src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Tue, 16 Sep 2014 14:27:40 +0200

author
brutisso
date
Tue, 16 Sep 2014 14:27:40 +0200
changeset 7195
c02ec279b062
parent 7160
c10b463abc6e
child 7208
7baf47cb97cb
permissions
-rw-r--r--

8057768: Make heap region region type in G1 HeapRegion explicit
Reviewed-by: brutisso, tschatzl

ysr@777 1 /*
tschatzl@6402 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
stefank@2314 27
sjohanss@7118 28 #include "gc_implementation/g1/g1AllocationContext.hpp"
sjohanss@7118 29 #include "gc_implementation/g1/g1Allocator.hpp"
stefank@2314 30 #include "gc_implementation/g1/concurrentMark.hpp"
sla@5237 31 #include "gc_implementation/g1/evacuationInfo.hpp"
tonyp@2715 32 #include "gc_implementation/g1/g1AllocRegion.hpp"
tschatzl@6926 33 #include "gc_implementation/g1/g1BiasedArray.hpp"
tonyp@2975 34 #include "gc_implementation/g1/g1HRPrinter.hpp"
sla@5237 35 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
mgerdin@5811 36 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
sla@5237 37 #include "gc_implementation/g1/g1YCTypes.hpp"
tschatzl@7091 38 #include "gc_implementation/g1/heapRegionManager.hpp"
brutisso@6385 39 #include "gc_implementation/g1/heapRegionSet.hpp"
jmasa@2821 40 #include "gc_implementation/shared/hSpaceCounters.hpp"
johnc@3982 41 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
stefank@2314 42 #include "memory/barrierSet.hpp"
stefank@2314 43 #include "memory/memRegion.hpp"
stefank@2314 44 #include "memory/sharedHeap.hpp"
brutisso@4579 45 #include "utilities/stack.hpp"
stefank@2314 46
ysr@777 47 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
ysr@777 48 // It uses the "Garbage First" heap organization and algorithm, which
ysr@777 49 // may combine concurrent marking with parallel, incremental compaction of
ysr@777 50 // heap subsets that will yield large amounts of garbage.
ysr@777 51
johnc@5548 52 // Forward declarations
ysr@777 53 class HeapRegion;
tonyp@2493 54 class HRRSCleanupTask;
ysr@777 55 class GenerationSpec;
ysr@777 56 class OopsInHeapRegionClosure;
coleenp@4037 57 class G1KlassScanClosure;
ysr@777 58 class G1ScanHeapEvacClosure;
ysr@777 59 class ObjectClosure;
ysr@777 60 class SpaceClosure;
ysr@777 61 class CompactibleSpaceClosure;
ysr@777 62 class Space;
ysr@777 63 class G1CollectorPolicy;
ysr@777 64 class GenRemSet;
ysr@777 65 class G1RemSet;
ysr@777 66 class HeapRegionRemSetIterator;
ysr@777 67 class ConcurrentMark;
ysr@777 68 class ConcurrentMarkThread;
ysr@777 69 class ConcurrentG1Refine;
sla@5237 70 class ConcurrentGCTimer;
jmasa@2821 71 class GenerationCounters;
sla@5237 72 class STWGCTimer;
sla@5237 73 class G1NewTracer;
sla@5237 74 class G1OldTracer;
sla@5237 75 class EvacuationFailedInfo;
johnc@5548 76 class nmethod;
mgronlun@6131 77 class Ticks;
ysr@777 78
zgu@3900 79 typedef OverflowTaskQueue<StarTask, mtGC> RefToScanQueue;
zgu@3900 80 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
ysr@777 81
johnc@1242 82 typedef int RegionIdx_t; // needs to hold [ 0..max_regions() )
johnc@1242 83 typedef int CardIdx_t; // needs to hold [ 0..CardsPerRegion )
johnc@1242 84
zgu@3900 85 class YoungList : public CHeapObj<mtGC> {
ysr@777 86 private:
ysr@777 87 G1CollectedHeap* _g1h;
ysr@777 88
ysr@777 89 HeapRegion* _head;
ysr@777 90
johnc@1829 91 HeapRegion* _survivor_head;
johnc@1829 92 HeapRegion* _survivor_tail;
johnc@1829 93
johnc@1829 94 HeapRegion* _curr;
johnc@1829 95
tonyp@3713 96 uint _length;
tonyp@3713 97 uint _survivor_length;
ysr@777 98
ysr@777 99 size_t _last_sampled_rs_lengths;
ysr@777 100 size_t _sampled_rs_lengths;
ysr@777 101
johnc@1829 102 void empty_list(HeapRegion* list);
ysr@777 103
ysr@777 104 public:
ysr@777 105 YoungList(G1CollectedHeap* g1h);
ysr@777 106
johnc@1829 107 void push_region(HeapRegion* hr);
johnc@1829 108 void add_survivor_region(HeapRegion* hr);
johnc@1829 109
johnc@1829 110 void empty_list();
johnc@1829 111 bool is_empty() { return _length == 0; }
tonyp@3713 112 uint length() { return _length; }
tonyp@3713 113 uint survivor_length() { return _survivor_length; }
ysr@777 114
tonyp@2961 115 // Currently we do not keep track of the used byte sum for the
tonyp@2961 116 // young list and the survivors and it'd be quite a lot of work to
tonyp@2961 117 // do so. When we'll eventually replace the young list with
tonyp@2961 118 // instances of HeapRegionLinkedList we'll get that for free. So,
tonyp@2961 119 // we'll report the more accurate information then.
tonyp@2961 120 size_t eden_used_bytes() {
tonyp@2961 121 assert(length() >= survivor_length(), "invariant");
tonyp@3713 122 return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
tonyp@2961 123 }
tonyp@2961 124 size_t survivor_used_bytes() {
tonyp@3713 125 return (size_t) survivor_length() * HeapRegion::GrainBytes;
tonyp@2961 126 }
tonyp@2961 127
ysr@777 128 void rs_length_sampling_init();
ysr@777 129 bool rs_length_sampling_more();
ysr@777 130 void rs_length_sampling_next();
ysr@777 131
ysr@777 132 void reset_sampled_info() {
ysr@777 133 _last_sampled_rs_lengths = 0;
ysr@777 134 }
ysr@777 135 size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
ysr@777 136
ysr@777 137 // for development purposes
ysr@777 138 void reset_auxilary_lists();
johnc@1829 139 void clear() { _head = NULL; _length = 0; }
johnc@1829 140
johnc@1829 141 void clear_survivors() {
johnc@1829 142 _survivor_head = NULL;
johnc@1829 143 _survivor_tail = NULL;
johnc@1829 144 _survivor_length = 0;
johnc@1829 145 }
johnc@1829 146
ysr@777 147 HeapRegion* first_region() { return _head; }
ysr@777 148 HeapRegion* first_survivor_region() { return _survivor_head; }
apetrusenko@980 149 HeapRegion* last_survivor_region() { return _survivor_tail; }
ysr@777 150
ysr@777 151 // debugging
ysr@777 152 bool check_list_well_formed();
johnc@1829 153 bool check_list_empty(bool check_sample = true);
ysr@777 154 void print();
ysr@777 155 };
ysr@777 156
johnc@5548 157 // The G1 STW is alive closure.
johnc@5548 158 // An instance is embedded into the G1CH and used as the
johnc@5548 159 // (optional) _is_alive_non_header closure in the STW
johnc@5548 160 // reference processor. It is also extensively used during
johnc@5548 161 // reference processing during STW evacuation pauses.
johnc@5548 162 class G1STWIsAliveClosure: public BoolObjectClosure {
johnc@5548 163 G1CollectedHeap* _g1;
johnc@5548 164 public:
johnc@5548 165 G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
johnc@5548 166 bool do_object_b(oop p);
johnc@5548 167 };
johnc@5548 168
ysr@777 169 class RefineCardTableEntryClosure;
johnc@3175 170
tschatzl@7051 171 class G1RegionMappingChangedListener : public G1MappingChangedListener {
tschatzl@7051 172 private:
tschatzl@7051 173 void reset_from_card_cache(uint start_idx, size_t num_regions);
tschatzl@7051 174 public:
tschatzl@7051 175 virtual void on_commit(uint start_idx, size_t num_regions);
tschatzl@7051 176 };
tschatzl@7051 177
ysr@777 178 class G1CollectedHeap : public SharedHeap {
stefank@6992 179 friend class VM_CollectForMetadataAllocation;
ysr@777 180 friend class VM_G1CollectForAllocation;
ysr@777 181 friend class VM_G1CollectFull;
ysr@777 182 friend class VM_G1IncCollectionPause;
ysr@777 183 friend class VMStructs;
tonyp@2715 184 friend class MutatorAllocRegion;
tonyp@3028 185 friend class SurvivorGCAllocRegion;
tonyp@3028 186 friend class OldGCAllocRegion;
sjohanss@7118 187 friend class G1Allocator;
sjohanss@7118 188 friend class G1DefaultAllocator;
sjohanss@7118 189 friend class G1ResManAllocator;
ysr@777 190
ysr@777 191 // Closures used in implementation.
stefank@6992 192 template <G1Barrier barrier, G1Mark do_mark_object>
brutisso@3690 193 friend class G1ParCopyClosure;
ysr@777 194 friend class G1IsAliveClosure;
ysr@777 195 friend class G1EvacuateFollowersClosure;
ysr@777 196 friend class G1ParScanThreadState;
ysr@777 197 friend class G1ParScanClosureSuper;
ysr@777 198 friend class G1ParEvacuateFollowersClosure;
ysr@777 199 friend class G1ParTask;
sjohanss@7118 200 friend class G1ParGCAllocator;
sjohanss@7118 201 friend class G1DefaultParGCAllocator;
ysr@777 202 friend class G1FreeGarbageRegionClosure;
ysr@777 203 friend class RefineCardTableEntryClosure;
ysr@777 204 friend class G1PrepareCompactClosure;
ysr@777 205 friend class RegionSorter;
tonyp@2472 206 friend class RegionResetter;
ysr@777 207 friend class CountRCClosure;
ysr@777 208 friend class EvacPopObjClosure;
apetrusenko@1231 209 friend class G1ParCleanupCTTask;
ysr@777 210
tschatzl@7019 211 friend class G1FreeHumongousRegionClosure;
ysr@777 212 // Other related classes.
ysr@777 213 friend class G1MarkSweep;
ysr@777 214
ysr@777 215 private:
ysr@777 216 // The one and only G1CollectedHeap, so static functions can find it.
ysr@777 217 static G1CollectedHeap* _g1h;
ysr@777 218
tonyp@1377 219 static size_t _humongous_object_threshold_in_words;
tonyp@1377 220
tonyp@2472 221 // The secondary free list which contains regions that have been
tschatzl@7050 222 // freed up during the cleanup process. This will be appended to
tschatzl@7050 223 // the master free list when appropriate.
brutisso@6385 224 FreeRegionList _secondary_free_list;
tonyp@2472 225
tonyp@3268 226 // It keeps track of the old regions.
brutisso@6385 227 HeapRegionSet _old_set;
tonyp@3268 228
tonyp@2472 229 // It keeps track of the humongous regions.
brutisso@6385 230 HeapRegionSet _humongous_set;
ysr@777 231
tschatzl@7019 232 void clear_humongous_is_live_table();
tschatzl@7019 233 void eagerly_reclaim_humongous_regions();
tschatzl@7019 234
ysr@777 235 // The number of regions we could create by expansion.
tonyp@3713 236 uint _expansion_regions;
ysr@777 237
ysr@777 238 // The block offset table for the G1 heap.
ysr@777 239 G1BlockOffsetSharedArray* _bot_shared;
ysr@777 240
tonyp@3268 241 // Tears down the region sets / lists so that they are empty and the
tonyp@3268 242 // regions on the heap do not belong to a region set / list. The
tonyp@3268 243 // only exception is the humongous set which we leave unaltered. If
tonyp@3268 244 // free_list_only is true, it will only tear down the master free
tonyp@3268 245 // list. It is called before a Full GC (free_list_only == false) or
tonyp@3268 246 // before heap shrinking (free_list_only == true).
tonyp@3268 247 void tear_down_region_sets(bool free_list_only);
tonyp@3268 248
tonyp@3268 249 // Rebuilds the region sets / lists so that they are repopulated to
tonyp@3268 250 // reflect the contents of the heap. The only exception is the
tonyp@3268 251 // humongous set which was not torn down in the first place. If
tonyp@3268 252 // free_list_only is true, it will only rebuild the master free
tonyp@3268 253 // list. It is called after a Full GC (free_list_only == false) or
tonyp@3268 254 // after heap shrinking (free_list_only == true).
tonyp@3268 255 void rebuild_region_sets(bool free_list_only);
ysr@777 256
tschatzl@7051 257 // Callback for region mapping changed events.
tschatzl@7051 258 G1RegionMappingChangedListener _listener;
tschatzl@7051 259
ysr@777 260 // The sequence of all heap regions in the heap.
tschatzl@7091 261 HeapRegionManager _hrm;
ysr@777 262
sjohanss@7118 263 // Class that handles the different kinds of allocations.
sjohanss@7118 264 G1Allocator* _allocator;
tonyp@3028 265
jcoomes@7159 266 // Statistics for each allocation context
jcoomes@7159 267 AllocationContextStats _allocation_context_stats;
jcoomes@7159 268
johnc@3982 269 // PLAB sizing policy for survivors.
johnc@3982 270 PLABStats _survivor_plab_stats;
johnc@3982 271
johnc@3982 272 // PLAB sizing policy for tenured objects.
johnc@3982 273 PLABStats _old_plab_stats;
johnc@3982 274
tonyp@3410 275 // It specifies whether we should attempt to expand the heap after a
tonyp@3410 276 // region allocation failure. If heap expansion fails we set this to
tonyp@3410 277 // false so that we don't re-attempt the heap expansion (it's likely
tonyp@3410 278 // that subsequent expansion attempts will also fail if one fails).
tonyp@3410 279 // Currently, it is only consulted during GC and it's reset at the
tonyp@3410 280 // start of each GC.
tonyp@3410 281 bool _expand_heap_after_alloc_failure;
tonyp@3410 282
tonyp@2715 283 // It resets the mutator alloc region before new allocations can take place.
tonyp@2715 284 void init_mutator_alloc_region();
tonyp@2715 285
tonyp@2715 286 // It releases the mutator alloc region.
tonyp@2715 287 void release_mutator_alloc_region();
tonyp@2715 288
tonyp@3028 289 // It initializes the GC alloc regions at the start of a GC.
sla@5237 290 void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
tonyp@3028 291
tonyp@3028 292 // It releases the GC alloc regions at the end of a GC.
sla@5237 293 void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
tonyp@3028 294
tonyp@3028 295 // It does any cleanup that needs to be done on the GC alloc regions
tonyp@3028 296 // before a Full GC.
tonyp@1071 297 void abandon_gc_alloc_regions();
ysr@777 298
jmasa@2821 299 // Helper for monitoring and management support.
jmasa@2821 300 G1MonitoringSupport* _g1mm;
jmasa@2821 301
tschatzl@7019 302 // Records whether the region at the given index is kept live by roots or
tschatzl@7019 303 // references from the young generation.
tschatzl@7019 304 class HumongousIsLiveBiasedMappedArray : public G1BiasedMappedArray<bool> {
tschatzl@7019 305 protected:
tschatzl@7019 306 bool default_value() const { return false; }
tschatzl@7019 307 public:
tschatzl@7019 308 void clear() { G1BiasedMappedArray<bool>::clear(); }
tschatzl@7019 309 void set_live(uint region) {
tschatzl@7019 310 set_by_index(region, true);
tschatzl@7019 311 }
tschatzl@7019 312 bool is_live(uint region) {
tschatzl@7019 313 return get_by_index(region);
tschatzl@7019 314 }
tschatzl@7019 315 };
tschatzl@7019 316
tschatzl@7019 317 HumongousIsLiveBiasedMappedArray _humongous_is_live;
tschatzl@7019 318 // Stores whether during humongous object registration we found candidate regions.
tschatzl@7019 319 // If not, we can skip a few steps.
tschatzl@7019 320 bool _has_humongous_reclaim_candidates;
tonyp@961 321
iveresov@788 322 volatile unsigned _gc_time_stamp;
ysr@777 323
ysr@777 324 size_t* _surviving_young_words;
ysr@777 325
tonyp@2975 326 G1HRPrinter _hr_printer;
tonyp@2975 327
ysr@777 328 void setup_surviving_young_words();
ysr@777 329 void update_surviving_young_words(size_t* surv_young_words);
ysr@777 330 void cleanup_surviving_young_words();
ysr@777 331
tonyp@2011 332 // It decides whether an explicit GC should start a concurrent cycle
tonyp@2011 333 // instead of doing a STW GC. Currently, a concurrent cycle is
tonyp@2011 334 // explicitly started if:
tonyp@2011 335 // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
tonyp@2011 336 // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
brutisso@3456 337 // (c) cause == _g1_humongous_allocation
tonyp@2011 338 bool should_do_concurrent_full_gc(GCCause::Cause cause);
tonyp@2011 339
brutisso@3823 340 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 341 // concurrent cycles) we have started.
brutisso@3823 342 volatile unsigned int _old_marking_cycles_started;
brutisso@3823 343
brutisso@3823 344 // Keeps track of how many "old marking cycles" (i.e., Full GCs or
brutisso@3823 345 // concurrent cycles) we have completed.
brutisso@3823 346 volatile unsigned int _old_marking_cycles_completed;
tonyp@2011 347
sla@5237 348 bool _concurrent_cycle_started;
sla@5237 349
tonyp@2817 350 // This is a non-product method that is helpful for testing. It is
tonyp@2817 351 // called at the end of a GC and artificially expands the heap by
tonyp@2817 352 // allocating a number of dead regions. This way we can induce very
tonyp@2817 353 // frequent marking cycles and stress the cleanup / concurrent
tonyp@2817 354 // cleanup code more (as all the regions that will be allocated by
tonyp@2817 355 // this method will be found dead by the marking cycle).
tonyp@2817 356 void allocate_dummy_regions() PRODUCT_RETURN;
tonyp@2817 357
tonyp@3957 358 // Clear RSets after a compaction. It also resets the GC time stamps.
tonyp@3957 359 void clear_rsets_post_compaction();
tonyp@3957 360
tonyp@3957 361 // If the HR printer is active, dump the state of the regions in the
tonyp@3957 362 // heap after a compaction.
tschatzl@7091 363 void print_hrm_post_compaction();
tonyp@3957 364
brutisso@4015 365 double verify(bool guard, const char* msg);
brutisso@4015 366 void verify_before_gc();
brutisso@4015 367 void verify_after_gc();
brutisso@4015 368
brutisso@4063 369 void log_gc_header();
brutisso@4063 370 void log_gc_footer(double pause_time_sec);
brutisso@4063 371
tonyp@2315 372 // These are macros so that, if the assert fires, we get the correct
tonyp@2315 373 // line number, file, etc.
tonyp@2315 374
tonyp@2643 375 #define heap_locking_asserts_err_msg(_extra_message_) \
tonyp@2472 376 err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s", \
tonyp@2643 377 (_extra_message_), \
tonyp@2472 378 BOOL_TO_STR(Heap_lock->owned_by_self()), \
tonyp@2472 379 BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), \
tonyp@2472 380 BOOL_TO_STR(Thread::current()->is_VM_thread()))
tonyp@2315 381
tonyp@2315 382 #define assert_heap_locked() \
tonyp@2315 383 do { \
tonyp@2315 384 assert(Heap_lock->owned_by_self(), \
tonyp@2315 385 heap_locking_asserts_err_msg("should be holding the Heap_lock")); \
tonyp@2315 386 } while (0)
tonyp@2315 387
tonyp@2643 388 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 389 do { \
tonyp@2315 390 assert(Heap_lock->owned_by_self() || \
tonyp@2472 391 (SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 392 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
tonyp@2315 393 heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
tonyp@2315 394 "should be at a safepoint")); \
tonyp@2315 395 } while (0)
tonyp@2315 396
tonyp@2315 397 #define assert_heap_locked_and_not_at_safepoint() \
tonyp@2315 398 do { \
tonyp@2315 399 assert(Heap_lock->owned_by_self() && \
tonyp@2315 400 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 401 heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
tonyp@2315 402 "should not be at a safepoint")); \
tonyp@2315 403 } while (0)
tonyp@2315 404
tonyp@2315 405 #define assert_heap_not_locked() \
tonyp@2315 406 do { \
tonyp@2315 407 assert(!Heap_lock->owned_by_self(), \
tonyp@2315 408 heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
tonyp@2315 409 } while (0)
tonyp@2315 410
tonyp@2315 411 #define assert_heap_not_locked_and_not_at_safepoint() \
tonyp@2315 412 do { \
tonyp@2315 413 assert(!Heap_lock->owned_by_self() && \
tonyp@2315 414 !SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 415 heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
tonyp@2315 416 "should not be at a safepoint")); \
tonyp@2315 417 } while (0)
tonyp@2315 418
tonyp@2643 419 #define assert_at_safepoint(_should_be_vm_thread_) \
tonyp@2315 420 do { \
tonyp@2472 421 assert(SafepointSynchronize::is_at_safepoint() && \
tonyp@2643 422 ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
tonyp@2315 423 heap_locking_asserts_err_msg("should be at a safepoint")); \
tonyp@2315 424 } while (0)
tonyp@2315 425
tonyp@2315 426 #define assert_not_at_safepoint() \
tonyp@2315 427 do { \
tonyp@2315 428 assert(!SafepointSynchronize::is_at_safepoint(), \
tonyp@2315 429 heap_locking_asserts_err_msg("should not be at a safepoint")); \
tonyp@2315 430 } while (0)
tonyp@2315 431
ysr@777 432 protected:
ysr@777 433
johnc@3021 434 // The young region list.
ysr@777 435 YoungList* _young_list;
ysr@777 436
ysr@777 437 // The current policy object for the collector.
ysr@777 438 G1CollectorPolicy* _g1_policy;
ysr@777 439
tonyp@2472 440 // This is the second level of trying to allocate a new region. If
tonyp@2715 441 // new_region() didn't find a region on the free_list, this call will
tonyp@2715 442 // check whether there's anything available on the
tonyp@2715 443 // secondary_free_list and/or wait for more regions to appear on
tonyp@2715 444 // that list, if _free_regions_coming is set.
jwilhelm@6422 445 HeapRegion* new_region_try_secondary_free_list(bool is_old);
ysr@777 446
tonyp@2643 447 // Try to allocate a single non-humongous HeapRegion sufficient for
tonyp@2643 448 // an allocation of the given word_size. If do_expand is true,
tonyp@2643 449 // attempt to expand the heap if necessary to satisfy the allocation
jwilhelm@6422 450 // request. If the region is to be used as an old region or for a
jwilhelm@6422 451 // humongous object, set is_old to true. If not, to false.
jwilhelm@6422 452 HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
ysr@777 453
tonyp@2643 454 // Initialize a contiguous set of free regions of length num_regions
tonyp@2643 455 // and starting at index first so that they appear as a single
tonyp@2643 456 // humongous region.
tonyp@3713 457 HeapWord* humongous_obj_allocate_initialize_regions(uint first,
tonyp@3713 458 uint num_regions,
sjohanss@7118 459 size_t word_size,
sjohanss@7118 460 AllocationContext_t context);
tonyp@2643 461
tonyp@2643 462 // Attempt to allocate a humongous object of the given size. Return
tonyp@2643 463 // NULL if unsuccessful.
sjohanss@7118 464 HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
ysr@777 465
tonyp@2315 466 // The following two methods, allocate_new_tlab() and
tonyp@2315 467 // mem_allocate(), are the two main entry points from the runtime
tonyp@2315 468 // into the G1's allocation routines. They have the following
tonyp@2315 469 // assumptions:
tonyp@2315 470 //
tonyp@2315 471 // * They should both be called outside safepoints.
tonyp@2315 472 //
tonyp@2315 473 // * They should both be called without holding the Heap_lock.
tonyp@2315 474 //
tonyp@2315 475 // * All allocation requests for new TLABs should go to
tonyp@2315 476 // allocate_new_tlab().
tonyp@2315 477 //
tonyp@2971 478 // * All non-TLAB allocation requests should go to mem_allocate().
tonyp@2315 479 //
tonyp@2315 480 // * If either call cannot satisfy the allocation request using the
tonyp@2315 481 // current allocating region, they will try to get a new one. If
tonyp@2315 482 // this fails, they will attempt to do an evacuation pause and
tonyp@2315 483 // retry the allocation.
tonyp@2315 484 //
tonyp@2315 485 // * If all allocation attempts fail, even after trying to schedule
tonyp@2315 486 // an evacuation pause, allocate_new_tlab() will return NULL,
tonyp@2315 487 // whereas mem_allocate() will attempt a heap expansion and/or
tonyp@2315 488 // schedule a Full GC.
tonyp@2315 489 //
tonyp@2315 490 // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
tonyp@2315 491 // should never be called with word_size being humongous. All
tonyp@2315 492 // humongous allocation requests should go to mem_allocate() which
tonyp@2315 493 // will satisfy them with a special path.
ysr@777 494
tonyp@2315 495 virtual HeapWord* allocate_new_tlab(size_t word_size);
tonyp@2315 496
tonyp@2315 497 virtual HeapWord* mem_allocate(size_t word_size,
tonyp@2315 498 bool* gc_overhead_limit_was_exceeded);
tonyp@2315 499
tonyp@2715 500 // The following three methods take a gc_count_before_ret
tonyp@2715 501 // parameter which is used to return the GC count if the method
tonyp@2715 502 // returns NULL. Given that we are required to read the GC count
tonyp@2715 503 // while holding the Heap_lock, and these paths will take the
tonyp@2715 504 // Heap_lock at some point, it's easier to get them to read the GC
tonyp@2715 505 // count while holding the Heap_lock before they return NULL instead
tonyp@2715 506 // of the caller (namely: mem_allocate()) having to also take the
tonyp@2715 507 // Heap_lock just to read the GC count.
tonyp@2315 508
tonyp@2715 509 // First-level mutator allocation attempt: try to allocate out of
tonyp@2715 510 // the mutator alloc region without taking the Heap_lock. This
tonyp@2715 511 // should only be used for non-humongous allocations.
tonyp@2715 512 inline HeapWord* attempt_allocation(size_t word_size,
mgerdin@4853 513 unsigned int* gc_count_before_ret,
mgerdin@4853 514 int* gclocker_retry_count_ret);
tonyp@2315 515
tonyp@2715 516 // Second-level mutator allocation attempt: take the Heap_lock and
tonyp@2715 517 // retry the allocation attempt, potentially scheduling a GC
tonyp@2715 518 // pause. This should only be used for non-humongous allocations.
tonyp@2715 519 HeapWord* attempt_allocation_slow(size_t word_size,
sjohanss@7118 520 AllocationContext_t context,
mgerdin@4853 521 unsigned int* gc_count_before_ret,
mgerdin@4853 522 int* gclocker_retry_count_ret);
tonyp@2315 523
tonyp@2715 524 // Takes the Heap_lock and attempts a humongous allocation. It can
tonyp@2715 525 // potentially schedule a GC pause.
tonyp@2715 526 HeapWord* attempt_allocation_humongous(size_t word_size,
mgerdin@4853 527 unsigned int* gc_count_before_ret,
mgerdin@4853 528 int* gclocker_retry_count_ret);
tonyp@2454 529
tonyp@2715 530 // Allocation attempt that should be called during safepoints (e.g.,
tonyp@2715 531 // at the end of a successful GC). expect_null_mutator_alloc_region
tonyp@2715 532 // specifies whether the mutator alloc region is expected to be NULL
tonyp@2715 533 // or not.
tonyp@2315 534 HeapWord* attempt_allocation_at_safepoint(size_t word_size,
sjohanss@7118 535 AllocationContext_t context,
sjohanss@7118 536 bool expect_null_mutator_alloc_region);
tonyp@2315 537
tonyp@2315 538 // It dirties the cards that cover the block so that so that the post
tonyp@2315 539 // write barrier never queues anything when updating objects on this
tonyp@2315 540 // block. It is assumed (and in fact we assert) that the block
tonyp@2315 541 // belongs to a young region.
tonyp@2315 542 inline void dirty_young_block(HeapWord* start, size_t word_size);
ysr@777 543
ysr@777 544 // Allocate blocks during garbage collection. Will ensure an
ysr@777 545 // allocation region, either by picking one or expanding the
ysr@777 546 // heap, and then allocate a block of the given size. The block
ysr@777 547 // may not be a humongous - it must fit into a single heap region.
sjohanss@7118 548 HeapWord* par_allocate_during_gc(GCAllocPurpose purpose,
sjohanss@7118 549 size_t word_size,
sjohanss@7118 550 AllocationContext_t context);
ysr@777 551
tschatzl@6332 552 HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
tschatzl@6332 553 HeapRegion* alloc_region,
tschatzl@6332 554 bool par,
tschatzl@6332 555 size_t word_size);
tschatzl@6332 556
ysr@777 557 // Ensure that no further allocations can happen in "r", bearing in mind
ysr@777 558 // that parallel threads might be attempting allocations.
ysr@777 559 void par_allocate_remaining_space(HeapRegion* r);
ysr@777 560
tonyp@3028 561 // Allocation attempt during GC for a survivor object / PLAB.
sjohanss@7118 562 inline HeapWord* survivor_attempt_allocation(size_t word_size,
sjohanss@7118 563 AllocationContext_t context);
apetrusenko@980 564
tonyp@3028 565 // Allocation attempt during GC for an old object / PLAB.
sjohanss@7118 566 inline HeapWord* old_attempt_allocation(size_t word_size,
sjohanss@7118 567 AllocationContext_t context);
tonyp@2715 568
tonyp@3028 569 // These methods are the "callbacks" from the G1AllocRegion class.
tonyp@3028 570
tonyp@3028 571 // For mutator alloc regions.
tonyp@2715 572 HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
tonyp@2715 573 void retire_mutator_alloc_region(HeapRegion* alloc_region,
tonyp@2715 574 size_t allocated_bytes);
tonyp@2715 575
tonyp@3028 576 // For GC alloc regions.
tonyp@3713 577 HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
tonyp@3028 578 GCAllocPurpose ap);
tonyp@3028 579 void retire_gc_alloc_region(HeapRegion* alloc_region,
tonyp@3028 580 size_t allocated_bytes, GCAllocPurpose ap);
tonyp@3028 581
tonyp@2011 582 // - if explicit_gc is true, the GC is for a System.gc() or a heap
tonyp@2315 583 // inspection request and should collect the entire heap
tonyp@2315 584 // - if clear_all_soft_refs is true, all soft references should be
tonyp@2315 585 // cleared during the GC
tonyp@2011 586 // - if explicit_gc is false, word_size describes the allocation that
tonyp@2315 587 // the GC should attempt (at least) to satisfy
tonyp@2315 588 // - it returns false if it is unable to do the collection due to the
tonyp@2315 589 // GC locker being active, true otherwise
tonyp@2315 590 bool do_collection(bool explicit_gc,
tonyp@2011 591 bool clear_all_soft_refs,
ysr@777 592 size_t word_size);
ysr@777 593
ysr@777 594 // Callback from VM_G1CollectFull operation.
ysr@777 595 // Perform a full collection.
coleenp@4037 596 virtual void do_full_collection(bool clear_all_soft_refs);
ysr@777 597
ysr@777 598 // Resize the heap if necessary after a full collection. If this is
ysr@777 599 // after a collect-for allocation, "word_size" is the allocation size,
ysr@777 600 // and will be considered part of the used portion of the heap.
ysr@777 601 void resize_if_necessary_after_full_collection(size_t word_size);
ysr@777 602
ysr@777 603 // Callback from VM_G1CollectForAllocation operation.
ysr@777 604 // This function does everything necessary/possible to satisfy a
ysr@777 605 // failed allocation request (including collection, expansion, etc.)
sjohanss@7118 606 HeapWord* satisfy_failed_allocation(size_t word_size,
sjohanss@7118 607 AllocationContext_t context,
sjohanss@7118 608 bool* succeeded);
ysr@777 609
ysr@777 610 // Attempting to expand the heap sufficiently
ysr@777 611 // to support an allocation of the given "word_size". If
ysr@777 612 // successful, perform the allocation and return the address of the
ysr@777 613 // allocated block, or else "NULL".
sjohanss@7118 614 HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
ysr@777 615
johnc@3175 616 // Process any reference objects discovered during
johnc@3175 617 // an incremental evacuation pause.
johnc@4130 618 void process_discovered_references(uint no_of_gc_workers);
johnc@3175 619
johnc@3175 620 // Enqueue any remaining discovered references
johnc@3175 621 // after processing.
johnc@4130 622 void enqueue_discovered_references(uint no_of_gc_workers);
johnc@3175 623
ysr@777 624 public:
jmasa@2821 625
sjohanss@7131 626 G1Allocator* allocator() {
sjohanss@7131 627 return _allocator;
sjohanss@7131 628 }
sjohanss@7131 629
tonyp@3176 630 G1MonitoringSupport* g1mm() {
tonyp@3176 631 assert(_g1mm != NULL, "should have been initialized");
tonyp@3176 632 return _g1mm;
tonyp@3176 633 }
jmasa@2821 634
ysr@777 635 // Expand the garbage-first heap by at least the given size (in bytes!).
johnc@2504 636 // Returns true if the heap was expanded by the requested amount;
johnc@2504 637 // false otherwise.
ysr@777 638 // (Rounds up to a HeapRegion boundary.)
johnc@2504 639 bool expand(size_t expand_bytes);
ysr@777 640
sjohanss@7118 641 // Returns the PLAB statistics given a purpose.
sjohanss@7118 642 PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
sjohanss@7118 643 PLABStats* stats = NULL;
sjohanss@7118 644
sjohanss@7118 645 switch (purpose) {
sjohanss@7118 646 case GCAllocForSurvived:
sjohanss@7118 647 stats = &_survivor_plab_stats;
sjohanss@7118 648 break;
sjohanss@7118 649 case GCAllocForTenured:
sjohanss@7118 650 stats = &_old_plab_stats;
sjohanss@7118 651 break;
sjohanss@7118 652 default:
sjohanss@7118 653 assert(false, "unrecognized GCAllocPurpose");
sjohanss@7118 654 }
sjohanss@7118 655
sjohanss@7118 656 return stats;
sjohanss@7118 657 }
sjohanss@7118 658
sjohanss@7118 659 // Determines PLAB size for a particular allocation purpose.
sjohanss@7118 660 size_t desired_plab_sz(GCAllocPurpose purpose);
sjohanss@7118 661
jcoomes@7159 662 inline AllocationContextStats& allocation_context_stats();
jcoomes@7159 663
ysr@777 664 // Do anything common to GC's.
ysr@777 665 virtual void gc_prologue(bool full);
ysr@777 666 virtual void gc_epilogue(bool full);
ysr@777 667
tschatzl@7019 668 inline void set_humongous_is_live(oop obj);
tschatzl@7019 669
tschatzl@7019 670 bool humongous_is_live(uint region) {
tschatzl@7019 671 return _humongous_is_live.is_live(region);
tschatzl@7019 672 }
tschatzl@7019 673
tschatzl@7019 674 // Returns whether the given region (which must be a humongous (start) region)
tschatzl@7019 675 // is to be considered conservatively live regardless of any other conditions.
tschatzl@7019 676 bool humongous_region_is_always_live(uint index);
tschatzl@7019 677 // Register the given region to be part of the collection set.
tschatzl@7019 678 inline void register_humongous_region_with_in_cset_fast_test(uint index);
tschatzl@7019 679 // Register regions with humongous objects (actually on the start region) in
tschatzl@7019 680 // the in_cset_fast_test table.
tschatzl@7019 681 void register_humongous_regions_with_in_cset_fast_test();
tonyp@961 682 // We register a region with the fast "in collection set" test. We
tonyp@961 683 // simply set to true the array slot corresponding to this region.
tonyp@961 684 void register_region_with_in_cset_fast_test(HeapRegion* r) {
tschatzl@7091 685 _in_cset_fast_test.set_in_cset(r->hrm_index());
tonyp@961 686 }
tonyp@961 687
tonyp@961 688 // This is a fast test on whether a reference points into the
tschatzl@6330 689 // collection set or not. Assume that the reference
tschatzl@6330 690 // points into the heap.
tschatzl@6541 691 inline bool in_cset_fast_test(oop obj);
tonyp@961 692
johnc@1829 693 void clear_cset_fast_test() {
tschatzl@6926 694 _in_cset_fast_test.clear();
johnc@1829 695 }
johnc@1829 696
brutisso@3823 697 // This is called at the start of either a concurrent cycle or a Full
brutisso@3823 698 // GC to update the number of old marking cycles started.
brutisso@3823 699 void increment_old_marking_cycles_started();
brutisso@3823 700
tonyp@2011 701 // This is called at the end of either a concurrent cycle or a Full
brutisso@3823 702 // GC to update the number of old marking cycles completed. Those two
tonyp@2011 703 // can happen in a nested fashion, i.e., we start a concurrent
tonyp@2011 704 // cycle, a Full GC happens half-way through it which ends first,
tonyp@2011 705 // and then the cycle notices that a Full GC happened and ends
tonyp@2372 706 // too. The concurrent parameter is a boolean to help us do a bit
tonyp@2372 707 // tighter consistency checking in the method. If concurrent is
tonyp@2372 708 // false, the caller is the inner caller in the nesting (i.e., the
tonyp@2372 709 // Full GC). If concurrent is true, the caller is the outer caller
tonyp@2372 710 // in this nesting (i.e., the concurrent cycle). Further nesting is
brutisso@3823 711 // not currently supported. The end of this call also notifies
tonyp@2372 712 // the FullGCCount_lock in case a Java thread is waiting for a full
tonyp@2372 713 // GC to happen (e.g., it called System.gc() with
tonyp@2011 714 // +ExplicitGCInvokesConcurrent).
brutisso@3823 715 void increment_old_marking_cycles_completed(bool concurrent);
tonyp@2011 716
brutisso@3823 717 unsigned int old_marking_cycles_completed() {
brutisso@3823 718 return _old_marking_cycles_completed;
tonyp@2011 719 }
tonyp@2011 720
mgronlun@6131 721 void register_concurrent_cycle_start(const Ticks& start_time);
sla@5237 722 void register_concurrent_cycle_end();
sla@5237 723 void trace_heap_after_concurrent_cycle();
sla@5237 724
sla@5237 725 G1YCType yc_type();
sla@5237 726
tonyp@2975 727 G1HRPrinter* hr_printer() { return &_hr_printer; }
tonyp@2975 728
brutisso@6385 729 // Frees a non-humongous region by initializing its contents and
brutisso@6385 730 // adding it to the free list that's passed as a parameter (this is
brutisso@6385 731 // usually a local list which will be appended to the master free
brutisso@6385 732 // list later). The used bytes of freed regions are accumulated in
brutisso@6385 733 // pre_used. If par is true, the region's RSet will not be freed
brutisso@6385 734 // up. The assumption is that this will be done later.
tschatzl@6404 735 // The locked parameter indicates if the caller has already taken
tschatzl@6404 736 // care of proper synchronization. This may allow some optimizations.
brutisso@6385 737 void free_region(HeapRegion* hr,
brutisso@6385 738 FreeRegionList* free_list,
tschatzl@6404 739 bool par,
tschatzl@6404 740 bool locked = false);
brutisso@6385 741
brutisso@6385 742 // Frees a humongous region by collapsing it into individual regions
brutisso@6385 743 // and calling free_region() for each of them. The freed regions
brutisso@6385 744 // will be added to the free list that's passed as a parameter (this
brutisso@6385 745 // is usually a local list which will be appended to the master free
brutisso@6385 746 // list later). The used bytes of freed regions are accumulated in
brutisso@6385 747 // pre_used. If par is true, the region's RSet will not be freed
brutisso@6385 748 // up. The assumption is that this will be done later.
brutisso@6385 749 void free_humongous_region(HeapRegion* hr,
brutisso@6385 750 FreeRegionList* free_list,
brutisso@6385 751 bool par);
ysr@777 752 protected:
ysr@777 753
ysr@777 754 // Shrink the garbage-first heap by at most the given size (in bytes!).
ysr@777 755 // (Rounds down to a HeapRegion boundary.)
ysr@777 756 virtual void shrink(size_t expand_bytes);
ysr@777 757 void shrink_helper(size_t expand_bytes);
ysr@777 758
jcoomes@2064 759 #if TASKQUEUE_STATS
jcoomes@2064 760 static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
jcoomes@2064 761 void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
jcoomes@2064 762 void reset_taskqueue_stats();
jcoomes@2064 763 #endif // TASKQUEUE_STATS
jcoomes@2064 764
tonyp@2315 765 // Schedule the VM operation that will do an evacuation pause to
tonyp@2315 766 // satisfy an allocation request of word_size. *succeeded will
tonyp@2315 767 // return whether the VM operation was successful (it did do an
tonyp@2315 768 // evacuation pause) or not (another thread beat us to it or the GC
tonyp@2315 769 // locker was active). Given that we should not be holding the
tonyp@2315 770 // Heap_lock when we enter this method, we will pass the
tonyp@2315 771 // gc_count_before (i.e., total_collections()) as a parameter since
tonyp@2315 772 // it has to be read while holding the Heap_lock. Currently, both
tonyp@2315 773 // methods that call do_collection_pause() release the Heap_lock
tonyp@2315 774 // before the call, so it's easy to read gc_count_before just before.
brutisso@5581 775 HeapWord* do_collection_pause(size_t word_size,
brutisso@5581 776 unsigned int gc_count_before,
brutisso@5581 777 bool* succeeded,
brutisso@5581 778 GCCause::Cause gc_cause);
ysr@777 779
ysr@777 780 // The guts of the incremental collection pause, executed by the vm
tonyp@2315 781 // thread. It returns false if it is unable to do the collection due
tonyp@2315 782 // to the GC locker being active, true otherwise
tonyp@2315 783 bool do_collection_pause_at_safepoint(double target_pause_time_ms);
ysr@777 784
ysr@777 785 // Actually do the work of evacuating the collection set.
sla@5237 786 void evacuate_collection_set(EvacuationInfo& evacuation_info);
ysr@777 787
ysr@777 788 // The g1 remembered set of the heap.
ysr@777 789 G1RemSet* _g1_rem_set;
ysr@777 790
iveresov@1051 791 // A set of cards that cover the objects for which the Rsets should be updated
iveresov@1051 792 // concurrently after the collection.
iveresov@1051 793 DirtyCardQueueSet _dirty_card_queue_set;
iveresov@1051 794
ysr@777 795 // The closure used to refine a single card.
ysr@777 796 RefineCardTableEntryClosure* _refine_cte_cl;
ysr@777 797
ysr@777 798 // A function to check the consistency of dirty card logs.
ysr@777 799 void check_ct_logs_at_safepoint();
ysr@777 800
johnc@2060 801 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 802 // references into the current collection set. This is used to
johnc@2060 803 // update the remembered sets of the regions in the collection
johnc@2060 804 // set in the event of an evacuation failure.
johnc@2060 805 DirtyCardQueueSet _into_cset_dirty_card_queue_set;
johnc@2060 806
ysr@777 807 // After a collection pause, make the regions in the CS into free
ysr@777 808 // regions.
sla@5237 809 void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
ysr@777 810
johnc@1829 811 // Abandon the current collection set without recording policy
johnc@1829 812 // statistics or updating free lists.
johnc@1829 813 void abandon_collection_set(HeapRegion* cs_head);
johnc@1829 814
ysr@777 815 // Applies "scan_non_heap_roots" to roots outside the heap,
ysr@777 816 // "scan_rs" to roots inside the heap (having done "set_region" to
coleenp@4037 817 // indicate the region in which the root resides),
coleenp@4037 818 // and does "scan_metadata" If "scan_rs" is
ysr@777 819 // NULL, then this step is skipped. The "worker_i"
ysr@777 820 // param is for use with parallel roots processing, and should be
ysr@777 821 // the "i" of the calling parallel worker thread's work(i) function.
ysr@777 822 // In the sequential case this param will be ignored.
stefank@6992 823 void g1_process_roots(OopClosure* scan_non_heap_roots,
stefank@6992 824 OopClosure* scan_non_heap_weak_roots,
stefank@6992 825 OopsInHeapRegionClosure* scan_rs,
stefank@6992 826 CLDClosure* scan_strong_clds,
stefank@6992 827 CLDClosure* scan_weak_clds,
stefank@6992 828 CodeBlobClosure* scan_strong_code,
stefank@6992 829 uint worker_i);
ysr@777 830
ysr@777 831 // The concurrent marker (and the thread it runs in.)
ysr@777 832 ConcurrentMark* _cm;
ysr@777 833 ConcurrentMarkThread* _cmThread;
ysr@777 834 bool _mark_in_progress;
ysr@777 835
ysr@777 836 // The concurrent refiner.
ysr@777 837 ConcurrentG1Refine* _cg1r;
ysr@777 838
ysr@777 839 // The parallel task queues
ysr@777 840 RefToScanQueueSet *_task_queues;
ysr@777 841
ysr@777 842 // True iff a evacuation has failed in the current collection.
ysr@777 843 bool _evacuation_failed;
ysr@777 844
sla@5237 845 EvacuationFailedInfo* _evacuation_failed_info_array;
ysr@777 846
ysr@777 847 // Failed evacuations cause some logical from-space objects to have
ysr@777 848 // forwarding pointers to themselves. Reset them.
ysr@777 849 void remove_self_forwarding_pointers();
ysr@777 850
brutisso@4579 851 // Together, these store an object with a preserved mark, and its mark value.
brutisso@4579 852 Stack<oop, mtGC> _objs_with_preserved_marks;
brutisso@4579 853 Stack<markOop, mtGC> _preserved_marks_of_objs;
ysr@777 854
ysr@777 855 // Preserve the mark of "obj", if necessary, in preparation for its mark
ysr@777 856 // word being overwritten with a self-forwarding-pointer.
ysr@777 857 void preserve_mark_if_necessary(oop obj, markOop m);
ysr@777 858
ysr@777 859 // The stack of evac-failure objects left to be scanned.
ysr@777 860 GrowableArray<oop>* _evac_failure_scan_stack;
ysr@777 861 // The closure to apply to evac-failure objects.
ysr@777 862
ysr@777 863 OopsInHeapRegionClosure* _evac_failure_closure;
ysr@777 864 // Set the field above.
ysr@777 865 void
ysr@777 866 set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
ysr@777 867 _evac_failure_closure = evac_failure_closure;
ysr@777 868 }
ysr@777 869
ysr@777 870 // Push "obj" on the scan stack.
ysr@777 871 void push_on_evac_failure_scan_stack(oop obj);
ysr@777 872 // Process scan stack entries until the stack is empty.
ysr@777 873 void drain_evac_failure_scan_stack();
ysr@777 874 // True iff an invocation of "drain_scan_stack" is in progress; to
ysr@777 875 // prevent unnecessary recursion.
ysr@777 876 bool _drain_in_progress;
ysr@777 877
ysr@777 878 // Do any necessary initialization for evacuation-failure handling.
ysr@777 879 // "cl" is the closure that will be used to process evac-failure
ysr@777 880 // objects.
ysr@777 881 void init_for_evac_failure(OopsInHeapRegionClosure* cl);
ysr@777 882 // Do any necessary cleanup for evacuation-failure handling data
ysr@777 883 // structures.
ysr@777 884 void finalize_for_evac_failure();
ysr@777 885
ysr@777 886 // An attempt to evacuate "obj" has failed; take necessary steps.
sla@5237 887 oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
ysr@777 888 void handle_evacuation_failure_common(oop obj, markOop m);
ysr@777 889
johnc@4016 890 #ifndef PRODUCT
johnc@4016 891 // Support for forcing evacuation failures. Analogous to
johnc@4016 892 // PromotionFailureALot for the other collectors.
johnc@4016 893
johnc@4016 894 // Records whether G1EvacuationFailureALot should be in effect
johnc@4016 895 // for the current GC
johnc@4016 896 bool _evacuation_failure_alot_for_current_gc;
johnc@4016 897
johnc@4016 898 // Used to record the GC number for interval checking when
johnc@4016 899 // determining whether G1EvaucationFailureALot is in effect
johnc@4016 900 // for the current GC.
johnc@4016 901 size_t _evacuation_failure_alot_gc_number;
johnc@4016 902
johnc@4016 903 // Count of the number of evacuations between failures.
johnc@4016 904 volatile size_t _evacuation_failure_alot_count;
johnc@4016 905
johnc@4016 906 // Set whether G1EvacuationFailureALot should be in effect
johnc@4016 907 // for the current GC (based upon the type of GC and which
johnc@4016 908 // command line flags are set);
johnc@4016 909 inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
johnc@4016 910 bool during_initial_mark,
johnc@4016 911 bool during_marking);
johnc@4016 912
johnc@4016 913 inline void set_evacuation_failure_alot_for_current_gc();
johnc@4016 914
johnc@4016 915 // Return true if it's time to cause an evacuation failure.
johnc@4016 916 inline bool evacuation_should_fail();
johnc@4016 917
johnc@4016 918 // Reset the G1EvacuationFailureALot counters. Should be called at
sla@5237 919 // the end of an evacuation pause in which an evacuation failure occurred.
johnc@4016 920 inline void reset_evacuation_should_fail();
johnc@4016 921 #endif // !PRODUCT
johnc@4016 922
johnc@3175 923 // ("Weak") Reference processing support.
johnc@3175 924 //
sla@5237 925 // G1 has 2 instances of the reference processor class. One
johnc@3175 926 // (_ref_processor_cm) handles reference object discovery
johnc@3175 927 // and subsequent processing during concurrent marking cycles.
johnc@3175 928 //
johnc@3175 929 // The other (_ref_processor_stw) handles reference object
johnc@3175 930 // discovery and processing during full GCs and incremental
johnc@3175 931 // evacuation pauses.
johnc@3175 932 //
johnc@3175 933 // During an incremental pause, reference discovery will be
johnc@3175 934 // temporarily disabled for _ref_processor_cm and will be
johnc@3175 935 // enabled for _ref_processor_stw. At the end of the evacuation
johnc@3175 936 // pause references discovered by _ref_processor_stw will be
johnc@3175 937 // processed and discovery will be disabled. The previous
johnc@3175 938 // setting for reference object discovery for _ref_processor_cm
johnc@3175 939 // will be re-instated.
johnc@3175 940 //
johnc@3175 941 // At the start of marking:
johnc@3175 942 // * Discovery by the CM ref processor is verified to be inactive
johnc@3175 943 // and it's discovered lists are empty.
johnc@3175 944 // * Discovery by the CM ref processor is then enabled.
johnc@3175 945 //
johnc@3175 946 // At the end of marking:
johnc@3175 947 // * Any references on the CM ref processor's discovered
johnc@3175 948 // lists are processed (possibly MT).
johnc@3175 949 //
johnc@3175 950 // At the start of full GC we:
johnc@3175 951 // * Disable discovery by the CM ref processor and
johnc@3175 952 // empty CM ref processor's discovered lists
johnc@3175 953 // (without processing any entries).
johnc@3175 954 // * Verify that the STW ref processor is inactive and it's
johnc@3175 955 // discovered lists are empty.
johnc@3175 956 // * Temporarily set STW ref processor discovery as single threaded.
johnc@3175 957 // * Temporarily clear the STW ref processor's _is_alive_non_header
johnc@3175 958 // field.
johnc@3175 959 // * Finally enable discovery by the STW ref processor.
johnc@3175 960 //
johnc@3175 961 // The STW ref processor is used to record any discovered
johnc@3175 962 // references during the full GC.
johnc@3175 963 //
johnc@3175 964 // At the end of a full GC we:
johnc@3175 965 // * Enqueue any reference objects discovered by the STW ref processor
johnc@3175 966 // that have non-live referents. This has the side-effect of
johnc@3175 967 // making the STW ref processor inactive by disabling discovery.
johnc@3175 968 // * Verify that the CM ref processor is still inactive
johnc@3175 969 // and no references have been placed on it's discovered
johnc@3175 970 // lists (also checked as a precondition during initial marking).
johnc@3175 971
johnc@3175 972 // The (stw) reference processor...
johnc@3175 973 ReferenceProcessor* _ref_processor_stw;
johnc@3175 974
sla@5237 975 STWGCTimer* _gc_timer_stw;
sla@5237 976 ConcurrentGCTimer* _gc_timer_cm;
sla@5237 977
sla@5237 978 G1OldTracer* _gc_tracer_cm;
sla@5237 979 G1NewTracer* _gc_tracer_stw;
sla@5237 980
johnc@3175 981 // During reference object discovery, the _is_alive_non_header
johnc@3175 982 // closure (if non-null) is applied to the referent object to
johnc@3175 983 // determine whether the referent is live. If so then the
johnc@3175 984 // reference object does not need to be 'discovered' and can
johnc@3175 985 // be treated as a regular oop. This has the benefit of reducing
johnc@3175 986 // the number of 'discovered' reference objects that need to
johnc@3175 987 // be processed.
johnc@3175 988 //
johnc@3175 989 // Instance of the is_alive closure for embedding into the
johnc@3175 990 // STW reference processor as the _is_alive_non_header field.
johnc@3175 991 // Supplying a value for the _is_alive_non_header field is
johnc@3175 992 // optional but doing so prevents unnecessary additions to
johnc@3175 993 // the discovered lists during reference discovery.
johnc@3175 994 G1STWIsAliveClosure _is_alive_closure_stw;
johnc@3175 995
johnc@3175 996 // The (concurrent marking) reference processor...
johnc@3175 997 ReferenceProcessor* _ref_processor_cm;
johnc@3175 998
johnc@2379 999 // Instance of the concurrent mark is_alive closure for embedding
johnc@3175 1000 // into the Concurrent Marking reference processor as the
johnc@3175 1001 // _is_alive_non_header field. Supplying a value for the
johnc@3175 1002 // _is_alive_non_header field is optional but doing so prevents
johnc@3175 1003 // unnecessary additions to the discovered lists during reference
johnc@3175 1004 // discovery.
johnc@3175 1005 G1CMIsAliveClosure _is_alive_closure_cm;
ysr@777 1006
johnc@3336 1007 // Cache used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 1008 HeapRegion** _worker_cset_start_region;
johnc@3336 1009
johnc@3336 1010 // Time stamp to validate the regions recorded in the cache
johnc@3336 1011 // used by G1CollectedHeap::start_cset_region_for_worker().
johnc@3336 1012 // The heap region entry for a given worker is valid iff
johnc@3336 1013 // the associated time stamp value matches the current value
johnc@3336 1014 // of G1CollectedHeap::_gc_time_stamp.
johnc@3336 1015 unsigned int* _worker_cset_start_region_time_stamp;
johnc@3336 1016
stefank@6992 1017 enum G1H_process_roots_tasks {
tonyp@3416 1018 G1H_PS_filter_satb_buffers,
ysr@777 1019 G1H_PS_refProcessor_oops_do,
ysr@777 1020 // Leave this one last.
ysr@777 1021 G1H_PS_NumElements
ysr@777 1022 };
ysr@777 1023
ysr@777 1024 SubTasksDone* _process_strong_tasks;
ysr@777 1025
tonyp@2472 1026 volatile bool _free_regions_coming;
ysr@777 1027
ysr@777 1028 public:
jmasa@2188 1029
jmasa@2188 1030 SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
jmasa@2188 1031
ysr@777 1032 void set_refine_cte_cl_concurrency(bool concurrent);
ysr@777 1033
jcoomes@2064 1034 RefToScanQueue *task_queue(int i) const;
ysr@777 1035
iveresov@1051 1036 // A set of cards where updates happened during the GC
iveresov@1051 1037 DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
iveresov@1051 1038
johnc@2060 1039 // A DirtyCardQueueSet that is used to hold cards that contain
johnc@2060 1040 // references into the current collection set. This is used to
johnc@2060 1041 // update the remembered sets of the regions in the collection
johnc@2060 1042 // set in the event of an evacuation failure.
johnc@2060 1043 DirtyCardQueueSet& into_cset_dirty_card_queue_set()
johnc@2060 1044 { return _into_cset_dirty_card_queue_set; }
johnc@2060 1045
ysr@777 1046 // Create a G1CollectedHeap with the specified policy.
ysr@777 1047 // Must call the initialize method afterwards.
ysr@777 1048 // May not return if something goes wrong.
ysr@777 1049 G1CollectedHeap(G1CollectorPolicy* policy);
ysr@777 1050
ysr@777 1051 // Initialize the G1CollectedHeap to have the initial and
coleenp@4037 1052 // maximum sizes and remembered and barrier sets
ysr@777 1053 // specified by the policy object.
ysr@777 1054 jint initialize();
ysr@777 1055
pliden@6690 1056 virtual void stop();
pliden@6690 1057
tschatzl@5701 1058 // Return the (conservative) maximum heap alignment for any G1 heap
tschatzl@5701 1059 static size_t conservative_max_heap_alignment();
tschatzl@5701 1060
johnc@3175 1061 // Initialize weak reference processing.
johnc@2379 1062 virtual void ref_processing_init();
ysr@777 1063
jmasa@3357 1064 void set_par_threads(uint t) {
ysr@777 1065 SharedHeap::set_par_threads(t);
jmasa@3294 1066 // Done in SharedHeap but oddly there are
jmasa@3294 1067 // two _process_strong_tasks's in a G1CollectedHeap
jmasa@3294 1068 // so do it here too.
jmasa@3294 1069 _process_strong_tasks->set_n_threads(t);
jmasa@3294 1070 }
jmasa@3294 1071
jmasa@3294 1072 // Set _n_par_threads according to a policy TBD.
jmasa@3294 1073 void set_par_threads();
jmasa@3294 1074
jmasa@3294 1075 void set_n_termination(int t) {
jmasa@2188 1076 _process_strong_tasks->set_n_threads(t);
ysr@777 1077 }
ysr@777 1078
ysr@777 1079 virtual CollectedHeap::Name kind() const {
ysr@777 1080 return CollectedHeap::G1CollectedHeap;
ysr@777 1081 }
ysr@777 1082
ysr@777 1083 // The current policy object for the collector.
ysr@777 1084 G1CollectorPolicy* g1_policy() const { return _g1_policy; }
ysr@777 1085
coleenp@4037 1086 virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
coleenp@4037 1087
ysr@777 1088 // Adaptive size policy. No such thing for g1.
ysr@777 1089 virtual AdaptiveSizePolicy* size_policy() { return NULL; }
ysr@777 1090
ysr@777 1091 // The rem set and barrier set.
ysr@777 1092 G1RemSet* g1_rem_set() const { return _g1_rem_set; }
ysr@777 1093
ysr@777 1094 unsigned get_gc_time_stamp() {
ysr@777 1095 return _gc_time_stamp;
ysr@777 1096 }
ysr@777 1097
goetz@6911 1098 inline void reset_gc_time_stamp();
iveresov@788 1099
tonyp@3957 1100 void check_gc_time_stamps() PRODUCT_RETURN;
tonyp@3957 1101
goetz@6911 1102 inline void increment_gc_time_stamp();
ysr@777 1103
tonyp@3957 1104 // Reset the given region's GC timestamp. If it's starts humongous,
tonyp@3957 1105 // also reset the GC timestamp of its corresponding
tonyp@3957 1106 // continues humongous regions too.
tonyp@3957 1107 void reset_gc_time_stamps(HeapRegion* hr);
tonyp@3957 1108
johnc@2060 1109 void iterate_dirty_card_closure(CardTableEntryClosure* cl,
johnc@2060 1110 DirtyCardQueue* into_cset_dcq,
vkempik@6552 1111 bool concurrent, uint worker_i);
ysr@777 1112
ysr@777 1113 // The shared block offset table array.
ysr@777 1114 G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
ysr@777 1115
johnc@3175 1116 // Reference Processing accessors
johnc@3175 1117
johnc@3175 1118 // The STW reference processor....
johnc@3175 1119 ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
johnc@3175 1120
sla@5237 1121 // The Concurrent Marking reference processor...
johnc@3175 1122 ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
ysr@777 1123
sla@5237 1124 ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
sla@5237 1125 G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
sla@5237 1126
ysr@777 1127 virtual size_t capacity() const;
ysr@777 1128 virtual size_t used() const;
tonyp@1281 1129 // This should be called when we're not holding the heap lock. The
tonyp@1281 1130 // result might be a bit inaccurate.
tonyp@1281 1131 size_t used_unlocked() const;
ysr@777 1132 size_t recalculate_used() const;
ysr@777 1133
ysr@777 1134 // These virtual functions do the actual allocation.
ysr@777 1135 // Some heaps may offer a contiguous region for shared non-blocking
ysr@777 1136 // allocation, via inlined code (by exporting the address of the top and
ysr@777 1137 // end fields defining the extent of the contiguous allocation region.)
ysr@777 1138 // But G1CollectedHeap doesn't yet support this.
ysr@777 1139
ysr@777 1140 virtual bool is_maximal_no_gc() const {
tschatzl@7091 1141 return _hrm.available() == 0;
ysr@777 1142 }
ysr@777 1143
tschatzl@7050 1144 // The current number of regions in the heap.
tschatzl@7091 1145 uint num_regions() const { return _hrm.length(); }
tonyp@2963 1146
tonyp@2963 1147 // The max number of regions in the heap.
tschatzl@7091 1148 uint max_regions() const { return _hrm.max_length(); }
ysr@777 1149
ysr@777 1150 // The number of regions that are completely free.
tschatzl@7091 1151 uint num_free_regions() const { return _hrm.num_free_regions(); }
ysr@777 1152
ysr@777 1153 // The number of regions that are not completely free.
tschatzl@7050 1154 uint num_used_regions() const { return num_regions() - num_free_regions(); }
tonyp@2963 1155
tonyp@2849 1156 void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2849 1157 void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
tonyp@2715 1158 void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
tonyp@2715 1159 void verify_dirty_young_regions() PRODUCT_RETURN;
tonyp@2715 1160
brutisso@7005 1161 #ifndef PRODUCT
brutisso@7005 1162 // Make sure that the given bitmap has no marked objects in the
brutisso@7005 1163 // range [from,limit). If it does, print an error message and return
brutisso@7005 1164 // false. Otherwise, just return true. bitmap_name should be "prev"
brutisso@7005 1165 // or "next".
brutisso@7005 1166 bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
brutisso@7005 1167 HeapWord* from, HeapWord* limit);
brutisso@7005 1168
brutisso@7005 1169 // Verify that the prev / next bitmap range [tams,end) for the given
brutisso@7005 1170 // region has no marks. Return true if all is well, false if errors
brutisso@7005 1171 // are detected.
brutisso@7005 1172 bool verify_bitmaps(const char* caller, HeapRegion* hr);
brutisso@7005 1173 #endif // PRODUCT
brutisso@7005 1174
brutisso@7005 1175 // If G1VerifyBitmaps is set, verify that the marking bitmaps for
brutisso@7005 1176 // the given region do not have any spurious marks. If errors are
brutisso@7005 1177 // detected, print appropriate error messages and crash.
brutisso@7005 1178 void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
brutisso@7005 1179
brutisso@7005 1180 // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
brutisso@7005 1181 // have any spurious marks. If errors are detected, print
brutisso@7005 1182 // appropriate error messages and crash.
brutisso@7005 1183 void check_bitmaps(const char* caller) PRODUCT_RETURN;
brutisso@7005 1184
tonyp@2472 1185 // verify_region_sets() performs verification over the region
tonyp@2472 1186 // lists. It will be compiled in the product code to be used when
tonyp@2472 1187 // necessary (i.e., during heap verification).
tonyp@2472 1188 void verify_region_sets();
ysr@777 1189
tonyp@2472 1190 // verify_region_sets_optional() is planted in the code for
tonyp@2472 1191 // list verification in non-product builds (and it can be enabled in
sla@5237 1192 // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
tonyp@2472 1193 #if HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1194 void verify_region_sets_optional() {
tonyp@2472 1195 verify_region_sets();
tonyp@2472 1196 }
tonyp@2472 1197 #else // HEAP_REGION_SET_FORCE_VERIFY
tonyp@2472 1198 void verify_region_sets_optional() { }
tonyp@2472 1199 #endif // HEAP_REGION_SET_FORCE_VERIFY
ysr@777 1200
tonyp@2472 1201 #ifdef ASSERT
tonyp@2643 1202 bool is_on_master_free_list(HeapRegion* hr) {
tschatzl@7091 1203 return _hrm.is_free(hr);
tonyp@2472 1204 }
tonyp@2472 1205 #endif // ASSERT
ysr@777 1206
tonyp@2472 1207 // Wrapper for the region list operations that can be called from
tonyp@2472 1208 // methods outside this class.
ysr@777 1209
jwilhelm@6422 1210 void secondary_free_list_add(FreeRegionList* list) {
jwilhelm@6422 1211 _secondary_free_list.add_ordered(list);
tonyp@2472 1212 }
ysr@777 1213
tonyp@2472 1214 void append_secondary_free_list() {
tschatzl@7091 1215 _hrm.insert_list_into_free_list(&_secondary_free_list);
tonyp@2472 1216 }
ysr@777 1217
tonyp@2643 1218 void append_secondary_free_list_if_not_empty_with_lock() {
tonyp@2643 1219 // If the secondary free list looks empty there's no reason to
tonyp@2643 1220 // take the lock and then try to append it.
tonyp@2472 1221 if (!_secondary_free_list.is_empty()) {
tonyp@2472 1222 MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
tonyp@2472 1223 append_secondary_free_list();
tonyp@2472 1224 }
tonyp@2472 1225 }
ysr@777 1226
tschatzl@6541 1227 inline void old_set_remove(HeapRegion* hr);
tonyp@3268 1228
brutisso@3456 1229 size_t non_young_capacity_bytes() {
brutisso@3456 1230 return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
brutisso@3456 1231 }
brutisso@3456 1232
tonyp@2472 1233 void set_free_regions_coming();
tonyp@2472 1234 void reset_free_regions_coming();
tonyp@2472 1235 bool free_regions_coming() { return _free_regions_coming; }
tonyp@2472 1236 void wait_while_free_regions_coming();
ysr@777 1237
tonyp@3539 1238 // Determine whether the given region is one that we are using as an
tonyp@3539 1239 // old GC alloc region.
tonyp@3539 1240 bool is_old_gc_alloc_region(HeapRegion* hr) {
sjohanss@7118 1241 return _allocator->is_retained_old_region(hr);
tonyp@3539 1242 }
tonyp@3539 1243
ysr@777 1244 // Perform a collection of the heap; intended for use in implementing
ysr@777 1245 // "System.gc". This probably implies as full a collection as the
ysr@777 1246 // "CollectedHeap" supports.
ysr@777 1247 virtual void collect(GCCause::Cause cause);
ysr@777 1248
ysr@777 1249 // The same as above but assume that the caller holds the Heap_lock.
ysr@777 1250 void collect_locked(GCCause::Cause cause);
ysr@777 1251
jcoomes@7160 1252 virtual void copy_allocation_context_stats(const jint* contexts,
jcoomes@7160 1253 jlong* totals,
jcoomes@7160 1254 jbyte* accuracy,
jcoomes@7160 1255 jint len);
jcoomes@7160 1256
sla@5237 1257 // True iff an evacuation has failed in the most-recent collection.
ysr@777 1258 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 1259
brutisso@6385 1260 void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
brutisso@6385 1261 void prepend_to_freelist(FreeRegionList* list);
brutisso@6385 1262 void decrement_summary_bytes(size_t bytes);
ysr@777 1263
stefank@3335 1264 // Returns "TRUE" iff "p" points into the committed areas of the heap.
ysr@777 1265 virtual bool is_in(const void* p) const;
tschatzl@7051 1266 #ifdef ASSERT
tschatzl@7051 1267 // Returns whether p is in one of the available areas of the heap. Slow but
tschatzl@7051 1268 // extensive version.
tschatzl@7051 1269 bool is_in_exact(const void* p) const;
tschatzl@7051 1270 #endif
ysr@777 1271
ysr@777 1272 // Return "TRUE" iff the given object address is within the collection
tschatzl@7019 1273 // set. Slow implementation.
ysr@777 1274 inline bool obj_in_cs(oop obj);
ysr@777 1275
tschatzl@7019 1276 inline bool is_in_cset(oop obj);
tschatzl@7019 1277
tschatzl@7019 1278 inline bool is_in_cset_or_humongous(const oop obj);
tschatzl@7019 1279
tschatzl@7019 1280 enum in_cset_state_t {
tschatzl@7019 1281 InNeither, // neither in collection set nor humongous
tschatzl@7019 1282 InCSet, // region is in collection set only
tschatzl@7019 1283 IsHumongous // region is a humongous start region
tschatzl@7019 1284 };
tschatzl@7019 1285 private:
tschatzl@7019 1286 // Instances of this class are used for quick tests on whether a reference points
tschatzl@7019 1287 // into the collection set or is a humongous object (points into a humongous
tschatzl@7019 1288 // object).
tschatzl@7019 1289 // Each of the array's elements denotes whether the corresponding region is in
tschatzl@7019 1290 // the collection set or a humongous region.
tschatzl@7019 1291 // We use this to quickly reclaim humongous objects: by making a humongous region
tschatzl@7019 1292 // succeed this test, we sort-of add it to the collection set. During the reference
tschatzl@7019 1293 // iteration closures, when we see a humongous region, we simply mark it as
tschatzl@7019 1294 // referenced, i.e. live.
tschatzl@7019 1295 class G1FastCSetBiasedMappedArray : public G1BiasedMappedArray<char> {
tschatzl@7019 1296 protected:
tschatzl@7019 1297 char default_value() const { return G1CollectedHeap::InNeither; }
tschatzl@7019 1298 public:
tschatzl@7019 1299 void set_humongous(uintptr_t index) {
tschatzl@7019 1300 assert(get_by_index(index) != InCSet, "Should not overwrite InCSet values");
tschatzl@7019 1301 set_by_index(index, G1CollectedHeap::IsHumongous);
tschatzl@7019 1302 }
tschatzl@7019 1303
tschatzl@7019 1304 void clear_humongous(uintptr_t index) {
tschatzl@7019 1305 set_by_index(index, G1CollectedHeap::InNeither);
tschatzl@7019 1306 }
tschatzl@7019 1307
tschatzl@7019 1308 void set_in_cset(uintptr_t index) {
tschatzl@7019 1309 assert(get_by_index(index) != G1CollectedHeap::IsHumongous, "Should not overwrite IsHumongous value");
tschatzl@7019 1310 set_by_index(index, G1CollectedHeap::InCSet);
tschatzl@7019 1311 }
tschatzl@7019 1312
tschatzl@7019 1313 bool is_in_cset_or_humongous(HeapWord* addr) const { return get_by_address(addr) != G1CollectedHeap::InNeither; }
tschatzl@7019 1314 bool is_in_cset(HeapWord* addr) const { return get_by_address(addr) == G1CollectedHeap::InCSet; }
tschatzl@7019 1315 G1CollectedHeap::in_cset_state_t at(HeapWord* addr) const { return (G1CollectedHeap::in_cset_state_t)get_by_address(addr); }
tschatzl@7019 1316 void clear() { G1BiasedMappedArray<char>::clear(); }
tschatzl@7019 1317 };
tschatzl@7019 1318
tschatzl@7019 1319 // This array is used for a quick test on whether a reference points into
tschatzl@7019 1320 // the collection set or not. Each of the array's elements denotes whether the
tschatzl@7019 1321 // corresponding region is in the collection set or not.
tschatzl@7019 1322 G1FastCSetBiasedMappedArray _in_cset_fast_test;
tschatzl@7019 1323
tschatzl@7019 1324 public:
tschatzl@7019 1325
tschatzl@7019 1326 inline in_cset_state_t in_cset_state(const oop obj);
tschatzl@7019 1327
ysr@777 1328 // Return "TRUE" iff the given object address is in the reserved
coleenp@4037 1329 // region of g1.
ysr@777 1330 bool is_in_g1_reserved(const void* p) const {
tschatzl@7091 1331 return _hrm.reserved().contains(p);
ysr@777 1332 }
ysr@777 1333
tonyp@2717 1334 // Returns a MemRegion that corresponds to the space that has been
tonyp@2717 1335 // reserved for the heap
tschatzl@7050 1336 MemRegion g1_reserved() const {
tschatzl@7091 1337 return _hrm.reserved();
tonyp@2717 1338 }
tonyp@2717 1339
johnc@2593 1340 virtual bool is_in_closed_subset(const void* p) const;
ysr@777 1341
tschatzl@7051 1342 G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
tschatzl@7051 1343 return (G1SATBCardTableLoggingModRefBS*) barrier_set();
mgerdin@5811 1344 }
mgerdin@5811 1345
ysr@777 1346 // This resets the card table to all zeros. It is used after
ysr@777 1347 // a collection pause which used the card table to claim cards.
ysr@777 1348 void cleanUpCardTable();
ysr@777 1349
ysr@777 1350 // Iteration functions.
ysr@777 1351
ysr@777 1352 // Iterate over all the ref-containing fields of all objects, calling
ysr@777 1353 // "cl.do_oop" on each.
coleenp@4037 1354 virtual void oop_iterate(ExtendedOopClosure* cl);
ysr@777 1355
ysr@777 1356 // Iterate over all objects, calling "cl.do_object" on each.
coleenp@4037 1357 virtual void object_iterate(ObjectClosure* cl);
coleenp@4037 1358
coleenp@4037 1359 virtual void safe_object_iterate(ObjectClosure* cl) {
coleenp@4037 1360 object_iterate(cl);
iveresov@1113 1361 }
ysr@777 1362
ysr@777 1363 // Iterate over all spaces in use in the heap, in ascending address order.
ysr@777 1364 virtual void space_iterate(SpaceClosure* cl);
ysr@777 1365
ysr@777 1366 // Iterate over heap regions, in address order, terminating the
ysr@777 1367 // iteration early if the "doHeapRegion" method returns "true".
tonyp@2963 1368 void heap_region_iterate(HeapRegionClosure* blk) const;
ysr@777 1369
tonyp@2963 1370 // Return the region with the given index. It assumes the index is valid.
tschatzl@6541 1371 inline HeapRegion* region_at(uint index) const;
ysr@777 1372
tschatzl@7019 1373 // Calculate the region index of the given address. Given address must be
tschatzl@7019 1374 // within the heap.
tschatzl@7019 1375 inline uint addr_to_region(HeapWord* addr) const;
tschatzl@7019 1376
tschatzl@7050 1377 inline HeapWord* bottom_addr_for_region(uint index) const;
tschatzl@7050 1378
ysr@777 1379 // Divide the heap region sequence into "chunks" of some size (the number
ysr@777 1380 // of regions divided by the number of parallel threads times some
ysr@777 1381 // overpartition factor, currently 4). Assumes that this will be called
ysr@777 1382 // in parallel by ParallelGCThreads worker threads with discinct worker
ysr@777 1383 // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
ysr@777 1384 // calls will use the same "claim_value", and that that claim value is
ysr@777 1385 // different from the claim_value of any heap region before the start of
ysr@777 1386 // the iteration. Applies "blk->doHeapRegion" to each of the regions, by
ysr@777 1387 // attempting to claim the first region in each chunk, and, if
ysr@777 1388 // successful, applying the closure to each region in the chunk (and
ysr@777 1389 // setting the claim value of the second and subsequent regions of the
ysr@777 1390 // chunk.) For now requires that "doHeapRegion" always returns "false",
ysr@777 1391 // i.e., that a closure never attempt to abort a traversal.
tschatzl@7050 1392 void heap_region_par_iterate_chunked(HeapRegionClosure* cl,
tschatzl@7050 1393 uint worker_id,
tschatzl@7050 1394 uint num_workers,
tschatzl@7050 1395 jint claim_value) const;
ysr@777 1396
tonyp@825 1397 // It resets all the region claim values to the default.
tonyp@825 1398 void reset_heap_region_claim_values();
tonyp@825 1399
johnc@3412 1400 // Resets the claim values of regions in the current
johnc@3412 1401 // collection set to the default.
johnc@3412 1402 void reset_cset_heap_region_claim_values();
johnc@3412 1403
tonyp@790 1404 #ifdef ASSERT
tonyp@790 1405 bool check_heap_region_claim_values(jint claim_value);
johnc@3296 1406
johnc@3296 1407 // Same as the routine above but only checks regions in the
johnc@3296 1408 // current collection set.
johnc@3296 1409 bool check_cset_heap_region_claim_values(jint claim_value);
tonyp@790 1410 #endif // ASSERT
tonyp@790 1411
johnc@3336 1412 // Clear the cached cset start regions and (more importantly)
johnc@3336 1413 // the time stamps. Called when we reset the GC time stamp.
johnc@3336 1414 void clear_cset_start_regions();
johnc@3336 1415
johnc@3336 1416 // Given the id of a worker, obtain or calculate a suitable
johnc@3336 1417 // starting region for iterating over the current collection set.
vkempik@6552 1418 HeapRegion* start_cset_region_for_worker(uint worker_i);
johnc@3296 1419
ysr@777 1420 // Iterate over the regions (if any) in the current collection set.
ysr@777 1421 void collection_set_iterate(HeapRegionClosure* blk);
ysr@777 1422
ysr@777 1423 // As above but starting from region r
ysr@777 1424 void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
ysr@777 1425
tschatzl@7018 1426 HeapRegion* next_compaction_region(const HeapRegion* from) const;
ysr@777 1427
ysr@777 1428 // A CollectedHeap will contain some number of spaces. This finds the
ysr@777 1429 // space containing a given address, or else returns NULL.
ysr@777 1430 virtual Space* space_containing(const void* addr) const;
ysr@777 1431
brutisso@7049 1432 // Returns the HeapRegion that contains addr. addr must not be NULL.
brutisso@7049 1433 template <class T>
brutisso@7049 1434 inline HeapRegion* heap_region_containing_raw(const T addr) const;
brutisso@7049 1435
brutisso@7049 1436 // Returns the HeapRegion that contains addr. addr must not be NULL.
brutisso@7049 1437 // If addr is within a humongous continues region, it returns its humongous start region.
tonyp@2963 1438 template <class T>
tonyp@2963 1439 inline HeapRegion* heap_region_containing(const T addr) const;
ysr@777 1440
ysr@777 1441 // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
ysr@777 1442 // each address in the (reserved) heap is a member of exactly
ysr@777 1443 // one block. The defining characteristic of a block is that it is
ysr@777 1444 // possible to find its size, and thus to progress forward to the next
ysr@777 1445 // block. (Blocks may be of different sizes.) Thus, blocks may
ysr@777 1446 // represent Java objects, or they might be free blocks in a
ysr@777 1447 // free-list-based heap (or subheap), as long as the two kinds are
ysr@777 1448 // distinguishable and the size of each is determinable.
ysr@777 1449
ysr@777 1450 // Returns the address of the start of the "block" that contains the
ysr@777 1451 // address "addr". We say "blocks" instead of "object" since some heaps
ysr@777 1452 // may not pack objects densely; a chunk may either be an object or a
ysr@777 1453 // non-object.
ysr@777 1454 virtual HeapWord* block_start(const void* addr) const;
ysr@777 1455
ysr@777 1456 // Requires "addr" to be the start of a chunk, and returns its size.
ysr@777 1457 // "addr + size" is required to be the start of a new chunk, or the end
ysr@777 1458 // of the active area of the heap.
ysr@777 1459 virtual size_t block_size(const HeapWord* addr) const;
ysr@777 1460
ysr@777 1461 // Requires "addr" to be the start of a block, and returns "TRUE" iff
ysr@777 1462 // the block is an object.
ysr@777 1463 virtual bool block_is_obj(const HeapWord* addr) const;
ysr@777 1464
ysr@777 1465 // Does this heap support heap inspection? (+PrintClassHistogram)
ysr@777 1466 virtual bool supports_heap_inspection() const { return true; }
ysr@777 1467
ysr@777 1468 // Section on thread-local allocation buffers (TLABs)
ysr@777 1469 // See CollectedHeap for semantics.
ysr@777 1470
brutisso@6376 1471 bool supports_tlab_allocation() const;
brutisso@6376 1472 size_t tlab_capacity(Thread* ignored) const;
brutisso@6376 1473 size_t tlab_used(Thread* ignored) const;
brutisso@6376 1474 size_t max_tlab_size() const;
brutisso@6376 1475 size_t unsafe_max_tlab_alloc(Thread* ignored) const;
ysr@777 1476
ysr@777 1477 // Can a compiler initialize a new object without store barriers?
ysr@777 1478 // This permission only extends from the creation of a new object
ysr@1462 1479 // via a TLAB up to the first subsequent safepoint. If such permission
ysr@1462 1480 // is granted for this heap type, the compiler promises to call
ysr@1462 1481 // defer_store_barrier() below on any slow path allocation of
ysr@1462 1482 // a new object for which such initializing store barriers will
ysr@1462 1483 // have been elided. G1, like CMS, allows this, but should be
ysr@1462 1484 // ready to provide a compensating write barrier as necessary
ysr@1462 1485 // if that storage came out of a non-young region. The efficiency
ysr@1462 1486 // of this implementation depends crucially on being able to
ysr@1462 1487 // answer very efficiently in constant time whether a piece of
ysr@1462 1488 // storage in the heap comes from a young region or not.
ysr@1462 1489 // See ReduceInitialCardMarks.
ysr@777 1490 virtual bool can_elide_tlab_store_barriers() const {
brutisso@3184 1491 return true;
ysr@1462 1492 }
ysr@1462 1493
ysr@1601 1494 virtual bool card_mark_must_follow_store() const {
ysr@1601 1495 return true;
ysr@1601 1496 }
ysr@1601 1497
tschatzl@6541 1498 inline bool is_in_young(const oop obj);
ysr@1462 1499
jmasa@2909 1500 #ifdef ASSERT
jmasa@2909 1501 virtual bool is_in_partial_collection(const void* p);
jmasa@2909 1502 #endif
jmasa@2909 1503
jmasa@2909 1504 virtual bool is_scavengable(const void* addr);
jmasa@2909 1505
ysr@1462 1506 // We don't need barriers for initializing stores to objects
ysr@1462 1507 // in the young gen: for the SATB pre-barrier, there is no
ysr@1462 1508 // pre-value that needs to be remembered; for the remembered-set
ysr@1462 1509 // update logging post-barrier, we don't maintain remembered set
brutisso@3065 1510 // information for young gen objects.
tschatzl@6541 1511 virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
ysr@777 1512
ysr@777 1513 // Returns "true" iff the given word_size is "very large".
ysr@777 1514 static bool isHumongous(size_t word_size) {
johnc@1748 1515 // Note this has to be strictly greater-than as the TLABs
johnc@1748 1516 // are capped at the humongous thresold and we want to
johnc@1748 1517 // ensure that we don't try to allocate a TLAB as
johnc@1748 1518 // humongous and that we don't allocate a humongous
johnc@1748 1519 // object in a TLAB.
johnc@1748 1520 return word_size > _humongous_object_threshold_in_words;
ysr@777 1521 }
ysr@777 1522
ysr@777 1523 // Update mod union table with the set of dirty cards.
ysr@777 1524 void updateModUnion();
ysr@777 1525
ysr@777 1526 // Set the mod union bits corresponding to the given memRegion. Note
ysr@777 1527 // that this is always a safe operation, since it doesn't clear any
ysr@777 1528 // bits.
ysr@777 1529 void markModUnionRange(MemRegion mr);
ysr@777 1530
ysr@777 1531 // Records the fact that a marking phase is no longer in progress.
ysr@777 1532 void set_marking_complete() {
ysr@777 1533 _mark_in_progress = false;
ysr@777 1534 }
ysr@777 1535 void set_marking_started() {
ysr@777 1536 _mark_in_progress = true;
ysr@777 1537 }
ysr@777 1538 bool mark_in_progress() {
ysr@777 1539 return _mark_in_progress;
ysr@777 1540 }
ysr@777 1541
ysr@777 1542 // Print the maximum heap capacity.
ysr@777 1543 virtual size_t max_capacity() const;
ysr@777 1544
ysr@777 1545 virtual jlong millis_since_last_gc();
ysr@777 1546
tonyp@2974 1547
ysr@777 1548 // Convenience function to be used in situations where the heap type can be
ysr@777 1549 // asserted to be this type.
ysr@777 1550 static G1CollectedHeap* heap();
ysr@777 1551
ysr@777 1552 void set_region_short_lived_locked(HeapRegion* hr);
ysr@777 1553 // add appropriate methods for any other surv rate groups
ysr@777 1554
brutisso@6376 1555 YoungList* young_list() const { return _young_list; }
ysr@777 1556
ysr@777 1557 // debugging
ysr@777 1558 bool check_young_list_well_formed() {
ysr@777 1559 return _young_list->check_list_well_formed();
ysr@777 1560 }
johnc@1829 1561
johnc@1829 1562 bool check_young_list_empty(bool check_heap,
ysr@777 1563 bool check_sample = true);
ysr@777 1564
ysr@777 1565 // *** Stuff related to concurrent marking. It's not clear to me that so
ysr@777 1566 // many of these need to be public.
ysr@777 1567
ysr@777 1568 // The functions below are helper functions that a subclass of
ysr@777 1569 // "CollectedHeap" can use in the implementation of its virtual
ysr@777 1570 // functions.
ysr@777 1571 // This performs a concurrent marking of the live objects in a
ysr@777 1572 // bitmap off to the side.
ysr@777 1573 void doConcurrentMark();
ysr@777 1574
ysr@777 1575 bool isMarkedPrev(oop obj) const;
ysr@777 1576 bool isMarkedNext(oop obj) const;
ysr@777 1577
ysr@777 1578 // Determine if an object is dead, given the object and also
ysr@777 1579 // the region to which the object belongs. An object is dead
ysr@777 1580 // iff a) it was not allocated since the last mark and b) it
ysr@777 1581 // is not marked.
ysr@777 1582 bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
ysr@777 1583 return
ysr@777 1584 !hr->obj_allocated_since_prev_marking(obj) &&
ysr@777 1585 !isMarkedPrev(obj);
ysr@777 1586 }
ysr@777 1587
ysr@777 1588 // This function returns true when an object has been
ysr@777 1589 // around since the previous marking and hasn't yet
ysr@777 1590 // been marked during this marking.
ysr@777 1591 bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
ysr@777 1592 return
ysr@777 1593 !hr->obj_allocated_since_next_marking(obj) &&
ysr@777 1594 !isMarkedNext(obj);
ysr@777 1595 }
ysr@777 1596
ysr@777 1597 // Determine if an object is dead, given only the object itself.
ysr@777 1598 // This will find the region to which the object belongs and
ysr@777 1599 // then call the region version of the same function.
ysr@777 1600
ysr@777 1601 // Added if it is NULL it isn't dead.
ysr@777 1602
tschatzl@6541 1603 inline bool is_obj_dead(const oop obj) const;
ysr@777 1604
tschatzl@6541 1605 inline bool is_obj_ill(const oop obj) const;
ysr@777 1606
johnc@5548 1607 bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
johnc@5548 1608 HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
johnc@5548 1609 bool is_marked(oop obj, VerifyOption vo);
johnc@5548 1610 const char* top_at_mark_start_str(VerifyOption vo);
johnc@5548 1611
johnc@5548 1612 ConcurrentMark* concurrent_mark() const { return _cm; }
johnc@5548 1613
johnc@5548 1614 // Refinement
johnc@5548 1615
johnc@5548 1616 ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
johnc@5548 1617
johnc@5548 1618 // The dirty cards region list is used to record a subset of regions
johnc@5548 1619 // whose cards need clearing. The list if populated during the
johnc@5548 1620 // remembered set scanning and drained during the card table
johnc@5548 1621 // cleanup. Although the methods are reentrant, population/draining
johnc@5548 1622 // phases must not overlap. For synchronization purposes the last
johnc@5548 1623 // element on the list points to itself.
johnc@5548 1624 HeapRegion* _dirty_cards_region_list;
johnc@5548 1625 void push_dirty_cards_region(HeapRegion* hr);
johnc@5548 1626 HeapRegion* pop_dirty_cards_region();
johnc@5548 1627
johnc@5548 1628 // Optimized nmethod scanning support routines
johnc@5548 1629
johnc@5548 1630 // Register the given nmethod with the G1 heap
johnc@5548 1631 virtual void register_nmethod(nmethod* nm);
johnc@5548 1632
johnc@5548 1633 // Unregister the given nmethod from the G1 heap
johnc@5548 1634 virtual void unregister_nmethod(nmethod* nm);
johnc@5548 1635
johnc@5548 1636 // Migrate the nmethods in the code root lists of the regions
johnc@5548 1637 // in the collection set to regions in to-space. In the event
johnc@5548 1638 // of an evacuation failure, nmethods that reference objects
johnc@5548 1639 // that were not successfullly evacuated are not migrated.
johnc@5548 1640 void migrate_strong_code_roots();
johnc@5548 1641
tschatzl@6402 1642 // Free up superfluous code root memory.
tschatzl@6402 1643 void purge_code_root_memory();
tschatzl@6402 1644
johnc@5548 1645 // Rebuild the stong code root lists for each region
johnc@5548 1646 // after a full GC
johnc@5548 1647 void rebuild_strong_code_roots();
johnc@5548 1648
tschatzl@6229 1649 // Delete entries for dead interned string and clean up unreferenced symbols
tschatzl@6229 1650 // in symbol table, possibly in parallel.
tschatzl@6229 1651 void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
tschatzl@6229 1652
stefank@6992 1653 // Parallel phase of unloading/cleaning after G1 concurrent mark.
stefank@6992 1654 void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
stefank@6992 1655
tschatzl@6405 1656 // Redirty logged cards in the refinement queue.
tschatzl@6405 1657 void redirty_logged_cards();
johnc@5548 1658 // Verification
johnc@5548 1659
johnc@5548 1660 // The following is just to alert the verification code
johnc@5548 1661 // that a full collection has occurred and that the
johnc@5548 1662 // remembered sets are no longer up to date.
johnc@5548 1663 bool _full_collection;
johnc@5548 1664 void set_full_collection() { _full_collection = true;}
johnc@5548 1665 void clear_full_collection() {_full_collection = false;}
johnc@5548 1666 bool full_collection() {return _full_collection;}
johnc@5548 1667
johnc@5548 1668 // Perform any cleanup actions necessary before allowing a verification.
johnc@5548 1669 virtual void prepare_for_verify();
johnc@5548 1670
johnc@5548 1671 // Perform verification.
johnc@5548 1672
johnc@5548 1673 // vo == UsePrevMarking -> use "prev" marking information,
johnc@5548 1674 // vo == UseNextMarking -> use "next" marking information
johnc@5548 1675 // vo == UseMarkWord -> use the mark word in the object header
johnc@5548 1676 //
johnc@5548 1677 // NOTE: Only the "prev" marking information is guaranteed to be
johnc@5548 1678 // consistent most of the time, so most calls to this should use
johnc@5548 1679 // vo == UsePrevMarking.
johnc@5548 1680 // Currently, there is only one case where this is called with
johnc@5548 1681 // vo == UseNextMarking, which is to verify the "next" marking
johnc@5548 1682 // information at the end of remark.
johnc@5548 1683 // Currently there is only one place where this is called with
johnc@5548 1684 // vo == UseMarkWord, which is to verify the marking during a
johnc@5548 1685 // full GC.
johnc@5548 1686 void verify(bool silent, VerifyOption vo);
johnc@5548 1687
johnc@5548 1688 // Override; it uses the "prev" marking information
johnc@5548 1689 virtual void verify(bool silent);
johnc@5548 1690
tonyp@3957 1691 // The methods below are here for convenience and dispatch the
tonyp@3957 1692 // appropriate method depending on value of the given VerifyOption
johnc@5548 1693 // parameter. The values for that parameter, and their meanings,
johnc@5548 1694 // are the same as those above.
tonyp@3957 1695
tonyp@3957 1696 bool is_obj_dead_cond(const oop obj,
tonyp@3957 1697 const HeapRegion* hr,
tschatzl@6541 1698 const VerifyOption vo) const;
tonyp@3957 1699
tonyp@3957 1700 bool is_obj_dead_cond(const oop obj,
tschatzl@6541 1701 const VerifyOption vo) const;
tonyp@3957 1702
johnc@5548 1703 // Printing
tonyp@3957 1704
johnc@5548 1705 virtual void print_on(outputStream* st) const;
johnc@5548 1706 virtual void print_extended_on(outputStream* st) const;
johnc@5548 1707 virtual void print_on_error(outputStream* st) const;
ysr@777 1708
johnc@5548 1709 virtual void print_gc_threads_on(outputStream* st) const;
johnc@5548 1710 virtual void gc_threads_do(ThreadClosure* tc) const;
ysr@777 1711
johnc@5548 1712 // Override
johnc@5548 1713 void print_tracing_info() const;
johnc@5548 1714
johnc@5548 1715 // The following two methods are helpful for debugging RSet issues.
johnc@5548 1716 void print_cset_rsets() PRODUCT_RETURN;
johnc@5548 1717 void print_all_rsets() PRODUCT_RETURN;
apetrusenko@1231 1718
ysr@777 1719 public:
ysr@777 1720 size_t pending_card_num();
ysr@777 1721 size_t cards_scanned();
ysr@777 1722
ysr@777 1723 protected:
ysr@777 1724 size_t _max_heap_capacity;
ysr@777 1725 };
ysr@777 1726
stefank@2314 1727 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial