src/share/vm/opto/loopTransform.cpp

Tue, 17 May 2011 19:11:51 -0700

author
never
date
Tue, 17 May 2011 19:11:51 -0700
changeset 2920
a80577f854f9
parent 2915
38569792a45a
child 2929
789d04408ca3
permissions
-rw-r--r--

7045513: JSR 292 inlining causes crashes in methodHandleWalk.cpp
Reviewed-by: jrose

     1 /*
     2  * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "compiler/compileLog.hpp"
    27 #include "memory/allocation.inline.hpp"
    28 #include "opto/addnode.hpp"
    29 #include "opto/callnode.hpp"
    30 #include "opto/connode.hpp"
    31 #include "opto/divnode.hpp"
    32 #include "opto/loopnode.hpp"
    33 #include "opto/mulnode.hpp"
    34 #include "opto/rootnode.hpp"
    35 #include "opto/runtime.hpp"
    36 #include "opto/subnode.hpp"
    38 //------------------------------is_loop_exit-----------------------------------
    39 // Given an IfNode, return the loop-exiting projection or NULL if both
    40 // arms remain in the loop.
    41 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
    42   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
    43   PhaseIdealLoop *phase = _phase;
    44   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
    45   // we need loop unswitching instead of peeling.
    46   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
    47     return iff->raw_out(0);
    48   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
    49     return iff->raw_out(1);
    50   return NULL;
    51 }
    54 //=============================================================================
    57 //------------------------------record_for_igvn----------------------------
    58 // Put loop body on igvn work list
    59 void IdealLoopTree::record_for_igvn() {
    60   for( uint i = 0; i < _body.size(); i++ ) {
    61     Node *n = _body.at(i);
    62     _phase->_igvn._worklist.push(n);
    63   }
    64 }
    66 //------------------------------compute_exact_trip_count-----------------------
    67 // Compute loop exact trip count if possible. Do not recalculate trip count for
    68 // split loops (pre-main-post) which have their limits and inits behind Opaque node.
    69 void IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
    70   if (!_head->as_Loop()->is_valid_counted_loop()) {
    71     return;
    72   }
    73   CountedLoopNode* cl = _head->as_CountedLoop();
    74   // Trip count may become nonexact for iteration split loops since
    75   // RCE modifies limits. Note, _trip_count value is not reset since
    76   // it is used to limit unrolling of main loop.
    77   cl->set_nonexact_trip_count();
    79   // Loop's test should be part of loop.
    80   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
    81     return; // Infinite loop
    83 #ifdef ASSERT
    84   BoolTest::mask bt = cl->loopexit()->test_trip();
    85   assert(bt == BoolTest::lt || bt == BoolTest::gt ||
    86          (bt == BoolTest::ne && !LoopLimitCheck), "canonical test is expected");
    87 #endif
    89   Node* init_n = cl->init_trip();
    90   Node* limit_n = cl->limit();
    91   if (init_n  != NULL &&  init_n->is_Con() &&
    92       limit_n != NULL && limit_n->is_Con()) {
    93     // Use longs to avoid integer overflow.
    94     int stride_con  = cl->stride_con();
    95     long init_con   = cl->init_trip()->get_int();
    96     long limit_con  = cl->limit()->get_int();
    97     int stride_m    = stride_con - (stride_con > 0 ? 1 : -1);
    98     long trip_count = (limit_con - init_con + stride_m)/stride_con;
    99     if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
   100       // Set exact trip count.
   101       cl->set_exact_trip_count((uint)trip_count);
   102     }
   103   }
   104 }
   106 //------------------------------compute_profile_trip_cnt----------------------------
   107 // Compute loop trip count from profile data as
   108 //    (backedge_count + loop_exit_count) / loop_exit_count
   109 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
   110   if (!_head->is_CountedLoop()) {
   111     return;
   112   }
   113   CountedLoopNode* head = _head->as_CountedLoop();
   114   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
   115     return; // Already computed
   116   }
   117   float trip_cnt = (float)max_jint; // default is big
   119   Node* back = head->in(LoopNode::LoopBackControl);
   120   while (back != head) {
   121     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
   122         back->in(0) &&
   123         back->in(0)->is_If() &&
   124         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
   125         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
   126       break;
   127     }
   128     back = phase->idom(back);
   129   }
   130   if (back != head) {
   131     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
   132            back->in(0), "if-projection exists");
   133     IfNode* back_if = back->in(0)->as_If();
   134     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
   136     // Now compute a loop exit count
   137     float loop_exit_cnt = 0.0f;
   138     for( uint i = 0; i < _body.size(); i++ ) {
   139       Node *n = _body[i];
   140       if( n->is_If() ) {
   141         IfNode *iff = n->as_If();
   142         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
   143           Node *exit = is_loop_exit(iff);
   144           if( exit ) {
   145             float exit_prob = iff->_prob;
   146             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
   147             if (exit_prob > PROB_MIN) {
   148               float exit_cnt = iff->_fcnt * exit_prob;
   149               loop_exit_cnt += exit_cnt;
   150             }
   151           }
   152         }
   153       }
   154     }
   155     if (loop_exit_cnt > 0.0f) {
   156       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
   157     } else {
   158       // No exit count so use
   159       trip_cnt = loop_back_cnt;
   160     }
   161   }
   162 #ifndef PRODUCT
   163   if (TraceProfileTripCount) {
   164     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
   165   }
   166 #endif
   167   head->set_profile_trip_cnt(trip_cnt);
   168 }
   170 //---------------------is_invariant_addition-----------------------------
   171 // Return nonzero index of invariant operand for an Add or Sub
   172 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
   173 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
   174   int op = n->Opcode();
   175   if (op == Op_AddI || op == Op_SubI) {
   176     bool in1_invar = this->is_invariant(n->in(1));
   177     bool in2_invar = this->is_invariant(n->in(2));
   178     if (in1_invar && !in2_invar) return 1;
   179     if (!in1_invar && in2_invar) return 2;
   180   }
   181   return 0;
   182 }
   184 //---------------------reassociate_add_sub-----------------------------
   185 // Reassociate invariant add and subtract expressions:
   186 //
   187 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
   188 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
   189 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
   190 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
   191 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
   192 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
   193 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
   194 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
   195 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
   196 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
   197 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
   198 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
   199 //
   200 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
   201   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
   202   if (is_invariant(n1)) return NULL;
   203   int inv1_idx = is_invariant_addition(n1, phase);
   204   if (!inv1_idx) return NULL;
   205   // Don't mess with add of constant (igvn moves them to expression tree root.)
   206   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
   207   Node* inv1 = n1->in(inv1_idx);
   208   Node* n2 = n1->in(3 - inv1_idx);
   209   int inv2_idx = is_invariant_addition(n2, phase);
   210   if (!inv2_idx) return NULL;
   211   Node* x    = n2->in(3 - inv2_idx);
   212   Node* inv2 = n2->in(inv2_idx);
   214   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
   215   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
   216   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
   217   if (n1->is_Sub() && inv1_idx == 1) {
   218     neg_x    = !neg_x;
   219     neg_inv2 = !neg_inv2;
   220   }
   221   Node* inv1_c = phase->get_ctrl(inv1);
   222   Node* inv2_c = phase->get_ctrl(inv2);
   223   Node* n_inv1;
   224   if (neg_inv1) {
   225     Node *zero = phase->_igvn.intcon(0);
   226     phase->set_ctrl(zero, phase->C->root());
   227     n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
   228     phase->register_new_node(n_inv1, inv1_c);
   229   } else {
   230     n_inv1 = inv1;
   231   }
   232   Node* inv;
   233   if (neg_inv2) {
   234     inv = new (phase->C, 3) SubINode(n_inv1, inv2);
   235   } else {
   236     inv = new (phase->C, 3) AddINode(n_inv1, inv2);
   237   }
   238   phase->register_new_node(inv, phase->get_early_ctrl(inv));
   240   Node* addx;
   241   if (neg_x) {
   242     addx = new (phase->C, 3) SubINode(inv, x);
   243   } else {
   244     addx = new (phase->C, 3) AddINode(x, inv);
   245   }
   246   phase->register_new_node(addx, phase->get_ctrl(x));
   247   phase->_igvn.replace_node(n1, addx);
   248   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
   249   _body.yank(n1);
   250   return addx;
   251 }
   253 //---------------------reassociate_invariants-----------------------------
   254 // Reassociate invariant expressions:
   255 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
   256   for (int i = _body.size() - 1; i >= 0; i--) {
   257     Node *n = _body.at(i);
   258     for (int j = 0; j < 5; j++) {
   259       Node* nn = reassociate_add_sub(n, phase);
   260       if (nn == NULL) break;
   261       n = nn; // again
   262     };
   263   }
   264 }
   266 //------------------------------policy_peeling---------------------------------
   267 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
   268 // make some loop-invariant test (usually a null-check) happen before the loop.
   269 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
   270   Node *test = ((IdealLoopTree*)this)->tail();
   271   int  body_size = ((IdealLoopTree*)this)->_body.size();
   272   int  uniq      = phase->C->unique();
   273   // Peeling does loop cloning which can result in O(N^2) node construction
   274   if( body_size > 255 /* Prevent overflow for large body_size */
   275       || (body_size * body_size + uniq > MaxNodeLimit) ) {
   276     return false;           // too large to safely clone
   277   }
   278   while( test != _head ) {      // Scan till run off top of loop
   279     if( test->is_If() ) {       // Test?
   280       Node *ctrl = phase->get_ctrl(test->in(1));
   281       if (ctrl->is_top())
   282         return false;           // Found dead test on live IF?  No peeling!
   283       // Standard IF only has one input value to check for loop invariance
   284       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
   285       // Condition is not a member of this loop?
   286       if( !is_member(phase->get_loop(ctrl)) &&
   287           is_loop_exit(test) )
   288         return true;            // Found reason to peel!
   289     }
   290     // Walk up dominators to loop _head looking for test which is
   291     // executed on every path thru loop.
   292     test = phase->idom(test);
   293   }
   294   return false;
   295 }
   297 //------------------------------peeled_dom_test_elim---------------------------
   298 // If we got the effect of peeling, either by actually peeling or by making
   299 // a pre-loop which must execute at least once, we can remove all
   300 // loop-invariant dominated tests in the main body.
   301 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
   302   bool progress = true;
   303   while( progress ) {
   304     progress = false;           // Reset for next iteration
   305     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
   306     Node *test = prev->in(0);
   307     while( test != loop->_head ) { // Scan till run off top of loop
   309       int p_op = prev->Opcode();
   310       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
   311           test->is_If() &&      // Test?
   312           !test->in(1)->is_Con() && // And not already obvious?
   313           // Condition is not a member of this loop?
   314           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
   315         // Walk loop body looking for instances of this test
   316         for( uint i = 0; i < loop->_body.size(); i++ ) {
   317           Node *n = loop->_body.at(i);
   318           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
   319             // IfNode was dominated by version in peeled loop body
   320             progress = true;
   321             dominated_by( old_new[prev->_idx], n );
   322           }
   323         }
   324       }
   325       prev = test;
   326       test = idom(test);
   327     } // End of scan tests in loop
   329   } // End of while( progress )
   330 }
   332 //------------------------------do_peeling-------------------------------------
   333 // Peel the first iteration of the given loop.
   334 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   335 //         The pre-loop illegally has 2 control users (old & new loops).
   336 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   337 //         Do this by making the old-loop fall-in edges act as if they came
   338 //         around the loopback from the prior iteration (follow the old-loop
   339 //         backedges) and then map to the new peeled iteration.  This leaves
   340 //         the pre-loop with only 1 user (the new peeled iteration), but the
   341 //         peeled-loop backedge has 2 users.
   342 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   343 //         extra backedge user.
   344 //
   345 //                   orig
   346 //
   347 //                  stmt1
   348 //                    |
   349 //                    v
   350 //              loop predicate
   351 //                    |
   352 //                    v
   353 //                   loop<----+
   354 //                     |      |
   355 //                   stmt2    |
   356 //                     |      |
   357 //                     v      |
   358 //                    if      ^
   359 //                   / \      |
   360 //                  /   \     |
   361 //                 v     v    |
   362 //               false true   |
   363 //               /       \    |
   364 //              /         ----+
   365 //             |
   366 //             v
   367 //           exit
   368 //
   369 //
   370 //            after clone loop
   371 //
   372 //                   stmt1
   373 //                     |
   374 //                     v
   375 //               loop predicate
   376 //                 /       \
   377 //        clone   /         \   orig
   378 //               /           \
   379 //              /             \
   380 //             v               v
   381 //   +---->loop clone          loop<----+
   382 //   |      |                    |      |
   383 //   |    stmt2 clone          stmt2    |
   384 //   |      |                    |      |
   385 //   |      v                    v      |
   386 //   ^      if clone            If      ^
   387 //   |      / \                / \      |
   388 //   |     /   \              /   \     |
   389 //   |    v     v            v     v    |
   390 //   |    true  false      false true   |
   391 //   |    /         \      /       \    |
   392 //   +----           \    /         ----+
   393 //                    \  /
   394 //                    1v v2
   395 //                  region
   396 //                     |
   397 //                     v
   398 //                   exit
   399 //
   400 //
   401 //         after peel and predicate move
   402 //
   403 //                   stmt1
   404 //                    /
   405 //                   /
   406 //        clone     /            orig
   407 //                 /
   408 //                /              +----------+
   409 //               /               |          |
   410 //              /          loop predicate   |
   411 //             /                 |          |
   412 //            v                  v          |
   413 //   TOP-->loop clone          loop<----+   |
   414 //          |                    |      |   |
   415 //        stmt2 clone          stmt2    |   |
   416 //          |                    |      |   ^
   417 //          v                    v      |   |
   418 //          if clone            If      ^   |
   419 //          / \                / \      |   |
   420 //         /   \              /   \     |   |
   421 //        v     v            v     v    |   |
   422 //      true   false      false  true   |   |
   423 //        |         \      /       \    |   |
   424 //        |          \    /         ----+   ^
   425 //        |           \  /                  |
   426 //        |           1v v2                 |
   427 //        v         region                  |
   428 //        |            |                    |
   429 //        |            v                    |
   430 //        |          exit                   |
   431 //        |                                 |
   432 //        +--------------->-----------------+
   433 //
   434 //
   435 //              final graph
   436 //
   437 //                  stmt1
   438 //                    |
   439 //                    v
   440 //                  stmt2 clone
   441 //                    |
   442 //                    v
   443 //                   if clone
   444 //                  / |
   445 //                 /  |
   446 //                v   v
   447 //            false  true
   448 //             |      |
   449 //             |      v
   450 //             | loop predicate
   451 //             |      |
   452 //             |      v
   453 //             |     loop<----+
   454 //             |      |       |
   455 //             |    stmt2     |
   456 //             |      |       |
   457 //             |      v       |
   458 //             v      if      ^
   459 //             |     /  \     |
   460 //             |    /    \    |
   461 //             |   v     v    |
   462 //             | false  true  |
   463 //             |  |        \  |
   464 //             v  v         --+
   465 //            region
   466 //              |
   467 //              v
   468 //             exit
   469 //
   470 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
   472   C->set_major_progress();
   473   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
   474   // 'pre' loop from the main and the 'pre' can no longer have it's
   475   // iterations adjusted.  Therefore, we need to declare this loop as
   476   // no longer a 'main' loop; it will need new pre and post loops before
   477   // we can do further RCE.
   478 #ifndef PRODUCT
   479   if (TraceLoopOpts) {
   480     tty->print("Peel         ");
   481     loop->dump_head();
   482   }
   483 #endif
   484   Node* head = loop->_head;
   485   bool counted_loop = head->is_CountedLoop();
   486   if (counted_loop) {
   487     CountedLoopNode *cl = head->as_CountedLoop();
   488     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
   489     cl->set_trip_count(cl->trip_count() - 1);
   490     if (cl->is_main_loop()) {
   491       cl->set_normal_loop();
   492 #ifndef PRODUCT
   493       if (PrintOpto && VerifyLoopOptimizations) {
   494         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
   495         loop->dump_head();
   496       }
   497 #endif
   498     }
   499   }
   500   Node* entry = head->in(LoopNode::EntryControl);
   502   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
   503   //         The pre-loop illegally has 2 control users (old & new loops).
   504   clone_loop( loop, old_new, dom_depth(head) );
   506   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
   507   //         Do this by making the old-loop fall-in edges act as if they came
   508   //         around the loopback from the prior iteration (follow the old-loop
   509   //         backedges) and then map to the new peeled iteration.  This leaves
   510   //         the pre-loop with only 1 user (the new peeled iteration), but the
   511   //         peeled-loop backedge has 2 users.
   512   Node* new_exit_value = old_new[head->in(LoopNode::LoopBackControl)->_idx];
   513   new_exit_value = move_loop_predicates(entry, new_exit_value, !counted_loop);
   514   _igvn.hash_delete(head);
   515   head->set_req(LoopNode::EntryControl, new_exit_value);
   516   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
   517     Node* old = head->fast_out(j);
   518     if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
   519       new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
   520       if (!new_exit_value )     // Backedge value is ALSO loop invariant?
   521         // Then loop body backedge value remains the same.
   522         new_exit_value = old->in(LoopNode::LoopBackControl);
   523       _igvn.hash_delete(old);
   524       old->set_req(LoopNode::EntryControl, new_exit_value);
   525     }
   526   }
   529   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
   530   //         extra backedge user.
   531   Node* new_head = old_new[head->_idx];
   532   _igvn.hash_delete(new_head);
   533   new_head->set_req(LoopNode::LoopBackControl, C->top());
   534   for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
   535     Node* use = new_head->fast_out(j2);
   536     if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
   537       _igvn.hash_delete(use);
   538       use->set_req(LoopNode::LoopBackControl, C->top());
   539     }
   540   }
   543   // Step 4: Correct dom-depth info.  Set to loop-head depth.
   544   int dd = dom_depth(head);
   545   set_idom(head, head->in(1), dd);
   546   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
   547     Node *old = loop->_body.at(j3);
   548     Node *nnn = old_new[old->_idx];
   549     if (!has_ctrl(nnn))
   550       set_idom(nnn, idom(nnn), dd-1);
   551     // While we're at it, remove any SafePoints from the peeled code
   552     if (old->Opcode() == Op_SafePoint) {
   553       Node *nnn = old_new[old->_idx];
   554       lazy_replace(nnn,nnn->in(TypeFunc::Control));
   555     }
   556   }
   558   // Now force out all loop-invariant dominating tests.  The optimizer
   559   // finds some, but we _know_ they are all useless.
   560   peeled_dom_test_elim(loop,old_new);
   562   loop->record_for_igvn();
   563 }
   565 #define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
   567 //------------------------------policy_maximally_unroll------------------------
   568 // Calculate exact loop trip count and return true if loop can be maximally
   569 // unrolled.
   570 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
   571   CountedLoopNode *cl = _head->as_CountedLoop();
   572   assert(cl->is_normal_loop(), "");
   573   if (!cl->is_valid_counted_loop())
   574     return false; // Malformed counted loop
   576   if (!cl->has_exact_trip_count()) {
   577     // Trip count is not exact.
   578     return false;
   579   }
   581   uint trip_count = cl->trip_count();
   582   // Note, max_juint is used to indicate unknown trip count.
   583   assert(trip_count > 1, "one iteration loop should be optimized out already");
   584   assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
   586   // Real policy: if we maximally unroll, does it get too big?
   587   // Allow the unrolled mess to get larger than standard loop
   588   // size.  After all, it will no longer be a loop.
   589   uint body_size    = _body.size();
   590   uint unroll_limit = (uint)LoopUnrollLimit * 4;
   591   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
   592   if (trip_count > unroll_limit || body_size > unroll_limit) {
   593     return false;
   594   }
   596   // Fully unroll a loop with few iterations regardless next
   597   // conditions since following loop optimizations will split
   598   // such loop anyway (pre-main-post).
   599   if (trip_count <= 3)
   600     return true;
   602   // Take into account that after unroll conjoined heads and tails will fold,
   603   // otherwise policy_unroll() may allow more unrolling than max unrolling.
   604   uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
   605   uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
   606   if (body_size != tst_body_size) // Check for int overflow
   607     return false;
   608   if (new_body_size > unroll_limit ||
   609       // Unrolling can result in a large amount of node construction
   610       new_body_size >= MaxNodeLimit - phase->C->unique()) {
   611     return false;
   612   }
   614   // Do not unroll a loop with String intrinsics code.
   615   // String intrinsics are large and have loops.
   616   for (uint k = 0; k < _body.size(); k++) {
   617     Node* n = _body.at(k);
   618     switch (n->Opcode()) {
   619       case Op_StrComp:
   620       case Op_StrEquals:
   621       case Op_StrIndexOf:
   622       case Op_AryEq: {
   623         return false;
   624       }
   625     } // switch
   626   }
   628   return true; // Do maximally unroll
   629 }
   632 #define MAX_UNROLL 16 // maximum number of unrolls for main loop
   634 //------------------------------policy_unroll----------------------------------
   635 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
   636 // the loop is a CountedLoop and the body is small enough.
   637 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
   639   CountedLoopNode *cl = _head->as_CountedLoop();
   640   assert(cl->is_normal_loop() || cl->is_main_loop(), "");
   642   if (!cl->is_valid_counted_loop())
   643     return false; // Malformed counted loop
   645   // Protect against over-unrolling.
   646   // After split at least one iteration will be executed in pre-loop.
   647   if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
   649   int future_unroll_ct = cl->unrolled_count() * 2;
   650   if (future_unroll_ct > MAX_UNROLL) return false;
   652   // Check for initial stride being a small enough constant
   653   if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;
   655   // Don't unroll if the next round of unrolling would push us
   656   // over the expected trip count of the loop.  One is subtracted
   657   // from the expected trip count because the pre-loop normally
   658   // executes 1 iteration.
   659   if (UnrollLimitForProfileCheck > 0 &&
   660       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
   661       future_unroll_ct        > UnrollLimitForProfileCheck &&
   662       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
   663     return false;
   664   }
   666   // When unroll count is greater than LoopUnrollMin, don't unroll if:
   667   //   the residual iterations are more than 10% of the trip count
   668   //   and rounds of "unroll,optimize" are not making significant progress
   669   //   Progress defined as current size less than 20% larger than previous size.
   670   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
   671       future_unroll_ct > LoopUnrollMin &&
   672       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
   673       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
   674     return false;
   675   }
   677   Node *init_n = cl->init_trip();
   678   Node *limit_n = cl->limit();
   679   int stride_con = cl->stride_con();
   680   // Non-constant bounds.
   681   // Protect against over-unrolling when init or/and limit are not constant
   682   // (so that trip_count's init value is maxint) but iv range is known.
   683   if (init_n   == NULL || !init_n->is_Con()  ||
   684       limit_n  == NULL || !limit_n->is_Con()) {
   685     Node* phi = cl->phi();
   686     if (phi != NULL) {
   687       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
   688       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
   689       int next_stride = stride_con * 2; // stride after this unroll
   690       if (next_stride > 0) {
   691         if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
   692             iv_type->_lo + next_stride >  iv_type->_hi) {
   693           return false;  // over-unrolling
   694         }
   695       } else if (next_stride < 0) {
   696         if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
   697             iv_type->_hi + next_stride <  iv_type->_lo) {
   698           return false;  // over-unrolling
   699         }
   700       }
   701     }
   702   }
   704   // After unroll limit will be adjusted: new_limit = limit-stride.
   705   // Bailout if adjustment overflow.
   706   const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int();
   707   if (stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi) ||
   708       stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo))
   709     return false;  // overflow
   711   // Adjust body_size to determine if we unroll or not
   712   uint body_size = _body.size();
   713   // Also count ModL, DivL and MulL which expand mightly
   714   for (uint k = 0; k < _body.size(); k++) {
   715     Node* n = _body.at(k);
   716     switch (n->Opcode()) {
   717       case Op_ModL: body_size += 30; break;
   718       case Op_DivL: body_size += 30; break;
   719       case Op_MulL: body_size += 10; break;
   720       case Op_StrComp:
   721       case Op_StrEquals:
   722       case Op_StrIndexOf:
   723       case Op_AryEq: {
   724         // Do not unroll a loop with String intrinsics code.
   725         // String intrinsics are large and have loops.
   726         return false;
   727       }
   728     } // switch
   729   }
   731   // Check for being too big
   732   if (body_size > (uint)LoopUnrollLimit) {
   733      // Normal case: loop too big
   734     return false;
   735   }
   737   // Unroll once!  (Each trip will soon do double iterations)
   738   return true;
   739 }
   741 //------------------------------policy_align-----------------------------------
   742 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
   743 // expression that does the alignment.  Note that only one array base can be
   744 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
   745 // if we vectorize short memory ops into longer memory ops, we may want to
   746 // increase alignment.
   747 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
   748   return false;
   749 }
   751 //------------------------------policy_range_check-----------------------------
   752 // Return TRUE or FALSE if the loop should be range-check-eliminated.
   753 // Actually we do iteration-splitting, a more powerful form of RCE.
   754 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
   755   if (!RangeCheckElimination) return false;
   757   CountedLoopNode *cl = _head->as_CountedLoop();
   758   // If we unrolled with no intention of doing RCE and we later
   759   // changed our minds, we got no pre-loop.  Either we need to
   760   // make a new pre-loop, or we gotta disallow RCE.
   761   if (cl->is_main_no_pre_loop()) return false; // Disallowed for now.
   762   Node *trip_counter = cl->phi();
   764   // Check loop body for tests of trip-counter plus loop-invariant vs
   765   // loop-invariant.
   766   for (uint i = 0; i < _body.size(); i++) {
   767     Node *iff = _body[i];
   768     if (iff->Opcode() == Op_If) { // Test?
   770       // Comparing trip+off vs limit
   771       Node *bol = iff->in(1);
   772       if (bol->req() != 2) continue; // dead constant test
   773       if (!bol->is_Bool()) {
   774         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
   775         continue;
   776       }
   777       if (bol->as_Bool()->_test._test == BoolTest::ne)
   778         continue; // not RC
   780       Node *cmp = bol->in(1);
   782       Node *rc_exp = cmp->in(1);
   783       Node *limit = cmp->in(2);
   785       Node *limit_c = phase->get_ctrl(limit);
   786       if( limit_c == phase->C->top() )
   787         return false;           // Found dead test on live IF?  No RCE!
   788       if( is_member(phase->get_loop(limit_c) ) ) {
   789         // Compare might have operands swapped; commute them
   790         rc_exp = cmp->in(2);
   791         limit  = cmp->in(1);
   792         limit_c = phase->get_ctrl(limit);
   793         if( is_member(phase->get_loop(limit_c) ) )
   794           continue;             // Both inputs are loop varying; cannot RCE
   795       }
   797       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
   798         continue;
   799       }
   800       // Yeah!  Found a test like 'trip+off vs limit'
   801       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
   802       // we need loop unswitching instead of iteration splitting.
   803       if( is_loop_exit(iff) )
   804         return true;            // Found reason to split iterations
   805     } // End of is IF
   806   }
   808   return false;
   809 }
   811 //------------------------------policy_peel_only-------------------------------
   812 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
   813 // for unrolling loops with NO array accesses.
   814 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
   816   for( uint i = 0; i < _body.size(); i++ )
   817     if( _body[i]->is_Mem() )
   818       return false;
   820   // No memory accesses at all!
   821   return true;
   822 }
   824 //------------------------------clone_up_backedge_goo--------------------------
   825 // If Node n lives in the back_ctrl block and cannot float, we clone a private
   826 // version of n in preheader_ctrl block and return that, otherwise return n.
   827 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
   828   if( get_ctrl(n) != back_ctrl ) return n;
   830   Node *x = NULL;               // If required, a clone of 'n'
   831   // Check for 'n' being pinned in the backedge.
   832   if( n->in(0) && n->in(0) == back_ctrl ) {
   833     x = n->clone();             // Clone a copy of 'n' to preheader
   834     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
   835   }
   837   // Recursive fixup any other input edges into x.
   838   // If there are no changes we can just return 'n', otherwise
   839   // we need to clone a private copy and change it.
   840   for( uint i = 1; i < n->req(); i++ ) {
   841     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
   842     if( g != n->in(i) ) {
   843       if( !x )
   844         x = n->clone();
   845       x->set_req(i, g);
   846     }
   847   }
   848   if( x ) {                     // x can legally float to pre-header location
   849     register_new_node( x, preheader_ctrl );
   850     return x;
   851   } else {                      // raise n to cover LCA of uses
   852     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
   853   }
   854   return n;
   855 }
   857 //------------------------------insert_pre_post_loops--------------------------
   858 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
   859 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
   860 // alignment.  Useful to unroll loops that do no array accesses.
   861 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
   863 #ifndef PRODUCT
   864   if (TraceLoopOpts) {
   865     if (peel_only)
   866       tty->print("PeelMainPost ");
   867     else
   868       tty->print("PreMainPost  ");
   869     loop->dump_head();
   870   }
   871 #endif
   872   C->set_major_progress();
   874   // Find common pieces of the loop being guarded with pre & post loops
   875   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
   876   assert( main_head->is_normal_loop(), "" );
   877   CountedLoopEndNode *main_end = main_head->loopexit();
   878   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
   879   uint dd_main_head = dom_depth(main_head);
   880   uint max = main_head->outcnt();
   882   Node *pre_header= main_head->in(LoopNode::EntryControl);
   883   Node *init      = main_head->init_trip();
   884   Node *incr      = main_end ->incr();
   885   Node *limit     = main_end ->limit();
   886   Node *stride    = main_end ->stride();
   887   Node *cmp       = main_end ->cmp_node();
   888   BoolTest::mask b_test = main_end->test_trip();
   890   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
   891   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
   892   if( bol->outcnt() != 1 ) {
   893     bol = bol->clone();
   894     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
   895     _igvn.hash_delete(main_end);
   896     main_end->set_req(CountedLoopEndNode::TestValue, bol);
   897   }
   898   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
   899   if( cmp->outcnt() != 1 ) {
   900     cmp = cmp->clone();
   901     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
   902     _igvn.hash_delete(bol);
   903     bol->set_req(1, cmp);
   904   }
   906   //------------------------------
   907   // Step A: Create Post-Loop.
   908   Node* main_exit = main_end->proj_out(false);
   909   assert( main_exit->Opcode() == Op_IfFalse, "" );
   910   int dd_main_exit = dom_depth(main_exit);
   912   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
   913   // loop pre-header illegally has 2 control users (old & new loops).
   914   clone_loop( loop, old_new, dd_main_exit );
   915   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
   916   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
   917   post_head->set_post_loop(main_head);
   919   // Reduce the post-loop trip count.
   920   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
   921   post_end->_prob = PROB_FAIR;
   923   // Build the main-loop normal exit.
   924   IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
   925   _igvn.register_new_node_with_optimizer( new_main_exit );
   926   set_idom(new_main_exit, main_end, dd_main_exit );
   927   set_loop(new_main_exit, loop->_parent);
   929   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
   930   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
   931   // (the main-loop trip-counter exit value) because we will be changing
   932   // the exit value (via unrolling) so we cannot constant-fold away the zero
   933   // trip guard until all unrolling is done.
   934   Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
   935   Node *zer_cmp  = new (C, 3) CmpINode( zer_opaq, limit );
   936   Node *zer_bol  = new (C, 2) BoolNode( zer_cmp, b_test );
   937   register_new_node( zer_opaq, new_main_exit );
   938   register_new_node( zer_cmp , new_main_exit );
   939   register_new_node( zer_bol , new_main_exit );
   941   // Build the IfNode
   942   IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
   943   _igvn.register_new_node_with_optimizer( zer_iff );
   944   set_idom(zer_iff, new_main_exit, dd_main_exit);
   945   set_loop(zer_iff, loop->_parent);
   947   // Plug in the false-path, taken if we need to skip post-loop
   948   _igvn.hash_delete( main_exit );
   949   main_exit->set_req(0, zer_iff);
   950   _igvn._worklist.push(main_exit);
   951   set_idom(main_exit, zer_iff, dd_main_exit);
   952   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
   953   // Make the true-path, must enter the post loop
   954   Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
   955   _igvn.register_new_node_with_optimizer( zer_taken );
   956   set_idom(zer_taken, zer_iff, dd_main_exit);
   957   set_loop(zer_taken, loop->_parent);
   958   // Plug in the true path
   959   _igvn.hash_delete( post_head );
   960   post_head->set_req(LoopNode::EntryControl, zer_taken);
   961   set_idom(post_head, zer_taken, dd_main_exit);
   963   // Step A3: Make the fall-in values to the post-loop come from the
   964   // fall-out values of the main-loop.
   965   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
   966     Node* main_phi = main_head->fast_out(i);
   967     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
   968       Node *post_phi = old_new[main_phi->_idx];
   969       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
   970                                               post_head->init_control(),
   971                                               main_phi->in(LoopNode::LoopBackControl));
   972       _igvn.hash_delete(post_phi);
   973       post_phi->set_req( LoopNode::EntryControl, fallmain );
   974     }
   975   }
   977   // Update local caches for next stanza
   978   main_exit = new_main_exit;
   981   //------------------------------
   982   // Step B: Create Pre-Loop.
   984   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
   985   // loop pre-header illegally has 2 control users (old & new loops).
   986   clone_loop( loop, old_new, dd_main_head );
   987   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
   988   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
   989   pre_head->set_pre_loop(main_head);
   990   Node *pre_incr = old_new[incr->_idx];
   992   // Reduce the pre-loop trip count.
   993   pre_end->_prob = PROB_FAIR;
   995   // Find the pre-loop normal exit.
   996   Node* pre_exit = pre_end->proj_out(false);
   997   assert( pre_exit->Opcode() == Op_IfFalse, "" );
   998   IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
   999   _igvn.register_new_node_with_optimizer( new_pre_exit );
  1000   set_idom(new_pre_exit, pre_end, dd_main_head);
  1001   set_loop(new_pre_exit, loop->_parent);
  1003   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
  1004   // pre-loop, the main-loop may not execute at all.  Later in life this
  1005   // zero-trip guard will become the minimum-trip guard when we unroll
  1006   // the main-loop.
  1007   Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
  1008   Node *min_cmp  = new (C, 3) CmpINode( pre_incr, min_opaq );
  1009   Node *min_bol  = new (C, 2) BoolNode( min_cmp, b_test );
  1010   register_new_node( min_opaq, new_pre_exit );
  1011   register_new_node( min_cmp , new_pre_exit );
  1012   register_new_node( min_bol , new_pre_exit );
  1014   // Build the IfNode (assume the main-loop is executed always).
  1015   IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
  1016   _igvn.register_new_node_with_optimizer( min_iff );
  1017   set_idom(min_iff, new_pre_exit, dd_main_head);
  1018   set_loop(min_iff, loop->_parent);
  1020   // Plug in the false-path, taken if we need to skip main-loop
  1021   _igvn.hash_delete( pre_exit );
  1022   pre_exit->set_req(0, min_iff);
  1023   set_idom(pre_exit, min_iff, dd_main_head);
  1024   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
  1025   // Make the true-path, must enter the main loop
  1026   Node *min_taken = new (C, 1) IfTrueNode( min_iff );
  1027   _igvn.register_new_node_with_optimizer( min_taken );
  1028   set_idom(min_taken, min_iff, dd_main_head);
  1029   set_loop(min_taken, loop->_parent);
  1030   // Plug in the true path
  1031   _igvn.hash_delete( main_head );
  1032   main_head->set_req(LoopNode::EntryControl, min_taken);
  1033   set_idom(main_head, min_taken, dd_main_head);
  1035   // Step B3: Make the fall-in values to the main-loop come from the
  1036   // fall-out values of the pre-loop.
  1037   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
  1038     Node* main_phi = main_head->fast_out(i2);
  1039     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
  1040       Node *pre_phi = old_new[main_phi->_idx];
  1041       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
  1042                                              main_head->init_control(),
  1043                                              pre_phi->in(LoopNode::LoopBackControl));
  1044       _igvn.hash_delete(main_phi);
  1045       main_phi->set_req( LoopNode::EntryControl, fallpre );
  1049   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
  1050   // RCE and alignment may change this later.
  1051   Node *cmp_end = pre_end->cmp_node();
  1052   assert( cmp_end->in(2) == limit, "" );
  1053   Node *pre_limit = new (C, 3) AddINode( init, stride );
  1055   // Save the original loop limit in this Opaque1 node for
  1056   // use by range check elimination.
  1057   Node *pre_opaq  = new (C, 3) Opaque1Node(C, pre_limit, limit);
  1059   register_new_node( pre_limit, pre_head->in(0) );
  1060   register_new_node( pre_opaq , pre_head->in(0) );
  1062   // Since no other users of pre-loop compare, I can hack limit directly
  1063   assert( cmp_end->outcnt() == 1, "no other users" );
  1064   _igvn.hash_delete(cmp_end);
  1065   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
  1067   // Special case for not-equal loop bounds:
  1068   // Change pre loop test, main loop test, and the
  1069   // main loop guard test to use lt or gt depending on stride
  1070   // direction:
  1071   // positive stride use <
  1072   // negative stride use >
  1074   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
  1075     assert(!LoopLimitCheck, "only canonical tests (lt or gt) are expected");
  1077     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
  1078     // Modify pre loop end condition
  1079     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
  1080     BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
  1081     register_new_node( new_bol0, pre_head->in(0) );
  1082     _igvn.hash_delete(pre_end);
  1083     pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
  1084     // Modify main loop guard condition
  1085     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
  1086     BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
  1087     register_new_node( new_bol1, new_pre_exit );
  1088     _igvn.hash_delete(min_iff);
  1089     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
  1090     // Modify main loop end condition
  1091     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
  1092     BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
  1093     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
  1094     _igvn.hash_delete(main_end);
  1095     main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
  1098   // Flag main loop
  1099   main_head->set_main_loop();
  1100   if( peel_only ) main_head->set_main_no_pre_loop();
  1102   // Subtract a trip count for the pre-loop.
  1103   main_head->set_trip_count(main_head->trip_count() - 1);
  1105   // It's difficult to be precise about the trip-counts
  1106   // for the pre/post loops.  They are usually very short,
  1107   // so guess that 4 trips is a reasonable value.
  1108   post_head->set_profile_trip_cnt(4.0);
  1109   pre_head->set_profile_trip_cnt(4.0);
  1111   // Now force out all loop-invariant dominating tests.  The optimizer
  1112   // finds some, but we _know_ they are all useless.
  1113   peeled_dom_test_elim(loop,old_new);
  1116 //------------------------------is_invariant-----------------------------
  1117 // Return true if n is invariant
  1118 bool IdealLoopTree::is_invariant(Node* n) const {
  1119   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
  1120   if (n_c->is_top()) return false;
  1121   return !is_member(_phase->get_loop(n_c));
  1125 //------------------------------do_unroll--------------------------------------
  1126 // Unroll the loop body one step - make each trip do 2 iterations.
  1127 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
  1128   assert(LoopUnrollLimit, "");
  1129   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
  1130   CountedLoopEndNode *loop_end = loop_head->loopexit();
  1131   assert(loop_end, "");
  1132 #ifndef PRODUCT
  1133   if (PrintOpto && VerifyLoopOptimizations) {
  1134     tty->print("Unrolling ");
  1135     loop->dump_head();
  1136   } else if (TraceLoopOpts) {
  1137     if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
  1138       tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
  1139     } else {
  1140       tty->print("Unroll %d     ", loop_head->unrolled_count()*2);
  1142     loop->dump_head();
  1144 #endif
  1146   // Remember loop node count before unrolling to detect
  1147   // if rounds of unroll,optimize are making progress
  1148   loop_head->set_node_count_before_unroll(loop->_body.size());
  1150   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
  1151   Node *limit = loop_head->limit();
  1152   Node *init  = loop_head->init_trip();
  1153   Node *stride = loop_head->stride();
  1155   Node *opaq = NULL;
  1156   if (adjust_min_trip) {       // If not maximally unrolling, need adjustment
  1157     // Search for zero-trip guard.
  1158     assert( loop_head->is_main_loop(), "" );
  1159     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
  1160     Node *iff = ctrl->in(0);
  1161     assert( iff->Opcode() == Op_If, "" );
  1162     Node *bol = iff->in(1);
  1163     assert( bol->Opcode() == Op_Bool, "" );
  1164     Node *cmp = bol->in(1);
  1165     assert( cmp->Opcode() == Op_CmpI, "" );
  1166     opaq = cmp->in(2);
  1167     // Occasionally it's possible for a zero-trip guard Opaque1 node to be
  1168     // optimized away and then another round of loop opts attempted.
  1169     // We can not optimize this particular loop in that case.
  1170     if (opaq->Opcode() != Op_Opaque1)
  1171       return; // Cannot find zero-trip guard!  Bail out!
  1172     // Zero-trip test uses an 'opaque' node which is not shared.
  1173     assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "");
  1176   C->set_major_progress();
  1178   Node* new_limit = NULL;
  1179   if (UnrollLimitCheck) {
  1180     int stride_con = stride->get_int();
  1181     int stride_p = (stride_con > 0) ? stride_con : -stride_con;
  1182     uint old_trip_count = loop_head->trip_count();
  1183     // Verify that unroll policy result is still valid.
  1184     assert(old_trip_count > 1 &&
  1185            (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
  1187     // Adjust loop limit to keep valid iterations number after unroll.
  1188     // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
  1189     // which may overflow.
  1190     if (!adjust_min_trip) {
  1191       assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
  1192              "odd trip count for maximally unroll");
  1193       // Don't need to adjust limit for maximally unroll since trip count is even.
  1194     } else if (loop_head->has_exact_trip_count() && init->is_Con()) {
  1195       // Loop's limit is constant. Loop's init could be constant when pre-loop
  1196       // become peeled iteration.
  1197       long init_con = init->get_int();
  1198       // We can keep old loop limit if iterations count stays the same:
  1199       //   old_trip_count == new_trip_count * 2
  1200       // Note: since old_trip_count >= 2 then new_trip_count >= 1
  1201       // so we also don't need to adjust zero trip test.
  1202       long limit_con  = limit->get_int();
  1203       // (stride_con*2) not overflow since stride_con <= 8.
  1204       int new_stride_con = stride_con * 2;
  1205       int stride_m    = new_stride_con - (stride_con > 0 ? 1 : -1);
  1206       long trip_count = (limit_con - init_con + stride_m)/new_stride_con;
  1207       // New trip count should satisfy next conditions.
  1208       assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
  1209       uint new_trip_count = (uint)trip_count;
  1210       adjust_min_trip = (old_trip_count != new_trip_count*2);
  1213     if (adjust_min_trip) {
  1214       // Step 2: Adjust the trip limit if it is called for.
  1215       // The adjustment amount is -stride. Need to make sure if the
  1216       // adjustment underflows or overflows, then the main loop is skipped.
  1217       Node* cmp = loop_end->cmp_node();
  1218       assert(cmp->in(2) == limit, "sanity");
  1219       assert(opaq != NULL && opaq->in(1) == limit, "sanity");
  1221       // Verify that policy_unroll result is still valid.
  1222       const TypeInt* limit_type = _igvn.type(limit)->is_int();
  1223       assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
  1224              stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
  1226       if (limit->is_Con()) {
  1227         // The check in policy_unroll and the assert above guarantee
  1228         // no underflow if limit is constant.
  1229         new_limit = _igvn.intcon(limit->get_int() - stride_con);
  1230         set_ctrl(new_limit, C->root());
  1231       } else {
  1232         // Limit is not constant.
  1233         if (loop_head->unrolled_count() == 1) { // only for first unroll
  1234           // Separate limit by Opaque node in case it is an incremented
  1235           // variable from previous loop to avoid using pre-incremented
  1236           // value which could increase register pressure.
  1237           // Otherwise reorg_offsets() optimization will create a separate
  1238           // Opaque node for each use of trip-counter and as result
  1239           // zero trip guard limit will be different from loop limit.
  1240           assert(has_ctrl(opaq), "should have it");
  1241           Node* opaq_ctrl = get_ctrl(opaq);
  1242           limit = new (C, 2) Opaque2Node( C, limit );
  1243           register_new_node( limit, opaq_ctrl );
  1245         if (stride_con > 0 && ((limit_type->_lo - stride_con) < limit_type->_lo) ||
  1246                    stride_con < 0 && ((limit_type->_hi - stride_con) > limit_type->_hi)) {
  1247           // No underflow.
  1248           new_limit = new (C, 3) SubINode(limit, stride);
  1249         } else {
  1250           // (limit - stride) may underflow.
  1251           // Clamp the adjustment value with MININT or MAXINT:
  1252           //
  1253           //   new_limit = limit-stride
  1254           //   if (stride > 0)
  1255           //     new_limit = (limit < new_limit) ? MININT : new_limit;
  1256           //   else
  1257           //     new_limit = (limit > new_limit) ? MAXINT : new_limit;
  1258           //
  1259           BoolTest::mask bt = loop_end->test_trip();
  1260           assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
  1261           Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
  1262           set_ctrl(adj_max, C->root());
  1263           Node* old_limit = NULL;
  1264           Node* adj_limit = NULL;
  1265           Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
  1266           if (loop_head->unrolled_count() > 1 &&
  1267               limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
  1268               limit->in(CMoveNode::IfTrue) == adj_max &&
  1269               bol->as_Bool()->_test._test == bt &&
  1270               bol->in(1)->Opcode() == Op_CmpI &&
  1271               bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
  1272             // Loop was unrolled before.
  1273             // Optimize the limit to avoid nested CMove:
  1274             // use original limit as old limit.
  1275             old_limit = bol->in(1)->in(1);
  1276             // Adjust previous adjusted limit.
  1277             adj_limit = limit->in(CMoveNode::IfFalse);
  1278             adj_limit = new (C, 3) SubINode(adj_limit, stride);
  1279           } else {
  1280             old_limit = limit;
  1281             adj_limit = new (C, 3) SubINode(limit, stride);
  1283           assert(old_limit != NULL && adj_limit != NULL, "");
  1284           register_new_node( adj_limit, ctrl ); // adjust amount
  1285           Node* adj_cmp = new (C, 3) CmpINode(old_limit, adj_limit);
  1286           register_new_node( adj_cmp, ctrl );
  1287           Node* adj_bool = new (C, 2) BoolNode(adj_cmp, bt);
  1288           register_new_node( adj_bool, ctrl );
  1289           new_limit = new (C, 4) CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
  1291         register_new_node(new_limit, ctrl);
  1293       assert(new_limit != NULL, "");
  1294       // Replace in loop test.
  1295       _igvn.hash_delete(cmp);
  1296       cmp->set_req(2, new_limit);
  1298       // Step 3: Find the min-trip test guaranteed before a 'main' loop.
  1299       // Make it a 1-trip test (means at least 2 trips).
  1301       // Guard test uses an 'opaque' node which is not shared.  Hence I
  1302       // can edit it's inputs directly.  Hammer in the new limit for the
  1303       // minimum-trip guard.
  1304       assert(opaq->outcnt() == 1, "");
  1305       _igvn.hash_delete(opaq);
  1306       opaq->set_req(1, new_limit);
  1309     // Adjust max trip count. The trip count is intentionally rounded
  1310     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
  1311     // the main, unrolled, part of the loop will never execute as it is protected
  1312     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
  1313     // and later determined that part of the unrolled loop was dead.
  1314     loop_head->set_trip_count(old_trip_count / 2);
  1316     // Double the count of original iterations in the unrolled loop body.
  1317     loop_head->double_unrolled_count();
  1319   } else { // LoopLimitCheck
  1321     // Adjust max trip count. The trip count is intentionally rounded
  1322     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
  1323     // the main, unrolled, part of the loop will never execute as it is protected
  1324     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
  1325     // and later determined that part of the unrolled loop was dead.
  1326     loop_head->set_trip_count(loop_head->trip_count() / 2);
  1328     // Double the count of original iterations in the unrolled loop body.
  1329     loop_head->double_unrolled_count();
  1331     // -----------
  1332     // Step 2: Cut back the trip counter for an unroll amount of 2.
  1333     // Loop will normally trip (limit - init)/stride_con.  Since it's a
  1334     // CountedLoop this is exact (stride divides limit-init exactly).
  1335     // We are going to double the loop body, so we want to knock off any
  1336     // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
  1337     Node *span = new (C, 3) SubINode( limit, init );
  1338     register_new_node( span, ctrl );
  1339     Node *trip = new (C, 3) DivINode( 0, span, stride );
  1340     register_new_node( trip, ctrl );
  1341     Node *mtwo = _igvn.intcon(-2);
  1342     set_ctrl(mtwo, C->root());
  1343     Node *rond = new (C, 3) AndINode( trip, mtwo );
  1344     register_new_node( rond, ctrl );
  1345     Node *spn2 = new (C, 3) MulINode( rond, stride );
  1346     register_new_node( spn2, ctrl );
  1347     new_limit = new (C, 3) AddINode( spn2, init );
  1348     register_new_node( new_limit, ctrl );
  1350     // Hammer in the new limit
  1351     Node *ctrl2 = loop_end->in(0);
  1352     Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), new_limit );
  1353     register_new_node( cmp2, ctrl2 );
  1354     Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
  1355     register_new_node( bol2, ctrl2 );
  1356     _igvn.hash_delete(loop_end);
  1357     loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
  1359     // Step 3: Find the min-trip test guaranteed before a 'main' loop.
  1360     // Make it a 1-trip test (means at least 2 trips).
  1361     if( adjust_min_trip ) {
  1362       assert( new_limit != NULL, "" );
  1363       // Guard test uses an 'opaque' node which is not shared.  Hence I
  1364       // can edit it's inputs directly.  Hammer in the new limit for the
  1365       // minimum-trip guard.
  1366       assert( opaq->outcnt() == 1, "" );
  1367       _igvn.hash_delete(opaq);
  1368       opaq->set_req(1, new_limit);
  1370   } // LoopLimitCheck
  1372   // ---------
  1373   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
  1374   // represents the odd iterations; since the loop trips an even number of
  1375   // times its backedge is never taken.  Kill the backedge.
  1376   uint dd = dom_depth(loop_head);
  1377   clone_loop( loop, old_new, dd );
  1379   // Make backedges of the clone equal to backedges of the original.
  1380   // Make the fall-in from the original come from the fall-out of the clone.
  1381   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
  1382     Node* phi = loop_head->fast_out(j);
  1383     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
  1384       Node *newphi = old_new[phi->_idx];
  1385       _igvn.hash_delete( phi );
  1386       _igvn.hash_delete( newphi );
  1388       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
  1389       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
  1390       phi   ->set_req(LoopNode::LoopBackControl, C->top());
  1393   Node *clone_head = old_new[loop_head->_idx];
  1394   _igvn.hash_delete( clone_head );
  1395   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
  1396   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
  1397   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
  1398   loop->_head = clone_head;     // New loop header
  1400   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
  1401   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
  1403   // Kill the clone's backedge
  1404   Node *newcle = old_new[loop_end->_idx];
  1405   _igvn.hash_delete( newcle );
  1406   Node *one = _igvn.intcon(1);
  1407   set_ctrl(one, C->root());
  1408   newcle->set_req(1, one);
  1409   // Force clone into same loop body
  1410   uint max = loop->_body.size();
  1411   for( uint k = 0; k < max; k++ ) {
  1412     Node *old = loop->_body.at(k);
  1413     Node *nnn = old_new[old->_idx];
  1414     loop->_body.push(nnn);
  1415     if (!has_ctrl(old))
  1416       set_loop(nnn, loop);
  1419   loop->record_for_igvn();
  1422 //------------------------------do_maximally_unroll----------------------------
  1424 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
  1425   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1426   assert(cl->has_exact_trip_count(), "trip count is not exact");
  1427   assert(cl->trip_count() > 0, "");
  1428 #ifndef PRODUCT
  1429   if (TraceLoopOpts) {
  1430     tty->print("MaxUnroll  %d ", cl->trip_count());
  1431     loop->dump_head();
  1433 #endif
  1435   // If loop is tripping an odd number of times, peel odd iteration
  1436   if ((cl->trip_count() & 1) == 1) {
  1437     do_peeling(loop, old_new);
  1440   // Now its tripping an even number of times remaining.  Double loop body.
  1441   // Do not adjust pre-guards; they are not needed and do not exist.
  1442   if (cl->trip_count() > 0) {
  1443     assert((cl->trip_count() & 1) == 0, "missed peeling");
  1444     do_unroll(loop, old_new, false);
  1448 //------------------------------dominates_backedge---------------------------------
  1449 // Returns true if ctrl is executed on every complete iteration
  1450 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
  1451   assert(ctrl->is_CFG(), "must be control");
  1452   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
  1453   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
  1456 //------------------------------adjust_limit-----------------------------------
  1457 // Helper function for add_constraint().
  1458 Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
  1459   // Compute "I :: (limit-offset)/scale"
  1460   Node *con = new (C, 3) SubINode(rc_limit, offset);
  1461   register_new_node(con, pre_ctrl);
  1462   Node *X = new (C, 3) DivINode(0, con, scale);
  1463   register_new_node(X, pre_ctrl);
  1465   // Adjust loop limit
  1466   loop_limit = (stride_con > 0)
  1467                ? (Node*)(new (C, 3) MinINode(loop_limit, X))
  1468                : (Node*)(new (C, 3) MaxINode(loop_limit, X));
  1469   register_new_node(loop_limit, pre_ctrl);
  1470   return loop_limit;
  1473 //------------------------------add_constraint---------------------------------
  1474 // Constrain the main loop iterations so the conditions:
  1475 //    low_limit <= scale_con * I + offset  <  upper_limit
  1476 // always holds true.  That is, either increase the number of iterations in
  1477 // the pre-loop or the post-loop until the condition holds true in the main
  1478 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
  1479 // stride and scale are constants (offset and limit often are).
  1480 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
  1481   // For positive stride, the pre-loop limit always uses a MAX function
  1482   // and the main loop a MIN function.  For negative stride these are
  1483   // reversed.
  1485   // Also for positive stride*scale the affine function is increasing, so the
  1486   // pre-loop must check for underflow and the post-loop for overflow.
  1487   // Negative stride*scale reverses this; pre-loop checks for overflow and
  1488   // post-loop for underflow.
  1490   Node *scale = _igvn.intcon(scale_con);
  1491   set_ctrl(scale, C->root());
  1493   if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow
  1494     // The overflow limit: scale*I+offset < upper_limit
  1495     // For main-loop compute
  1496     //   ( if (scale > 0) /* and stride > 0 */
  1497     //       I < (upper_limit-offset)/scale
  1498     //     else /* scale < 0 and stride < 0 */
  1499     //       I > (upper_limit-offset)/scale
  1500     //   )
  1501     //
  1502     // (upper_limit-offset) may overflow or underflow.
  1503     // But it is fine since main loop will either have
  1504     // less iterations or will be skipped in such case.
  1505     *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl);
  1507     // The underflow limit: low_limit <= scale*I+offset.
  1508     // For pre-loop compute
  1509     //   NOT(scale*I+offset >= low_limit)
  1510     //   scale*I+offset < low_limit
  1511     //   ( if (scale > 0) /* and stride > 0 */
  1512     //       I < (low_limit-offset)/scale
  1513     //     else /* scale < 0 and stride < 0 */
  1514     //       I > (low_limit-offset)/scale
  1515     //   )
  1517     if (low_limit->get_int() == -max_jint) {
  1518       if (!RangeLimitCheck) return;
  1519       // We need this guard when scale*pre_limit+offset >= limit
  1520       // due to underflow. So we need execute pre-loop until
  1521       // scale*I+offset >= min_int. But (min_int-offset) will
  1522       // underflow when offset > 0 and X will be > original_limit
  1523       // when stride > 0. To avoid it we replace positive offset with 0.
  1524       //
  1525       // Also (min_int+1 == -max_int) is used instead of min_int here
  1526       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
  1527       Node* shift = _igvn.intcon(31);
  1528       set_ctrl(shift, C->root());
  1529       Node* sign = new (C, 3) RShiftINode(offset, shift);
  1530       register_new_node(sign, pre_ctrl);
  1531       offset = new (C, 3) AndINode(offset, sign);
  1532       register_new_node(offset, pre_ctrl);
  1533     } else {
  1534       assert(low_limit->get_int() == 0, "wrong low limit for range check");
  1535       // The only problem we have here when offset == min_int
  1536       // since (0-min_int) == min_int. It may be fine for stride > 0
  1537       // but for stride < 0 X will be < original_limit. To avoid it
  1538       // max(pre_limit, original_limit) is used in do_range_check().
  1540     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
  1541     *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);
  1543   } else { // stride_con*scale_con < 0
  1544     // For negative stride*scale pre-loop checks for overflow and
  1545     // post-loop for underflow.
  1546     //
  1547     // The overflow limit: scale*I+offset < upper_limit
  1548     // For pre-loop compute
  1549     //   NOT(scale*I+offset < upper_limit)
  1550     //   scale*I+offset >= upper_limit
  1551     //   scale*I+offset+1 > upper_limit
  1552     //   ( if (scale < 0) /* and stride > 0 */
  1553     //       I < (upper_limit-(offset+1))/scale
  1554     //     else /* scale > 0 and stride < 0 */
  1555     //       I > (upper_limit-(offset+1))/scale
  1556     //   )
  1557     //
  1558     // (upper_limit-offset-1) may underflow or overflow.
  1559     // To avoid it min(pre_limit, original_limit) is used
  1560     // in do_range_check() for stride > 0 and max() for < 0.
  1561     Node *one  = _igvn.intcon(1);
  1562     set_ctrl(one, C->root());
  1564     Node *plus_one = new (C, 3) AddINode(offset, one);
  1565     register_new_node( plus_one, pre_ctrl );
  1566     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
  1567     *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
  1569     if (low_limit->get_int() == -max_jint) {
  1570       if (!RangeLimitCheck) return;
  1571       // We need this guard when scale*main_limit+offset >= limit
  1572       // due to underflow. So we need execute main-loop while
  1573       // scale*I+offset+1 > min_int. But (min_int-offset-1) will
  1574       // underflow when (offset+1) > 0 and X will be < main_limit
  1575       // when scale < 0 (and stride > 0). To avoid it we replace
  1576       // positive (offset+1) with 0.
  1577       //
  1578       // Also (min_int+1 == -max_int) is used instead of min_int here
  1579       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
  1580       Node* shift = _igvn.intcon(31);
  1581       set_ctrl(shift, C->root());
  1582       Node* sign = new (C, 3) RShiftINode(plus_one, shift);
  1583       register_new_node(sign, pre_ctrl);
  1584       plus_one = new (C, 3) AndINode(plus_one, sign);
  1585       register_new_node(plus_one, pre_ctrl);
  1586     } else {
  1587       assert(low_limit->get_int() == 0, "wrong low limit for range check");
  1588       // The only problem we have here when offset == max_int
  1589       // since (max_int+1) == min_int and (0-min_int) == min_int.
  1590       // But it is fine since main loop will either have
  1591       // less iterations or will be skipped in such case.
  1593     // The underflow limit: low_limit <= scale*I+offset.
  1594     // For main-loop compute
  1595     //   scale*I+offset+1 > low_limit
  1596     //   ( if (scale < 0) /* and stride > 0 */
  1597     //       I < (low_limit-(offset+1))/scale
  1598     //     else /* scale > 0 and stride < 0 */
  1599     //       I > (low_limit-(offset+1))/scale
  1600     //   )
  1602     *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
  1607 //------------------------------is_scaled_iv---------------------------------
  1608 // Return true if exp is a constant times an induction var
  1609 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
  1610   if (exp == iv) {
  1611     if (p_scale != NULL) {
  1612       *p_scale = 1;
  1614     return true;
  1616   int opc = exp->Opcode();
  1617   if (opc == Op_MulI) {
  1618     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1619       if (p_scale != NULL) {
  1620         *p_scale = exp->in(2)->get_int();
  1622       return true;
  1624     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
  1625       if (p_scale != NULL) {
  1626         *p_scale = exp->in(1)->get_int();
  1628       return true;
  1630   } else if (opc == Op_LShiftI) {
  1631     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
  1632       if (p_scale != NULL) {
  1633         *p_scale = 1 << exp->in(2)->get_int();
  1635       return true;
  1638   return false;
  1641 //-----------------------------is_scaled_iv_plus_offset------------------------------
  1642 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
  1643 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
  1644   if (is_scaled_iv(exp, iv, p_scale)) {
  1645     if (p_offset != NULL) {
  1646       Node *zero = _igvn.intcon(0);
  1647       set_ctrl(zero, C->root());
  1648       *p_offset = zero;
  1650     return true;
  1652   int opc = exp->Opcode();
  1653   if (opc == Op_AddI) {
  1654     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1655       if (p_offset != NULL) {
  1656         *p_offset = exp->in(2);
  1658       return true;
  1660     if (exp->in(2)->is_Con()) {
  1661       Node* offset2 = NULL;
  1662       if (depth < 2 &&
  1663           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
  1664                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
  1665         if (p_offset != NULL) {
  1666           Node *ctrl_off2 = get_ctrl(offset2);
  1667           Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
  1668           register_new_node(offset, ctrl_off2);
  1669           *p_offset = offset;
  1671         return true;
  1674   } else if (opc == Op_SubI) {
  1675     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
  1676       if (p_offset != NULL) {
  1677         Node *zero = _igvn.intcon(0);
  1678         set_ctrl(zero, C->root());
  1679         Node *ctrl_off = get_ctrl(exp->in(2));
  1680         Node* offset = new (C, 3) SubINode(zero, exp->in(2));
  1681         register_new_node(offset, ctrl_off);
  1682         *p_offset = offset;
  1684       return true;
  1686     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
  1687       if (p_offset != NULL) {
  1688         *p_scale *= -1;
  1689         *p_offset = exp->in(1);
  1691       return true;
  1694   return false;
  1697 //------------------------------do_range_check---------------------------------
  1698 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
  1699 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
  1700 #ifndef PRODUCT
  1701   if (PrintOpto && VerifyLoopOptimizations) {
  1702     tty->print("Range Check Elimination ");
  1703     loop->dump_head();
  1704   } else if (TraceLoopOpts) {
  1705     tty->print("RangeCheck   ");
  1706     loop->dump_head();
  1708 #endif
  1709   assert(RangeCheckElimination, "");
  1710   CountedLoopNode *cl = loop->_head->as_CountedLoop();
  1711   assert(cl->is_main_loop(), "");
  1713   // protect against stride not being a constant
  1714   if (!cl->stride_is_con())
  1715     return;
  1717   // Find the trip counter; we are iteration splitting based on it
  1718   Node *trip_counter = cl->phi();
  1719   // Find the main loop limit; we will trim it's iterations
  1720   // to not ever trip end tests
  1721   Node *main_limit = cl->limit();
  1723   // Need to find the main-loop zero-trip guard
  1724   Node *ctrl  = cl->in(LoopNode::EntryControl);
  1725   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
  1726   Node *iffm = ctrl->in(0);
  1727   assert(iffm->Opcode() == Op_If, "");
  1728   Node *bolzm = iffm->in(1);
  1729   assert(bolzm->Opcode() == Op_Bool, "");
  1730   Node *cmpzm = bolzm->in(1);
  1731   assert(cmpzm->is_Cmp(), "");
  1732   Node *opqzm = cmpzm->in(2);
  1733   // Can not optimize a loop if zero-trip Opaque1 node is optimized
  1734   // away and then another round of loop opts attempted.
  1735   if (opqzm->Opcode() != Op_Opaque1)
  1736     return;
  1737   assert(opqzm->in(1) == main_limit, "do not understand situation");
  1739   // Find the pre-loop limit; we will expand it's iterations to
  1740   // not ever trip low tests.
  1741   Node *p_f = iffm->in(0);
  1742   assert(p_f->Opcode() == Op_IfFalse, "");
  1743   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
  1744   assert(pre_end->loopnode()->is_pre_loop(), "");
  1745   Node *pre_opaq1 = pre_end->limit();
  1746   // Occasionally it's possible for a pre-loop Opaque1 node to be
  1747   // optimized away and then another round of loop opts attempted.
  1748   // We can not optimize this particular loop in that case.
  1749   if (pre_opaq1->Opcode() != Op_Opaque1)
  1750     return;
  1751   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
  1752   Node *pre_limit = pre_opaq->in(1);
  1754   // Where do we put new limit calculations
  1755   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
  1757   // Ensure the original loop limit is available from the
  1758   // pre-loop Opaque1 node.
  1759   Node *orig_limit = pre_opaq->original_loop_limit();
  1760   if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
  1761     return;
  1763   // Must know if its a count-up or count-down loop
  1765   int stride_con = cl->stride_con();
  1766   Node *zero = _igvn.intcon(0);
  1767   Node *one  = _igvn.intcon(1);
  1768   // Use symmetrical int range [-max_jint,max_jint]
  1769   Node *mini = _igvn.intcon(-max_jint);
  1770   set_ctrl(zero, C->root());
  1771   set_ctrl(one,  C->root());
  1772   set_ctrl(mini, C->root());
  1774   // Range checks that do not dominate the loop backedge (ie.
  1775   // conditionally executed) can lengthen the pre loop limit beyond
  1776   // the original loop limit. To prevent this, the pre limit is
  1777   // (for stride > 0) MINed with the original loop limit (MAXed
  1778   // stride < 0) when some range_check (rc) is conditionally
  1779   // executed.
  1780   bool conditional_rc = false;
  1782   // Check loop body for tests of trip-counter plus loop-invariant vs
  1783   // loop-invariant.
  1784   for( uint i = 0; i < loop->_body.size(); i++ ) {
  1785     Node *iff = loop->_body[i];
  1786     if( iff->Opcode() == Op_If ) { // Test?
  1788       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  1789       // we need loop unswitching instead of iteration splitting.
  1790       Node *exit = loop->is_loop_exit(iff);
  1791       if( !exit ) continue;
  1792       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
  1794       // Get boolean condition to test
  1795       Node *i1 = iff->in(1);
  1796       if( !i1->is_Bool() ) continue;
  1797       BoolNode *bol = i1->as_Bool();
  1798       BoolTest b_test = bol->_test;
  1799       // Flip sense of test if exit condition is flipped
  1800       if( flip )
  1801         b_test = b_test.negate();
  1803       // Get compare
  1804       Node *cmp = bol->in(1);
  1806       // Look for trip_counter + offset vs limit
  1807       Node *rc_exp = cmp->in(1);
  1808       Node *limit  = cmp->in(2);
  1809       jint scale_con= 1;        // Assume trip counter not scaled
  1811       Node *limit_c = get_ctrl(limit);
  1812       if( loop->is_member(get_loop(limit_c) ) ) {
  1813         // Compare might have operands swapped; commute them
  1814         b_test = b_test.commute();
  1815         rc_exp = cmp->in(2);
  1816         limit  = cmp->in(1);
  1817         limit_c = get_ctrl(limit);
  1818         if( loop->is_member(get_loop(limit_c) ) )
  1819           continue;             // Both inputs are loop varying; cannot RCE
  1821       // Here we know 'limit' is loop invariant
  1823       // 'limit' maybe pinned below the zero trip test (probably from a
  1824       // previous round of rce), in which case, it can't be used in the
  1825       // zero trip test expression which must occur before the zero test's if.
  1826       if( limit_c == ctrl ) {
  1827         continue;  // Don't rce this check but continue looking for other candidates.
  1830       // Check for scaled induction variable plus an offset
  1831       Node *offset = NULL;
  1833       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
  1834         continue;
  1837       Node *offset_c = get_ctrl(offset);
  1838       if( loop->is_member( get_loop(offset_c) ) )
  1839         continue;               // Offset is not really loop invariant
  1840       // Here we know 'offset' is loop invariant.
  1842       // As above for the 'limit', the 'offset' maybe pinned below the
  1843       // zero trip test.
  1844       if( offset_c == ctrl ) {
  1845         continue; // Don't rce this check but continue looking for other candidates.
  1847 #ifdef ASSERT
  1848       if (TraceRangeLimitCheck) {
  1849         tty->print_cr("RC bool node%s", flip ? " flipped:" : ":");
  1850         bol->dump(2);
  1852 #endif
  1853       // At this point we have the expression as:
  1854       //   scale_con * trip_counter + offset :: limit
  1855       // where scale_con, offset and limit are loop invariant.  Trip_counter
  1856       // monotonically increases by stride_con, a constant.  Both (or either)
  1857       // stride_con and scale_con can be negative which will flip about the
  1858       // sense of the test.
  1860       // Adjust pre and main loop limits to guard the correct iteration set
  1861       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
  1862         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
  1863           // The underflow and overflow limits: 0 <= scale*I+offset < limit
  1864           add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
  1865           if (!conditional_rc) {
  1866             // (0-offset)/scale could be outside of loop iterations range.
  1867             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
  1869         } else {
  1870 #ifndef PRODUCT
  1871           if( PrintOpto )
  1872             tty->print_cr("missed RCE opportunity");
  1873 #endif
  1874           continue;             // In release mode, ignore it
  1876       } else {                  // Otherwise work on normal compares
  1877         switch( b_test._test ) {
  1878         case BoolTest::gt:
  1879           // Fall into GE case
  1880         case BoolTest::ge:
  1881           // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
  1882           scale_con = -scale_con;
  1883           offset = new (C, 3) SubINode( zero, offset );
  1884           register_new_node( offset, pre_ctrl );
  1885           limit  = new (C, 3) SubINode( zero, limit  );
  1886           register_new_node( limit, pre_ctrl );
  1887           // Fall into LE case
  1888         case BoolTest::le:
  1889           if (b_test._test != BoolTest::gt) {
  1890             // Convert X <= Y to X < Y+1
  1891             limit = new (C, 3) AddINode( limit, one );
  1892             register_new_node( limit, pre_ctrl );
  1894           // Fall into LT case
  1895         case BoolTest::lt:
  1896           // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
  1897           // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
  1898           // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
  1899           add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
  1900           if (!conditional_rc) {
  1901             // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
  1902             // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
  1903             // still be outside of loop range.
  1904             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
  1906           break;
  1907         default:
  1908 #ifndef PRODUCT
  1909           if( PrintOpto )
  1910             tty->print_cr("missed RCE opportunity");
  1911 #endif
  1912           continue;             // Unhandled case
  1916       // Kill the eliminated test
  1917       C->set_major_progress();
  1918       Node *kill_con = _igvn.intcon( 1-flip );
  1919       set_ctrl(kill_con, C->root());
  1920       _igvn.hash_delete(iff);
  1921       iff->set_req(1, kill_con);
  1922       _igvn._worklist.push(iff);
  1923       // Find surviving projection
  1924       assert(iff->is_If(), "");
  1925       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
  1926       // Find loads off the surviving projection; remove their control edge
  1927       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
  1928         Node* cd = dp->fast_out(i); // Control-dependent node
  1929         if( cd->is_Load() ) {   // Loads can now float around in the loop
  1930           _igvn.hash_delete(cd);
  1931           // Allow the load to float around in the loop, or before it
  1932           // but NOT before the pre-loop.
  1933           cd->set_req(0, ctrl);   // ctrl, not NULL
  1934           _igvn._worklist.push(cd);
  1935           --i;
  1936           --imax;
  1940     } // End of is IF
  1944   // Update loop limits
  1945   if (conditional_rc) {
  1946     pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
  1947                                  : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
  1948     register_new_node(pre_limit, pre_ctrl);
  1950   _igvn.hash_delete(pre_opaq);
  1951   pre_opaq->set_req(1, pre_limit);
  1953   // Note:: we are making the main loop limit no longer precise;
  1954   // need to round up based on stride.
  1955   cl->set_nonexact_trip_count();
  1956   if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
  1957     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
  1958     // Hopefully, compiler will optimize for powers of 2.
  1959     Node *ctrl = get_ctrl(main_limit);
  1960     Node *stride = cl->stride();
  1961     Node *init = cl->init_trip();
  1962     Node *span = new (C, 3) SubINode(main_limit,init);
  1963     register_new_node(span,ctrl);
  1964     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
  1965     Node *add = new (C, 3) AddINode(span,rndup);
  1966     register_new_node(add,ctrl);
  1967     Node *div = new (C, 3) DivINode(0,add,stride);
  1968     register_new_node(div,ctrl);
  1969     Node *mul = new (C, 3) MulINode(div,stride);
  1970     register_new_node(mul,ctrl);
  1971     Node *newlim = new (C, 3) AddINode(mul,init);
  1972     register_new_node(newlim,ctrl);
  1973     main_limit = newlim;
  1976   Node *main_cle = cl->loopexit();
  1977   Node *main_bol = main_cle->in(1);
  1978   // Hacking loop bounds; need private copies of exit test
  1979   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
  1980     _igvn.hash_delete(main_cle);
  1981     main_bol = main_bol->clone();// Clone a private BoolNode
  1982     register_new_node( main_bol, main_cle->in(0) );
  1983     main_cle->set_req(1,main_bol);
  1985   Node *main_cmp = main_bol->in(1);
  1986   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
  1987     _igvn.hash_delete(main_bol);
  1988     main_cmp = main_cmp->clone();// Clone a private CmpNode
  1989     register_new_node( main_cmp, main_cle->in(0) );
  1990     main_bol->set_req(1,main_cmp);
  1992   // Hack the now-private loop bounds
  1993   _igvn.hash_delete(main_cmp);
  1994   main_cmp->set_req(2, main_limit);
  1995   _igvn._worklist.push(main_cmp);
  1996   // The OpaqueNode is unshared by design
  1997   _igvn.hash_delete(opqzm);
  1998   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
  1999   opqzm->set_req(1,main_limit);
  2000   _igvn._worklist.push(opqzm);
  2003 //------------------------------DCE_loop_body----------------------------------
  2004 // Remove simplistic dead code from loop body
  2005 void IdealLoopTree::DCE_loop_body() {
  2006   for( uint i = 0; i < _body.size(); i++ )
  2007     if( _body.at(i)->outcnt() == 0 )
  2008       _body.map( i--, _body.pop() );
  2012 //------------------------------adjust_loop_exit_prob--------------------------
  2013 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
  2014 // Replace with a 1-in-10 exit guess.
  2015 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
  2016   Node *test = tail();
  2017   while( test != _head ) {
  2018     uint top = test->Opcode();
  2019     if( top == Op_IfTrue || top == Op_IfFalse ) {
  2020       int test_con = ((ProjNode*)test)->_con;
  2021       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
  2022       IfNode *iff = test->in(0)->as_If();
  2023       if( iff->outcnt() == 2 ) {        // Ignore dead tests
  2024         Node *bol = iff->in(1);
  2025         if( bol && bol->req() > 1 && bol->in(1) &&
  2026             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
  2027              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
  2028              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
  2029              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
  2030              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
  2031              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
  2032              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
  2033           return;               // Allocation loops RARELY take backedge
  2034         // Find the OTHER exit path from the IF
  2035         Node* ex = iff->proj_out(1-test_con);
  2036         float p = iff->_prob;
  2037         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
  2038           if( top == Op_IfTrue ) {
  2039             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
  2040               iff->_prob = PROB_STATIC_FREQUENT;
  2042           } else {
  2043             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
  2044               iff->_prob = PROB_STATIC_INFREQUENT;
  2050     test = phase->idom(test);
  2055 //------------------------------policy_do_remove_empty_loop--------------------
  2056 // Micro-benchmark spamming.  Policy is to always remove empty loops.
  2057 // The 'DO' part is to replace the trip counter with the value it will
  2058 // have on the last iteration.  This will break the loop.
  2059 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
  2060   // Minimum size must be empty loop
  2061   if (_body.size() > EMPTY_LOOP_SIZE)
  2062     return false;
  2064   if (!_head->is_CountedLoop())
  2065     return false;     // Dead loop
  2066   CountedLoopNode *cl = _head->as_CountedLoop();
  2067   if (!cl->loopexit())
  2068     return false; // Malformed loop
  2069   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
  2070     return false;             // Infinite loop
  2072 #ifdef ASSERT
  2073   // Ensure only one phi which is the iv.
  2074   Node* iv = NULL;
  2075   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
  2076     Node* n = cl->fast_out(i);
  2077     if (n->Opcode() == Op_Phi) {
  2078       assert(iv == NULL, "Too many phis" );
  2079       iv = n;
  2082   assert(iv == cl->phi(), "Wrong phi" );
  2083 #endif
  2085   // main and post loops have explicitly created zero trip guard
  2086   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
  2087   if (needs_guard) {
  2088     // Skip guard if values not overlap.
  2089     const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
  2090     const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
  2091     int  stride_con = cl->stride_con();
  2092     if (stride_con > 0) {
  2093       needs_guard = (init_t->_hi >= limit_t->_lo);
  2094     } else {
  2095       needs_guard = (init_t->_lo <= limit_t->_hi);
  2098   if (needs_guard) {
  2099     // Check for an obvious zero trip guard.
  2100     Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
  2101     if (inctrl->Opcode() == Op_IfTrue) {
  2102       // The test should look like just the backedge of a CountedLoop
  2103       Node* iff = inctrl->in(0);
  2104       if (iff->is_If()) {
  2105         Node* bol = iff->in(1);
  2106         if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
  2107           Node* cmp = bol->in(1);
  2108           if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
  2109             needs_guard = false;
  2116 #ifndef PRODUCT
  2117   if (PrintOpto) {
  2118     tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
  2119     this->dump_head();
  2120   } else if (TraceLoopOpts) {
  2121     tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
  2122     this->dump_head();
  2124 #endif
  2126   if (needs_guard) {
  2127     // Peel the loop to ensure there's a zero trip guard
  2128     Node_List old_new;
  2129     phase->do_peeling(this, old_new);
  2132   // Replace the phi at loop head with the final value of the last
  2133   // iteration.  Then the CountedLoopEnd will collapse (backedge never
  2134   // taken) and all loop-invariant uses of the exit values will be correct.
  2135   Node *phi = cl->phi();
  2136   Node *exact_limit = phase->exact_limit(this);
  2137   if (exact_limit != cl->limit()) {
  2138     // We also need to replace the original limit to collapse loop exit.
  2139     Node* cmp = cl->loopexit()->cmp_node();
  2140     assert(cl->limit() == cmp->in(2), "sanity");
  2141     phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
  2142     phase->_igvn.hash_delete(cmp);
  2143     cmp->set_req(2, exact_limit);
  2144     phase->_igvn._worklist.push(cmp);        // put cmp on worklist
  2146   // Note: the final value after increment should not overflow since
  2147   // counted loop has limit check predicate.
  2148   Node *final = new (phase->C, 3) SubINode( exact_limit, cl->stride() );
  2149   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
  2150   phase->_igvn.replace_node(phi,final);
  2151   phase->C->set_major_progress();
  2152   return true;
  2155 //------------------------------policy_do_one_iteration_loop-------------------
  2156 // Convert one iteration loop into normal code.
  2157 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
  2158   if (!_head->as_Loop()->is_valid_counted_loop())
  2159     return false; // Only for counted loop
  2161   CountedLoopNode *cl = _head->as_CountedLoop();
  2162   if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
  2163     return false;
  2166 #ifndef PRODUCT
  2167   if(TraceLoopOpts) {
  2168     tty->print("OneIteration ");
  2169     this->dump_head();
  2171 #endif
  2173   Node *init_n = cl->init_trip();
  2174 #ifdef ASSERT
  2175   // Loop boundaries should be constant since trip count is exact.
  2176   assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
  2177 #endif
  2178   // Replace the phi at loop head with the value of the init_trip.
  2179   // Then the CountedLoopEnd will collapse (backedge will not be taken)
  2180   // and all loop-invariant uses of the exit values will be correct.
  2181   phase->_igvn.replace_node(cl->phi(), cl->init_trip());
  2182   phase->C->set_major_progress();
  2183   return true;
  2186 //=============================================================================
  2187 //------------------------------iteration_split_impl---------------------------
  2188 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
  2189   // Compute exact loop trip count if possible.
  2190   compute_exact_trip_count(phase);
  2192   // Convert one iteration loop into normal code.
  2193   if (policy_do_one_iteration_loop(phase))
  2194     return true;
  2196   // Check and remove empty loops (spam micro-benchmarks)
  2197   if (policy_do_remove_empty_loop(phase))
  2198     return true;  // Here we removed an empty loop
  2200   bool should_peel = policy_peeling(phase); // Should we peel?
  2202   bool should_unswitch = policy_unswitching(phase);
  2204   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
  2205   // This removes loop-invariant tests (usually null checks).
  2206   if (!_head->is_CountedLoop()) { // Non-counted loop
  2207     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
  2208       // Partial peel succeeded so terminate this round of loop opts
  2209       return false;
  2211     if (should_peel) {            // Should we peel?
  2212 #ifndef PRODUCT
  2213       if (PrintOpto) tty->print_cr("should_peel");
  2214 #endif
  2215       phase->do_peeling(this,old_new);
  2216     } else if (should_unswitch) {
  2217       phase->do_unswitching(this, old_new);
  2219     return true;
  2221   CountedLoopNode *cl = _head->as_CountedLoop();
  2223   if (!cl->loopexit()) return true; // Ignore various kinds of broken loops
  2225   // Do nothing special to pre- and post- loops
  2226   if (cl->is_pre_loop() || cl->is_post_loop()) return true;
  2228   // Compute loop trip count from profile data
  2229   compute_profile_trip_cnt(phase);
  2231   // Before attempting fancy unrolling, RCE or alignment, see if we want
  2232   // to completely unroll this loop or do loop unswitching.
  2233   if (cl->is_normal_loop()) {
  2234     if (should_unswitch) {
  2235       phase->do_unswitching(this, old_new);
  2236       return true;
  2238     bool should_maximally_unroll =  policy_maximally_unroll(phase);
  2239     if (should_maximally_unroll) {
  2240       // Here we did some unrolling and peeling.  Eventually we will
  2241       // completely unroll this loop and it will no longer be a loop.
  2242       phase->do_maximally_unroll(this,old_new);
  2243       return true;
  2247   // Skip next optimizations if running low on nodes. Note that
  2248   // policy_unswitching and policy_maximally_unroll have this check.
  2249   uint nodes_left = MaxNodeLimit - phase->C->unique();
  2250   if ((2 * _body.size()) > nodes_left) {
  2251     return true;
  2254   // Counted loops may be peeled, may need some iterations run up
  2255   // front for RCE, and may want to align loop refs to a cache
  2256   // line.  Thus we clone a full loop up front whose trip count is
  2257   // at least 1 (if peeling), but may be several more.
  2259   // The main loop will start cache-line aligned with at least 1
  2260   // iteration of the unrolled body (zero-trip test required) and
  2261   // will have some range checks removed.
  2263   // A post-loop will finish any odd iterations (leftover after
  2264   // unrolling), plus any needed for RCE purposes.
  2266   bool should_unroll = policy_unroll(phase);
  2268   bool should_rce = policy_range_check(phase);
  2270   bool should_align = policy_align(phase);
  2272   // If not RCE'ing (iteration splitting) or Aligning, then we do not
  2273   // need a pre-loop.  We may still need to peel an initial iteration but
  2274   // we will not be needing an unknown number of pre-iterations.
  2275   //
  2276   // Basically, if may_rce_align reports FALSE first time through,
  2277   // we will not be able to later do RCE or Aligning on this loop.
  2278   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
  2280   // If we have any of these conditions (RCE, alignment, unrolling) met, then
  2281   // we switch to the pre-/main-/post-loop model.  This model also covers
  2282   // peeling.
  2283   if (should_rce || should_align || should_unroll) {
  2284     if (cl->is_normal_loop())  // Convert to 'pre/main/post' loops
  2285       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
  2287     // Adjust the pre- and main-loop limits to let the pre and post loops run
  2288     // with full checks, but the main-loop with no checks.  Remove said
  2289     // checks from the main body.
  2290     if (should_rce)
  2291       phase->do_range_check(this,old_new);
  2293     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
  2294     // twice as many iterations as before) and the main body limit (only do
  2295     // an even number of trips).  If we are peeling, we might enable some RCE
  2296     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
  2297     // peeling.
  2298     if (should_unroll && !should_peel)
  2299       phase->do_unroll(this,old_new, true);
  2301     // Adjust the pre-loop limits to align the main body
  2302     // iterations.
  2303     if (should_align)
  2304       Unimplemented();
  2306   } else {                      // Else we have an unchanged counted loop
  2307     if (should_peel)           // Might want to peel but do nothing else
  2308       phase->do_peeling(this,old_new);
  2310   return true;
  2314 //=============================================================================
  2315 //------------------------------iteration_split--------------------------------
  2316 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
  2317   // Recursively iteration split nested loops
  2318   if (_child && !_child->iteration_split(phase, old_new))
  2319     return false;
  2321   // Clean out prior deadwood
  2322   DCE_loop_body();
  2325   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
  2326   // Replace with a 1-in-10 exit guess.
  2327   if (_parent /*not the root loop*/ &&
  2328       !_irreducible &&
  2329       // Also ignore the occasional dead backedge
  2330       !tail()->is_top()) {
  2331     adjust_loop_exit_prob(phase);
  2334   // Gate unrolling, RCE and peeling efforts.
  2335   if (!_child &&                // If not an inner loop, do not split
  2336       !_irreducible &&
  2337       _allow_optimizations &&
  2338       !tail()->is_top()) {     // Also ignore the occasional dead backedge
  2339     if (!_has_call) {
  2340         if (!iteration_split_impl(phase, old_new)) {
  2341           return false;
  2343     } else if (policy_unswitching(phase)) {
  2344       phase->do_unswitching(this, old_new);
  2348   // Minor offset re-organization to remove loop-fallout uses of
  2349   // trip counter when there was no major reshaping.
  2350   phase->reorg_offsets(this);
  2352   if (_next && !_next->iteration_split(phase, old_new))
  2353     return false;
  2354   return true;
  2358 //=============================================================================
  2359 // Process all the loops in the loop tree and replace any fill
  2360 // patterns with an intrisc version.
  2361 bool PhaseIdealLoop::do_intrinsify_fill() {
  2362   bool changed = false;
  2363   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
  2364     IdealLoopTree* lpt = iter.current();
  2365     changed |= intrinsify_fill(lpt);
  2367   return changed;
  2371 // Examine an inner loop looking for a a single store of an invariant
  2372 // value in a unit stride loop,
  2373 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
  2374                                      Node*& shift, Node*& con) {
  2375   const char* msg = NULL;
  2376   Node* msg_node = NULL;
  2378   store_value = NULL;
  2379   con = NULL;
  2380   shift = NULL;
  2382   // Process the loop looking for stores.  If there are multiple
  2383   // stores or extra control flow give at this point.
  2384   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2385   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2386     Node* n = lpt->_body.at(i);
  2387     if (n->outcnt() == 0) continue; // Ignore dead
  2388     if (n->is_Store()) {
  2389       if (store != NULL) {
  2390         msg = "multiple stores";
  2391         break;
  2393       int opc = n->Opcode();
  2394       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreCM) {
  2395         msg = "oop fills not handled";
  2396         break;
  2398       Node* value = n->in(MemNode::ValueIn);
  2399       if (!lpt->is_invariant(value)) {
  2400         msg  = "variant store value";
  2401       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
  2402         msg = "not array address";
  2404       store = n;
  2405       store_value = value;
  2406     } else if (n->is_If() && n != head->loopexit()) {
  2407       msg = "extra control flow";
  2408       msg_node = n;
  2412   if (store == NULL) {
  2413     // No store in loop
  2414     return false;
  2417   if (msg == NULL && head->stride_con() != 1) {
  2418     // could handle negative strides too
  2419     if (head->stride_con() < 0) {
  2420       msg = "negative stride";
  2421     } else {
  2422       msg = "non-unit stride";
  2426   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
  2427     msg = "can't handle store address";
  2428     msg_node = store->in(MemNode::Address);
  2431   if (msg == NULL &&
  2432       (!store->in(MemNode::Memory)->is_Phi() ||
  2433        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
  2434     msg = "store memory isn't proper phi";
  2435     msg_node = store->in(MemNode::Memory);
  2438   // Make sure there is an appropriate fill routine
  2439   BasicType t = store->as_Mem()->memory_type();
  2440   const char* fill_name;
  2441   if (msg == NULL &&
  2442       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
  2443     msg = "unsupported store";
  2444     msg_node = store;
  2447   if (msg != NULL) {
  2448 #ifndef PRODUCT
  2449     if (TraceOptimizeFill) {
  2450       tty->print_cr("not fill intrinsic candidate: %s", msg);
  2451       if (msg_node != NULL) msg_node->dump();
  2453 #endif
  2454     return false;
  2457   // Make sure the address expression can be handled.  It should be
  2458   // head->phi * elsize + con.  head->phi might have a ConvI2L.
  2459   Node* elements[4];
  2460   Node* conv = NULL;
  2461   bool found_index = false;
  2462   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
  2463   for (int e = 0; e < count; e++) {
  2464     Node* n = elements[e];
  2465     if (n->is_Con() && con == NULL) {
  2466       con = n;
  2467     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
  2468       Node* value = n->in(1);
  2469 #ifdef _LP64
  2470       if (value->Opcode() == Op_ConvI2L) {
  2471         conv = value;
  2472         value = value->in(1);
  2474 #endif
  2475       if (value != head->phi()) {
  2476         msg = "unhandled shift in address";
  2477       } else {
  2478         if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
  2479           msg = "scale doesn't match";
  2480         } else {
  2481           found_index = true;
  2482           shift = n;
  2485     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
  2486       if (n->in(1) == head->phi()) {
  2487         found_index = true;
  2488         conv = n;
  2489       } else {
  2490         msg = "unhandled input to ConvI2L";
  2492     } else if (n == head->phi()) {
  2493       // no shift, check below for allowed cases
  2494       found_index = true;
  2495     } else {
  2496       msg = "unhandled node in address";
  2497       msg_node = n;
  2501   if (count == -1) {
  2502     msg = "malformed address expression";
  2503     msg_node = store;
  2506   if (!found_index) {
  2507     msg = "missing use of index";
  2510   // byte sized items won't have a shift
  2511   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
  2512     msg = "can't find shift";
  2513     msg_node = store;
  2516   if (msg != NULL) {
  2517 #ifndef PRODUCT
  2518     if (TraceOptimizeFill) {
  2519       tty->print_cr("not fill intrinsic: %s", msg);
  2520       if (msg_node != NULL) msg_node->dump();
  2522 #endif
  2523     return false;
  2526   // No make sure all the other nodes in the loop can be handled
  2527   VectorSet ok(Thread::current()->resource_area());
  2529   // store related values are ok
  2530   ok.set(store->_idx);
  2531   ok.set(store->in(MemNode::Memory)->_idx);
  2533   // Loop structure is ok
  2534   ok.set(head->_idx);
  2535   ok.set(head->loopexit()->_idx);
  2536   ok.set(head->phi()->_idx);
  2537   ok.set(head->incr()->_idx);
  2538   ok.set(head->loopexit()->cmp_node()->_idx);
  2539   ok.set(head->loopexit()->in(1)->_idx);
  2541   // Address elements are ok
  2542   if (con)   ok.set(con->_idx);
  2543   if (shift) ok.set(shift->_idx);
  2544   if (conv)  ok.set(conv->_idx);
  2546   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2547     Node* n = lpt->_body.at(i);
  2548     if (n->outcnt() == 0) continue; // Ignore dead
  2549     if (ok.test(n->_idx)) continue;
  2550     // Backedge projection is ok
  2551     if (n->is_IfTrue() && n->in(0) == head->loopexit()) continue;
  2552     if (!n->is_AddP()) {
  2553       msg = "unhandled node";
  2554       msg_node = n;
  2555       break;
  2559   // Make sure no unexpected values are used outside the loop
  2560   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
  2561     Node* n = lpt->_body.at(i);
  2562     // These values can be replaced with other nodes if they are used
  2563     // outside the loop.
  2564     if (n == store || n == head->loopexit() || n == head->incr() || n == store->in(MemNode::Memory)) continue;
  2565     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
  2566       Node* use = iter.get();
  2567       if (!lpt->_body.contains(use)) {
  2568         msg = "node is used outside loop";
  2569         // lpt->_body.dump();
  2570         msg_node = n;
  2571         break;
  2576 #ifdef ASSERT
  2577   if (TraceOptimizeFill) {
  2578     if (msg != NULL) {
  2579       tty->print_cr("no fill intrinsic: %s", msg);
  2580       if (msg_node != NULL) msg_node->dump();
  2581     } else {
  2582       tty->print_cr("fill intrinsic for:");
  2584     store->dump();
  2585     if (Verbose) {
  2586       lpt->_body.dump();
  2589 #endif
  2591   return msg == NULL;
  2596 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
  2597   // Only for counted inner loops
  2598   if (!lpt->is_counted() || !lpt->is_inner()) {
  2599     return false;
  2602   // Must have constant stride
  2603   CountedLoopNode* head = lpt->_head->as_CountedLoop();
  2604   if (!head->stride_is_con() || !head->is_normal_loop()) {
  2605     return false;
  2608   // Check that the body only contains a store of a loop invariant
  2609   // value that is indexed by the loop phi.
  2610   Node* store = NULL;
  2611   Node* store_value = NULL;
  2612   Node* shift = NULL;
  2613   Node* offset = NULL;
  2614   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
  2615     return false;
  2618 #ifndef PRODUCT
  2619   if (TraceLoopOpts) {
  2620     tty->print("ArrayFill    ");
  2621     lpt->dump_head();
  2623 #endif
  2625   // Now replace the whole loop body by a call to a fill routine that
  2626   // covers the same region as the loop.
  2627   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
  2629   // Build an expression for the beginning of the copy region
  2630   Node* index = head->init_trip();
  2631 #ifdef _LP64
  2632   index = new (C, 2) ConvI2LNode(index);
  2633   _igvn.register_new_node_with_optimizer(index);
  2634 #endif
  2635   if (shift != NULL) {
  2636     // byte arrays don't require a shift but others do.
  2637     index = new (C, 3) LShiftXNode(index, shift->in(2));
  2638     _igvn.register_new_node_with_optimizer(index);
  2640   index = new (C, 4) AddPNode(base, base, index);
  2641   _igvn.register_new_node_with_optimizer(index);
  2642   Node* from = new (C, 4) AddPNode(base, index, offset);
  2643   _igvn.register_new_node_with_optimizer(from);
  2644   // Compute the number of elements to copy
  2645   Node* len = new (C, 3) SubINode(head->limit(), head->init_trip());
  2646   _igvn.register_new_node_with_optimizer(len);
  2648   BasicType t = store->as_Mem()->memory_type();
  2649   bool aligned = false;
  2650   if (offset != NULL && head->init_trip()->is_Con()) {
  2651     int element_size = type2aelembytes(t);
  2652     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
  2655   // Build a call to the fill routine
  2656   const char* fill_name;
  2657   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
  2658   assert(fill != NULL, "what?");
  2660   // Convert float/double to int/long for fill routines
  2661   if (t == T_FLOAT) {
  2662     store_value = new (C, 2) MoveF2INode(store_value);
  2663     _igvn.register_new_node_with_optimizer(store_value);
  2664   } else if (t == T_DOUBLE) {
  2665     store_value = new (C, 2) MoveD2LNode(store_value);
  2666     _igvn.register_new_node_with_optimizer(store_value);
  2669   Node* mem_phi = store->in(MemNode::Memory);
  2670   Node* result_ctrl;
  2671   Node* result_mem;
  2672   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
  2673   int size = call_type->domain()->cnt();
  2674   CallLeafNode *call = new (C, size) CallLeafNoFPNode(call_type, fill,
  2675                                                       fill_name, TypeAryPtr::get_array_body_type(t));
  2676   call->init_req(TypeFunc::Parms+0, from);
  2677   call->init_req(TypeFunc::Parms+1, store_value);
  2678 #ifdef _LP64
  2679   len = new (C, 2) ConvI2LNode(len);
  2680   _igvn.register_new_node_with_optimizer(len);
  2681 #endif
  2682   call->init_req(TypeFunc::Parms+2, len);
  2683 #ifdef _LP64
  2684   call->init_req(TypeFunc::Parms+3, C->top());
  2685 #endif
  2686   call->init_req( TypeFunc::Control, head->init_control());
  2687   call->init_req( TypeFunc::I_O    , C->top() )        ;   // does no i/o
  2688   call->init_req( TypeFunc::Memory ,  mem_phi->in(LoopNode::EntryControl) );
  2689   call->init_req( TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr) );
  2690   call->init_req( TypeFunc::FramePtr, C->start()->proj_out(TypeFunc::FramePtr) );
  2691   _igvn.register_new_node_with_optimizer(call);
  2692   result_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
  2693   _igvn.register_new_node_with_optimizer(result_ctrl);
  2694   result_mem = new (C, 1) ProjNode(call,TypeFunc::Memory);
  2695   _igvn.register_new_node_with_optimizer(result_mem);
  2697   // If this fill is tightly coupled to an allocation and overwrites
  2698   // the whole body, allow it to take over the zeroing.
  2699   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
  2700   if (alloc != NULL && alloc->is_AllocateArray()) {
  2701     Node* length = alloc->as_AllocateArray()->Ideal_length();
  2702     if (head->limit() == length &&
  2703         head->init_trip() == _igvn.intcon(0)) {
  2704       if (TraceOptimizeFill) {
  2705         tty->print_cr("Eliminated zeroing in allocation");
  2707       alloc->maybe_set_complete(&_igvn);
  2708     } else {
  2709 #ifdef ASSERT
  2710       if (TraceOptimizeFill) {
  2711         tty->print_cr("filling array but bounds don't match");
  2712         alloc->dump();
  2713         head->init_trip()->dump();
  2714         head->limit()->dump();
  2715         length->dump();
  2717 #endif
  2721   // Redirect the old control and memory edges that are outside the loop.
  2722   Node* exit = head->loopexit()->proj_out(0);
  2723   // Sometimes the memory phi of the head is used as the outgoing
  2724   // state of the loop.  It's safe in this case to replace it with the
  2725   // result_mem.
  2726   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
  2727   _igvn.replace_node(exit, result_ctrl);
  2728   _igvn.replace_node(store, result_mem);
  2729   // Any uses the increment outside of the loop become the loop limit.
  2730   _igvn.replace_node(head->incr(), head->limit());
  2732   // Disconnect the head from the loop.
  2733   for (uint i = 0; i < lpt->_body.size(); i++) {
  2734     Node* n = lpt->_body.at(i);
  2735     _igvn.replace_node(n, C->top());
  2738   return true;

mercurial