src/share/vm/opto/loopTransform.cpp

Mon, 04 Apr 2011 19:02:36 -0700

author
kvn
date
Mon, 04 Apr 2011 19:02:36 -0700
changeset 2735
d7a3fed1c1c9
parent 2730
8b2317d732ec
child 2747
3af54845df98
permissions
-rw-r--r--

7004547: regular loop unroll should not unroll more than max unrolling
Summary: Take into account that after unroll conjoined heads and tails will fold.
Reviewed-by: never

duke@435 1 /*
trims@1907 2 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "compiler/compileLog.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "opto/addnode.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/connode.hpp"
stefank@2314 31 #include "opto/divnode.hpp"
stefank@2314 32 #include "opto/loopnode.hpp"
stefank@2314 33 #include "opto/mulnode.hpp"
stefank@2314 34 #include "opto/rootnode.hpp"
stefank@2314 35 #include "opto/runtime.hpp"
stefank@2314 36 #include "opto/subnode.hpp"
duke@435 37
duke@435 38 //------------------------------is_loop_exit-----------------------------------
duke@435 39 // Given an IfNode, return the loop-exiting projection or NULL if both
duke@435 40 // arms remain in the loop.
duke@435 41 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
duke@435 42 if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
duke@435 43 PhaseIdealLoop *phase = _phase;
duke@435 44 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 45 // we need loop unswitching instead of peeling.
duke@435 46 if( !is_member(phase->get_loop( iff->raw_out(0) )) )
duke@435 47 return iff->raw_out(0);
duke@435 48 if( !is_member(phase->get_loop( iff->raw_out(1) )) )
duke@435 49 return iff->raw_out(1);
duke@435 50 return NULL;
duke@435 51 }
duke@435 52
duke@435 53
duke@435 54 //=============================================================================
duke@435 55
duke@435 56
duke@435 57 //------------------------------record_for_igvn----------------------------
duke@435 58 // Put loop body on igvn work list
duke@435 59 void IdealLoopTree::record_for_igvn() {
duke@435 60 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 61 Node *n = _body.at(i);
duke@435 62 _phase->_igvn._worklist.push(n);
duke@435 63 }
duke@435 64 }
duke@435 65
duke@435 66 //------------------------------compute_profile_trip_cnt----------------------------
duke@435 67 // Compute loop trip count from profile data as
duke@435 68 // (backedge_count + loop_exit_count) / loop_exit_count
duke@435 69 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
duke@435 70 if (!_head->is_CountedLoop()) {
duke@435 71 return;
duke@435 72 }
duke@435 73 CountedLoopNode* head = _head->as_CountedLoop();
duke@435 74 if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
duke@435 75 return; // Already computed
duke@435 76 }
duke@435 77 float trip_cnt = (float)max_jint; // default is big
duke@435 78
duke@435 79 Node* back = head->in(LoopNode::LoopBackControl);
duke@435 80 while (back != head) {
duke@435 81 if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
duke@435 82 back->in(0) &&
duke@435 83 back->in(0)->is_If() &&
duke@435 84 back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
duke@435 85 back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
duke@435 86 break;
duke@435 87 }
duke@435 88 back = phase->idom(back);
duke@435 89 }
duke@435 90 if (back != head) {
duke@435 91 assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
duke@435 92 back->in(0), "if-projection exists");
duke@435 93 IfNode* back_if = back->in(0)->as_If();
duke@435 94 float loop_back_cnt = back_if->_fcnt * back_if->_prob;
duke@435 95
duke@435 96 // Now compute a loop exit count
duke@435 97 float loop_exit_cnt = 0.0f;
duke@435 98 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 99 Node *n = _body[i];
duke@435 100 if( n->is_If() ) {
duke@435 101 IfNode *iff = n->as_If();
duke@435 102 if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
duke@435 103 Node *exit = is_loop_exit(iff);
duke@435 104 if( exit ) {
duke@435 105 float exit_prob = iff->_prob;
duke@435 106 if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
duke@435 107 if (exit_prob > PROB_MIN) {
duke@435 108 float exit_cnt = iff->_fcnt * exit_prob;
duke@435 109 loop_exit_cnt += exit_cnt;
duke@435 110 }
duke@435 111 }
duke@435 112 }
duke@435 113 }
duke@435 114 }
duke@435 115 if (loop_exit_cnt > 0.0f) {
duke@435 116 trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
duke@435 117 } else {
duke@435 118 // No exit count so use
duke@435 119 trip_cnt = loop_back_cnt;
duke@435 120 }
duke@435 121 }
duke@435 122 #ifndef PRODUCT
duke@435 123 if (TraceProfileTripCount) {
duke@435 124 tty->print_cr("compute_profile_trip_cnt lp: %d cnt: %f\n", head->_idx, trip_cnt);
duke@435 125 }
duke@435 126 #endif
duke@435 127 head->set_profile_trip_cnt(trip_cnt);
duke@435 128 }
duke@435 129
duke@435 130 //---------------------is_invariant_addition-----------------------------
duke@435 131 // Return nonzero index of invariant operand for an Add or Sub
twisti@1040 132 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
duke@435 133 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
duke@435 134 int op = n->Opcode();
duke@435 135 if (op == Op_AddI || op == Op_SubI) {
duke@435 136 bool in1_invar = this->is_invariant(n->in(1));
duke@435 137 bool in2_invar = this->is_invariant(n->in(2));
duke@435 138 if (in1_invar && !in2_invar) return 1;
duke@435 139 if (!in1_invar && in2_invar) return 2;
duke@435 140 }
duke@435 141 return 0;
duke@435 142 }
duke@435 143
duke@435 144 //---------------------reassociate_add_sub-----------------------------
duke@435 145 // Reassociate invariant add and subtract expressions:
duke@435 146 //
duke@435 147 // inv1 + (x + inv2) => ( inv1 + inv2) + x
duke@435 148 // (x + inv2) + inv1 => ( inv1 + inv2) + x
duke@435 149 // inv1 + (x - inv2) => ( inv1 - inv2) + x
duke@435 150 // inv1 - (inv2 - x) => ( inv1 - inv2) + x
duke@435 151 // (x + inv2) - inv1 => (-inv1 + inv2) + x
duke@435 152 // (x - inv2) + inv1 => ( inv1 - inv2) + x
duke@435 153 // (x - inv2) - inv1 => (-inv1 - inv2) + x
duke@435 154 // inv1 + (inv2 - x) => ( inv1 + inv2) - x
duke@435 155 // inv1 - (x - inv2) => ( inv1 + inv2) - x
duke@435 156 // (inv2 - x) + inv1 => ( inv1 + inv2) - x
duke@435 157 // (inv2 - x) - inv1 => (-inv1 + inv2) - x
duke@435 158 // inv1 - (x + inv2) => ( inv1 - inv2) - x
duke@435 159 //
duke@435 160 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
duke@435 161 if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
duke@435 162 if (is_invariant(n1)) return NULL;
duke@435 163 int inv1_idx = is_invariant_addition(n1, phase);
duke@435 164 if (!inv1_idx) return NULL;
duke@435 165 // Don't mess with add of constant (igvn moves them to expression tree root.)
duke@435 166 if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
duke@435 167 Node* inv1 = n1->in(inv1_idx);
duke@435 168 Node* n2 = n1->in(3 - inv1_idx);
duke@435 169 int inv2_idx = is_invariant_addition(n2, phase);
duke@435 170 if (!inv2_idx) return NULL;
duke@435 171 Node* x = n2->in(3 - inv2_idx);
duke@435 172 Node* inv2 = n2->in(inv2_idx);
duke@435 173
duke@435 174 bool neg_x = n2->is_Sub() && inv2_idx == 1;
duke@435 175 bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
duke@435 176 bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
duke@435 177 if (n1->is_Sub() && inv1_idx == 1) {
duke@435 178 neg_x = !neg_x;
duke@435 179 neg_inv2 = !neg_inv2;
duke@435 180 }
duke@435 181 Node* inv1_c = phase->get_ctrl(inv1);
duke@435 182 Node* inv2_c = phase->get_ctrl(inv2);
duke@435 183 Node* n_inv1;
duke@435 184 if (neg_inv1) {
duke@435 185 Node *zero = phase->_igvn.intcon(0);
duke@435 186 phase->set_ctrl(zero, phase->C->root());
duke@435 187 n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
duke@435 188 phase->register_new_node(n_inv1, inv1_c);
duke@435 189 } else {
duke@435 190 n_inv1 = inv1;
duke@435 191 }
duke@435 192 Node* inv;
duke@435 193 if (neg_inv2) {
duke@435 194 inv = new (phase->C, 3) SubINode(n_inv1, inv2);
duke@435 195 } else {
duke@435 196 inv = new (phase->C, 3) AddINode(n_inv1, inv2);
duke@435 197 }
duke@435 198 phase->register_new_node(inv, phase->get_early_ctrl(inv));
duke@435 199
duke@435 200 Node* addx;
duke@435 201 if (neg_x) {
duke@435 202 addx = new (phase->C, 3) SubINode(inv, x);
duke@435 203 } else {
duke@435 204 addx = new (phase->C, 3) AddINode(x, inv);
duke@435 205 }
duke@435 206 phase->register_new_node(addx, phase->get_ctrl(x));
kvn@1976 207 phase->_igvn.replace_node(n1, addx);
kvn@2665 208 assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
kvn@2665 209 _body.yank(n1);
duke@435 210 return addx;
duke@435 211 }
duke@435 212
duke@435 213 //---------------------reassociate_invariants-----------------------------
duke@435 214 // Reassociate invariant expressions:
duke@435 215 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
duke@435 216 for (int i = _body.size() - 1; i >= 0; i--) {
duke@435 217 Node *n = _body.at(i);
duke@435 218 for (int j = 0; j < 5; j++) {
duke@435 219 Node* nn = reassociate_add_sub(n, phase);
duke@435 220 if (nn == NULL) break;
duke@435 221 n = nn; // again
duke@435 222 };
duke@435 223 }
duke@435 224 }
duke@435 225
duke@435 226 //------------------------------policy_peeling---------------------------------
duke@435 227 // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
duke@435 228 // make some loop-invariant test (usually a null-check) happen before the loop.
duke@435 229 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
duke@435 230 Node *test = ((IdealLoopTree*)this)->tail();
duke@435 231 int body_size = ((IdealLoopTree*)this)->_body.size();
duke@435 232 int uniq = phase->C->unique();
duke@435 233 // Peeling does loop cloning which can result in O(N^2) node construction
duke@435 234 if( body_size > 255 /* Prevent overflow for large body_size */
duke@435 235 || (body_size * body_size + uniq > MaxNodeLimit) ) {
duke@435 236 return false; // too large to safely clone
duke@435 237 }
duke@435 238 while( test != _head ) { // Scan till run off top of loop
duke@435 239 if( test->is_If() ) { // Test?
duke@435 240 Node *ctrl = phase->get_ctrl(test->in(1));
duke@435 241 if (ctrl->is_top())
duke@435 242 return false; // Found dead test on live IF? No peeling!
duke@435 243 // Standard IF only has one input value to check for loop invariance
duke@435 244 assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
duke@435 245 // Condition is not a member of this loop?
duke@435 246 if( !is_member(phase->get_loop(ctrl)) &&
duke@435 247 is_loop_exit(test) )
duke@435 248 return true; // Found reason to peel!
duke@435 249 }
duke@435 250 // Walk up dominators to loop _head looking for test which is
duke@435 251 // executed on every path thru loop.
duke@435 252 test = phase->idom(test);
duke@435 253 }
duke@435 254 return false;
duke@435 255 }
duke@435 256
duke@435 257 //------------------------------peeled_dom_test_elim---------------------------
duke@435 258 // If we got the effect of peeling, either by actually peeling or by making
duke@435 259 // a pre-loop which must execute at least once, we can remove all
duke@435 260 // loop-invariant dominated tests in the main body.
duke@435 261 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 262 bool progress = true;
duke@435 263 while( progress ) {
duke@435 264 progress = false; // Reset for next iteration
duke@435 265 Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
duke@435 266 Node *test = prev->in(0);
duke@435 267 while( test != loop->_head ) { // Scan till run off top of loop
duke@435 268
duke@435 269 int p_op = prev->Opcode();
duke@435 270 if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
duke@435 271 test->is_If() && // Test?
duke@435 272 !test->in(1)->is_Con() && // And not already obvious?
duke@435 273 // Condition is not a member of this loop?
duke@435 274 !loop->is_member(get_loop(get_ctrl(test->in(1))))){
duke@435 275 // Walk loop body looking for instances of this test
duke@435 276 for( uint i = 0; i < loop->_body.size(); i++ ) {
duke@435 277 Node *n = loop->_body.at(i);
duke@435 278 if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
duke@435 279 // IfNode was dominated by version in peeled loop body
duke@435 280 progress = true;
duke@435 281 dominated_by( old_new[prev->_idx], n );
duke@435 282 }
duke@435 283 }
duke@435 284 }
duke@435 285 prev = test;
duke@435 286 test = idom(test);
duke@435 287 } // End of scan tests in loop
duke@435 288
duke@435 289 } // End of while( progress )
duke@435 290 }
duke@435 291
duke@435 292 //------------------------------do_peeling-------------------------------------
duke@435 293 // Peel the first iteration of the given loop.
duke@435 294 // Step 1: Clone the loop body. The clone becomes the peeled iteration.
duke@435 295 // The pre-loop illegally has 2 control users (old & new loops).
duke@435 296 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
duke@435 297 // Do this by making the old-loop fall-in edges act as if they came
duke@435 298 // around the loopback from the prior iteration (follow the old-loop
duke@435 299 // backedges) and then map to the new peeled iteration. This leaves
duke@435 300 // the pre-loop with only 1 user (the new peeled iteration), but the
duke@435 301 // peeled-loop backedge has 2 users.
duke@435 302 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
duke@435 303 // extra backedge user.
kvn@2727 304 //
kvn@2727 305 // orig
kvn@2727 306 //
kvn@2727 307 // stmt1
kvn@2727 308 // |
kvn@2727 309 // v
kvn@2727 310 // loop predicate
kvn@2727 311 // |
kvn@2727 312 // v
kvn@2727 313 // loop<----+
kvn@2727 314 // | |
kvn@2727 315 // stmt2 |
kvn@2727 316 // | |
kvn@2727 317 // v |
kvn@2727 318 // if ^
kvn@2727 319 // / \ |
kvn@2727 320 // / \ |
kvn@2727 321 // v v |
kvn@2727 322 // false true |
kvn@2727 323 // / \ |
kvn@2727 324 // / ----+
kvn@2727 325 // |
kvn@2727 326 // v
kvn@2727 327 // exit
kvn@2727 328 //
kvn@2727 329 //
kvn@2727 330 // after clone loop
kvn@2727 331 //
kvn@2727 332 // stmt1
kvn@2727 333 // |
kvn@2727 334 // v
kvn@2727 335 // loop predicate
kvn@2727 336 // / \
kvn@2727 337 // clone / \ orig
kvn@2727 338 // / \
kvn@2727 339 // / \
kvn@2727 340 // v v
kvn@2727 341 // +---->loop clone loop<----+
kvn@2727 342 // | | | |
kvn@2727 343 // | stmt2 clone stmt2 |
kvn@2727 344 // | | | |
kvn@2727 345 // | v v |
kvn@2727 346 // ^ if clone If ^
kvn@2727 347 // | / \ / \ |
kvn@2727 348 // | / \ / \ |
kvn@2727 349 // | v v v v |
kvn@2727 350 // | true false false true |
kvn@2727 351 // | / \ / \ |
kvn@2727 352 // +---- \ / ----+
kvn@2727 353 // \ /
kvn@2727 354 // 1v v2
kvn@2727 355 // region
kvn@2727 356 // |
kvn@2727 357 // v
kvn@2727 358 // exit
kvn@2727 359 //
kvn@2727 360 //
kvn@2727 361 // after peel and predicate move
kvn@2727 362 //
kvn@2727 363 // stmt1
kvn@2727 364 // /
kvn@2727 365 // /
kvn@2727 366 // clone / orig
kvn@2727 367 // /
kvn@2727 368 // / +----------+
kvn@2727 369 // / | |
kvn@2727 370 // / loop predicate |
kvn@2727 371 // / | |
kvn@2727 372 // v v |
kvn@2727 373 // TOP-->loop clone loop<----+ |
kvn@2727 374 // | | | |
kvn@2727 375 // stmt2 clone stmt2 | |
kvn@2727 376 // | | | ^
kvn@2727 377 // v v | |
kvn@2727 378 // if clone If ^ |
kvn@2727 379 // / \ / \ | |
kvn@2727 380 // / \ / \ | |
kvn@2727 381 // v v v v | |
kvn@2727 382 // true false false true | |
kvn@2727 383 // | \ / \ | |
kvn@2727 384 // | \ / ----+ ^
kvn@2727 385 // | \ / |
kvn@2727 386 // | 1v v2 |
kvn@2727 387 // v region |
kvn@2727 388 // | | |
kvn@2727 389 // | v |
kvn@2727 390 // | exit |
kvn@2727 391 // | |
kvn@2727 392 // +--------------->-----------------+
kvn@2727 393 //
kvn@2727 394 //
kvn@2727 395 // final graph
kvn@2727 396 //
kvn@2727 397 // stmt1
kvn@2727 398 // |
kvn@2727 399 // v
kvn@2727 400 // stmt2 clone
kvn@2727 401 // |
kvn@2727 402 // v
kvn@2727 403 // if clone
kvn@2727 404 // / |
kvn@2727 405 // / |
kvn@2727 406 // v v
kvn@2727 407 // false true
kvn@2727 408 // | |
kvn@2727 409 // | v
kvn@2727 410 // | loop predicate
kvn@2727 411 // | |
kvn@2727 412 // | v
kvn@2727 413 // | loop<----+
kvn@2727 414 // | | |
kvn@2727 415 // | stmt2 |
kvn@2727 416 // | | |
kvn@2727 417 // | v |
kvn@2727 418 // v if ^
kvn@2727 419 // | / \ |
kvn@2727 420 // | / \ |
kvn@2727 421 // | v v |
kvn@2727 422 // | false true |
kvn@2727 423 // | | \ |
kvn@2727 424 // v v --+
kvn@2727 425 // region
kvn@2727 426 // |
kvn@2727 427 // v
kvn@2727 428 // exit
kvn@2727 429 //
duke@435 430 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 431
duke@435 432 C->set_major_progress();
duke@435 433 // Peeling a 'main' loop in a pre/main/post situation obfuscates the
duke@435 434 // 'pre' loop from the main and the 'pre' can no longer have it's
duke@435 435 // iterations adjusted. Therefore, we need to declare this loop as
duke@435 436 // no longer a 'main' loop; it will need new pre and post loops before
duke@435 437 // we can do further RCE.
kvn@2665 438 #ifndef PRODUCT
kvn@2665 439 if (TraceLoopOpts) {
kvn@2665 440 tty->print("Peel ");
kvn@2665 441 loop->dump_head();
kvn@2665 442 }
kvn@2665 443 #endif
kvn@2727 444 Node* head = loop->_head;
kvn@2727 445 bool counted_loop = head->is_CountedLoop();
kvn@2727 446 if (counted_loop) {
kvn@2727 447 CountedLoopNode *cl = head->as_CountedLoop();
duke@435 448 assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
duke@435 449 cl->set_trip_count(cl->trip_count() - 1);
kvn@2665 450 if (cl->is_main_loop()) {
duke@435 451 cl->set_normal_loop();
duke@435 452 #ifndef PRODUCT
kvn@2665 453 if (PrintOpto && VerifyLoopOptimizations) {
duke@435 454 tty->print("Peeling a 'main' loop; resetting to 'normal' ");
duke@435 455 loop->dump_head();
duke@435 456 }
duke@435 457 #endif
duke@435 458 }
duke@435 459 }
kvn@2727 460 Node* entry = head->in(LoopNode::EntryControl);
duke@435 461
duke@435 462 // Step 1: Clone the loop body. The clone becomes the peeled iteration.
duke@435 463 // The pre-loop illegally has 2 control users (old & new loops).
kvn@2727 464 clone_loop( loop, old_new, dom_depth(head) );
duke@435 465
duke@435 466 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
duke@435 467 // Do this by making the old-loop fall-in edges act as if they came
duke@435 468 // around the loopback from the prior iteration (follow the old-loop
duke@435 469 // backedges) and then map to the new peeled iteration. This leaves
duke@435 470 // the pre-loop with only 1 user (the new peeled iteration), but the
duke@435 471 // peeled-loop backedge has 2 users.
kvn@2727 472 Node* new_exit_value = old_new[head->in(LoopNode::LoopBackControl)->_idx];
kvn@2727 473 new_exit_value = move_loop_predicates(entry, new_exit_value);
kvn@2727 474 _igvn.hash_delete(head);
kvn@2727 475 head->set_req(LoopNode::EntryControl, new_exit_value);
kvn@2727 476 for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
kvn@2727 477 Node* old = head->fast_out(j);
kvn@2727 478 if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
kvn@2727 479 new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
kvn@2727 480 if (!new_exit_value ) // Backedge value is ALSO loop invariant?
duke@435 481 // Then loop body backedge value remains the same.
duke@435 482 new_exit_value = old->in(LoopNode::LoopBackControl);
duke@435 483 _igvn.hash_delete(old);
duke@435 484 old->set_req(LoopNode::EntryControl, new_exit_value);
duke@435 485 }
duke@435 486 }
duke@435 487
duke@435 488
duke@435 489 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
duke@435 490 // extra backedge user.
kvn@2727 491 Node* new_head = old_new[head->_idx];
kvn@2727 492 _igvn.hash_delete(new_head);
kvn@2727 493 new_head->set_req(LoopNode::LoopBackControl, C->top());
kvn@2727 494 for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
kvn@2727 495 Node* use = new_head->fast_out(j2);
kvn@2727 496 if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
duke@435 497 _igvn.hash_delete(use);
duke@435 498 use->set_req(LoopNode::LoopBackControl, C->top());
duke@435 499 }
duke@435 500 }
duke@435 501
duke@435 502
duke@435 503 // Step 4: Correct dom-depth info. Set to loop-head depth.
kvn@2727 504 int dd = dom_depth(head);
kvn@2727 505 set_idom(head, head->in(1), dd);
duke@435 506 for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
duke@435 507 Node *old = loop->_body.at(j3);
duke@435 508 Node *nnn = old_new[old->_idx];
duke@435 509 if (!has_ctrl(nnn))
duke@435 510 set_idom(nnn, idom(nnn), dd-1);
duke@435 511 // While we're at it, remove any SafePoints from the peeled code
kvn@2727 512 if (old->Opcode() == Op_SafePoint) {
duke@435 513 Node *nnn = old_new[old->_idx];
duke@435 514 lazy_replace(nnn,nnn->in(TypeFunc::Control));
duke@435 515 }
duke@435 516 }
duke@435 517
duke@435 518 // Now force out all loop-invariant dominating tests. The optimizer
duke@435 519 // finds some, but we _know_ they are all useless.
duke@435 520 peeled_dom_test_elim(loop,old_new);
duke@435 521
duke@435 522 loop->record_for_igvn();
duke@435 523 }
duke@435 524
kvn@2735 525 #define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
kvn@2735 526
duke@435 527 //------------------------------policy_maximally_unroll------------------------
kvn@2735 528 // Calculate exact loop trip count and return true if loop can be maximally
kvn@2735 529 // unrolled.
duke@435 530 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
duke@435 531 CountedLoopNode *cl = _head->as_CountedLoop();
kvn@2694 532 assert(cl->is_normal_loop(), "");
kvn@2735 533 if (!cl->is_valid_counted_loop())
kvn@2735 534 return false; // Malformed counted loop
duke@435 535
duke@435 536 Node *init_n = cl->init_trip();
duke@435 537 Node *limit_n = cl->limit();
duke@435 538
duke@435 539 // Non-constant bounds
kvn@2694 540 if (init_n == NULL || !init_n->is_Con() ||
kvn@2735 541 limit_n == NULL || !limit_n->is_Con()) {
duke@435 542 return false;
duke@435 543 }
kvn@2735 544 // Use longs to avoid integer overflow.
kvn@2735 545 int stride_con = cl->stride_con();
kvn@2735 546 long init_con = cl->init_trip()->get_int();
kvn@2735 547 long limit_con = cl->limit()->get_int();
kvn@2735 548 int stride_m = stride_con - (stride_con > 0 ? 1 : -1);
kvn@2735 549 long trip_cnt = (limit_con - init_con + stride_m)/stride_con;
duke@435 550
kvn@2735 551 // Note, max_jint is used to indicate unknown trip count.
kvn@2735 552 if (trip_cnt <= 0 || trip_cnt >= (long)max_jint) {
duke@435 553 // return a false (no maximally unroll) and the regular unroll/peel
duke@435 554 // route will make a small mess which CCP will fold away.
duke@435 555 return false;
duke@435 556 }
kvn@2735 557 uint trip_count = (uint)trip_cnt;
kvn@2735 558 cl->set_trip_count(trip_count);
duke@435 559
duke@435 560 // Real policy: if we maximally unroll, does it get too big?
duke@435 561 // Allow the unrolled mess to get larger than standard loop
duke@435 562 // size. After all, it will no longer be a loop.
duke@435 563 uint body_size = _body.size();
duke@435 564 uint unroll_limit = (uint)LoopUnrollLimit * 4;
duke@435 565 assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
kvn@2694 566 if (trip_count > unroll_limit || body_size > unroll_limit) {
kvn@2694 567 return false;
kvn@2694 568 }
kvn@2694 569
kvn@2735 570 // Take into account that after unroll conjoined heads and tails will fold,
kvn@2735 571 // otherwise policy_unroll() may allow more unrolling than max unrolling.
kvn@2735 572 uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
kvn@2735 573 uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
kvn@2735 574 if (body_size != tst_body_size) // Check for int overflow
kvn@2735 575 return false;
kvn@2735 576 if (new_body_size > unroll_limit ||
kvn@2735 577 // Unrolling can result in a large amount of node construction
kvn@2735 578 new_body_size >= MaxNodeLimit - phase->C->unique()) {
kvn@2735 579 return false;
kvn@2735 580 }
kvn@2735 581
kvn@2699 582 // Currently we don't have policy to optimize one iteration loops.
kvn@2699 583 // Maximally unrolling transformation is used for that:
kvn@2699 584 // it is peeled and the original loop become non reachable (dead).
kvn@2735 585 // Also fully unroll a loop with few iterations regardless next
kvn@2735 586 // conditions since following loop optimizations will split
kvn@2735 587 // such loop anyway (pre-main-post).
kvn@2735 588 if (trip_count <= 3)
kvn@2699 589 return true;
kvn@2699 590
kvn@2694 591 // Do not unroll a loop with String intrinsics code.
kvn@2694 592 // String intrinsics are large and have loops.
kvn@2694 593 for (uint k = 0; k < _body.size(); k++) {
kvn@2694 594 Node* n = _body.at(k);
kvn@2694 595 switch (n->Opcode()) {
kvn@2694 596 case Op_StrComp:
kvn@2694 597 case Op_StrEquals:
kvn@2694 598 case Op_StrIndexOf:
kvn@2694 599 case Op_AryEq: {
kvn@2694 600 return false;
kvn@2694 601 }
kvn@2694 602 } // switch
kvn@2694 603 }
kvn@2694 604
kvn@2735 605 return true; // Do maximally unroll
duke@435 606 }
duke@435 607
duke@435 608
duke@435 609 //------------------------------policy_unroll----------------------------------
duke@435 610 // Return TRUE or FALSE if the loop should be unrolled or not. Unroll if
duke@435 611 // the loop is a CountedLoop and the body is small enough.
duke@435 612 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
duke@435 613
duke@435 614 CountedLoopNode *cl = _head->as_CountedLoop();
kvn@2694 615 assert(cl->is_normal_loop() || cl->is_main_loop(), "");
duke@435 616
kvn@2735 617 if (!cl->is_valid_counted_loop())
kvn@2735 618 return false; // Malformed counted loop
duke@435 619
duke@435 620 // protect against over-unrolling
kvn@2694 621 if (cl->trip_count() <= 1) return false;
duke@435 622
kvn@2735 623 // Check for stride being a small enough constant
kvn@2735 624 if (abs(cl->stride_con()) > (1<<3)) return false;
kvn@2735 625
duke@435 626 int future_unroll_ct = cl->unrolled_count() * 2;
duke@435 627
duke@435 628 // Don't unroll if the next round of unrolling would push us
duke@435 629 // over the expected trip count of the loop. One is subtracted
duke@435 630 // from the expected trip count because the pre-loop normally
duke@435 631 // executes 1 iteration.
duke@435 632 if (UnrollLimitForProfileCheck > 0 &&
duke@435 633 cl->profile_trip_cnt() != COUNT_UNKNOWN &&
duke@435 634 future_unroll_ct > UnrollLimitForProfileCheck &&
duke@435 635 (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
duke@435 636 return false;
duke@435 637 }
duke@435 638
duke@435 639 // When unroll count is greater than LoopUnrollMin, don't unroll if:
duke@435 640 // the residual iterations are more than 10% of the trip count
duke@435 641 // and rounds of "unroll,optimize" are not making significant progress
duke@435 642 // Progress defined as current size less than 20% larger than previous size.
duke@435 643 if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
duke@435 644 future_unroll_ct > LoopUnrollMin &&
duke@435 645 (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
duke@435 646 1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
duke@435 647 return false;
duke@435 648 }
duke@435 649
duke@435 650 Node *init_n = cl->init_trip();
duke@435 651 Node *limit_n = cl->limit();
duke@435 652 // Non-constant bounds.
duke@435 653 // Protect against over-unrolling when init or/and limit are not constant
duke@435 654 // (so that trip_count's init value is maxint) but iv range is known.
kvn@2694 655 if (init_n == NULL || !init_n->is_Con() ||
kvn@2694 656 limit_n == NULL || !limit_n->is_Con()) {
duke@435 657 Node* phi = cl->phi();
kvn@2694 658 if (phi != NULL) {
duke@435 659 assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
duke@435 660 const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
duke@435 661 int next_stride = cl->stride_con() * 2; // stride after this unroll
kvn@2694 662 if (next_stride > 0) {
kvn@2694 663 if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
kvn@2694 664 iv_type->_lo + next_stride > iv_type->_hi) {
duke@435 665 return false; // over-unrolling
duke@435 666 }
kvn@2694 667 } else if (next_stride < 0) {
kvn@2694 668 if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
kvn@2694 669 iv_type->_hi + next_stride < iv_type->_lo) {
duke@435 670 return false; // over-unrolling
duke@435 671 }
duke@435 672 }
duke@435 673 }
duke@435 674 }
duke@435 675
duke@435 676 // Adjust body_size to determine if we unroll or not
duke@435 677 uint body_size = _body.size();
duke@435 678 // Key test to unroll CaffeineMark's Logic test
duke@435 679 int xors_in_loop = 0;
duke@435 680 // Also count ModL, DivL and MulL which expand mightly
kvn@2694 681 for (uint k = 0; k < _body.size(); k++) {
kvn@2694 682 Node* n = _body.at(k);
kvn@2694 683 switch (n->Opcode()) {
kvn@2694 684 case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
kvn@2694 685 case Op_ModL: body_size += 30; break;
kvn@2694 686 case Op_DivL: body_size += 30; break;
kvn@2694 687 case Op_MulL: body_size += 10; break;
kvn@2694 688 case Op_StrComp:
kvn@2694 689 case Op_StrEquals:
kvn@2694 690 case Op_StrIndexOf:
kvn@2694 691 case Op_AryEq: {
kvn@2694 692 // Do not unroll a loop with String intrinsics code.
kvn@2694 693 // String intrinsics are large and have loops.
kvn@2694 694 return false;
kvn@2694 695 }
kvn@2694 696 } // switch
duke@435 697 }
duke@435 698
duke@435 699 // Check for being too big
kvn@2694 700 if (body_size > (uint)LoopUnrollLimit) {
kvn@2694 701 if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
duke@435 702 // Normal case: loop too big
duke@435 703 return false;
duke@435 704 }
duke@435 705
duke@435 706 // Unroll once! (Each trip will soon do double iterations)
duke@435 707 return true;
duke@435 708 }
duke@435 709
duke@435 710 //------------------------------policy_align-----------------------------------
duke@435 711 // Return TRUE or FALSE if the loop should be cache-line aligned. Gather the
duke@435 712 // expression that does the alignment. Note that only one array base can be
twisti@1040 713 // aligned in a loop (unless the VM guarantees mutual alignment). Note that
duke@435 714 // if we vectorize short memory ops into longer memory ops, we may want to
duke@435 715 // increase alignment.
duke@435 716 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
duke@435 717 return false;
duke@435 718 }
duke@435 719
duke@435 720 //------------------------------policy_range_check-----------------------------
duke@435 721 // Return TRUE or FALSE if the loop should be range-check-eliminated.
duke@435 722 // Actually we do iteration-splitting, a more powerful form of RCE.
duke@435 723 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
duke@435 724 if( !RangeCheckElimination ) return false;
duke@435 725
duke@435 726 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 727 // If we unrolled with no intention of doing RCE and we later
duke@435 728 // changed our minds, we got no pre-loop. Either we need to
duke@435 729 // make a new pre-loop, or we gotta disallow RCE.
duke@435 730 if( cl->is_main_no_pre_loop() ) return false; // Disallowed for now.
duke@435 731 Node *trip_counter = cl->phi();
duke@435 732
duke@435 733 // Check loop body for tests of trip-counter plus loop-invariant vs
duke@435 734 // loop-invariant.
duke@435 735 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 736 Node *iff = _body[i];
duke@435 737 if( iff->Opcode() == Op_If ) { // Test?
duke@435 738
duke@435 739 // Comparing trip+off vs limit
duke@435 740 Node *bol = iff->in(1);
duke@435 741 if( bol->req() != 2 ) continue; // dead constant test
cfang@1607 742 if (!bol->is_Bool()) {
cfang@1607 743 assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
cfang@1607 744 continue;
cfang@1607 745 }
duke@435 746 Node *cmp = bol->in(1);
duke@435 747
duke@435 748 Node *rc_exp = cmp->in(1);
duke@435 749 Node *limit = cmp->in(2);
duke@435 750
duke@435 751 Node *limit_c = phase->get_ctrl(limit);
duke@435 752 if( limit_c == phase->C->top() )
duke@435 753 return false; // Found dead test on live IF? No RCE!
duke@435 754 if( is_member(phase->get_loop(limit_c) ) ) {
duke@435 755 // Compare might have operands swapped; commute them
duke@435 756 rc_exp = cmp->in(2);
duke@435 757 limit = cmp->in(1);
duke@435 758 limit_c = phase->get_ctrl(limit);
duke@435 759 if( is_member(phase->get_loop(limit_c) ) )
duke@435 760 continue; // Both inputs are loop varying; cannot RCE
duke@435 761 }
duke@435 762
duke@435 763 if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
duke@435 764 continue;
duke@435 765 }
duke@435 766 // Yeah! Found a test like 'trip+off vs limit'
duke@435 767 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 768 // we need loop unswitching instead of iteration splitting.
duke@435 769 if( is_loop_exit(iff) )
duke@435 770 return true; // Found reason to split iterations
duke@435 771 } // End of is IF
duke@435 772 }
duke@435 773
duke@435 774 return false;
duke@435 775 }
duke@435 776
duke@435 777 //------------------------------policy_peel_only-------------------------------
duke@435 778 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned. Useful
duke@435 779 // for unrolling loops with NO array accesses.
duke@435 780 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
duke@435 781
duke@435 782 for( uint i = 0; i < _body.size(); i++ )
duke@435 783 if( _body[i]->is_Mem() )
duke@435 784 return false;
duke@435 785
duke@435 786 // No memory accesses at all!
duke@435 787 return true;
duke@435 788 }
duke@435 789
duke@435 790 //------------------------------clone_up_backedge_goo--------------------------
duke@435 791 // If Node n lives in the back_ctrl block and cannot float, we clone a private
duke@435 792 // version of n in preheader_ctrl block and return that, otherwise return n.
duke@435 793 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
duke@435 794 if( get_ctrl(n) != back_ctrl ) return n;
duke@435 795
duke@435 796 Node *x = NULL; // If required, a clone of 'n'
duke@435 797 // Check for 'n' being pinned in the backedge.
duke@435 798 if( n->in(0) && n->in(0) == back_ctrl ) {
duke@435 799 x = n->clone(); // Clone a copy of 'n' to preheader
duke@435 800 x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
duke@435 801 }
duke@435 802
duke@435 803 // Recursive fixup any other input edges into x.
duke@435 804 // If there are no changes we can just return 'n', otherwise
duke@435 805 // we need to clone a private copy and change it.
duke@435 806 for( uint i = 1; i < n->req(); i++ ) {
duke@435 807 Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
duke@435 808 if( g != n->in(i) ) {
duke@435 809 if( !x )
duke@435 810 x = n->clone();
duke@435 811 x->set_req(i, g);
duke@435 812 }
duke@435 813 }
duke@435 814 if( x ) { // x can legally float to pre-header location
duke@435 815 register_new_node( x, preheader_ctrl );
duke@435 816 return x;
duke@435 817 } else { // raise n to cover LCA of uses
duke@435 818 set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
duke@435 819 }
duke@435 820 return n;
duke@435 821 }
duke@435 822
duke@435 823 //------------------------------insert_pre_post_loops--------------------------
duke@435 824 // Insert pre and post loops. If peel_only is set, the pre-loop can not have
duke@435 825 // more iterations added. It acts as a 'peel' only, no lower-bound RCE, no
duke@435 826 // alignment. Useful to unroll loops that do no array accesses.
duke@435 827 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
duke@435 828
kvn@2665 829 #ifndef PRODUCT
kvn@2665 830 if (TraceLoopOpts) {
kvn@2665 831 if (peel_only)
kvn@2665 832 tty->print("PeelMainPost ");
kvn@2665 833 else
kvn@2665 834 tty->print("PreMainPost ");
kvn@2665 835 loop->dump_head();
kvn@2665 836 }
kvn@2665 837 #endif
duke@435 838 C->set_major_progress();
duke@435 839
duke@435 840 // Find common pieces of the loop being guarded with pre & post loops
duke@435 841 CountedLoopNode *main_head = loop->_head->as_CountedLoop();
duke@435 842 assert( main_head->is_normal_loop(), "" );
duke@435 843 CountedLoopEndNode *main_end = main_head->loopexit();
duke@435 844 assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
duke@435 845 uint dd_main_head = dom_depth(main_head);
duke@435 846 uint max = main_head->outcnt();
duke@435 847
duke@435 848 Node *pre_header= main_head->in(LoopNode::EntryControl);
duke@435 849 Node *init = main_head->init_trip();
duke@435 850 Node *incr = main_end ->incr();
duke@435 851 Node *limit = main_end ->limit();
duke@435 852 Node *stride = main_end ->stride();
duke@435 853 Node *cmp = main_end ->cmp_node();
duke@435 854 BoolTest::mask b_test = main_end->test_trip();
duke@435 855
duke@435 856 // Need only 1 user of 'bol' because I will be hacking the loop bounds.
duke@435 857 Node *bol = main_end->in(CountedLoopEndNode::TestValue);
duke@435 858 if( bol->outcnt() != 1 ) {
duke@435 859 bol = bol->clone();
duke@435 860 register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
duke@435 861 _igvn.hash_delete(main_end);
duke@435 862 main_end->set_req(CountedLoopEndNode::TestValue, bol);
duke@435 863 }
duke@435 864 // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
duke@435 865 if( cmp->outcnt() != 1 ) {
duke@435 866 cmp = cmp->clone();
duke@435 867 register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
duke@435 868 _igvn.hash_delete(bol);
duke@435 869 bol->set_req(1, cmp);
duke@435 870 }
duke@435 871
duke@435 872 //------------------------------
duke@435 873 // Step A: Create Post-Loop.
duke@435 874 Node* main_exit = main_end->proj_out(false);
duke@435 875 assert( main_exit->Opcode() == Op_IfFalse, "" );
duke@435 876 int dd_main_exit = dom_depth(main_exit);
duke@435 877
duke@435 878 // Step A1: Clone the loop body. The clone becomes the post-loop. The main
duke@435 879 // loop pre-header illegally has 2 control users (old & new loops).
duke@435 880 clone_loop( loop, old_new, dd_main_exit );
duke@435 881 assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
duke@435 882 CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
duke@435 883 post_head->set_post_loop(main_head);
duke@435 884
kvn@835 885 // Reduce the post-loop trip count.
kvn@835 886 CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
kvn@835 887 post_end->_prob = PROB_FAIR;
kvn@835 888
duke@435 889 // Build the main-loop normal exit.
duke@435 890 IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
duke@435 891 _igvn.register_new_node_with_optimizer( new_main_exit );
duke@435 892 set_idom(new_main_exit, main_end, dd_main_exit );
duke@435 893 set_loop(new_main_exit, loop->_parent);
duke@435 894
duke@435 895 // Step A2: Build a zero-trip guard for the post-loop. After leaving the
duke@435 896 // main-loop, the post-loop may not execute at all. We 'opaque' the incr
duke@435 897 // (the main-loop trip-counter exit value) because we will be changing
duke@435 898 // the exit value (via unrolling) so we cannot constant-fold away the zero
duke@435 899 // trip guard until all unrolling is done.
kvn@651 900 Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
duke@435 901 Node *zer_cmp = new (C, 3) CmpINode( zer_opaq, limit );
duke@435 902 Node *zer_bol = new (C, 2) BoolNode( zer_cmp, b_test );
duke@435 903 register_new_node( zer_opaq, new_main_exit );
duke@435 904 register_new_node( zer_cmp , new_main_exit );
duke@435 905 register_new_node( zer_bol , new_main_exit );
duke@435 906
duke@435 907 // Build the IfNode
duke@435 908 IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
duke@435 909 _igvn.register_new_node_with_optimizer( zer_iff );
duke@435 910 set_idom(zer_iff, new_main_exit, dd_main_exit);
duke@435 911 set_loop(zer_iff, loop->_parent);
duke@435 912
duke@435 913 // Plug in the false-path, taken if we need to skip post-loop
duke@435 914 _igvn.hash_delete( main_exit );
duke@435 915 main_exit->set_req(0, zer_iff);
duke@435 916 _igvn._worklist.push(main_exit);
duke@435 917 set_idom(main_exit, zer_iff, dd_main_exit);
duke@435 918 set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
duke@435 919 // Make the true-path, must enter the post loop
duke@435 920 Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
duke@435 921 _igvn.register_new_node_with_optimizer( zer_taken );
duke@435 922 set_idom(zer_taken, zer_iff, dd_main_exit);
duke@435 923 set_loop(zer_taken, loop->_parent);
duke@435 924 // Plug in the true path
duke@435 925 _igvn.hash_delete( post_head );
duke@435 926 post_head->set_req(LoopNode::EntryControl, zer_taken);
duke@435 927 set_idom(post_head, zer_taken, dd_main_exit);
duke@435 928
duke@435 929 // Step A3: Make the fall-in values to the post-loop come from the
duke@435 930 // fall-out values of the main-loop.
duke@435 931 for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
duke@435 932 Node* main_phi = main_head->fast_out(i);
duke@435 933 if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
duke@435 934 Node *post_phi = old_new[main_phi->_idx];
duke@435 935 Node *fallmain = clone_up_backedge_goo(main_head->back_control(),
duke@435 936 post_head->init_control(),
duke@435 937 main_phi->in(LoopNode::LoopBackControl));
duke@435 938 _igvn.hash_delete(post_phi);
duke@435 939 post_phi->set_req( LoopNode::EntryControl, fallmain );
duke@435 940 }
duke@435 941 }
duke@435 942
duke@435 943 // Update local caches for next stanza
duke@435 944 main_exit = new_main_exit;
duke@435 945
duke@435 946
duke@435 947 //------------------------------
duke@435 948 // Step B: Create Pre-Loop.
duke@435 949
duke@435 950 // Step B1: Clone the loop body. The clone becomes the pre-loop. The main
duke@435 951 // loop pre-header illegally has 2 control users (old & new loops).
duke@435 952 clone_loop( loop, old_new, dd_main_head );
duke@435 953 CountedLoopNode* pre_head = old_new[main_head->_idx]->as_CountedLoop();
duke@435 954 CountedLoopEndNode* pre_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
duke@435 955 pre_head->set_pre_loop(main_head);
duke@435 956 Node *pre_incr = old_new[incr->_idx];
duke@435 957
kvn@835 958 // Reduce the pre-loop trip count.
kvn@835 959 pre_end->_prob = PROB_FAIR;
kvn@835 960
duke@435 961 // Find the pre-loop normal exit.
duke@435 962 Node* pre_exit = pre_end->proj_out(false);
duke@435 963 assert( pre_exit->Opcode() == Op_IfFalse, "" );
duke@435 964 IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
duke@435 965 _igvn.register_new_node_with_optimizer( new_pre_exit );
duke@435 966 set_idom(new_pre_exit, pre_end, dd_main_head);
duke@435 967 set_loop(new_pre_exit, loop->_parent);
duke@435 968
duke@435 969 // Step B2: Build a zero-trip guard for the main-loop. After leaving the
duke@435 970 // pre-loop, the main-loop may not execute at all. Later in life this
duke@435 971 // zero-trip guard will become the minimum-trip guard when we unroll
duke@435 972 // the main-loop.
kvn@651 973 Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
duke@435 974 Node *min_cmp = new (C, 3) CmpINode( pre_incr, min_opaq );
duke@435 975 Node *min_bol = new (C, 2) BoolNode( min_cmp, b_test );
duke@435 976 register_new_node( min_opaq, new_pre_exit );
duke@435 977 register_new_node( min_cmp , new_pre_exit );
duke@435 978 register_new_node( min_bol , new_pre_exit );
duke@435 979
kvn@835 980 // Build the IfNode (assume the main-loop is executed always).
kvn@835 981 IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
duke@435 982 _igvn.register_new_node_with_optimizer( min_iff );
duke@435 983 set_idom(min_iff, new_pre_exit, dd_main_head);
duke@435 984 set_loop(min_iff, loop->_parent);
duke@435 985
duke@435 986 // Plug in the false-path, taken if we need to skip main-loop
duke@435 987 _igvn.hash_delete( pre_exit );
duke@435 988 pre_exit->set_req(0, min_iff);
duke@435 989 set_idom(pre_exit, min_iff, dd_main_head);
duke@435 990 set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
duke@435 991 // Make the true-path, must enter the main loop
duke@435 992 Node *min_taken = new (C, 1) IfTrueNode( min_iff );
duke@435 993 _igvn.register_new_node_with_optimizer( min_taken );
duke@435 994 set_idom(min_taken, min_iff, dd_main_head);
duke@435 995 set_loop(min_taken, loop->_parent);
duke@435 996 // Plug in the true path
duke@435 997 _igvn.hash_delete( main_head );
duke@435 998 main_head->set_req(LoopNode::EntryControl, min_taken);
duke@435 999 set_idom(main_head, min_taken, dd_main_head);
duke@435 1000
duke@435 1001 // Step B3: Make the fall-in values to the main-loop come from the
duke@435 1002 // fall-out values of the pre-loop.
duke@435 1003 for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
duke@435 1004 Node* main_phi = main_head->fast_out(i2);
duke@435 1005 if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
duke@435 1006 Node *pre_phi = old_new[main_phi->_idx];
duke@435 1007 Node *fallpre = clone_up_backedge_goo(pre_head->back_control(),
duke@435 1008 main_head->init_control(),
duke@435 1009 pre_phi->in(LoopNode::LoopBackControl));
duke@435 1010 _igvn.hash_delete(main_phi);
duke@435 1011 main_phi->set_req( LoopNode::EntryControl, fallpre );
duke@435 1012 }
duke@435 1013 }
duke@435 1014
duke@435 1015 // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
duke@435 1016 // RCE and alignment may change this later.
duke@435 1017 Node *cmp_end = pre_end->cmp_node();
duke@435 1018 assert( cmp_end->in(2) == limit, "" );
duke@435 1019 Node *pre_limit = new (C, 3) AddINode( init, stride );
duke@435 1020
duke@435 1021 // Save the original loop limit in this Opaque1 node for
duke@435 1022 // use by range check elimination.
kvn@651 1023 Node *pre_opaq = new (C, 3) Opaque1Node(C, pre_limit, limit);
duke@435 1024
duke@435 1025 register_new_node( pre_limit, pre_head->in(0) );
duke@435 1026 register_new_node( pre_opaq , pre_head->in(0) );
duke@435 1027
duke@435 1028 // Since no other users of pre-loop compare, I can hack limit directly
duke@435 1029 assert( cmp_end->outcnt() == 1, "no other users" );
duke@435 1030 _igvn.hash_delete(cmp_end);
duke@435 1031 cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
duke@435 1032
duke@435 1033 // Special case for not-equal loop bounds:
duke@435 1034 // Change pre loop test, main loop test, and the
duke@435 1035 // main loop guard test to use lt or gt depending on stride
duke@435 1036 // direction:
duke@435 1037 // positive stride use <
duke@435 1038 // negative stride use >
duke@435 1039
duke@435 1040 if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
duke@435 1041
duke@435 1042 BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
duke@435 1043 // Modify pre loop end condition
duke@435 1044 Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
duke@435 1045 BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
duke@435 1046 register_new_node( new_bol0, pre_head->in(0) );
duke@435 1047 _igvn.hash_delete(pre_end);
duke@435 1048 pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
duke@435 1049 // Modify main loop guard condition
duke@435 1050 assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
duke@435 1051 BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
duke@435 1052 register_new_node( new_bol1, new_pre_exit );
duke@435 1053 _igvn.hash_delete(min_iff);
duke@435 1054 min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
duke@435 1055 // Modify main loop end condition
duke@435 1056 BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
duke@435 1057 BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
duke@435 1058 register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
duke@435 1059 _igvn.hash_delete(main_end);
duke@435 1060 main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
duke@435 1061 }
duke@435 1062
duke@435 1063 // Flag main loop
duke@435 1064 main_head->set_main_loop();
duke@435 1065 if( peel_only ) main_head->set_main_no_pre_loop();
duke@435 1066
duke@435 1067 // It's difficult to be precise about the trip-counts
duke@435 1068 // for the pre/post loops. They are usually very short,
duke@435 1069 // so guess that 4 trips is a reasonable value.
duke@435 1070 post_head->set_profile_trip_cnt(4.0);
duke@435 1071 pre_head->set_profile_trip_cnt(4.0);
duke@435 1072
duke@435 1073 // Now force out all loop-invariant dominating tests. The optimizer
duke@435 1074 // finds some, but we _know_ they are all useless.
duke@435 1075 peeled_dom_test_elim(loop,old_new);
duke@435 1076 }
duke@435 1077
duke@435 1078 //------------------------------is_invariant-----------------------------
duke@435 1079 // Return true if n is invariant
duke@435 1080 bool IdealLoopTree::is_invariant(Node* n) const {
cfang@1607 1081 Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
duke@435 1082 if (n_c->is_top()) return false;
duke@435 1083 return !is_member(_phase->get_loop(n_c));
duke@435 1084 }
duke@435 1085
duke@435 1086
duke@435 1087 //------------------------------do_unroll--------------------------------------
duke@435 1088 // Unroll the loop body one step - make each trip do 2 iterations.
duke@435 1089 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
kvn@2665 1090 assert(LoopUnrollLimit, "");
kvn@2665 1091 CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
kvn@2665 1092 CountedLoopEndNode *loop_end = loop_head->loopexit();
kvn@2665 1093 assert(loop_end, "");
duke@435 1094 #ifndef PRODUCT
kvn@2665 1095 if (PrintOpto && VerifyLoopOptimizations) {
duke@435 1096 tty->print("Unrolling ");
duke@435 1097 loop->dump_head();
kvn@2665 1098 } else if (TraceLoopOpts) {
kvn@2735 1099 if (loop_head->trip_count() < LoopUnrollLimit) {
kvn@2735 1100 tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
kvn@2735 1101 } else {
kvn@2735 1102 tty->print("Unroll %d ", loop_head->unrolled_count()*2);
kvn@2735 1103 }
kvn@2665 1104 loop->dump_head();
duke@435 1105 }
duke@435 1106 #endif
duke@435 1107
duke@435 1108 // Remember loop node count before unrolling to detect
duke@435 1109 // if rounds of unroll,optimize are making progress
duke@435 1110 loop_head->set_node_count_before_unroll(loop->_body.size());
duke@435 1111
duke@435 1112 Node *ctrl = loop_head->in(LoopNode::EntryControl);
duke@435 1113 Node *limit = loop_head->limit();
duke@435 1114 Node *init = loop_head->init_trip();
kvn@2665 1115 Node *stride = loop_head->stride();
duke@435 1116
duke@435 1117 Node *opaq = NULL;
duke@435 1118 if( adjust_min_trip ) { // If not maximally unrolling, need adjustment
duke@435 1119 assert( loop_head->is_main_loop(), "" );
duke@435 1120 assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
duke@435 1121 Node *iff = ctrl->in(0);
duke@435 1122 assert( iff->Opcode() == Op_If, "" );
duke@435 1123 Node *bol = iff->in(1);
duke@435 1124 assert( bol->Opcode() == Op_Bool, "" );
duke@435 1125 Node *cmp = bol->in(1);
duke@435 1126 assert( cmp->Opcode() == Op_CmpI, "" );
duke@435 1127 opaq = cmp->in(2);
duke@435 1128 // Occasionally it's possible for a pre-loop Opaque1 node to be
duke@435 1129 // optimized away and then another round of loop opts attempted.
duke@435 1130 // We can not optimize this particular loop in that case.
duke@435 1131 if( opaq->Opcode() != Op_Opaque1 )
duke@435 1132 return; // Cannot find pre-loop! Bail out!
duke@435 1133 }
duke@435 1134
duke@435 1135 C->set_major_progress();
duke@435 1136
duke@435 1137 // Adjust max trip count. The trip count is intentionally rounded
duke@435 1138 // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
duke@435 1139 // the main, unrolled, part of the loop will never execute as it is protected
duke@435 1140 // by the min-trip test. See bug 4834191 for a case where we over-unrolled
duke@435 1141 // and later determined that part of the unrolled loop was dead.
duke@435 1142 loop_head->set_trip_count(loop_head->trip_count() / 2);
duke@435 1143
duke@435 1144 // Double the count of original iterations in the unrolled loop body.
duke@435 1145 loop_head->double_unrolled_count();
duke@435 1146
duke@435 1147 // -----------
duke@435 1148 // Step 2: Cut back the trip counter for an unroll amount of 2.
duke@435 1149 // Loop will normally trip (limit - init)/stride_con. Since it's a
duke@435 1150 // CountedLoop this is exact (stride divides limit-init exactly).
duke@435 1151 // We are going to double the loop body, so we want to knock off any
duke@435 1152 // odd iteration: (trip_cnt & ~1). Then back compute a new limit.
duke@435 1153 Node *span = new (C, 3) SubINode( limit, init );
duke@435 1154 register_new_node( span, ctrl );
kvn@2665 1155 Node *trip = new (C, 3) DivINode( 0, span, stride );
duke@435 1156 register_new_node( trip, ctrl );
duke@435 1157 Node *mtwo = _igvn.intcon(-2);
duke@435 1158 set_ctrl(mtwo, C->root());
duke@435 1159 Node *rond = new (C, 3) AndINode( trip, mtwo );
duke@435 1160 register_new_node( rond, ctrl );
kvn@2665 1161 Node *spn2 = new (C, 3) MulINode( rond, stride );
duke@435 1162 register_new_node( spn2, ctrl );
duke@435 1163 Node *lim2 = new (C, 3) AddINode( spn2, init );
duke@435 1164 register_new_node( lim2, ctrl );
duke@435 1165
duke@435 1166 // Hammer in the new limit
duke@435 1167 Node *ctrl2 = loop_end->in(0);
duke@435 1168 Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), lim2 );
duke@435 1169 register_new_node( cmp2, ctrl2 );
duke@435 1170 Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
duke@435 1171 register_new_node( bol2, ctrl2 );
duke@435 1172 _igvn.hash_delete(loop_end);
duke@435 1173 loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
duke@435 1174
duke@435 1175 // Step 3: Find the min-trip test guaranteed before a 'main' loop.
duke@435 1176 // Make it a 1-trip test (means at least 2 trips).
duke@435 1177 if( adjust_min_trip ) {
duke@435 1178 // Guard test uses an 'opaque' node which is not shared. Hence I
duke@435 1179 // can edit it's inputs directly. Hammer in the new limit for the
duke@435 1180 // minimum-trip guard.
duke@435 1181 assert( opaq->outcnt() == 1, "" );
duke@435 1182 _igvn.hash_delete(opaq);
duke@435 1183 opaq->set_req(1, lim2);
duke@435 1184 }
duke@435 1185
duke@435 1186 // ---------
duke@435 1187 // Step 4: Clone the loop body. Move it inside the loop. This loop body
duke@435 1188 // represents the odd iterations; since the loop trips an even number of
duke@435 1189 // times its backedge is never taken. Kill the backedge.
duke@435 1190 uint dd = dom_depth(loop_head);
duke@435 1191 clone_loop( loop, old_new, dd );
duke@435 1192
duke@435 1193 // Make backedges of the clone equal to backedges of the original.
duke@435 1194 // Make the fall-in from the original come from the fall-out of the clone.
duke@435 1195 for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
duke@435 1196 Node* phi = loop_head->fast_out(j);
duke@435 1197 if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
duke@435 1198 Node *newphi = old_new[phi->_idx];
duke@435 1199 _igvn.hash_delete( phi );
duke@435 1200 _igvn.hash_delete( newphi );
duke@435 1201
duke@435 1202 phi ->set_req(LoopNode:: EntryControl, newphi->in(LoopNode::LoopBackControl));
duke@435 1203 newphi->set_req(LoopNode::LoopBackControl, phi ->in(LoopNode::LoopBackControl));
duke@435 1204 phi ->set_req(LoopNode::LoopBackControl, C->top());
duke@435 1205 }
duke@435 1206 }
duke@435 1207 Node *clone_head = old_new[loop_head->_idx];
duke@435 1208 _igvn.hash_delete( clone_head );
duke@435 1209 loop_head ->set_req(LoopNode:: EntryControl, clone_head->in(LoopNode::LoopBackControl));
duke@435 1210 clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
duke@435 1211 loop_head ->set_req(LoopNode::LoopBackControl, C->top());
duke@435 1212 loop->_head = clone_head; // New loop header
duke@435 1213
duke@435 1214 set_idom(loop_head, loop_head ->in(LoopNode::EntryControl), dd);
duke@435 1215 set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
duke@435 1216
duke@435 1217 // Kill the clone's backedge
duke@435 1218 Node *newcle = old_new[loop_end->_idx];
duke@435 1219 _igvn.hash_delete( newcle );
duke@435 1220 Node *one = _igvn.intcon(1);
duke@435 1221 set_ctrl(one, C->root());
duke@435 1222 newcle->set_req(1, one);
duke@435 1223 // Force clone into same loop body
duke@435 1224 uint max = loop->_body.size();
duke@435 1225 for( uint k = 0; k < max; k++ ) {
duke@435 1226 Node *old = loop->_body.at(k);
duke@435 1227 Node *nnn = old_new[old->_idx];
duke@435 1228 loop->_body.push(nnn);
duke@435 1229 if (!has_ctrl(old))
duke@435 1230 set_loop(nnn, loop);
duke@435 1231 }
never@802 1232
never@802 1233 loop->record_for_igvn();
duke@435 1234 }
duke@435 1235
duke@435 1236 //------------------------------do_maximally_unroll----------------------------
duke@435 1237
duke@435 1238 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 1239 CountedLoopNode *cl = loop->_head->as_CountedLoop();
kvn@2665 1240 assert(cl->trip_count() > 0, "");
kvn@2665 1241 #ifndef PRODUCT
kvn@2665 1242 if (TraceLoopOpts) {
kvn@2665 1243 tty->print("MaxUnroll %d ", cl->trip_count());
kvn@2665 1244 loop->dump_head();
kvn@2665 1245 }
kvn@2665 1246 #endif
duke@435 1247
duke@435 1248 // If loop is tripping an odd number of times, peel odd iteration
kvn@2665 1249 if ((cl->trip_count() & 1) == 1) {
kvn@2665 1250 do_peeling(loop, old_new);
duke@435 1251 }
duke@435 1252
duke@435 1253 // Now its tripping an even number of times remaining. Double loop body.
duke@435 1254 // Do not adjust pre-guards; they are not needed and do not exist.
kvn@2665 1255 if (cl->trip_count() > 0) {
kvn@2665 1256 do_unroll(loop, old_new, false);
duke@435 1257 }
duke@435 1258 }
duke@435 1259
duke@435 1260 //------------------------------dominates_backedge---------------------------------
duke@435 1261 // Returns true if ctrl is executed on every complete iteration
duke@435 1262 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
duke@435 1263 assert(ctrl->is_CFG(), "must be control");
duke@435 1264 Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
duke@435 1265 return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
duke@435 1266 }
duke@435 1267
duke@435 1268 //------------------------------add_constraint---------------------------------
duke@435 1269 // Constrain the main loop iterations so the condition:
duke@435 1270 // scale_con * I + offset < limit
duke@435 1271 // always holds true. That is, either increase the number of iterations in
duke@435 1272 // the pre-loop or the post-loop until the condition holds true in the main
duke@435 1273 // loop. Stride, scale, offset and limit are all loop invariant. Further,
duke@435 1274 // stride and scale are constants (offset and limit often are).
duke@435 1275 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
duke@435 1276
duke@435 1277 // Compute "I :: (limit-offset)/scale_con"
duke@435 1278 Node *con = new (C, 3) SubINode( limit, offset );
duke@435 1279 register_new_node( con, pre_ctrl );
duke@435 1280 Node *scale = _igvn.intcon(scale_con);
duke@435 1281 set_ctrl(scale, C->root());
duke@435 1282 Node *X = new (C, 3) DivINode( 0, con, scale );
duke@435 1283 register_new_node( X, pre_ctrl );
duke@435 1284
duke@435 1285 // For positive stride, the pre-loop limit always uses a MAX function
duke@435 1286 // and the main loop a MIN function. For negative stride these are
duke@435 1287 // reversed.
duke@435 1288
duke@435 1289 // Also for positive stride*scale the affine function is increasing, so the
duke@435 1290 // pre-loop must check for underflow and the post-loop for overflow.
duke@435 1291 // Negative stride*scale reverses this; pre-loop checks for overflow and
duke@435 1292 // post-loop for underflow.
duke@435 1293 if( stride_con*scale_con > 0 ) {
duke@435 1294 // Compute I < (limit-offset)/scale_con
duke@435 1295 // Adjust main-loop last iteration to be MIN/MAX(main_loop,X)
duke@435 1296 *main_limit = (stride_con > 0)
duke@435 1297 ? (Node*)(new (C, 3) MinINode( *main_limit, X ))
duke@435 1298 : (Node*)(new (C, 3) MaxINode( *main_limit, X ));
duke@435 1299 register_new_node( *main_limit, pre_ctrl );
duke@435 1300
duke@435 1301 } else {
duke@435 1302 // Compute (limit-offset)/scale_con + SGN(-scale_con) <= I
duke@435 1303 // Add the negation of the main-loop constraint to the pre-loop.
duke@435 1304 // See footnote [++] below for a derivation of the limit expression.
duke@435 1305 Node *incr = _igvn.intcon(scale_con > 0 ? -1 : 1);
duke@435 1306 set_ctrl(incr, C->root());
duke@435 1307 Node *adj = new (C, 3) AddINode( X, incr );
duke@435 1308 register_new_node( adj, pre_ctrl );
duke@435 1309 *pre_limit = (scale_con > 0)
duke@435 1310 ? (Node*)new (C, 3) MinINode( *pre_limit, adj )
duke@435 1311 : (Node*)new (C, 3) MaxINode( *pre_limit, adj );
duke@435 1312 register_new_node( *pre_limit, pre_ctrl );
duke@435 1313
duke@435 1314 // [++] Here's the algebra that justifies the pre-loop limit expression:
duke@435 1315 //
duke@435 1316 // NOT( scale_con * I + offset < limit )
duke@435 1317 // ==
duke@435 1318 // scale_con * I + offset >= limit
duke@435 1319 // ==
duke@435 1320 // SGN(scale_con) * I >= (limit-offset)/|scale_con|
duke@435 1321 // ==
duke@435 1322 // (limit-offset)/|scale_con| <= I * SGN(scale_con)
duke@435 1323 // ==
duke@435 1324 // (limit-offset)/|scale_con|-1 < I * SGN(scale_con)
duke@435 1325 // ==
duke@435 1326 // ( if (scale_con > 0) /*common case*/
duke@435 1327 // (limit-offset)/scale_con - 1 < I
duke@435 1328 // else
duke@435 1329 // (limit-offset)/scale_con + 1 > I
duke@435 1330 // )
duke@435 1331 // ( if (scale_con > 0) /*common case*/
duke@435 1332 // (limit-offset)/scale_con + SGN(-scale_con) < I
duke@435 1333 // else
duke@435 1334 // (limit-offset)/scale_con + SGN(-scale_con) > I
duke@435 1335 }
duke@435 1336 }
duke@435 1337
duke@435 1338
duke@435 1339 //------------------------------is_scaled_iv---------------------------------
duke@435 1340 // Return true if exp is a constant times an induction var
duke@435 1341 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
duke@435 1342 if (exp == iv) {
duke@435 1343 if (p_scale != NULL) {
duke@435 1344 *p_scale = 1;
duke@435 1345 }
duke@435 1346 return true;
duke@435 1347 }
duke@435 1348 int opc = exp->Opcode();
duke@435 1349 if (opc == Op_MulI) {
duke@435 1350 if (exp->in(1) == iv && exp->in(2)->is_Con()) {
duke@435 1351 if (p_scale != NULL) {
duke@435 1352 *p_scale = exp->in(2)->get_int();
duke@435 1353 }
duke@435 1354 return true;
duke@435 1355 }
duke@435 1356 if (exp->in(2) == iv && exp->in(1)->is_Con()) {
duke@435 1357 if (p_scale != NULL) {
duke@435 1358 *p_scale = exp->in(1)->get_int();
duke@435 1359 }
duke@435 1360 return true;
duke@435 1361 }
duke@435 1362 } else if (opc == Op_LShiftI) {
duke@435 1363 if (exp->in(1) == iv && exp->in(2)->is_Con()) {
duke@435 1364 if (p_scale != NULL) {
duke@435 1365 *p_scale = 1 << exp->in(2)->get_int();
duke@435 1366 }
duke@435 1367 return true;
duke@435 1368 }
duke@435 1369 }
duke@435 1370 return false;
duke@435 1371 }
duke@435 1372
duke@435 1373 //-----------------------------is_scaled_iv_plus_offset------------------------------
duke@435 1374 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
duke@435 1375 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
duke@435 1376 if (is_scaled_iv(exp, iv, p_scale)) {
duke@435 1377 if (p_offset != NULL) {
duke@435 1378 Node *zero = _igvn.intcon(0);
duke@435 1379 set_ctrl(zero, C->root());
duke@435 1380 *p_offset = zero;
duke@435 1381 }
duke@435 1382 return true;
duke@435 1383 }
duke@435 1384 int opc = exp->Opcode();
duke@435 1385 if (opc == Op_AddI) {
duke@435 1386 if (is_scaled_iv(exp->in(1), iv, p_scale)) {
duke@435 1387 if (p_offset != NULL) {
duke@435 1388 *p_offset = exp->in(2);
duke@435 1389 }
duke@435 1390 return true;
duke@435 1391 }
duke@435 1392 if (exp->in(2)->is_Con()) {
duke@435 1393 Node* offset2 = NULL;
duke@435 1394 if (depth < 2 &&
duke@435 1395 is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
duke@435 1396 p_offset != NULL ? &offset2 : NULL, depth+1)) {
duke@435 1397 if (p_offset != NULL) {
duke@435 1398 Node *ctrl_off2 = get_ctrl(offset2);
duke@435 1399 Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
duke@435 1400 register_new_node(offset, ctrl_off2);
duke@435 1401 *p_offset = offset;
duke@435 1402 }
duke@435 1403 return true;
duke@435 1404 }
duke@435 1405 }
duke@435 1406 } else if (opc == Op_SubI) {
duke@435 1407 if (is_scaled_iv(exp->in(1), iv, p_scale)) {
duke@435 1408 if (p_offset != NULL) {
duke@435 1409 Node *zero = _igvn.intcon(0);
duke@435 1410 set_ctrl(zero, C->root());
duke@435 1411 Node *ctrl_off = get_ctrl(exp->in(2));
duke@435 1412 Node* offset = new (C, 3) SubINode(zero, exp->in(2));
duke@435 1413 register_new_node(offset, ctrl_off);
duke@435 1414 *p_offset = offset;
duke@435 1415 }
duke@435 1416 return true;
duke@435 1417 }
duke@435 1418 if (is_scaled_iv(exp->in(2), iv, p_scale)) {
duke@435 1419 if (p_offset != NULL) {
duke@435 1420 *p_scale *= -1;
duke@435 1421 *p_offset = exp->in(1);
duke@435 1422 }
duke@435 1423 return true;
duke@435 1424 }
duke@435 1425 }
duke@435 1426 return false;
duke@435 1427 }
duke@435 1428
duke@435 1429 //------------------------------do_range_check---------------------------------
duke@435 1430 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
duke@435 1431 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 1432 #ifndef PRODUCT
kvn@2665 1433 if (PrintOpto && VerifyLoopOptimizations) {
duke@435 1434 tty->print("Range Check Elimination ");
duke@435 1435 loop->dump_head();
kvn@2665 1436 } else if (TraceLoopOpts) {
kvn@2665 1437 tty->print("RangeCheck ");
kvn@2665 1438 loop->dump_head();
duke@435 1439 }
duke@435 1440 #endif
kvn@2665 1441 assert(RangeCheckElimination, "");
duke@435 1442 CountedLoopNode *cl = loop->_head->as_CountedLoop();
kvn@2665 1443 assert(cl->is_main_loop(), "");
kvn@2665 1444
kvn@2665 1445 // protect against stride not being a constant
kvn@2665 1446 if (!cl->stride_is_con())
kvn@2665 1447 return;
duke@435 1448
duke@435 1449 // Find the trip counter; we are iteration splitting based on it
duke@435 1450 Node *trip_counter = cl->phi();
duke@435 1451 // Find the main loop limit; we will trim it's iterations
duke@435 1452 // to not ever trip end tests
duke@435 1453 Node *main_limit = cl->limit();
kvn@2665 1454
kvn@2665 1455 // Need to find the main-loop zero-trip guard
kvn@2665 1456 Node *ctrl = cl->in(LoopNode::EntryControl);
kvn@2665 1457 assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
kvn@2665 1458 Node *iffm = ctrl->in(0);
kvn@2665 1459 assert(iffm->Opcode() == Op_If, "");
kvn@2665 1460 Node *bolzm = iffm->in(1);
kvn@2665 1461 assert(bolzm->Opcode() == Op_Bool, "");
kvn@2665 1462 Node *cmpzm = bolzm->in(1);
kvn@2665 1463 assert(cmpzm->is_Cmp(), "");
kvn@2665 1464 Node *opqzm = cmpzm->in(2);
kvn@2665 1465 // Can not optimize a loop if pre-loop Opaque1 node is optimized
kvn@2665 1466 // away and then another round of loop opts attempted.
kvn@2665 1467 if (opqzm->Opcode() != Op_Opaque1)
kvn@2665 1468 return;
kvn@2665 1469 assert(opqzm->in(1) == main_limit, "do not understand situation");
kvn@2665 1470
duke@435 1471 // Find the pre-loop limit; we will expand it's iterations to
duke@435 1472 // not ever trip low tests.
duke@435 1473 Node *p_f = iffm->in(0);
kvn@2665 1474 assert(p_f->Opcode() == Op_IfFalse, "");
duke@435 1475 CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
kvn@2665 1476 assert(pre_end->loopnode()->is_pre_loop(), "");
duke@435 1477 Node *pre_opaq1 = pre_end->limit();
duke@435 1478 // Occasionally it's possible for a pre-loop Opaque1 node to be
duke@435 1479 // optimized away and then another round of loop opts attempted.
duke@435 1480 // We can not optimize this particular loop in that case.
kvn@2665 1481 if (pre_opaq1->Opcode() != Op_Opaque1)
duke@435 1482 return;
duke@435 1483 Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
duke@435 1484 Node *pre_limit = pre_opaq->in(1);
duke@435 1485
duke@435 1486 // Where do we put new limit calculations
duke@435 1487 Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
duke@435 1488
duke@435 1489 // Ensure the original loop limit is available from the
duke@435 1490 // pre-loop Opaque1 node.
duke@435 1491 Node *orig_limit = pre_opaq->original_loop_limit();
kvn@2665 1492 if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
duke@435 1493 return;
duke@435 1494
duke@435 1495 // Must know if its a count-up or count-down loop
duke@435 1496
duke@435 1497 int stride_con = cl->stride_con();
duke@435 1498 Node *zero = _igvn.intcon(0);
duke@435 1499 Node *one = _igvn.intcon(1);
duke@435 1500 set_ctrl(zero, C->root());
duke@435 1501 set_ctrl(one, C->root());
duke@435 1502
duke@435 1503 // Range checks that do not dominate the loop backedge (ie.
duke@435 1504 // conditionally executed) can lengthen the pre loop limit beyond
duke@435 1505 // the original loop limit. To prevent this, the pre limit is
duke@435 1506 // (for stride > 0) MINed with the original loop limit (MAXed
duke@435 1507 // stride < 0) when some range_check (rc) is conditionally
duke@435 1508 // executed.
duke@435 1509 bool conditional_rc = false;
duke@435 1510
duke@435 1511 // Check loop body for tests of trip-counter plus loop-invariant vs
duke@435 1512 // loop-invariant.
duke@435 1513 for( uint i = 0; i < loop->_body.size(); i++ ) {
duke@435 1514 Node *iff = loop->_body[i];
duke@435 1515 if( iff->Opcode() == Op_If ) { // Test?
duke@435 1516
duke@435 1517 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 1518 // we need loop unswitching instead of iteration splitting.
duke@435 1519 Node *exit = loop->is_loop_exit(iff);
duke@435 1520 if( !exit ) continue;
duke@435 1521 int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
duke@435 1522
duke@435 1523 // Get boolean condition to test
duke@435 1524 Node *i1 = iff->in(1);
duke@435 1525 if( !i1->is_Bool() ) continue;
duke@435 1526 BoolNode *bol = i1->as_Bool();
duke@435 1527 BoolTest b_test = bol->_test;
duke@435 1528 // Flip sense of test if exit condition is flipped
duke@435 1529 if( flip )
duke@435 1530 b_test = b_test.negate();
duke@435 1531
duke@435 1532 // Get compare
duke@435 1533 Node *cmp = bol->in(1);
duke@435 1534
duke@435 1535 // Look for trip_counter + offset vs limit
duke@435 1536 Node *rc_exp = cmp->in(1);
duke@435 1537 Node *limit = cmp->in(2);
duke@435 1538 jint scale_con= 1; // Assume trip counter not scaled
duke@435 1539
duke@435 1540 Node *limit_c = get_ctrl(limit);
duke@435 1541 if( loop->is_member(get_loop(limit_c) ) ) {
duke@435 1542 // Compare might have operands swapped; commute them
duke@435 1543 b_test = b_test.commute();
duke@435 1544 rc_exp = cmp->in(2);
duke@435 1545 limit = cmp->in(1);
duke@435 1546 limit_c = get_ctrl(limit);
duke@435 1547 if( loop->is_member(get_loop(limit_c) ) )
duke@435 1548 continue; // Both inputs are loop varying; cannot RCE
duke@435 1549 }
duke@435 1550 // Here we know 'limit' is loop invariant
duke@435 1551
duke@435 1552 // 'limit' maybe pinned below the zero trip test (probably from a
duke@435 1553 // previous round of rce), in which case, it can't be used in the
duke@435 1554 // zero trip test expression which must occur before the zero test's if.
duke@435 1555 if( limit_c == ctrl ) {
duke@435 1556 continue; // Don't rce this check but continue looking for other candidates.
duke@435 1557 }
duke@435 1558
duke@435 1559 // Check for scaled induction variable plus an offset
duke@435 1560 Node *offset = NULL;
duke@435 1561
duke@435 1562 if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
duke@435 1563 continue;
duke@435 1564 }
duke@435 1565
duke@435 1566 Node *offset_c = get_ctrl(offset);
duke@435 1567 if( loop->is_member( get_loop(offset_c) ) )
duke@435 1568 continue; // Offset is not really loop invariant
duke@435 1569 // Here we know 'offset' is loop invariant.
duke@435 1570
duke@435 1571 // As above for the 'limit', the 'offset' maybe pinned below the
duke@435 1572 // zero trip test.
duke@435 1573 if( offset_c == ctrl ) {
duke@435 1574 continue; // Don't rce this check but continue looking for other candidates.
duke@435 1575 }
duke@435 1576
duke@435 1577 // At this point we have the expression as:
duke@435 1578 // scale_con * trip_counter + offset :: limit
duke@435 1579 // where scale_con, offset and limit are loop invariant. Trip_counter
duke@435 1580 // monotonically increases by stride_con, a constant. Both (or either)
duke@435 1581 // stride_con and scale_con can be negative which will flip about the
duke@435 1582 // sense of the test.
duke@435 1583
duke@435 1584 // Adjust pre and main loop limits to guard the correct iteration set
duke@435 1585 if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
duke@435 1586 if( b_test._test == BoolTest::lt ) { // Range checks always use lt
duke@435 1587 // The overflow limit: scale*I+offset < limit
duke@435 1588 add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
duke@435 1589 // The underflow limit: 0 <= scale*I+offset.
duke@435 1590 // Some math yields: -scale*I-(offset+1) < 0
duke@435 1591 Node *plus_one = new (C, 3) AddINode( offset, one );
duke@435 1592 register_new_node( plus_one, pre_ctrl );
duke@435 1593 Node *neg_offset = new (C, 3) SubINode( zero, plus_one );
duke@435 1594 register_new_node( neg_offset, pre_ctrl );
duke@435 1595 add_constraint( stride_con, -scale_con, neg_offset, zero, pre_ctrl, &pre_limit, &main_limit );
duke@435 1596 if (!conditional_rc) {
duke@435 1597 conditional_rc = !loop->dominates_backedge(iff);
duke@435 1598 }
duke@435 1599 } else {
duke@435 1600 #ifndef PRODUCT
duke@435 1601 if( PrintOpto )
duke@435 1602 tty->print_cr("missed RCE opportunity");
duke@435 1603 #endif
duke@435 1604 continue; // In release mode, ignore it
duke@435 1605 }
duke@435 1606 } else { // Otherwise work on normal compares
duke@435 1607 switch( b_test._test ) {
duke@435 1608 case BoolTest::ge: // Convert X >= Y to -X <= -Y
duke@435 1609 scale_con = -scale_con;
duke@435 1610 offset = new (C, 3) SubINode( zero, offset );
duke@435 1611 register_new_node( offset, pre_ctrl );
duke@435 1612 limit = new (C, 3) SubINode( zero, limit );
duke@435 1613 register_new_node( limit, pre_ctrl );
duke@435 1614 // Fall into LE case
duke@435 1615 case BoolTest::le: // Convert X <= Y to X < Y+1
duke@435 1616 limit = new (C, 3) AddINode( limit, one );
duke@435 1617 register_new_node( limit, pre_ctrl );
duke@435 1618 // Fall into LT case
duke@435 1619 case BoolTest::lt:
duke@435 1620 add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
duke@435 1621 if (!conditional_rc) {
duke@435 1622 conditional_rc = !loop->dominates_backedge(iff);
duke@435 1623 }
duke@435 1624 break;
duke@435 1625 default:
duke@435 1626 #ifndef PRODUCT
duke@435 1627 if( PrintOpto )
duke@435 1628 tty->print_cr("missed RCE opportunity");
duke@435 1629 #endif
duke@435 1630 continue; // Unhandled case
duke@435 1631 }
duke@435 1632 }
duke@435 1633
duke@435 1634 // Kill the eliminated test
duke@435 1635 C->set_major_progress();
duke@435 1636 Node *kill_con = _igvn.intcon( 1-flip );
duke@435 1637 set_ctrl(kill_con, C->root());
duke@435 1638 _igvn.hash_delete(iff);
duke@435 1639 iff->set_req(1, kill_con);
duke@435 1640 _igvn._worklist.push(iff);
duke@435 1641 // Find surviving projection
duke@435 1642 assert(iff->is_If(), "");
duke@435 1643 ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
duke@435 1644 // Find loads off the surviving projection; remove their control edge
duke@435 1645 for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
duke@435 1646 Node* cd = dp->fast_out(i); // Control-dependent node
duke@435 1647 if( cd->is_Load() ) { // Loads can now float around in the loop
duke@435 1648 _igvn.hash_delete(cd);
duke@435 1649 // Allow the load to float around in the loop, or before it
duke@435 1650 // but NOT before the pre-loop.
duke@435 1651 cd->set_req(0, ctrl); // ctrl, not NULL
duke@435 1652 _igvn._worklist.push(cd);
duke@435 1653 --i;
duke@435 1654 --imax;
duke@435 1655 }
duke@435 1656 }
duke@435 1657
duke@435 1658 } // End of is IF
duke@435 1659
duke@435 1660 }
duke@435 1661
duke@435 1662 // Update loop limits
duke@435 1663 if (conditional_rc) {
duke@435 1664 pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
duke@435 1665 : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
duke@435 1666 register_new_node(pre_limit, pre_ctrl);
duke@435 1667 }
duke@435 1668 _igvn.hash_delete(pre_opaq);
duke@435 1669 pre_opaq->set_req(1, pre_limit);
duke@435 1670
duke@435 1671 // Note:: we are making the main loop limit no longer precise;
duke@435 1672 // need to round up based on stride.
duke@435 1673 if( stride_con != 1 && stride_con != -1 ) { // Cutout for common case
duke@435 1674 // "Standard" round-up logic: ([main_limit-init+(y-1)]/y)*y+init
duke@435 1675 // Hopefully, compiler will optimize for powers of 2.
duke@435 1676 Node *ctrl = get_ctrl(main_limit);
duke@435 1677 Node *stride = cl->stride();
duke@435 1678 Node *init = cl->init_trip();
duke@435 1679 Node *span = new (C, 3) SubINode(main_limit,init);
duke@435 1680 register_new_node(span,ctrl);
duke@435 1681 Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
duke@435 1682 Node *add = new (C, 3) AddINode(span,rndup);
duke@435 1683 register_new_node(add,ctrl);
duke@435 1684 Node *div = new (C, 3) DivINode(0,add,stride);
duke@435 1685 register_new_node(div,ctrl);
duke@435 1686 Node *mul = new (C, 3) MulINode(div,stride);
duke@435 1687 register_new_node(mul,ctrl);
duke@435 1688 Node *newlim = new (C, 3) AddINode(mul,init);
duke@435 1689 register_new_node(newlim,ctrl);
duke@435 1690 main_limit = newlim;
duke@435 1691 }
duke@435 1692
duke@435 1693 Node *main_cle = cl->loopexit();
duke@435 1694 Node *main_bol = main_cle->in(1);
duke@435 1695 // Hacking loop bounds; need private copies of exit test
duke@435 1696 if( main_bol->outcnt() > 1 ) {// BoolNode shared?
duke@435 1697 _igvn.hash_delete(main_cle);
duke@435 1698 main_bol = main_bol->clone();// Clone a private BoolNode
duke@435 1699 register_new_node( main_bol, main_cle->in(0) );
duke@435 1700 main_cle->set_req(1,main_bol);
duke@435 1701 }
duke@435 1702 Node *main_cmp = main_bol->in(1);
duke@435 1703 if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
duke@435 1704 _igvn.hash_delete(main_bol);
duke@435 1705 main_cmp = main_cmp->clone();// Clone a private CmpNode
duke@435 1706 register_new_node( main_cmp, main_cle->in(0) );
duke@435 1707 main_bol->set_req(1,main_cmp);
duke@435 1708 }
duke@435 1709 // Hack the now-private loop bounds
duke@435 1710 _igvn.hash_delete(main_cmp);
duke@435 1711 main_cmp->set_req(2, main_limit);
duke@435 1712 _igvn._worklist.push(main_cmp);
duke@435 1713 // The OpaqueNode is unshared by design
duke@435 1714 _igvn.hash_delete(opqzm);
duke@435 1715 assert( opqzm->outcnt() == 1, "cannot hack shared node" );
duke@435 1716 opqzm->set_req(1,main_limit);
duke@435 1717 _igvn._worklist.push(opqzm);
duke@435 1718 }
duke@435 1719
duke@435 1720 //------------------------------DCE_loop_body----------------------------------
duke@435 1721 // Remove simplistic dead code from loop body
duke@435 1722 void IdealLoopTree::DCE_loop_body() {
duke@435 1723 for( uint i = 0; i < _body.size(); i++ )
duke@435 1724 if( _body.at(i)->outcnt() == 0 )
duke@435 1725 _body.map( i--, _body.pop() );
duke@435 1726 }
duke@435 1727
duke@435 1728
duke@435 1729 //------------------------------adjust_loop_exit_prob--------------------------
duke@435 1730 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
duke@435 1731 // Replace with a 1-in-10 exit guess.
duke@435 1732 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
duke@435 1733 Node *test = tail();
duke@435 1734 while( test != _head ) {
duke@435 1735 uint top = test->Opcode();
duke@435 1736 if( top == Op_IfTrue || top == Op_IfFalse ) {
duke@435 1737 int test_con = ((ProjNode*)test)->_con;
duke@435 1738 assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
duke@435 1739 IfNode *iff = test->in(0)->as_If();
duke@435 1740 if( iff->outcnt() == 2 ) { // Ignore dead tests
duke@435 1741 Node *bol = iff->in(1);
duke@435 1742 if( bol && bol->req() > 1 && bol->in(1) &&
duke@435 1743 ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
kvn@855 1744 (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
duke@435 1745 (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
duke@435 1746 (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
duke@435 1747 (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
coleenp@548 1748 (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
coleenp@548 1749 (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
duke@435 1750 return; // Allocation loops RARELY take backedge
duke@435 1751 // Find the OTHER exit path from the IF
duke@435 1752 Node* ex = iff->proj_out(1-test_con);
duke@435 1753 float p = iff->_prob;
duke@435 1754 if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
duke@435 1755 if( top == Op_IfTrue ) {
duke@435 1756 if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
duke@435 1757 iff->_prob = PROB_STATIC_FREQUENT;
duke@435 1758 }
duke@435 1759 } else {
duke@435 1760 if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
duke@435 1761 iff->_prob = PROB_STATIC_INFREQUENT;
duke@435 1762 }
duke@435 1763 }
duke@435 1764 }
duke@435 1765 }
duke@435 1766 }
duke@435 1767 test = phase->idom(test);
duke@435 1768 }
duke@435 1769 }
duke@435 1770
duke@435 1771
duke@435 1772 //------------------------------policy_do_remove_empty_loop--------------------
duke@435 1773 // Micro-benchmark spamming. Policy is to always remove empty loops.
duke@435 1774 // The 'DO' part is to replace the trip counter with the value it will
duke@435 1775 // have on the last iteration. This will break the loop.
duke@435 1776 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
duke@435 1777 // Minimum size must be empty loop
kvn@2735 1778 if (_body.size() > EMPTY_LOOP_SIZE)
kvn@2665 1779 return false;
duke@435 1780
kvn@2665 1781 if (!_head->is_CountedLoop())
kvn@2665 1782 return false; // Dead loop
duke@435 1783 CountedLoopNode *cl = _head->as_CountedLoop();
kvn@2665 1784 if (!cl->loopexit())
kvn@2665 1785 return false; // Malformed loop
kvn@2665 1786 if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
duke@435 1787 return false; // Infinite loop
never@2685 1788
duke@435 1789 #ifdef ASSERT
duke@435 1790 // Ensure only one phi which is the iv.
duke@435 1791 Node* iv = NULL;
duke@435 1792 for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
duke@435 1793 Node* n = cl->fast_out(i);
duke@435 1794 if (n->Opcode() == Op_Phi) {
duke@435 1795 assert(iv == NULL, "Too many phis" );
duke@435 1796 iv = n;
duke@435 1797 }
duke@435 1798 }
duke@435 1799 assert(iv == cl->phi(), "Wrong phi" );
duke@435 1800 #endif
never@2685 1801
never@2685 1802 // main and post loops have explicitly created zero trip guard
never@2685 1803 bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
never@2685 1804 if (needs_guard) {
never@2685 1805 // Check for an obvious zero trip guard.
kvn@2727 1806 Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
never@2685 1807 if (inctrl->Opcode() == Op_IfTrue) {
never@2685 1808 // The test should look like just the backedge of a CountedLoop
never@2685 1809 Node* iff = inctrl->in(0);
never@2685 1810 if (iff->is_If()) {
never@2685 1811 Node* bol = iff->in(1);
never@2685 1812 if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
never@2685 1813 Node* cmp = bol->in(1);
never@2685 1814 if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
never@2685 1815 needs_guard = false;
never@2685 1816 }
never@2685 1817 }
never@2685 1818 }
never@2685 1819 }
never@2685 1820 }
never@2685 1821
never@2685 1822 #ifndef PRODUCT
never@2685 1823 if (PrintOpto) {
never@2685 1824 tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
never@2685 1825 this->dump_head();
never@2685 1826 } else if (TraceLoopOpts) {
never@2685 1827 tty->print("Empty with%s zero trip guard ", needs_guard ? "out" : "");
never@2685 1828 this->dump_head();
never@2685 1829 }
never@2685 1830 #endif
never@2685 1831
never@2685 1832 if (needs_guard) {
never@2685 1833 // Peel the loop to ensure there's a zero trip guard
never@2685 1834 Node_List old_new;
never@2685 1835 phase->do_peeling(this, old_new);
never@2685 1836 }
never@2685 1837
duke@435 1838 // Replace the phi at loop head with the final value of the last
duke@435 1839 // iteration. Then the CountedLoopEnd will collapse (backedge never
duke@435 1840 // taken) and all loop-invariant uses of the exit values will be correct.
duke@435 1841 Node *phi = cl->phi();
duke@435 1842 Node *final = new (phase->C, 3) SubINode( cl->limit(), cl->stride() );
duke@435 1843 phase->register_new_node(final,cl->in(LoopNode::EntryControl));
kvn@1976 1844 phase->_igvn.replace_node(phi,final);
duke@435 1845 phase->C->set_major_progress();
duke@435 1846 return true;
duke@435 1847 }
duke@435 1848
duke@435 1849
duke@435 1850 //=============================================================================
duke@435 1851 //------------------------------iteration_split_impl---------------------------
never@836 1852 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
duke@435 1853 // Check and remove empty loops (spam micro-benchmarks)
duke@435 1854 if( policy_do_remove_empty_loop(phase) )
cfang@1607 1855 return true; // Here we removed an empty loop
duke@435 1856
duke@435 1857 bool should_peel = policy_peeling(phase); // Should we peel?
duke@435 1858
duke@435 1859 bool should_unswitch = policy_unswitching(phase);
duke@435 1860
duke@435 1861 // Non-counted loops may be peeled; exactly 1 iteration is peeled.
duke@435 1862 // This removes loop-invariant tests (usually null checks).
duke@435 1863 if( !_head->is_CountedLoop() ) { // Non-counted loop
duke@435 1864 if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
never@836 1865 // Partial peel succeeded so terminate this round of loop opts
never@836 1866 return false;
duke@435 1867 }
duke@435 1868 if( should_peel ) { // Should we peel?
duke@435 1869 #ifndef PRODUCT
duke@435 1870 if (PrintOpto) tty->print_cr("should_peel");
duke@435 1871 #endif
duke@435 1872 phase->do_peeling(this,old_new);
duke@435 1873 } else if( should_unswitch ) {
duke@435 1874 phase->do_unswitching(this, old_new);
duke@435 1875 }
never@836 1876 return true;
duke@435 1877 }
duke@435 1878 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 1879
never@836 1880 if( !cl->loopexit() ) return true; // Ignore various kinds of broken loops
duke@435 1881
duke@435 1882 // Do nothing special to pre- and post- loops
never@836 1883 if( cl->is_pre_loop() || cl->is_post_loop() ) return true;
duke@435 1884
duke@435 1885 // Compute loop trip count from profile data
duke@435 1886 compute_profile_trip_cnt(phase);
duke@435 1887
duke@435 1888 // Before attempting fancy unrolling, RCE or alignment, see if we want
duke@435 1889 // to completely unroll this loop or do loop unswitching.
duke@435 1890 if( cl->is_normal_loop() ) {
cfang@1224 1891 if (should_unswitch) {
cfang@1224 1892 phase->do_unswitching(this, old_new);
cfang@1224 1893 return true;
cfang@1224 1894 }
duke@435 1895 bool should_maximally_unroll = policy_maximally_unroll(phase);
duke@435 1896 if( should_maximally_unroll ) {
duke@435 1897 // Here we did some unrolling and peeling. Eventually we will
duke@435 1898 // completely unroll this loop and it will no longer be a loop.
duke@435 1899 phase->do_maximally_unroll(this,old_new);
never@836 1900 return true;
duke@435 1901 }
duke@435 1902 }
duke@435 1903
kvn@2735 1904 // Skip next optimizations if running low on nodes. Note that
kvn@2735 1905 // policy_unswitching and policy_maximally_unroll have this check.
kvn@2735 1906 uint nodes_left = MaxNodeLimit - phase->C->unique();
kvn@2735 1907 if ((2 * _body.size()) > nodes_left) {
kvn@2735 1908 return true;
kvn@2735 1909 }
duke@435 1910
duke@435 1911 // Counted loops may be peeled, may need some iterations run up
duke@435 1912 // front for RCE, and may want to align loop refs to a cache
duke@435 1913 // line. Thus we clone a full loop up front whose trip count is
duke@435 1914 // at least 1 (if peeling), but may be several more.
duke@435 1915
duke@435 1916 // The main loop will start cache-line aligned with at least 1
duke@435 1917 // iteration of the unrolled body (zero-trip test required) and
duke@435 1918 // will have some range checks removed.
duke@435 1919
duke@435 1920 // A post-loop will finish any odd iterations (leftover after
duke@435 1921 // unrolling), plus any needed for RCE purposes.
duke@435 1922
duke@435 1923 bool should_unroll = policy_unroll(phase);
duke@435 1924
duke@435 1925 bool should_rce = policy_range_check(phase);
duke@435 1926
duke@435 1927 bool should_align = policy_align(phase);
duke@435 1928
duke@435 1929 // If not RCE'ing (iteration splitting) or Aligning, then we do not
duke@435 1930 // need a pre-loop. We may still need to peel an initial iteration but
duke@435 1931 // we will not be needing an unknown number of pre-iterations.
duke@435 1932 //
duke@435 1933 // Basically, if may_rce_align reports FALSE first time through,
duke@435 1934 // we will not be able to later do RCE or Aligning on this loop.
duke@435 1935 bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
duke@435 1936
duke@435 1937 // If we have any of these conditions (RCE, alignment, unrolling) met, then
duke@435 1938 // we switch to the pre-/main-/post-loop model. This model also covers
duke@435 1939 // peeling.
duke@435 1940 if( should_rce || should_align || should_unroll ) {
duke@435 1941 if( cl->is_normal_loop() ) // Convert to 'pre/main/post' loops
duke@435 1942 phase->insert_pre_post_loops(this,old_new, !may_rce_align);
duke@435 1943
duke@435 1944 // Adjust the pre- and main-loop limits to let the pre and post loops run
duke@435 1945 // with full checks, but the main-loop with no checks. Remove said
duke@435 1946 // checks from the main body.
duke@435 1947 if( should_rce )
duke@435 1948 phase->do_range_check(this,old_new);
duke@435 1949
duke@435 1950 // Double loop body for unrolling. Adjust the minimum-trip test (will do
duke@435 1951 // twice as many iterations as before) and the main body limit (only do
duke@435 1952 // an even number of trips). If we are peeling, we might enable some RCE
duke@435 1953 // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
duke@435 1954 // peeling.
cfang@1607 1955 if( should_unroll && !should_peel )
cfang@1607 1956 phase->do_unroll(this,old_new, true);
duke@435 1957
duke@435 1958 // Adjust the pre-loop limits to align the main body
duke@435 1959 // iterations.
duke@435 1960 if( should_align )
duke@435 1961 Unimplemented();
duke@435 1962
duke@435 1963 } else { // Else we have an unchanged counted loop
duke@435 1964 if( should_peel ) // Might want to peel but do nothing else
duke@435 1965 phase->do_peeling(this,old_new);
duke@435 1966 }
never@836 1967 return true;
duke@435 1968 }
duke@435 1969
duke@435 1970
duke@435 1971 //=============================================================================
duke@435 1972 //------------------------------iteration_split--------------------------------
never@836 1973 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
duke@435 1974 // Recursively iteration split nested loops
kvn@2665 1975 if (_child && !_child->iteration_split(phase, old_new))
never@836 1976 return false;
duke@435 1977
duke@435 1978 // Clean out prior deadwood
duke@435 1979 DCE_loop_body();
duke@435 1980
duke@435 1981
duke@435 1982 // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
duke@435 1983 // Replace with a 1-in-10 exit guess.
kvn@2665 1984 if (_parent /*not the root loop*/ &&
duke@435 1985 !_irreducible &&
duke@435 1986 // Also ignore the occasional dead backedge
kvn@2665 1987 !tail()->is_top()) {
duke@435 1988 adjust_loop_exit_prob(phase);
duke@435 1989 }
duke@435 1990
duke@435 1991 // Gate unrolling, RCE and peeling efforts.
kvn@2665 1992 if (!_child && // If not an inner loop, do not split
duke@435 1993 !_irreducible &&
kvn@474 1994 _allow_optimizations &&
kvn@2665 1995 !tail()->is_top()) { // Also ignore the occasional dead backedge
duke@435 1996 if (!_has_call) {
kvn@2665 1997 if (!iteration_split_impl(phase, old_new)) {
cfang@1607 1998 return false;
cfang@1607 1999 }
duke@435 2000 } else if (policy_unswitching(phase)) {
duke@435 2001 phase->do_unswitching(this, old_new);
duke@435 2002 }
duke@435 2003 }
duke@435 2004
duke@435 2005 // Minor offset re-organization to remove loop-fallout uses of
kvn@2665 2006 // trip counter when there was no major reshaping.
kvn@2665 2007 phase->reorg_offsets(this);
kvn@2665 2008
kvn@2665 2009 if (_next && !_next->iteration_split(phase, old_new))
never@836 2010 return false;
never@836 2011 return true;
duke@435 2012 }
cfang@1607 2013
cfang@1607 2014
kvn@2727 2015 //=============================================================================
never@2118 2016 // Process all the loops in the loop tree and replace any fill
never@2118 2017 // patterns with an intrisc version.
never@2118 2018 bool PhaseIdealLoop::do_intrinsify_fill() {
never@2118 2019 bool changed = false;
never@2118 2020 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
never@2118 2021 IdealLoopTree* lpt = iter.current();
never@2118 2022 changed |= intrinsify_fill(lpt);
never@2118 2023 }
never@2118 2024 return changed;
never@2118 2025 }
never@2118 2026
never@2118 2027
never@2118 2028 // Examine an inner loop looking for a a single store of an invariant
never@2118 2029 // value in a unit stride loop,
never@2118 2030 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
never@2118 2031 Node*& shift, Node*& con) {
never@2118 2032 const char* msg = NULL;
never@2118 2033 Node* msg_node = NULL;
never@2118 2034
never@2118 2035 store_value = NULL;
never@2118 2036 con = NULL;
never@2118 2037 shift = NULL;
never@2118 2038
never@2118 2039 // Process the loop looking for stores. If there are multiple
never@2118 2040 // stores or extra control flow give at this point.
never@2118 2041 CountedLoopNode* head = lpt->_head->as_CountedLoop();
never@2118 2042 for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
never@2118 2043 Node* n = lpt->_body.at(i);
never@2118 2044 if (n->outcnt() == 0) continue; // Ignore dead
never@2118 2045 if (n->is_Store()) {
never@2118 2046 if (store != NULL) {
never@2118 2047 msg = "multiple stores";
never@2118 2048 break;
never@2118 2049 }
never@2118 2050 int opc = n->Opcode();
never@2118 2051 if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreCM) {
never@2118 2052 msg = "oop fills not handled";
never@2118 2053 break;
never@2118 2054 }
never@2118 2055 Node* value = n->in(MemNode::ValueIn);
never@2118 2056 if (!lpt->is_invariant(value)) {
never@2118 2057 msg = "variant store value";
never@2140 2058 } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
never@2140 2059 msg = "not array address";
never@2118 2060 }
never@2118 2061 store = n;
never@2118 2062 store_value = value;
never@2118 2063 } else if (n->is_If() && n != head->loopexit()) {
never@2118 2064 msg = "extra control flow";
never@2118 2065 msg_node = n;
never@2118 2066 }
never@2118 2067 }
never@2118 2068
never@2118 2069 if (store == NULL) {
never@2118 2070 // No store in loop
never@2118 2071 return false;
never@2118 2072 }
never@2118 2073
never@2118 2074 if (msg == NULL && head->stride_con() != 1) {
never@2118 2075 // could handle negative strides too
never@2118 2076 if (head->stride_con() < 0) {
never@2118 2077 msg = "negative stride";
never@2118 2078 } else {
never@2118 2079 msg = "non-unit stride";
never@2118 2080 }
never@2118 2081 }
never@2118 2082
never@2118 2083 if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
never@2118 2084 msg = "can't handle store address";
never@2118 2085 msg_node = store->in(MemNode::Address);
never@2118 2086 }
never@2118 2087
never@2168 2088 if (msg == NULL &&
never@2168 2089 (!store->in(MemNode::Memory)->is_Phi() ||
never@2168 2090 store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
never@2168 2091 msg = "store memory isn't proper phi";
never@2168 2092 msg_node = store->in(MemNode::Memory);
never@2168 2093 }
never@2168 2094
never@2118 2095 // Make sure there is an appropriate fill routine
never@2118 2096 BasicType t = store->as_Mem()->memory_type();
never@2118 2097 const char* fill_name;
never@2118 2098 if (msg == NULL &&
never@2118 2099 StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
never@2118 2100 msg = "unsupported store";
never@2118 2101 msg_node = store;
never@2118 2102 }
never@2118 2103
never@2118 2104 if (msg != NULL) {
never@2118 2105 #ifndef PRODUCT
never@2118 2106 if (TraceOptimizeFill) {
never@2118 2107 tty->print_cr("not fill intrinsic candidate: %s", msg);
never@2118 2108 if (msg_node != NULL) msg_node->dump();
never@2118 2109 }
never@2118 2110 #endif
never@2118 2111 return false;
never@2118 2112 }
never@2118 2113
never@2118 2114 // Make sure the address expression can be handled. It should be
never@2118 2115 // head->phi * elsize + con. head->phi might have a ConvI2L.
never@2118 2116 Node* elements[4];
never@2118 2117 Node* conv = NULL;
never@2140 2118 bool found_index = false;
never@2118 2119 int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
never@2118 2120 for (int e = 0; e < count; e++) {
never@2118 2121 Node* n = elements[e];
never@2118 2122 if (n->is_Con() && con == NULL) {
never@2118 2123 con = n;
never@2118 2124 } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
never@2118 2125 Node* value = n->in(1);
never@2118 2126 #ifdef _LP64
never@2118 2127 if (value->Opcode() == Op_ConvI2L) {
never@2118 2128 conv = value;
never@2118 2129 value = value->in(1);
never@2118 2130 }
never@2118 2131 #endif
never@2118 2132 if (value != head->phi()) {
never@2118 2133 msg = "unhandled shift in address";
never@2118 2134 } else {
never@2730 2135 if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
never@2730 2136 msg = "scale doesn't match";
never@2730 2137 } else {
never@2730 2138 found_index = true;
never@2730 2139 shift = n;
never@2730 2140 }
never@2118 2141 }
never@2118 2142 } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
never@2118 2143 if (n->in(1) == head->phi()) {
never@2140 2144 found_index = true;
never@2118 2145 conv = n;
never@2118 2146 } else {
never@2118 2147 msg = "unhandled input to ConvI2L";
never@2118 2148 }
never@2118 2149 } else if (n == head->phi()) {
never@2118 2150 // no shift, check below for allowed cases
never@2140 2151 found_index = true;
never@2118 2152 } else {
never@2118 2153 msg = "unhandled node in address";
never@2118 2154 msg_node = n;
never@2118 2155 }
never@2118 2156 }
never@2118 2157
never@2118 2158 if (count == -1) {
never@2118 2159 msg = "malformed address expression";
never@2118 2160 msg_node = store;
never@2118 2161 }
never@2118 2162
never@2140 2163 if (!found_index) {
never@2140 2164 msg = "missing use of index";
never@2140 2165 }
never@2140 2166
never@2118 2167 // byte sized items won't have a shift
never@2118 2168 if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
never@2118 2169 msg = "can't find shift";
never@2118 2170 msg_node = store;
never@2118 2171 }
never@2118 2172
never@2118 2173 if (msg != NULL) {
never@2118 2174 #ifndef PRODUCT
never@2118 2175 if (TraceOptimizeFill) {
never@2118 2176 tty->print_cr("not fill intrinsic: %s", msg);
never@2118 2177 if (msg_node != NULL) msg_node->dump();
never@2118 2178 }
never@2118 2179 #endif
never@2118 2180 return false;
never@2118 2181 }
never@2118 2182
never@2118 2183 // No make sure all the other nodes in the loop can be handled
never@2118 2184 VectorSet ok(Thread::current()->resource_area());
never@2118 2185
never@2118 2186 // store related values are ok
never@2118 2187 ok.set(store->_idx);
never@2118 2188 ok.set(store->in(MemNode::Memory)->_idx);
never@2118 2189
never@2118 2190 // Loop structure is ok
never@2118 2191 ok.set(head->_idx);
never@2118 2192 ok.set(head->loopexit()->_idx);
never@2118 2193 ok.set(head->phi()->_idx);
never@2118 2194 ok.set(head->incr()->_idx);
never@2118 2195 ok.set(head->loopexit()->cmp_node()->_idx);
never@2118 2196 ok.set(head->loopexit()->in(1)->_idx);
never@2118 2197
never@2118 2198 // Address elements are ok
never@2118 2199 if (con) ok.set(con->_idx);
never@2118 2200 if (shift) ok.set(shift->_idx);
never@2118 2201 if (conv) ok.set(conv->_idx);
never@2118 2202
never@2118 2203 for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
never@2118 2204 Node* n = lpt->_body.at(i);
never@2118 2205 if (n->outcnt() == 0) continue; // Ignore dead
never@2118 2206 if (ok.test(n->_idx)) continue;
never@2118 2207 // Backedge projection is ok
never@2118 2208 if (n->is_IfTrue() && n->in(0) == head->loopexit()) continue;
never@2118 2209 if (!n->is_AddP()) {
never@2118 2210 msg = "unhandled node";
never@2118 2211 msg_node = n;
never@2118 2212 break;
never@2118 2213 }
never@2118 2214 }
never@2118 2215
never@2118 2216 // Make sure no unexpected values are used outside the loop
never@2118 2217 for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
never@2118 2218 Node* n = lpt->_body.at(i);
never@2118 2219 // These values can be replaced with other nodes if they are used
never@2118 2220 // outside the loop.
never@2168 2221 if (n == store || n == head->loopexit() || n == head->incr() || n == store->in(MemNode::Memory)) continue;
never@2118 2222 for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
never@2118 2223 Node* use = iter.get();
never@2118 2224 if (!lpt->_body.contains(use)) {
never@2118 2225 msg = "node is used outside loop";
never@2118 2226 // lpt->_body.dump();
never@2118 2227 msg_node = n;
never@2118 2228 break;
never@2118 2229 }
never@2118 2230 }
never@2118 2231 }
never@2118 2232
never@2118 2233 #ifdef ASSERT
never@2118 2234 if (TraceOptimizeFill) {
never@2118 2235 if (msg != NULL) {
never@2118 2236 tty->print_cr("no fill intrinsic: %s", msg);
never@2118 2237 if (msg_node != NULL) msg_node->dump();
never@2118 2238 } else {
never@2118 2239 tty->print_cr("fill intrinsic for:");
never@2118 2240 }
never@2118 2241 store->dump();
never@2118 2242 if (Verbose) {
never@2118 2243 lpt->_body.dump();
never@2118 2244 }
never@2118 2245 }
never@2118 2246 #endif
never@2118 2247
never@2118 2248 return msg == NULL;
never@2118 2249 }
never@2118 2250
never@2118 2251
never@2118 2252
never@2118 2253 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
never@2118 2254 // Only for counted inner loops
never@2118 2255 if (!lpt->is_counted() || !lpt->is_inner()) {
never@2118 2256 return false;
never@2118 2257 }
never@2118 2258
never@2118 2259 // Must have constant stride
never@2118 2260 CountedLoopNode* head = lpt->_head->as_CountedLoop();
never@2118 2261 if (!head->stride_is_con() || !head->is_normal_loop()) {
never@2118 2262 return false;
never@2118 2263 }
never@2118 2264
never@2118 2265 // Check that the body only contains a store of a loop invariant
never@2118 2266 // value that is indexed by the loop phi.
never@2118 2267 Node* store = NULL;
never@2118 2268 Node* store_value = NULL;
never@2118 2269 Node* shift = NULL;
never@2118 2270 Node* offset = NULL;
never@2118 2271 if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
never@2118 2272 return false;
never@2118 2273 }
never@2118 2274
kvn@2727 2275 #ifndef PRODUCT
kvn@2727 2276 if (TraceLoopOpts) {
kvn@2727 2277 tty->print("ArrayFill ");
kvn@2727 2278 lpt->dump_head();
kvn@2727 2279 }
kvn@2727 2280 #endif
kvn@2727 2281
never@2118 2282 // Now replace the whole loop body by a call to a fill routine that
never@2118 2283 // covers the same region as the loop.
never@2118 2284 Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
never@2118 2285
never@2118 2286 // Build an expression for the beginning of the copy region
never@2118 2287 Node* index = head->init_trip();
never@2118 2288 #ifdef _LP64
never@2118 2289 index = new (C, 2) ConvI2LNode(index);
never@2118 2290 _igvn.register_new_node_with_optimizer(index);
never@2118 2291 #endif
never@2118 2292 if (shift != NULL) {
never@2118 2293 // byte arrays don't require a shift but others do.
never@2118 2294 index = new (C, 3) LShiftXNode(index, shift->in(2));
never@2118 2295 _igvn.register_new_node_with_optimizer(index);
never@2118 2296 }
never@2118 2297 index = new (C, 4) AddPNode(base, base, index);
never@2118 2298 _igvn.register_new_node_with_optimizer(index);
never@2118 2299 Node* from = new (C, 4) AddPNode(base, index, offset);
never@2118 2300 _igvn.register_new_node_with_optimizer(from);
never@2118 2301 // Compute the number of elements to copy
never@2118 2302 Node* len = new (C, 3) SubINode(head->limit(), head->init_trip());
never@2118 2303 _igvn.register_new_node_with_optimizer(len);
never@2118 2304
never@2118 2305 BasicType t = store->as_Mem()->memory_type();
never@2118 2306 bool aligned = false;
never@2118 2307 if (offset != NULL && head->init_trip()->is_Con()) {
never@2118 2308 int element_size = type2aelembytes(t);
never@2118 2309 aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
never@2118 2310 }
never@2118 2311
never@2118 2312 // Build a call to the fill routine
never@2118 2313 const char* fill_name;
never@2118 2314 address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
never@2118 2315 assert(fill != NULL, "what?");
never@2118 2316
never@2118 2317 // Convert float/double to int/long for fill routines
never@2118 2318 if (t == T_FLOAT) {
never@2118 2319 store_value = new (C, 2) MoveF2INode(store_value);
never@2118 2320 _igvn.register_new_node_with_optimizer(store_value);
never@2118 2321 } else if (t == T_DOUBLE) {
never@2118 2322 store_value = new (C, 2) MoveD2LNode(store_value);
never@2118 2323 _igvn.register_new_node_with_optimizer(store_value);
never@2118 2324 }
never@2118 2325
never@2118 2326 Node* mem_phi = store->in(MemNode::Memory);
never@2118 2327 Node* result_ctrl;
never@2118 2328 Node* result_mem;
never@2118 2329 const TypeFunc* call_type = OptoRuntime::array_fill_Type();
never@2118 2330 int size = call_type->domain()->cnt();
never@2118 2331 CallLeafNode *call = new (C, size) CallLeafNoFPNode(call_type, fill,
never@2118 2332 fill_name, TypeAryPtr::get_array_body_type(t));
never@2118 2333 call->init_req(TypeFunc::Parms+0, from);
never@2118 2334 call->init_req(TypeFunc::Parms+1, store_value);
never@2199 2335 #ifdef _LP64
never@2199 2336 len = new (C, 2) ConvI2LNode(len);
never@2199 2337 _igvn.register_new_node_with_optimizer(len);
never@2199 2338 #endif
never@2118 2339 call->init_req(TypeFunc::Parms+2, len);
never@2199 2340 #ifdef _LP64
never@2199 2341 call->init_req(TypeFunc::Parms+3, C->top());
never@2199 2342 #endif
never@2118 2343 call->init_req( TypeFunc::Control, head->init_control());
never@2118 2344 call->init_req( TypeFunc::I_O , C->top() ) ; // does no i/o
never@2118 2345 call->init_req( TypeFunc::Memory , mem_phi->in(LoopNode::EntryControl) );
never@2118 2346 call->init_req( TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr) );
never@2118 2347 call->init_req( TypeFunc::FramePtr, C->start()->proj_out(TypeFunc::FramePtr) );
never@2118 2348 _igvn.register_new_node_with_optimizer(call);
never@2118 2349 result_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
never@2118 2350 _igvn.register_new_node_with_optimizer(result_ctrl);
never@2118 2351 result_mem = new (C, 1) ProjNode(call,TypeFunc::Memory);
never@2118 2352 _igvn.register_new_node_with_optimizer(result_mem);
never@2118 2353
never@2118 2354 // If this fill is tightly coupled to an allocation and overwrites
never@2118 2355 // the whole body, allow it to take over the zeroing.
never@2118 2356 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
never@2118 2357 if (alloc != NULL && alloc->is_AllocateArray()) {
never@2118 2358 Node* length = alloc->as_AllocateArray()->Ideal_length();
never@2118 2359 if (head->limit() == length &&
never@2118 2360 head->init_trip() == _igvn.intcon(0)) {
never@2118 2361 if (TraceOptimizeFill) {
never@2118 2362 tty->print_cr("Eliminated zeroing in allocation");
never@2118 2363 }
never@2118 2364 alloc->maybe_set_complete(&_igvn);
never@2118 2365 } else {
never@2118 2366 #ifdef ASSERT
never@2118 2367 if (TraceOptimizeFill) {
never@2118 2368 tty->print_cr("filling array but bounds don't match");
never@2118 2369 alloc->dump();
never@2118 2370 head->init_trip()->dump();
never@2118 2371 head->limit()->dump();
never@2118 2372 length->dump();
never@2118 2373 }
never@2118 2374 #endif
never@2118 2375 }
never@2118 2376 }
never@2118 2377
never@2118 2378 // Redirect the old control and memory edges that are outside the loop.
never@2118 2379 Node* exit = head->loopexit()->proj_out(0);
never@2168 2380 // Sometimes the memory phi of the head is used as the outgoing
never@2168 2381 // state of the loop. It's safe in this case to replace it with the
never@2168 2382 // result_mem.
never@2168 2383 _igvn.replace_node(store->in(MemNode::Memory), result_mem);
never@2118 2384 _igvn.replace_node(exit, result_ctrl);
never@2118 2385 _igvn.replace_node(store, result_mem);
never@2118 2386 // Any uses the increment outside of the loop become the loop limit.
never@2118 2387 _igvn.replace_node(head->incr(), head->limit());
never@2118 2388
never@2118 2389 // Disconnect the head from the loop.
never@2118 2390 for (uint i = 0; i < lpt->_body.size(); i++) {
never@2118 2391 Node* n = lpt->_body.at(i);
never@2118 2392 _igvn.replace_node(n, C->top());
never@2118 2393 }
never@2118 2394
never@2118 2395 return true;
never@2118 2396 }

mercurial