src/share/vm/opto/loopTransform.cpp

Tue, 17 May 2011 19:11:51 -0700

author
never
date
Tue, 17 May 2011 19:11:51 -0700
changeset 2920
a80577f854f9
parent 2915
38569792a45a
child 2929
789d04408ca3
permissions
-rw-r--r--

7045513: JSR 292 inlining causes crashes in methodHandleWalk.cpp
Reviewed-by: jrose

duke@435 1 /*
trims@2708 2 * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "compiler/compileLog.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "opto/addnode.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/connode.hpp"
stefank@2314 31 #include "opto/divnode.hpp"
stefank@2314 32 #include "opto/loopnode.hpp"
stefank@2314 33 #include "opto/mulnode.hpp"
stefank@2314 34 #include "opto/rootnode.hpp"
stefank@2314 35 #include "opto/runtime.hpp"
stefank@2314 36 #include "opto/subnode.hpp"
duke@435 37
duke@435 38 //------------------------------is_loop_exit-----------------------------------
duke@435 39 // Given an IfNode, return the loop-exiting projection or NULL if both
duke@435 40 // arms remain in the loop.
duke@435 41 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
duke@435 42 if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
duke@435 43 PhaseIdealLoop *phase = _phase;
duke@435 44 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 45 // we need loop unswitching instead of peeling.
duke@435 46 if( !is_member(phase->get_loop( iff->raw_out(0) )) )
duke@435 47 return iff->raw_out(0);
duke@435 48 if( !is_member(phase->get_loop( iff->raw_out(1) )) )
duke@435 49 return iff->raw_out(1);
duke@435 50 return NULL;
duke@435 51 }
duke@435 52
duke@435 53
duke@435 54 //=============================================================================
duke@435 55
duke@435 56
duke@435 57 //------------------------------record_for_igvn----------------------------
duke@435 58 // Put loop body on igvn work list
duke@435 59 void IdealLoopTree::record_for_igvn() {
duke@435 60 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 61 Node *n = _body.at(i);
duke@435 62 _phase->_igvn._worklist.push(n);
duke@435 63 }
duke@435 64 }
duke@435 65
kvn@2747 66 //------------------------------compute_exact_trip_count-----------------------
kvn@2747 67 // Compute loop exact trip count if possible. Do not recalculate trip count for
kvn@2747 68 // split loops (pre-main-post) which have their limits and inits behind Opaque node.
kvn@2747 69 void IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
kvn@2747 70 if (!_head->as_Loop()->is_valid_counted_loop()) {
kvn@2747 71 return;
kvn@2747 72 }
kvn@2747 73 CountedLoopNode* cl = _head->as_CountedLoop();
kvn@2747 74 // Trip count may become nonexact for iteration split loops since
kvn@2747 75 // RCE modifies limits. Note, _trip_count value is not reset since
kvn@2747 76 // it is used to limit unrolling of main loop.
kvn@2747 77 cl->set_nonexact_trip_count();
kvn@2747 78
kvn@2747 79 // Loop's test should be part of loop.
kvn@2747 80 if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
kvn@2747 81 return; // Infinite loop
kvn@2747 82
kvn@2747 83 #ifdef ASSERT
kvn@2747 84 BoolTest::mask bt = cl->loopexit()->test_trip();
kvn@2747 85 assert(bt == BoolTest::lt || bt == BoolTest::gt ||
kvn@2877 86 (bt == BoolTest::ne && !LoopLimitCheck), "canonical test is expected");
kvn@2747 87 #endif
kvn@2747 88
kvn@2747 89 Node* init_n = cl->init_trip();
kvn@2747 90 Node* limit_n = cl->limit();
kvn@2747 91 if (init_n != NULL && init_n->is_Con() &&
kvn@2747 92 limit_n != NULL && limit_n->is_Con()) {
kvn@2747 93 // Use longs to avoid integer overflow.
kvn@2747 94 int stride_con = cl->stride_con();
kvn@2747 95 long init_con = cl->init_trip()->get_int();
kvn@2747 96 long limit_con = cl->limit()->get_int();
kvn@2747 97 int stride_m = stride_con - (stride_con > 0 ? 1 : -1);
kvn@2747 98 long trip_count = (limit_con - init_con + stride_m)/stride_con;
kvn@2747 99 if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
kvn@2747 100 // Set exact trip count.
kvn@2747 101 cl->set_exact_trip_count((uint)trip_count);
kvn@2747 102 }
kvn@2747 103 }
kvn@2747 104 }
kvn@2747 105
duke@435 106 //------------------------------compute_profile_trip_cnt----------------------------
duke@435 107 // Compute loop trip count from profile data as
duke@435 108 // (backedge_count + loop_exit_count) / loop_exit_count
duke@435 109 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
duke@435 110 if (!_head->is_CountedLoop()) {
duke@435 111 return;
duke@435 112 }
duke@435 113 CountedLoopNode* head = _head->as_CountedLoop();
duke@435 114 if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
duke@435 115 return; // Already computed
duke@435 116 }
duke@435 117 float trip_cnt = (float)max_jint; // default is big
duke@435 118
duke@435 119 Node* back = head->in(LoopNode::LoopBackControl);
duke@435 120 while (back != head) {
duke@435 121 if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
duke@435 122 back->in(0) &&
duke@435 123 back->in(0)->is_If() &&
duke@435 124 back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
duke@435 125 back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
duke@435 126 break;
duke@435 127 }
duke@435 128 back = phase->idom(back);
duke@435 129 }
duke@435 130 if (back != head) {
duke@435 131 assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
duke@435 132 back->in(0), "if-projection exists");
duke@435 133 IfNode* back_if = back->in(0)->as_If();
duke@435 134 float loop_back_cnt = back_if->_fcnt * back_if->_prob;
duke@435 135
duke@435 136 // Now compute a loop exit count
duke@435 137 float loop_exit_cnt = 0.0f;
duke@435 138 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 139 Node *n = _body[i];
duke@435 140 if( n->is_If() ) {
duke@435 141 IfNode *iff = n->as_If();
duke@435 142 if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
duke@435 143 Node *exit = is_loop_exit(iff);
duke@435 144 if( exit ) {
duke@435 145 float exit_prob = iff->_prob;
duke@435 146 if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
duke@435 147 if (exit_prob > PROB_MIN) {
duke@435 148 float exit_cnt = iff->_fcnt * exit_prob;
duke@435 149 loop_exit_cnt += exit_cnt;
duke@435 150 }
duke@435 151 }
duke@435 152 }
duke@435 153 }
duke@435 154 }
duke@435 155 if (loop_exit_cnt > 0.0f) {
duke@435 156 trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
duke@435 157 } else {
duke@435 158 // No exit count so use
duke@435 159 trip_cnt = loop_back_cnt;
duke@435 160 }
duke@435 161 }
duke@435 162 #ifndef PRODUCT
duke@435 163 if (TraceProfileTripCount) {
duke@435 164 tty->print_cr("compute_profile_trip_cnt lp: %d cnt: %f\n", head->_idx, trip_cnt);
duke@435 165 }
duke@435 166 #endif
duke@435 167 head->set_profile_trip_cnt(trip_cnt);
duke@435 168 }
duke@435 169
duke@435 170 //---------------------is_invariant_addition-----------------------------
duke@435 171 // Return nonzero index of invariant operand for an Add or Sub
twisti@1040 172 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
duke@435 173 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
duke@435 174 int op = n->Opcode();
duke@435 175 if (op == Op_AddI || op == Op_SubI) {
duke@435 176 bool in1_invar = this->is_invariant(n->in(1));
duke@435 177 bool in2_invar = this->is_invariant(n->in(2));
duke@435 178 if (in1_invar && !in2_invar) return 1;
duke@435 179 if (!in1_invar && in2_invar) return 2;
duke@435 180 }
duke@435 181 return 0;
duke@435 182 }
duke@435 183
duke@435 184 //---------------------reassociate_add_sub-----------------------------
duke@435 185 // Reassociate invariant add and subtract expressions:
duke@435 186 //
duke@435 187 // inv1 + (x + inv2) => ( inv1 + inv2) + x
duke@435 188 // (x + inv2) + inv1 => ( inv1 + inv2) + x
duke@435 189 // inv1 + (x - inv2) => ( inv1 - inv2) + x
duke@435 190 // inv1 - (inv2 - x) => ( inv1 - inv2) + x
duke@435 191 // (x + inv2) - inv1 => (-inv1 + inv2) + x
duke@435 192 // (x - inv2) + inv1 => ( inv1 - inv2) + x
duke@435 193 // (x - inv2) - inv1 => (-inv1 - inv2) + x
duke@435 194 // inv1 + (inv2 - x) => ( inv1 + inv2) - x
duke@435 195 // inv1 - (x - inv2) => ( inv1 + inv2) - x
duke@435 196 // (inv2 - x) + inv1 => ( inv1 + inv2) - x
duke@435 197 // (inv2 - x) - inv1 => (-inv1 + inv2) - x
duke@435 198 // inv1 - (x + inv2) => ( inv1 - inv2) - x
duke@435 199 //
duke@435 200 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
duke@435 201 if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
duke@435 202 if (is_invariant(n1)) return NULL;
duke@435 203 int inv1_idx = is_invariant_addition(n1, phase);
duke@435 204 if (!inv1_idx) return NULL;
duke@435 205 // Don't mess with add of constant (igvn moves them to expression tree root.)
duke@435 206 if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
duke@435 207 Node* inv1 = n1->in(inv1_idx);
duke@435 208 Node* n2 = n1->in(3 - inv1_idx);
duke@435 209 int inv2_idx = is_invariant_addition(n2, phase);
duke@435 210 if (!inv2_idx) return NULL;
duke@435 211 Node* x = n2->in(3 - inv2_idx);
duke@435 212 Node* inv2 = n2->in(inv2_idx);
duke@435 213
duke@435 214 bool neg_x = n2->is_Sub() && inv2_idx == 1;
duke@435 215 bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
duke@435 216 bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
duke@435 217 if (n1->is_Sub() && inv1_idx == 1) {
duke@435 218 neg_x = !neg_x;
duke@435 219 neg_inv2 = !neg_inv2;
duke@435 220 }
duke@435 221 Node* inv1_c = phase->get_ctrl(inv1);
duke@435 222 Node* inv2_c = phase->get_ctrl(inv2);
duke@435 223 Node* n_inv1;
duke@435 224 if (neg_inv1) {
duke@435 225 Node *zero = phase->_igvn.intcon(0);
duke@435 226 phase->set_ctrl(zero, phase->C->root());
duke@435 227 n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
duke@435 228 phase->register_new_node(n_inv1, inv1_c);
duke@435 229 } else {
duke@435 230 n_inv1 = inv1;
duke@435 231 }
duke@435 232 Node* inv;
duke@435 233 if (neg_inv2) {
duke@435 234 inv = new (phase->C, 3) SubINode(n_inv1, inv2);
duke@435 235 } else {
duke@435 236 inv = new (phase->C, 3) AddINode(n_inv1, inv2);
duke@435 237 }
duke@435 238 phase->register_new_node(inv, phase->get_early_ctrl(inv));
duke@435 239
duke@435 240 Node* addx;
duke@435 241 if (neg_x) {
duke@435 242 addx = new (phase->C, 3) SubINode(inv, x);
duke@435 243 } else {
duke@435 244 addx = new (phase->C, 3) AddINode(x, inv);
duke@435 245 }
duke@435 246 phase->register_new_node(addx, phase->get_ctrl(x));
kvn@1976 247 phase->_igvn.replace_node(n1, addx);
kvn@2665 248 assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
kvn@2665 249 _body.yank(n1);
duke@435 250 return addx;
duke@435 251 }
duke@435 252
duke@435 253 //---------------------reassociate_invariants-----------------------------
duke@435 254 // Reassociate invariant expressions:
duke@435 255 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
duke@435 256 for (int i = _body.size() - 1; i >= 0; i--) {
duke@435 257 Node *n = _body.at(i);
duke@435 258 for (int j = 0; j < 5; j++) {
duke@435 259 Node* nn = reassociate_add_sub(n, phase);
duke@435 260 if (nn == NULL) break;
duke@435 261 n = nn; // again
duke@435 262 };
duke@435 263 }
duke@435 264 }
duke@435 265
duke@435 266 //------------------------------policy_peeling---------------------------------
duke@435 267 // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
duke@435 268 // make some loop-invariant test (usually a null-check) happen before the loop.
duke@435 269 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
duke@435 270 Node *test = ((IdealLoopTree*)this)->tail();
duke@435 271 int body_size = ((IdealLoopTree*)this)->_body.size();
duke@435 272 int uniq = phase->C->unique();
duke@435 273 // Peeling does loop cloning which can result in O(N^2) node construction
duke@435 274 if( body_size > 255 /* Prevent overflow for large body_size */
duke@435 275 || (body_size * body_size + uniq > MaxNodeLimit) ) {
duke@435 276 return false; // too large to safely clone
duke@435 277 }
duke@435 278 while( test != _head ) { // Scan till run off top of loop
duke@435 279 if( test->is_If() ) { // Test?
duke@435 280 Node *ctrl = phase->get_ctrl(test->in(1));
duke@435 281 if (ctrl->is_top())
duke@435 282 return false; // Found dead test on live IF? No peeling!
duke@435 283 // Standard IF only has one input value to check for loop invariance
duke@435 284 assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
duke@435 285 // Condition is not a member of this loop?
duke@435 286 if( !is_member(phase->get_loop(ctrl)) &&
duke@435 287 is_loop_exit(test) )
duke@435 288 return true; // Found reason to peel!
duke@435 289 }
duke@435 290 // Walk up dominators to loop _head looking for test which is
duke@435 291 // executed on every path thru loop.
duke@435 292 test = phase->idom(test);
duke@435 293 }
duke@435 294 return false;
duke@435 295 }
duke@435 296
duke@435 297 //------------------------------peeled_dom_test_elim---------------------------
duke@435 298 // If we got the effect of peeling, either by actually peeling or by making
duke@435 299 // a pre-loop which must execute at least once, we can remove all
duke@435 300 // loop-invariant dominated tests in the main body.
duke@435 301 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 302 bool progress = true;
duke@435 303 while( progress ) {
duke@435 304 progress = false; // Reset for next iteration
duke@435 305 Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
duke@435 306 Node *test = prev->in(0);
duke@435 307 while( test != loop->_head ) { // Scan till run off top of loop
duke@435 308
duke@435 309 int p_op = prev->Opcode();
duke@435 310 if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
duke@435 311 test->is_If() && // Test?
duke@435 312 !test->in(1)->is_Con() && // And not already obvious?
duke@435 313 // Condition is not a member of this loop?
duke@435 314 !loop->is_member(get_loop(get_ctrl(test->in(1))))){
duke@435 315 // Walk loop body looking for instances of this test
duke@435 316 for( uint i = 0; i < loop->_body.size(); i++ ) {
duke@435 317 Node *n = loop->_body.at(i);
duke@435 318 if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
duke@435 319 // IfNode was dominated by version in peeled loop body
duke@435 320 progress = true;
duke@435 321 dominated_by( old_new[prev->_idx], n );
duke@435 322 }
duke@435 323 }
duke@435 324 }
duke@435 325 prev = test;
duke@435 326 test = idom(test);
duke@435 327 } // End of scan tests in loop
duke@435 328
duke@435 329 } // End of while( progress )
duke@435 330 }
duke@435 331
duke@435 332 //------------------------------do_peeling-------------------------------------
duke@435 333 // Peel the first iteration of the given loop.
duke@435 334 // Step 1: Clone the loop body. The clone becomes the peeled iteration.
duke@435 335 // The pre-loop illegally has 2 control users (old & new loops).
duke@435 336 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
duke@435 337 // Do this by making the old-loop fall-in edges act as if they came
duke@435 338 // around the loopback from the prior iteration (follow the old-loop
duke@435 339 // backedges) and then map to the new peeled iteration. This leaves
duke@435 340 // the pre-loop with only 1 user (the new peeled iteration), but the
duke@435 341 // peeled-loop backedge has 2 users.
duke@435 342 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
duke@435 343 // extra backedge user.
kvn@2727 344 //
kvn@2727 345 // orig
kvn@2727 346 //
kvn@2727 347 // stmt1
kvn@2727 348 // |
kvn@2727 349 // v
kvn@2727 350 // loop predicate
kvn@2727 351 // |
kvn@2727 352 // v
kvn@2727 353 // loop<----+
kvn@2727 354 // | |
kvn@2727 355 // stmt2 |
kvn@2727 356 // | |
kvn@2727 357 // v |
kvn@2727 358 // if ^
kvn@2727 359 // / \ |
kvn@2727 360 // / \ |
kvn@2727 361 // v v |
kvn@2727 362 // false true |
kvn@2727 363 // / \ |
kvn@2727 364 // / ----+
kvn@2727 365 // |
kvn@2727 366 // v
kvn@2727 367 // exit
kvn@2727 368 //
kvn@2727 369 //
kvn@2727 370 // after clone loop
kvn@2727 371 //
kvn@2727 372 // stmt1
kvn@2727 373 // |
kvn@2727 374 // v
kvn@2727 375 // loop predicate
kvn@2727 376 // / \
kvn@2727 377 // clone / \ orig
kvn@2727 378 // / \
kvn@2727 379 // / \
kvn@2727 380 // v v
kvn@2727 381 // +---->loop clone loop<----+
kvn@2727 382 // | | | |
kvn@2727 383 // | stmt2 clone stmt2 |
kvn@2727 384 // | | | |
kvn@2727 385 // | v v |
kvn@2727 386 // ^ if clone If ^
kvn@2727 387 // | / \ / \ |
kvn@2727 388 // | / \ / \ |
kvn@2727 389 // | v v v v |
kvn@2727 390 // | true false false true |
kvn@2727 391 // | / \ / \ |
kvn@2727 392 // +---- \ / ----+
kvn@2727 393 // \ /
kvn@2727 394 // 1v v2
kvn@2727 395 // region
kvn@2727 396 // |
kvn@2727 397 // v
kvn@2727 398 // exit
kvn@2727 399 //
kvn@2727 400 //
kvn@2727 401 // after peel and predicate move
kvn@2727 402 //
kvn@2727 403 // stmt1
kvn@2727 404 // /
kvn@2727 405 // /
kvn@2727 406 // clone / orig
kvn@2727 407 // /
kvn@2727 408 // / +----------+
kvn@2727 409 // / | |
kvn@2727 410 // / loop predicate |
kvn@2727 411 // / | |
kvn@2727 412 // v v |
kvn@2727 413 // TOP-->loop clone loop<----+ |
kvn@2727 414 // | | | |
kvn@2727 415 // stmt2 clone stmt2 | |
kvn@2727 416 // | | | ^
kvn@2727 417 // v v | |
kvn@2727 418 // if clone If ^ |
kvn@2727 419 // / \ / \ | |
kvn@2727 420 // / \ / \ | |
kvn@2727 421 // v v v v | |
kvn@2727 422 // true false false true | |
kvn@2727 423 // | \ / \ | |
kvn@2727 424 // | \ / ----+ ^
kvn@2727 425 // | \ / |
kvn@2727 426 // | 1v v2 |
kvn@2727 427 // v region |
kvn@2727 428 // | | |
kvn@2727 429 // | v |
kvn@2727 430 // | exit |
kvn@2727 431 // | |
kvn@2727 432 // +--------------->-----------------+
kvn@2727 433 //
kvn@2727 434 //
kvn@2727 435 // final graph
kvn@2727 436 //
kvn@2727 437 // stmt1
kvn@2727 438 // |
kvn@2727 439 // v
kvn@2727 440 // stmt2 clone
kvn@2727 441 // |
kvn@2727 442 // v
kvn@2727 443 // if clone
kvn@2727 444 // / |
kvn@2727 445 // / |
kvn@2727 446 // v v
kvn@2727 447 // false true
kvn@2727 448 // | |
kvn@2727 449 // | v
kvn@2727 450 // | loop predicate
kvn@2727 451 // | |
kvn@2727 452 // | v
kvn@2727 453 // | loop<----+
kvn@2727 454 // | | |
kvn@2727 455 // | stmt2 |
kvn@2727 456 // | | |
kvn@2727 457 // | v |
kvn@2727 458 // v if ^
kvn@2727 459 // | / \ |
kvn@2727 460 // | / \ |
kvn@2727 461 // | v v |
kvn@2727 462 // | false true |
kvn@2727 463 // | | \ |
kvn@2727 464 // v v --+
kvn@2727 465 // region
kvn@2727 466 // |
kvn@2727 467 // v
kvn@2727 468 // exit
kvn@2727 469 //
duke@435 470 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 471
duke@435 472 C->set_major_progress();
duke@435 473 // Peeling a 'main' loop in a pre/main/post situation obfuscates the
duke@435 474 // 'pre' loop from the main and the 'pre' can no longer have it's
duke@435 475 // iterations adjusted. Therefore, we need to declare this loop as
duke@435 476 // no longer a 'main' loop; it will need new pre and post loops before
duke@435 477 // we can do further RCE.
kvn@2665 478 #ifndef PRODUCT
kvn@2665 479 if (TraceLoopOpts) {
kvn@2665 480 tty->print("Peel ");
kvn@2665 481 loop->dump_head();
kvn@2665 482 }
kvn@2665 483 #endif
kvn@2727 484 Node* head = loop->_head;
kvn@2727 485 bool counted_loop = head->is_CountedLoop();
kvn@2727 486 if (counted_loop) {
kvn@2727 487 CountedLoopNode *cl = head->as_CountedLoop();
duke@435 488 assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
duke@435 489 cl->set_trip_count(cl->trip_count() - 1);
kvn@2665 490 if (cl->is_main_loop()) {
duke@435 491 cl->set_normal_loop();
duke@435 492 #ifndef PRODUCT
kvn@2665 493 if (PrintOpto && VerifyLoopOptimizations) {
duke@435 494 tty->print("Peeling a 'main' loop; resetting to 'normal' ");
duke@435 495 loop->dump_head();
duke@435 496 }
duke@435 497 #endif
duke@435 498 }
duke@435 499 }
kvn@2727 500 Node* entry = head->in(LoopNode::EntryControl);
duke@435 501
duke@435 502 // Step 1: Clone the loop body. The clone becomes the peeled iteration.
duke@435 503 // The pre-loop illegally has 2 control users (old & new loops).
kvn@2727 504 clone_loop( loop, old_new, dom_depth(head) );
duke@435 505
duke@435 506 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
duke@435 507 // Do this by making the old-loop fall-in edges act as if they came
duke@435 508 // around the loopback from the prior iteration (follow the old-loop
duke@435 509 // backedges) and then map to the new peeled iteration. This leaves
duke@435 510 // the pre-loop with only 1 user (the new peeled iteration), but the
duke@435 511 // peeled-loop backedge has 2 users.
kvn@2727 512 Node* new_exit_value = old_new[head->in(LoopNode::LoopBackControl)->_idx];
kvn@2877 513 new_exit_value = move_loop_predicates(entry, new_exit_value, !counted_loop);
kvn@2727 514 _igvn.hash_delete(head);
kvn@2727 515 head->set_req(LoopNode::EntryControl, new_exit_value);
kvn@2727 516 for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
kvn@2727 517 Node* old = head->fast_out(j);
kvn@2727 518 if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
kvn@2727 519 new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
kvn@2727 520 if (!new_exit_value ) // Backedge value is ALSO loop invariant?
duke@435 521 // Then loop body backedge value remains the same.
duke@435 522 new_exit_value = old->in(LoopNode::LoopBackControl);
duke@435 523 _igvn.hash_delete(old);
duke@435 524 old->set_req(LoopNode::EntryControl, new_exit_value);
duke@435 525 }
duke@435 526 }
duke@435 527
duke@435 528
duke@435 529 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
duke@435 530 // extra backedge user.
kvn@2727 531 Node* new_head = old_new[head->_idx];
kvn@2727 532 _igvn.hash_delete(new_head);
kvn@2727 533 new_head->set_req(LoopNode::LoopBackControl, C->top());
kvn@2727 534 for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
kvn@2727 535 Node* use = new_head->fast_out(j2);
kvn@2727 536 if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
duke@435 537 _igvn.hash_delete(use);
duke@435 538 use->set_req(LoopNode::LoopBackControl, C->top());
duke@435 539 }
duke@435 540 }
duke@435 541
duke@435 542
duke@435 543 // Step 4: Correct dom-depth info. Set to loop-head depth.
kvn@2727 544 int dd = dom_depth(head);
kvn@2727 545 set_idom(head, head->in(1), dd);
duke@435 546 for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
duke@435 547 Node *old = loop->_body.at(j3);
duke@435 548 Node *nnn = old_new[old->_idx];
duke@435 549 if (!has_ctrl(nnn))
duke@435 550 set_idom(nnn, idom(nnn), dd-1);
duke@435 551 // While we're at it, remove any SafePoints from the peeled code
kvn@2727 552 if (old->Opcode() == Op_SafePoint) {
duke@435 553 Node *nnn = old_new[old->_idx];
duke@435 554 lazy_replace(nnn,nnn->in(TypeFunc::Control));
duke@435 555 }
duke@435 556 }
duke@435 557
duke@435 558 // Now force out all loop-invariant dominating tests. The optimizer
duke@435 559 // finds some, but we _know_ they are all useless.
duke@435 560 peeled_dom_test_elim(loop,old_new);
duke@435 561
duke@435 562 loop->record_for_igvn();
duke@435 563 }
duke@435 564
kvn@2735 565 #define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
kvn@2735 566
duke@435 567 //------------------------------policy_maximally_unroll------------------------
kvn@2735 568 // Calculate exact loop trip count and return true if loop can be maximally
kvn@2735 569 // unrolled.
duke@435 570 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
duke@435 571 CountedLoopNode *cl = _head->as_CountedLoop();
kvn@2694 572 assert(cl->is_normal_loop(), "");
kvn@2735 573 if (!cl->is_valid_counted_loop())
kvn@2735 574 return false; // Malformed counted loop
duke@435 575
kvn@2747 576 if (!cl->has_exact_trip_count()) {
kvn@2747 577 // Trip count is not exact.
duke@435 578 return false;
duke@435 579 }
duke@435 580
kvn@2747 581 uint trip_count = cl->trip_count();
kvn@2747 582 // Note, max_juint is used to indicate unknown trip count.
kvn@2747 583 assert(trip_count > 1, "one iteration loop should be optimized out already");
kvn@2747 584 assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
duke@435 585
duke@435 586 // Real policy: if we maximally unroll, does it get too big?
duke@435 587 // Allow the unrolled mess to get larger than standard loop
duke@435 588 // size. After all, it will no longer be a loop.
duke@435 589 uint body_size = _body.size();
duke@435 590 uint unroll_limit = (uint)LoopUnrollLimit * 4;
duke@435 591 assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
kvn@2694 592 if (trip_count > unroll_limit || body_size > unroll_limit) {
kvn@2694 593 return false;
kvn@2694 594 }
kvn@2694 595
kvn@2877 596 // Fully unroll a loop with few iterations regardless next
kvn@2877 597 // conditions since following loop optimizations will split
kvn@2877 598 // such loop anyway (pre-main-post).
kvn@2877 599 if (trip_count <= 3)
kvn@2877 600 return true;
kvn@2877 601
kvn@2735 602 // Take into account that after unroll conjoined heads and tails will fold,
kvn@2735 603 // otherwise policy_unroll() may allow more unrolling than max unrolling.
kvn@2735 604 uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
kvn@2735 605 uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
kvn@2735 606 if (body_size != tst_body_size) // Check for int overflow
kvn@2735 607 return false;
kvn@2735 608 if (new_body_size > unroll_limit ||
kvn@2735 609 // Unrolling can result in a large amount of node construction
kvn@2735 610 new_body_size >= MaxNodeLimit - phase->C->unique()) {
kvn@2735 611 return false;
kvn@2735 612 }
kvn@2735 613
kvn@2694 614 // Do not unroll a loop with String intrinsics code.
kvn@2694 615 // String intrinsics are large and have loops.
kvn@2694 616 for (uint k = 0; k < _body.size(); k++) {
kvn@2694 617 Node* n = _body.at(k);
kvn@2694 618 switch (n->Opcode()) {
kvn@2694 619 case Op_StrComp:
kvn@2694 620 case Op_StrEquals:
kvn@2694 621 case Op_StrIndexOf:
kvn@2694 622 case Op_AryEq: {
kvn@2694 623 return false;
kvn@2694 624 }
kvn@2694 625 } // switch
kvn@2694 626 }
kvn@2694 627
kvn@2735 628 return true; // Do maximally unroll
duke@435 629 }
duke@435 630
duke@435 631
kvn@2865 632 #define MAX_UNROLL 16 // maximum number of unrolls for main loop
kvn@2865 633
duke@435 634 //------------------------------policy_unroll----------------------------------
duke@435 635 // Return TRUE or FALSE if the loop should be unrolled or not. Unroll if
duke@435 636 // the loop is a CountedLoop and the body is small enough.
duke@435 637 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
duke@435 638
duke@435 639 CountedLoopNode *cl = _head->as_CountedLoop();
kvn@2694 640 assert(cl->is_normal_loop() || cl->is_main_loop(), "");
duke@435 641
kvn@2735 642 if (!cl->is_valid_counted_loop())
kvn@2735 643 return false; // Malformed counted loop
duke@435 644
kvn@2877 645 // Protect against over-unrolling.
kvn@2877 646 // After split at least one iteration will be executed in pre-loop.
kvn@2877 647 if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
duke@435 648
kvn@2865 649 int future_unroll_ct = cl->unrolled_count() * 2;
kvn@2865 650 if (future_unroll_ct > MAX_UNROLL) return false;
kvn@2735 651
kvn@2865 652 // Check for initial stride being a small enough constant
kvn@2865 653 if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;
duke@435 654
duke@435 655 // Don't unroll if the next round of unrolling would push us
duke@435 656 // over the expected trip count of the loop. One is subtracted
duke@435 657 // from the expected trip count because the pre-loop normally
duke@435 658 // executes 1 iteration.
duke@435 659 if (UnrollLimitForProfileCheck > 0 &&
duke@435 660 cl->profile_trip_cnt() != COUNT_UNKNOWN &&
duke@435 661 future_unroll_ct > UnrollLimitForProfileCheck &&
duke@435 662 (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
duke@435 663 return false;
duke@435 664 }
duke@435 665
duke@435 666 // When unroll count is greater than LoopUnrollMin, don't unroll if:
duke@435 667 // the residual iterations are more than 10% of the trip count
duke@435 668 // and rounds of "unroll,optimize" are not making significant progress
duke@435 669 // Progress defined as current size less than 20% larger than previous size.
duke@435 670 if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
duke@435 671 future_unroll_ct > LoopUnrollMin &&
duke@435 672 (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
duke@435 673 1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
duke@435 674 return false;
duke@435 675 }
duke@435 676
duke@435 677 Node *init_n = cl->init_trip();
duke@435 678 Node *limit_n = cl->limit();
kvn@2877 679 int stride_con = cl->stride_con();
duke@435 680 // Non-constant bounds.
duke@435 681 // Protect against over-unrolling when init or/and limit are not constant
duke@435 682 // (so that trip_count's init value is maxint) but iv range is known.
kvn@2694 683 if (init_n == NULL || !init_n->is_Con() ||
kvn@2694 684 limit_n == NULL || !limit_n->is_Con()) {
duke@435 685 Node* phi = cl->phi();
kvn@2694 686 if (phi != NULL) {
duke@435 687 assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
duke@435 688 const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
kvn@2877 689 int next_stride = stride_con * 2; // stride after this unroll
kvn@2694 690 if (next_stride > 0) {
kvn@2694 691 if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
kvn@2694 692 iv_type->_lo + next_stride > iv_type->_hi) {
duke@435 693 return false; // over-unrolling
duke@435 694 }
kvn@2694 695 } else if (next_stride < 0) {
kvn@2694 696 if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
kvn@2694 697 iv_type->_hi + next_stride < iv_type->_lo) {
duke@435 698 return false; // over-unrolling
duke@435 699 }
duke@435 700 }
duke@435 701 }
duke@435 702 }
duke@435 703
kvn@2877 704 // After unroll limit will be adjusted: new_limit = limit-stride.
kvn@2877 705 // Bailout if adjustment overflow.
kvn@2877 706 const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int();
kvn@2877 707 if (stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi) ||
kvn@2877 708 stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo))
kvn@2877 709 return false; // overflow
kvn@2877 710
duke@435 711 // Adjust body_size to determine if we unroll or not
duke@435 712 uint body_size = _body.size();
duke@435 713 // Also count ModL, DivL and MulL which expand mightly
kvn@2694 714 for (uint k = 0; k < _body.size(); k++) {
kvn@2694 715 Node* n = _body.at(k);
kvn@2694 716 switch (n->Opcode()) {
kvn@2694 717 case Op_ModL: body_size += 30; break;
kvn@2694 718 case Op_DivL: body_size += 30; break;
kvn@2694 719 case Op_MulL: body_size += 10; break;
kvn@2694 720 case Op_StrComp:
kvn@2694 721 case Op_StrEquals:
kvn@2694 722 case Op_StrIndexOf:
kvn@2694 723 case Op_AryEq: {
kvn@2694 724 // Do not unroll a loop with String intrinsics code.
kvn@2694 725 // String intrinsics are large and have loops.
kvn@2694 726 return false;
kvn@2694 727 }
kvn@2694 728 } // switch
duke@435 729 }
duke@435 730
duke@435 731 // Check for being too big
kvn@2694 732 if (body_size > (uint)LoopUnrollLimit) {
kvn@2877 733 // Normal case: loop too big
duke@435 734 return false;
duke@435 735 }
duke@435 736
duke@435 737 // Unroll once! (Each trip will soon do double iterations)
duke@435 738 return true;
duke@435 739 }
duke@435 740
duke@435 741 //------------------------------policy_align-----------------------------------
duke@435 742 // Return TRUE or FALSE if the loop should be cache-line aligned. Gather the
duke@435 743 // expression that does the alignment. Note that only one array base can be
twisti@1040 744 // aligned in a loop (unless the VM guarantees mutual alignment). Note that
duke@435 745 // if we vectorize short memory ops into longer memory ops, we may want to
duke@435 746 // increase alignment.
duke@435 747 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
duke@435 748 return false;
duke@435 749 }
duke@435 750
duke@435 751 //------------------------------policy_range_check-----------------------------
duke@435 752 // Return TRUE or FALSE if the loop should be range-check-eliminated.
duke@435 753 // Actually we do iteration-splitting, a more powerful form of RCE.
duke@435 754 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
kvn@2877 755 if (!RangeCheckElimination) return false;
duke@435 756
duke@435 757 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 758 // If we unrolled with no intention of doing RCE and we later
duke@435 759 // changed our minds, we got no pre-loop. Either we need to
duke@435 760 // make a new pre-loop, or we gotta disallow RCE.
kvn@2877 761 if (cl->is_main_no_pre_loop()) return false; // Disallowed for now.
duke@435 762 Node *trip_counter = cl->phi();
duke@435 763
duke@435 764 // Check loop body for tests of trip-counter plus loop-invariant vs
duke@435 765 // loop-invariant.
kvn@2877 766 for (uint i = 0; i < _body.size(); i++) {
duke@435 767 Node *iff = _body[i];
kvn@2877 768 if (iff->Opcode() == Op_If) { // Test?
duke@435 769
duke@435 770 // Comparing trip+off vs limit
duke@435 771 Node *bol = iff->in(1);
kvn@2877 772 if (bol->req() != 2) continue; // dead constant test
cfang@1607 773 if (!bol->is_Bool()) {
cfang@1607 774 assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
cfang@1607 775 continue;
cfang@1607 776 }
kvn@2877 777 if (bol->as_Bool()->_test._test == BoolTest::ne)
kvn@2877 778 continue; // not RC
kvn@2877 779
duke@435 780 Node *cmp = bol->in(1);
duke@435 781
duke@435 782 Node *rc_exp = cmp->in(1);
duke@435 783 Node *limit = cmp->in(2);
duke@435 784
duke@435 785 Node *limit_c = phase->get_ctrl(limit);
duke@435 786 if( limit_c == phase->C->top() )
duke@435 787 return false; // Found dead test on live IF? No RCE!
duke@435 788 if( is_member(phase->get_loop(limit_c) ) ) {
duke@435 789 // Compare might have operands swapped; commute them
duke@435 790 rc_exp = cmp->in(2);
duke@435 791 limit = cmp->in(1);
duke@435 792 limit_c = phase->get_ctrl(limit);
duke@435 793 if( is_member(phase->get_loop(limit_c) ) )
duke@435 794 continue; // Both inputs are loop varying; cannot RCE
duke@435 795 }
duke@435 796
duke@435 797 if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
duke@435 798 continue;
duke@435 799 }
duke@435 800 // Yeah! Found a test like 'trip+off vs limit'
duke@435 801 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 802 // we need loop unswitching instead of iteration splitting.
duke@435 803 if( is_loop_exit(iff) )
duke@435 804 return true; // Found reason to split iterations
duke@435 805 } // End of is IF
duke@435 806 }
duke@435 807
duke@435 808 return false;
duke@435 809 }
duke@435 810
duke@435 811 //------------------------------policy_peel_only-------------------------------
duke@435 812 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned. Useful
duke@435 813 // for unrolling loops with NO array accesses.
duke@435 814 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
duke@435 815
duke@435 816 for( uint i = 0; i < _body.size(); i++ )
duke@435 817 if( _body[i]->is_Mem() )
duke@435 818 return false;
duke@435 819
duke@435 820 // No memory accesses at all!
duke@435 821 return true;
duke@435 822 }
duke@435 823
duke@435 824 //------------------------------clone_up_backedge_goo--------------------------
duke@435 825 // If Node n lives in the back_ctrl block and cannot float, we clone a private
duke@435 826 // version of n in preheader_ctrl block and return that, otherwise return n.
duke@435 827 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
duke@435 828 if( get_ctrl(n) != back_ctrl ) return n;
duke@435 829
duke@435 830 Node *x = NULL; // If required, a clone of 'n'
duke@435 831 // Check for 'n' being pinned in the backedge.
duke@435 832 if( n->in(0) && n->in(0) == back_ctrl ) {
duke@435 833 x = n->clone(); // Clone a copy of 'n' to preheader
duke@435 834 x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
duke@435 835 }
duke@435 836
duke@435 837 // Recursive fixup any other input edges into x.
duke@435 838 // If there are no changes we can just return 'n', otherwise
duke@435 839 // we need to clone a private copy and change it.
duke@435 840 for( uint i = 1; i < n->req(); i++ ) {
duke@435 841 Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
duke@435 842 if( g != n->in(i) ) {
duke@435 843 if( !x )
duke@435 844 x = n->clone();
duke@435 845 x->set_req(i, g);
duke@435 846 }
duke@435 847 }
duke@435 848 if( x ) { // x can legally float to pre-header location
duke@435 849 register_new_node( x, preheader_ctrl );
duke@435 850 return x;
duke@435 851 } else { // raise n to cover LCA of uses
duke@435 852 set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
duke@435 853 }
duke@435 854 return n;
duke@435 855 }
duke@435 856
duke@435 857 //------------------------------insert_pre_post_loops--------------------------
duke@435 858 // Insert pre and post loops. If peel_only is set, the pre-loop can not have
duke@435 859 // more iterations added. It acts as a 'peel' only, no lower-bound RCE, no
duke@435 860 // alignment. Useful to unroll loops that do no array accesses.
duke@435 861 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
duke@435 862
kvn@2665 863 #ifndef PRODUCT
kvn@2665 864 if (TraceLoopOpts) {
kvn@2665 865 if (peel_only)
kvn@2665 866 tty->print("PeelMainPost ");
kvn@2665 867 else
kvn@2665 868 tty->print("PreMainPost ");
kvn@2665 869 loop->dump_head();
kvn@2665 870 }
kvn@2665 871 #endif
duke@435 872 C->set_major_progress();
duke@435 873
duke@435 874 // Find common pieces of the loop being guarded with pre & post loops
duke@435 875 CountedLoopNode *main_head = loop->_head->as_CountedLoop();
duke@435 876 assert( main_head->is_normal_loop(), "" );
duke@435 877 CountedLoopEndNode *main_end = main_head->loopexit();
duke@435 878 assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
duke@435 879 uint dd_main_head = dom_depth(main_head);
duke@435 880 uint max = main_head->outcnt();
duke@435 881
duke@435 882 Node *pre_header= main_head->in(LoopNode::EntryControl);
duke@435 883 Node *init = main_head->init_trip();
duke@435 884 Node *incr = main_end ->incr();
duke@435 885 Node *limit = main_end ->limit();
duke@435 886 Node *stride = main_end ->stride();
duke@435 887 Node *cmp = main_end ->cmp_node();
duke@435 888 BoolTest::mask b_test = main_end->test_trip();
duke@435 889
duke@435 890 // Need only 1 user of 'bol' because I will be hacking the loop bounds.
duke@435 891 Node *bol = main_end->in(CountedLoopEndNode::TestValue);
duke@435 892 if( bol->outcnt() != 1 ) {
duke@435 893 bol = bol->clone();
duke@435 894 register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
duke@435 895 _igvn.hash_delete(main_end);
duke@435 896 main_end->set_req(CountedLoopEndNode::TestValue, bol);
duke@435 897 }
duke@435 898 // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
duke@435 899 if( cmp->outcnt() != 1 ) {
duke@435 900 cmp = cmp->clone();
duke@435 901 register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
duke@435 902 _igvn.hash_delete(bol);
duke@435 903 bol->set_req(1, cmp);
duke@435 904 }
duke@435 905
duke@435 906 //------------------------------
duke@435 907 // Step A: Create Post-Loop.
duke@435 908 Node* main_exit = main_end->proj_out(false);
duke@435 909 assert( main_exit->Opcode() == Op_IfFalse, "" );
duke@435 910 int dd_main_exit = dom_depth(main_exit);
duke@435 911
duke@435 912 // Step A1: Clone the loop body. The clone becomes the post-loop. The main
duke@435 913 // loop pre-header illegally has 2 control users (old & new loops).
duke@435 914 clone_loop( loop, old_new, dd_main_exit );
duke@435 915 assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
duke@435 916 CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
duke@435 917 post_head->set_post_loop(main_head);
duke@435 918
kvn@835 919 // Reduce the post-loop trip count.
kvn@835 920 CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
kvn@835 921 post_end->_prob = PROB_FAIR;
kvn@835 922
duke@435 923 // Build the main-loop normal exit.
duke@435 924 IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
duke@435 925 _igvn.register_new_node_with_optimizer( new_main_exit );
duke@435 926 set_idom(new_main_exit, main_end, dd_main_exit );
duke@435 927 set_loop(new_main_exit, loop->_parent);
duke@435 928
duke@435 929 // Step A2: Build a zero-trip guard for the post-loop. After leaving the
duke@435 930 // main-loop, the post-loop may not execute at all. We 'opaque' the incr
duke@435 931 // (the main-loop trip-counter exit value) because we will be changing
duke@435 932 // the exit value (via unrolling) so we cannot constant-fold away the zero
duke@435 933 // trip guard until all unrolling is done.
kvn@651 934 Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
duke@435 935 Node *zer_cmp = new (C, 3) CmpINode( zer_opaq, limit );
duke@435 936 Node *zer_bol = new (C, 2) BoolNode( zer_cmp, b_test );
duke@435 937 register_new_node( zer_opaq, new_main_exit );
duke@435 938 register_new_node( zer_cmp , new_main_exit );
duke@435 939 register_new_node( zer_bol , new_main_exit );
duke@435 940
duke@435 941 // Build the IfNode
duke@435 942 IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
duke@435 943 _igvn.register_new_node_with_optimizer( zer_iff );
duke@435 944 set_idom(zer_iff, new_main_exit, dd_main_exit);
duke@435 945 set_loop(zer_iff, loop->_parent);
duke@435 946
duke@435 947 // Plug in the false-path, taken if we need to skip post-loop
duke@435 948 _igvn.hash_delete( main_exit );
duke@435 949 main_exit->set_req(0, zer_iff);
duke@435 950 _igvn._worklist.push(main_exit);
duke@435 951 set_idom(main_exit, zer_iff, dd_main_exit);
duke@435 952 set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
duke@435 953 // Make the true-path, must enter the post loop
duke@435 954 Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
duke@435 955 _igvn.register_new_node_with_optimizer( zer_taken );
duke@435 956 set_idom(zer_taken, zer_iff, dd_main_exit);
duke@435 957 set_loop(zer_taken, loop->_parent);
duke@435 958 // Plug in the true path
duke@435 959 _igvn.hash_delete( post_head );
duke@435 960 post_head->set_req(LoopNode::EntryControl, zer_taken);
duke@435 961 set_idom(post_head, zer_taken, dd_main_exit);
duke@435 962
duke@435 963 // Step A3: Make the fall-in values to the post-loop come from the
duke@435 964 // fall-out values of the main-loop.
duke@435 965 for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
duke@435 966 Node* main_phi = main_head->fast_out(i);
duke@435 967 if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
duke@435 968 Node *post_phi = old_new[main_phi->_idx];
duke@435 969 Node *fallmain = clone_up_backedge_goo(main_head->back_control(),
duke@435 970 post_head->init_control(),
duke@435 971 main_phi->in(LoopNode::LoopBackControl));
duke@435 972 _igvn.hash_delete(post_phi);
duke@435 973 post_phi->set_req( LoopNode::EntryControl, fallmain );
duke@435 974 }
duke@435 975 }
duke@435 976
duke@435 977 // Update local caches for next stanza
duke@435 978 main_exit = new_main_exit;
duke@435 979
duke@435 980
duke@435 981 //------------------------------
duke@435 982 // Step B: Create Pre-Loop.
duke@435 983
duke@435 984 // Step B1: Clone the loop body. The clone becomes the pre-loop. The main
duke@435 985 // loop pre-header illegally has 2 control users (old & new loops).
duke@435 986 clone_loop( loop, old_new, dd_main_head );
duke@435 987 CountedLoopNode* pre_head = old_new[main_head->_idx]->as_CountedLoop();
duke@435 988 CountedLoopEndNode* pre_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
duke@435 989 pre_head->set_pre_loop(main_head);
duke@435 990 Node *pre_incr = old_new[incr->_idx];
duke@435 991
kvn@835 992 // Reduce the pre-loop trip count.
kvn@835 993 pre_end->_prob = PROB_FAIR;
kvn@835 994
duke@435 995 // Find the pre-loop normal exit.
duke@435 996 Node* pre_exit = pre_end->proj_out(false);
duke@435 997 assert( pre_exit->Opcode() == Op_IfFalse, "" );
duke@435 998 IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
duke@435 999 _igvn.register_new_node_with_optimizer( new_pre_exit );
duke@435 1000 set_idom(new_pre_exit, pre_end, dd_main_head);
duke@435 1001 set_loop(new_pre_exit, loop->_parent);
duke@435 1002
duke@435 1003 // Step B2: Build a zero-trip guard for the main-loop. After leaving the
duke@435 1004 // pre-loop, the main-loop may not execute at all. Later in life this
duke@435 1005 // zero-trip guard will become the minimum-trip guard when we unroll
duke@435 1006 // the main-loop.
kvn@651 1007 Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
duke@435 1008 Node *min_cmp = new (C, 3) CmpINode( pre_incr, min_opaq );
duke@435 1009 Node *min_bol = new (C, 2) BoolNode( min_cmp, b_test );
duke@435 1010 register_new_node( min_opaq, new_pre_exit );
duke@435 1011 register_new_node( min_cmp , new_pre_exit );
duke@435 1012 register_new_node( min_bol , new_pre_exit );
duke@435 1013
kvn@835 1014 // Build the IfNode (assume the main-loop is executed always).
kvn@835 1015 IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
duke@435 1016 _igvn.register_new_node_with_optimizer( min_iff );
duke@435 1017 set_idom(min_iff, new_pre_exit, dd_main_head);
duke@435 1018 set_loop(min_iff, loop->_parent);
duke@435 1019
duke@435 1020 // Plug in the false-path, taken if we need to skip main-loop
duke@435 1021 _igvn.hash_delete( pre_exit );
duke@435 1022 pre_exit->set_req(0, min_iff);
duke@435 1023 set_idom(pre_exit, min_iff, dd_main_head);
duke@435 1024 set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
duke@435 1025 // Make the true-path, must enter the main loop
duke@435 1026 Node *min_taken = new (C, 1) IfTrueNode( min_iff );
duke@435 1027 _igvn.register_new_node_with_optimizer( min_taken );
duke@435 1028 set_idom(min_taken, min_iff, dd_main_head);
duke@435 1029 set_loop(min_taken, loop->_parent);
duke@435 1030 // Plug in the true path
duke@435 1031 _igvn.hash_delete( main_head );
duke@435 1032 main_head->set_req(LoopNode::EntryControl, min_taken);
duke@435 1033 set_idom(main_head, min_taken, dd_main_head);
duke@435 1034
duke@435 1035 // Step B3: Make the fall-in values to the main-loop come from the
duke@435 1036 // fall-out values of the pre-loop.
duke@435 1037 for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
duke@435 1038 Node* main_phi = main_head->fast_out(i2);
duke@435 1039 if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
duke@435 1040 Node *pre_phi = old_new[main_phi->_idx];
duke@435 1041 Node *fallpre = clone_up_backedge_goo(pre_head->back_control(),
duke@435 1042 main_head->init_control(),
duke@435 1043 pre_phi->in(LoopNode::LoopBackControl));
duke@435 1044 _igvn.hash_delete(main_phi);
duke@435 1045 main_phi->set_req( LoopNode::EntryControl, fallpre );
duke@435 1046 }
duke@435 1047 }
duke@435 1048
duke@435 1049 // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
duke@435 1050 // RCE and alignment may change this later.
duke@435 1051 Node *cmp_end = pre_end->cmp_node();
duke@435 1052 assert( cmp_end->in(2) == limit, "" );
duke@435 1053 Node *pre_limit = new (C, 3) AddINode( init, stride );
duke@435 1054
duke@435 1055 // Save the original loop limit in this Opaque1 node for
duke@435 1056 // use by range check elimination.
kvn@651 1057 Node *pre_opaq = new (C, 3) Opaque1Node(C, pre_limit, limit);
duke@435 1058
duke@435 1059 register_new_node( pre_limit, pre_head->in(0) );
duke@435 1060 register_new_node( pre_opaq , pre_head->in(0) );
duke@435 1061
duke@435 1062 // Since no other users of pre-loop compare, I can hack limit directly
duke@435 1063 assert( cmp_end->outcnt() == 1, "no other users" );
duke@435 1064 _igvn.hash_delete(cmp_end);
duke@435 1065 cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
duke@435 1066
duke@435 1067 // Special case for not-equal loop bounds:
duke@435 1068 // Change pre loop test, main loop test, and the
duke@435 1069 // main loop guard test to use lt or gt depending on stride
duke@435 1070 // direction:
duke@435 1071 // positive stride use <
duke@435 1072 // negative stride use >
duke@435 1073
duke@435 1074 if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
kvn@2877 1075 assert(!LoopLimitCheck, "only canonical tests (lt or gt) are expected");
duke@435 1076
duke@435 1077 BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
duke@435 1078 // Modify pre loop end condition
duke@435 1079 Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
duke@435 1080 BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
duke@435 1081 register_new_node( new_bol0, pre_head->in(0) );
duke@435 1082 _igvn.hash_delete(pre_end);
duke@435 1083 pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
duke@435 1084 // Modify main loop guard condition
duke@435 1085 assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
duke@435 1086 BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
duke@435 1087 register_new_node( new_bol1, new_pre_exit );
duke@435 1088 _igvn.hash_delete(min_iff);
duke@435 1089 min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
duke@435 1090 // Modify main loop end condition
duke@435 1091 BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
duke@435 1092 BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
duke@435 1093 register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
duke@435 1094 _igvn.hash_delete(main_end);
duke@435 1095 main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
duke@435 1096 }
duke@435 1097
duke@435 1098 // Flag main loop
duke@435 1099 main_head->set_main_loop();
duke@435 1100 if( peel_only ) main_head->set_main_no_pre_loop();
duke@435 1101
kvn@2877 1102 // Subtract a trip count for the pre-loop.
kvn@2877 1103 main_head->set_trip_count(main_head->trip_count() - 1);
kvn@2877 1104
duke@435 1105 // It's difficult to be precise about the trip-counts
duke@435 1106 // for the pre/post loops. They are usually very short,
duke@435 1107 // so guess that 4 trips is a reasonable value.
duke@435 1108 post_head->set_profile_trip_cnt(4.0);
duke@435 1109 pre_head->set_profile_trip_cnt(4.0);
duke@435 1110
duke@435 1111 // Now force out all loop-invariant dominating tests. The optimizer
duke@435 1112 // finds some, but we _know_ they are all useless.
duke@435 1113 peeled_dom_test_elim(loop,old_new);
duke@435 1114 }
duke@435 1115
duke@435 1116 //------------------------------is_invariant-----------------------------
duke@435 1117 // Return true if n is invariant
duke@435 1118 bool IdealLoopTree::is_invariant(Node* n) const {
cfang@1607 1119 Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
duke@435 1120 if (n_c->is_top()) return false;
duke@435 1121 return !is_member(_phase->get_loop(n_c));
duke@435 1122 }
duke@435 1123
duke@435 1124
duke@435 1125 //------------------------------do_unroll--------------------------------------
duke@435 1126 // Unroll the loop body one step - make each trip do 2 iterations.
duke@435 1127 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
kvn@2665 1128 assert(LoopUnrollLimit, "");
kvn@2665 1129 CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
kvn@2665 1130 CountedLoopEndNode *loop_end = loop_head->loopexit();
kvn@2665 1131 assert(loop_end, "");
duke@435 1132 #ifndef PRODUCT
kvn@2665 1133 if (PrintOpto && VerifyLoopOptimizations) {
duke@435 1134 tty->print("Unrolling ");
duke@435 1135 loop->dump_head();
kvn@2665 1136 } else if (TraceLoopOpts) {
kvn@2747 1137 if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
kvn@2877 1138 tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
kvn@2735 1139 } else {
kvn@2877 1140 tty->print("Unroll %d ", loop_head->unrolled_count()*2);
kvn@2735 1141 }
kvn@2665 1142 loop->dump_head();
duke@435 1143 }
duke@435 1144 #endif
duke@435 1145
duke@435 1146 // Remember loop node count before unrolling to detect
duke@435 1147 // if rounds of unroll,optimize are making progress
duke@435 1148 loop_head->set_node_count_before_unroll(loop->_body.size());
duke@435 1149
duke@435 1150 Node *ctrl = loop_head->in(LoopNode::EntryControl);
duke@435 1151 Node *limit = loop_head->limit();
duke@435 1152 Node *init = loop_head->init_trip();
kvn@2665 1153 Node *stride = loop_head->stride();
duke@435 1154
duke@435 1155 Node *opaq = NULL;
kvn@2877 1156 if (adjust_min_trip) { // If not maximally unrolling, need adjustment
kvn@2877 1157 // Search for zero-trip guard.
duke@435 1158 assert( loop_head->is_main_loop(), "" );
duke@435 1159 assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
duke@435 1160 Node *iff = ctrl->in(0);
duke@435 1161 assert( iff->Opcode() == Op_If, "" );
duke@435 1162 Node *bol = iff->in(1);
duke@435 1163 assert( bol->Opcode() == Op_Bool, "" );
duke@435 1164 Node *cmp = bol->in(1);
duke@435 1165 assert( cmp->Opcode() == Op_CmpI, "" );
duke@435 1166 opaq = cmp->in(2);
kvn@2877 1167 // Occasionally it's possible for a zero-trip guard Opaque1 node to be
duke@435 1168 // optimized away and then another round of loop opts attempted.
duke@435 1169 // We can not optimize this particular loop in that case.
kvn@2877 1170 if (opaq->Opcode() != Op_Opaque1)
kvn@2877 1171 return; // Cannot find zero-trip guard! Bail out!
kvn@2877 1172 // Zero-trip test uses an 'opaque' node which is not shared.
kvn@2877 1173 assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "");
duke@435 1174 }
duke@435 1175
duke@435 1176 C->set_major_progress();
duke@435 1177
kvn@2877 1178 Node* new_limit = NULL;
kvn@2877 1179 if (UnrollLimitCheck) {
kvn@2877 1180 int stride_con = stride->get_int();
kvn@2877 1181 int stride_p = (stride_con > 0) ? stride_con : -stride_con;
kvn@2877 1182 uint old_trip_count = loop_head->trip_count();
kvn@2877 1183 // Verify that unroll policy result is still valid.
kvn@2877 1184 assert(old_trip_count > 1 &&
kvn@2877 1185 (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
duke@435 1186
kvn@2877 1187 // Adjust loop limit to keep valid iterations number after unroll.
kvn@2877 1188 // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
kvn@2877 1189 // which may overflow.
kvn@2877 1190 if (!adjust_min_trip) {
kvn@2877 1191 assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
kvn@2877 1192 "odd trip count for maximally unroll");
kvn@2877 1193 // Don't need to adjust limit for maximally unroll since trip count is even.
kvn@2877 1194 } else if (loop_head->has_exact_trip_count() && init->is_Con()) {
kvn@2877 1195 // Loop's limit is constant. Loop's init could be constant when pre-loop
kvn@2877 1196 // become peeled iteration.
kvn@2877 1197 long init_con = init->get_int();
kvn@2877 1198 // We can keep old loop limit if iterations count stays the same:
kvn@2877 1199 // old_trip_count == new_trip_count * 2
kvn@2877 1200 // Note: since old_trip_count >= 2 then new_trip_count >= 1
kvn@2877 1201 // so we also don't need to adjust zero trip test.
kvn@2877 1202 long limit_con = limit->get_int();
kvn@2877 1203 // (stride_con*2) not overflow since stride_con <= 8.
kvn@2877 1204 int new_stride_con = stride_con * 2;
kvn@2877 1205 int stride_m = new_stride_con - (stride_con > 0 ? 1 : -1);
kvn@2877 1206 long trip_count = (limit_con - init_con + stride_m)/new_stride_con;
kvn@2877 1207 // New trip count should satisfy next conditions.
kvn@2877 1208 assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
kvn@2877 1209 uint new_trip_count = (uint)trip_count;
kvn@2877 1210 adjust_min_trip = (old_trip_count != new_trip_count*2);
kvn@2877 1211 }
duke@435 1212
kvn@2877 1213 if (adjust_min_trip) {
kvn@2877 1214 // Step 2: Adjust the trip limit if it is called for.
kvn@2877 1215 // The adjustment amount is -stride. Need to make sure if the
kvn@2877 1216 // adjustment underflows or overflows, then the main loop is skipped.
kvn@2877 1217 Node* cmp = loop_end->cmp_node();
kvn@2877 1218 assert(cmp->in(2) == limit, "sanity");
kvn@2877 1219 assert(opaq != NULL && opaq->in(1) == limit, "sanity");
duke@435 1220
kvn@2877 1221 // Verify that policy_unroll result is still valid.
kvn@2877 1222 const TypeInt* limit_type = _igvn.type(limit)->is_int();
kvn@2877 1223 assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
kvn@2877 1224 stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
duke@435 1225
kvn@2877 1226 if (limit->is_Con()) {
kvn@2877 1227 // The check in policy_unroll and the assert above guarantee
kvn@2877 1228 // no underflow if limit is constant.
kvn@2877 1229 new_limit = _igvn.intcon(limit->get_int() - stride_con);
kvn@2877 1230 set_ctrl(new_limit, C->root());
kvn@2877 1231 } else {
kvn@2880 1232 // Limit is not constant.
kvn@2899 1233 if (loop_head->unrolled_count() == 1) { // only for first unroll
kvn@2880 1234 // Separate limit by Opaque node in case it is an incremented
kvn@2880 1235 // variable from previous loop to avoid using pre-incremented
kvn@2880 1236 // value which could increase register pressure.
kvn@2880 1237 // Otherwise reorg_offsets() optimization will create a separate
kvn@2880 1238 // Opaque node for each use of trip-counter and as result
kvn@2880 1239 // zero trip guard limit will be different from loop limit.
kvn@2880 1240 assert(has_ctrl(opaq), "should have it");
kvn@2880 1241 Node* opaq_ctrl = get_ctrl(opaq);
kvn@2880 1242 limit = new (C, 2) Opaque2Node( C, limit );
kvn@2880 1243 register_new_node( limit, opaq_ctrl );
kvn@2880 1244 }
kvn@2877 1245 if (stride_con > 0 && ((limit_type->_lo - stride_con) < limit_type->_lo) ||
kvn@2877 1246 stride_con < 0 && ((limit_type->_hi - stride_con) > limit_type->_hi)) {
kvn@2877 1247 // No underflow.
kvn@2877 1248 new_limit = new (C, 3) SubINode(limit, stride);
kvn@2877 1249 } else {
kvn@2877 1250 // (limit - stride) may underflow.
kvn@2877 1251 // Clamp the adjustment value with MININT or MAXINT:
kvn@2877 1252 //
kvn@2877 1253 // new_limit = limit-stride
kvn@2877 1254 // if (stride > 0)
kvn@2877 1255 // new_limit = (limit < new_limit) ? MININT : new_limit;
kvn@2877 1256 // else
kvn@2877 1257 // new_limit = (limit > new_limit) ? MAXINT : new_limit;
kvn@2877 1258 //
kvn@2877 1259 BoolTest::mask bt = loop_end->test_trip();
kvn@2877 1260 assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
kvn@2877 1261 Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
kvn@2877 1262 set_ctrl(adj_max, C->root());
kvn@2877 1263 Node* old_limit = NULL;
kvn@2877 1264 Node* adj_limit = NULL;
kvn@2877 1265 Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
kvn@2877 1266 if (loop_head->unrolled_count() > 1 &&
kvn@2877 1267 limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
kvn@2877 1268 limit->in(CMoveNode::IfTrue) == adj_max &&
kvn@2877 1269 bol->as_Bool()->_test._test == bt &&
kvn@2877 1270 bol->in(1)->Opcode() == Op_CmpI &&
kvn@2877 1271 bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
kvn@2877 1272 // Loop was unrolled before.
kvn@2877 1273 // Optimize the limit to avoid nested CMove:
kvn@2877 1274 // use original limit as old limit.
kvn@2877 1275 old_limit = bol->in(1)->in(1);
kvn@2877 1276 // Adjust previous adjusted limit.
kvn@2877 1277 adj_limit = limit->in(CMoveNode::IfFalse);
kvn@2877 1278 adj_limit = new (C, 3) SubINode(adj_limit, stride);
kvn@2877 1279 } else {
kvn@2877 1280 old_limit = limit;
kvn@2877 1281 adj_limit = new (C, 3) SubINode(limit, stride);
kvn@2877 1282 }
kvn@2877 1283 assert(old_limit != NULL && adj_limit != NULL, "");
kvn@2877 1284 register_new_node( adj_limit, ctrl ); // adjust amount
kvn@2877 1285 Node* adj_cmp = new (C, 3) CmpINode(old_limit, adj_limit);
kvn@2877 1286 register_new_node( adj_cmp, ctrl );
kvn@2877 1287 Node* adj_bool = new (C, 2) BoolNode(adj_cmp, bt);
kvn@2877 1288 register_new_node( adj_bool, ctrl );
kvn@2877 1289 new_limit = new (C, 4) CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
kvn@2877 1290 }
kvn@2877 1291 register_new_node(new_limit, ctrl);
kvn@2877 1292 }
kvn@2877 1293 assert(new_limit != NULL, "");
kvn@2880 1294 // Replace in loop test.
kvn@2880 1295 _igvn.hash_delete(cmp);
kvn@2880 1296 cmp->set_req(2, new_limit);
kvn@2877 1297
kvn@2880 1298 // Step 3: Find the min-trip test guaranteed before a 'main' loop.
kvn@2880 1299 // Make it a 1-trip test (means at least 2 trips).
kvn@2877 1300
kvn@2880 1301 // Guard test uses an 'opaque' node which is not shared. Hence I
kvn@2880 1302 // can edit it's inputs directly. Hammer in the new limit for the
kvn@2880 1303 // minimum-trip guard.
kvn@2880 1304 assert(opaq->outcnt() == 1, "");
kvn@2880 1305 _igvn.hash_delete(opaq);
kvn@2880 1306 opaq->set_req(1, new_limit);
kvn@2877 1307 }
kvn@2877 1308
kvn@2877 1309 // Adjust max trip count. The trip count is intentionally rounded
kvn@2877 1310 // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
kvn@2877 1311 // the main, unrolled, part of the loop will never execute as it is protected
kvn@2877 1312 // by the min-trip test. See bug 4834191 for a case where we over-unrolled
kvn@2877 1313 // and later determined that part of the unrolled loop was dead.
kvn@2877 1314 loop_head->set_trip_count(old_trip_count / 2);
kvn@2877 1315
kvn@2877 1316 // Double the count of original iterations in the unrolled loop body.
kvn@2877 1317 loop_head->double_unrolled_count();
kvn@2877 1318
kvn@2877 1319 } else { // LoopLimitCheck
kvn@2877 1320
kvn@2877 1321 // Adjust max trip count. The trip count is intentionally rounded
kvn@2877 1322 // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
kvn@2877 1323 // the main, unrolled, part of the loop will never execute as it is protected
kvn@2877 1324 // by the min-trip test. See bug 4834191 for a case where we over-unrolled
kvn@2877 1325 // and later determined that part of the unrolled loop was dead.
kvn@2877 1326 loop_head->set_trip_count(loop_head->trip_count() / 2);
kvn@2877 1327
kvn@2877 1328 // Double the count of original iterations in the unrolled loop body.
kvn@2877 1329 loop_head->double_unrolled_count();
kvn@2877 1330
kvn@2877 1331 // -----------
kvn@2877 1332 // Step 2: Cut back the trip counter for an unroll amount of 2.
kvn@2877 1333 // Loop will normally trip (limit - init)/stride_con. Since it's a
kvn@2877 1334 // CountedLoop this is exact (stride divides limit-init exactly).
kvn@2877 1335 // We are going to double the loop body, so we want to knock off any
kvn@2877 1336 // odd iteration: (trip_cnt & ~1). Then back compute a new limit.
kvn@2877 1337 Node *span = new (C, 3) SubINode( limit, init );
kvn@2877 1338 register_new_node( span, ctrl );
kvn@2877 1339 Node *trip = new (C, 3) DivINode( 0, span, stride );
kvn@2877 1340 register_new_node( trip, ctrl );
kvn@2877 1341 Node *mtwo = _igvn.intcon(-2);
kvn@2877 1342 set_ctrl(mtwo, C->root());
kvn@2877 1343 Node *rond = new (C, 3) AndINode( trip, mtwo );
kvn@2877 1344 register_new_node( rond, ctrl );
kvn@2877 1345 Node *spn2 = new (C, 3) MulINode( rond, stride );
kvn@2877 1346 register_new_node( spn2, ctrl );
kvn@2877 1347 new_limit = new (C, 3) AddINode( spn2, init );
kvn@2877 1348 register_new_node( new_limit, ctrl );
kvn@2877 1349
kvn@2877 1350 // Hammer in the new limit
kvn@2877 1351 Node *ctrl2 = loop_end->in(0);
kvn@2877 1352 Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), new_limit );
kvn@2877 1353 register_new_node( cmp2, ctrl2 );
kvn@2877 1354 Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
kvn@2877 1355 register_new_node( bol2, ctrl2 );
kvn@2877 1356 _igvn.hash_delete(loop_end);
kvn@2877 1357 loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
kvn@2877 1358
kvn@2877 1359 // Step 3: Find the min-trip test guaranteed before a 'main' loop.
kvn@2877 1360 // Make it a 1-trip test (means at least 2 trips).
kvn@2877 1361 if( adjust_min_trip ) {
kvn@2877 1362 assert( new_limit != NULL, "" );
kvn@2877 1363 // Guard test uses an 'opaque' node which is not shared. Hence I
kvn@2877 1364 // can edit it's inputs directly. Hammer in the new limit for the
kvn@2877 1365 // minimum-trip guard.
kvn@2877 1366 assert( opaq->outcnt() == 1, "" );
kvn@2877 1367 _igvn.hash_delete(opaq);
kvn@2877 1368 opaq->set_req(1, new_limit);
kvn@2877 1369 }
kvn@2877 1370 } // LoopLimitCheck
duke@435 1371
duke@435 1372 // ---------
duke@435 1373 // Step 4: Clone the loop body. Move it inside the loop. This loop body
duke@435 1374 // represents the odd iterations; since the loop trips an even number of
duke@435 1375 // times its backedge is never taken. Kill the backedge.
duke@435 1376 uint dd = dom_depth(loop_head);
duke@435 1377 clone_loop( loop, old_new, dd );
duke@435 1378
duke@435 1379 // Make backedges of the clone equal to backedges of the original.
duke@435 1380 // Make the fall-in from the original come from the fall-out of the clone.
duke@435 1381 for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
duke@435 1382 Node* phi = loop_head->fast_out(j);
duke@435 1383 if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
duke@435 1384 Node *newphi = old_new[phi->_idx];
duke@435 1385 _igvn.hash_delete( phi );
duke@435 1386 _igvn.hash_delete( newphi );
duke@435 1387
duke@435 1388 phi ->set_req(LoopNode:: EntryControl, newphi->in(LoopNode::LoopBackControl));
duke@435 1389 newphi->set_req(LoopNode::LoopBackControl, phi ->in(LoopNode::LoopBackControl));
duke@435 1390 phi ->set_req(LoopNode::LoopBackControl, C->top());
duke@435 1391 }
duke@435 1392 }
duke@435 1393 Node *clone_head = old_new[loop_head->_idx];
duke@435 1394 _igvn.hash_delete( clone_head );
duke@435 1395 loop_head ->set_req(LoopNode:: EntryControl, clone_head->in(LoopNode::LoopBackControl));
duke@435 1396 clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
duke@435 1397 loop_head ->set_req(LoopNode::LoopBackControl, C->top());
duke@435 1398 loop->_head = clone_head; // New loop header
duke@435 1399
duke@435 1400 set_idom(loop_head, loop_head ->in(LoopNode::EntryControl), dd);
duke@435 1401 set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
duke@435 1402
duke@435 1403 // Kill the clone's backedge
duke@435 1404 Node *newcle = old_new[loop_end->_idx];
duke@435 1405 _igvn.hash_delete( newcle );
duke@435 1406 Node *one = _igvn.intcon(1);
duke@435 1407 set_ctrl(one, C->root());
duke@435 1408 newcle->set_req(1, one);
duke@435 1409 // Force clone into same loop body
duke@435 1410 uint max = loop->_body.size();
duke@435 1411 for( uint k = 0; k < max; k++ ) {
duke@435 1412 Node *old = loop->_body.at(k);
duke@435 1413 Node *nnn = old_new[old->_idx];
duke@435 1414 loop->_body.push(nnn);
duke@435 1415 if (!has_ctrl(old))
duke@435 1416 set_loop(nnn, loop);
duke@435 1417 }
never@802 1418
never@802 1419 loop->record_for_igvn();
duke@435 1420 }
duke@435 1421
duke@435 1422 //------------------------------do_maximally_unroll----------------------------
duke@435 1423
duke@435 1424 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 1425 CountedLoopNode *cl = loop->_head->as_CountedLoop();
kvn@2877 1426 assert(cl->has_exact_trip_count(), "trip count is not exact");
kvn@2665 1427 assert(cl->trip_count() > 0, "");
kvn@2665 1428 #ifndef PRODUCT
kvn@2665 1429 if (TraceLoopOpts) {
kvn@2665 1430 tty->print("MaxUnroll %d ", cl->trip_count());
kvn@2665 1431 loop->dump_head();
kvn@2665 1432 }
kvn@2665 1433 #endif
duke@435 1434
duke@435 1435 // If loop is tripping an odd number of times, peel odd iteration
kvn@2665 1436 if ((cl->trip_count() & 1) == 1) {
kvn@2665 1437 do_peeling(loop, old_new);
duke@435 1438 }
duke@435 1439
duke@435 1440 // Now its tripping an even number of times remaining. Double loop body.
duke@435 1441 // Do not adjust pre-guards; they are not needed and do not exist.
kvn@2665 1442 if (cl->trip_count() > 0) {
kvn@2877 1443 assert((cl->trip_count() & 1) == 0, "missed peeling");
kvn@2665 1444 do_unroll(loop, old_new, false);
duke@435 1445 }
duke@435 1446 }
duke@435 1447
duke@435 1448 //------------------------------dominates_backedge---------------------------------
duke@435 1449 // Returns true if ctrl is executed on every complete iteration
duke@435 1450 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
duke@435 1451 assert(ctrl->is_CFG(), "must be control");
duke@435 1452 Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
duke@435 1453 return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
duke@435 1454 }
duke@435 1455
kvn@2915 1456 //------------------------------adjust_limit-----------------------------------
kvn@2915 1457 // Helper function for add_constraint().
kvn@2915 1458 Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
kvn@2915 1459 // Compute "I :: (limit-offset)/scale"
kvn@2915 1460 Node *con = new (C, 3) SubINode(rc_limit, offset);
kvn@2915 1461 register_new_node(con, pre_ctrl);
kvn@2915 1462 Node *X = new (C, 3) DivINode(0, con, scale);
kvn@2915 1463 register_new_node(X, pre_ctrl);
kvn@2915 1464
kvn@2915 1465 // Adjust loop limit
kvn@2915 1466 loop_limit = (stride_con > 0)
kvn@2915 1467 ? (Node*)(new (C, 3) MinINode(loop_limit, X))
kvn@2915 1468 : (Node*)(new (C, 3) MaxINode(loop_limit, X));
kvn@2915 1469 register_new_node(loop_limit, pre_ctrl);
kvn@2915 1470 return loop_limit;
kvn@2915 1471 }
kvn@2915 1472
duke@435 1473 //------------------------------add_constraint---------------------------------
kvn@2877 1474 // Constrain the main loop iterations so the conditions:
kvn@2877 1475 // low_limit <= scale_con * I + offset < upper_limit
duke@435 1476 // always holds true. That is, either increase the number of iterations in
duke@435 1477 // the pre-loop or the post-loop until the condition holds true in the main
duke@435 1478 // loop. Stride, scale, offset and limit are all loop invariant. Further,
duke@435 1479 // stride and scale are constants (offset and limit often are).
kvn@2877 1480 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
duke@435 1481 // For positive stride, the pre-loop limit always uses a MAX function
duke@435 1482 // and the main loop a MIN function. For negative stride these are
duke@435 1483 // reversed.
duke@435 1484
duke@435 1485 // Also for positive stride*scale the affine function is increasing, so the
duke@435 1486 // pre-loop must check for underflow and the post-loop for overflow.
duke@435 1487 // Negative stride*scale reverses this; pre-loop checks for overflow and
duke@435 1488 // post-loop for underflow.
kvn@2915 1489
kvn@2915 1490 Node *scale = _igvn.intcon(scale_con);
kvn@2915 1491 set_ctrl(scale, C->root());
kvn@2915 1492
kvn@2915 1493 if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow
kvn@2877 1494 // The overflow limit: scale*I+offset < upper_limit
kvn@2877 1495 // For main-loop compute
kvn@2877 1496 // ( if (scale > 0) /* and stride > 0 */
kvn@2877 1497 // I < (upper_limit-offset)/scale
kvn@2877 1498 // else /* scale < 0 and stride < 0 */
kvn@2877 1499 // I > (upper_limit-offset)/scale
kvn@2877 1500 // )
kvn@2877 1501 //
kvn@2915 1502 // (upper_limit-offset) may overflow or underflow.
kvn@2877 1503 // But it is fine since main loop will either have
kvn@2877 1504 // less iterations or will be skipped in such case.
kvn@2915 1505 *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl);
duke@435 1506
kvn@2877 1507 // The underflow limit: low_limit <= scale*I+offset.
kvn@2877 1508 // For pre-loop compute
kvn@2877 1509 // NOT(scale*I+offset >= low_limit)
kvn@2877 1510 // scale*I+offset < low_limit
kvn@2877 1511 // ( if (scale > 0) /* and stride > 0 */
kvn@2877 1512 // I < (low_limit-offset)/scale
kvn@2877 1513 // else /* scale < 0 and stride < 0 */
kvn@2877 1514 // I > (low_limit-offset)/scale
kvn@2877 1515 // )
kvn@2877 1516
kvn@2877 1517 if (low_limit->get_int() == -max_jint) {
kvn@2877 1518 if (!RangeLimitCheck) return;
kvn@2877 1519 // We need this guard when scale*pre_limit+offset >= limit
kvn@2915 1520 // due to underflow. So we need execute pre-loop until
kvn@2915 1521 // scale*I+offset >= min_int. But (min_int-offset) will
kvn@2915 1522 // underflow when offset > 0 and X will be > original_limit
kvn@2915 1523 // when stride > 0. To avoid it we replace positive offset with 0.
kvn@2915 1524 //
kvn@2915 1525 // Also (min_int+1 == -max_int) is used instead of min_int here
kvn@2915 1526 // to avoid problem with scale == -1 (min_int/(-1) == min_int).
kvn@2877 1527 Node* shift = _igvn.intcon(31);
kvn@2877 1528 set_ctrl(shift, C->root());
kvn@2915 1529 Node* sign = new (C, 3) RShiftINode(offset, shift);
kvn@2915 1530 register_new_node(sign, pre_ctrl);
kvn@2915 1531 offset = new (C, 3) AndINode(offset, sign);
kvn@2877 1532 register_new_node(offset, pre_ctrl);
kvn@2877 1533 } else {
kvn@2877 1534 assert(low_limit->get_int() == 0, "wrong low limit for range check");
kvn@2877 1535 // The only problem we have here when offset == min_int
kvn@2915 1536 // since (0-min_int) == min_int. It may be fine for stride > 0
kvn@2915 1537 // but for stride < 0 X will be < original_limit. To avoid it
kvn@2915 1538 // max(pre_limit, original_limit) is used in do_range_check().
kvn@2877 1539 }
kvn@2915 1540 // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
kvn@2915 1541 *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);
kvn@2877 1542
kvn@2877 1543 } else { // stride_con*scale_con < 0
kvn@2877 1544 // For negative stride*scale pre-loop checks for overflow and
kvn@2877 1545 // post-loop for underflow.
kvn@2877 1546 //
kvn@2877 1547 // The overflow limit: scale*I+offset < upper_limit
kvn@2877 1548 // For pre-loop compute
kvn@2877 1549 // NOT(scale*I+offset < upper_limit)
kvn@2877 1550 // scale*I+offset >= upper_limit
kvn@2877 1551 // scale*I+offset+1 > upper_limit
kvn@2877 1552 // ( if (scale < 0) /* and stride > 0 */
kvn@2877 1553 // I < (upper_limit-(offset+1))/scale
kvn@2915 1554 // else /* scale > 0 and stride < 0 */
kvn@2877 1555 // I > (upper_limit-(offset+1))/scale
kvn@2877 1556 // )
kvn@2915 1557 //
kvn@2915 1558 // (upper_limit-offset-1) may underflow or overflow.
kvn@2915 1559 // To avoid it min(pre_limit, original_limit) is used
kvn@2915 1560 // in do_range_check() for stride > 0 and max() for < 0.
kvn@2915 1561 Node *one = _igvn.intcon(1);
kvn@2915 1562 set_ctrl(one, C->root());
kvn@2915 1563
kvn@2915 1564 Node *plus_one = new (C, 3) AddINode(offset, one);
kvn@2877 1565 register_new_node( plus_one, pre_ctrl );
kvn@2915 1566 // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
kvn@2915 1567 *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
kvn@2877 1568
kvn@2915 1569 if (low_limit->get_int() == -max_jint) {
kvn@2915 1570 if (!RangeLimitCheck) return;
kvn@2915 1571 // We need this guard when scale*main_limit+offset >= limit
kvn@2915 1572 // due to underflow. So we need execute main-loop while
kvn@2915 1573 // scale*I+offset+1 > min_int. But (min_int-offset-1) will
kvn@2915 1574 // underflow when (offset+1) > 0 and X will be < main_limit
kvn@2915 1575 // when scale < 0 (and stride > 0). To avoid it we replace
kvn@2915 1576 // positive (offset+1) with 0.
kvn@2915 1577 //
kvn@2915 1578 // Also (min_int+1 == -max_int) is used instead of min_int here
kvn@2915 1579 // to avoid problem with scale == -1 (min_int/(-1) == min_int).
kvn@2915 1580 Node* shift = _igvn.intcon(31);
kvn@2915 1581 set_ctrl(shift, C->root());
kvn@2915 1582 Node* sign = new (C, 3) RShiftINode(plus_one, shift);
kvn@2915 1583 register_new_node(sign, pre_ctrl);
kvn@2915 1584 plus_one = new (C, 3) AndINode(plus_one, sign);
kvn@2915 1585 register_new_node(plus_one, pre_ctrl);
kvn@2915 1586 } else {
kvn@2915 1587 assert(low_limit->get_int() == 0, "wrong low limit for range check");
kvn@2915 1588 // The only problem we have here when offset == max_int
kvn@2915 1589 // since (max_int+1) == min_int and (0-min_int) == min_int.
kvn@2915 1590 // But it is fine since main loop will either have
kvn@2915 1591 // less iterations or will be skipped in such case.
kvn@2915 1592 }
kvn@2915 1593 // The underflow limit: low_limit <= scale*I+offset.
kvn@2915 1594 // For main-loop compute
kvn@2915 1595 // scale*I+offset+1 > low_limit
kvn@2915 1596 // ( if (scale < 0) /* and stride > 0 */
kvn@2915 1597 // I < (low_limit-(offset+1))/scale
kvn@2915 1598 // else /* scale > 0 and stride < 0 */
kvn@2915 1599 // I > (low_limit-(offset+1))/scale
kvn@2915 1600 // )
kvn@2877 1601
kvn@2915 1602 *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
duke@435 1603 }
duke@435 1604 }
duke@435 1605
duke@435 1606
duke@435 1607 //------------------------------is_scaled_iv---------------------------------
duke@435 1608 // Return true if exp is a constant times an induction var
duke@435 1609 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
duke@435 1610 if (exp == iv) {
duke@435 1611 if (p_scale != NULL) {
duke@435 1612 *p_scale = 1;
duke@435 1613 }
duke@435 1614 return true;
duke@435 1615 }
duke@435 1616 int opc = exp->Opcode();
duke@435 1617 if (opc == Op_MulI) {
duke@435 1618 if (exp->in(1) == iv && exp->in(2)->is_Con()) {
duke@435 1619 if (p_scale != NULL) {
duke@435 1620 *p_scale = exp->in(2)->get_int();
duke@435 1621 }
duke@435 1622 return true;
duke@435 1623 }
duke@435 1624 if (exp->in(2) == iv && exp->in(1)->is_Con()) {
duke@435 1625 if (p_scale != NULL) {
duke@435 1626 *p_scale = exp->in(1)->get_int();
duke@435 1627 }
duke@435 1628 return true;
duke@435 1629 }
duke@435 1630 } else if (opc == Op_LShiftI) {
duke@435 1631 if (exp->in(1) == iv && exp->in(2)->is_Con()) {
duke@435 1632 if (p_scale != NULL) {
duke@435 1633 *p_scale = 1 << exp->in(2)->get_int();
duke@435 1634 }
duke@435 1635 return true;
duke@435 1636 }
duke@435 1637 }
duke@435 1638 return false;
duke@435 1639 }
duke@435 1640
duke@435 1641 //-----------------------------is_scaled_iv_plus_offset------------------------------
duke@435 1642 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
duke@435 1643 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
duke@435 1644 if (is_scaled_iv(exp, iv, p_scale)) {
duke@435 1645 if (p_offset != NULL) {
duke@435 1646 Node *zero = _igvn.intcon(0);
duke@435 1647 set_ctrl(zero, C->root());
duke@435 1648 *p_offset = zero;
duke@435 1649 }
duke@435 1650 return true;
duke@435 1651 }
duke@435 1652 int opc = exp->Opcode();
duke@435 1653 if (opc == Op_AddI) {
duke@435 1654 if (is_scaled_iv(exp->in(1), iv, p_scale)) {
duke@435 1655 if (p_offset != NULL) {
duke@435 1656 *p_offset = exp->in(2);
duke@435 1657 }
duke@435 1658 return true;
duke@435 1659 }
duke@435 1660 if (exp->in(2)->is_Con()) {
duke@435 1661 Node* offset2 = NULL;
duke@435 1662 if (depth < 2 &&
duke@435 1663 is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
duke@435 1664 p_offset != NULL ? &offset2 : NULL, depth+1)) {
duke@435 1665 if (p_offset != NULL) {
duke@435 1666 Node *ctrl_off2 = get_ctrl(offset2);
duke@435 1667 Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
duke@435 1668 register_new_node(offset, ctrl_off2);
duke@435 1669 *p_offset = offset;
duke@435 1670 }
duke@435 1671 return true;
duke@435 1672 }
duke@435 1673 }
duke@435 1674 } else if (opc == Op_SubI) {
duke@435 1675 if (is_scaled_iv(exp->in(1), iv, p_scale)) {
duke@435 1676 if (p_offset != NULL) {
duke@435 1677 Node *zero = _igvn.intcon(0);
duke@435 1678 set_ctrl(zero, C->root());
duke@435 1679 Node *ctrl_off = get_ctrl(exp->in(2));
duke@435 1680 Node* offset = new (C, 3) SubINode(zero, exp->in(2));
duke@435 1681 register_new_node(offset, ctrl_off);
duke@435 1682 *p_offset = offset;
duke@435 1683 }
duke@435 1684 return true;
duke@435 1685 }
duke@435 1686 if (is_scaled_iv(exp->in(2), iv, p_scale)) {
duke@435 1687 if (p_offset != NULL) {
duke@435 1688 *p_scale *= -1;
duke@435 1689 *p_offset = exp->in(1);
duke@435 1690 }
duke@435 1691 return true;
duke@435 1692 }
duke@435 1693 }
duke@435 1694 return false;
duke@435 1695 }
duke@435 1696
duke@435 1697 //------------------------------do_range_check---------------------------------
duke@435 1698 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
duke@435 1699 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 1700 #ifndef PRODUCT
kvn@2665 1701 if (PrintOpto && VerifyLoopOptimizations) {
duke@435 1702 tty->print("Range Check Elimination ");
duke@435 1703 loop->dump_head();
kvn@2665 1704 } else if (TraceLoopOpts) {
kvn@2665 1705 tty->print("RangeCheck ");
kvn@2665 1706 loop->dump_head();
duke@435 1707 }
duke@435 1708 #endif
kvn@2665 1709 assert(RangeCheckElimination, "");
duke@435 1710 CountedLoopNode *cl = loop->_head->as_CountedLoop();
kvn@2665 1711 assert(cl->is_main_loop(), "");
kvn@2665 1712
kvn@2665 1713 // protect against stride not being a constant
kvn@2665 1714 if (!cl->stride_is_con())
kvn@2665 1715 return;
duke@435 1716
duke@435 1717 // Find the trip counter; we are iteration splitting based on it
duke@435 1718 Node *trip_counter = cl->phi();
duke@435 1719 // Find the main loop limit; we will trim it's iterations
duke@435 1720 // to not ever trip end tests
duke@435 1721 Node *main_limit = cl->limit();
kvn@2665 1722
kvn@2665 1723 // Need to find the main-loop zero-trip guard
kvn@2665 1724 Node *ctrl = cl->in(LoopNode::EntryControl);
kvn@2665 1725 assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
kvn@2665 1726 Node *iffm = ctrl->in(0);
kvn@2665 1727 assert(iffm->Opcode() == Op_If, "");
kvn@2665 1728 Node *bolzm = iffm->in(1);
kvn@2665 1729 assert(bolzm->Opcode() == Op_Bool, "");
kvn@2665 1730 Node *cmpzm = bolzm->in(1);
kvn@2665 1731 assert(cmpzm->is_Cmp(), "");
kvn@2665 1732 Node *opqzm = cmpzm->in(2);
kvn@2877 1733 // Can not optimize a loop if zero-trip Opaque1 node is optimized
kvn@2665 1734 // away and then another round of loop opts attempted.
kvn@2665 1735 if (opqzm->Opcode() != Op_Opaque1)
kvn@2665 1736 return;
kvn@2665 1737 assert(opqzm->in(1) == main_limit, "do not understand situation");
kvn@2665 1738
duke@435 1739 // Find the pre-loop limit; we will expand it's iterations to
duke@435 1740 // not ever trip low tests.
duke@435 1741 Node *p_f = iffm->in(0);
kvn@2665 1742 assert(p_f->Opcode() == Op_IfFalse, "");
duke@435 1743 CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
kvn@2665 1744 assert(pre_end->loopnode()->is_pre_loop(), "");
duke@435 1745 Node *pre_opaq1 = pre_end->limit();
duke@435 1746 // Occasionally it's possible for a pre-loop Opaque1 node to be
duke@435 1747 // optimized away and then another round of loop opts attempted.
duke@435 1748 // We can not optimize this particular loop in that case.
kvn@2665 1749 if (pre_opaq1->Opcode() != Op_Opaque1)
duke@435 1750 return;
duke@435 1751 Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
duke@435 1752 Node *pre_limit = pre_opaq->in(1);
duke@435 1753
duke@435 1754 // Where do we put new limit calculations
duke@435 1755 Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
duke@435 1756
duke@435 1757 // Ensure the original loop limit is available from the
duke@435 1758 // pre-loop Opaque1 node.
duke@435 1759 Node *orig_limit = pre_opaq->original_loop_limit();
kvn@2665 1760 if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
duke@435 1761 return;
duke@435 1762
duke@435 1763 // Must know if its a count-up or count-down loop
duke@435 1764
duke@435 1765 int stride_con = cl->stride_con();
duke@435 1766 Node *zero = _igvn.intcon(0);
duke@435 1767 Node *one = _igvn.intcon(1);
kvn@2877 1768 // Use symmetrical int range [-max_jint,max_jint]
kvn@2877 1769 Node *mini = _igvn.intcon(-max_jint);
duke@435 1770 set_ctrl(zero, C->root());
duke@435 1771 set_ctrl(one, C->root());
kvn@2877 1772 set_ctrl(mini, C->root());
duke@435 1773
duke@435 1774 // Range checks that do not dominate the loop backedge (ie.
duke@435 1775 // conditionally executed) can lengthen the pre loop limit beyond
duke@435 1776 // the original loop limit. To prevent this, the pre limit is
duke@435 1777 // (for stride > 0) MINed with the original loop limit (MAXed
duke@435 1778 // stride < 0) when some range_check (rc) is conditionally
duke@435 1779 // executed.
duke@435 1780 bool conditional_rc = false;
duke@435 1781
duke@435 1782 // Check loop body for tests of trip-counter plus loop-invariant vs
duke@435 1783 // loop-invariant.
duke@435 1784 for( uint i = 0; i < loop->_body.size(); i++ ) {
duke@435 1785 Node *iff = loop->_body[i];
duke@435 1786 if( iff->Opcode() == Op_If ) { // Test?
duke@435 1787
duke@435 1788 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 1789 // we need loop unswitching instead of iteration splitting.
duke@435 1790 Node *exit = loop->is_loop_exit(iff);
duke@435 1791 if( !exit ) continue;
duke@435 1792 int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
duke@435 1793
duke@435 1794 // Get boolean condition to test
duke@435 1795 Node *i1 = iff->in(1);
duke@435 1796 if( !i1->is_Bool() ) continue;
duke@435 1797 BoolNode *bol = i1->as_Bool();
duke@435 1798 BoolTest b_test = bol->_test;
duke@435 1799 // Flip sense of test if exit condition is flipped
duke@435 1800 if( flip )
duke@435 1801 b_test = b_test.negate();
duke@435 1802
duke@435 1803 // Get compare
duke@435 1804 Node *cmp = bol->in(1);
duke@435 1805
duke@435 1806 // Look for trip_counter + offset vs limit
duke@435 1807 Node *rc_exp = cmp->in(1);
duke@435 1808 Node *limit = cmp->in(2);
duke@435 1809 jint scale_con= 1; // Assume trip counter not scaled
duke@435 1810
duke@435 1811 Node *limit_c = get_ctrl(limit);
duke@435 1812 if( loop->is_member(get_loop(limit_c) ) ) {
duke@435 1813 // Compare might have operands swapped; commute them
duke@435 1814 b_test = b_test.commute();
duke@435 1815 rc_exp = cmp->in(2);
duke@435 1816 limit = cmp->in(1);
duke@435 1817 limit_c = get_ctrl(limit);
duke@435 1818 if( loop->is_member(get_loop(limit_c) ) )
duke@435 1819 continue; // Both inputs are loop varying; cannot RCE
duke@435 1820 }
duke@435 1821 // Here we know 'limit' is loop invariant
duke@435 1822
duke@435 1823 // 'limit' maybe pinned below the zero trip test (probably from a
duke@435 1824 // previous round of rce), in which case, it can't be used in the
duke@435 1825 // zero trip test expression which must occur before the zero test's if.
duke@435 1826 if( limit_c == ctrl ) {
duke@435 1827 continue; // Don't rce this check but continue looking for other candidates.
duke@435 1828 }
duke@435 1829
duke@435 1830 // Check for scaled induction variable plus an offset
duke@435 1831 Node *offset = NULL;
duke@435 1832
duke@435 1833 if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
duke@435 1834 continue;
duke@435 1835 }
duke@435 1836
duke@435 1837 Node *offset_c = get_ctrl(offset);
duke@435 1838 if( loop->is_member( get_loop(offset_c) ) )
duke@435 1839 continue; // Offset is not really loop invariant
duke@435 1840 // Here we know 'offset' is loop invariant.
duke@435 1841
duke@435 1842 // As above for the 'limit', the 'offset' maybe pinned below the
duke@435 1843 // zero trip test.
duke@435 1844 if( offset_c == ctrl ) {
duke@435 1845 continue; // Don't rce this check but continue looking for other candidates.
duke@435 1846 }
kvn@2877 1847 #ifdef ASSERT
kvn@2877 1848 if (TraceRangeLimitCheck) {
kvn@2877 1849 tty->print_cr("RC bool node%s", flip ? " flipped:" : ":");
kvn@2877 1850 bol->dump(2);
kvn@2877 1851 }
kvn@2877 1852 #endif
duke@435 1853 // At this point we have the expression as:
duke@435 1854 // scale_con * trip_counter + offset :: limit
duke@435 1855 // where scale_con, offset and limit are loop invariant. Trip_counter
duke@435 1856 // monotonically increases by stride_con, a constant. Both (or either)
duke@435 1857 // stride_con and scale_con can be negative which will flip about the
duke@435 1858 // sense of the test.
duke@435 1859
duke@435 1860 // Adjust pre and main loop limits to guard the correct iteration set
duke@435 1861 if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
duke@435 1862 if( b_test._test == BoolTest::lt ) { // Range checks always use lt
kvn@2877 1863 // The underflow and overflow limits: 0 <= scale*I+offset < limit
kvn@2877 1864 add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
duke@435 1865 if (!conditional_rc) {
kvn@2915 1866 // (0-offset)/scale could be outside of loop iterations range.
kvn@2915 1867 conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
duke@435 1868 }
duke@435 1869 } else {
duke@435 1870 #ifndef PRODUCT
duke@435 1871 if( PrintOpto )
duke@435 1872 tty->print_cr("missed RCE opportunity");
duke@435 1873 #endif
duke@435 1874 continue; // In release mode, ignore it
duke@435 1875 }
duke@435 1876 } else { // Otherwise work on normal compares
duke@435 1877 switch( b_test._test ) {
kvn@2877 1878 case BoolTest::gt:
kvn@2877 1879 // Fall into GE case
kvn@2877 1880 case BoolTest::ge:
kvn@2877 1881 // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
duke@435 1882 scale_con = -scale_con;
duke@435 1883 offset = new (C, 3) SubINode( zero, offset );
duke@435 1884 register_new_node( offset, pre_ctrl );
duke@435 1885 limit = new (C, 3) SubINode( zero, limit );
duke@435 1886 register_new_node( limit, pre_ctrl );
duke@435 1887 // Fall into LE case
kvn@2877 1888 case BoolTest::le:
kvn@2877 1889 if (b_test._test != BoolTest::gt) {
kvn@2877 1890 // Convert X <= Y to X < Y+1
kvn@2877 1891 limit = new (C, 3) AddINode( limit, one );
kvn@2877 1892 register_new_node( limit, pre_ctrl );
kvn@2877 1893 }
duke@435 1894 // Fall into LT case
duke@435 1895 case BoolTest::lt:
kvn@2877 1896 // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
kvn@2915 1897 // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
kvn@2915 1898 // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
kvn@2877 1899 add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
duke@435 1900 if (!conditional_rc) {
kvn@2915 1901 // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
kvn@2915 1902 // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
kvn@2915 1903 // still be outside of loop range.
kvn@2915 1904 conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
duke@435 1905 }
duke@435 1906 break;
duke@435 1907 default:
duke@435 1908 #ifndef PRODUCT
duke@435 1909 if( PrintOpto )
duke@435 1910 tty->print_cr("missed RCE opportunity");
duke@435 1911 #endif
duke@435 1912 continue; // Unhandled case
duke@435 1913 }
duke@435 1914 }
duke@435 1915
duke@435 1916 // Kill the eliminated test
duke@435 1917 C->set_major_progress();
duke@435 1918 Node *kill_con = _igvn.intcon( 1-flip );
duke@435 1919 set_ctrl(kill_con, C->root());
duke@435 1920 _igvn.hash_delete(iff);
duke@435 1921 iff->set_req(1, kill_con);
duke@435 1922 _igvn._worklist.push(iff);
duke@435 1923 // Find surviving projection
duke@435 1924 assert(iff->is_If(), "");
duke@435 1925 ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
duke@435 1926 // Find loads off the surviving projection; remove their control edge
duke@435 1927 for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
duke@435 1928 Node* cd = dp->fast_out(i); // Control-dependent node
duke@435 1929 if( cd->is_Load() ) { // Loads can now float around in the loop
duke@435 1930 _igvn.hash_delete(cd);
duke@435 1931 // Allow the load to float around in the loop, or before it
duke@435 1932 // but NOT before the pre-loop.
duke@435 1933 cd->set_req(0, ctrl); // ctrl, not NULL
duke@435 1934 _igvn._worklist.push(cd);
duke@435 1935 --i;
duke@435 1936 --imax;
duke@435 1937 }
duke@435 1938 }
duke@435 1939
duke@435 1940 } // End of is IF
duke@435 1941
duke@435 1942 }
duke@435 1943
duke@435 1944 // Update loop limits
duke@435 1945 if (conditional_rc) {
duke@435 1946 pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
duke@435 1947 : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
duke@435 1948 register_new_node(pre_limit, pre_ctrl);
duke@435 1949 }
duke@435 1950 _igvn.hash_delete(pre_opaq);
duke@435 1951 pre_opaq->set_req(1, pre_limit);
duke@435 1952
duke@435 1953 // Note:: we are making the main loop limit no longer precise;
duke@435 1954 // need to round up based on stride.
kvn@2877 1955 cl->set_nonexact_trip_count();
kvn@2877 1956 if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
duke@435 1957 // "Standard" round-up logic: ([main_limit-init+(y-1)]/y)*y+init
duke@435 1958 // Hopefully, compiler will optimize for powers of 2.
duke@435 1959 Node *ctrl = get_ctrl(main_limit);
duke@435 1960 Node *stride = cl->stride();
duke@435 1961 Node *init = cl->init_trip();
duke@435 1962 Node *span = new (C, 3) SubINode(main_limit,init);
duke@435 1963 register_new_node(span,ctrl);
duke@435 1964 Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
duke@435 1965 Node *add = new (C, 3) AddINode(span,rndup);
duke@435 1966 register_new_node(add,ctrl);
duke@435 1967 Node *div = new (C, 3) DivINode(0,add,stride);
duke@435 1968 register_new_node(div,ctrl);
duke@435 1969 Node *mul = new (C, 3) MulINode(div,stride);
duke@435 1970 register_new_node(mul,ctrl);
duke@435 1971 Node *newlim = new (C, 3) AddINode(mul,init);
duke@435 1972 register_new_node(newlim,ctrl);
duke@435 1973 main_limit = newlim;
duke@435 1974 }
duke@435 1975
duke@435 1976 Node *main_cle = cl->loopexit();
duke@435 1977 Node *main_bol = main_cle->in(1);
duke@435 1978 // Hacking loop bounds; need private copies of exit test
duke@435 1979 if( main_bol->outcnt() > 1 ) {// BoolNode shared?
duke@435 1980 _igvn.hash_delete(main_cle);
duke@435 1981 main_bol = main_bol->clone();// Clone a private BoolNode
duke@435 1982 register_new_node( main_bol, main_cle->in(0) );
duke@435 1983 main_cle->set_req(1,main_bol);
duke@435 1984 }
duke@435 1985 Node *main_cmp = main_bol->in(1);
duke@435 1986 if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
duke@435 1987 _igvn.hash_delete(main_bol);
duke@435 1988 main_cmp = main_cmp->clone();// Clone a private CmpNode
duke@435 1989 register_new_node( main_cmp, main_cle->in(0) );
duke@435 1990 main_bol->set_req(1,main_cmp);
duke@435 1991 }
duke@435 1992 // Hack the now-private loop bounds
duke@435 1993 _igvn.hash_delete(main_cmp);
duke@435 1994 main_cmp->set_req(2, main_limit);
duke@435 1995 _igvn._worklist.push(main_cmp);
duke@435 1996 // The OpaqueNode is unshared by design
duke@435 1997 _igvn.hash_delete(opqzm);
duke@435 1998 assert( opqzm->outcnt() == 1, "cannot hack shared node" );
duke@435 1999 opqzm->set_req(1,main_limit);
duke@435 2000 _igvn._worklist.push(opqzm);
duke@435 2001 }
duke@435 2002
duke@435 2003 //------------------------------DCE_loop_body----------------------------------
duke@435 2004 // Remove simplistic dead code from loop body
duke@435 2005 void IdealLoopTree::DCE_loop_body() {
duke@435 2006 for( uint i = 0; i < _body.size(); i++ )
duke@435 2007 if( _body.at(i)->outcnt() == 0 )
duke@435 2008 _body.map( i--, _body.pop() );
duke@435 2009 }
duke@435 2010
duke@435 2011
duke@435 2012 //------------------------------adjust_loop_exit_prob--------------------------
duke@435 2013 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
duke@435 2014 // Replace with a 1-in-10 exit guess.
duke@435 2015 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
duke@435 2016 Node *test = tail();
duke@435 2017 while( test != _head ) {
duke@435 2018 uint top = test->Opcode();
duke@435 2019 if( top == Op_IfTrue || top == Op_IfFalse ) {
duke@435 2020 int test_con = ((ProjNode*)test)->_con;
duke@435 2021 assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
duke@435 2022 IfNode *iff = test->in(0)->as_If();
duke@435 2023 if( iff->outcnt() == 2 ) { // Ignore dead tests
duke@435 2024 Node *bol = iff->in(1);
duke@435 2025 if( bol && bol->req() > 1 && bol->in(1) &&
duke@435 2026 ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
kvn@855 2027 (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
duke@435 2028 (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
duke@435 2029 (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
duke@435 2030 (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
coleenp@548 2031 (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
coleenp@548 2032 (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
duke@435 2033 return; // Allocation loops RARELY take backedge
duke@435 2034 // Find the OTHER exit path from the IF
duke@435 2035 Node* ex = iff->proj_out(1-test_con);
duke@435 2036 float p = iff->_prob;
duke@435 2037 if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
duke@435 2038 if( top == Op_IfTrue ) {
duke@435 2039 if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
duke@435 2040 iff->_prob = PROB_STATIC_FREQUENT;
duke@435 2041 }
duke@435 2042 } else {
duke@435 2043 if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
duke@435 2044 iff->_prob = PROB_STATIC_INFREQUENT;
duke@435 2045 }
duke@435 2046 }
duke@435 2047 }
duke@435 2048 }
duke@435 2049 }
duke@435 2050 test = phase->idom(test);
duke@435 2051 }
duke@435 2052 }
duke@435 2053
duke@435 2054
duke@435 2055 //------------------------------policy_do_remove_empty_loop--------------------
duke@435 2056 // Micro-benchmark spamming. Policy is to always remove empty loops.
duke@435 2057 // The 'DO' part is to replace the trip counter with the value it will
duke@435 2058 // have on the last iteration. This will break the loop.
duke@435 2059 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
duke@435 2060 // Minimum size must be empty loop
kvn@2735 2061 if (_body.size() > EMPTY_LOOP_SIZE)
kvn@2665 2062 return false;
duke@435 2063
kvn@2665 2064 if (!_head->is_CountedLoop())
kvn@2665 2065 return false; // Dead loop
duke@435 2066 CountedLoopNode *cl = _head->as_CountedLoop();
kvn@2665 2067 if (!cl->loopexit())
kvn@2665 2068 return false; // Malformed loop
kvn@2665 2069 if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
duke@435 2070 return false; // Infinite loop
never@2685 2071
duke@435 2072 #ifdef ASSERT
duke@435 2073 // Ensure only one phi which is the iv.
duke@435 2074 Node* iv = NULL;
duke@435 2075 for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
duke@435 2076 Node* n = cl->fast_out(i);
duke@435 2077 if (n->Opcode() == Op_Phi) {
duke@435 2078 assert(iv == NULL, "Too many phis" );
duke@435 2079 iv = n;
duke@435 2080 }
duke@435 2081 }
duke@435 2082 assert(iv == cl->phi(), "Wrong phi" );
duke@435 2083 #endif
never@2685 2084
never@2685 2085 // main and post loops have explicitly created zero trip guard
never@2685 2086 bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
never@2685 2087 if (needs_guard) {
kvn@2747 2088 // Skip guard if values not overlap.
kvn@2747 2089 const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
kvn@2747 2090 const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
kvn@2747 2091 int stride_con = cl->stride_con();
kvn@2747 2092 if (stride_con > 0) {
kvn@2747 2093 needs_guard = (init_t->_hi >= limit_t->_lo);
kvn@2747 2094 } else {
kvn@2747 2095 needs_guard = (init_t->_lo <= limit_t->_hi);
kvn@2747 2096 }
kvn@2747 2097 }
kvn@2747 2098 if (needs_guard) {
never@2685 2099 // Check for an obvious zero trip guard.
kvn@2727 2100 Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
never@2685 2101 if (inctrl->Opcode() == Op_IfTrue) {
never@2685 2102 // The test should look like just the backedge of a CountedLoop
never@2685 2103 Node* iff = inctrl->in(0);
never@2685 2104 if (iff->is_If()) {
never@2685 2105 Node* bol = iff->in(1);
never@2685 2106 if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
never@2685 2107 Node* cmp = bol->in(1);
never@2685 2108 if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
never@2685 2109 needs_guard = false;
never@2685 2110 }
never@2685 2111 }
never@2685 2112 }
never@2685 2113 }
never@2685 2114 }
never@2685 2115
never@2685 2116 #ifndef PRODUCT
never@2685 2117 if (PrintOpto) {
never@2685 2118 tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
never@2685 2119 this->dump_head();
never@2685 2120 } else if (TraceLoopOpts) {
never@2685 2121 tty->print("Empty with%s zero trip guard ", needs_guard ? "out" : "");
never@2685 2122 this->dump_head();
never@2685 2123 }
never@2685 2124 #endif
never@2685 2125
never@2685 2126 if (needs_guard) {
never@2685 2127 // Peel the loop to ensure there's a zero trip guard
never@2685 2128 Node_List old_new;
never@2685 2129 phase->do_peeling(this, old_new);
never@2685 2130 }
never@2685 2131
duke@435 2132 // Replace the phi at loop head with the final value of the last
duke@435 2133 // iteration. Then the CountedLoopEnd will collapse (backedge never
duke@435 2134 // taken) and all loop-invariant uses of the exit values will be correct.
duke@435 2135 Node *phi = cl->phi();
kvn@2877 2136 Node *exact_limit = phase->exact_limit(this);
kvn@2877 2137 if (exact_limit != cl->limit()) {
kvn@2877 2138 // We also need to replace the original limit to collapse loop exit.
kvn@2877 2139 Node* cmp = cl->loopexit()->cmp_node();
kvn@2877 2140 assert(cl->limit() == cmp->in(2), "sanity");
kvn@2877 2141 phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
kvn@2877 2142 phase->_igvn.hash_delete(cmp);
kvn@2877 2143 cmp->set_req(2, exact_limit);
kvn@2877 2144 phase->_igvn._worklist.push(cmp); // put cmp on worklist
kvn@2877 2145 }
kvn@2877 2146 // Note: the final value after increment should not overflow since
kvn@2877 2147 // counted loop has limit check predicate.
kvn@2877 2148 Node *final = new (phase->C, 3) SubINode( exact_limit, cl->stride() );
duke@435 2149 phase->register_new_node(final,cl->in(LoopNode::EntryControl));
kvn@1976 2150 phase->_igvn.replace_node(phi,final);
duke@435 2151 phase->C->set_major_progress();
duke@435 2152 return true;
duke@435 2153 }
duke@435 2154
kvn@2747 2155 //------------------------------policy_do_one_iteration_loop-------------------
kvn@2747 2156 // Convert one iteration loop into normal code.
kvn@2747 2157 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
kvn@2747 2158 if (!_head->as_Loop()->is_valid_counted_loop())
kvn@2747 2159 return false; // Only for counted loop
kvn@2747 2160
kvn@2747 2161 CountedLoopNode *cl = _head->as_CountedLoop();
kvn@2747 2162 if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
kvn@2747 2163 return false;
kvn@2747 2164 }
kvn@2747 2165
kvn@2747 2166 #ifndef PRODUCT
kvn@2747 2167 if(TraceLoopOpts) {
kvn@2747 2168 tty->print("OneIteration ");
kvn@2747 2169 this->dump_head();
kvn@2747 2170 }
kvn@2747 2171 #endif
kvn@2747 2172
kvn@2747 2173 Node *init_n = cl->init_trip();
kvn@2747 2174 #ifdef ASSERT
kvn@2747 2175 // Loop boundaries should be constant since trip count is exact.
kvn@2747 2176 assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
kvn@2747 2177 #endif
kvn@2747 2178 // Replace the phi at loop head with the value of the init_trip.
kvn@2747 2179 // Then the CountedLoopEnd will collapse (backedge will not be taken)
kvn@2747 2180 // and all loop-invariant uses of the exit values will be correct.
kvn@2747 2181 phase->_igvn.replace_node(cl->phi(), cl->init_trip());
kvn@2747 2182 phase->C->set_major_progress();
kvn@2747 2183 return true;
kvn@2747 2184 }
duke@435 2185
duke@435 2186 //=============================================================================
duke@435 2187 //------------------------------iteration_split_impl---------------------------
never@836 2188 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
kvn@2747 2189 // Compute exact loop trip count if possible.
kvn@2747 2190 compute_exact_trip_count(phase);
kvn@2747 2191
kvn@2747 2192 // Convert one iteration loop into normal code.
kvn@2747 2193 if (policy_do_one_iteration_loop(phase))
kvn@2747 2194 return true;
kvn@2747 2195
duke@435 2196 // Check and remove empty loops (spam micro-benchmarks)
kvn@2747 2197 if (policy_do_remove_empty_loop(phase))
cfang@1607 2198 return true; // Here we removed an empty loop
duke@435 2199
duke@435 2200 bool should_peel = policy_peeling(phase); // Should we peel?
duke@435 2201
duke@435 2202 bool should_unswitch = policy_unswitching(phase);
duke@435 2203
duke@435 2204 // Non-counted loops may be peeled; exactly 1 iteration is peeled.
duke@435 2205 // This removes loop-invariant tests (usually null checks).
kvn@2747 2206 if (!_head->is_CountedLoop()) { // Non-counted loop
duke@435 2207 if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
never@836 2208 // Partial peel succeeded so terminate this round of loop opts
never@836 2209 return false;
duke@435 2210 }
kvn@2747 2211 if (should_peel) { // Should we peel?
duke@435 2212 #ifndef PRODUCT
duke@435 2213 if (PrintOpto) tty->print_cr("should_peel");
duke@435 2214 #endif
duke@435 2215 phase->do_peeling(this,old_new);
kvn@2747 2216 } else if (should_unswitch) {
duke@435 2217 phase->do_unswitching(this, old_new);
duke@435 2218 }
never@836 2219 return true;
duke@435 2220 }
duke@435 2221 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 2222
kvn@2747 2223 if (!cl->loopexit()) return true; // Ignore various kinds of broken loops
duke@435 2224
duke@435 2225 // Do nothing special to pre- and post- loops
kvn@2747 2226 if (cl->is_pre_loop() || cl->is_post_loop()) return true;
duke@435 2227
duke@435 2228 // Compute loop trip count from profile data
duke@435 2229 compute_profile_trip_cnt(phase);
duke@435 2230
duke@435 2231 // Before attempting fancy unrolling, RCE or alignment, see if we want
duke@435 2232 // to completely unroll this loop or do loop unswitching.
kvn@2747 2233 if (cl->is_normal_loop()) {
cfang@1224 2234 if (should_unswitch) {
cfang@1224 2235 phase->do_unswitching(this, old_new);
cfang@1224 2236 return true;
cfang@1224 2237 }
duke@435 2238 bool should_maximally_unroll = policy_maximally_unroll(phase);
kvn@2747 2239 if (should_maximally_unroll) {
duke@435 2240 // Here we did some unrolling and peeling. Eventually we will
duke@435 2241 // completely unroll this loop and it will no longer be a loop.
duke@435 2242 phase->do_maximally_unroll(this,old_new);
never@836 2243 return true;
duke@435 2244 }
duke@435 2245 }
duke@435 2246
kvn@2735 2247 // Skip next optimizations if running low on nodes. Note that
kvn@2735 2248 // policy_unswitching and policy_maximally_unroll have this check.
kvn@2735 2249 uint nodes_left = MaxNodeLimit - phase->C->unique();
kvn@2735 2250 if ((2 * _body.size()) > nodes_left) {
kvn@2735 2251 return true;
kvn@2735 2252 }
duke@435 2253
duke@435 2254 // Counted loops may be peeled, may need some iterations run up
duke@435 2255 // front for RCE, and may want to align loop refs to a cache
duke@435 2256 // line. Thus we clone a full loop up front whose trip count is
duke@435 2257 // at least 1 (if peeling), but may be several more.
duke@435 2258
duke@435 2259 // The main loop will start cache-line aligned with at least 1
duke@435 2260 // iteration of the unrolled body (zero-trip test required) and
duke@435 2261 // will have some range checks removed.
duke@435 2262
duke@435 2263 // A post-loop will finish any odd iterations (leftover after
duke@435 2264 // unrolling), plus any needed for RCE purposes.
duke@435 2265
duke@435 2266 bool should_unroll = policy_unroll(phase);
duke@435 2267
duke@435 2268 bool should_rce = policy_range_check(phase);
duke@435 2269
duke@435 2270 bool should_align = policy_align(phase);
duke@435 2271
duke@435 2272 // If not RCE'ing (iteration splitting) or Aligning, then we do not
duke@435 2273 // need a pre-loop. We may still need to peel an initial iteration but
duke@435 2274 // we will not be needing an unknown number of pre-iterations.
duke@435 2275 //
duke@435 2276 // Basically, if may_rce_align reports FALSE first time through,
duke@435 2277 // we will not be able to later do RCE or Aligning on this loop.
duke@435 2278 bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
duke@435 2279
duke@435 2280 // If we have any of these conditions (RCE, alignment, unrolling) met, then
duke@435 2281 // we switch to the pre-/main-/post-loop model. This model also covers
duke@435 2282 // peeling.
kvn@2747 2283 if (should_rce || should_align || should_unroll) {
kvn@2747 2284 if (cl->is_normal_loop()) // Convert to 'pre/main/post' loops
duke@435 2285 phase->insert_pre_post_loops(this,old_new, !may_rce_align);
duke@435 2286
duke@435 2287 // Adjust the pre- and main-loop limits to let the pre and post loops run
duke@435 2288 // with full checks, but the main-loop with no checks. Remove said
duke@435 2289 // checks from the main body.
kvn@2747 2290 if (should_rce)
duke@435 2291 phase->do_range_check(this,old_new);
duke@435 2292
duke@435 2293 // Double loop body for unrolling. Adjust the minimum-trip test (will do
duke@435 2294 // twice as many iterations as before) and the main body limit (only do
duke@435 2295 // an even number of trips). If we are peeling, we might enable some RCE
duke@435 2296 // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
duke@435 2297 // peeling.
kvn@2747 2298 if (should_unroll && !should_peel)
kvn@2747 2299 phase->do_unroll(this,old_new, true);
duke@435 2300
duke@435 2301 // Adjust the pre-loop limits to align the main body
duke@435 2302 // iterations.
kvn@2747 2303 if (should_align)
duke@435 2304 Unimplemented();
duke@435 2305
duke@435 2306 } else { // Else we have an unchanged counted loop
kvn@2747 2307 if (should_peel) // Might want to peel but do nothing else
duke@435 2308 phase->do_peeling(this,old_new);
duke@435 2309 }
never@836 2310 return true;
duke@435 2311 }
duke@435 2312
duke@435 2313
duke@435 2314 //=============================================================================
duke@435 2315 //------------------------------iteration_split--------------------------------
never@836 2316 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
duke@435 2317 // Recursively iteration split nested loops
kvn@2665 2318 if (_child && !_child->iteration_split(phase, old_new))
never@836 2319 return false;
duke@435 2320
duke@435 2321 // Clean out prior deadwood
duke@435 2322 DCE_loop_body();
duke@435 2323
duke@435 2324
duke@435 2325 // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
duke@435 2326 // Replace with a 1-in-10 exit guess.
kvn@2665 2327 if (_parent /*not the root loop*/ &&
duke@435 2328 !_irreducible &&
duke@435 2329 // Also ignore the occasional dead backedge
kvn@2665 2330 !tail()->is_top()) {
duke@435 2331 adjust_loop_exit_prob(phase);
duke@435 2332 }
duke@435 2333
duke@435 2334 // Gate unrolling, RCE and peeling efforts.
kvn@2665 2335 if (!_child && // If not an inner loop, do not split
duke@435 2336 !_irreducible &&
kvn@474 2337 _allow_optimizations &&
kvn@2665 2338 !tail()->is_top()) { // Also ignore the occasional dead backedge
duke@435 2339 if (!_has_call) {
kvn@2665 2340 if (!iteration_split_impl(phase, old_new)) {
cfang@1607 2341 return false;
cfang@1607 2342 }
duke@435 2343 } else if (policy_unswitching(phase)) {
duke@435 2344 phase->do_unswitching(this, old_new);
duke@435 2345 }
duke@435 2346 }
duke@435 2347
duke@435 2348 // Minor offset re-organization to remove loop-fallout uses of
kvn@2665 2349 // trip counter when there was no major reshaping.
kvn@2665 2350 phase->reorg_offsets(this);
kvn@2665 2351
kvn@2665 2352 if (_next && !_next->iteration_split(phase, old_new))
never@836 2353 return false;
never@836 2354 return true;
duke@435 2355 }
cfang@1607 2356
cfang@1607 2357
kvn@2727 2358 //=============================================================================
never@2118 2359 // Process all the loops in the loop tree and replace any fill
never@2118 2360 // patterns with an intrisc version.
never@2118 2361 bool PhaseIdealLoop::do_intrinsify_fill() {
never@2118 2362 bool changed = false;
never@2118 2363 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
never@2118 2364 IdealLoopTree* lpt = iter.current();
never@2118 2365 changed |= intrinsify_fill(lpt);
never@2118 2366 }
never@2118 2367 return changed;
never@2118 2368 }
never@2118 2369
never@2118 2370
never@2118 2371 // Examine an inner loop looking for a a single store of an invariant
never@2118 2372 // value in a unit stride loop,
never@2118 2373 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
never@2118 2374 Node*& shift, Node*& con) {
never@2118 2375 const char* msg = NULL;
never@2118 2376 Node* msg_node = NULL;
never@2118 2377
never@2118 2378 store_value = NULL;
never@2118 2379 con = NULL;
never@2118 2380 shift = NULL;
never@2118 2381
never@2118 2382 // Process the loop looking for stores. If there are multiple
never@2118 2383 // stores or extra control flow give at this point.
never@2118 2384 CountedLoopNode* head = lpt->_head->as_CountedLoop();
never@2118 2385 for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
never@2118 2386 Node* n = lpt->_body.at(i);
never@2118 2387 if (n->outcnt() == 0) continue; // Ignore dead
never@2118 2388 if (n->is_Store()) {
never@2118 2389 if (store != NULL) {
never@2118 2390 msg = "multiple stores";
never@2118 2391 break;
never@2118 2392 }
never@2118 2393 int opc = n->Opcode();
never@2118 2394 if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreCM) {
never@2118 2395 msg = "oop fills not handled";
never@2118 2396 break;
never@2118 2397 }
never@2118 2398 Node* value = n->in(MemNode::ValueIn);
never@2118 2399 if (!lpt->is_invariant(value)) {
never@2118 2400 msg = "variant store value";
never@2140 2401 } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
never@2140 2402 msg = "not array address";
never@2118 2403 }
never@2118 2404 store = n;
never@2118 2405 store_value = value;
never@2118 2406 } else if (n->is_If() && n != head->loopexit()) {
never@2118 2407 msg = "extra control flow";
never@2118 2408 msg_node = n;
never@2118 2409 }
never@2118 2410 }
never@2118 2411
never@2118 2412 if (store == NULL) {
never@2118 2413 // No store in loop
never@2118 2414 return false;
never@2118 2415 }
never@2118 2416
never@2118 2417 if (msg == NULL && head->stride_con() != 1) {
never@2118 2418 // could handle negative strides too
never@2118 2419 if (head->stride_con() < 0) {
never@2118 2420 msg = "negative stride";
never@2118 2421 } else {
never@2118 2422 msg = "non-unit stride";
never@2118 2423 }
never@2118 2424 }
never@2118 2425
never@2118 2426 if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
never@2118 2427 msg = "can't handle store address";
never@2118 2428 msg_node = store->in(MemNode::Address);
never@2118 2429 }
never@2118 2430
never@2168 2431 if (msg == NULL &&
never@2168 2432 (!store->in(MemNode::Memory)->is_Phi() ||
never@2168 2433 store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
never@2168 2434 msg = "store memory isn't proper phi";
never@2168 2435 msg_node = store->in(MemNode::Memory);
never@2168 2436 }
never@2168 2437
never@2118 2438 // Make sure there is an appropriate fill routine
never@2118 2439 BasicType t = store->as_Mem()->memory_type();
never@2118 2440 const char* fill_name;
never@2118 2441 if (msg == NULL &&
never@2118 2442 StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
never@2118 2443 msg = "unsupported store";
never@2118 2444 msg_node = store;
never@2118 2445 }
never@2118 2446
never@2118 2447 if (msg != NULL) {
never@2118 2448 #ifndef PRODUCT
never@2118 2449 if (TraceOptimizeFill) {
never@2118 2450 tty->print_cr("not fill intrinsic candidate: %s", msg);
never@2118 2451 if (msg_node != NULL) msg_node->dump();
never@2118 2452 }
never@2118 2453 #endif
never@2118 2454 return false;
never@2118 2455 }
never@2118 2456
never@2118 2457 // Make sure the address expression can be handled. It should be
never@2118 2458 // head->phi * elsize + con. head->phi might have a ConvI2L.
never@2118 2459 Node* elements[4];
never@2118 2460 Node* conv = NULL;
never@2140 2461 bool found_index = false;
never@2118 2462 int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
never@2118 2463 for (int e = 0; e < count; e++) {
never@2118 2464 Node* n = elements[e];
never@2118 2465 if (n->is_Con() && con == NULL) {
never@2118 2466 con = n;
never@2118 2467 } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
never@2118 2468 Node* value = n->in(1);
never@2118 2469 #ifdef _LP64
never@2118 2470 if (value->Opcode() == Op_ConvI2L) {
never@2118 2471 conv = value;
never@2118 2472 value = value->in(1);
never@2118 2473 }
never@2118 2474 #endif
never@2118 2475 if (value != head->phi()) {
never@2118 2476 msg = "unhandled shift in address";
never@2118 2477 } else {
never@2730 2478 if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
never@2730 2479 msg = "scale doesn't match";
never@2730 2480 } else {
never@2730 2481 found_index = true;
never@2730 2482 shift = n;
never@2730 2483 }
never@2118 2484 }
never@2118 2485 } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
never@2118 2486 if (n->in(1) == head->phi()) {
never@2140 2487 found_index = true;
never@2118 2488 conv = n;
never@2118 2489 } else {
never@2118 2490 msg = "unhandled input to ConvI2L";
never@2118 2491 }
never@2118 2492 } else if (n == head->phi()) {
never@2118 2493 // no shift, check below for allowed cases
never@2140 2494 found_index = true;
never@2118 2495 } else {
never@2118 2496 msg = "unhandled node in address";
never@2118 2497 msg_node = n;
never@2118 2498 }
never@2118 2499 }
never@2118 2500
never@2118 2501 if (count == -1) {
never@2118 2502 msg = "malformed address expression";
never@2118 2503 msg_node = store;
never@2118 2504 }
never@2118 2505
never@2140 2506 if (!found_index) {
never@2140 2507 msg = "missing use of index";
never@2140 2508 }
never@2140 2509
never@2118 2510 // byte sized items won't have a shift
never@2118 2511 if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
never@2118 2512 msg = "can't find shift";
never@2118 2513 msg_node = store;
never@2118 2514 }
never@2118 2515
never@2118 2516 if (msg != NULL) {
never@2118 2517 #ifndef PRODUCT
never@2118 2518 if (TraceOptimizeFill) {
never@2118 2519 tty->print_cr("not fill intrinsic: %s", msg);
never@2118 2520 if (msg_node != NULL) msg_node->dump();
never@2118 2521 }
never@2118 2522 #endif
never@2118 2523 return false;
never@2118 2524 }
never@2118 2525
never@2118 2526 // No make sure all the other nodes in the loop can be handled
never@2118 2527 VectorSet ok(Thread::current()->resource_area());
never@2118 2528
never@2118 2529 // store related values are ok
never@2118 2530 ok.set(store->_idx);
never@2118 2531 ok.set(store->in(MemNode::Memory)->_idx);
never@2118 2532
never@2118 2533 // Loop structure is ok
never@2118 2534 ok.set(head->_idx);
never@2118 2535 ok.set(head->loopexit()->_idx);
never@2118 2536 ok.set(head->phi()->_idx);
never@2118 2537 ok.set(head->incr()->_idx);
never@2118 2538 ok.set(head->loopexit()->cmp_node()->_idx);
never@2118 2539 ok.set(head->loopexit()->in(1)->_idx);
never@2118 2540
never@2118 2541 // Address elements are ok
never@2118 2542 if (con) ok.set(con->_idx);
never@2118 2543 if (shift) ok.set(shift->_idx);
never@2118 2544 if (conv) ok.set(conv->_idx);
never@2118 2545
never@2118 2546 for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
never@2118 2547 Node* n = lpt->_body.at(i);
never@2118 2548 if (n->outcnt() == 0) continue; // Ignore dead
never@2118 2549 if (ok.test(n->_idx)) continue;
never@2118 2550 // Backedge projection is ok
never@2118 2551 if (n->is_IfTrue() && n->in(0) == head->loopexit()) continue;
never@2118 2552 if (!n->is_AddP()) {
never@2118 2553 msg = "unhandled node";
never@2118 2554 msg_node = n;
never@2118 2555 break;
never@2118 2556 }
never@2118 2557 }
never@2118 2558
never@2118 2559 // Make sure no unexpected values are used outside the loop
never@2118 2560 for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
never@2118 2561 Node* n = lpt->_body.at(i);
never@2118 2562 // These values can be replaced with other nodes if they are used
never@2118 2563 // outside the loop.
never@2168 2564 if (n == store || n == head->loopexit() || n == head->incr() || n == store->in(MemNode::Memory)) continue;
never@2118 2565 for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
never@2118 2566 Node* use = iter.get();
never@2118 2567 if (!lpt->_body.contains(use)) {
never@2118 2568 msg = "node is used outside loop";
never@2118 2569 // lpt->_body.dump();
never@2118 2570 msg_node = n;
never@2118 2571 break;
never@2118 2572 }
never@2118 2573 }
never@2118 2574 }
never@2118 2575
never@2118 2576 #ifdef ASSERT
never@2118 2577 if (TraceOptimizeFill) {
never@2118 2578 if (msg != NULL) {
never@2118 2579 tty->print_cr("no fill intrinsic: %s", msg);
never@2118 2580 if (msg_node != NULL) msg_node->dump();
never@2118 2581 } else {
never@2118 2582 tty->print_cr("fill intrinsic for:");
never@2118 2583 }
never@2118 2584 store->dump();
never@2118 2585 if (Verbose) {
never@2118 2586 lpt->_body.dump();
never@2118 2587 }
never@2118 2588 }
never@2118 2589 #endif
never@2118 2590
never@2118 2591 return msg == NULL;
never@2118 2592 }
never@2118 2593
never@2118 2594
never@2118 2595
never@2118 2596 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
never@2118 2597 // Only for counted inner loops
never@2118 2598 if (!lpt->is_counted() || !lpt->is_inner()) {
never@2118 2599 return false;
never@2118 2600 }
never@2118 2601
never@2118 2602 // Must have constant stride
never@2118 2603 CountedLoopNode* head = lpt->_head->as_CountedLoop();
never@2118 2604 if (!head->stride_is_con() || !head->is_normal_loop()) {
never@2118 2605 return false;
never@2118 2606 }
never@2118 2607
never@2118 2608 // Check that the body only contains a store of a loop invariant
never@2118 2609 // value that is indexed by the loop phi.
never@2118 2610 Node* store = NULL;
never@2118 2611 Node* store_value = NULL;
never@2118 2612 Node* shift = NULL;
never@2118 2613 Node* offset = NULL;
never@2118 2614 if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
never@2118 2615 return false;
never@2118 2616 }
never@2118 2617
kvn@2727 2618 #ifndef PRODUCT
kvn@2727 2619 if (TraceLoopOpts) {
kvn@2727 2620 tty->print("ArrayFill ");
kvn@2727 2621 lpt->dump_head();
kvn@2727 2622 }
kvn@2727 2623 #endif
kvn@2727 2624
never@2118 2625 // Now replace the whole loop body by a call to a fill routine that
never@2118 2626 // covers the same region as the loop.
never@2118 2627 Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
never@2118 2628
never@2118 2629 // Build an expression for the beginning of the copy region
never@2118 2630 Node* index = head->init_trip();
never@2118 2631 #ifdef _LP64
never@2118 2632 index = new (C, 2) ConvI2LNode(index);
never@2118 2633 _igvn.register_new_node_with_optimizer(index);
never@2118 2634 #endif
never@2118 2635 if (shift != NULL) {
never@2118 2636 // byte arrays don't require a shift but others do.
never@2118 2637 index = new (C, 3) LShiftXNode(index, shift->in(2));
never@2118 2638 _igvn.register_new_node_with_optimizer(index);
never@2118 2639 }
never@2118 2640 index = new (C, 4) AddPNode(base, base, index);
never@2118 2641 _igvn.register_new_node_with_optimizer(index);
never@2118 2642 Node* from = new (C, 4) AddPNode(base, index, offset);
never@2118 2643 _igvn.register_new_node_with_optimizer(from);
never@2118 2644 // Compute the number of elements to copy
never@2118 2645 Node* len = new (C, 3) SubINode(head->limit(), head->init_trip());
never@2118 2646 _igvn.register_new_node_with_optimizer(len);
never@2118 2647
never@2118 2648 BasicType t = store->as_Mem()->memory_type();
never@2118 2649 bool aligned = false;
never@2118 2650 if (offset != NULL && head->init_trip()->is_Con()) {
never@2118 2651 int element_size = type2aelembytes(t);
never@2118 2652 aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
never@2118 2653 }
never@2118 2654
never@2118 2655 // Build a call to the fill routine
never@2118 2656 const char* fill_name;
never@2118 2657 address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
never@2118 2658 assert(fill != NULL, "what?");
never@2118 2659
never@2118 2660 // Convert float/double to int/long for fill routines
never@2118 2661 if (t == T_FLOAT) {
never@2118 2662 store_value = new (C, 2) MoveF2INode(store_value);
never@2118 2663 _igvn.register_new_node_with_optimizer(store_value);
never@2118 2664 } else if (t == T_DOUBLE) {
never@2118 2665 store_value = new (C, 2) MoveD2LNode(store_value);
never@2118 2666 _igvn.register_new_node_with_optimizer(store_value);
never@2118 2667 }
never@2118 2668
never@2118 2669 Node* mem_phi = store->in(MemNode::Memory);
never@2118 2670 Node* result_ctrl;
never@2118 2671 Node* result_mem;
never@2118 2672 const TypeFunc* call_type = OptoRuntime::array_fill_Type();
never@2118 2673 int size = call_type->domain()->cnt();
never@2118 2674 CallLeafNode *call = new (C, size) CallLeafNoFPNode(call_type, fill,
never@2118 2675 fill_name, TypeAryPtr::get_array_body_type(t));
never@2118 2676 call->init_req(TypeFunc::Parms+0, from);
never@2118 2677 call->init_req(TypeFunc::Parms+1, store_value);
never@2199 2678 #ifdef _LP64
never@2199 2679 len = new (C, 2) ConvI2LNode(len);
never@2199 2680 _igvn.register_new_node_with_optimizer(len);
never@2199 2681 #endif
never@2118 2682 call->init_req(TypeFunc::Parms+2, len);
never@2199 2683 #ifdef _LP64
never@2199 2684 call->init_req(TypeFunc::Parms+3, C->top());
never@2199 2685 #endif
never@2118 2686 call->init_req( TypeFunc::Control, head->init_control());
never@2118 2687 call->init_req( TypeFunc::I_O , C->top() ) ; // does no i/o
never@2118 2688 call->init_req( TypeFunc::Memory , mem_phi->in(LoopNode::EntryControl) );
never@2118 2689 call->init_req( TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr) );
never@2118 2690 call->init_req( TypeFunc::FramePtr, C->start()->proj_out(TypeFunc::FramePtr) );
never@2118 2691 _igvn.register_new_node_with_optimizer(call);
never@2118 2692 result_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
never@2118 2693 _igvn.register_new_node_with_optimizer(result_ctrl);
never@2118 2694 result_mem = new (C, 1) ProjNode(call,TypeFunc::Memory);
never@2118 2695 _igvn.register_new_node_with_optimizer(result_mem);
never@2118 2696
never@2118 2697 // If this fill is tightly coupled to an allocation and overwrites
never@2118 2698 // the whole body, allow it to take over the zeroing.
never@2118 2699 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
never@2118 2700 if (alloc != NULL && alloc->is_AllocateArray()) {
never@2118 2701 Node* length = alloc->as_AllocateArray()->Ideal_length();
never@2118 2702 if (head->limit() == length &&
never@2118 2703 head->init_trip() == _igvn.intcon(0)) {
never@2118 2704 if (TraceOptimizeFill) {
never@2118 2705 tty->print_cr("Eliminated zeroing in allocation");
never@2118 2706 }
never@2118 2707 alloc->maybe_set_complete(&_igvn);
never@2118 2708 } else {
never@2118 2709 #ifdef ASSERT
never@2118 2710 if (TraceOptimizeFill) {
never@2118 2711 tty->print_cr("filling array but bounds don't match");
never@2118 2712 alloc->dump();
never@2118 2713 head->init_trip()->dump();
never@2118 2714 head->limit()->dump();
never@2118 2715 length->dump();
never@2118 2716 }
never@2118 2717 #endif
never@2118 2718 }
never@2118 2719 }
never@2118 2720
never@2118 2721 // Redirect the old control and memory edges that are outside the loop.
never@2118 2722 Node* exit = head->loopexit()->proj_out(0);
never@2168 2723 // Sometimes the memory phi of the head is used as the outgoing
never@2168 2724 // state of the loop. It's safe in this case to replace it with the
never@2168 2725 // result_mem.
never@2168 2726 _igvn.replace_node(store->in(MemNode::Memory), result_mem);
never@2118 2727 _igvn.replace_node(exit, result_ctrl);
never@2118 2728 _igvn.replace_node(store, result_mem);
never@2118 2729 // Any uses the increment outside of the loop become the loop limit.
never@2118 2730 _igvn.replace_node(head->incr(), head->limit());
never@2118 2731
never@2118 2732 // Disconnect the head from the loop.
never@2118 2733 for (uint i = 0; i < lpt->_body.size(); i++) {
never@2118 2734 Node* n = lpt->_body.at(i);
never@2118 2735 _igvn.replace_node(n, C->top());
never@2118 2736 }
never@2118 2737
never@2118 2738 return true;
never@2118 2739 }

mercurial