup that needs to be done on the GC alloc regions
tonyp@3028 358 // before a Full GC.
tonyp@1071 359 void abandon_gc_alloc_regions();
ysr@777 360
jmasa@2821 361 // Helper for monitoring and management support.
jmasa@2821 362 G1MonitoringSupport* _g1mm;
jmasa@2821 363
apetrusenko@1826 364 // Determines PLAB size for a particular allocation purpose.
johnc@3982 365 size_t desired_plab_sz(GCAllocPurpose purpose);
apetrusenko@1826 366
ysr@777 367 // Outside of GC pauses, the number of bytes used in all regions other
ysr@777 368 // than the current allocation region.
ysr@777 369 size_t _summary_bytes_used;
ysr@777 370
tschatzl@7019 371 // Records whether the region at the given index is kept live by roots or
tschatzl@7019 372 // references from the young generation.
tschatzl@7019 373 class HumongousIsLiveBiasedMappedArray : public G1BiasedMappedArray<bool> {
tschatzl@7019 374 protected:
tschatzl@7019 375 bool default_value() const { return false; }
tschatzl@7019 376 public:
tschatzl@7019 377 void clear() { G1BiasedMappedArray<bool>::clear(); }
tschatzl@7019 378 void set_live(uint region) {
tschatzl@7019 379 set_by_index(region, true);
tschatzl@7019 380 }
tschatzl@7019 381 bool is_live(uint region) {
tschatzl@7019 382 return get_by_index(region);
tschatzl@7019 383 }
tschatzl@7019 384 };
tschatzl@7019 385
tschatzl@7019 386 HumongousIsLiveBiasedMappedArray _humongous_is_live;
tschatzl@7019 387 // Stores whether during humongous object registration we found candidate regions.
tschatzl@7019 388 // If not, we can skip a few steps.
tschatzl@7019 389 bool _has_humongous_reclaim_candidates;
tonyp@961 390
iveresov@788 391 volatile unsigned _gc_time_stamp;
ysr@777 392
ysr@777 393 size_t* _surviving_young_words;
ysr@777 394
tonyp@2975 395 G1HRPrinter _hr_printer;
tonyp@2975 396
ysr@777 397 void setup_surviving_young_words();
ysr@777 398 void update_surviving_young_words(size_t* surv_young_words);
ysr@777 399 void cleanup_surviving_young_words();
ysr@777 400
tonyp@2011 401 // It decides whether an explicit GC should start a concurrent cycle
tonyp@2011 402 // instead of doing a STW GC. Currently, a concurrent cycle is
tonyp@2011 403 // explicitly started if:
tonyp@2011 404 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
tonyp@2011 405 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
brutisso@3456 406 // (c) cause == _g1_humongous_allocation
tonyp@2011 407 bool should_do_concurrent_full_gc(GCCause::Cause cause);
tonyp@2011 408
brutisso@3823 409 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 410 // concurrent cycles) we have started.
brutisso@3823 411 volatile unsigned int _old_marking_cycles_started;
brutisso@3823 412
brutisso@3823 413 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 414 // concurrent cycles) we have completed.
brutisso@3823 415 volatile unsigned int _old_marking_cycles_completed;
tonyp@2011 416
sla@5237 417 bool _concurrent_cycle_started;
sla@5237 418
tonyp@2817 419 // This is a non-product method that is helpful for testing. It is
tonyp@2817 420 // called at the end of a GC and artificially expands the heap by
tonyp@2817 421 // allocating a number of dead regions. This way we can induce very
tonyp@2817 422 // frequent marking cycles and stress the cleanup / concurrent
tonyp@2817 423 // cleanup code more (as all the regions that will be allocated by
tonyp@2817 424 // this method will be found dead by the marking cycle).
tonyp@2817 425 void allocate_dummy_regions() PRODUCT_RETURN;
tonyp@2817 426
tonyp@3957 427 // Clear RSets after a compaction. It also resets the GC time stamps.
tonyp@3957 428 void clear_rsets_post_compaction();
tonyp@3957 429
tonyp@3957 430 // If the HR printer is active, dump the state of the regions in the
tonyp@3957 431 // heap after a compaction.
tschatzl@7091 432 void print_hrm_post_compaction();
tonyp@3957 433
brutisso@4015 434 double verify(bool guard, const char* msg);
brutisso@4015 435 void verify_before_gc();
brutisso@4015 436 void verify_after_gc();
brutisso@4015 437
brutisso@4063 438 void log_gc_header();
brutisso@4063 439 void log_gc_footer(double pause_time_sec);
brutisso@4063 440
tonyp@2315 441 // These are macros so that, if the assert fires, we get the correct
tonyp@2315 442 // line number, file, etc.
tonyp@2315 443
tonyp@2643 444 #define heap_locking_asserts_err_msg(_extra_message_) \
tonyp@2472 445 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
tonyp@2643 446 (_extra_message_), \
tonyp@2472 447 BOOL_TO_STR(Heap_lock->owned_by_self()), \
tonyp@2472 448 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
tonyp@2472 449 BOOL_TO_STR(Thread::current()->is_VM_thread()))
tonyp@2315 450
tonyp@2315 451 #define assert_heap_locked() \
tonyp@2315 452 do { \
tonyp@2315 453 assert(Heap_lock->owned_by_self(), \
tonyp@2315 454 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \
tonyp@2315 455 } while (0)
tonyp@2315 456
tonyp@2643 457 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 458 do { \
tonyp@2315 459 assert(Heap_lock->owned_by_self() || \
tonyp@2472 460 (SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 461 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
tonyp@2315 462 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
tonyp@2315 463 "should be at a safepoint")); \
tonyp@2315 464 } while (0)
tonyp@2315 465
tonyp@2315 466 #define assert_heap_locked_and_not_at_safepoint() \
tonyp@2315 467 do { \
tonyp@2315 468 assert(Heap_lock->owned_by_self() && \
tonyp@2315 469 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 470 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
tonyp@2315 471 "should not be at a safepoint")); \
tonyp@2315 472 } while (0)
tonyp@2315 473
tonyp@2315 474 #define assert_heap_not_locked() \
tonyp@2315 475 do { \
tonyp@2315 476 assert(!Heap_lock->owned_by_self(), \
tonyp@2315 477 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
tonyp@2315 478 } while (0)
tonyp@2315 479
tonyp@2315 480 #define assert_heap_not_locked_and_not_at_safepoint() \
tonyp@2315 481 do { \
tonyp@2315 482 assert(!Heap_lock->owned_by_self() && \
tonyp@2315 483 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 484 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
tonyp@2315 485 "should not be at a safepoint")); \
tonyp@2315 486 } while (0)
tonyp@2315 487
tonyp@2643 488 #define assert_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 489 do { \
tonyp@2472 490 assert(SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 491 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
tonyp@2315 492 heap_locking_asserts_err_msg("should be at a safepoint")); \
tonyp@2315 493 } while (0)
tonyp@2315 494
tonyp@2315 495 #define assert_not_at_safepoint() \
tonyp@2315 496 do { \
tonyp@2315 497 assert(!SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 498 heap_locking_asserts_err_msg("should not be at a safepoint")); \
tonyp@2315 499 } while (0)
tonyp@2315 500
ysr@777 501 protected:
ysr@777 502
johnc@3021 503 // The young region list.
ysr@777 504 YoungList* _young_list;
ysr@777 505
ysr@777 506 // The current policy object for the collector.
ysr@777 507 G1CollectorPolicy* _g1_policy;
ysr@777 508
tonyp@2472 509 // This is the second level of trying to allocate a new region. If
tonyp@2715 510 // new_region() didn't find a region on the free_list, this call will
tonyp@2715 511 // check whether there's anything available on the
tonyp@2715 512 // secondary_free_list and/or wait for more regions to appear on
tonyp@2715 513 // that list, if _free_regions_coming is set.
jwilhelm@6422 514 HeapRegion* new_region_try_secondary_free_list(bool is_old);
ysr@777 515
tonyp@2643 516 // Try to allocate a single non-humongous HeapRegion sufficient for
tonyp@2643 517 // an allocation of the given word_size. If do_expand is true,
tonyp@2643 518 // attempt to expand the heap if necessary to satisfy the allocation
jwilhelm@6422 519 // request. If the region is to be used as an old region or for a
jwilhelm@6422 520 // humongous object, set is_old to true. If not, to false.
jwilhelm@6422 521 HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
ysr@777 522
tonyp@2643 523 // Initialize a contiguous set of free regions of length num_regions
tonyp@2643 524 // and starting at index first so that they appear as a single
tonyp@2643 525 // humongous region.
tonyp@3713 526 HeapWord* humongous_obj_allocate_initialize_regions(uint first,
tonyp@3713 527 uint num_regions,
tonyp@2643 528 size_t word_size);
tonyp@2643 529
tonyp@2643 530 // Attempt to allocate a humongous object of the given size. Return
tonyp@2643 531 // NULL if unsuccessful.
tonyp@2472 532 HeapWord* humongous_obj_allocate(size_t word_size);
ysr@777 533
tonyp@2315 534 // The following two methods, allocate_new_tlab() and
tonyp@2315 535 // mem_allocate(), are the two main entry points from the runtime
tonyp@2315 536 // into the G1's allocation routines. They have the following
tonyp@2315 537 // assumptions:
tonyp@2315 538 //
tonyp@2315 539 // * They should both be called outside safepoints.
tonyp@2315 540 //
tonyp@2315 541 // * They should both be called without holding the Heap_lock.
tonyp@2315 542 //
tonyp@2315 543 // * All allocation requests for new TLABs should go to
tonyp@2315 544 // allocate_new_tlab().
tonyp@2315 545 //
tonyp@2971 546 // * All non-TLAB allocation requests should go to mem_allocate().
tonyp@2315 547 //
tonyp@2315 548 // * If either call cannot satisfy the allocation request using the
tonyp@2315 549 // current allocating region, they will try to get a new one. If
tonyp@2315 550 // this fails, they will attempt to do an evacuation pause and
tonyp@2315 551 // retry the allocation.
tonyp@2315 552 //
tonyp@2315 553 // * If all allocation attempts fail, even after trying to schedule
tonyp@2315 554 // an evacuation pause, allocate_new_tlab() will return NULL,
tonyp@2315 555 // whereas mem_allocate() will attempt a heap expansion and/or
tonyp@2315 556 // schedule a Full GC.
tonyp@2315 557 //
tonyp@2315 558 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
tonyp@2315 559 // should never be called with word_size being humongous. All
tonyp@2315 560 // humongous allocation requests should go to mem_allocate() which
tonyp@2315 561 // will satisfy them with a special path.
ysr@777 562
tonyp@2315 563 virtual HeapWord* allocate_new_tlab(size_t word_size);
tonyp@2315 564
tonyp@2315 565 virtual HeapWord* mem_allocate(size_t word_size,
tonyp@2315 566 bool* gc_overhead_limit_was_exceeded);
tonyp@2315 567
tonyp@2715 568 // The following three methods take a gc_count_before_ret
tonyp@2715 569 // parameter which is used to return the GC count if the method
tonyp@2715 570 // returns NULL. Given that we are required to read the GC count
tonyp@2715 571 // while holding the Heap_lock, and these paths will take the
tonyp@2715 572 // Heap_lock at some point, it's easier to get them to read the GC
tonyp@2715 573 // count while holding the Heap_lock before they return NULL instead
tonyp@2715 574 // of the caller (namely: mem_allocate()) having to also take the
tonyp@2715 575 // Heap_lock just to read the GC count.
tonyp@2315 576
tonyp@2715 577 // First-level mutator allocation attempt: try to allocate out of
tonyp@2715 578 // the mutator alloc region without taking the Heap_lock. This
tonyp@2715 579 // should only be used for non-humongous allocations.
tonyp@2715 580 inline HeapWord* attempt_allocation(size_t word_size,
mgerdin@4853 581 unsigned int* gc_count_before_ret,
mgerdin@4853 582 int* gclocker_retry_count_ret);
tonyp@2315 583
tonyp@2715 584 // Second-level mutator allocation attempt: take the Heap_lock and
tonyp@2715 585 // retry the allocation attempt, potentially scheduling a GC
tonyp@2715 586 // pause. This should only be used for non-humongous allocations.
tonyp@2715 587 HeapWord* attempt_allocation_slow(size_t word_size,
mgerdin@4853 588 unsigned int* gc_count_before_ret,
mgerdin@4853 589 int* gclocker_retry_count_ret);
tonyp@2315 590
tonyp@2715 591 // Takes the Heap_lock and attempts a humongous allocation. It can
tonyp@2715 592 // potentially schedule a GC pause.
tonyp@2715 593 HeapWord* attempt_allocation_humongous(size_t word_size,
mgerdin@4853 594 unsigned int* gc_count_before_ret,
mgerdin@4853 595 int* gclocker_retry_count_ret);
tonyp@2454 596
tonyp@2715 597 // Allocation attempt that should be called during safepoints (e.g.,
tonyp@2715 598 // at the end of a successful GC). expect_null_mutator_alloc_region
tonyp@2715 599 // specifies whether the mutator alloc region is expected to be NULL
tonyp@2715 600 // or not.
tonyp@2315 601 HeapWord* attempt_allocation_at_safepoint(size_t word_size,
tonyp@2715 602 bool expect_null_mutator_alloc_region);
tonyp@2315 603
tonyp@2315 604 // It dirties the cards that cover the block so that so that the post
tonyp@2315 605 // write barrier never queues anything when updating objects on this
tonyp@2315 606 // block. It is assumed (and in fact we assert) that the block
tonyp@2315 607 // belongs to a young region.
tonyp@2315 608 inline void dirty_young_block(HeapWord* start, size_t word_size);
ysr@777 609
ysr@777 610 // Allocate blocks during garbage collection. Will ensure an
ysr@777 611 // allocation region, either by picking one or expanding the
ysr@777 612 // heap, and then allocate a block of the given size. The block
ysr@777 613 // may not be a humongous - it must fit into a single heap region.
ysr@777 614 HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
ysr@777 615
tschatzl@6332 616 HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
tschatzl@6332 617 HeapRegion* alloc_region,
tschatzl@6332 618 bool par,
tschatzl@6332 619 size_t word_size);
tschatzl@6332 620
ysr@777 621 // Ensure that no further allocations can happen in "r", bearing in mind
ysr@777 622 // that parallel threads might be attempting allocations.
ysr@777 623 void par_allocate_remaining_space(HeapRegion* r);
ysr@777 624
tonyp@3028 625 // Allocation attempt during GC for a survivor object / PLAB.
tonyp@3028 626 inline HeapWord* survivor_attempt_allocation(size_t word_size);
apetrusenko@980 627
tonyp@3028 628 // Allocation attempt during GC for an old object / PLAB.
tonyp@3028 629 inline HeapWord* old_attempt_allocation(size_t word_size);
tonyp@2715 630
tonyp@3028 631 // These methods are the "callbacks" from the G1AllocRegion class.
tonyp@3028 632
tonyp@3028 633 // For mutator alloc regions.
tonyp@2715 634 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
tonyp@2715 635 void retire_mutator_alloc_region(HeapRegion* alloc_region,
tonyp@2715 636 size_t allocated_bytes);
tonyp@2715 637
tonyp@3028 638 // For GC alloc regions.
tonyp@3713 639 HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
tonyp@3028 640 GCAllocPurpose ap);
tonyp@3028 641 void retire_gc_alloc_region(HeapRegion* alloc_region,
tonyp@3028 642 size_t allocated_bytes, GCAllocPurpose ap);
tonyp@3028 643
tonyp@2011 644 // - if explicit_gc is true, the GC is for a System.gc() or a heap
tonyp@2315 645 // inspection request and should collect the entire heap
tonyp@2315 646 // - if clear_all_soft_refs is true, all soft references should be
tonyp@2315 647 // cleared during the GC
tonyp@2011 648 // - if explicit_gc is false, word_size describes the allocation that
tonyp@2315 649 // the GC should attempt (at least) to satisfy
tonyp@2315 650 // - it returns false if it is unable to do the collection due to the
tonyp@2315 651 // GC locker being active, true otherwise
tonyp@2315 652 bool do_collection(bool explicit_gc,
tonyp@2011 653 bool clear_all_soft_refs,
ysr@777 654 size_t word_size);
ysr@777 655
ysr@777 656 // Callback from VM_G1CollectFull operation.
ysr@777 657 // Perform a full collection.
coleenp@4037 658 virtual void do_full_collection(bool clear_all_soft_refs);
ysr@777 659
ysr@777 660 // Resize the heap if necessary after a full collection. If this is
ysr@777 661 // after a collect-for allocation, "word_size" is the allocation size,
ysr@777 662 // and will be considered part of the used portion of the heap.
ysr@777 663 void resize_if_necessary_after_full_collection(size_t word_size);
ysr@777 664
ysr@777 665 // Callback from VM_G1CollectForAllocation operation.
ysr@777 666 // This function does everything necessary/possible to satisfy a
ysr@777 667 // failed allocation request (including collection, expansion, etc.)
tonyp@2315 668 HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
ysr@777 669
ysr@777 670 // Attempting to expand the heap sufficiently
ysr@777 671 // to support an allocation of the given "word_size". If
ysr@777 672 // successful, perform the allocation and return the address of the
ysr@777 673 // allocated block, or else "NULL".
tonyp@2315 674 HeapWord* expand_and_allocate(size_t word_size);
ysr@777 675
johnc@3175 676 // Process any reference objects discovered during
johnc@3175 677 // an incremental evacuation pause.
johnc@4130 678 void process_discovered_references(uint no_of_gc_workers);
johnc@3175 679
johnc@3175 680 // Enqueue any remaining discovered references
johnc@3175 681 // after processing.
johnc@4130 682 void enqueue_discovered_references(uint no_of_gc_workers);
johnc@3175 683
ysr@777 684 public:
jmasa@2821 685
tonyp@3176 686 G1MonitoringSupport* g1mm() {
tonyp@3176 687 assert(_g1mm != NULL, "should have been initialized");
tonyp@3176 688 return _g1mm;
tonyp@3176 689 }
jmasa@2821 690
ysr@777 691 // Expand the garbage-first heap by at least the given size (in bytes!).
johnc@2504 692 // Returns true if the heap was expanded by the requested amount;
johnc@2504 693 // false otherwise.
ysr@777 694 // (Rounds up to a HeapRegion boundary.)
johnc@2504 695 bool expand(size_t expand_bytes);
ysr@777 696
ysr@777 697 // Do anything common to GC's.
ysr@777 698 virtual void gc_prologue(bool full);
ysr@777 699 virtual void gc_epilogue(bool full);
ysr@777 700
tschatzl@7019 701 inline void set_humongous_is_live(oop obj);
tschatzl@7019 702
tschatzl@7019 703 bool humongous_is_live(uint region) {
tschatzl@7019 704 return _humongous_is_live.is_live(region);
tschatzl@7019 705 }
tschatzl@7019 706
tschatzl@7019 707 // Returns whether the given region (which must be a humongous (start) region)
tschatzl@7019 708 // is to be considered conservatively live regardless of any other conditions.
tschatzl@7019 709 bool humongous_region_is_always_live(uint index);
tschatzl@7019 710 // Register the given region to be part of the collection set.
tschatzl@7019 711 inline void register_humongous_region_with_in_cset_fast_test(uint index);
tschatzl@7019 712 // Register regions with humongous objects (actually on the start region) in
tschatzl@7019 713 // the in_cset_fast_test table.
tschatzl@7019 714 void register_humongous_regions_with_in_cset_fast_test();
tonyp@961 715 // We register a region with the fast "in collection set" test. We
tonyp@961 716 // simply set to true the array slot corresponding to this region.
tonyp@961 717 void register_region_with_in_cset_fast_test(HeapRegion* r) {
tschatzl@7091 718 _in_cset_fast_test.set_in_cset(r->hrm_index());
tonyp@961 719 }
tonyp@961 720
tonyp@961 721 // This is a fast test on whether a reference points into the
tschatzl@6330 722 // collection set or not. Assume that the reference
tschatzl@6330 723 // points into the heap.
tschatzl@6541 724 inline bool in_cset_fast_test(oop obj);
tonyp@961 725
johnc@1829 726 void clear_cset_fast_test() {
tschatzl@6926 727 _in_cset_fast_test.clear();
johnc@1829 728 }
johnc@1829 729
brutisso@3823 730 // This is called at the start of either a concurrent cycle or a Full
brutisso@3823 731 // GC to update the number of old marking cycles started.
brutisso@3823 732 void increment_old_marking_cycles_started();
brutisso@3823 733
tonyp@2011 734 // This is called at the end of either a concurrent cycle or a Full
brutisso@3823 735 // GC to update the number of old marking cycles completed. Those two
tonyp@2011 736 // can happen in a nested fashion, i.e., we start a concurrent
tonyp@2011 737 // cycle, a Full GC happens half-way through it which ends first,
tonyp@2011 738 // and then the cycle notices that a Full GC happened and ends
tonyp@2372 739 // too. The concurrent parameter is a boolean to help us do a bit
tonyp@2372 740 // tighter consistency checking in the method. If concurrent is
tonyp@2372 741 // false, the caller is the inner caller in the nesting (i.e., the
tonyp@2372 742 // Full GC). If concurrent is true, the caller is the outer caller
tonyp@2372 743 // in this nesting (i.e., the concurrent cycle). Further nesting is
brutisso@3823 744 // not currently supported. The end of this call also notifies
tonyp@2372 745 // the FullGCCount_lock in case a Java thread is waiting for a full
tonyp@2372 746 // GC to happen (e.g., it called System.gc() with
tonyp@2011 747 // +ExplicitGCInvokesConcurrent).
brutisso@3823 748 void increment_old_marking_cycles_completed(bool concurrent);
tonyp@2011 749
brutisso@3823 750 unsigned int old_marking_cycles_completed() {
brutisso@3823 751 return _old_marking_cycles_completed;
tonyp@2011 752 }
tonyp@2011 753
mgronlun@6131 754 void register_concurrent_cycle_start(const Ticks& start_time);
sla@5237 755 void register_concurrent_cycle_end();
sla@5237 756 void trace_heap_after_concurrent_cycle();
sla@5237 757
sla@5237 758 G1YCType yc_type();
sla@5237 759
tonyp@2975 760 G1HRPrinter* hr_printer() { return &_hr_printer; }
tonyp@2975 761
brutisso@6385 762 // Frees a non-humongous region by initializing its contents and
brutisso@6385 763 // adding it to the free list that's passed as a parameter (this is
brutisso@6385 764 // usually a local list which will be appended to the master free
brutisso@6385 765 // list later). The used bytes of freed regions are accumulated in
brutisso@6385 766 // pre_used. If par is true, the region's RSet will not be freed
brutisso@6385 767 // up. The assumption is that this will be done later.
tschatzl@6404 768 // The locked parameter indicates if the caller has already taken
tschatzl@6404 769 // care of proper synchronization. This may allow some optimizations.
brutisso@6385 770 void free_region(HeapRegion* hr,
brutisso@6385 771 FreeRegionList* free_list,
tschatzl@6404 772 bool par,
tschatzl@6404 773 bool locked = false);
brutisso@6385 774
brutisso@6385 775 // Frees a humongous region by collapsing it into individual regions
brutisso@6385 776 // and calling free_region() for each of them. The freed regions
brutisso@6385 777 // will be added to the free list that's passed as a parameter (this
brutisso@6385 778 // is usually a local list which will be appended to the master free
brutisso@6385 779 // list later). The used bytes of freed regions are accumulated in
brutisso@6385 780 // pre_used. If par is true, the region's RSet will not be freed
brutisso@6385 781 // up. The assumption is that this will be done later.
brutisso@6385 782 void free_humongous_region(HeapRegion* hr,
brutisso@6385 783 FreeRegionList* free_list,
brutisso@6385 784 bool par);
ysr@777 785 protected:
ysr@777 786
ysr@777 787 // Shrink the garbage-first heap by at most the given size (in bytes!).
ysr@777 788 // (Rounds down to a HeapRegion boundary.)
ysr@777 789 virtual void shrink(size_t expand_bytes);
ysr@777 790 void shrink_helper(size_t expand_bytes);
ysr@777 791
jcoomes@2064 792 #if TASKQUEUE_STATS
jcoomes@2064 793 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 794 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
jcoomes@2064 795 void reset_taskqueue_stats();
jcoomes@2064 796 #endif // TASKQUEUE_STATS
jcoomes@2064 797
tonyp@2315 798 // Schedule the VM operation that will do an evacuation pause to
tonyp@2315 799 // satisfy an allocation request of word_size. *succeeded will
tonyp@2315 800 // return whether the VM operation was successful (it did do an
tonyp@2315 801 // evacuation pause) or not (another thread beat us to it or the GC
tonyp@2315 802 // locker was active). Given that we should not be holding the
tonyp@2315 803 // Heap_lock when we enter this method, we will pass the
tonyp@2315 804 // gc_count_before (i.e., total_collections()) as a parameter since
tonyp@2315 805 // it has to be read while holding the Heap_lock. Currently, both
tonyp@2315 806 // methods that call do_collection_pause() release the Heap_lock
tonyp@2315 807 // before the call, so it's easy to read gc_count_before just before.
brutisso@5581 808 HeapWord* do_collection_pause(size_t word_size,
brutisso@5581 809 unsigned int gc_count_before,
brutisso@5581 810 bool* succeeded,
brutisso@5581 811 GCCause::Cause gc_cause);
ysr@777 812
ysr@777 813 // The guts of the incremental collection pause, executed by the vm
tonyp@2315 814 // thread. It returns false if it is unable to do the collection due
tonyp@2315 815 // to the GC locker being active, true otherwise
tonyp@2315 816 bool do_collection_pause_at_safepoint(double target_pause_time_ms);
ysr@777 817
ysr@777 818 // Actually do the work of evacuating the collection set.
sla@5237 819 void evacuate_collection_set(EvacuationInfo& evacuation_info);
ysr@777 820
ysr@777 821 // The g1 remembered set of the heap.
ysr@777 822 G1RemSet* _g1_rem_set;
ysr@777 823
iveresov@1051 824 // A set of cards that cover the objects for which the Rsets should be updated
iveresov@1051 825 // concurrently after the collection.
iveresov@1051 826 DirtyCardQueueSet _dirty_card_queue_set;
iveresov@1051 827
ysr@777 828 // The closure used to refine a single card.
ysr@777 829 RefineCardTableEntryClosure* _refine_cte_cl;
ysr@777 830
ysr@777 831 // A function to check the consistency of dirty card logs.
ysr@777 832 void check_ct_logs_at_safepoint();
ysr@777 833
johnc@2060 834 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 835 // references into the current collection set. This is used to
johnc@2060 836 // update the remembered sets of the regions in the collection
johnc@2060 837 // set in the event of an evacuation failure.
johnc@2060 838 DirtyCardQueueSet _into_cset_dirty_card_queue_set;
johnc@2060 839
ysr@777 840 // After a collection pause, make the regions in the CS into free
ysr@777 841 // regions.
sla@5237 842 void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
ysr@777 843
johnc@1829 844 // Abandon the current collection set without recording policy
johnc@1829 845 // statistics or updating free lists.
johnc@1829 846 void abandon_collection_set(HeapRegion* cs_head);
johnc@1829 847
ysr@777 848 // Applies "scan_non_heap_roots" to roots outside the heap,
ysr@777 849 // "scan_rs" to roots inside the heap (having done "set_region" to
coleenp@4037 850 // indicate the region in which the root resides),
coleenp@4037 851 // and does "scan_metadata" If "scan_rs" is
ysr@777 852 // NULL, then this step is skipped. The "worker_i"
ysr@777 853 // param is for use with parallel roots processing, and should be
ysr@777 854 // the "i" of the calling parallel worker thread's work(i) function.
ysr@777 855 // In the sequential case this param will be ignored.
stefank@6992 856 void g1_process_roots(OopClosure* scan_non_heap_roots,
stefank@6992 857 OopClosure* scan_non_heap_weak_roots,
stefank@6992 858 OopsInHeapRegionClosure* scan_rs,
stefank@6992 859 CLDClosure* scan_strong_clds,
stefank@6992 860 CLDClosure* scan_weak_clds,
stefank@6992 861 CodeBlobClosure* scan_strong_code,
stefank@6992 862 uint worker_i);
ysr@777 863
ysr@777 864 // The concurrent marker (and the thread it runs in.)
ysr@777 865 ConcurrentMark* _cm;
ysr@777 866 ConcurrentMarkThread* _cmThread;
ysr@777 867 bool _mark_in_progress;
ysr@777 868
ysr@777 869 // The concurrent refiner.
ysr@777 870 ConcurrentG1Refine* _cg1r;
ysr@777 871
ysr@777 872 // The parallel task queues
ysr@777 873 RefToScanQueueSet *_task_queues;
ysr@777 874
ysr@777 875 // True iff a evacuation has failed in the current collection.
ysr@777 876 bool _evacuation_failed;
ysr@777 877
sla@5237 878 EvacuationFailedInfo* _evacuation_failed_info_array;
ysr@777 879
ysr@777 880 // Failed evacuations cause some logical from-space objects to have
ysr@777 881 // forwarding pointers to themselves. Reset them.
ysr@777 882 void remove_self_forwarding_pointers();
ysr@777 883
brutisso@4579 884 // Together, these store an object with a preserved mark, and its mark value.
brutisso@4579 885 Stack<oop, mtGC> _objs_with_preserved_marks;
brutisso@4579 886 Stack<markOop, mtGC> _preserved_marks_of_objs;
ysr@777 887
ysr@777 888 // Preserve the mark of "obj", if necessary, in preparation for its mark
ysr@777 889 // word being overwritten with a self-forwarding-pointer.
ysr@777 890 void preserve_mark_if_necessary(oop obj, markOop m);
ysr@777 891
ysr@777 892 // The stack of evac-failure objects left to be scanned.
ysr@777 893 GrowableArray<oop>* _evac_failure_scan_stack;
ysr@777 894 // The closure to apply to evac-failure objects.
ysr@777 895
ysr@777 896 OopsInHeapRegionClosure* _evac_failure_closure;
ysr@777 897 // Set the field above.
ysr@777 898 void
ysr@777 899 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
ysr@777 900 _evac_failure_closure = evac_failure_closure;
ysr@777 901 }
ysr@777 902
ysr@777 903 // Push "obj" on the scan stack.
ysr@777 904 void push_on_evac_failure_scan_stack(oop obj);
ysr@777 905 // Process scan stack entries until the stack is empty.
ysr@777 906 void drain_evac_failure_scan_stack();
ysr@777 907 // True iff an invocation of "drain_scan_stack" is in progress; to
ysr@777 908 // prevent unnecessary recursion.
ysr@777 909 bool _drain_in_progress;
ysr@777 910
ysr@777 911 // Do any necessary initialization for evacuation-failure handling.
ysr@777 912 // "cl" is the closure that will be used to process evac-failure
ysr@777 913 // objects.
ysr@777 914 void init_for_evac_failure(OopsInHeapRegionClosure* cl);
ysr@777 915 // Do any necessary cleanup for evacuation-failure handling data
ysr@777 916 // structures.
ysr@777 917 void finalize_for_evac_failure();
ysr@777 918
ysr@777 919 // An attempt to evacuate "obj" has failed; take necessary steps.
sla@5237 920 oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
ysr@777 921 void handle_evacuation_failure_common(oop obj, markOop m);
ysr@777 922
johnc@4016 923 #ifndef PRODUCT
johnc@4016 924 // Support for forcing evacuation failures. Analogous to
johnc@4016 925 // PromotionFailureALot for the other collectors.
johnc@4016 926
johnc@4016 927 // Records whether G1EvacuationFailureALot should be in effect
johnc@4016 928 // for the current GC
johnc@4016 929 bool _evacuation_failure_alot_for_current_gc;
johnc@4016 930
johnc@4016 931 // Used to record the GC number for interval checking when
johnc@4016 932 // determining whether G1EvaucationFailureALot is in effect
johnc@4016 933 // for the current GC.
johnc@4016 934 size_t _evacuation_failure_alot_gc_number;
johnc@4016 935
johnc@4016 936 // Count of the number of evacuations between failures.
johnc@4016 937 volatile size_t _evacuation_failure_alot_count;
johnc@4016 938
johnc@4016 939 // Set whether G1EvacuationFailureALot should be in effect
johnc@4016 940 // for the current GC (based upon the type of GC and which
johnc@4016 941 // command line flags are set);
johnc@4016 942 inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
johnc@4016 943 bool during_initial_mark,
johnc@4016 944 bool during_marking);
johnc@4016 945
johnc@4016 946 inline void set_evacuation_failure_alot_for_current_gc();
johnc@4016 947
johnc@4016 948 // Return true if it's time to cause an evacuation failure.
johnc@4016 949 inline bool evacuation_should_fail();
johnc@4016 950
johnc@4016 951 // Reset the G1EvacuationFailureALot counters. Should be called at
sla@5237 952 // the end of an evacuation pause in which an evacuation failure occurred.
johnc@4016 953 inline void reset_evacuation_should_fail();
johnc@4016 954 #endif // !PRODUCT
johnc@4016 955
johnc@3175 956 // ("Weak") Reference processing support.
johnc@3175 957 //
sla@5237 958 // G1 has 2 instances of the reference processor class. One
johnc@3175 959 // (_ref_processor_cm) handles reference object discovery
johnc@3175 960 // and subsequent processing during concurrent marking cycles.
johnc@3175 961 //
johnc@3175 962 // The other (_ref_processor_stw) handles reference object
johnc@3175 963 // discovery and processing during full GCs and incremental
johnc@3175 964 // evacuation pauses.
johnc@3175 965 //
johnc@3175 966 // During an incremental pause, reference discovery will be
johnc@3175 967 // temporarily disabled for _ref_processor_cm and will be
johnc@3175 968 // enabled for _ref_processor_stw. At the end of the evacuation
johnc@3175 969 // pause references discovered by _ref_processor_stw will be
johnc@3175 970 // processed and discovery will be disabled. The previous
johnc@3175 971 // setting for reference object discovery for _ref_processor_cm
johnc@3175 972 // will be re-instated.
johnc@3175 973 //
johnc@3175 974 // At the start of marking:
johnc@3175 975 // * Discovery by the CM ref processor is verified to be inactive
johnc@3175 976 // and it's discovered lists are empty.
johnc@3175 977 // * Discovery by the CM ref processor is then enabled.
johnc@3175 978 //
johnc@3175 979 // At the end of marking:
johnc@3175 980 // * Any references on the CM ref processor's discovered
johnc@3175 981 // lists are processed (possibly MT).
johnc@3175 982 //
johnc@3175 983 // At the start of full GC we:
johnc@3175 984 // * Disable discovery by the CM ref processor and
johnc@3175 985 // empty CM ref processor's discovered lists
johnc@3175 986 // (without processing any entries).
johnc@3175 987 // * Verify that the STW ref processor is inactive and it's
johnc@3175 988 // discovered lists are empty.
johnc@3175 989 // * Temporarily set STW ref processor discovery as single threaded.
johnc@3175 990 // * Temporarily clear the STW ref processor's _is_alive_non_header
johnc@3175 991 // field.
johnc@3175 992 // * Finally enable discovery by the STW ref processor.
johnc@3175 993 //
johnc@3175 994 // The STW ref processor is used to record any discovered
johnc@3175 995 // references during the full GC.
johnc@3175 996 //
johnc@3175 997 // At the end of a full GC we:
johnc@3175 998 // * Enqueue any reference objects discovered by the STW ref processor
johnc@3175 999 // that have non-live referents. This has the side-effect of
johnc@3175 1000 // making the STW ref processor inactive by disabling discovery.
johnc@3175 1001 // * Verify that the CM ref processor is still inactive
johnc@3175 1002 // and no references have been placed on it's discovered
johnc@3175 1003 // lists (also checked as a precondition during initial marking).
johnc@3175 1004
johnc@3175 1005 // The (stw) reference processor...
johnc@3175 1006 ReferenceProcessor* _ref_processor_stw;
johnc@3175 1007
sla@5237 1008 STWGCTimer* _gc_timer_stw;
sla@5237 1009 ConcurrentGCTimer* _gc_timer_cm;
sla@5237 1010
sla@5237 1011 G1OldTracer* _gc_tracer_cm;
sla@5237 1012 G1NewTracer* _gc_tracer_stw;
sla@5237 1013
johnc@3175 1014 // During reference object discovery, the _is_alive_non_header
johnc@3175 1015 // closure (if non-null) is applied to the referent object to
johnc@3175 1016 // determine whether the referent is live. If so then the
johnc@3175 1017 // reference object does not need to be 'discovered' and can
johnc@3175 1018 // be treated as a regular oop. This has the benefit of reducing
johnc@3175 1019 // the number of 'discovered' reference objects that need to
johnc@3175 1020 // be processed.
johnc@3175 1021 //
johnc@3175 1022 // Instance of the is_alive closure for embedding into the
johnc@3175 1023 // STW reference processor as the _is_alive_non_header field.
johnc@3175 1024 // Supplying a value for the _is_alive_non_header field is
johnc@3175 1025 // optional but doing so prevents unnecessary additions to
johnc@3175 1026 // the discovered lists during reference discovery.
johnc@3175 1027 G1STWIsAliveClosure _is_alive_closure_stw;
johnc@3175 1028
johnc@3175 1029 // The (concurrent marking) reference processor...
johnc@3175 1030 ReferenceProcessor* _ref_processor_cm;
johnc@3175 1031
johnc@2379 1032 // Instance of the concurrent mark is_alive closure for embedding
johnc@3175 1033 // into the Concurrent Marking reference processor as the
johnc@3175 1034 // _is_alive_non_header field. Supplying a value for the
johnc@3175 1035 // _is_alive_non_header field is optional but doing so prevents
johnc@3175 1036 // unnecessary additions to the discovered lists during reference
johnc@3175 1037 // discovery.
johnc@3175 1038 G1CMIsAliveClosure _is_alive_closure_cm;
ysr@777 1039
johnc@3336 1040 // Cache used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 1041 HeapRegion** _worker_cset_start_region;
johnc@3336 1042
johnc@3336 1043 // Time stamp to validate the regions recorded in the cache
johnc@3336 1044 // used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 1045 // The heap region entry for a given worker is valid iff
johnc@3336 1046 // the associated time stamp value matches the current value
johnc@3336 1047 // of G1CollectedHeap::_gc_time_stamp.
johnc@3336 1048 unsigned int* _worker_cset_start_region_time_stamp;
johnc@3336 1049
stefank@6992 1050 enum G1H_process_roots_tasks {
tonyp@3416 1051 G1H_PS_filter_satb_buffers,
ysr@777 1052 G1H_PS_refProcessor_oops_do,
ysr@777 1053 // Leave this one last.
ysr@777 1054 G1H_PS_NumElements
ysr@777 1055 };
ysr@777 1056
ysr@777 1057 SubTasksDone* _process_strong_tasks;
ysr@777 1058
tonyp@2472 1059 volatile bool _free_regions_coming;
ysr@777 1060
ysr@777 1061 public:
jmasa@2188 1062
jmasa@2188 1063 SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
jmasa@2188 1064
ysr@777 1065 void set_refine_cte_cl_concurrency(bool concurrent);
ysr@777 1066
jcoomes@2064 1067 RefToScanQueue *task_queue(int i) const;
ysr@777 1068
iveresov@1051 1069 // A set of cards where updates happened during the GC
iveresov@1051 1070 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
iveresov@1051 1071
johnc@2060 1072 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 1073 // references into the current collection set. This is used to
johnc@2060 1074 // update the remembered sets of the regions in the collection
johnc@2060 1075 // set in the event of an evacuation failure.
johnc@2060 1076 DirtyCardQueueSet& into_cset_dirty_card_queue_set()
johnc@2060 1077 { return _into_cset_dirty_card_queue_set; }
johnc@2060 1078
ysr@777 1079 // Create a G1CollectedHeap with the specified policy.
ysr@777 1080 // Must call the initialize method afterwards.
ysr@777 1081 // May not return if something goes wrong.
ysr@777 1082 G1CollectedHeap(G1CollectorPolicy* policy);
ysr@777 1083
ysr@777 1084 // Initialize the G1CollectedHeap to have the initial and
coleenp@4037 1085 // maximum sizes and remembered and barrier sets
ysr@777 1086 // specified by the policy object.
ysr@777 1087 jint initialize();
ysr@777 1088
pliden@6690 1089 virtual void stop();
pliden@6690 1090
tschatzl@5701 1091 // Return the (conservative) maximum heap alignment for any G1 heap
tschatzl@5701 1092 static size_t conservative_max_heap_alignment();
tschatzl@5701 1093
johnc@3175 1094 // Initialize weak reference processing.
johnc@2379 1095 virtual void ref_processing_init();
ysr@777 1096
jmasa@3357 1097 void set_par_threads(uint t) {
ysr@777 1098 SharedHeap::set_par_threads(t);
jmasa@3294 1099 // Done in SharedHeap but oddly there are
jmasa@3294 1100 // two _process_strong_tasks's in a G1CollectedHeap
jmasa@3294 1101 // so do it here too.
jmasa@3294 1102 _process_strong_tasks->set_n_threads(t);
jmasa@3294 1103 }
jmasa@3294 1104
jmasa@3294 1105 // Set _n_par_threads according to a policy TBD.
jmasa@3294 1106 void set_par_threads();
jmasa@3294 1107
jmasa@3294 1108 void set_n_termination(int t) {
jmasa@2188 1109 _process_strong_tasks->set_n_threads(t);
ysr@777 1110 }
ysr@777 1111
ysr@777 1112 virtual CollectedHeap::Name kind() const {
ysr@777 1113 return CollectedHeap::G1CollectedHeap;
ysr@777 1114 }
ysr@777 1115
ysr@777 1116 // The current policy object for the collector.
ysr@777 1117 G1CollectorPolicy* g1_policy() const { return _g1_policy; }
ysr@777 1118
coleenp@4037 1119 virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
coleenp@4037 1120
ysr@777 1121 // Adaptive size policy. No such thing for g1.
ysr@777 1122 virtual AdaptiveSizePolicy* size_policy() { return NULL; }
ysr@777 1123
ysr@777 1124 // The rem set and barrier set.
ysr@777 1125 G1RemSet* g1_rem_set() const { return _g1_rem_set; }
ysr@777 1126
ysr@777 1127 unsigned get_gc_time_stamp() {
ysr@777 1128 return _gc_time_stamp;
ysr@777 1129 }
ysr@777 1130
goetz@6911 1131 inline void reset_gc_time_stamp();
iveresov@788 1132
tonyp@3957 1133 void check_gc_time_stamps() PRODUCT_RETURN;
tonyp@3957 1134
goetz@6911 1135 inline void increment_gc_time_stamp();
ysr@777 1136
tonyp@3957 1137 // Reset the given region's GC timestamp. If it's starts humongous,
tonyp@3957 1138 // also reset the GC timestamp of its corresponding
tonyp@3957 1139 // continues humongous regions too.
tonyp@3957 1140 void reset_gc_time_stamps(HeapRegion* hr);
tonyp@3957 1141
johnc@2060 1142 void iterate_dirty_card_closure(CardTableEntryClosure* cl,
johnc@2060 1143 DirtyCardQueue* into_cset_dcq,
vkempik@6552 1144 bool concurrent, uint worker_i);
ysr@777 1145
ysr@777 1146 // The shared block offset table array.
ysr@777 1147 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
ysr@777 1148
johnc@3175 1149 // Reference Processing accessors
johnc@3175 1150
johnc@3175 1151 // The STW reference processor....
johnc@3175 1152 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
johnc@3175 1153
sla@5237 1154 // The Concurrent Marking reference processor...
johnc@3175 1155 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
ysr@777 1156
sla@5237 1157 ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
sla@5237 1158 G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
sla@5237 1159
ysr@777 1160 virtual size_t capacity() const;
ysr@777 1161 virtual size_t used() const;
tonyp@1281 1162 // This should be called when we're not holding the heap lock. The
tonyp@1281 1163 // result might be a bit inaccurate.
tonyp@1281 1164 size_t used_unlocked() const;
ysr@777 1165 size_t recalculate_used() const;
ysr@777 1166
ysr@777 1167 // These virtual functions do the actual allocation.
ysr@777 1168 // Some heaps may offer a contiguous region for shared non-blocking
ysr@777 1169 // allocation, via inlined code (by exporting the address of the top and
ysr@777 1170 // end fields defining the extent of the contiguous allocation region.)
ysr@777 1171 // But G1CollectedHeap doesn't yet support this.
ysr@777 1172
ysr@777 1173 virtual bool is_maximal_no_gc() const {
tschatzl@7091 1174 return _hrm.available() == 0;
ysr@777 1175 }
ysr@777 1176
tschatzl@7050 1177 // The current number of regions in the heap.
tschatzl@7091 1178 uint num_regions() const { return _hrm.length(); }
tonyp@2963 1179
tonyp@2963 1180 // The max number of regions in the heap.
tschatzl@7091 1181 uint max_regions() const { return _hrm.max_length(); }
ysr@777 1182
ysr@777 1183 // The number of regions that are completely free.
tschatzl@7091 1184 uint num_free_regions() const { return _hrm.num_free_regions(); }
ysr@777 1185
ysr@777 1186 // The number of regions that are not completely free.
tschatzl@7050 1187 uint num_used_regions() const { return num_regions() - num_free_regions(); }
tonyp@2963 1188
tonyp@2849 1189 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2849 1190 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2715 1191 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
tonyp@2715 1192 void verify_dirty_young_regions() PRODUCT_RETURN;
tonyp@2715 1193
brutisso@7005 1194 #ifndef PRODUCT
brutisso@7005 1195 // Make sure that the given bitmap has no marked objects in the
brutisso@7005 1196 // range [from,limit). If it does, print an error message and return
brutisso@7005 1197 // false. Otherwise, just return true. bitmap_name should be "prev"
brutisso@7005 1198 // or "next".
brutisso@7005 1199 bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
brutisso@7005 1200 HeapWord* from, HeapWord* limit);
brutisso@7005 1201
brutisso@7005 1202 // Verify that the prev / next bitmap range [tams,end) for the given
brutisso@7005 1203 // region has no marks. Return true if all is well, false if errors
brutisso@7005 1204 // are detected.
brutisso@7005 1205 bool verify_bitmaps(const char* caller, HeapRegion* hr);
brutisso@7005 1206 #endif // PRODUCT
brutisso@7005 1207
brutisso@7005 1208 // If G1VerifyBitmaps is set, verify that the marking bitmaps for
brutisso@7005 1209 // the given region do not have any spurious marks. If errors are
brutisso@7005 1210 // detected, print appropriate error messages and crash.
brutisso@7005 1211 void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
brutisso@7005 1212
brutisso@7005 1213 // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
brutisso@7005 1214 // have any spurious marks. If errors are detected, print
brutisso@7005 1215 // appropriate error messages and crash.
brutisso@7005 1216 void check_bitmaps(const char* caller) PRODUCT_RETURN;
brutisso@7005 1217
tonyp@2472 1218 // verify_region_sets() performs verification over the region
tonyp@2472 1219 // lists. It will be compiled in the product code to be used when
tonyp@2472 1220 // necessary (i.e., during heap verification).
tonyp@2472 1221 void verify_region_sets();
ysr@777 1222
tonyp@2472 1223 // verify_region_sets_optional() is planted in the code for
tonyp@2472 1224 // list verification in non-product builds (and it can be enabled in
sla@5237 1225 // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
tonyp@2472 1226 #if HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1227 void verify_region_sets_optional() {
tonyp@2472 1228 verify_region_sets();
tonyp@2472 1229 }
tonyp@2472 1230 #else // HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1231 void verify_region_sets_optional() { }
tonyp@2472 1232 #endif // HEAP_REGION_SET_FORCE_VERIFY
ysr@777 1233
tonyp@2472 1234 #ifdef ASSERT
tonyp@2643 1235 bool is_on_master_free_list(HeapRegion* hr) {
tschatzl@7091 1236 return _hrm.is_free(hr);
tonyp@2472 1237 }
tonyp@2472 1238 #endif // ASSERT
ysr@777 1239
tonyp@2472 1240 // Wrapper for the region list operations that can be called from
tonyp@2472 1241 // methods outside this class.
ysr@777 1242
jwilhelm@6422 1243 void secondary_free_list_add(FreeRegionList* list) {
jwilhelm@6422 1244 _secondary_free_list.add_ordered(list);
tonyp@2472 1245 }
ysr@777 1246
tonyp@2472 1247 void append_secondary_free_list() {
tschatzl@7091 1248 _hrm.insert_list_into_free_list(&_secondary_free_list);
tonyp@2472 1249 }
ysr@777 1250
tonyp@2643 1251 void append_secondary_free_list_if_not_empty_with_lock() {
tonyp@2643 1252 // If the secondary free list looks empty there's no reason to
tonyp@2643 1253 // take the lock and then try to append it.
tonyp@2472 1254 if (!_secondary_free_list.is_empty()) {
tonyp@2472 1255 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2472 1256 append_secondary_free_list();
tonyp@2472 1257 }
tonyp@2472 1258 }
ysr@777 1259
tschatzl@6541 1260 inline void old_set_remove(HeapRegion* hr);
tonyp@3268 1261
brutisso@3456 1262 size_t non_young_capacity_bytes() {
brutisso@3456 1263 return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
brutisso@3456 1264 }
brutisso@3456 1265
tonyp@2472 1266 void set_free_regions_coming();
tonyp@2472 1267 void reset_free_regions_coming();
tonyp@2472 1268 bool free_regions_coming() { return _free_regions_coming; }
tonyp@2472 1269 void wait_while_free_regions_coming();
ysr@777 1270
tonyp@3539 1271 // Determine whether the given region is one that we are using as an
tonyp@3539 1272 // old GC alloc region.
tonyp@3539 1273 bool is_old_gc_alloc_region(HeapRegion* hr) {
tonyp@3539 1274 return hr == _retained_old_gc_alloc_region;
tonyp@3539 1275 }
tonyp@3539 1276
ysr@777 1277 // Perform a collection of the heap; intended for use in implementing
ysr@777 1278 // "System.gc". This probably implies as full a collection as the
ysr@777 1279 // "CollectedHeap" supports.
ysr@777 1280 virtual void collect(GCCause::Cause cause);
ysr@777 1281
ysr@777 1282 // The same as above but assume that the caller holds the Heap_lock.
ysr@777 1283 void collect_locked(GCCause::Cause cause);
ysr@777 1284
sla@5237 1285 // True iff an evacuation has failed in the most-recent collection.
ysr@777 1286 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 1287
brutisso@6385 1288 void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
brutisso@6385 1289 void prepend_to_freelist(FreeRegionList* list);
brutisso@6385 1290 void decrement_summary_bytes(size_t bytes);
ysr@777 1291
stefank@3335 1292 // Returns "TRUE" iff "p" points into the committed areas of the heap.
ysr@777 1293 virtual bool is_in(const void* p) const;
tschatzl@7051 1294 #ifdef ASSERT
tschatzl@7051 1295 // Returns whether p is in one of the available areas of the heap. Slow but
tschatzl@7051 1296 // extensive version.
tschatzl@7051 1297 bool is_in_exact(const void* p) const;
tschatzl@7051 1298 #endif
ysr@777 1299
ysr@777 1300 // Return "TRUE" iff the given object address is within the collection
tschatzl@7019 1301 // set. Slow implementation.
ysr@777 1302 inline bool obj_in_cs(oop obj);
ysr@777 1303
tschatzl@7019 1304 inline bool is_in_cset(oop obj);
tschatzl@7019 1305
tschatzl@7019 1306 inline bool is_in_cset_or_humongous(const oop obj);
tschatzl@7019 1307
tschatzl@7019 1308 enum in_cset_state_t {
tschatzl@7019 1309 InNeither, // neither in collection set nor humongous
tschatzl@7019 1310 InCSet, // region is in collection set only
tschatzl@7019 1311 IsHumongous // region is a humongous start region
tschatzl@7019 1312 };
tschatzl@7019 1313 private:
tschatzl@7019 1314 // Instances of this class are used for quick tests on whether a reference points
tschatzl@7019 1315 // into the collection set or is a humongous object (points into a humongous
tschatzl@7019 1316 // object).
tschatzl@7019 1317 // Each of the array's elements denotes whether the corresponding region is in
tschatzl@7019 1318 // the collection set or a humongous region.
tschatzl@7019 1319 // We use this to quickly reclaim humongous objects: by making a humongous region
tschatzl@7019 1320 // succeed this test, we sort-of add it to the collection set. During the reference
tschatzl@7019 1321 // iteration closures, when we see a humongous region, we simply mark it as
tschatzl@7019 1322 // referenced, i.e. live.
tschatzl@7019 1323 class G1FastCSetBiasedMappedArray : public G1BiasedMappedArray<char> {
tschatzl@7019 1324 protected:
tschatzl@7019 1325 char default_value() const { return G1CollectedHeap::InNeither; }
tschatzl@7019 1326 public:
tschatzl@7019 1327 void set_humongous(uintptr_t index) {
tschatzl@7019 1328 assert(get_by_index(index) != InCSet, "Should not overwrite InCSet values");
tschatzl@7019 1329 set_by_index(index, G1CollectedHeap::IsHumongous);
tschatzl@7019 1330 }
tschatzl@7019 1331
tschatzl@7019 1332 void clear_humongous(uintptr_t index) {
tschatzl@7019 1333 set_by_index(index, G1CollectedHeap::InNeither);
tschatzl@7019 1334 }
tschatzl@7019 1335
tschatzl@7019 1336 void set_in_cset(uintptr_t index) {
tschatzl@7019 1337 assert(get_by_index(index) != G1CollectedHeap::IsHumongous, "Should not overwrite IsHumongous value");
tschatzl@7019 1338 set_by_index(index, G1CollectedHeap::InCSet);
tschatzl@7019 1339 }
tschatzl@7019 1340
tschatzl@7019 1341 bool is_in_cset_or_humongous(HeapWord* addr) const { return get_by_address(addr) != G1CollectedHeap::InNeither; }
tschatzl@7019 1342 bool is_in_cset(HeapWord* addr) const { return get_by_address(addr) == G1CollectedHeap::InCSet; }
tschatzl@7019 1343 G1CollectedHeap::in_cset_state_t at(HeapWord* addr) const { return (G1CollectedHeap::in_cset_state_t)get_by_address(addr); }
tschatzl@7019 1344 void clear() { G1BiasedMappedArray<char>::clear(); }
tschatzl@7019 1345 };
tschatzl@7019 1346
tschatzl@7019 1347 // This array is used for a quick test on whether a reference points into
tschatzl@7019 1348 // the collection set or not. Each of the array's elements denotes whether the
tschatzl@7019 1349 // corresponding region is in the collection set or not.
tschatzl@7019 1350 G1FastCSetBiasedMappedArray _in_cset_fast_test;
tschatzl@7019 1351
tschatzl@7019 1352 public:
tschatzl@7019 1353
tschatzl@7019 1354 inline in_cset_state_t in_cset_state(const oop obj);
tschatzl@7019 1355
ysr@777 1356 // Return "TRUE" iff the given object address is in the reserved
coleenp@4037 1357 // region of g1.
ysr@777 1358 bool is_in_g1_reserved(const void* p) const {
tschatzl@7091 1359 return _hrm.reserved().contains(p);
ysr@777 1360 }
ysr@777 1361
tonyp@2717 1362 // Returns a MemRegion that corresponds to the space that has been
tonyp@2717 1363 // reserved for the heap
tschatzl@7050 1364 MemRegion g1_reserved() const {
tschatzl@7091 1365 return _hrm.reserved();
tonyp@2717 1366 }
tonyp@2717 1367
johnc@2593 1368 virtual bool is_in_closed_subset(const void* p) const;
ysr@777 1369
tschatzl@7051 1370 G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
tschatzl@7051 1371 return (G1SATBCardTableLoggingModRefBS*) barrier_set();
mgerdin@5811 1372 }
mgerdin@5811 1373
ysr@777 1374 // This resets the card table to all zeros. It is used after
ysr@777 1375 // a collection pause which used the card table to claim cards.
ysr@777 1376 void cleanUpCardTable();
ysr@777 1377
ysr@777 1378 // Iteration functions.
ysr@777 1379
ysr@777 1380 // Iterate over all the ref-containing fields of all objects, calling
ysr@777 1381 // "cl.do_oop" on each.
coleenp@4037 1382 virtual void oop_iterate(ExtendedOopClosure* cl);
ysr@777 1383
ysr@777 1384 // Iterate over all objects, calling "cl.do_object" on each.
coleenp@4037 1385 virtual void object_iterate(ObjectClosure* cl);
coleenp@4037 1386
coleenp@4037 1387 virtual void safe_object_iterate(ObjectClosure* cl) {
coleenp@4037 1388 object_iterate(cl);
iveresov@1113 1389 }
ysr@777 1390
ysr@777 1391 // Iterate over all spaces in use in the heap, in ascending address order.
ysr@777 1392 virtual void space_iterate(SpaceClosure* cl);
ysr@777 1393
ysr@777 1394 // Iterate over heap regions, in address order, terminating the
ysr@777 1395 // iteration early if the "doHeapRegion" method returns "true".
tonyp@2963 1396 void heap_region_iterate(HeapRegionClosure* blk) const;
ysr@777 1397
tonyp@2963 1398 // Return the region with the given index. It assumes the index is valid.
tschatzl@6541 1399 inline HeapRegion* region_at(uint index) const;
ysr@777 1400
tschatzl@7019 1401 // Calculate the region index of the given address. Given address must be
tschatzl@7019 1402 // within the heap.
tschatzl@7019 1403 inline uint addr_to_region(HeapWord* addr) const;
tschatzl@7019 1404
tschatzl@7050 1405 inline HeapWord* bottom_addr_for_region(uint index) const;
tschatzl@7050 1406
ysr@777 1407 // Divide the heap region sequence into "chunks" of some size (the number
ysr@777 1408 // of regions divided by the number of parallel threads times some
ysr@777 1409 // overpartition factor, currently 4). Assumes that this will be called
ysr@777 1410 // in parallel by ParallelGCThreads worker threads with discinct worker
ysr@777 1411 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
ysr@777 1412 // calls will use the same "claim_value", and that that claim value is
ysr@777 1413 // different from the claim_value of any heap region before the start of
ysr@777 1414 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by
ysr@777 1415 // attempting to claim the first region in each chunk, and, if
ysr@777 1416 // successful, applying the closure to each region in the chunk (and
ysr@777 1417 // setting the claim value of the second and subsequent regions of the
ysr@777 1418 // chunk.) For now requires that "doHeapRegion" always returns "false",
ysr@777 1419 // i.e., that a closure never attempt to abort a traversal.
tschatzl@7050 1420 void heap_region_par_iterate_chunked(HeapRegionClosure* cl,
tschatzl@7050 1421 uint worker_id,
tschatzl@7050 1422 uint num_workers,
tschatzl@7050 1423 jint claim_value) const;
ysr@777 1424
tonyp@825 1425 // It resets all the region claim values to the default.
tonyp@825 1426 void reset_heap_region_claim_values();
tonyp@825 1427
johnc@3412 1428 // Resets the claim values of regions in the current
johnc@3412 1429 // collection set to the default.
johnc@3412 1430 void reset_cset_heap_region_claim_values();
johnc@3412 1431
tonyp@790 1432 #ifdef ASSERT
tonyp@790 1433 bool check_heap_region_claim_values(jint claim_value);
johnc@3296 1434
johnc@3296 1435 // Same as the routine above but only checks regions in the
johnc@3296 1436 // current collection set.
johnc@3296 1437 bool check_cset_heap_region_claim_values(jint claim_value);
tonyp@790 1438 #endif // ASSERT
tonyp@790 1439
johnc@3336 1440 // Clear the cached cset start regions and (more importantly)
johnc@3336 1441 // the time stamps. Called when we reset the GC time stamp.
johnc@3336 1442 void clear_cset_start_regions();
johnc@3336 1443
johnc@3336 1444 // Given the id of a worker, obtain or calculate a suitable
johnc@3336 1445 // starting region for iterating over the current collection set.
vkempik@6552 1446 HeapRegion* start_cset_region_for_worker(uint worker_i);
johnc@3296 1447
ysr@777 1448 // Iterate over the regions (if any) in the current collection set.
ysr@777 1449 void collection_set_iterate(HeapRegionClosure* blk);
ysr@777 1450
ysr@777 1451 // As above but starting from region r
ysr@777 1452 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
ysr@777 1453
tschatzl@7018 1454 HeapRegion* next_compaction_region(const HeapRegion* from) const;
ysr@777 1455
ysr@777 1456 // A CollectedHeap will contain some number of spaces. This finds the
ysr@777 1457 // space containing a given address, or else returns NULL.
ysr@777 1458 virtual Space* space_containing(const void* addr) const;
ysr@777 1459
brutisso@7049 1460 // Returns the HeapRegion that contains addr. addr must not be NULL.
brutisso@7049 1461 template <class T>
brutisso@7049 1462 inline HeapRegion* heap_region_containing_raw(const T addr) const;
brutisso@7049 1463
brutisso@7049 1464 // Returns the HeapRegion that contains addr. addr must not be NULL.
brutisso@7049 1465 // If addr is within a humongous continues region, it returns its humongous start region.
tonyp@2963 1466 template <class T>
tonyp@2963 1467 inline HeapRegion* heap_region_containing(const T addr) const;
ysr@777 1468
ysr@777 1469 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
ysr@777 1470 // each address in the (reserved) heap is a member of exactly
ysr@777 1471 // one block. The defining characteristic of a block is that it is
ysr@777 1472 // possible to find its size, and thus to progress forward to the next
ysr@777 1473 // block. (Blocks may be of different sizes.) Thus, blocks may
ysr@777 1474 // represent Java objects, or they might be free blocks in a
ysr@777 1475 // free-list-based heap (or subheap), as long as the two kinds are
ysr@777 1476 // distinguishable and the size of each is determinable.
ysr@777 1477
ysr@777 1478 // Returns the address of the start of the "block" that contains the
ysr@777 1479 // address "addr". We say "blocks" instead of "object" since some heaps
ysr@777 1480 // may not pack objects densely; a chunk may either be an object or a
ysr@777 1481 // non-object.
ysr@777 1482 virtual HeapWord* block_start(const void* addr) const;
ysr@777 1483
ysr@777 1484 // Requires "addr" to be the start of a chunk, and returns its size.
ysr@777 1485 // "addr + size" is required to be the start of a new chunk, or the end
ysr@777 1486 // of the active area of the heap.
ysr@777 1487 virtual size_t block_size(const HeapWord* addr) const;
ysr@777 1488
ysr@777 1489 // Requires "addr" to be the start of a block, and returns "TRUE" iff
ysr@777 1490 // the block is an object.
ysr@777 1491 virtual bool block_is_obj(const HeapWord* addr) const;
ysr@777 1492
ysr@777 1493 // Does this heap support heap inspection? (+PrintClassHistogram)
ysr@777 1494 virtual bool supports_heap_inspection() const { return true; }
ysr@777 1495
ysr@777 1496 // Section on thread-local allocation buffers (TLABs)
ysr@777 1497 // See CollectedHeap for semantics.
ysr@777 1498
brutisso@6376 1499 bool supports_tlab_allocation() const;
brutisso@6376 1500 size_t tlab_capacity(Thread* ignored) const;
brutisso@6376 1501 size_t tlab_used(Thread* ignored) const;
brutisso@6376 1502 size_t max_tlab_size() const;
brutisso@6376 1503 size_t unsafe_max_tlab_alloc(Thread* ignored) const;
ysr@777 1504
ysr@777 1505 // Can a compiler initialize a new object without store barriers?
ysr@777 1506 // This permission only extends from the creation of a new object
ysr@1462 1507 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 1508 // is granted for this heap type, the compiler promises to call
ysr@1462 1509 // defer_store_barrier() below on any slow path allocation of
ysr@1462 1510 // a new object for which such initializing store barriers will
ysr@1462 1511 // have been elided. G1, like CMS, allows this, but should be
ysr@1462 1512 // ready to provide a compensating write barrier as necessary
ysr@1462 1513 // if that storage came out of a non-young region. The efficiency
ysr@1462 1514 // of this implementation depends crucially on being able to
ysr@1462 1515 // answer very efficiently in constant time whether a piece of
ysr@1462 1516 // storage in the heap comes from a young region or not.
ysr@1462 1517 // See ReduceInitialCardMarks.
ysr@777 1518 virtual bool can_elide_tlab_store_barriers() const {
brutisso@3184 1519 return true;
ysr@1462 1520 }
ysr@1462 1521
ysr@1601 1522 virtual bool card_mark_must_follow_store() const {
ysr@1601 1523 return true;
ysr@1601 1524 }
ysr@1601 1525
tschatzl@6541 1526 inline bool is_in_young(const oop obj);
ysr@1462 1527
jmasa@2909 1528 #ifdef ASSERT
jmasa@2909 1529 virtual bool is_in_partial_collection(const void* p);
jmasa@2909 1530 #endif
jmasa@2909 1531
jmasa@2909 1532 virtual bool is_scavengable(const void* addr);
jmasa@2909 1533
ysr@1462 1534 // We don't need barriers for initializing stores to objects
ysr@1462 1535 // in the young gen: for the SATB pre-barrier, there is no
ysr@1462 1536 // pre-value that needs to be remembered; for the remembered-set
ysr@1462 1537 // update logging post-barrier, we don't maintain remembered set
brutisso@3065 1538 // information for young gen objects.
tschatzl@6541 1539 virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
ysr@777 1540
ysr@777 1541 // Returns "true" iff the given word_size is "very large".
ysr@777 1542 static bool isHumongous(size_t word_size) {
johnc@1748 1543 // Note this has to be strictly greater-than as the TLABs
johnc@1748 1544 // are capped at the humongous thresold and we want to
johnc@1748 1545 // ensure that we don't try to allocate a TLAB as
johnc@1748 1546 // humongous and that we don't allocate a humongous
johnc@1748 1547 // object in a TLAB.
johnc@1748 1548 return word_size > _humongous_object_threshold_in_words;
ysr@777 1549 }
ysr@777 1550
ysr@777 1551 // Update mod union table with the set of dirty cards.
ysr@777 1552 void updateModUnion();
ysr@777 1553
ysr@777 1554 // Set the mod union bits corresponding to the given memRegion. Note
ysr@777 1555 // that this is always a safe operation, since it doesn't clear any
ysr@777 1556 // bits.
ysr@777 1557 void markModUnionRange(MemRegion mr);
ysr@777 1558
ysr@777 1559 // Records the fact that a marking phase is no longer in progress.
ysr@777 1560 void set_marking_complete() {
ysr@777 1561 _mark_in_progress = false;
ysr@777 1562 }
ysr@777 1563 void set_marking_started() {
ysr@777 1564 _mark_in_progress = true;
ysr@777 1565 }
ysr@777 1566 bool mark_in_progress() {
ysr@777 1567 return _mark_in_progress;
ysr@777 1568 }
ysr@777 1569
ysr@777 1570 // Print the maximum heap capacity.
ysr@777 1571 virtual size_t max_capacity() const;
ysr@777 1572
ysr@777 1573 virtual jlong millis_since_last_gc();
ysr@777 1574
tonyp@2974 1575
ysr@777 1576 // Convenience function to be used in situations where the heap type can be
ysr@777 1577 // asserted to be this type.
ysr@777 1578 static G1CollectedHeap* heap();
ysr@777 1579
ysr@777 1580 void set_region_short_lived_locked(HeapRegion* hr);
ysr@777 1581 // add appropriate methods for any other surv rate groups
ysr@777 1582
brutisso@6376 1583 YoungList* young_list() const { return _young_list; }
ysr@777 1584
ysr@777 1585 // debugging
ysr@777 1586 bool check_young_list_well_formed() {
ysr@777 1587 return _young_list->check_list_well_formed();
ysr@777 1588 }
johnc@1829 1589
johnc@1829 1590 bool check_young_list_empty(bool check_heap,
ysr@777 1591 bool check_sample = true);
ysr@777 1592
ysr@777 1593 // *** Stuff related to concurrent marking. It's not clear to me that so
ysr@777 1594 // many of these need to be public.
ysr@777 1595
ysr@777 1596 // The functions below are helper functions that a subclass of
ysr@777 1597 // "CollectedHeap" can use in the implementation of its virtual
ysr@777 1598 // functions.
ysr@777 1599 // This performs a concurrent marking of the live objects in a
ysr@777 1600 // bitmap off to the side.
ysr@777 1601 void doConcurrentMark();
ysr@777 1602
ysr@777 1603 bool isMarkedPrev(oop obj) const;
ysr@777 1604 bool isMarkedNext(oop obj) const;
ysr@777 1605
ysr@777 1606 // Determine if an object is dead, given the object and also
ysr@777 1607 // the region to which the object belongs. An object is dead
ysr@777 1608 // iff a) it was not allocated since the last mark and b) it
ysr@777 1609 // is not marked.
ysr@777 1610 bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
ysr@777 1611 return
ysr@777 1612 !hr->obj_allocated_since_prev_marking(obj) &&
ysr@777 1613 !isMarkedPrev(obj);
ysr@777 1614 }
ysr@777 1615
ysr@777 1616 // This function returns true when an object has been
ysr@777 1617 // around since the previous marking and hasn't yet
ysr@777 1618 // been marked during this marking.
ysr@777 1619 bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
ysr@777 1620 return
ysr@777 1621 !hr->obj_allocated_since_next_marking(obj) &&
ysr@777 1622 !isMarkedNext(obj);
ysr@777 1623 }
ysr@777 1624
ysr@777 1625 // Determine if an object is dead, given only the object itself.
ysr@777 1626 // This will find the region to which the object belongs and
ysr@777 1627 // then call the region version of the same function.
ysr@777 1628
ysr@777 1629 // Added if it is NULL it isn't dead.
ysr@777 1630
tschatzl@6541 1631 inline bool is_obj_dead(const oop obj) const;
ysr@777 1632
tschatzl@6541 1633 inline bool is_obj_ill(const oop obj) const;
ysr@777 1634
johnc@5548 1635 bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
johnc@5548 1636 HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
johnc@5548 1637 bool is_marked(oop obj, VerifyOption vo);
johnc@5548 1638 const char* top_at_mark_start_str(VerifyOption vo);
johnc@5548 1639
johnc@5548 1640 ConcurrentMark* concurrent_mark() const { return _cm; }
johnc@5548 1641
johnc@5548 1642 // Refinement
johnc@5548 1643
johnc@5548 1644 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
johnc@5548 1645
johnc@5548 1646 // The dirty cards region list is used to record a subset of regions
johnc@5548 1647 // whose cards need clearing. The list if populated during the
johnc@5548 1648 // remembered set scanning and drained during the card table
johnc@5548 1649 // cleanup. Although the methods are reentrant, population/draining
johnc@5548 1650 // phases must not overlap. For synchronization purposes the last
johnc@5548 1651 // element on the list points to itself.
johnc@5548 1652 HeapRegion* _dirty_cards_region_list;
johnc@5548 1653 void push_dirty_cards_region(HeapRegion* hr);
johnc@5548 1654 HeapRegion* pop_dirty_cards_region();
johnc@5548 1655
johnc@5548 1656 // Optimized nmethod scanning support routines
johnc@5548 1657
johnc@5548 1658 // Register the given nmethod with the G1 heap
johnc@5548 1659 virtual void register_nmethod(nmethod* nm);
johnc@5548 1660
johnc@5548 1661 // Unregister the given nmethod from the G1 heap
johnc@5548 1662 virtual void unregister_nmethod(nmethod* nm);
johnc@5548 1663
johnc@5548 1664 // Migrate the nmethods in the code root lists of the regions
johnc@5548 1665 // in the collection set to regions in to-space. In the event
johnc@5548 1666 // of an evacuation failure, nmethods that reference objects
johnc@5548 1667 // that were not successfullly evacuated are not migrated.
johnc@5548 1668 void migrate_strong_code_roots();
johnc@5548 1669
tschatzl@6402 1670 // Free up superfluous code root memory.
tschatzl@6402 1671 void purge_code_root_memory();
tschatzl@6402 1672
johnc@5548 1673 // Rebuild the stong code root lists for each region
johnc@5548 1674 // after a full GC
johnc@5548 1675 void rebuild_strong_code_roots();
johnc@5548 1676
tschatzl@6229 1677 // Delete entries for dead interned string and clean up unreferenced symbols
tschatzl@6229 1678 // in symbol table, possibly in parallel.
tschatzl@6229 1679 void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
tschatzl@6229 1680
stefank@6992 1681 // Parallel phase of unloading/cleaning after G1 concurrent mark.
stefank@6992 1682 void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
stefank@6992 1683
tschatzl@6405 1684 // Redirty logged cards in the refinement queue.
tschatzl@6405 1685 void redirty_logged_cards();
johnc@5548 1686 // Verification
johnc@5548 1687
johnc@5548 1688 // The following is just to alert the verification code
johnc@5548 1689 // that a full collection has occurred and that the
johnc@5548 1690 // remembered sets are no longer up to date.
johnc@5548 1691 bool _full_collection;
johnc@5548 1692 void set_full_collection() { _full_collection = true;}
johnc@5548 1693 void clear_full_collection() {_full_collection = false;}
johnc@5548 1694 bool full_collection() {return _full_collection;}
johnc@5548 1695
johnc@5548 1696 // Perform any cleanup actions necessary before allowing a verification.
johnc@5548 1697 virtual void prepare_for_verify();
johnc@5548 1698
johnc@5548 1699 // Perform verification.
johnc@5548 1700
johnc@5548 1701 // vo == UsePrevMarking -> use "prev" marking information,
johnc@5548 1702 // vo == UseNextMarking -> use "next" marking information
johnc@5548 1703 // vo == UseMarkWord -> use the mark word in the object header
johnc@5548 1704 //
johnc@5548 1705 // NOTE: Only the "prev" marking information is guaranteed to be
johnc@5548 1706 // consistent most of the time, so most calls to this should use
johnc@5548 1707 // vo == UsePrevMarking.
johnc@5548 1708 // Currently, there is only one case where this is called with
johnc@5548 1709 // vo == UseNextMarking, which is to verify the "next" marking
johnc@5548 1710 // information at the end of remark.
johnc@5548 1711 // Currently there is only one place where this is called with
johnc@5548 1712 // vo == UseMarkWord, which is to verify the marking during a
johnc@5548 1713 // full GC.
johnc@5548 1714 void verify(bool silent, VerifyOption vo);
johnc@5548 1715
johnc@5548 1716 // Override; it uses the "prev" marking information
johnc@5548 1717 virtual void verify(bool silent);
johnc@5548 1718
tonyp@3957 1719 // The methods below are here for convenience and dispatch the
tonyp@3957 1720 // appropriate method depending on value of the given VerifyOption
johnc@5548 1721 // parameter. The values for that parameter, and their meanings,
johnc@5548 1722 // are the same as those above.
tonyp@3957 1723
tonyp@3957 1724 bool is_obj_dead_cond(const oop obj,
tonyp@3957 1725 const HeapRegion* hr,
tschatzl@6541 1726 const VerifyOption vo) const;
tonyp@3957 1727
tonyp@3957 1728 bool is_obj_dead_cond(const oop obj,
tschatzl@6541 1729 const VerifyOption vo) const;
tonyp@3957 1730
johnc@5548 1731 // Printing
tonyp@3957 1732
johnc@5548 1733 virtual void print_on(outputStream* st) const;
johnc@5548 1734 virtual void print_extended_on(outputStream* st) const;
johnc@5548 1735 virtual void print_on_error(outputStream* st) const;
ysr@777 1736
johnc@5548 1737 virtual void print_gc_threads_on(outputStream* st) const;
johnc@5548 1738 virtual void gc_threads_do(ThreadClosure* tc) const;
ysr@777 1739
johnc@5548 1740 // Override
johnc@5548 1741 void print_tracing_info() const;
johnc@5548 1742
johnc@5548 1743 // The following two methods are helpful for debugging RSet issues.
johnc@5548 1744 void print_cset_rsets() PRODUCT_RETURN;
johnc@5548 1745 void print_all_rsets() PRODUCT_RETURN;
apetrusenko@1231 1746
ysr@777 1747 public:
ysr@777 1748 size_t pending_card_num();
ysr@777 1749 size_t cards_scanned();
ysr@777 1750
ysr@777 1751 protected:
ysr@777 1752 size_t _max_heap_capacity;
ysr@777 1753 };
ysr@777 1754
ysr@1280 1755 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
ysr@1280 1756 private:
ysr@1280 1757 bool _retired;
ysr@1280 1758
ysr@1280 1759 public:
johnc@3086 1760 G1ParGCAllocBuffer(size_t gclab_word_size);
tschatzl@6929 1761 virtual ~G1ParGCAllocBuffer() {
tschatzl@6929 1762 guarantee(_retired, "Allocation buffer has not been retired");
tschatzl@6929 1763 }
ysr@1280 1764
tschatzl@6929 1765 virtual void set_buf(HeapWord* buf) {
ysr@1280 1766 ParGCAllocBuffer::set_buf(buf);
ysr@1280 1767 _retired = false;
ysr@1280 1768 }
ysr@1280 1769
tschatzl@6929 1770 virtual void retire(bool end_of_gc, bool retain) {
tschatzl@6929 1771 if (_retired) {
ysr@1280 1772 return;
tschatzl@6929 1773 }
ysr@1280 1774 ParGCAllocBuffer::retire(end_of_gc, retain);
ysr@1280 1775 _retired = true;
ysr@1280 1776 }
ysr@1280 1777 };
ysr@1280 1778
stefank@2314 1779 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial