src/share/vm/gc_implementation/g1/heapRegion.hpp

Mon, 29 Apr 2013 09:31:59 +0200

author
mgerdin
date
Mon, 29 Apr 2013 09:31:59 +0200
changeset 5022
caac22686b17
parent 4542
db9981fd3124
child 5548
5888334c9c24
permissions
-rw-r--r--

Merge

ysr@777 1 /*
johnc@3412 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
stefank@2314 30 #include "gc_implementation/g1/survRateGroup.hpp"
stefank@2314 31 #include "gc_implementation/shared/ageTable.hpp"
stefank@2314 32 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 33 #include "memory/space.inline.hpp"
stefank@2314 34 #include "memory/watermark.hpp"
jprovino@4542 35 #include "utilities/macros.hpp"
stefank@2314 36
jprovino@4542 37 #if INCLUDE_ALL_GCS
ysr@777 38
ysr@777 39 // A HeapRegion is the smallest piece of a G1CollectedHeap that
ysr@777 40 // can be collected independently.
ysr@777 41
ysr@777 42 // NOTE: Although a HeapRegion is a Space, its
ysr@777 43 // Space::initDirtyCardClosure method must not be called.
ysr@777 44 // The problem is that the existence of this method breaks
ysr@777 45 // the independence of barrier sets from remembered sets.
ysr@777 46 // The solution is to remove this method from the definition
ysr@777 47 // of a Space.
ysr@777 48
ysr@777 49 class CompactibleSpace;
ysr@777 50 class ContiguousSpace;
ysr@777 51 class HeapRegionRemSet;
ysr@777 52 class HeapRegionRemSetIterator;
ysr@777 53 class HeapRegion;
tonyp@2472 54 class HeapRegionSetBase;
tonyp@2472 55
tonyp@3713 56 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
tonyp@2963 57 #define HR_FORMAT_PARAMS(_hr_) \
tonyp@2963 58 (_hr_)->hrs_index(), \
tonyp@3957 59 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \
tonyp@3957 60 (_hr_)->startsHumongous() ? "HS" : \
tonyp@3957 61 (_hr_)->continuesHumongous() ? "HC" : \
tonyp@3957 62 !(_hr_)->is_empty() ? "O" : "F", \
tonyp@2963 63 (_hr_)->bottom(), (_hr_)->top(), (_hr_)->end()
ysr@777 64
tonyp@3713 65 // sentinel value for hrs_index
tonyp@3713 66 #define G1_NULL_HRS_INDEX ((uint) -1)
tonyp@3713 67
ysr@777 68 // A dirty card to oop closure for heap regions. It
ysr@777 69 // knows how to get the G1 heap and how to use the bitmap
ysr@777 70 // in the concurrent marker used by G1 to filter remembered
ysr@777 71 // sets.
ysr@777 72
ysr@777 73 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
ysr@777 74 public:
ysr@777 75 // Specification of possible DirtyCardToOopClosure filtering.
ysr@777 76 enum FilterKind {
ysr@777 77 NoFilterKind,
ysr@777 78 IntoCSFilterKind,
ysr@777 79 OutOfRegionFilterKind
ysr@777 80 };
ysr@777 81
ysr@777 82 protected:
ysr@777 83 HeapRegion* _hr;
ysr@777 84 FilterKind _fk;
ysr@777 85 G1CollectedHeap* _g1;
ysr@777 86
ysr@777 87 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 88 HeapWord* bottom, HeapWord* top,
coleenp@4037 89 ExtendedOopClosure* cl);
ysr@777 90
ysr@777 91 // We don't specialize this for FilteringClosure; filtering is handled by
ysr@777 92 // the "FilterKind" mechanism. But we provide this to avoid a compiler
ysr@777 93 // warning.
ysr@777 94 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 95 HeapWord* bottom, HeapWord* top,
ysr@777 96 FilteringClosure* cl) {
ysr@777 97 HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
coleenp@4037 98 (ExtendedOopClosure*)cl);
ysr@777 99 }
ysr@777 100
ysr@777 101 // Get the actual top of the area on which the closure will
ysr@777 102 // operate, given where the top is assumed to be (the end of the
ysr@777 103 // memory region passed to do_MemRegion) and where the object
ysr@777 104 // at the top is assumed to start. For example, an object may
ysr@777 105 // start at the top but actually extend past the assumed top,
ysr@777 106 // in which case the top becomes the end of the object.
ysr@777 107 HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
ysr@777 108 return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
ysr@777 109 }
ysr@777 110
ysr@777 111 // Walk the given memory region from bottom to (actual) top
ysr@777 112 // looking for objects and applying the oop closure (_cl) to
ysr@777 113 // them. The base implementation of this treats the area as
ysr@777 114 // blocks, where a block may or may not be an object. Sub-
ysr@777 115 // classes should override this to provide more accurate
ysr@777 116 // or possibly more efficient walking.
ysr@777 117 void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
ysr@777 118 Filtering_DCTOC::walk_mem_region(mr, bottom, top);
ysr@777 119 }
ysr@777 120
ysr@777 121 public:
ysr@777 122 HeapRegionDCTOC(G1CollectedHeap* g1,
coleenp@4037 123 HeapRegion* hr, ExtendedOopClosure* cl,
ysr@777 124 CardTableModRefBS::PrecisionStyle precision,
ysr@777 125 FilterKind fk);
ysr@777 126 };
ysr@777 127
ysr@777 128 // The complicating factor is that BlockOffsetTable diverged
ysr@777 129 // significantly, and we need functionality that is only in the G1 version.
ysr@777 130 // So I copied that code, which led to an alternate G1 version of
ysr@777 131 // OffsetTableContigSpace. If the two versions of BlockOffsetTable could
ysr@777 132 // be reconciled, then G1OffsetTableContigSpace could go away.
ysr@777 133
ysr@777 134 // The idea behind time stamps is the following. Doing a save_marks on
ysr@777 135 // all regions at every GC pause is time consuming (if I remember
ysr@777 136 // well, 10ms or so). So, we would like to do that only for regions
ysr@777 137 // that are GC alloc regions. To achieve this, we use time
ysr@777 138 // stamps. For every evacuation pause, G1CollectedHeap generates a
ysr@777 139 // unique time stamp (essentially a counter that gets
ysr@777 140 // incremented). Every time we want to call save_marks on a region,
ysr@777 141 // we set the saved_mark_word to top and also copy the current GC
ysr@777 142 // time stamp to the time stamp field of the space. Reading the
ysr@777 143 // saved_mark_word involves checking the time stamp of the
ysr@777 144 // region. If it is the same as the current GC time stamp, then we
ysr@777 145 // can safely read the saved_mark_word field, as it is valid. If the
ysr@777 146 // time stamp of the region is not the same as the current GC time
ysr@777 147 // stamp, then we instead read top, as the saved_mark_word field is
ysr@777 148 // invalid. Time stamps (on the regions and also on the
ysr@777 149 // G1CollectedHeap) are reset at every cleanup (we iterate over
ysr@777 150 // the regions anyway) and at the end of a Full GC. The current scheme
ysr@777 151 // that uses sequential unsigned ints will fail only if we have 4b
ysr@777 152 // evacuation pauses between two cleanups, which is _highly_ unlikely.
ysr@777 153
ysr@777 154 class G1OffsetTableContigSpace: public ContiguousSpace {
ysr@777 155 friend class VMStructs;
ysr@777 156 protected:
ysr@777 157 G1BlockOffsetArrayContigSpace _offsets;
ysr@777 158 Mutex _par_alloc_lock;
ysr@777 159 volatile unsigned _gc_time_stamp;
tonyp@2715 160 // When we need to retire an allocation region, while other threads
tonyp@2715 161 // are also concurrently trying to allocate into it, we typically
tonyp@2715 162 // allocate a dummy object at the end of the region to ensure that
tonyp@2715 163 // no more allocations can take place in it. However, sometimes we
tonyp@2715 164 // want to know where the end of the last "real" object we allocated
tonyp@2715 165 // into the region was and this is what this keeps track.
tonyp@2715 166 HeapWord* _pre_dummy_top;
ysr@777 167
ysr@777 168 public:
ysr@777 169 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
johnc@4065 170 MemRegion mr);
ysr@777 171
ysr@777 172 void set_bottom(HeapWord* value);
ysr@777 173 void set_end(HeapWord* value);
ysr@777 174
ysr@777 175 virtual HeapWord* saved_mark_word() const;
ysr@777 176 virtual void set_saved_mark();
ysr@777 177 void reset_gc_time_stamp() { _gc_time_stamp = 0; }
tonyp@3957 178 unsigned get_gc_time_stamp() { return _gc_time_stamp; }
ysr@777 179
tonyp@2715 180 // See the comment above in the declaration of _pre_dummy_top for an
tonyp@2715 181 // explanation of what it is.
tonyp@2715 182 void set_pre_dummy_top(HeapWord* pre_dummy_top) {
tonyp@2715 183 assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
tonyp@2715 184 _pre_dummy_top = pre_dummy_top;
tonyp@2715 185 }
tonyp@2715 186 HeapWord* pre_dummy_top() {
tonyp@2715 187 return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
tonyp@2715 188 }
tonyp@2715 189 void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
tonyp@2715 190
tonyp@791 191 virtual void clear(bool mangle_space);
ysr@777 192
ysr@777 193 HeapWord* block_start(const void* p);
ysr@777 194 HeapWord* block_start_const(const void* p) const;
ysr@777 195
ysr@777 196 // Add offset table update.
ysr@777 197 virtual HeapWord* allocate(size_t word_size);
ysr@777 198 HeapWord* par_allocate(size_t word_size);
ysr@777 199
ysr@777 200 // MarkSweep support phase3
ysr@777 201 virtual HeapWord* initialize_threshold();
ysr@777 202 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
ysr@777 203
ysr@777 204 virtual void print() const;
tonyp@2453 205
tonyp@2453 206 void reset_bot() {
tonyp@2453 207 _offsets.zero_bottom_entry();
tonyp@2453 208 _offsets.initialize_threshold();
tonyp@2453 209 }
tonyp@2453 210
tonyp@2453 211 void update_bot_for_object(HeapWord* start, size_t word_size) {
tonyp@2453 212 _offsets.alloc_block(start, word_size);
tonyp@2453 213 }
tonyp@2453 214
tonyp@2453 215 void print_bot_on(outputStream* out) {
tonyp@2453 216 _offsets.print_on(out);
tonyp@2453 217 }
ysr@777 218 };
ysr@777 219
ysr@777 220 class HeapRegion: public G1OffsetTableContigSpace {
ysr@777 221 friend class VMStructs;
ysr@777 222 private:
ysr@777 223
tonyp@790 224 enum HumongousType {
tonyp@790 225 NotHumongous = 0,
tonyp@790 226 StartsHumongous,
tonyp@790 227 ContinuesHumongous
tonyp@790 228 };
tonyp@790 229
ysr@777 230 // Requires that the region "mr" be dense with objects, and begin and end
ysr@777 231 // with an object.
coleenp@4037 232 void oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl);
ysr@777 233
ysr@777 234 // The remembered set for this region.
ysr@777 235 // (Might want to make this "inline" later, to avoid some alloc failure
ysr@777 236 // issues.)
ysr@777 237 HeapRegionRemSet* _rem_set;
ysr@777 238
ysr@777 239 G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
ysr@777 240
ysr@777 241 protected:
tonyp@2963 242 // The index of this region in the heap region sequence.
tonyp@3713 243 uint _hrs_index;
ysr@777 244
tonyp@790 245 HumongousType _humongous_type;
ysr@777 246 // For a humongous region, region in which it starts.
ysr@777 247 HeapRegion* _humongous_start_region;
ysr@777 248 // For the start region of a humongous sequence, it's original end().
ysr@777 249 HeapWord* _orig_end;
ysr@777 250
ysr@777 251 // True iff the region is in current collection_set.
ysr@777 252 bool _in_collection_set;
ysr@777 253
ysr@777 254 // True iff an attempt to evacuate an object in the region failed.
ysr@777 255 bool _evacuation_failed;
ysr@777 256
ysr@777 257 // A heap region may be a member one of a number of special subsets, each
ysr@777 258 // represented as linked lists through the field below. Currently, these
ysr@777 259 // sets include:
ysr@777 260 // The collection set.
ysr@777 261 // The set of allocation regions used in a collection pause.
ysr@777 262 // Spaces that may contain gray objects.
ysr@777 263 HeapRegion* _next_in_special_set;
ysr@777 264
ysr@777 265 // next region in the young "generation" region set
ysr@777 266 HeapRegion* _next_young_region;
ysr@777 267
apetrusenko@1231 268 // Next region whose cards need cleaning
apetrusenko@1231 269 HeapRegion* _next_dirty_cards_region;
apetrusenko@1231 270
tonyp@2472 271 // Fields used by the HeapRegionSetBase class and subclasses.
tonyp@2472 272 HeapRegion* _next;
tonyp@2472 273 #ifdef ASSERT
tonyp@2472 274 HeapRegionSetBase* _containing_set;
tonyp@2472 275 #endif // ASSERT
tonyp@2472 276 bool _pending_removal;
tonyp@2472 277
ysr@777 278 // For parallel heapRegion traversal.
ysr@777 279 jint _claimed;
ysr@777 280
ysr@777 281 // We use concurrent marking to determine the amount of live data
ysr@777 282 // in each heap region.
ysr@777 283 size_t _prev_marked_bytes; // Bytes known to be live via last completed marking.
ysr@777 284 size_t _next_marked_bytes; // Bytes known to be live via in-progress marking.
ysr@777 285
tonyp@3714 286 // The calculated GC efficiency of the region.
ysr@777 287 double _gc_efficiency;
ysr@777 288
ysr@777 289 enum YoungType {
ysr@777 290 NotYoung, // a region is not young
ysr@777 291 Young, // a region is young
tonyp@2963 292 Survivor // a region is young and it contains survivors
ysr@777 293 };
ysr@777 294
johnc@2021 295 volatile YoungType _young_type;
ysr@777 296 int _young_index_in_cset;
ysr@777 297 SurvRateGroup* _surv_rate_group;
ysr@777 298 int _age_index;
ysr@777 299
ysr@777 300 // The start of the unmarked area. The unmarked area extends from this
ysr@777 301 // word until the top and/or end of the region, and is the part
ysr@777 302 // of the region for which no marking was done, i.e. objects may
ysr@777 303 // have been allocated in this part since the last mark phase.
ysr@777 304 // "prev" is the top at the start of the last completed marking.
ysr@777 305 // "next" is the top at the start of the in-progress marking (if any.)
ysr@777 306 HeapWord* _prev_top_at_mark_start;
ysr@777 307 HeapWord* _next_top_at_mark_start;
ysr@777 308 // If a collection pause is in progress, this is the top at the start
ysr@777 309 // of that pause.
ysr@777 310
ysr@777 311 void init_top_at_mark_start() {
ysr@777 312 assert(_prev_marked_bytes == 0 &&
ysr@777 313 _next_marked_bytes == 0,
ysr@777 314 "Must be called after zero_marked_bytes.");
ysr@777 315 HeapWord* bot = bottom();
ysr@777 316 _prev_top_at_mark_start = bot;
ysr@777 317 _next_top_at_mark_start = bot;
ysr@777 318 }
ysr@777 319
ysr@777 320 void set_young_type(YoungType new_type) {
ysr@777 321 //assert(_young_type != new_type, "setting the same type" );
ysr@777 322 // TODO: add more assertions here
ysr@777 323 _young_type = new_type;
ysr@777 324 }
ysr@777 325
johnc@1829 326 // Cached attributes used in the collection set policy information
johnc@1829 327
johnc@1829 328 // The RSet length that was added to the total value
johnc@1829 329 // for the collection set.
johnc@1829 330 size_t _recorded_rs_length;
johnc@1829 331
johnc@1829 332 // The predicted elapsed time that was added to total value
johnc@1829 333 // for the collection set.
johnc@1829 334 double _predicted_elapsed_time_ms;
johnc@1829 335
johnc@1829 336 // The predicted number of bytes to copy that was added to
johnc@1829 337 // the total value for the collection set.
johnc@1829 338 size_t _predicted_bytes_to_copy;
johnc@1829 339
ysr@777 340 public:
tonyp@3713 341 HeapRegion(uint hrs_index,
tonyp@2963 342 G1BlockOffsetSharedArray* sharedOffsetArray,
johnc@4065 343 MemRegion mr);
ysr@777 344
johnc@3182 345 static int LogOfHRGrainBytes;
johnc@3182 346 static int LogOfHRGrainWords;
johnc@3182 347
johnc@3182 348 static size_t GrainBytes;
johnc@3182 349 static size_t GrainWords;
johnc@3182 350 static size_t CardsPerRegion;
tonyp@1377 351
tonyp@3176 352 static size_t align_up_to_region_byte_size(size_t sz) {
tonyp@3176 353 return (sz + (size_t) GrainBytes - 1) &
tonyp@3176 354 ~((1 << (size_t) LogOfHRGrainBytes) - 1);
tonyp@3176 355 }
tonyp@3176 356
tonyp@1377 357 // It sets up the heap region size (GrainBytes / GrainWords), as
tonyp@1377 358 // well as other related fields that are based on the heap region
tonyp@1377 359 // size (LogOfHRGrainBytes / LogOfHRGrainWords /
tonyp@1377 360 // CardsPerRegion). All those fields are considered constant
tonyp@1377 361 // throughout the JVM's execution, therefore they should only be set
tonyp@1377 362 // up once during initialization time.
tonyp@1377 363 static void setup_heap_region_size(uintx min_heap_size);
ysr@777 364
tonyp@790 365 enum ClaimValues {
johnc@3296 366 InitialClaimValue = 0,
johnc@3296 367 FinalCountClaimValue = 1,
johnc@3296 368 NoteEndClaimValue = 2,
johnc@3296 369 ScrubRemSetClaimValue = 3,
johnc@3296 370 ParVerifyClaimValue = 4,
johnc@3296 371 RebuildRSClaimValue = 5,
tonyp@3691 372 ParEvacFailureClaimValue = 6,
tonyp@3691 373 AggregateCountClaimValue = 7,
tonyp@3691 374 VerifyCountClaimValue = 8
tonyp@790 375 };
tonyp@790 376
tonyp@2454 377 inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
tonyp@2454 378 assert(is_young(), "we can only skip BOT updates on young regions");
tonyp@2454 379 return ContiguousSpace::par_allocate(word_size);
tonyp@2454 380 }
tonyp@2454 381 inline HeapWord* allocate_no_bot_updates(size_t word_size) {
tonyp@2454 382 assert(is_young(), "we can only skip BOT updates on young regions");
tonyp@2454 383 return ContiguousSpace::allocate(word_size);
tonyp@2454 384 }
tonyp@2454 385
ysr@777 386 // If this region is a member of a HeapRegionSeq, the index in that
ysr@777 387 // sequence, otherwise -1.
tonyp@3713 388 uint hrs_index() const { return _hrs_index; }
ysr@777 389
ysr@777 390 // The number of bytes marked live in the region in the last marking phase.
ysr@777 391 size_t marked_bytes() { return _prev_marked_bytes; }
tonyp@2717 392 size_t live_bytes() {
tonyp@2717 393 return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
tonyp@2717 394 }
tonyp@2717 395
ysr@777 396 // The number of bytes counted in the next marking.
ysr@777 397 size_t next_marked_bytes() { return _next_marked_bytes; }
ysr@777 398 // The number of bytes live wrt the next marking.
ysr@777 399 size_t next_live_bytes() {
tonyp@2717 400 return
tonyp@2717 401 (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
ysr@777 402 }
ysr@777 403
ysr@777 404 // A lower bound on the amount of garbage bytes in the region.
ysr@777 405 size_t garbage_bytes() {
ysr@777 406 size_t used_at_mark_start_bytes =
ysr@777 407 (prev_top_at_mark_start() - bottom()) * HeapWordSize;
ysr@777 408 assert(used_at_mark_start_bytes >= marked_bytes(),
ysr@777 409 "Can't mark more than we have.");
ysr@777 410 return used_at_mark_start_bytes - marked_bytes();
ysr@777 411 }
ysr@777 412
tonyp@3539 413 // Return the amount of bytes we'll reclaim if we collect this
tonyp@3539 414 // region. This includes not only the known garbage bytes in the
tonyp@3539 415 // region but also any unallocated space in it, i.e., [top, end),
tonyp@3539 416 // since it will also be reclaimed if we collect the region.
tonyp@3539 417 size_t reclaimable_bytes() {
tonyp@3539 418 size_t known_live_bytes = live_bytes();
tonyp@3539 419 assert(known_live_bytes <= capacity(), "sanity");
tonyp@3539 420 return capacity() - known_live_bytes;
tonyp@3539 421 }
tonyp@3539 422
ysr@777 423 // An upper bound on the number of live bytes in the region.
ysr@777 424 size_t max_live_bytes() { return used() - garbage_bytes(); }
ysr@777 425
ysr@777 426 void add_to_marked_bytes(size_t incr_bytes) {
ysr@777 427 _next_marked_bytes = _next_marked_bytes + incr_bytes;
johnc@3292 428 assert(_next_marked_bytes <= used(), "invariant" );
ysr@777 429 }
ysr@777 430
ysr@777 431 void zero_marked_bytes() {
ysr@777 432 _prev_marked_bytes = _next_marked_bytes = 0;
ysr@777 433 }
ysr@777 434
tonyp@790 435 bool isHumongous() const { return _humongous_type != NotHumongous; }
tonyp@790 436 bool startsHumongous() const { return _humongous_type == StartsHumongous; }
tonyp@790 437 bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
ysr@777 438 // For a humongous region, region in which it starts.
ysr@777 439 HeapRegion* humongous_start_region() const {
ysr@777 440 return _humongous_start_region;
ysr@777 441 }
ysr@777 442
tonyp@3957 443 // Return the number of distinct regions that are covered by this region:
tonyp@3957 444 // 1 if the region is not humongous, >= 1 if the region is humongous.
tonyp@3957 445 uint region_num() const {
tonyp@3957 446 if (!isHumongous()) {
tonyp@3957 447 return 1U;
tonyp@3957 448 } else {
tonyp@3957 449 assert(startsHumongous(), "doesn't make sense on HC regions");
tonyp@3957 450 assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
tonyp@3957 451 return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
tonyp@3957 452 }
tonyp@3957 453 }
tonyp@3957 454
tonyp@3957 455 // Return the index + 1 of the last HC regions that's associated
tonyp@3957 456 // with this HS region.
tonyp@3957 457 uint last_hc_index() const {
tonyp@3957 458 assert(startsHumongous(), "don't call this otherwise");
tonyp@3957 459 return hrs_index() + region_num();
tonyp@3957 460 }
tonyp@3957 461
brutisso@3216 462 // Same as Space::is_in_reserved, but will use the original size of the region.
brutisso@3216 463 // The original size is different only for start humongous regions. They get
brutisso@3216 464 // their _end set up to be the end of the last continues region of the
brutisso@3216 465 // corresponding humongous object.
brutisso@3216 466 bool is_in_reserved_raw(const void* p) const {
brutisso@3216 467 return _bottom <= p && p < _orig_end;
brutisso@3216 468 }
brutisso@3216 469
tonyp@2453 470 // Makes the current region be a "starts humongous" region, i.e.,
tonyp@2453 471 // the first region in a series of one or more contiguous regions
tonyp@2453 472 // that will contain a single "humongous" object. The two parameters
tonyp@2453 473 // are as follows:
tonyp@2453 474 //
tonyp@2453 475 // new_top : The new value of the top field of this region which
tonyp@2453 476 // points to the end of the humongous object that's being
tonyp@2453 477 // allocated. If there is more than one region in the series, top
tonyp@2453 478 // will lie beyond this region's original end field and on the last
tonyp@2453 479 // region in the series.
tonyp@2453 480 //
tonyp@2453 481 // new_end : The new value of the end field of this region which
tonyp@2453 482 // points to the end of the last region in the series. If there is
tonyp@2453 483 // one region in the series (namely: this one) end will be the same
tonyp@2453 484 // as the original end of this region.
tonyp@2453 485 //
tonyp@2453 486 // Updating top and end as described above makes this region look as
tonyp@2453 487 // if it spans the entire space taken up by all the regions in the
tonyp@2453 488 // series and an single allocation moved its top to new_top. This
tonyp@2453 489 // ensures that the space (capacity / allocated) taken up by all
tonyp@2453 490 // humongous regions can be calculated by just looking at the
tonyp@2453 491 // "starts humongous" regions and by ignoring the "continues
tonyp@2453 492 // humongous" regions.
tonyp@2453 493 void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
ysr@777 494
tonyp@2453 495 // Makes the current region be a "continues humongous'
tonyp@2453 496 // region. first_hr is the "start humongous" region of the series
tonyp@2453 497 // which this region will be part of.
tonyp@2453 498 void set_continuesHumongous(HeapRegion* first_hr);
ysr@777 499
tonyp@2472 500 // Unsets the humongous-related fields on the region.
tonyp@2472 501 void set_notHumongous();
tonyp@2472 502
ysr@777 503 // If the region has a remembered set, return a pointer to it.
ysr@777 504 HeapRegionRemSet* rem_set() const {
ysr@777 505 return _rem_set;
ysr@777 506 }
ysr@777 507
ysr@777 508 // True iff the region is in current collection_set.
ysr@777 509 bool in_collection_set() const {
ysr@777 510 return _in_collection_set;
ysr@777 511 }
ysr@777 512 void set_in_collection_set(bool b) {
ysr@777 513 _in_collection_set = b;
ysr@777 514 }
ysr@777 515 HeapRegion* next_in_collection_set() {
ysr@777 516 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 517 assert(_next_in_special_set == NULL ||
ysr@777 518 _next_in_special_set->in_collection_set(),
ysr@777 519 "Malformed CS.");
ysr@777 520 return _next_in_special_set;
ysr@777 521 }
ysr@777 522 void set_next_in_collection_set(HeapRegion* r) {
ysr@777 523 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 524 assert(r == NULL || r->in_collection_set(), "Malformed CS.");
ysr@777 525 _next_in_special_set = r;
ysr@777 526 }
ysr@777 527
tonyp@2472 528 // Methods used by the HeapRegionSetBase class and subclasses.
tonyp@2472 529
tonyp@2472 530 // Getter and setter for the next field used to link regions into
tonyp@2472 531 // linked lists.
tonyp@2472 532 HeapRegion* next() { return _next; }
tonyp@2472 533
tonyp@2472 534 void set_next(HeapRegion* next) { _next = next; }
tonyp@2472 535
tonyp@2472 536 // Every region added to a set is tagged with a reference to that
tonyp@2472 537 // set. This is used for doing consistency checking to make sure that
tonyp@2472 538 // the contents of a set are as they should be and it's only
tonyp@2472 539 // available in non-product builds.
tonyp@2472 540 #ifdef ASSERT
tonyp@2472 541 void set_containing_set(HeapRegionSetBase* containing_set) {
tonyp@2472 542 assert((containing_set == NULL && _containing_set != NULL) ||
tonyp@2472 543 (containing_set != NULL && _containing_set == NULL),
tonyp@2472 544 err_msg("containing_set: "PTR_FORMAT" "
tonyp@2472 545 "_containing_set: "PTR_FORMAT,
tonyp@2472 546 containing_set, _containing_set));
tonyp@2472 547
tonyp@2472 548 _containing_set = containing_set;
tonyp@2643 549 }
tonyp@2472 550
tonyp@2472 551 HeapRegionSetBase* containing_set() { return _containing_set; }
tonyp@2472 552 #else // ASSERT
tonyp@2472 553 void set_containing_set(HeapRegionSetBase* containing_set) { }
tonyp@2472 554
tonyp@2643 555 // containing_set() is only used in asserts so there's no reason
tonyp@2472 556 // to provide a dummy version of it.
tonyp@2472 557 #endif // ASSERT
tonyp@2472 558
tonyp@2472 559 // If we want to remove regions from a list in bulk we can simply tag
tonyp@2472 560 // them with the pending_removal tag and call the
tonyp@2472 561 // remove_all_pending() method on the list.
tonyp@2472 562
tonyp@2472 563 bool pending_removal() { return _pending_removal; }
tonyp@2472 564
tonyp@2472 565 void set_pending_removal(bool pending_removal) {
tonyp@2643 566 if (pending_removal) {
tonyp@2643 567 assert(!_pending_removal && containing_set() != NULL,
tonyp@2643 568 "can only set pending removal to true if it's false and "
tonyp@2643 569 "the region belongs to a region set");
tonyp@2643 570 } else {
tonyp@2643 571 assert( _pending_removal && containing_set() == NULL,
tonyp@2643 572 "can only set pending removal to false if it's true and "
tonyp@2643 573 "the region does not belong to a region set");
tonyp@2643 574 }
tonyp@2472 575
tonyp@2472 576 _pending_removal = pending_removal;
ysr@777 577 }
ysr@777 578
ysr@777 579 HeapRegion* get_next_young_region() { return _next_young_region; }
ysr@777 580 void set_next_young_region(HeapRegion* hr) {
ysr@777 581 _next_young_region = hr;
ysr@777 582 }
ysr@777 583
apetrusenko@1231 584 HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
apetrusenko@1231 585 HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
apetrusenko@1231 586 void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
apetrusenko@1231 587 bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
apetrusenko@1231 588
tonyp@2963 589 HeapWord* orig_end() { return _orig_end; }
tonyp@2963 590
ysr@777 591 // Allows logical separation between objects allocated before and after.
ysr@777 592 void save_marks();
ysr@777 593
ysr@777 594 // Reset HR stuff to default values.
ysr@777 595 void hr_clear(bool par, bool clear_space);
tonyp@2849 596 void par_clear();
ysr@777 597
ysr@777 598 // Get the start of the unmarked area in this region.
ysr@777 599 HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
ysr@777 600 HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
ysr@777 601
ysr@777 602 // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
ysr@777 603 // allocated in the current region before the last call to "save_mark".
coleenp@4037 604 void oop_before_save_marks_iterate(ExtendedOopClosure* cl);
ysr@777 605
ysr@777 606 // Note the start or end of marking. This tells the heap region
ysr@777 607 // that the collector is about to start or has finished (concurrently)
ysr@777 608 // marking the heap.
ysr@777 609
tonyp@3416 610 // Notify the region that concurrent marking is starting. Initialize
tonyp@3416 611 // all fields related to the next marking info.
tonyp@3416 612 inline void note_start_of_marking();
ysr@777 613
tonyp@3416 614 // Notify the region that concurrent marking has finished. Copy the
tonyp@3416 615 // (now finalized) next marking info fields into the prev marking
tonyp@3416 616 // info fields.
tonyp@3416 617 inline void note_end_of_marking();
ysr@777 618
tonyp@3416 619 // Notify the region that it will be used as to-space during a GC
tonyp@3416 620 // and we are about to start copying objects into it.
tonyp@3416 621 inline void note_start_of_copying(bool during_initial_mark);
ysr@777 622
tonyp@3416 623 // Notify the region that it ceases being to-space during a GC and
tonyp@3416 624 // we will not copy objects into it any more.
tonyp@3416 625 inline void note_end_of_copying(bool during_initial_mark);
tonyp@3416 626
tonyp@3416 627 // Notify the region that we are about to start processing
tonyp@3416 628 // self-forwarded objects during evac failure handling.
tonyp@3416 629 void note_self_forwarding_removal_start(bool during_initial_mark,
tonyp@3416 630 bool during_conc_mark);
tonyp@3416 631
tonyp@3416 632 // Notify the region that we have finished processing self-forwarded
tonyp@3416 633 // objects during evac failure handling.
tonyp@3416 634 void note_self_forwarding_removal_end(bool during_initial_mark,
tonyp@3416 635 bool during_conc_mark,
tonyp@3416 636 size_t marked_bytes);
ysr@777 637
ysr@777 638 // Returns "false" iff no object in the region was allocated when the
ysr@777 639 // last mark phase ended.
ysr@777 640 bool is_marked() { return _prev_top_at_mark_start != bottom(); }
ysr@777 641
ysr@777 642 void reset_during_compaction() {
tonyp@3957 643 assert(isHumongous() && startsHumongous(),
tonyp@3957 644 "should only be called for starts humongous regions");
ysr@777 645
ysr@777 646 zero_marked_bytes();
ysr@777 647 init_top_at_mark_start();
ysr@777 648 }
ysr@777 649
ysr@777 650 void calc_gc_efficiency(void);
ysr@777 651 double gc_efficiency() { return _gc_efficiency;}
ysr@777 652
ysr@777 653 bool is_young() const { return _young_type != NotYoung; }
ysr@777 654 bool is_survivor() const { return _young_type == Survivor; }
ysr@777 655
ysr@777 656 int young_index_in_cset() const { return _young_index_in_cset; }
ysr@777 657 void set_young_index_in_cset(int index) {
ysr@777 658 assert( (index == -1) || is_young(), "pre-condition" );
ysr@777 659 _young_index_in_cset = index;
ysr@777 660 }
ysr@777 661
ysr@777 662 int age_in_surv_rate_group() {
ysr@777 663 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 664 assert( _age_index > -1, "pre-condition" );
ysr@777 665 return _surv_rate_group->age_in_group(_age_index);
ysr@777 666 }
ysr@777 667
ysr@777 668 void record_surv_words_in_group(size_t words_survived) {
ysr@777 669 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 670 assert( _age_index > -1, "pre-condition" );
ysr@777 671 int age_in_group = age_in_surv_rate_group();
ysr@777 672 _surv_rate_group->record_surviving_words(age_in_group, words_survived);
ysr@777 673 }
ysr@777 674
ysr@777 675 int age_in_surv_rate_group_cond() {
ysr@777 676 if (_surv_rate_group != NULL)
ysr@777 677 return age_in_surv_rate_group();
ysr@777 678 else
ysr@777 679 return -1;
ysr@777 680 }
ysr@777 681
ysr@777 682 SurvRateGroup* surv_rate_group() {
ysr@777 683 return _surv_rate_group;
ysr@777 684 }
ysr@777 685
ysr@777 686 void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
ysr@777 687 assert( surv_rate_group != NULL, "pre-condition" );
ysr@777 688 assert( _surv_rate_group == NULL, "pre-condition" );
ysr@777 689 assert( is_young(), "pre-condition" );
ysr@777 690
ysr@777 691 _surv_rate_group = surv_rate_group;
ysr@777 692 _age_index = surv_rate_group->next_age_index();
ysr@777 693 }
ysr@777 694
ysr@777 695 void uninstall_surv_rate_group() {
ysr@777 696 if (_surv_rate_group != NULL) {
ysr@777 697 assert( _age_index > -1, "pre-condition" );
ysr@777 698 assert( is_young(), "pre-condition" );
ysr@777 699
ysr@777 700 _surv_rate_group = NULL;
ysr@777 701 _age_index = -1;
ysr@777 702 } else {
ysr@777 703 assert( _age_index == -1, "pre-condition" );
ysr@777 704 }
ysr@777 705 }
ysr@777 706
ysr@777 707 void set_young() { set_young_type(Young); }
ysr@777 708
ysr@777 709 void set_survivor() { set_young_type(Survivor); }
ysr@777 710
ysr@777 711 void set_not_young() { set_young_type(NotYoung); }
ysr@777 712
ysr@777 713 // Determine if an object has been allocated since the last
ysr@777 714 // mark performed by the collector. This returns true iff the object
ysr@777 715 // is within the unmarked area of the region.
ysr@777 716 bool obj_allocated_since_prev_marking(oop obj) const {
ysr@777 717 return (HeapWord *) obj >= prev_top_at_mark_start();
ysr@777 718 }
ysr@777 719 bool obj_allocated_since_next_marking(oop obj) const {
ysr@777 720 return (HeapWord *) obj >= next_top_at_mark_start();
ysr@777 721 }
ysr@777 722
ysr@777 723 // For parallel heapRegion traversal.
ysr@777 724 bool claimHeapRegion(int claimValue);
ysr@777 725 jint claim_value() { return _claimed; }
ysr@777 726 // Use this carefully: only when you're sure no one is claiming...
ysr@777 727 void set_claim_value(int claimValue) { _claimed = claimValue; }
ysr@777 728
ysr@777 729 // Returns the "evacuation_failed" property of the region.
ysr@777 730 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 731
ysr@777 732 // Sets the "evacuation_failed" property of the region.
ysr@777 733 void set_evacuation_failed(bool b) {
ysr@777 734 _evacuation_failed = b;
ysr@777 735
ysr@777 736 if (b) {
ysr@777 737 _next_marked_bytes = 0;
ysr@777 738 }
ysr@777 739 }
ysr@777 740
ysr@777 741 // Requires that "mr" be entirely within the region.
ysr@777 742 // Apply "cl->do_object" to all objects that intersect with "mr".
ysr@777 743 // If the iteration encounters an unparseable portion of the region,
ysr@777 744 // or if "cl->abort()" is true after a closure application,
ysr@777 745 // terminate the iteration and return the address of the start of the
ysr@777 746 // subregion that isn't done. (The two can be distinguished by querying
ysr@777 747 // "cl->abort()".) Return of "NULL" indicates that the iteration
ysr@777 748 // completed.
ysr@777 749 HeapWord*
ysr@777 750 object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
ysr@777 751
tonyp@2849 752 // filter_young: if true and the region is a young region then we
tonyp@2849 753 // skip the iteration.
tonyp@2849 754 // card_ptr: if not NULL, and we decide that the card is not young
tonyp@2849 755 // and we iterate over it, we'll clean the card before we start the
tonyp@2849 756 // iteration.
ysr@777 757 HeapWord*
ysr@777 758 oops_on_card_seq_iterate_careful(MemRegion mr,
johnc@2021 759 FilterOutOfRegionClosure* cl,
tonyp@2849 760 bool filter_young,
tonyp@2849 761 jbyte* card_ptr);
ysr@777 762
ysr@777 763 // A version of block start that is guaranteed to find *some* block
ysr@777 764 // boundary at or before "p", but does not object iteration, and may
ysr@777 765 // therefore be used safely when the heap is unparseable.
ysr@777 766 HeapWord* block_start_careful(const void* p) const {
ysr@777 767 return _offsets.block_start_careful(p);
ysr@777 768 }
ysr@777 769
ysr@777 770 // Requires that "addr" is within the region. Returns the start of the
ysr@777 771 // first ("careful") block that starts at or after "addr", or else the
ysr@777 772 // "end" of the region if there is no such block.
ysr@777 773 HeapWord* next_block_start_careful(HeapWord* addr);
ysr@777 774
johnc@1829 775 size_t recorded_rs_length() const { return _recorded_rs_length; }
johnc@1829 776 double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
johnc@1829 777 size_t predicted_bytes_to_copy() const { return _predicted_bytes_to_copy; }
johnc@1829 778
johnc@1829 779 void set_recorded_rs_length(size_t rs_length) {
johnc@1829 780 _recorded_rs_length = rs_length;
johnc@1829 781 }
johnc@1829 782
johnc@1829 783 void set_predicted_elapsed_time_ms(double ms) {
johnc@1829 784 _predicted_elapsed_time_ms = ms;
johnc@1829 785 }
johnc@1829 786
johnc@1829 787 void set_predicted_bytes_to_copy(size_t bytes) {
johnc@1829 788 _predicted_bytes_to_copy = bytes;
johnc@1829 789 }
johnc@1829 790
ysr@777 791 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
ysr@777 792 virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
ysr@777 793 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
ysr@777 794
tonyp@3957 795 virtual CompactibleSpace* next_compaction_space() const;
ysr@777 796
ysr@777 797 virtual void reset_after_compaction();
ysr@777 798
ysr@777 799 void print() const;
ysr@777 800 void print_on(outputStream* st) const;
ysr@777 801
johnc@2969 802 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 803 // vo == UseNextMarking -> use "next" marking information
johnc@2969 804 // vo == UseMarkWord -> use the mark word in the object header
johnc@2969 805 //
tonyp@1246 806 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 807 // consistent most of the time, so most calls to this should use
johnc@2969 808 // vo == UsePrevMarking.
johnc@2969 809 // Currently, there is only one case where this is called with
johnc@2969 810 // vo == UseNextMarking, which is to verify the "next" marking
johnc@2969 811 // information at the end of remark.
johnc@2969 812 // Currently there is only one place where this is called with
johnc@2969 813 // vo == UseMarkWord, which is to verify the marking during a
johnc@2969 814 // full GC.
brutisso@3711 815 void verify(VerifyOption vo, bool *failures) const;
tonyp@1246 816
tonyp@1246 817 // Override; it uses the "prev" marking information
brutisso@3711 818 virtual void verify() const;
ysr@777 819 };
ysr@777 820
ysr@777 821 // HeapRegionClosure is used for iterating over regions.
ysr@777 822 // Terminates the iteration when the "doHeapRegion" method returns "true".
ysr@777 823 class HeapRegionClosure : public StackObj {
ysr@777 824 friend class HeapRegionSeq;
ysr@777 825 friend class G1CollectedHeap;
ysr@777 826
ysr@777 827 bool _complete;
ysr@777 828 void incomplete() { _complete = false; }
ysr@777 829
ysr@777 830 public:
ysr@777 831 HeapRegionClosure(): _complete(true) {}
ysr@777 832
ysr@777 833 // Typically called on each region until it returns true.
ysr@777 834 virtual bool doHeapRegion(HeapRegion* r) = 0;
ysr@777 835
ysr@777 836 // True after iteration if the closure was applied to all heap regions
ysr@777 837 // and returned "false" in all cases.
ysr@777 838 bool complete() { return _complete; }
ysr@777 839 };
ysr@777 840
jprovino@4542 841 #endif // INCLUDE_ALL_GCS
stefank@2314 842
stefank@2314 843 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial