src/share/vm/opto/loopTransform.cpp

Thu, 07 Oct 2010 21:40:55 -0700

author
never
date
Thu, 07 Oct 2010 21:40:55 -0700
changeset 2199
75588558f1bf
parent 2168
c77e8f982901
child 2314
f95d63e2154a
permissions
-rw-r--r--

6980792: Crash "exception happened outside interpreter, nmethods and vtable stubs (1)"
Reviewed-by: kvn

duke@435 1 /*
trims@1907 2 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_loopTransform.cpp.incl"
duke@435 27
duke@435 28 //------------------------------is_loop_exit-----------------------------------
duke@435 29 // Given an IfNode, return the loop-exiting projection or NULL if both
duke@435 30 // arms remain in the loop.
duke@435 31 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
duke@435 32 if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
duke@435 33 PhaseIdealLoop *phase = _phase;
duke@435 34 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 35 // we need loop unswitching instead of peeling.
duke@435 36 if( !is_member(phase->get_loop( iff->raw_out(0) )) )
duke@435 37 return iff->raw_out(0);
duke@435 38 if( !is_member(phase->get_loop( iff->raw_out(1) )) )
duke@435 39 return iff->raw_out(1);
duke@435 40 return NULL;
duke@435 41 }
duke@435 42
duke@435 43
duke@435 44 //=============================================================================
duke@435 45
duke@435 46
duke@435 47 //------------------------------record_for_igvn----------------------------
duke@435 48 // Put loop body on igvn work list
duke@435 49 void IdealLoopTree::record_for_igvn() {
duke@435 50 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 51 Node *n = _body.at(i);
duke@435 52 _phase->_igvn._worklist.push(n);
duke@435 53 }
duke@435 54 }
duke@435 55
duke@435 56 //------------------------------compute_profile_trip_cnt----------------------------
duke@435 57 // Compute loop trip count from profile data as
duke@435 58 // (backedge_count + loop_exit_count) / loop_exit_count
duke@435 59 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
duke@435 60 if (!_head->is_CountedLoop()) {
duke@435 61 return;
duke@435 62 }
duke@435 63 CountedLoopNode* head = _head->as_CountedLoop();
duke@435 64 if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
duke@435 65 return; // Already computed
duke@435 66 }
duke@435 67 float trip_cnt = (float)max_jint; // default is big
duke@435 68
duke@435 69 Node* back = head->in(LoopNode::LoopBackControl);
duke@435 70 while (back != head) {
duke@435 71 if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
duke@435 72 back->in(0) &&
duke@435 73 back->in(0)->is_If() &&
duke@435 74 back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
duke@435 75 back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
duke@435 76 break;
duke@435 77 }
duke@435 78 back = phase->idom(back);
duke@435 79 }
duke@435 80 if (back != head) {
duke@435 81 assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
duke@435 82 back->in(0), "if-projection exists");
duke@435 83 IfNode* back_if = back->in(0)->as_If();
duke@435 84 float loop_back_cnt = back_if->_fcnt * back_if->_prob;
duke@435 85
duke@435 86 // Now compute a loop exit count
duke@435 87 float loop_exit_cnt = 0.0f;
duke@435 88 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 89 Node *n = _body[i];
duke@435 90 if( n->is_If() ) {
duke@435 91 IfNode *iff = n->as_If();
duke@435 92 if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
duke@435 93 Node *exit = is_loop_exit(iff);
duke@435 94 if( exit ) {
duke@435 95 float exit_prob = iff->_prob;
duke@435 96 if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
duke@435 97 if (exit_prob > PROB_MIN) {
duke@435 98 float exit_cnt = iff->_fcnt * exit_prob;
duke@435 99 loop_exit_cnt += exit_cnt;
duke@435 100 }
duke@435 101 }
duke@435 102 }
duke@435 103 }
duke@435 104 }
duke@435 105 if (loop_exit_cnt > 0.0f) {
duke@435 106 trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
duke@435 107 } else {
duke@435 108 // No exit count so use
duke@435 109 trip_cnt = loop_back_cnt;
duke@435 110 }
duke@435 111 }
duke@435 112 #ifndef PRODUCT
duke@435 113 if (TraceProfileTripCount) {
duke@435 114 tty->print_cr("compute_profile_trip_cnt lp: %d cnt: %f\n", head->_idx, trip_cnt);
duke@435 115 }
duke@435 116 #endif
duke@435 117 head->set_profile_trip_cnt(trip_cnt);
duke@435 118 }
duke@435 119
duke@435 120 //---------------------is_invariant_addition-----------------------------
duke@435 121 // Return nonzero index of invariant operand for an Add or Sub
twisti@1040 122 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
duke@435 123 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
duke@435 124 int op = n->Opcode();
duke@435 125 if (op == Op_AddI || op == Op_SubI) {
duke@435 126 bool in1_invar = this->is_invariant(n->in(1));
duke@435 127 bool in2_invar = this->is_invariant(n->in(2));
duke@435 128 if (in1_invar && !in2_invar) return 1;
duke@435 129 if (!in1_invar && in2_invar) return 2;
duke@435 130 }
duke@435 131 return 0;
duke@435 132 }
duke@435 133
duke@435 134 //---------------------reassociate_add_sub-----------------------------
duke@435 135 // Reassociate invariant add and subtract expressions:
duke@435 136 //
duke@435 137 // inv1 + (x + inv2) => ( inv1 + inv2) + x
duke@435 138 // (x + inv2) + inv1 => ( inv1 + inv2) + x
duke@435 139 // inv1 + (x - inv2) => ( inv1 - inv2) + x
duke@435 140 // inv1 - (inv2 - x) => ( inv1 - inv2) + x
duke@435 141 // (x + inv2) - inv1 => (-inv1 + inv2) + x
duke@435 142 // (x - inv2) + inv1 => ( inv1 - inv2) + x
duke@435 143 // (x - inv2) - inv1 => (-inv1 - inv2) + x
duke@435 144 // inv1 + (inv2 - x) => ( inv1 + inv2) - x
duke@435 145 // inv1 - (x - inv2) => ( inv1 + inv2) - x
duke@435 146 // (inv2 - x) + inv1 => ( inv1 + inv2) - x
duke@435 147 // (inv2 - x) - inv1 => (-inv1 + inv2) - x
duke@435 148 // inv1 - (x + inv2) => ( inv1 - inv2) - x
duke@435 149 //
duke@435 150 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
duke@435 151 if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
duke@435 152 if (is_invariant(n1)) return NULL;
duke@435 153 int inv1_idx = is_invariant_addition(n1, phase);
duke@435 154 if (!inv1_idx) return NULL;
duke@435 155 // Don't mess with add of constant (igvn moves them to expression tree root.)
duke@435 156 if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
duke@435 157 Node* inv1 = n1->in(inv1_idx);
duke@435 158 Node* n2 = n1->in(3 - inv1_idx);
duke@435 159 int inv2_idx = is_invariant_addition(n2, phase);
duke@435 160 if (!inv2_idx) return NULL;
duke@435 161 Node* x = n2->in(3 - inv2_idx);
duke@435 162 Node* inv2 = n2->in(inv2_idx);
duke@435 163
duke@435 164 bool neg_x = n2->is_Sub() && inv2_idx == 1;
duke@435 165 bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
duke@435 166 bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
duke@435 167 if (n1->is_Sub() && inv1_idx == 1) {
duke@435 168 neg_x = !neg_x;
duke@435 169 neg_inv2 = !neg_inv2;
duke@435 170 }
duke@435 171 Node* inv1_c = phase->get_ctrl(inv1);
duke@435 172 Node* inv2_c = phase->get_ctrl(inv2);
duke@435 173 Node* n_inv1;
duke@435 174 if (neg_inv1) {
duke@435 175 Node *zero = phase->_igvn.intcon(0);
duke@435 176 phase->set_ctrl(zero, phase->C->root());
duke@435 177 n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
duke@435 178 phase->register_new_node(n_inv1, inv1_c);
duke@435 179 } else {
duke@435 180 n_inv1 = inv1;
duke@435 181 }
duke@435 182 Node* inv;
duke@435 183 if (neg_inv2) {
duke@435 184 inv = new (phase->C, 3) SubINode(n_inv1, inv2);
duke@435 185 } else {
duke@435 186 inv = new (phase->C, 3) AddINode(n_inv1, inv2);
duke@435 187 }
duke@435 188 phase->register_new_node(inv, phase->get_early_ctrl(inv));
duke@435 189
duke@435 190 Node* addx;
duke@435 191 if (neg_x) {
duke@435 192 addx = new (phase->C, 3) SubINode(inv, x);
duke@435 193 } else {
duke@435 194 addx = new (phase->C, 3) AddINode(x, inv);
duke@435 195 }
duke@435 196 phase->register_new_node(addx, phase->get_ctrl(x));
kvn@1976 197 phase->_igvn.replace_node(n1, addx);
duke@435 198 return addx;
duke@435 199 }
duke@435 200
duke@435 201 //---------------------reassociate_invariants-----------------------------
duke@435 202 // Reassociate invariant expressions:
duke@435 203 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
duke@435 204 for (int i = _body.size() - 1; i >= 0; i--) {
duke@435 205 Node *n = _body.at(i);
duke@435 206 for (int j = 0; j < 5; j++) {
duke@435 207 Node* nn = reassociate_add_sub(n, phase);
duke@435 208 if (nn == NULL) break;
duke@435 209 n = nn; // again
duke@435 210 };
duke@435 211 }
duke@435 212 }
duke@435 213
duke@435 214 //------------------------------policy_peeling---------------------------------
duke@435 215 // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
duke@435 216 // make some loop-invariant test (usually a null-check) happen before the loop.
duke@435 217 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
duke@435 218 Node *test = ((IdealLoopTree*)this)->tail();
duke@435 219 int body_size = ((IdealLoopTree*)this)->_body.size();
duke@435 220 int uniq = phase->C->unique();
duke@435 221 // Peeling does loop cloning which can result in O(N^2) node construction
duke@435 222 if( body_size > 255 /* Prevent overflow for large body_size */
duke@435 223 || (body_size * body_size + uniq > MaxNodeLimit) ) {
duke@435 224 return false; // too large to safely clone
duke@435 225 }
duke@435 226 while( test != _head ) { // Scan till run off top of loop
duke@435 227 if( test->is_If() ) { // Test?
duke@435 228 Node *ctrl = phase->get_ctrl(test->in(1));
duke@435 229 if (ctrl->is_top())
duke@435 230 return false; // Found dead test on live IF? No peeling!
duke@435 231 // Standard IF only has one input value to check for loop invariance
duke@435 232 assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
duke@435 233 // Condition is not a member of this loop?
duke@435 234 if( !is_member(phase->get_loop(ctrl)) &&
duke@435 235 is_loop_exit(test) )
duke@435 236 return true; // Found reason to peel!
duke@435 237 }
duke@435 238 // Walk up dominators to loop _head looking for test which is
duke@435 239 // executed on every path thru loop.
duke@435 240 test = phase->idom(test);
duke@435 241 }
duke@435 242 return false;
duke@435 243 }
duke@435 244
duke@435 245 //------------------------------peeled_dom_test_elim---------------------------
duke@435 246 // If we got the effect of peeling, either by actually peeling or by making
duke@435 247 // a pre-loop which must execute at least once, we can remove all
duke@435 248 // loop-invariant dominated tests in the main body.
duke@435 249 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 250 bool progress = true;
duke@435 251 while( progress ) {
duke@435 252 progress = false; // Reset for next iteration
duke@435 253 Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
duke@435 254 Node *test = prev->in(0);
duke@435 255 while( test != loop->_head ) { // Scan till run off top of loop
duke@435 256
duke@435 257 int p_op = prev->Opcode();
duke@435 258 if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
duke@435 259 test->is_If() && // Test?
duke@435 260 !test->in(1)->is_Con() && // And not already obvious?
duke@435 261 // Condition is not a member of this loop?
duke@435 262 !loop->is_member(get_loop(get_ctrl(test->in(1))))){
duke@435 263 // Walk loop body looking for instances of this test
duke@435 264 for( uint i = 0; i < loop->_body.size(); i++ ) {
duke@435 265 Node *n = loop->_body.at(i);
duke@435 266 if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
duke@435 267 // IfNode was dominated by version in peeled loop body
duke@435 268 progress = true;
duke@435 269 dominated_by( old_new[prev->_idx], n );
duke@435 270 }
duke@435 271 }
duke@435 272 }
duke@435 273 prev = test;
duke@435 274 test = idom(test);
duke@435 275 } // End of scan tests in loop
duke@435 276
duke@435 277 } // End of while( progress )
duke@435 278 }
duke@435 279
duke@435 280 //------------------------------do_peeling-------------------------------------
duke@435 281 // Peel the first iteration of the given loop.
duke@435 282 // Step 1: Clone the loop body. The clone becomes the peeled iteration.
duke@435 283 // The pre-loop illegally has 2 control users (old & new loops).
duke@435 284 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
duke@435 285 // Do this by making the old-loop fall-in edges act as if they came
duke@435 286 // around the loopback from the prior iteration (follow the old-loop
duke@435 287 // backedges) and then map to the new peeled iteration. This leaves
duke@435 288 // the pre-loop with only 1 user (the new peeled iteration), but the
duke@435 289 // peeled-loop backedge has 2 users.
duke@435 290 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
duke@435 291 // extra backedge user.
duke@435 292 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 293
duke@435 294 C->set_major_progress();
duke@435 295 // Peeling a 'main' loop in a pre/main/post situation obfuscates the
duke@435 296 // 'pre' loop from the main and the 'pre' can no longer have it's
duke@435 297 // iterations adjusted. Therefore, we need to declare this loop as
duke@435 298 // no longer a 'main' loop; it will need new pre and post loops before
duke@435 299 // we can do further RCE.
duke@435 300 Node *h = loop->_head;
duke@435 301 if( h->is_CountedLoop() ) {
duke@435 302 CountedLoopNode *cl = h->as_CountedLoop();
duke@435 303 assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
duke@435 304 cl->set_trip_count(cl->trip_count() - 1);
duke@435 305 if( cl->is_main_loop() ) {
duke@435 306 cl->set_normal_loop();
duke@435 307 #ifndef PRODUCT
duke@435 308 if( PrintOpto && VerifyLoopOptimizations ) {
duke@435 309 tty->print("Peeling a 'main' loop; resetting to 'normal' ");
duke@435 310 loop->dump_head();
duke@435 311 }
duke@435 312 #endif
duke@435 313 }
duke@435 314 }
duke@435 315
duke@435 316 // Step 1: Clone the loop body. The clone becomes the peeled iteration.
duke@435 317 // The pre-loop illegally has 2 control users (old & new loops).
duke@435 318 clone_loop( loop, old_new, dom_depth(loop->_head) );
duke@435 319
duke@435 320
duke@435 321 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
duke@435 322 // Do this by making the old-loop fall-in edges act as if they came
duke@435 323 // around the loopback from the prior iteration (follow the old-loop
duke@435 324 // backedges) and then map to the new peeled iteration. This leaves
duke@435 325 // the pre-loop with only 1 user (the new peeled iteration), but the
duke@435 326 // peeled-loop backedge has 2 users.
duke@435 327 for (DUIterator_Fast jmax, j = loop->_head->fast_outs(jmax); j < jmax; j++) {
duke@435 328 Node* old = loop->_head->fast_out(j);
duke@435 329 if( old->in(0) == loop->_head && old->req() == 3 &&
duke@435 330 (old->is_Loop() || old->is_Phi()) ) {
duke@435 331 Node *new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
duke@435 332 if( !new_exit_value ) // Backedge value is ALSO loop invariant?
duke@435 333 // Then loop body backedge value remains the same.
duke@435 334 new_exit_value = old->in(LoopNode::LoopBackControl);
duke@435 335 _igvn.hash_delete(old);
duke@435 336 old->set_req(LoopNode::EntryControl, new_exit_value);
duke@435 337 }
duke@435 338 }
duke@435 339
duke@435 340
duke@435 341 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
duke@435 342 // extra backedge user.
duke@435 343 Node *nnn = old_new[loop->_head->_idx];
duke@435 344 _igvn.hash_delete(nnn);
duke@435 345 nnn->set_req(LoopNode::LoopBackControl, C->top());
duke@435 346 for (DUIterator_Fast j2max, j2 = nnn->fast_outs(j2max); j2 < j2max; j2++) {
duke@435 347 Node* use = nnn->fast_out(j2);
duke@435 348 if( use->in(0) == nnn && use->req() == 3 && use->is_Phi() ) {
duke@435 349 _igvn.hash_delete(use);
duke@435 350 use->set_req(LoopNode::LoopBackControl, C->top());
duke@435 351 }
duke@435 352 }
duke@435 353
duke@435 354
duke@435 355 // Step 4: Correct dom-depth info. Set to loop-head depth.
duke@435 356 int dd = dom_depth(loop->_head);
duke@435 357 set_idom(loop->_head, loop->_head->in(1), dd);
duke@435 358 for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
duke@435 359 Node *old = loop->_body.at(j3);
duke@435 360 Node *nnn = old_new[old->_idx];
duke@435 361 if (!has_ctrl(nnn))
duke@435 362 set_idom(nnn, idom(nnn), dd-1);
duke@435 363 // While we're at it, remove any SafePoints from the peeled code
duke@435 364 if( old->Opcode() == Op_SafePoint ) {
duke@435 365 Node *nnn = old_new[old->_idx];
duke@435 366 lazy_replace(nnn,nnn->in(TypeFunc::Control));
duke@435 367 }
duke@435 368 }
duke@435 369
duke@435 370 // Now force out all loop-invariant dominating tests. The optimizer
duke@435 371 // finds some, but we _know_ they are all useless.
duke@435 372 peeled_dom_test_elim(loop,old_new);
duke@435 373
duke@435 374 loop->record_for_igvn();
duke@435 375 }
duke@435 376
duke@435 377 //------------------------------policy_maximally_unroll------------------------
duke@435 378 // Return exact loop trip count, or 0 if not maximally unrolling
duke@435 379 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
duke@435 380 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 381 assert( cl->is_normal_loop(), "" );
duke@435 382
duke@435 383 Node *init_n = cl->init_trip();
duke@435 384 Node *limit_n = cl->limit();
duke@435 385
duke@435 386 // Non-constant bounds
duke@435 387 if( init_n == NULL || !init_n->is_Con() ||
duke@435 388 limit_n == NULL || !limit_n->is_Con() ||
duke@435 389 // protect against stride not being a constant
duke@435 390 !cl->stride_is_con() ) {
duke@435 391 return false;
duke@435 392 }
duke@435 393 int init = init_n->get_int();
duke@435 394 int limit = limit_n->get_int();
duke@435 395 int span = limit - init;
duke@435 396 int stride = cl->stride_con();
duke@435 397
duke@435 398 if (init >= limit || stride > span) {
duke@435 399 // return a false (no maximally unroll) and the regular unroll/peel
duke@435 400 // route will make a small mess which CCP will fold away.
duke@435 401 return false;
duke@435 402 }
duke@435 403 uint trip_count = span/stride; // trip_count can be greater than 2 Gig.
duke@435 404 assert( (int)trip_count*stride == span, "must divide evenly" );
duke@435 405
duke@435 406 // Real policy: if we maximally unroll, does it get too big?
duke@435 407 // Allow the unrolled mess to get larger than standard loop
duke@435 408 // size. After all, it will no longer be a loop.
duke@435 409 uint body_size = _body.size();
duke@435 410 uint unroll_limit = (uint)LoopUnrollLimit * 4;
duke@435 411 assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
duke@435 412 cl->set_trip_count(trip_count);
duke@435 413 if( trip_count <= unroll_limit && body_size <= unroll_limit ) {
duke@435 414 uint new_body_size = body_size * trip_count;
duke@435 415 if (new_body_size <= unroll_limit &&
duke@435 416 body_size == new_body_size / trip_count &&
duke@435 417 // Unrolling can result in a large amount of node construction
duke@435 418 new_body_size < MaxNodeLimit - phase->C->unique()) {
duke@435 419 return true; // maximally unroll
duke@435 420 }
duke@435 421 }
duke@435 422
duke@435 423 return false; // Do not maximally unroll
duke@435 424 }
duke@435 425
duke@435 426
duke@435 427 //------------------------------policy_unroll----------------------------------
duke@435 428 // Return TRUE or FALSE if the loop should be unrolled or not. Unroll if
duke@435 429 // the loop is a CountedLoop and the body is small enough.
duke@435 430 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
duke@435 431
duke@435 432 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 433 assert( cl->is_normal_loop() || cl->is_main_loop(), "" );
duke@435 434
duke@435 435 // protect against stride not being a constant
duke@435 436 if( !cl->stride_is_con() ) return false;
duke@435 437
duke@435 438 // protect against over-unrolling
duke@435 439 if( cl->trip_count() <= 1 ) return false;
duke@435 440
duke@435 441 int future_unroll_ct = cl->unrolled_count() * 2;
duke@435 442
duke@435 443 // Don't unroll if the next round of unrolling would push us
duke@435 444 // over the expected trip count of the loop. One is subtracted
duke@435 445 // from the expected trip count because the pre-loop normally
duke@435 446 // executes 1 iteration.
duke@435 447 if (UnrollLimitForProfileCheck > 0 &&
duke@435 448 cl->profile_trip_cnt() != COUNT_UNKNOWN &&
duke@435 449 future_unroll_ct > UnrollLimitForProfileCheck &&
duke@435 450 (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
duke@435 451 return false;
duke@435 452 }
duke@435 453
duke@435 454 // When unroll count is greater than LoopUnrollMin, don't unroll if:
duke@435 455 // the residual iterations are more than 10% of the trip count
duke@435 456 // and rounds of "unroll,optimize" are not making significant progress
duke@435 457 // Progress defined as current size less than 20% larger than previous size.
duke@435 458 if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
duke@435 459 future_unroll_ct > LoopUnrollMin &&
duke@435 460 (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
duke@435 461 1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
duke@435 462 return false;
duke@435 463 }
duke@435 464
duke@435 465 Node *init_n = cl->init_trip();
duke@435 466 Node *limit_n = cl->limit();
duke@435 467 // Non-constant bounds.
duke@435 468 // Protect against over-unrolling when init or/and limit are not constant
duke@435 469 // (so that trip_count's init value is maxint) but iv range is known.
duke@435 470 if( init_n == NULL || !init_n->is_Con() ||
duke@435 471 limit_n == NULL || !limit_n->is_Con() ) {
duke@435 472 Node* phi = cl->phi();
duke@435 473 if( phi != NULL ) {
duke@435 474 assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
duke@435 475 const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
duke@435 476 int next_stride = cl->stride_con() * 2; // stride after this unroll
duke@435 477 if( next_stride > 0 ) {
duke@435 478 if( iv_type->_lo + next_stride <= iv_type->_lo || // overflow
duke@435 479 iv_type->_lo + next_stride > iv_type->_hi ) {
duke@435 480 return false; // over-unrolling
duke@435 481 }
duke@435 482 } else if( next_stride < 0 ) {
duke@435 483 if( iv_type->_hi + next_stride >= iv_type->_hi || // overflow
duke@435 484 iv_type->_hi + next_stride < iv_type->_lo ) {
duke@435 485 return false; // over-unrolling
duke@435 486 }
duke@435 487 }
duke@435 488 }
duke@435 489 }
duke@435 490
duke@435 491 // Adjust body_size to determine if we unroll or not
duke@435 492 uint body_size = _body.size();
duke@435 493 // Key test to unroll CaffeineMark's Logic test
duke@435 494 int xors_in_loop = 0;
duke@435 495 // Also count ModL, DivL and MulL which expand mightly
duke@435 496 for( uint k = 0; k < _body.size(); k++ ) {
duke@435 497 switch( _body.at(k)->Opcode() ) {
duke@435 498 case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
duke@435 499 case Op_ModL: body_size += 30; break;
duke@435 500 case Op_DivL: body_size += 30; break;
duke@435 501 case Op_MulL: body_size += 10; break;
duke@435 502 }
duke@435 503 }
duke@435 504
duke@435 505 // Check for being too big
duke@435 506 if( body_size > (uint)LoopUnrollLimit ) {
duke@435 507 if( xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
duke@435 508 // Normal case: loop too big
duke@435 509 return false;
duke@435 510 }
duke@435 511
duke@435 512 // Check for stride being a small enough constant
duke@435 513 if( abs(cl->stride_con()) > (1<<3) ) return false;
duke@435 514
duke@435 515 // Unroll once! (Each trip will soon do double iterations)
duke@435 516 return true;
duke@435 517 }
duke@435 518
duke@435 519 //------------------------------policy_align-----------------------------------
duke@435 520 // Return TRUE or FALSE if the loop should be cache-line aligned. Gather the
duke@435 521 // expression that does the alignment. Note that only one array base can be
twisti@1040 522 // aligned in a loop (unless the VM guarantees mutual alignment). Note that
duke@435 523 // if we vectorize short memory ops into longer memory ops, we may want to
duke@435 524 // increase alignment.
duke@435 525 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
duke@435 526 return false;
duke@435 527 }
duke@435 528
duke@435 529 //------------------------------policy_range_check-----------------------------
duke@435 530 // Return TRUE or FALSE if the loop should be range-check-eliminated.
duke@435 531 // Actually we do iteration-splitting, a more powerful form of RCE.
duke@435 532 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
duke@435 533 if( !RangeCheckElimination ) return false;
duke@435 534
duke@435 535 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 536 // If we unrolled with no intention of doing RCE and we later
duke@435 537 // changed our minds, we got no pre-loop. Either we need to
duke@435 538 // make a new pre-loop, or we gotta disallow RCE.
duke@435 539 if( cl->is_main_no_pre_loop() ) return false; // Disallowed for now.
duke@435 540 Node *trip_counter = cl->phi();
duke@435 541
duke@435 542 // Check loop body for tests of trip-counter plus loop-invariant vs
duke@435 543 // loop-invariant.
duke@435 544 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 545 Node *iff = _body[i];
duke@435 546 if( iff->Opcode() == Op_If ) { // Test?
duke@435 547
duke@435 548 // Comparing trip+off vs limit
duke@435 549 Node *bol = iff->in(1);
duke@435 550 if( bol->req() != 2 ) continue; // dead constant test
cfang@1607 551 if (!bol->is_Bool()) {
cfang@1607 552 assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
cfang@1607 553 continue;
cfang@1607 554 }
duke@435 555 Node *cmp = bol->in(1);
duke@435 556
duke@435 557 Node *rc_exp = cmp->in(1);
duke@435 558 Node *limit = cmp->in(2);
duke@435 559
duke@435 560 Node *limit_c = phase->get_ctrl(limit);
duke@435 561 if( limit_c == phase->C->top() )
duke@435 562 return false; // Found dead test on live IF? No RCE!
duke@435 563 if( is_member(phase->get_loop(limit_c) ) ) {
duke@435 564 // Compare might have operands swapped; commute them
duke@435 565 rc_exp = cmp->in(2);
duke@435 566 limit = cmp->in(1);
duke@435 567 limit_c = phase->get_ctrl(limit);
duke@435 568 if( is_member(phase->get_loop(limit_c) ) )
duke@435 569 continue; // Both inputs are loop varying; cannot RCE
duke@435 570 }
duke@435 571
duke@435 572 if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
duke@435 573 continue;
duke@435 574 }
duke@435 575 // Yeah! Found a test like 'trip+off vs limit'
duke@435 576 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 577 // we need loop unswitching instead of iteration splitting.
duke@435 578 if( is_loop_exit(iff) )
duke@435 579 return true; // Found reason to split iterations
duke@435 580 } // End of is IF
duke@435 581 }
duke@435 582
duke@435 583 return false;
duke@435 584 }
duke@435 585
duke@435 586 //------------------------------policy_peel_only-------------------------------
duke@435 587 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned. Useful
duke@435 588 // for unrolling loops with NO array accesses.
duke@435 589 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
duke@435 590
duke@435 591 for( uint i = 0; i < _body.size(); i++ )
duke@435 592 if( _body[i]->is_Mem() )
duke@435 593 return false;
duke@435 594
duke@435 595 // No memory accesses at all!
duke@435 596 return true;
duke@435 597 }
duke@435 598
duke@435 599 //------------------------------clone_up_backedge_goo--------------------------
duke@435 600 // If Node n lives in the back_ctrl block and cannot float, we clone a private
duke@435 601 // version of n in preheader_ctrl block and return that, otherwise return n.
duke@435 602 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
duke@435 603 if( get_ctrl(n) != back_ctrl ) return n;
duke@435 604
duke@435 605 Node *x = NULL; // If required, a clone of 'n'
duke@435 606 // Check for 'n' being pinned in the backedge.
duke@435 607 if( n->in(0) && n->in(0) == back_ctrl ) {
duke@435 608 x = n->clone(); // Clone a copy of 'n' to preheader
duke@435 609 x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
duke@435 610 }
duke@435 611
duke@435 612 // Recursive fixup any other input edges into x.
duke@435 613 // If there are no changes we can just return 'n', otherwise
duke@435 614 // we need to clone a private copy and change it.
duke@435 615 for( uint i = 1; i < n->req(); i++ ) {
duke@435 616 Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
duke@435 617 if( g != n->in(i) ) {
duke@435 618 if( !x )
duke@435 619 x = n->clone();
duke@435 620 x->set_req(i, g);
duke@435 621 }
duke@435 622 }
duke@435 623 if( x ) { // x can legally float to pre-header location
duke@435 624 register_new_node( x, preheader_ctrl );
duke@435 625 return x;
duke@435 626 } else { // raise n to cover LCA of uses
duke@435 627 set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
duke@435 628 }
duke@435 629 return n;
duke@435 630 }
duke@435 631
duke@435 632 //------------------------------insert_pre_post_loops--------------------------
duke@435 633 // Insert pre and post loops. If peel_only is set, the pre-loop can not have
duke@435 634 // more iterations added. It acts as a 'peel' only, no lower-bound RCE, no
duke@435 635 // alignment. Useful to unroll loops that do no array accesses.
duke@435 636 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
duke@435 637
duke@435 638 C->set_major_progress();
duke@435 639
duke@435 640 // Find common pieces of the loop being guarded with pre & post loops
duke@435 641 CountedLoopNode *main_head = loop->_head->as_CountedLoop();
duke@435 642 assert( main_head->is_normal_loop(), "" );
duke@435 643 CountedLoopEndNode *main_end = main_head->loopexit();
duke@435 644 assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
duke@435 645 uint dd_main_head = dom_depth(main_head);
duke@435 646 uint max = main_head->outcnt();
duke@435 647
duke@435 648 Node *pre_header= main_head->in(LoopNode::EntryControl);
duke@435 649 Node *init = main_head->init_trip();
duke@435 650 Node *incr = main_end ->incr();
duke@435 651 Node *limit = main_end ->limit();
duke@435 652 Node *stride = main_end ->stride();
duke@435 653 Node *cmp = main_end ->cmp_node();
duke@435 654 BoolTest::mask b_test = main_end->test_trip();
duke@435 655
duke@435 656 // Need only 1 user of 'bol' because I will be hacking the loop bounds.
duke@435 657 Node *bol = main_end->in(CountedLoopEndNode::TestValue);
duke@435 658 if( bol->outcnt() != 1 ) {
duke@435 659 bol = bol->clone();
duke@435 660 register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
duke@435 661 _igvn.hash_delete(main_end);
duke@435 662 main_end->set_req(CountedLoopEndNode::TestValue, bol);
duke@435 663 }
duke@435 664 // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
duke@435 665 if( cmp->outcnt() != 1 ) {
duke@435 666 cmp = cmp->clone();
duke@435 667 register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
duke@435 668 _igvn.hash_delete(bol);
duke@435 669 bol->set_req(1, cmp);
duke@435 670 }
duke@435 671
duke@435 672 //------------------------------
duke@435 673 // Step A: Create Post-Loop.
duke@435 674 Node* main_exit = main_end->proj_out(false);
duke@435 675 assert( main_exit->Opcode() == Op_IfFalse, "" );
duke@435 676 int dd_main_exit = dom_depth(main_exit);
duke@435 677
duke@435 678 // Step A1: Clone the loop body. The clone becomes the post-loop. The main
duke@435 679 // loop pre-header illegally has 2 control users (old & new loops).
duke@435 680 clone_loop( loop, old_new, dd_main_exit );
duke@435 681 assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
duke@435 682 CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
duke@435 683 post_head->set_post_loop(main_head);
duke@435 684
kvn@835 685 // Reduce the post-loop trip count.
kvn@835 686 CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
kvn@835 687 post_end->_prob = PROB_FAIR;
kvn@835 688
duke@435 689 // Build the main-loop normal exit.
duke@435 690 IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
duke@435 691 _igvn.register_new_node_with_optimizer( new_main_exit );
duke@435 692 set_idom(new_main_exit, main_end, dd_main_exit );
duke@435 693 set_loop(new_main_exit, loop->_parent);
duke@435 694
duke@435 695 // Step A2: Build a zero-trip guard for the post-loop. After leaving the
duke@435 696 // main-loop, the post-loop may not execute at all. We 'opaque' the incr
duke@435 697 // (the main-loop trip-counter exit value) because we will be changing
duke@435 698 // the exit value (via unrolling) so we cannot constant-fold away the zero
duke@435 699 // trip guard until all unrolling is done.
kvn@651 700 Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
duke@435 701 Node *zer_cmp = new (C, 3) CmpINode( zer_opaq, limit );
duke@435 702 Node *zer_bol = new (C, 2) BoolNode( zer_cmp, b_test );
duke@435 703 register_new_node( zer_opaq, new_main_exit );
duke@435 704 register_new_node( zer_cmp , new_main_exit );
duke@435 705 register_new_node( zer_bol , new_main_exit );
duke@435 706
duke@435 707 // Build the IfNode
duke@435 708 IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
duke@435 709 _igvn.register_new_node_with_optimizer( zer_iff );
duke@435 710 set_idom(zer_iff, new_main_exit, dd_main_exit);
duke@435 711 set_loop(zer_iff, loop->_parent);
duke@435 712
duke@435 713 // Plug in the false-path, taken if we need to skip post-loop
duke@435 714 _igvn.hash_delete( main_exit );
duke@435 715 main_exit->set_req(0, zer_iff);
duke@435 716 _igvn._worklist.push(main_exit);
duke@435 717 set_idom(main_exit, zer_iff, dd_main_exit);
duke@435 718 set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
duke@435 719 // Make the true-path, must enter the post loop
duke@435 720 Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
duke@435 721 _igvn.register_new_node_with_optimizer( zer_taken );
duke@435 722 set_idom(zer_taken, zer_iff, dd_main_exit);
duke@435 723 set_loop(zer_taken, loop->_parent);
duke@435 724 // Plug in the true path
duke@435 725 _igvn.hash_delete( post_head );
duke@435 726 post_head->set_req(LoopNode::EntryControl, zer_taken);
duke@435 727 set_idom(post_head, zer_taken, dd_main_exit);
duke@435 728
duke@435 729 // Step A3: Make the fall-in values to the post-loop come from the
duke@435 730 // fall-out values of the main-loop.
duke@435 731 for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
duke@435 732 Node* main_phi = main_head->fast_out(i);
duke@435 733 if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
duke@435 734 Node *post_phi = old_new[main_phi->_idx];
duke@435 735 Node *fallmain = clone_up_backedge_goo(main_head->back_control(),
duke@435 736 post_head->init_control(),
duke@435 737 main_phi->in(LoopNode::LoopBackControl));
duke@435 738 _igvn.hash_delete(post_phi);
duke@435 739 post_phi->set_req( LoopNode::EntryControl, fallmain );
duke@435 740 }
duke@435 741 }
duke@435 742
duke@435 743 // Update local caches for next stanza
duke@435 744 main_exit = new_main_exit;
duke@435 745
duke@435 746
duke@435 747 //------------------------------
duke@435 748 // Step B: Create Pre-Loop.
duke@435 749
duke@435 750 // Step B1: Clone the loop body. The clone becomes the pre-loop. The main
duke@435 751 // loop pre-header illegally has 2 control users (old & new loops).
duke@435 752 clone_loop( loop, old_new, dd_main_head );
duke@435 753 CountedLoopNode* pre_head = old_new[main_head->_idx]->as_CountedLoop();
duke@435 754 CountedLoopEndNode* pre_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
duke@435 755 pre_head->set_pre_loop(main_head);
duke@435 756 Node *pre_incr = old_new[incr->_idx];
duke@435 757
kvn@835 758 // Reduce the pre-loop trip count.
kvn@835 759 pre_end->_prob = PROB_FAIR;
kvn@835 760
duke@435 761 // Find the pre-loop normal exit.
duke@435 762 Node* pre_exit = pre_end->proj_out(false);
duke@435 763 assert( pre_exit->Opcode() == Op_IfFalse, "" );
duke@435 764 IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
duke@435 765 _igvn.register_new_node_with_optimizer( new_pre_exit );
duke@435 766 set_idom(new_pre_exit, pre_end, dd_main_head);
duke@435 767 set_loop(new_pre_exit, loop->_parent);
duke@435 768
duke@435 769 // Step B2: Build a zero-trip guard for the main-loop. After leaving the
duke@435 770 // pre-loop, the main-loop may not execute at all. Later in life this
duke@435 771 // zero-trip guard will become the minimum-trip guard when we unroll
duke@435 772 // the main-loop.
kvn@651 773 Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
duke@435 774 Node *min_cmp = new (C, 3) CmpINode( pre_incr, min_opaq );
duke@435 775 Node *min_bol = new (C, 2) BoolNode( min_cmp, b_test );
duke@435 776 register_new_node( min_opaq, new_pre_exit );
duke@435 777 register_new_node( min_cmp , new_pre_exit );
duke@435 778 register_new_node( min_bol , new_pre_exit );
duke@435 779
kvn@835 780 // Build the IfNode (assume the main-loop is executed always).
kvn@835 781 IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
duke@435 782 _igvn.register_new_node_with_optimizer( min_iff );
duke@435 783 set_idom(min_iff, new_pre_exit, dd_main_head);
duke@435 784 set_loop(min_iff, loop->_parent);
duke@435 785
duke@435 786 // Plug in the false-path, taken if we need to skip main-loop
duke@435 787 _igvn.hash_delete( pre_exit );
duke@435 788 pre_exit->set_req(0, min_iff);
duke@435 789 set_idom(pre_exit, min_iff, dd_main_head);
duke@435 790 set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
duke@435 791 // Make the true-path, must enter the main loop
duke@435 792 Node *min_taken = new (C, 1) IfTrueNode( min_iff );
duke@435 793 _igvn.register_new_node_with_optimizer( min_taken );
duke@435 794 set_idom(min_taken, min_iff, dd_main_head);
duke@435 795 set_loop(min_taken, loop->_parent);
duke@435 796 // Plug in the true path
duke@435 797 _igvn.hash_delete( main_head );
duke@435 798 main_head->set_req(LoopNode::EntryControl, min_taken);
duke@435 799 set_idom(main_head, min_taken, dd_main_head);
duke@435 800
duke@435 801 // Step B3: Make the fall-in values to the main-loop come from the
duke@435 802 // fall-out values of the pre-loop.
duke@435 803 for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
duke@435 804 Node* main_phi = main_head->fast_out(i2);
duke@435 805 if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
duke@435 806 Node *pre_phi = old_new[main_phi->_idx];
duke@435 807 Node *fallpre = clone_up_backedge_goo(pre_head->back_control(),
duke@435 808 main_head->init_control(),
duke@435 809 pre_phi->in(LoopNode::LoopBackControl));
duke@435 810 _igvn.hash_delete(main_phi);
duke@435 811 main_phi->set_req( LoopNode::EntryControl, fallpre );
duke@435 812 }
duke@435 813 }
duke@435 814
duke@435 815 // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
duke@435 816 // RCE and alignment may change this later.
duke@435 817 Node *cmp_end = pre_end->cmp_node();
duke@435 818 assert( cmp_end->in(2) == limit, "" );
duke@435 819 Node *pre_limit = new (C, 3) AddINode( init, stride );
duke@435 820
duke@435 821 // Save the original loop limit in this Opaque1 node for
duke@435 822 // use by range check elimination.
kvn@651 823 Node *pre_opaq = new (C, 3) Opaque1Node(C, pre_limit, limit);
duke@435 824
duke@435 825 register_new_node( pre_limit, pre_head->in(0) );
duke@435 826 register_new_node( pre_opaq , pre_head->in(0) );
duke@435 827
duke@435 828 // Since no other users of pre-loop compare, I can hack limit directly
duke@435 829 assert( cmp_end->outcnt() == 1, "no other users" );
duke@435 830 _igvn.hash_delete(cmp_end);
duke@435 831 cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
duke@435 832
duke@435 833 // Special case for not-equal loop bounds:
duke@435 834 // Change pre loop test, main loop test, and the
duke@435 835 // main loop guard test to use lt or gt depending on stride
duke@435 836 // direction:
duke@435 837 // positive stride use <
duke@435 838 // negative stride use >
duke@435 839
duke@435 840 if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
duke@435 841
duke@435 842 BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
duke@435 843 // Modify pre loop end condition
duke@435 844 Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
duke@435 845 BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
duke@435 846 register_new_node( new_bol0, pre_head->in(0) );
duke@435 847 _igvn.hash_delete(pre_end);
duke@435 848 pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
duke@435 849 // Modify main loop guard condition
duke@435 850 assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
duke@435 851 BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
duke@435 852 register_new_node( new_bol1, new_pre_exit );
duke@435 853 _igvn.hash_delete(min_iff);
duke@435 854 min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
duke@435 855 // Modify main loop end condition
duke@435 856 BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
duke@435 857 BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
duke@435 858 register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
duke@435 859 _igvn.hash_delete(main_end);
duke@435 860 main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
duke@435 861 }
duke@435 862
duke@435 863 // Flag main loop
duke@435 864 main_head->set_main_loop();
duke@435 865 if( peel_only ) main_head->set_main_no_pre_loop();
duke@435 866
duke@435 867 // It's difficult to be precise about the trip-counts
duke@435 868 // for the pre/post loops. They are usually very short,
duke@435 869 // so guess that 4 trips is a reasonable value.
duke@435 870 post_head->set_profile_trip_cnt(4.0);
duke@435 871 pre_head->set_profile_trip_cnt(4.0);
duke@435 872
duke@435 873 // Now force out all loop-invariant dominating tests. The optimizer
duke@435 874 // finds some, but we _know_ they are all useless.
duke@435 875 peeled_dom_test_elim(loop,old_new);
duke@435 876 }
duke@435 877
duke@435 878 //------------------------------is_invariant-----------------------------
duke@435 879 // Return true if n is invariant
duke@435 880 bool IdealLoopTree::is_invariant(Node* n) const {
cfang@1607 881 Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
duke@435 882 if (n_c->is_top()) return false;
duke@435 883 return !is_member(_phase->get_loop(n_c));
duke@435 884 }
duke@435 885
duke@435 886
duke@435 887 //------------------------------do_unroll--------------------------------------
duke@435 888 // Unroll the loop body one step - make each trip do 2 iterations.
duke@435 889 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
duke@435 890 assert( LoopUnrollLimit, "" );
duke@435 891 #ifndef PRODUCT
duke@435 892 if( PrintOpto && VerifyLoopOptimizations ) {
duke@435 893 tty->print("Unrolling ");
duke@435 894 loop->dump_head();
duke@435 895 }
duke@435 896 #endif
duke@435 897 CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
duke@435 898 CountedLoopEndNode *loop_end = loop_head->loopexit();
duke@435 899 assert( loop_end, "" );
duke@435 900
duke@435 901 // Remember loop node count before unrolling to detect
duke@435 902 // if rounds of unroll,optimize are making progress
duke@435 903 loop_head->set_node_count_before_unroll(loop->_body.size());
duke@435 904
duke@435 905 Node *ctrl = loop_head->in(LoopNode::EntryControl);
duke@435 906 Node *limit = loop_head->limit();
duke@435 907 Node *init = loop_head->init_trip();
duke@435 908 Node *strid = loop_head->stride();
duke@435 909
duke@435 910 Node *opaq = NULL;
duke@435 911 if( adjust_min_trip ) { // If not maximally unrolling, need adjustment
duke@435 912 assert( loop_head->is_main_loop(), "" );
duke@435 913 assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
duke@435 914 Node *iff = ctrl->in(0);
duke@435 915 assert( iff->Opcode() == Op_If, "" );
duke@435 916 Node *bol = iff->in(1);
duke@435 917 assert( bol->Opcode() == Op_Bool, "" );
duke@435 918 Node *cmp = bol->in(1);
duke@435 919 assert( cmp->Opcode() == Op_CmpI, "" );
duke@435 920 opaq = cmp->in(2);
duke@435 921 // Occasionally it's possible for a pre-loop Opaque1 node to be
duke@435 922 // optimized away and then another round of loop opts attempted.
duke@435 923 // We can not optimize this particular loop in that case.
duke@435 924 if( opaq->Opcode() != Op_Opaque1 )
duke@435 925 return; // Cannot find pre-loop! Bail out!
duke@435 926 }
duke@435 927
duke@435 928 C->set_major_progress();
duke@435 929
duke@435 930 // Adjust max trip count. The trip count is intentionally rounded
duke@435 931 // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
duke@435 932 // the main, unrolled, part of the loop will never execute as it is protected
duke@435 933 // by the min-trip test. See bug 4834191 for a case where we over-unrolled
duke@435 934 // and later determined that part of the unrolled loop was dead.
duke@435 935 loop_head->set_trip_count(loop_head->trip_count() / 2);
duke@435 936
duke@435 937 // Double the count of original iterations in the unrolled loop body.
duke@435 938 loop_head->double_unrolled_count();
duke@435 939
duke@435 940 // -----------
duke@435 941 // Step 2: Cut back the trip counter for an unroll amount of 2.
duke@435 942 // Loop will normally trip (limit - init)/stride_con. Since it's a
duke@435 943 // CountedLoop this is exact (stride divides limit-init exactly).
duke@435 944 // We are going to double the loop body, so we want to knock off any
duke@435 945 // odd iteration: (trip_cnt & ~1). Then back compute a new limit.
duke@435 946 Node *span = new (C, 3) SubINode( limit, init );
duke@435 947 register_new_node( span, ctrl );
duke@435 948 Node *trip = new (C, 3) DivINode( 0, span, strid );
duke@435 949 register_new_node( trip, ctrl );
duke@435 950 Node *mtwo = _igvn.intcon(-2);
duke@435 951 set_ctrl(mtwo, C->root());
duke@435 952 Node *rond = new (C, 3) AndINode( trip, mtwo );
duke@435 953 register_new_node( rond, ctrl );
duke@435 954 Node *spn2 = new (C, 3) MulINode( rond, strid );
duke@435 955 register_new_node( spn2, ctrl );
duke@435 956 Node *lim2 = new (C, 3) AddINode( spn2, init );
duke@435 957 register_new_node( lim2, ctrl );
duke@435 958
duke@435 959 // Hammer in the new limit
duke@435 960 Node *ctrl2 = loop_end->in(0);
duke@435 961 Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), lim2 );
duke@435 962 register_new_node( cmp2, ctrl2 );
duke@435 963 Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
duke@435 964 register_new_node( bol2, ctrl2 );
duke@435 965 _igvn.hash_delete(loop_end);
duke@435 966 loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
duke@435 967
duke@435 968 // Step 3: Find the min-trip test guaranteed before a 'main' loop.
duke@435 969 // Make it a 1-trip test (means at least 2 trips).
duke@435 970 if( adjust_min_trip ) {
duke@435 971 // Guard test uses an 'opaque' node which is not shared. Hence I
duke@435 972 // can edit it's inputs directly. Hammer in the new limit for the
duke@435 973 // minimum-trip guard.
duke@435 974 assert( opaq->outcnt() == 1, "" );
duke@435 975 _igvn.hash_delete(opaq);
duke@435 976 opaq->set_req(1, lim2);
duke@435 977 }
duke@435 978
duke@435 979 // ---------
duke@435 980 // Step 4: Clone the loop body. Move it inside the loop. This loop body
duke@435 981 // represents the odd iterations; since the loop trips an even number of
duke@435 982 // times its backedge is never taken. Kill the backedge.
duke@435 983 uint dd = dom_depth(loop_head);
duke@435 984 clone_loop( loop, old_new, dd );
duke@435 985
duke@435 986 // Make backedges of the clone equal to backedges of the original.
duke@435 987 // Make the fall-in from the original come from the fall-out of the clone.
duke@435 988 for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
duke@435 989 Node* phi = loop_head->fast_out(j);
duke@435 990 if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
duke@435 991 Node *newphi = old_new[phi->_idx];
duke@435 992 _igvn.hash_delete( phi );
duke@435 993 _igvn.hash_delete( newphi );
duke@435 994
duke@435 995 phi ->set_req(LoopNode:: EntryControl, newphi->in(LoopNode::LoopBackControl));
duke@435 996 newphi->set_req(LoopNode::LoopBackControl, phi ->in(LoopNode::LoopBackControl));
duke@435 997 phi ->set_req(LoopNode::LoopBackControl, C->top());
duke@435 998 }
duke@435 999 }
duke@435 1000 Node *clone_head = old_new[loop_head->_idx];
duke@435 1001 _igvn.hash_delete( clone_head );
duke@435 1002 loop_head ->set_req(LoopNode:: EntryControl, clone_head->in(LoopNode::LoopBackControl));
duke@435 1003 clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
duke@435 1004 loop_head ->set_req(LoopNode::LoopBackControl, C->top());
duke@435 1005 loop->_head = clone_head; // New loop header
duke@435 1006
duke@435 1007 set_idom(loop_head, loop_head ->in(LoopNode::EntryControl), dd);
duke@435 1008 set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
duke@435 1009
duke@435 1010 // Kill the clone's backedge
duke@435 1011 Node *newcle = old_new[loop_end->_idx];
duke@435 1012 _igvn.hash_delete( newcle );
duke@435 1013 Node *one = _igvn.intcon(1);
duke@435 1014 set_ctrl(one, C->root());
duke@435 1015 newcle->set_req(1, one);
duke@435 1016 // Force clone into same loop body
duke@435 1017 uint max = loop->_body.size();
duke@435 1018 for( uint k = 0; k < max; k++ ) {
duke@435 1019 Node *old = loop->_body.at(k);
duke@435 1020 Node *nnn = old_new[old->_idx];
duke@435 1021 loop->_body.push(nnn);
duke@435 1022 if (!has_ctrl(old))
duke@435 1023 set_loop(nnn, loop);
duke@435 1024 }
never@802 1025
never@802 1026 loop->record_for_igvn();
duke@435 1027 }
duke@435 1028
duke@435 1029 //------------------------------do_maximally_unroll----------------------------
duke@435 1030
duke@435 1031 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 1032 CountedLoopNode *cl = loop->_head->as_CountedLoop();
duke@435 1033 assert( cl->trip_count() > 0, "");
duke@435 1034
duke@435 1035 // If loop is tripping an odd number of times, peel odd iteration
duke@435 1036 if( (cl->trip_count() & 1) == 1 ) {
duke@435 1037 do_peeling( loop, old_new );
duke@435 1038 }
duke@435 1039
duke@435 1040 // Now its tripping an even number of times remaining. Double loop body.
duke@435 1041 // Do not adjust pre-guards; they are not needed and do not exist.
duke@435 1042 if( cl->trip_count() > 0 ) {
duke@435 1043 do_unroll( loop, old_new, false );
duke@435 1044 }
duke@435 1045 }
duke@435 1046
duke@435 1047 //------------------------------dominates_backedge---------------------------------
duke@435 1048 // Returns true if ctrl is executed on every complete iteration
duke@435 1049 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
duke@435 1050 assert(ctrl->is_CFG(), "must be control");
duke@435 1051 Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
duke@435 1052 return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
duke@435 1053 }
duke@435 1054
duke@435 1055 //------------------------------add_constraint---------------------------------
duke@435 1056 // Constrain the main loop iterations so the condition:
duke@435 1057 // scale_con * I + offset < limit
duke@435 1058 // always holds true. That is, either increase the number of iterations in
duke@435 1059 // the pre-loop or the post-loop until the condition holds true in the main
duke@435 1060 // loop. Stride, scale, offset and limit are all loop invariant. Further,
duke@435 1061 // stride and scale are constants (offset and limit often are).
duke@435 1062 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
duke@435 1063
duke@435 1064 // Compute "I :: (limit-offset)/scale_con"
duke@435 1065 Node *con = new (C, 3) SubINode( limit, offset );
duke@435 1066 register_new_node( con, pre_ctrl );
duke@435 1067 Node *scale = _igvn.intcon(scale_con);
duke@435 1068 set_ctrl(scale, C->root());
duke@435 1069 Node *X = new (C, 3) DivINode( 0, con, scale );
duke@435 1070 register_new_node( X, pre_ctrl );
duke@435 1071
duke@435 1072 // For positive stride, the pre-loop limit always uses a MAX function
duke@435 1073 // and the main loop a MIN function. For negative stride these are
duke@435 1074 // reversed.
duke@435 1075
duke@435 1076 // Also for positive stride*scale the affine function is increasing, so the
duke@435 1077 // pre-loop must check for underflow and the post-loop for overflow.
duke@435 1078 // Negative stride*scale reverses this; pre-loop checks for overflow and
duke@435 1079 // post-loop for underflow.
duke@435 1080 if( stride_con*scale_con > 0 ) {
duke@435 1081 // Compute I < (limit-offset)/scale_con
duke@435 1082 // Adjust main-loop last iteration to be MIN/MAX(main_loop,X)
duke@435 1083 *main_limit = (stride_con > 0)
duke@435 1084 ? (Node*)(new (C, 3) MinINode( *main_limit, X ))
duke@435 1085 : (Node*)(new (C, 3) MaxINode( *main_limit, X ));
duke@435 1086 register_new_node( *main_limit, pre_ctrl );
duke@435 1087
duke@435 1088 } else {
duke@435 1089 // Compute (limit-offset)/scale_con + SGN(-scale_con) <= I
duke@435 1090 // Add the negation of the main-loop constraint to the pre-loop.
duke@435 1091 // See footnote [++] below for a derivation of the limit expression.
duke@435 1092 Node *incr = _igvn.intcon(scale_con > 0 ? -1 : 1);
duke@435 1093 set_ctrl(incr, C->root());
duke@435 1094 Node *adj = new (C, 3) AddINode( X, incr );
duke@435 1095 register_new_node( adj, pre_ctrl );
duke@435 1096 *pre_limit = (scale_con > 0)
duke@435 1097 ? (Node*)new (C, 3) MinINode( *pre_limit, adj )
duke@435 1098 : (Node*)new (C, 3) MaxINode( *pre_limit, adj );
duke@435 1099 register_new_node( *pre_limit, pre_ctrl );
duke@435 1100
duke@435 1101 // [++] Here's the algebra that justifies the pre-loop limit expression:
duke@435 1102 //
duke@435 1103 // NOT( scale_con * I + offset < limit )
duke@435 1104 // ==
duke@435 1105 // scale_con * I + offset >= limit
duke@435 1106 // ==
duke@435 1107 // SGN(scale_con) * I >= (limit-offset)/|scale_con|
duke@435 1108 // ==
duke@435 1109 // (limit-offset)/|scale_con| <= I * SGN(scale_con)
duke@435 1110 // ==
duke@435 1111 // (limit-offset)/|scale_con|-1 < I * SGN(scale_con)
duke@435 1112 // ==
duke@435 1113 // ( if (scale_con > 0) /*common case*/
duke@435 1114 // (limit-offset)/scale_con - 1 < I
duke@435 1115 // else
duke@435 1116 // (limit-offset)/scale_con + 1 > I
duke@435 1117 // )
duke@435 1118 // ( if (scale_con > 0) /*common case*/
duke@435 1119 // (limit-offset)/scale_con + SGN(-scale_con) < I
duke@435 1120 // else
duke@435 1121 // (limit-offset)/scale_con + SGN(-scale_con) > I
duke@435 1122 }
duke@435 1123 }
duke@435 1124
duke@435 1125
duke@435 1126 //------------------------------is_scaled_iv---------------------------------
duke@435 1127 // Return true if exp is a constant times an induction var
duke@435 1128 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
duke@435 1129 if (exp == iv) {
duke@435 1130 if (p_scale != NULL) {
duke@435 1131 *p_scale = 1;
duke@435 1132 }
duke@435 1133 return true;
duke@435 1134 }
duke@435 1135 int opc = exp->Opcode();
duke@435 1136 if (opc == Op_MulI) {
duke@435 1137 if (exp->in(1) == iv && exp->in(2)->is_Con()) {
duke@435 1138 if (p_scale != NULL) {
duke@435 1139 *p_scale = exp->in(2)->get_int();
duke@435 1140 }
duke@435 1141 return true;
duke@435 1142 }
duke@435 1143 if (exp->in(2) == iv && exp->in(1)->is_Con()) {
duke@435 1144 if (p_scale != NULL) {
duke@435 1145 *p_scale = exp->in(1)->get_int();
duke@435 1146 }
duke@435 1147 return true;
duke@435 1148 }
duke@435 1149 } else if (opc == Op_LShiftI) {
duke@435 1150 if (exp->in(1) == iv && exp->in(2)->is_Con()) {
duke@435 1151 if (p_scale != NULL) {
duke@435 1152 *p_scale = 1 << exp->in(2)->get_int();
duke@435 1153 }
duke@435 1154 return true;
duke@435 1155 }
duke@435 1156 }
duke@435 1157 return false;
duke@435 1158 }
duke@435 1159
duke@435 1160 //-----------------------------is_scaled_iv_plus_offset------------------------------
duke@435 1161 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
duke@435 1162 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
duke@435 1163 if (is_scaled_iv(exp, iv, p_scale)) {
duke@435 1164 if (p_offset != NULL) {
duke@435 1165 Node *zero = _igvn.intcon(0);
duke@435 1166 set_ctrl(zero, C->root());
duke@435 1167 *p_offset = zero;
duke@435 1168 }
duke@435 1169 return true;
duke@435 1170 }
duke@435 1171 int opc = exp->Opcode();
duke@435 1172 if (opc == Op_AddI) {
duke@435 1173 if (is_scaled_iv(exp->in(1), iv, p_scale)) {
duke@435 1174 if (p_offset != NULL) {
duke@435 1175 *p_offset = exp->in(2);
duke@435 1176 }
duke@435 1177 return true;
duke@435 1178 }
duke@435 1179 if (exp->in(2)->is_Con()) {
duke@435 1180 Node* offset2 = NULL;
duke@435 1181 if (depth < 2 &&
duke@435 1182 is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
duke@435 1183 p_offset != NULL ? &offset2 : NULL, depth+1)) {
duke@435 1184 if (p_offset != NULL) {
duke@435 1185 Node *ctrl_off2 = get_ctrl(offset2);
duke@435 1186 Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
duke@435 1187 register_new_node(offset, ctrl_off2);
duke@435 1188 *p_offset = offset;
duke@435 1189 }
duke@435 1190 return true;
duke@435 1191 }
duke@435 1192 }
duke@435 1193 } else if (opc == Op_SubI) {
duke@435 1194 if (is_scaled_iv(exp->in(1), iv, p_scale)) {
duke@435 1195 if (p_offset != NULL) {
duke@435 1196 Node *zero = _igvn.intcon(0);
duke@435 1197 set_ctrl(zero, C->root());
duke@435 1198 Node *ctrl_off = get_ctrl(exp->in(2));
duke@435 1199 Node* offset = new (C, 3) SubINode(zero, exp->in(2));
duke@435 1200 register_new_node(offset, ctrl_off);
duke@435 1201 *p_offset = offset;
duke@435 1202 }
duke@435 1203 return true;
duke@435 1204 }
duke@435 1205 if (is_scaled_iv(exp->in(2), iv, p_scale)) {
duke@435 1206 if (p_offset != NULL) {
duke@435 1207 *p_scale *= -1;
duke@435 1208 *p_offset = exp->in(1);
duke@435 1209 }
duke@435 1210 return true;
duke@435 1211 }
duke@435 1212 }
duke@435 1213 return false;
duke@435 1214 }
duke@435 1215
duke@435 1216 //------------------------------do_range_check---------------------------------
duke@435 1217 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
duke@435 1218 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 1219 #ifndef PRODUCT
duke@435 1220 if( PrintOpto && VerifyLoopOptimizations ) {
duke@435 1221 tty->print("Range Check Elimination ");
duke@435 1222 loop->dump_head();
duke@435 1223 }
duke@435 1224 #endif
duke@435 1225 assert( RangeCheckElimination, "" );
duke@435 1226 CountedLoopNode *cl = loop->_head->as_CountedLoop();
duke@435 1227 assert( cl->is_main_loop(), "" );
duke@435 1228
duke@435 1229 // Find the trip counter; we are iteration splitting based on it
duke@435 1230 Node *trip_counter = cl->phi();
duke@435 1231 // Find the main loop limit; we will trim it's iterations
duke@435 1232 // to not ever trip end tests
duke@435 1233 Node *main_limit = cl->limit();
duke@435 1234 // Find the pre-loop limit; we will expand it's iterations to
duke@435 1235 // not ever trip low tests.
duke@435 1236 Node *ctrl = cl->in(LoopNode::EntryControl);
duke@435 1237 assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
duke@435 1238 Node *iffm = ctrl->in(0);
duke@435 1239 assert( iffm->Opcode() == Op_If, "" );
duke@435 1240 Node *p_f = iffm->in(0);
duke@435 1241 assert( p_f->Opcode() == Op_IfFalse, "" );
duke@435 1242 CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
duke@435 1243 assert( pre_end->loopnode()->is_pre_loop(), "" );
duke@435 1244 Node *pre_opaq1 = pre_end->limit();
duke@435 1245 // Occasionally it's possible for a pre-loop Opaque1 node to be
duke@435 1246 // optimized away and then another round of loop opts attempted.
duke@435 1247 // We can not optimize this particular loop in that case.
duke@435 1248 if( pre_opaq1->Opcode() != Op_Opaque1 )
duke@435 1249 return;
duke@435 1250 Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
duke@435 1251 Node *pre_limit = pre_opaq->in(1);
duke@435 1252
duke@435 1253 // Where do we put new limit calculations
duke@435 1254 Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
duke@435 1255
duke@435 1256 // Ensure the original loop limit is available from the
duke@435 1257 // pre-loop Opaque1 node.
duke@435 1258 Node *orig_limit = pre_opaq->original_loop_limit();
duke@435 1259 if( orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP )
duke@435 1260 return;
duke@435 1261
duke@435 1262 // Need to find the main-loop zero-trip guard
duke@435 1263 Node *bolzm = iffm->in(1);
duke@435 1264 assert( bolzm->Opcode() == Op_Bool, "" );
duke@435 1265 Node *cmpzm = bolzm->in(1);
duke@435 1266 assert( cmpzm->is_Cmp(), "" );
duke@435 1267 Node *opqzm = cmpzm->in(2);
duke@435 1268 if( opqzm->Opcode() != Op_Opaque1 )
duke@435 1269 return;
duke@435 1270 assert( opqzm->in(1) == main_limit, "do not understand situation" );
duke@435 1271
duke@435 1272 // Must know if its a count-up or count-down loop
duke@435 1273
duke@435 1274 // protect against stride not being a constant
duke@435 1275 if ( !cl->stride_is_con() ) {
duke@435 1276 return;
duke@435 1277 }
duke@435 1278 int stride_con = cl->stride_con();
duke@435 1279 Node *zero = _igvn.intcon(0);
duke@435 1280 Node *one = _igvn.intcon(1);
duke@435 1281 set_ctrl(zero, C->root());
duke@435 1282 set_ctrl(one, C->root());
duke@435 1283
duke@435 1284 // Range checks that do not dominate the loop backedge (ie.
duke@435 1285 // conditionally executed) can lengthen the pre loop limit beyond
duke@435 1286 // the original loop limit. To prevent this, the pre limit is
duke@435 1287 // (for stride > 0) MINed with the original loop limit (MAXed
duke@435 1288 // stride < 0) when some range_check (rc) is conditionally
duke@435 1289 // executed.
duke@435 1290 bool conditional_rc = false;
duke@435 1291
duke@435 1292 // Check loop body for tests of trip-counter plus loop-invariant vs
duke@435 1293 // loop-invariant.
duke@435 1294 for( uint i = 0; i < loop->_body.size(); i++ ) {
duke@435 1295 Node *iff = loop->_body[i];
duke@435 1296 if( iff->Opcode() == Op_If ) { // Test?
duke@435 1297
duke@435 1298 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 1299 // we need loop unswitching instead of iteration splitting.
duke@435 1300 Node *exit = loop->is_loop_exit(iff);
duke@435 1301 if( !exit ) continue;
duke@435 1302 int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
duke@435 1303
duke@435 1304 // Get boolean condition to test
duke@435 1305 Node *i1 = iff->in(1);
duke@435 1306 if( !i1->is_Bool() ) continue;
duke@435 1307 BoolNode *bol = i1->as_Bool();
duke@435 1308 BoolTest b_test = bol->_test;
duke@435 1309 // Flip sense of test if exit condition is flipped
duke@435 1310 if( flip )
duke@435 1311 b_test = b_test.negate();
duke@435 1312
duke@435 1313 // Get compare
duke@435 1314 Node *cmp = bol->in(1);
duke@435 1315
duke@435 1316 // Look for trip_counter + offset vs limit
duke@435 1317 Node *rc_exp = cmp->in(1);
duke@435 1318 Node *limit = cmp->in(2);
duke@435 1319 jint scale_con= 1; // Assume trip counter not scaled
duke@435 1320
duke@435 1321 Node *limit_c = get_ctrl(limit);
duke@435 1322 if( loop->is_member(get_loop(limit_c) ) ) {
duke@435 1323 // Compare might have operands swapped; commute them
duke@435 1324 b_test = b_test.commute();
duke@435 1325 rc_exp = cmp->in(2);
duke@435 1326 limit = cmp->in(1);
duke@435 1327 limit_c = get_ctrl(limit);
duke@435 1328 if( loop->is_member(get_loop(limit_c) ) )
duke@435 1329 continue; // Both inputs are loop varying; cannot RCE
duke@435 1330 }
duke@435 1331 // Here we know 'limit' is loop invariant
duke@435 1332
duke@435 1333 // 'limit' maybe pinned below the zero trip test (probably from a
duke@435 1334 // previous round of rce), in which case, it can't be used in the
duke@435 1335 // zero trip test expression which must occur before the zero test's if.
duke@435 1336 if( limit_c == ctrl ) {
duke@435 1337 continue; // Don't rce this check but continue looking for other candidates.
duke@435 1338 }
duke@435 1339
duke@435 1340 // Check for scaled induction variable plus an offset
duke@435 1341 Node *offset = NULL;
duke@435 1342
duke@435 1343 if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
duke@435 1344 continue;
duke@435 1345 }
duke@435 1346
duke@435 1347 Node *offset_c = get_ctrl(offset);
duke@435 1348 if( loop->is_member( get_loop(offset_c) ) )
duke@435 1349 continue; // Offset is not really loop invariant
duke@435 1350 // Here we know 'offset' is loop invariant.
duke@435 1351
duke@435 1352 // As above for the 'limit', the 'offset' maybe pinned below the
duke@435 1353 // zero trip test.
duke@435 1354 if( offset_c == ctrl ) {
duke@435 1355 continue; // Don't rce this check but continue looking for other candidates.
duke@435 1356 }
duke@435 1357
duke@435 1358 // At this point we have the expression as:
duke@435 1359 // scale_con * trip_counter + offset :: limit
duke@435 1360 // where scale_con, offset and limit are loop invariant. Trip_counter
duke@435 1361 // monotonically increases by stride_con, a constant. Both (or either)
duke@435 1362 // stride_con and scale_con can be negative which will flip about the
duke@435 1363 // sense of the test.
duke@435 1364
duke@435 1365 // Adjust pre and main loop limits to guard the correct iteration set
duke@435 1366 if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
duke@435 1367 if( b_test._test == BoolTest::lt ) { // Range checks always use lt
duke@435 1368 // The overflow limit: scale*I+offset < limit
duke@435 1369 add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
duke@435 1370 // The underflow limit: 0 <= scale*I+offset.
duke@435 1371 // Some math yields: -scale*I-(offset+1) < 0
duke@435 1372 Node *plus_one = new (C, 3) AddINode( offset, one );
duke@435 1373 register_new_node( plus_one, pre_ctrl );
duke@435 1374 Node *neg_offset = new (C, 3) SubINode( zero, plus_one );
duke@435 1375 register_new_node( neg_offset, pre_ctrl );
duke@435 1376 add_constraint( stride_con, -scale_con, neg_offset, zero, pre_ctrl, &pre_limit, &main_limit );
duke@435 1377 if (!conditional_rc) {
duke@435 1378 conditional_rc = !loop->dominates_backedge(iff);
duke@435 1379 }
duke@435 1380 } else {
duke@435 1381 #ifndef PRODUCT
duke@435 1382 if( PrintOpto )
duke@435 1383 tty->print_cr("missed RCE opportunity");
duke@435 1384 #endif
duke@435 1385 continue; // In release mode, ignore it
duke@435 1386 }
duke@435 1387 } else { // Otherwise work on normal compares
duke@435 1388 switch( b_test._test ) {
duke@435 1389 case BoolTest::ge: // Convert X >= Y to -X <= -Y
duke@435 1390 scale_con = -scale_con;
duke@435 1391 offset = new (C, 3) SubINode( zero, offset );
duke@435 1392 register_new_node( offset, pre_ctrl );
duke@435 1393 limit = new (C, 3) SubINode( zero, limit );
duke@435 1394 register_new_node( limit, pre_ctrl );
duke@435 1395 // Fall into LE case
duke@435 1396 case BoolTest::le: // Convert X <= Y to X < Y+1
duke@435 1397 limit = new (C, 3) AddINode( limit, one );
duke@435 1398 register_new_node( limit, pre_ctrl );
duke@435 1399 // Fall into LT case
duke@435 1400 case BoolTest::lt:
duke@435 1401 add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
duke@435 1402 if (!conditional_rc) {
duke@435 1403 conditional_rc = !loop->dominates_backedge(iff);
duke@435 1404 }
duke@435 1405 break;
duke@435 1406 default:
duke@435 1407 #ifndef PRODUCT
duke@435 1408 if( PrintOpto )
duke@435 1409 tty->print_cr("missed RCE opportunity");
duke@435 1410 #endif
duke@435 1411 continue; // Unhandled case
duke@435 1412 }
duke@435 1413 }
duke@435 1414
duke@435 1415 // Kill the eliminated test
duke@435 1416 C->set_major_progress();
duke@435 1417 Node *kill_con = _igvn.intcon( 1-flip );
duke@435 1418 set_ctrl(kill_con, C->root());
duke@435 1419 _igvn.hash_delete(iff);
duke@435 1420 iff->set_req(1, kill_con);
duke@435 1421 _igvn._worklist.push(iff);
duke@435 1422 // Find surviving projection
duke@435 1423 assert(iff->is_If(), "");
duke@435 1424 ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
duke@435 1425 // Find loads off the surviving projection; remove their control edge
duke@435 1426 for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
duke@435 1427 Node* cd = dp->fast_out(i); // Control-dependent node
duke@435 1428 if( cd->is_Load() ) { // Loads can now float around in the loop
duke@435 1429 _igvn.hash_delete(cd);
duke@435 1430 // Allow the load to float around in the loop, or before it
duke@435 1431 // but NOT before the pre-loop.
duke@435 1432 cd->set_req(0, ctrl); // ctrl, not NULL
duke@435 1433 _igvn._worklist.push(cd);
duke@435 1434 --i;
duke@435 1435 --imax;
duke@435 1436 }
duke@435 1437 }
duke@435 1438
duke@435 1439 } // End of is IF
duke@435 1440
duke@435 1441 }
duke@435 1442
duke@435 1443 // Update loop limits
duke@435 1444 if (conditional_rc) {
duke@435 1445 pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
duke@435 1446 : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
duke@435 1447 register_new_node(pre_limit, pre_ctrl);
duke@435 1448 }
duke@435 1449 _igvn.hash_delete(pre_opaq);
duke@435 1450 pre_opaq->set_req(1, pre_limit);
duke@435 1451
duke@435 1452 // Note:: we are making the main loop limit no longer precise;
duke@435 1453 // need to round up based on stride.
duke@435 1454 if( stride_con != 1 && stride_con != -1 ) { // Cutout for common case
duke@435 1455 // "Standard" round-up logic: ([main_limit-init+(y-1)]/y)*y+init
duke@435 1456 // Hopefully, compiler will optimize for powers of 2.
duke@435 1457 Node *ctrl = get_ctrl(main_limit);
duke@435 1458 Node *stride = cl->stride();
duke@435 1459 Node *init = cl->init_trip();
duke@435 1460 Node *span = new (C, 3) SubINode(main_limit,init);
duke@435 1461 register_new_node(span,ctrl);
duke@435 1462 Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
duke@435 1463 Node *add = new (C, 3) AddINode(span,rndup);
duke@435 1464 register_new_node(add,ctrl);
duke@435 1465 Node *div = new (C, 3) DivINode(0,add,stride);
duke@435 1466 register_new_node(div,ctrl);
duke@435 1467 Node *mul = new (C, 3) MulINode(div,stride);
duke@435 1468 register_new_node(mul,ctrl);
duke@435 1469 Node *newlim = new (C, 3) AddINode(mul,init);
duke@435 1470 register_new_node(newlim,ctrl);
duke@435 1471 main_limit = newlim;
duke@435 1472 }
duke@435 1473
duke@435 1474 Node *main_cle = cl->loopexit();
duke@435 1475 Node *main_bol = main_cle->in(1);
duke@435 1476 // Hacking loop bounds; need private copies of exit test
duke@435 1477 if( main_bol->outcnt() > 1 ) {// BoolNode shared?
duke@435 1478 _igvn.hash_delete(main_cle);
duke@435 1479 main_bol = main_bol->clone();// Clone a private BoolNode
duke@435 1480 register_new_node( main_bol, main_cle->in(0) );
duke@435 1481 main_cle->set_req(1,main_bol);
duke@435 1482 }
duke@435 1483 Node *main_cmp = main_bol->in(1);
duke@435 1484 if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
duke@435 1485 _igvn.hash_delete(main_bol);
duke@435 1486 main_cmp = main_cmp->clone();// Clone a private CmpNode
duke@435 1487 register_new_node( main_cmp, main_cle->in(0) );
duke@435 1488 main_bol->set_req(1,main_cmp);
duke@435 1489 }
duke@435 1490 // Hack the now-private loop bounds
duke@435 1491 _igvn.hash_delete(main_cmp);
duke@435 1492 main_cmp->set_req(2, main_limit);
duke@435 1493 _igvn._worklist.push(main_cmp);
duke@435 1494 // The OpaqueNode is unshared by design
duke@435 1495 _igvn.hash_delete(opqzm);
duke@435 1496 assert( opqzm->outcnt() == 1, "cannot hack shared node" );
duke@435 1497 opqzm->set_req(1,main_limit);
duke@435 1498 _igvn._worklist.push(opqzm);
duke@435 1499 }
duke@435 1500
duke@435 1501 //------------------------------DCE_loop_body----------------------------------
duke@435 1502 // Remove simplistic dead code from loop body
duke@435 1503 void IdealLoopTree::DCE_loop_body() {
duke@435 1504 for( uint i = 0; i < _body.size(); i++ )
duke@435 1505 if( _body.at(i)->outcnt() == 0 )
duke@435 1506 _body.map( i--, _body.pop() );
duke@435 1507 }
duke@435 1508
duke@435 1509
duke@435 1510 //------------------------------adjust_loop_exit_prob--------------------------
duke@435 1511 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
duke@435 1512 // Replace with a 1-in-10 exit guess.
duke@435 1513 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
duke@435 1514 Node *test = tail();
duke@435 1515 while( test != _head ) {
duke@435 1516 uint top = test->Opcode();
duke@435 1517 if( top == Op_IfTrue || top == Op_IfFalse ) {
duke@435 1518 int test_con = ((ProjNode*)test)->_con;
duke@435 1519 assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
duke@435 1520 IfNode *iff = test->in(0)->as_If();
duke@435 1521 if( iff->outcnt() == 2 ) { // Ignore dead tests
duke@435 1522 Node *bol = iff->in(1);
duke@435 1523 if( bol && bol->req() > 1 && bol->in(1) &&
duke@435 1524 ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
kvn@855 1525 (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
duke@435 1526 (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
duke@435 1527 (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
duke@435 1528 (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
coleenp@548 1529 (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
coleenp@548 1530 (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
duke@435 1531 return; // Allocation loops RARELY take backedge
duke@435 1532 // Find the OTHER exit path from the IF
duke@435 1533 Node* ex = iff->proj_out(1-test_con);
duke@435 1534 float p = iff->_prob;
duke@435 1535 if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
duke@435 1536 if( top == Op_IfTrue ) {
duke@435 1537 if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
duke@435 1538 iff->_prob = PROB_STATIC_FREQUENT;
duke@435 1539 }
duke@435 1540 } else {
duke@435 1541 if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
duke@435 1542 iff->_prob = PROB_STATIC_INFREQUENT;
duke@435 1543 }
duke@435 1544 }
duke@435 1545 }
duke@435 1546 }
duke@435 1547 }
duke@435 1548 test = phase->idom(test);
duke@435 1549 }
duke@435 1550 }
duke@435 1551
duke@435 1552
duke@435 1553 //------------------------------policy_do_remove_empty_loop--------------------
duke@435 1554 // Micro-benchmark spamming. Policy is to always remove empty loops.
duke@435 1555 // The 'DO' part is to replace the trip counter with the value it will
duke@435 1556 // have on the last iteration. This will break the loop.
duke@435 1557 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
duke@435 1558 // Minimum size must be empty loop
duke@435 1559 if( _body.size() > 7/*number of nodes in an empty loop*/ ) return false;
duke@435 1560
duke@435 1561 if( !_head->is_CountedLoop() ) return false; // Dead loop
duke@435 1562 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 1563 if( !cl->loopexit() ) return false; // Malformed loop
duke@435 1564 if( !phase->is_member(this,phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue)) ) )
duke@435 1565 return false; // Infinite loop
duke@435 1566 #ifndef PRODUCT
duke@435 1567 if( PrintOpto )
duke@435 1568 tty->print_cr("Removing empty loop");
duke@435 1569 #endif
duke@435 1570 #ifdef ASSERT
duke@435 1571 // Ensure only one phi which is the iv.
duke@435 1572 Node* iv = NULL;
duke@435 1573 for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
duke@435 1574 Node* n = cl->fast_out(i);
duke@435 1575 if (n->Opcode() == Op_Phi) {
duke@435 1576 assert(iv == NULL, "Too many phis" );
duke@435 1577 iv = n;
duke@435 1578 }
duke@435 1579 }
duke@435 1580 assert(iv == cl->phi(), "Wrong phi" );
duke@435 1581 #endif
duke@435 1582 // Replace the phi at loop head with the final value of the last
duke@435 1583 // iteration. Then the CountedLoopEnd will collapse (backedge never
duke@435 1584 // taken) and all loop-invariant uses of the exit values will be correct.
duke@435 1585 Node *phi = cl->phi();
duke@435 1586 Node *final = new (phase->C, 3) SubINode( cl->limit(), cl->stride() );
duke@435 1587 phase->register_new_node(final,cl->in(LoopNode::EntryControl));
kvn@1976 1588 phase->_igvn.replace_node(phi,final);
duke@435 1589 phase->C->set_major_progress();
duke@435 1590 return true;
duke@435 1591 }
duke@435 1592
duke@435 1593
duke@435 1594 //=============================================================================
duke@435 1595 //------------------------------iteration_split_impl---------------------------
never@836 1596 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
duke@435 1597 // Check and remove empty loops (spam micro-benchmarks)
duke@435 1598 if( policy_do_remove_empty_loop(phase) )
cfang@1607 1599 return true; // Here we removed an empty loop
duke@435 1600
duke@435 1601 bool should_peel = policy_peeling(phase); // Should we peel?
duke@435 1602
duke@435 1603 bool should_unswitch = policy_unswitching(phase);
duke@435 1604
duke@435 1605 // Non-counted loops may be peeled; exactly 1 iteration is peeled.
duke@435 1606 // This removes loop-invariant tests (usually null checks).
duke@435 1607 if( !_head->is_CountedLoop() ) { // Non-counted loop
duke@435 1608 if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
never@836 1609 // Partial peel succeeded so terminate this round of loop opts
never@836 1610 return false;
duke@435 1611 }
duke@435 1612 if( should_peel ) { // Should we peel?
duke@435 1613 #ifndef PRODUCT
duke@435 1614 if (PrintOpto) tty->print_cr("should_peel");
duke@435 1615 #endif
duke@435 1616 phase->do_peeling(this,old_new);
duke@435 1617 } else if( should_unswitch ) {
duke@435 1618 phase->do_unswitching(this, old_new);
duke@435 1619 }
never@836 1620 return true;
duke@435 1621 }
duke@435 1622 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 1623
never@836 1624 if( !cl->loopexit() ) return true; // Ignore various kinds of broken loops
duke@435 1625
duke@435 1626 // Do nothing special to pre- and post- loops
never@836 1627 if( cl->is_pre_loop() || cl->is_post_loop() ) return true;
duke@435 1628
duke@435 1629 // Compute loop trip count from profile data
duke@435 1630 compute_profile_trip_cnt(phase);
duke@435 1631
duke@435 1632 // Before attempting fancy unrolling, RCE or alignment, see if we want
duke@435 1633 // to completely unroll this loop or do loop unswitching.
duke@435 1634 if( cl->is_normal_loop() ) {
cfang@1224 1635 if (should_unswitch) {
cfang@1224 1636 phase->do_unswitching(this, old_new);
cfang@1224 1637 return true;
cfang@1224 1638 }
duke@435 1639 bool should_maximally_unroll = policy_maximally_unroll(phase);
duke@435 1640 if( should_maximally_unroll ) {
duke@435 1641 // Here we did some unrolling and peeling. Eventually we will
duke@435 1642 // completely unroll this loop and it will no longer be a loop.
duke@435 1643 phase->do_maximally_unroll(this,old_new);
never@836 1644 return true;
duke@435 1645 }
duke@435 1646 }
duke@435 1647
duke@435 1648
duke@435 1649 // Counted loops may be peeled, may need some iterations run up
duke@435 1650 // front for RCE, and may want to align loop refs to a cache
duke@435 1651 // line. Thus we clone a full loop up front whose trip count is
duke@435 1652 // at least 1 (if peeling), but may be several more.
duke@435 1653
duke@435 1654 // The main loop will start cache-line aligned with at least 1
duke@435 1655 // iteration of the unrolled body (zero-trip test required) and
duke@435 1656 // will have some range checks removed.
duke@435 1657
duke@435 1658 // A post-loop will finish any odd iterations (leftover after
duke@435 1659 // unrolling), plus any needed for RCE purposes.
duke@435 1660
duke@435 1661 bool should_unroll = policy_unroll(phase);
duke@435 1662
duke@435 1663 bool should_rce = policy_range_check(phase);
duke@435 1664
duke@435 1665 bool should_align = policy_align(phase);
duke@435 1666
duke@435 1667 // If not RCE'ing (iteration splitting) or Aligning, then we do not
duke@435 1668 // need a pre-loop. We may still need to peel an initial iteration but
duke@435 1669 // we will not be needing an unknown number of pre-iterations.
duke@435 1670 //
duke@435 1671 // Basically, if may_rce_align reports FALSE first time through,
duke@435 1672 // we will not be able to later do RCE or Aligning on this loop.
duke@435 1673 bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
duke@435 1674
duke@435 1675 // If we have any of these conditions (RCE, alignment, unrolling) met, then
duke@435 1676 // we switch to the pre-/main-/post-loop model. This model also covers
duke@435 1677 // peeling.
duke@435 1678 if( should_rce || should_align || should_unroll ) {
duke@435 1679 if( cl->is_normal_loop() ) // Convert to 'pre/main/post' loops
duke@435 1680 phase->insert_pre_post_loops(this,old_new, !may_rce_align);
duke@435 1681
duke@435 1682 // Adjust the pre- and main-loop limits to let the pre and post loops run
duke@435 1683 // with full checks, but the main-loop with no checks. Remove said
duke@435 1684 // checks from the main body.
duke@435 1685 if( should_rce )
duke@435 1686 phase->do_range_check(this,old_new);
duke@435 1687
duke@435 1688 // Double loop body for unrolling. Adjust the minimum-trip test (will do
duke@435 1689 // twice as many iterations as before) and the main body limit (only do
duke@435 1690 // an even number of trips). If we are peeling, we might enable some RCE
duke@435 1691 // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
duke@435 1692 // peeling.
cfang@1607 1693 if( should_unroll && !should_peel )
cfang@1607 1694 phase->do_unroll(this,old_new, true);
duke@435 1695
duke@435 1696 // Adjust the pre-loop limits to align the main body
duke@435 1697 // iterations.
duke@435 1698 if( should_align )
duke@435 1699 Unimplemented();
duke@435 1700
duke@435 1701 } else { // Else we have an unchanged counted loop
duke@435 1702 if( should_peel ) // Might want to peel but do nothing else
duke@435 1703 phase->do_peeling(this,old_new);
duke@435 1704 }
never@836 1705 return true;
duke@435 1706 }
duke@435 1707
duke@435 1708
duke@435 1709 //=============================================================================
duke@435 1710 //------------------------------iteration_split--------------------------------
never@836 1711 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
duke@435 1712 // Recursively iteration split nested loops
never@836 1713 if( _child && !_child->iteration_split( phase, old_new ))
never@836 1714 return false;
duke@435 1715
duke@435 1716 // Clean out prior deadwood
duke@435 1717 DCE_loop_body();
duke@435 1718
duke@435 1719
duke@435 1720 // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
duke@435 1721 // Replace with a 1-in-10 exit guess.
duke@435 1722 if( _parent /*not the root loop*/ &&
duke@435 1723 !_irreducible &&
duke@435 1724 // Also ignore the occasional dead backedge
duke@435 1725 !tail()->is_top() ) {
duke@435 1726 adjust_loop_exit_prob(phase);
duke@435 1727 }
duke@435 1728
duke@435 1729
duke@435 1730 // Gate unrolling, RCE and peeling efforts.
duke@435 1731 if( !_child && // If not an inner loop, do not split
duke@435 1732 !_irreducible &&
kvn@474 1733 _allow_optimizations &&
duke@435 1734 !tail()->is_top() ) { // Also ignore the occasional dead backedge
duke@435 1735 if (!_has_call) {
cfang@1607 1736 if (!iteration_split_impl( phase, old_new )) {
cfang@1607 1737 return false;
cfang@1607 1738 }
duke@435 1739 } else if (policy_unswitching(phase)) {
duke@435 1740 phase->do_unswitching(this, old_new);
duke@435 1741 }
duke@435 1742 }
duke@435 1743
duke@435 1744 // Minor offset re-organization to remove loop-fallout uses of
duke@435 1745 // trip counter.
duke@435 1746 if( _head->is_CountedLoop() ) phase->reorg_offsets( this );
never@836 1747 if( _next && !_next->iteration_split( phase, old_new ))
never@836 1748 return false;
never@836 1749 return true;
duke@435 1750 }
cfang@1607 1751
cfang@1607 1752 //-------------------------------is_uncommon_trap_proj----------------------------
cfang@1607 1753 // Return true if proj is the form of "proj->[region->..]call_uct"
cfang@1607 1754 bool PhaseIdealLoop::is_uncommon_trap_proj(ProjNode* proj, bool must_reason_predicate) {
cfang@1607 1755 int path_limit = 10;
cfang@1607 1756 assert(proj, "invalid argument");
cfang@1607 1757 Node* out = proj;
cfang@1607 1758 for (int ct = 0; ct < path_limit; ct++) {
cfang@1607 1759 out = out->unique_ctrl_out();
cfang@1607 1760 if (out == NULL || out->is_Root() || out->is_Start())
cfang@1607 1761 return false;
cfang@1607 1762 if (out->is_CallStaticJava()) {
cfang@1607 1763 int req = out->as_CallStaticJava()->uncommon_trap_request();
cfang@1607 1764 if (req != 0) {
cfang@1607 1765 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(req);
cfang@1607 1766 if (!must_reason_predicate || reason == Deoptimization::Reason_predicate){
cfang@1607 1767 return true;
cfang@1607 1768 }
cfang@1607 1769 }
cfang@1607 1770 return false; // don't do further after call
cfang@1607 1771 }
cfang@1607 1772 }
cfang@1607 1773 return false;
cfang@1607 1774 }
cfang@1607 1775
cfang@1607 1776 //-------------------------------is_uncommon_trap_if_pattern-------------------------
cfang@1607 1777 // Return true for "if(test)-> proj -> ...
cfang@1607 1778 // |
cfang@1607 1779 // V
cfang@1607 1780 // other_proj->[region->..]call_uct"
cfang@1607 1781 //
cfang@1607 1782 // "must_reason_predicate" means the uct reason must be Reason_predicate
cfang@1607 1783 bool PhaseIdealLoop::is_uncommon_trap_if_pattern(ProjNode *proj, bool must_reason_predicate) {
cfang@1607 1784 Node *in0 = proj->in(0);
cfang@1607 1785 if (!in0->is_If()) return false;
kvn@1715 1786 // Variation of a dead If node.
kvn@1715 1787 if (in0->outcnt() < 2) return false;
cfang@1607 1788 IfNode* iff = in0->as_If();
cfang@1607 1789
cfang@1607 1790 // we need "If(Conv2B(Opaque1(...)))" pattern for must_reason_predicate
cfang@1607 1791 if (must_reason_predicate) {
cfang@1607 1792 if (iff->in(1)->Opcode() != Op_Conv2B ||
cfang@1607 1793 iff->in(1)->in(1)->Opcode() != Op_Opaque1) {
cfang@1607 1794 return false;
cfang@1607 1795 }
cfang@1607 1796 }
cfang@1607 1797
cfang@1607 1798 ProjNode* other_proj = iff->proj_out(1-proj->_con)->as_Proj();
cfang@1607 1799 return is_uncommon_trap_proj(other_proj, must_reason_predicate);
cfang@1607 1800 }
cfang@1607 1801
cfang@1607 1802 //------------------------------create_new_if_for_predicate------------------------
cfang@1607 1803 // create a new if above the uct_if_pattern for the predicate to be promoted.
cfang@1607 1804 //
cfang@1607 1805 // before after
cfang@1607 1806 // ---------- ----------
cfang@1607 1807 // ctrl ctrl
cfang@1607 1808 // | |
cfang@1607 1809 // | |
cfang@1607 1810 // v v
cfang@1607 1811 // iff new_iff
cfang@1607 1812 // / \ / \
cfang@1607 1813 // / \ / \
cfang@1607 1814 // v v v v
cfang@1607 1815 // uncommon_proj cont_proj if_uct if_cont
cfang@1607 1816 // \ | | | |
cfang@1607 1817 // \ | | | |
cfang@1607 1818 // v v v | v
cfang@1607 1819 // rgn loop | iff
cfang@1607 1820 // | | / \
cfang@1607 1821 // | | / \
cfang@1607 1822 // v | v v
cfang@1607 1823 // uncommon_trap | uncommon_proj cont_proj
cfang@1607 1824 // \ \ | |
cfang@1607 1825 // \ \ | |
cfang@1607 1826 // v v v v
cfang@1607 1827 // rgn loop
cfang@1607 1828 // |
cfang@1607 1829 // |
cfang@1607 1830 // v
cfang@1607 1831 // uncommon_trap
cfang@1607 1832 //
cfang@1607 1833 //
cfang@1607 1834 // We will create a region to guard the uct call if there is no one there.
cfang@1607 1835 // The true projecttion (if_cont) of the new_iff is returned.
cfang@1607 1836 ProjNode* PhaseIdealLoop::create_new_if_for_predicate(ProjNode* cont_proj) {
cfang@1607 1837 assert(is_uncommon_trap_if_pattern(cont_proj, true), "must be a uct if pattern!");
cfang@1607 1838 IfNode* iff = cont_proj->in(0)->as_If();
cfang@1607 1839
cfang@1607 1840 ProjNode *uncommon_proj = iff->proj_out(1 - cont_proj->_con);
cfang@1607 1841 Node *rgn = uncommon_proj->unique_ctrl_out();
cfang@1607 1842 assert(rgn->is_Region() || rgn->is_Call(), "must be a region or call uct");
cfang@1607 1843
cfang@1607 1844 if (!rgn->is_Region()) { // create a region to guard the call
cfang@1607 1845 assert(rgn->is_Call(), "must be call uct");
cfang@1607 1846 CallNode* call = rgn->as_Call();
cfang@1607 1847 rgn = new (C, 1) RegionNode(1);
cfang@1607 1848 _igvn.set_type(rgn, rgn->bottom_type());
cfang@1607 1849 rgn->add_req(uncommon_proj);
cfang@1607 1850 set_idom(rgn, idom(uncommon_proj), dom_depth(uncommon_proj)+1);
cfang@1607 1851 _igvn.hash_delete(call);
cfang@1607 1852 call->set_req(0, rgn);
cfang@1607 1853 }
cfang@1607 1854
cfang@1607 1855 // Create new_iff
cfang@1607 1856 uint iffdd = dom_depth(iff);
cfang@1607 1857 IdealLoopTree* lp = get_loop(iff);
cfang@1607 1858 IfNode *new_iff = new (C, 2) IfNode(iff->in(0), NULL, iff->_prob, iff->_fcnt);
cfang@1607 1859 register_node(new_iff, lp, idom(iff), iffdd);
cfang@1607 1860 Node *if_cont = new (C, 1) IfTrueNode(new_iff);
cfang@1607 1861 Node *if_uct = new (C, 1) IfFalseNode(new_iff);
cfang@1607 1862 if (cont_proj->is_IfFalse()) {
cfang@1607 1863 // Swap
cfang@1607 1864 Node* tmp = if_uct; if_uct = if_cont; if_cont = tmp;
cfang@1607 1865 }
cfang@1607 1866 register_node(if_cont, lp, new_iff, iffdd);
cfang@1607 1867 register_node(if_uct, get_loop(rgn), new_iff, iffdd);
cfang@1607 1868
cfang@1607 1869 // if_cont to iff
cfang@1607 1870 _igvn.hash_delete(iff);
cfang@1607 1871 iff->set_req(0, if_cont);
cfang@1607 1872 set_idom(iff, if_cont, dom_depth(iff));
cfang@1607 1873
cfang@1607 1874 // if_uct to rgn
cfang@1607 1875 _igvn.hash_delete(rgn);
cfang@1607 1876 rgn->add_req(if_uct);
cfang@1607 1877 Node* ridom = idom(rgn);
cfang@1607 1878 Node* nrdom = dom_lca(ridom, new_iff);
cfang@1607 1879 set_idom(rgn, nrdom, dom_depth(rgn));
cfang@1607 1880
cfang@1607 1881 // rgn must have no phis
cfang@1607 1882 assert(!rgn->as_Region()->has_phi(), "region must have no phis");
cfang@1607 1883
cfang@1607 1884 return if_cont->as_Proj();
cfang@1607 1885 }
cfang@1607 1886
cfang@1607 1887 //------------------------------find_predicate_insertion_point--------------------------
cfang@1607 1888 // Find a good location to insert a predicate
cfang@1607 1889 ProjNode* PhaseIdealLoop::find_predicate_insertion_point(Node* start_c) {
cfang@1607 1890 if (start_c == C->root() || !start_c->is_Proj())
cfang@1607 1891 return NULL;
cfang@1607 1892 if (is_uncommon_trap_if_pattern(start_c->as_Proj(), true/*Reason_Predicate*/)) {
cfang@1607 1893 return start_c->as_Proj();
cfang@1607 1894 }
cfang@1607 1895 return NULL;
cfang@1607 1896 }
cfang@1607 1897
cfang@1607 1898 //------------------------------Invariance-----------------------------------
cfang@1607 1899 // Helper class for loop_predication_impl to compute invariance on the fly and
cfang@1607 1900 // clone invariants.
cfang@1607 1901 class Invariance : public StackObj {
cfang@1607 1902 VectorSet _visited, _invariant;
cfang@1607 1903 Node_Stack _stack;
cfang@1607 1904 VectorSet _clone_visited;
cfang@1607 1905 Node_List _old_new; // map of old to new (clone)
cfang@1607 1906 IdealLoopTree* _lpt;
cfang@1607 1907 PhaseIdealLoop* _phase;
cfang@1607 1908
cfang@1607 1909 // Helper function to set up the invariance for invariance computation
cfang@1607 1910 // If n is a known invariant, set up directly. Otherwise, look up the
cfang@1607 1911 // the possibility to push n onto the stack for further processing.
cfang@1607 1912 void visit(Node* use, Node* n) {
cfang@1607 1913 if (_lpt->is_invariant(n)) { // known invariant
cfang@1607 1914 _invariant.set(n->_idx);
cfang@1607 1915 } else if (!n->is_CFG()) {
cfang@1607 1916 Node *n_ctrl = _phase->ctrl_or_self(n);
cfang@1607 1917 Node *u_ctrl = _phase->ctrl_or_self(use); // self if use is a CFG
cfang@1607 1918 if (_phase->is_dominator(n_ctrl, u_ctrl)) {
cfang@1607 1919 _stack.push(n, n->in(0) == NULL ? 1 : 0);
cfang@1607 1920 }
cfang@1607 1921 }
cfang@1607 1922 }
cfang@1607 1923
cfang@1607 1924 // Compute invariance for "the_node" and (possibly) all its inputs recursively
cfang@1607 1925 // on the fly
cfang@1607 1926 void compute_invariance(Node* n) {
cfang@1607 1927 assert(_visited.test(n->_idx), "must be");
cfang@1607 1928 visit(n, n);
cfang@1607 1929 while (_stack.is_nonempty()) {
cfang@1607 1930 Node* n = _stack.node();
cfang@1607 1931 uint idx = _stack.index();
cfang@1607 1932 if (idx == n->req()) { // all inputs are processed
cfang@1607 1933 _stack.pop();
cfang@1607 1934 // n is invariant if it's inputs are all invariant
cfang@1607 1935 bool all_inputs_invariant = true;
cfang@1607 1936 for (uint i = 0; i < n->req(); i++) {
cfang@1607 1937 Node* in = n->in(i);
cfang@1607 1938 if (in == NULL) continue;
cfang@1607 1939 assert(_visited.test(in->_idx), "must have visited input");
cfang@1607 1940 if (!_invariant.test(in->_idx)) { // bad guy
cfang@1607 1941 all_inputs_invariant = false;
cfang@1607 1942 break;
cfang@1607 1943 }
cfang@1607 1944 }
cfang@1607 1945 if (all_inputs_invariant) {
cfang@1607 1946 _invariant.set(n->_idx); // I am a invariant too
cfang@1607 1947 }
cfang@1607 1948 } else { // process next input
cfang@1607 1949 _stack.set_index(idx + 1);
cfang@1607 1950 Node* m = n->in(idx);
cfang@1607 1951 if (m != NULL && !_visited.test_set(m->_idx)) {
cfang@1607 1952 visit(n, m);
cfang@1607 1953 }
cfang@1607 1954 }
cfang@1607 1955 }
cfang@1607 1956 }
cfang@1607 1957
cfang@1607 1958 // Helper function to set up _old_new map for clone_nodes.
cfang@1607 1959 // If n is a known invariant, set up directly ("clone" of n == n).
cfang@1607 1960 // Otherwise, push n onto the stack for real cloning.
cfang@1607 1961 void clone_visit(Node* n) {
cfang@1607 1962 assert(_invariant.test(n->_idx), "must be invariant");
cfang@1607 1963 if (_lpt->is_invariant(n)) { // known invariant
cfang@1607 1964 _old_new.map(n->_idx, n);
cfang@1607 1965 } else{ // to be cloned
cfang@1607 1966 assert (!n->is_CFG(), "should not see CFG here");
cfang@1607 1967 _stack.push(n, n->in(0) == NULL ? 1 : 0);
cfang@1607 1968 }
cfang@1607 1969 }
cfang@1607 1970
cfang@1607 1971 // Clone "n" and (possibly) all its inputs recursively
cfang@1607 1972 void clone_nodes(Node* n, Node* ctrl) {
cfang@1607 1973 clone_visit(n);
cfang@1607 1974 while (_stack.is_nonempty()) {
cfang@1607 1975 Node* n = _stack.node();
cfang@1607 1976 uint idx = _stack.index();
cfang@1607 1977 if (idx == n->req()) { // all inputs processed, clone n!
cfang@1607 1978 _stack.pop();
cfang@1607 1979 // clone invariant node
cfang@1607 1980 Node* n_cl = n->clone();
cfang@1607 1981 _old_new.map(n->_idx, n_cl);
cfang@1607 1982 _phase->register_new_node(n_cl, ctrl);
cfang@1607 1983 for (uint i = 0; i < n->req(); i++) {
cfang@1607 1984 Node* in = n_cl->in(i);
cfang@1607 1985 if (in == NULL) continue;
cfang@1607 1986 n_cl->set_req(i, _old_new[in->_idx]);
cfang@1607 1987 }
cfang@1607 1988 } else { // process next input
cfang@1607 1989 _stack.set_index(idx + 1);
cfang@1607 1990 Node* m = n->in(idx);
cfang@1607 1991 if (m != NULL && !_clone_visited.test_set(m->_idx)) {
cfang@1607 1992 clone_visit(m); // visit the input
cfang@1607 1993 }
cfang@1607 1994 }
cfang@1607 1995 }
cfang@1607 1996 }
cfang@1607 1997
cfang@1607 1998 public:
cfang@1607 1999 Invariance(Arena* area, IdealLoopTree* lpt) :
cfang@1607 2000 _lpt(lpt), _phase(lpt->_phase),
cfang@1607 2001 _visited(area), _invariant(area), _stack(area, 10 /* guess */),
cfang@1607 2002 _clone_visited(area), _old_new(area)
cfang@1607 2003 {}
cfang@1607 2004
cfang@1607 2005 // Map old to n for invariance computation and clone
cfang@1607 2006 void map_ctrl(Node* old, Node* n) {
cfang@1607 2007 assert(old->is_CFG() && n->is_CFG(), "must be");
cfang@1607 2008 _old_new.map(old->_idx, n); // "clone" of old is n
cfang@1607 2009 _invariant.set(old->_idx); // old is invariant
cfang@1607 2010 _clone_visited.set(old->_idx);
cfang@1607 2011 }
cfang@1607 2012
cfang@1607 2013 // Driver function to compute invariance
cfang@1607 2014 bool is_invariant(Node* n) {
cfang@1607 2015 if (!_visited.test_set(n->_idx))
cfang@1607 2016 compute_invariance(n);
cfang@1607 2017 return (_invariant.test(n->_idx) != 0);
cfang@1607 2018 }
cfang@1607 2019
cfang@1607 2020 // Driver function to clone invariant
cfang@1607 2021 Node* clone(Node* n, Node* ctrl) {
cfang@1607 2022 assert(ctrl->is_CFG(), "must be");
cfang@1607 2023 assert(_invariant.test(n->_idx), "must be an invariant");
cfang@1607 2024 if (!_clone_visited.test(n->_idx))
cfang@1607 2025 clone_nodes(n, ctrl);
cfang@1607 2026 return _old_new[n->_idx];
cfang@1607 2027 }
cfang@1607 2028 };
cfang@1607 2029
cfang@1607 2030 //------------------------------is_range_check_if -----------------------------------
cfang@1607 2031 // Returns true if the predicate of iff is in "scale*iv + offset u< load_range(ptr)" format
cfang@1607 2032 // Note: this function is particularly designed for loop predication. We require load_range
cfang@1607 2033 // and offset to be loop invariant computed on the fly by "invar"
cfang@1607 2034 bool IdealLoopTree::is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const {
cfang@1607 2035 if (!is_loop_exit(iff)) {
cfang@1607 2036 return false;
cfang@1607 2037 }
cfang@1607 2038 if (!iff->in(1)->is_Bool()) {
cfang@1607 2039 return false;
cfang@1607 2040 }
cfang@1607 2041 const BoolNode *bol = iff->in(1)->as_Bool();
cfang@1607 2042 if (bol->_test._test != BoolTest::lt) {
cfang@1607 2043 return false;
cfang@1607 2044 }
cfang@1607 2045 if (!bol->in(1)->is_Cmp()) {
cfang@1607 2046 return false;
cfang@1607 2047 }
cfang@1607 2048 const CmpNode *cmp = bol->in(1)->as_Cmp();
cfang@1607 2049 if (cmp->Opcode() != Op_CmpU ) {
cfang@1607 2050 return false;
cfang@1607 2051 }
never@2118 2052 Node* range = cmp->in(2);
never@2118 2053 if (range->Opcode() != Op_LoadRange) {
never@2118 2054 const TypeInt* tint = phase->_igvn.type(range)->isa_int();
never@2118 2055 if (!OptimizeFill || tint == NULL || tint->empty() || tint->_lo < 0) {
never@2118 2056 // Allow predication on positive values that aren't LoadRanges.
never@2118 2057 // This allows optimization of loops where the length of the
never@2118 2058 // array is a known value and doesn't need to be loaded back
never@2118 2059 // from the array.
never@2118 2060 return false;
never@2118 2061 }
cfang@1607 2062 }
never@2118 2063 if (!invar.is_invariant(range)) {
cfang@1607 2064 return false;
cfang@1607 2065 }
cfang@1607 2066 Node *iv = _head->as_CountedLoop()->phi();
cfang@1607 2067 int scale = 0;
cfang@1607 2068 Node *offset = NULL;
cfang@1607 2069 if (!phase->is_scaled_iv_plus_offset(cmp->in(1), iv, &scale, &offset)) {
cfang@1607 2070 return false;
cfang@1607 2071 }
cfang@1607 2072 if(offset && !invar.is_invariant(offset)) { // offset must be invariant
cfang@1607 2073 return false;
cfang@1607 2074 }
cfang@1607 2075 return true;
cfang@1607 2076 }
cfang@1607 2077
cfang@1607 2078 //------------------------------rc_predicate-----------------------------------
cfang@1607 2079 // Create a range check predicate
cfang@1607 2080 //
cfang@1607 2081 // for (i = init; i < limit; i += stride) {
cfang@1607 2082 // a[scale*i+offset]
cfang@1607 2083 // }
cfang@1607 2084 //
cfang@1607 2085 // Compute max(scale*i + offset) for init <= i < limit and build the predicate
cfang@1607 2086 // as "max(scale*i + offset) u< a.length".
cfang@1607 2087 //
cfang@1607 2088 // There are two cases for max(scale*i + offset):
cfang@1607 2089 // (1) stride*scale > 0
cfang@1607 2090 // max(scale*i + offset) = scale*(limit-stride) + offset
cfang@1607 2091 // (2) stride*scale < 0
cfang@1607 2092 // max(scale*i + offset) = scale*init + offset
cfang@1607 2093 BoolNode* PhaseIdealLoop::rc_predicate(Node* ctrl,
cfang@1607 2094 int scale, Node* offset,
cfang@1607 2095 Node* init, Node* limit, Node* stride,
never@1738 2096 Node* range, bool upper) {
never@1738 2097 DEBUG_ONLY(ttyLocker ttyl);
never@1738 2098 if (TraceLoopPredicate) tty->print("rc_predicate ");
never@1738 2099
cfang@1607 2100 Node* max_idx_expr = init;
cfang@1607 2101 int stride_con = stride->get_int();
never@1738 2102 if ((stride_con > 0) == (scale > 0) == upper) {
cfang@1607 2103 max_idx_expr = new (C, 3) SubINode(limit, stride);
cfang@1607 2104 register_new_node(max_idx_expr, ctrl);
never@1738 2105 if (TraceLoopPredicate) tty->print("(limit - stride) ");
never@1738 2106 } else {
never@1738 2107 if (TraceLoopPredicate) tty->print("init ");
cfang@1607 2108 }
cfang@1607 2109
cfang@1607 2110 if (scale != 1) {
cfang@1607 2111 ConNode* con_scale = _igvn.intcon(scale);
cfang@1607 2112 max_idx_expr = new (C, 3) MulINode(max_idx_expr, con_scale);
cfang@1607 2113 register_new_node(max_idx_expr, ctrl);
never@1738 2114 if (TraceLoopPredicate) tty->print("* %d ", scale);
cfang@1607 2115 }
cfang@1607 2116
cfang@1607 2117 if (offset && (!offset->is_Con() || offset->get_int() != 0)){
cfang@1607 2118 max_idx_expr = new (C, 3) AddINode(max_idx_expr, offset);
cfang@1607 2119 register_new_node(max_idx_expr, ctrl);
never@1738 2120 if (TraceLoopPredicate)
never@1738 2121 if (offset->is_Con()) tty->print("+ %d ", offset->get_int());
never@1738 2122 else tty->print("+ offset ");
cfang@1607 2123 }
cfang@1607 2124
cfang@1607 2125 CmpUNode* cmp = new (C, 3) CmpUNode(max_idx_expr, range);
cfang@1607 2126 register_new_node(cmp, ctrl);
cfang@1607 2127 BoolNode* bol = new (C, 2) BoolNode(cmp, BoolTest::lt);
cfang@1607 2128 register_new_node(bol, ctrl);
never@1738 2129
never@1738 2130 if (TraceLoopPredicate) tty->print_cr("<u range");
cfang@1607 2131 return bol;
cfang@1607 2132 }
cfang@1607 2133
cfang@1607 2134 //------------------------------ loop_predication_impl--------------------------
cfang@1607 2135 // Insert loop predicates for null checks and range checks
cfang@1607 2136 bool PhaseIdealLoop::loop_predication_impl(IdealLoopTree *loop) {
cfang@1607 2137 if (!UseLoopPredicate) return false;
cfang@1607 2138
never@1710 2139 if (!loop->_head->is_Loop()) {
never@1710 2140 // Could be a simple region when irreducible loops are present.
never@1710 2141 return false;
never@1710 2142 }
never@1710 2143
never@1710 2144 CountedLoopNode *cl = NULL;
never@1710 2145 if (loop->_head->is_CountedLoop()) {
never@1710 2146 cl = loop->_head->as_CountedLoop();
never@1710 2147 // do nothing for iteration-splitted loops
never@1710 2148 if (!cl->is_normal_loop()) return false;
never@1710 2149 }
never@1710 2150
cfang@1607 2151 // Too many traps seen?
cfang@1607 2152 bool tmt = C->too_many_traps(C->method(), 0, Deoptimization::Reason_predicate);
cfang@1607 2153 int tc = C->trap_count(Deoptimization::Reason_predicate);
cfang@1607 2154 if (tmt || tc > 0) {
cfang@1607 2155 if (TraceLoopPredicate) {
cfang@1607 2156 tty->print_cr("too many predicate traps: %d", tc);
cfang@1607 2157 C->method()->print(); // which method has too many predicate traps
cfang@1607 2158 tty->print_cr("");
cfang@1607 2159 }
cfang@1607 2160 return false;
cfang@1607 2161 }
cfang@1607 2162
cfang@1607 2163 LoopNode *lpn = loop->_head->as_Loop();
cfang@1607 2164 Node* entry = lpn->in(LoopNode::EntryControl);
cfang@1607 2165
cfang@1607 2166 ProjNode *predicate_proj = find_predicate_insertion_point(entry);
cfang@1607 2167 if (!predicate_proj){
cfang@1607 2168 #ifndef PRODUCT
cfang@1607 2169 if (TraceLoopPredicate) {
cfang@1607 2170 tty->print("missing predicate:");
cfang@1607 2171 loop->dump_head();
cfang@1607 2172 }
cfang@1607 2173 #endif
cfang@1607 2174 return false;
cfang@1607 2175 }
cfang@1607 2176
cfang@1607 2177 ConNode* zero = _igvn.intcon(0);
cfang@1607 2178 set_ctrl(zero, C->root());
cfang@1607 2179 Node *cond_false = new (C, 2) Conv2BNode(zero);
cfang@1607 2180 register_new_node(cond_false, C->root());
cfang@1607 2181 ConNode* one = _igvn.intcon(1);
cfang@1607 2182 set_ctrl(one, C->root());
cfang@1607 2183 Node *cond_true = new (C, 2) Conv2BNode(one);
cfang@1607 2184 register_new_node(cond_true, C->root());
cfang@1607 2185
cfang@1607 2186 ResourceArea *area = Thread::current()->resource_area();
cfang@1607 2187 Invariance invar(area, loop);
cfang@1607 2188
cfang@1607 2189 // Create list of if-projs such that a newer proj dominates all older
cfang@1607 2190 // projs in the list, and they all dominate loop->tail()
cfang@1607 2191 Node_List if_proj_list(area);
cfang@1607 2192 LoopNode *head = loop->_head->as_Loop();
cfang@1607 2193 Node *current_proj = loop->tail(); //start from tail
cfang@1607 2194 while ( current_proj != head ) {
cfang@1607 2195 if (loop == get_loop(current_proj) && // still in the loop ?
cfang@1607 2196 current_proj->is_Proj() && // is a projection ?
cfang@1607 2197 current_proj->in(0)->Opcode() == Op_If) { // is a if projection ?
cfang@1607 2198 if_proj_list.push(current_proj);
cfang@1607 2199 }
cfang@1607 2200 current_proj = idom(current_proj);
cfang@1607 2201 }
cfang@1607 2202
cfang@1607 2203 bool hoisted = false; // true if at least one proj is promoted
cfang@1607 2204 while (if_proj_list.size() > 0) {
cfang@1607 2205 // Following are changed to nonnull when a predicate can be hoisted
cfang@1607 2206 ProjNode* new_predicate_proj = NULL;
cfang@1607 2207
cfang@1607 2208 ProjNode* proj = if_proj_list.pop()->as_Proj();
cfang@1607 2209 IfNode* iff = proj->in(0)->as_If();
cfang@1607 2210
cfang@1607 2211 if (!is_uncommon_trap_if_pattern(proj)) {
cfang@1607 2212 if (loop->is_loop_exit(iff)) {
cfang@1607 2213 // stop processing the remaining projs in the list because the execution of them
cfang@1607 2214 // depends on the condition of "iff" (iff->in(1)).
cfang@1607 2215 break;
cfang@1607 2216 } else {
cfang@1607 2217 // Both arms are inside the loop. There are two cases:
cfang@1607 2218 // (1) there is one backward branch. In this case, any remaining proj
cfang@1607 2219 // in the if_proj list post-dominates "iff". So, the condition of "iff"
cfang@1607 2220 // does not determine the execution the remining projs directly, and we
cfang@1607 2221 // can safely continue.
cfang@1607 2222 // (2) both arms are forwarded, i.e. a diamond shape. In this case, "proj"
cfang@1607 2223 // does not dominate loop->tail(), so it can not be in the if_proj list.
cfang@1607 2224 continue;
cfang@1607 2225 }
cfang@1607 2226 }
cfang@1607 2227
cfang@1607 2228 Node* test = iff->in(1);
cfang@1607 2229 if (!test->is_Bool()){ //Conv2B, ...
cfang@1607 2230 continue;
cfang@1607 2231 }
cfang@1607 2232 BoolNode* bol = test->as_Bool();
cfang@1607 2233 if (invar.is_invariant(bol)) {
cfang@1607 2234 // Invariant test
cfang@1607 2235 new_predicate_proj = create_new_if_for_predicate(predicate_proj);
cfang@1607 2236 Node* ctrl = new_predicate_proj->in(0)->as_If()->in(0);
never@1738 2237 BoolNode* new_predicate_bol = invar.clone(bol, ctrl)->as_Bool();
never@1738 2238
never@1738 2239 // Negate test if necessary
never@1738 2240 bool negated = false;
never@1738 2241 if (proj->_con != predicate_proj->_con) {
never@1738 2242 new_predicate_bol = new (C, 2) BoolNode(new_predicate_bol->in(1), new_predicate_bol->_test.negate());
never@1738 2243 register_new_node(new_predicate_bol, ctrl);
never@1738 2244 negated = true;
never@1738 2245 }
never@1738 2246 IfNode* new_predicate_iff = new_predicate_proj->in(0)->as_If();
never@1738 2247 _igvn.hash_delete(new_predicate_iff);
never@1738 2248 new_predicate_iff->set_req(1, new_predicate_bol);
never@1738 2249 if (TraceLoopPredicate) tty->print_cr("invariant if%s: %d", negated ? " negated" : "", new_predicate_iff->_idx);
never@1738 2250
cfang@1607 2251 } else if (cl != NULL && loop->is_range_check_if(iff, this, invar)) {
never@1738 2252 assert(proj->_con == predicate_proj->_con, "must match");
never@1738 2253
never@1738 2254 // Range check for counted loops
cfang@1607 2255 const Node* cmp = bol->in(1)->as_Cmp();
cfang@1607 2256 Node* idx = cmp->in(1);
cfang@1607 2257 assert(!invar.is_invariant(idx), "index is variant");
never@2118 2258 assert(cmp->in(2)->Opcode() == Op_LoadRange || OptimizeFill, "must be");
never@2118 2259 Node* rng = cmp->in(2);
never@2118 2260 assert(invar.is_invariant(rng), "range must be invariant");
cfang@1607 2261 int scale = 1;
cfang@1607 2262 Node* offset = zero;
cfang@1607 2263 bool ok = is_scaled_iv_plus_offset(idx, cl->phi(), &scale, &offset);
cfang@1607 2264 assert(ok, "must be index expression");
never@1738 2265
never@1738 2266 Node* init = cl->init_trip();
never@1738 2267 Node* limit = cl->limit();
never@1738 2268 Node* stride = cl->stride();
never@1738 2269
never@1738 2270 // Build if's for the upper and lower bound tests. The
never@1738 2271 // lower_bound test will dominate the upper bound test and all
never@1738 2272 // cloned or created nodes will use the lower bound test as
never@1738 2273 // their declared control.
never@1738 2274 ProjNode* lower_bound_proj = create_new_if_for_predicate(predicate_proj);
never@1738 2275 ProjNode* upper_bound_proj = create_new_if_for_predicate(predicate_proj);
never@1738 2276 assert(upper_bound_proj->in(0)->as_If()->in(0) == lower_bound_proj, "should dominate");
never@1738 2277 Node *ctrl = lower_bound_proj->in(0)->as_If()->in(0);
never@1738 2278
never@1738 2279 // Perform cloning to keep Invariance state correct since the
never@1738 2280 // late schedule will place invariant things in the loop.
never@2118 2281 rng = invar.clone(rng, ctrl);
cfang@1607 2282 if (offset && offset != zero) {
cfang@1607 2283 assert(invar.is_invariant(offset), "offset must be loop invariant");
cfang@1607 2284 offset = invar.clone(offset, ctrl);
cfang@1607 2285 }
cfang@1607 2286
never@1738 2287 // Test the lower bound
never@2118 2288 Node* lower_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, rng, false);
never@1738 2289 IfNode* lower_bound_iff = lower_bound_proj->in(0)->as_If();
never@1738 2290 _igvn.hash_delete(lower_bound_iff);
never@1738 2291 lower_bound_iff->set_req(1, lower_bound_bol);
never@1738 2292 if (TraceLoopPredicate) tty->print_cr("lower bound check if: %d", lower_bound_iff->_idx);
never@1738 2293
never@1738 2294 // Test the upper bound
never@2118 2295 Node* upper_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, rng, true);
never@1738 2296 IfNode* upper_bound_iff = upper_bound_proj->in(0)->as_If();
never@1738 2297 _igvn.hash_delete(upper_bound_iff);
never@1738 2298 upper_bound_iff->set_req(1, upper_bound_bol);
never@1738 2299 if (TraceLoopPredicate) tty->print_cr("upper bound check if: %d", lower_bound_iff->_idx);
never@1738 2300
never@1738 2301 // Fall through into rest of the clean up code which will move
never@1738 2302 // any dependent nodes onto the upper bound test.
never@1738 2303 new_predicate_proj = upper_bound_proj;
never@1738 2304 } else {
cfang@1607 2305 // The other proj of the "iff" is a uncommon trap projection, and we can assume
cfang@1607 2306 // the other proj will not be executed ("executed" means uct raised).
cfang@1607 2307 continue;
never@1738 2308 }
cfang@1607 2309
never@1738 2310 // Success - attach condition (new_predicate_bol) to predicate if
never@1738 2311 invar.map_ctrl(proj, new_predicate_proj); // so that invariance test can be appropriate
never@1738 2312
never@1738 2313 // Eliminate the old if in the loop body
never@1738 2314 _igvn.hash_delete(iff);
never@1738 2315 iff->set_req(1, proj->is_IfFalse() ? cond_false : cond_true);
never@1738 2316
never@1738 2317 Node* ctrl = new_predicate_proj; // new control
never@1738 2318 ProjNode* dp = proj; // old control
never@1738 2319 assert(get_loop(dp) == loop, "guaranteed at the time of collecting proj");
never@1738 2320 // Find nodes (depends only on the test) off the surviving projection;
never@1738 2321 // move them outside the loop with the control of proj_clone
never@1738 2322 for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
never@1738 2323 Node* cd = dp->fast_out(i); // Control-dependent node
never@1738 2324 if (cd->depends_only_on_test()) {
never@1738 2325 assert(cd->in(0) == dp, "");
never@1738 2326 _igvn.hash_delete(cd);
never@1738 2327 cd->set_req(0, ctrl); // ctrl, not NULL
never@1738 2328 set_early_ctrl(cd);
never@1738 2329 _igvn._worklist.push(cd);
never@1738 2330 IdealLoopTree *new_loop = get_loop(get_ctrl(cd));
never@1738 2331 if (new_loop != loop) {
never@1738 2332 if (!loop->_child) loop->_body.yank(cd);
never@1738 2333 if (!new_loop->_child ) new_loop->_body.push(cd);
never@1738 2334 }
never@1738 2335 --i;
never@1738 2336 --imax;
cfang@1607 2337 }
never@1738 2338 }
cfang@1607 2339
never@1738 2340 hoisted = true;
never@1738 2341 C->set_major_progress();
cfang@1607 2342 } // end while
cfang@1607 2343
cfang@1607 2344 #ifndef PRODUCT
never@1738 2345 // report that the loop predication has been actually performed
never@1738 2346 // for this loop
never@1738 2347 if (TraceLoopPredicate && hoisted) {
never@1738 2348 tty->print("Loop Predication Performed:");
never@1738 2349 loop->dump_head();
never@1738 2350 }
cfang@1607 2351 #endif
cfang@1607 2352
cfang@1607 2353 return hoisted;
cfang@1607 2354 }
cfang@1607 2355
cfang@1607 2356 //------------------------------loop_predication--------------------------------
cfang@1607 2357 // driver routine for loop predication optimization
cfang@1607 2358 bool IdealLoopTree::loop_predication( PhaseIdealLoop *phase) {
cfang@1607 2359 bool hoisted = false;
cfang@1607 2360 // Recursively promote predicates
cfang@1607 2361 if ( _child ) {
cfang@1607 2362 hoisted = _child->loop_predication( phase);
cfang@1607 2363 }
cfang@1607 2364
cfang@1607 2365 // self
cfang@1607 2366 if (!_irreducible && !tail()->is_top()) {
cfang@1607 2367 hoisted |= phase->loop_predication_impl(this);
cfang@1607 2368 }
cfang@1607 2369
cfang@1607 2370 if ( _next ) { //sibling
cfang@1607 2371 hoisted |= _next->loop_predication( phase);
cfang@1607 2372 }
cfang@1607 2373
cfang@1607 2374 return hoisted;
cfang@1607 2375 }
never@2118 2376
never@2118 2377
never@2118 2378 // Process all the loops in the loop tree and replace any fill
never@2118 2379 // patterns with an intrisc version.
never@2118 2380 bool PhaseIdealLoop::do_intrinsify_fill() {
never@2118 2381 bool changed = false;
never@2118 2382 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
never@2118 2383 IdealLoopTree* lpt = iter.current();
never@2118 2384 changed |= intrinsify_fill(lpt);
never@2118 2385 }
never@2118 2386 return changed;
never@2118 2387 }
never@2118 2388
never@2118 2389
never@2118 2390 // Examine an inner loop looking for a a single store of an invariant
never@2118 2391 // value in a unit stride loop,
never@2118 2392 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
never@2118 2393 Node*& shift, Node*& con) {
never@2118 2394 const char* msg = NULL;
never@2118 2395 Node* msg_node = NULL;
never@2118 2396
never@2118 2397 store_value = NULL;
never@2118 2398 con = NULL;
never@2118 2399 shift = NULL;
never@2118 2400
never@2118 2401 // Process the loop looking for stores. If there are multiple
never@2118 2402 // stores or extra control flow give at this point.
never@2118 2403 CountedLoopNode* head = lpt->_head->as_CountedLoop();
never@2118 2404 for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
never@2118 2405 Node* n = lpt->_body.at(i);
never@2118 2406 if (n->outcnt() == 0) continue; // Ignore dead
never@2118 2407 if (n->is_Store()) {
never@2118 2408 if (store != NULL) {
never@2118 2409 msg = "multiple stores";
never@2118 2410 break;
never@2118 2411 }
never@2118 2412 int opc = n->Opcode();
never@2118 2413 if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreCM) {
never@2118 2414 msg = "oop fills not handled";
never@2118 2415 break;
never@2118 2416 }
never@2118 2417 Node* value = n->in(MemNode::ValueIn);
never@2118 2418 if (!lpt->is_invariant(value)) {
never@2118 2419 msg = "variant store value";
never@2140 2420 } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
never@2140 2421 msg = "not array address";
never@2118 2422 }
never@2118 2423 store = n;
never@2118 2424 store_value = value;
never@2118 2425 } else if (n->is_If() && n != head->loopexit()) {
never@2118 2426 msg = "extra control flow";
never@2118 2427 msg_node = n;
never@2118 2428 }
never@2118 2429 }
never@2118 2430
never@2118 2431 if (store == NULL) {
never@2118 2432 // No store in loop
never@2118 2433 return false;
never@2118 2434 }
never@2118 2435
never@2118 2436 if (msg == NULL && head->stride_con() != 1) {
never@2118 2437 // could handle negative strides too
never@2118 2438 if (head->stride_con() < 0) {
never@2118 2439 msg = "negative stride";
never@2118 2440 } else {
never@2118 2441 msg = "non-unit stride";
never@2118 2442 }
never@2118 2443 }
never@2118 2444
never@2118 2445 if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
never@2118 2446 msg = "can't handle store address";
never@2118 2447 msg_node = store->in(MemNode::Address);
never@2118 2448 }
never@2118 2449
never@2168 2450 if (msg == NULL &&
never@2168 2451 (!store->in(MemNode::Memory)->is_Phi() ||
never@2168 2452 store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
never@2168 2453 msg = "store memory isn't proper phi";
never@2168 2454 msg_node = store->in(MemNode::Memory);
never@2168 2455 }
never@2168 2456
never@2118 2457 // Make sure there is an appropriate fill routine
never@2118 2458 BasicType t = store->as_Mem()->memory_type();
never@2118 2459 const char* fill_name;
never@2118 2460 if (msg == NULL &&
never@2118 2461 StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
never@2118 2462 msg = "unsupported store";
never@2118 2463 msg_node = store;
never@2118 2464 }
never@2118 2465
never@2118 2466 if (msg != NULL) {
never@2118 2467 #ifndef PRODUCT
never@2118 2468 if (TraceOptimizeFill) {
never@2118 2469 tty->print_cr("not fill intrinsic candidate: %s", msg);
never@2118 2470 if (msg_node != NULL) msg_node->dump();
never@2118 2471 }
never@2118 2472 #endif
never@2118 2473 return false;
never@2118 2474 }
never@2118 2475
never@2118 2476 // Make sure the address expression can be handled. It should be
never@2118 2477 // head->phi * elsize + con. head->phi might have a ConvI2L.
never@2118 2478 Node* elements[4];
never@2118 2479 Node* conv = NULL;
never@2140 2480 bool found_index = false;
never@2118 2481 int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
never@2118 2482 for (int e = 0; e < count; e++) {
never@2118 2483 Node* n = elements[e];
never@2118 2484 if (n->is_Con() && con == NULL) {
never@2118 2485 con = n;
never@2118 2486 } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
never@2118 2487 Node* value = n->in(1);
never@2118 2488 #ifdef _LP64
never@2118 2489 if (value->Opcode() == Op_ConvI2L) {
never@2118 2490 conv = value;
never@2118 2491 value = value->in(1);
never@2118 2492 }
never@2118 2493 #endif
never@2118 2494 if (value != head->phi()) {
never@2118 2495 msg = "unhandled shift in address";
never@2118 2496 } else {
never@2140 2497 found_index = true;
never@2118 2498 shift = n;
never@2118 2499 assert(type2aelembytes(store->as_Mem()->memory_type(), true) == 1 << shift->in(2)->get_int(), "scale should match");
never@2118 2500 }
never@2118 2501 } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
never@2118 2502 if (n->in(1) == head->phi()) {
never@2140 2503 found_index = true;
never@2118 2504 conv = n;
never@2118 2505 } else {
never@2118 2506 msg = "unhandled input to ConvI2L";
never@2118 2507 }
never@2118 2508 } else if (n == head->phi()) {
never@2118 2509 // no shift, check below for allowed cases
never@2140 2510 found_index = true;
never@2118 2511 } else {
never@2118 2512 msg = "unhandled node in address";
never@2118 2513 msg_node = n;
never@2118 2514 }
never@2118 2515 }
never@2118 2516
never@2118 2517 if (count == -1) {
never@2118 2518 msg = "malformed address expression";
never@2118 2519 msg_node = store;
never@2118 2520 }
never@2118 2521
never@2140 2522 if (!found_index) {
never@2140 2523 msg = "missing use of index";
never@2140 2524 }
never@2140 2525
never@2118 2526 // byte sized items won't have a shift
never@2118 2527 if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
never@2118 2528 msg = "can't find shift";
never@2118 2529 msg_node = store;
never@2118 2530 }
never@2118 2531
never@2118 2532 if (msg != NULL) {
never@2118 2533 #ifndef PRODUCT
never@2118 2534 if (TraceOptimizeFill) {
never@2118 2535 tty->print_cr("not fill intrinsic: %s", msg);
never@2118 2536 if (msg_node != NULL) msg_node->dump();
never@2118 2537 }
never@2118 2538 #endif
never@2118 2539 return false;
never@2118 2540 }
never@2118 2541
never@2118 2542 // No make sure all the other nodes in the loop can be handled
never@2118 2543 VectorSet ok(Thread::current()->resource_area());
never@2118 2544
never@2118 2545 // store related values are ok
never@2118 2546 ok.set(store->_idx);
never@2118 2547 ok.set(store->in(MemNode::Memory)->_idx);
never@2118 2548
never@2118 2549 // Loop structure is ok
never@2118 2550 ok.set(head->_idx);
never@2118 2551 ok.set(head->loopexit()->_idx);
never@2118 2552 ok.set(head->phi()->_idx);
never@2118 2553 ok.set(head->incr()->_idx);
never@2118 2554 ok.set(head->loopexit()->cmp_node()->_idx);
never@2118 2555 ok.set(head->loopexit()->in(1)->_idx);
never@2118 2556
never@2118 2557 // Address elements are ok
never@2118 2558 if (con) ok.set(con->_idx);
never@2118 2559 if (shift) ok.set(shift->_idx);
never@2118 2560 if (conv) ok.set(conv->_idx);
never@2118 2561
never@2118 2562 for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
never@2118 2563 Node* n = lpt->_body.at(i);
never@2118 2564 if (n->outcnt() == 0) continue; // Ignore dead
never@2118 2565 if (ok.test(n->_idx)) continue;
never@2118 2566 // Backedge projection is ok
never@2118 2567 if (n->is_IfTrue() && n->in(0) == head->loopexit()) continue;
never@2118 2568 if (!n->is_AddP()) {
never@2118 2569 msg = "unhandled node";
never@2118 2570 msg_node = n;
never@2118 2571 break;
never@2118 2572 }
never@2118 2573 }
never@2118 2574
never@2118 2575 // Make sure no unexpected values are used outside the loop
never@2118 2576 for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
never@2118 2577 Node* n = lpt->_body.at(i);
never@2118 2578 // These values can be replaced with other nodes if they are used
never@2118 2579 // outside the loop.
never@2168 2580 if (n == store || n == head->loopexit() || n == head->incr() || n == store->in(MemNode::Memory)) continue;
never@2118 2581 for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
never@2118 2582 Node* use = iter.get();
never@2118 2583 if (!lpt->_body.contains(use)) {
never@2118 2584 msg = "node is used outside loop";
never@2118 2585 // lpt->_body.dump();
never@2118 2586 msg_node = n;
never@2118 2587 break;
never@2118 2588 }
never@2118 2589 }
never@2118 2590 }
never@2118 2591
never@2118 2592 #ifdef ASSERT
never@2118 2593 if (TraceOptimizeFill) {
never@2118 2594 if (msg != NULL) {
never@2118 2595 tty->print_cr("no fill intrinsic: %s", msg);
never@2118 2596 if (msg_node != NULL) msg_node->dump();
never@2118 2597 } else {
never@2118 2598 tty->print_cr("fill intrinsic for:");
never@2118 2599 }
never@2118 2600 store->dump();
never@2118 2601 if (Verbose) {
never@2118 2602 lpt->_body.dump();
never@2118 2603 }
never@2118 2604 }
never@2118 2605 #endif
never@2118 2606
never@2118 2607 return msg == NULL;
never@2118 2608 }
never@2118 2609
never@2118 2610
never@2118 2611
never@2118 2612 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
never@2118 2613 // Only for counted inner loops
never@2118 2614 if (!lpt->is_counted() || !lpt->is_inner()) {
never@2118 2615 return false;
never@2118 2616 }
never@2118 2617
never@2118 2618 // Must have constant stride
never@2118 2619 CountedLoopNode* head = lpt->_head->as_CountedLoop();
never@2118 2620 if (!head->stride_is_con() || !head->is_normal_loop()) {
never@2118 2621 return false;
never@2118 2622 }
never@2118 2623
never@2118 2624 // Check that the body only contains a store of a loop invariant
never@2118 2625 // value that is indexed by the loop phi.
never@2118 2626 Node* store = NULL;
never@2118 2627 Node* store_value = NULL;
never@2118 2628 Node* shift = NULL;
never@2118 2629 Node* offset = NULL;
never@2118 2630 if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
never@2118 2631 return false;
never@2118 2632 }
never@2118 2633
never@2118 2634 // Now replace the whole loop body by a call to a fill routine that
never@2118 2635 // covers the same region as the loop.
never@2118 2636 Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
never@2118 2637
never@2118 2638 // Build an expression for the beginning of the copy region
never@2118 2639 Node* index = head->init_trip();
never@2118 2640 #ifdef _LP64
never@2118 2641 index = new (C, 2) ConvI2LNode(index);
never@2118 2642 _igvn.register_new_node_with_optimizer(index);
never@2118 2643 #endif
never@2118 2644 if (shift != NULL) {
never@2118 2645 // byte arrays don't require a shift but others do.
never@2118 2646 index = new (C, 3) LShiftXNode(index, shift->in(2));
never@2118 2647 _igvn.register_new_node_with_optimizer(index);
never@2118 2648 }
never@2118 2649 index = new (C, 4) AddPNode(base, base, index);
never@2118 2650 _igvn.register_new_node_with_optimizer(index);
never@2118 2651 Node* from = new (C, 4) AddPNode(base, index, offset);
never@2118 2652 _igvn.register_new_node_with_optimizer(from);
never@2118 2653 // Compute the number of elements to copy
never@2118 2654 Node* len = new (C, 3) SubINode(head->limit(), head->init_trip());
never@2118 2655 _igvn.register_new_node_with_optimizer(len);
never@2118 2656
never@2118 2657 BasicType t = store->as_Mem()->memory_type();
never@2118 2658 bool aligned = false;
never@2118 2659 if (offset != NULL && head->init_trip()->is_Con()) {
never@2118 2660 int element_size = type2aelembytes(t);
never@2118 2661 aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
never@2118 2662 }
never@2118 2663
never@2118 2664 // Build a call to the fill routine
never@2118 2665 const char* fill_name;
never@2118 2666 address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
never@2118 2667 assert(fill != NULL, "what?");
never@2118 2668
never@2118 2669 // Convert float/double to int/long for fill routines
never@2118 2670 if (t == T_FLOAT) {
never@2118 2671 store_value = new (C, 2) MoveF2INode(store_value);
never@2118 2672 _igvn.register_new_node_with_optimizer(store_value);
never@2118 2673 } else if (t == T_DOUBLE) {
never@2118 2674 store_value = new (C, 2) MoveD2LNode(store_value);
never@2118 2675 _igvn.register_new_node_with_optimizer(store_value);
never@2118 2676 }
never@2118 2677
never@2118 2678 Node* mem_phi = store->in(MemNode::Memory);
never@2118 2679 Node* result_ctrl;
never@2118 2680 Node* result_mem;
never@2118 2681 const TypeFunc* call_type = OptoRuntime::array_fill_Type();
never@2118 2682 int size = call_type->domain()->cnt();
never@2118 2683 CallLeafNode *call = new (C, size) CallLeafNoFPNode(call_type, fill,
never@2118 2684 fill_name, TypeAryPtr::get_array_body_type(t));
never@2118 2685 call->init_req(TypeFunc::Parms+0, from);
never@2118 2686 call->init_req(TypeFunc::Parms+1, store_value);
never@2199 2687 #ifdef _LP64
never@2199 2688 len = new (C, 2) ConvI2LNode(len);
never@2199 2689 _igvn.register_new_node_with_optimizer(len);
never@2199 2690 #endif
never@2118 2691 call->init_req(TypeFunc::Parms+2, len);
never@2199 2692 #ifdef _LP64
never@2199 2693 call->init_req(TypeFunc::Parms+3, C->top());
never@2199 2694 #endif
never@2118 2695 call->init_req( TypeFunc::Control, head->init_control());
never@2118 2696 call->init_req( TypeFunc::I_O , C->top() ) ; // does no i/o
never@2118 2697 call->init_req( TypeFunc::Memory , mem_phi->in(LoopNode::EntryControl) );
never@2118 2698 call->init_req( TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr) );
never@2118 2699 call->init_req( TypeFunc::FramePtr, C->start()->proj_out(TypeFunc::FramePtr) );
never@2118 2700 _igvn.register_new_node_with_optimizer(call);
never@2118 2701 result_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
never@2118 2702 _igvn.register_new_node_with_optimizer(result_ctrl);
never@2118 2703 result_mem = new (C, 1) ProjNode(call,TypeFunc::Memory);
never@2118 2704 _igvn.register_new_node_with_optimizer(result_mem);
never@2118 2705
never@2118 2706 // If this fill is tightly coupled to an allocation and overwrites
never@2118 2707 // the whole body, allow it to take over the zeroing.
never@2118 2708 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
never@2118 2709 if (alloc != NULL && alloc->is_AllocateArray()) {
never@2118 2710 Node* length = alloc->as_AllocateArray()->Ideal_length();
never@2118 2711 if (head->limit() == length &&
never@2118 2712 head->init_trip() == _igvn.intcon(0)) {
never@2118 2713 if (TraceOptimizeFill) {
never@2118 2714 tty->print_cr("Eliminated zeroing in allocation");
never@2118 2715 }
never@2118 2716 alloc->maybe_set_complete(&_igvn);
never@2118 2717 } else {
never@2118 2718 #ifdef ASSERT
never@2118 2719 if (TraceOptimizeFill) {
never@2118 2720 tty->print_cr("filling array but bounds don't match");
never@2118 2721 alloc->dump();
never@2118 2722 head->init_trip()->dump();
never@2118 2723 head->limit()->dump();
never@2118 2724 length->dump();
never@2118 2725 }
never@2118 2726 #endif
never@2118 2727 }
never@2118 2728 }
never@2118 2729
never@2118 2730 // Redirect the old control and memory edges that are outside the loop.
never@2118 2731 Node* exit = head->loopexit()->proj_out(0);
never@2168 2732 // Sometimes the memory phi of the head is used as the outgoing
never@2168 2733 // state of the loop. It's safe in this case to replace it with the
never@2168 2734 // result_mem.
never@2168 2735 _igvn.replace_node(store->in(MemNode::Memory), result_mem);
never@2118 2736 _igvn.replace_node(exit, result_ctrl);
never@2118 2737 _igvn.replace_node(store, result_mem);
never@2118 2738 // Any uses the increment outside of the loop become the loop limit.
never@2118 2739 _igvn.replace_node(head->incr(), head->limit());
never@2118 2740
never@2118 2741 // Disconnect the head from the loop.
never@2118 2742 for (uint i = 0; i < lpt->_body.size(); i++) {
never@2118 2743 Node* n = lpt->_body.at(i);
never@2118 2744 _igvn.replace_node(n, C->top());
never@2118 2745 }
never@2118 2746
never@2118 2747 return true;
never@2118 2748 }

mercurial