src/share/vm/opto/loopTransform.cpp

Thu, 27 May 2010 19:08:38 -0700

author
trims
date
Thu, 27 May 2010 19:08:38 -0700
changeset 1907
c18cbe5936b8
parent 1738
c047da02984c
child 1976
6027dddc26c6
permissions
-rw-r--r--

6941466: Oracle rebranding changes for Hotspot repositories
Summary: Change all the Sun copyrights to Oracle copyright
Reviewed-by: ohair

duke@435 1 /*
trims@1907 2 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_loopTransform.cpp.incl"
duke@435 27
duke@435 28 //------------------------------is_loop_exit-----------------------------------
duke@435 29 // Given an IfNode, return the loop-exiting projection or NULL if both
duke@435 30 // arms remain in the loop.
duke@435 31 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
duke@435 32 if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
duke@435 33 PhaseIdealLoop *phase = _phase;
duke@435 34 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 35 // we need loop unswitching instead of peeling.
duke@435 36 if( !is_member(phase->get_loop( iff->raw_out(0) )) )
duke@435 37 return iff->raw_out(0);
duke@435 38 if( !is_member(phase->get_loop( iff->raw_out(1) )) )
duke@435 39 return iff->raw_out(1);
duke@435 40 return NULL;
duke@435 41 }
duke@435 42
duke@435 43
duke@435 44 //=============================================================================
duke@435 45
duke@435 46
duke@435 47 //------------------------------record_for_igvn----------------------------
duke@435 48 // Put loop body on igvn work list
duke@435 49 void IdealLoopTree::record_for_igvn() {
duke@435 50 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 51 Node *n = _body.at(i);
duke@435 52 _phase->_igvn._worklist.push(n);
duke@435 53 }
duke@435 54 }
duke@435 55
duke@435 56 //------------------------------compute_profile_trip_cnt----------------------------
duke@435 57 // Compute loop trip count from profile data as
duke@435 58 // (backedge_count + loop_exit_count) / loop_exit_count
duke@435 59 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
duke@435 60 if (!_head->is_CountedLoop()) {
duke@435 61 return;
duke@435 62 }
duke@435 63 CountedLoopNode* head = _head->as_CountedLoop();
duke@435 64 if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
duke@435 65 return; // Already computed
duke@435 66 }
duke@435 67 float trip_cnt = (float)max_jint; // default is big
duke@435 68
duke@435 69 Node* back = head->in(LoopNode::LoopBackControl);
duke@435 70 while (back != head) {
duke@435 71 if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
duke@435 72 back->in(0) &&
duke@435 73 back->in(0)->is_If() &&
duke@435 74 back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
duke@435 75 back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
duke@435 76 break;
duke@435 77 }
duke@435 78 back = phase->idom(back);
duke@435 79 }
duke@435 80 if (back != head) {
duke@435 81 assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
duke@435 82 back->in(0), "if-projection exists");
duke@435 83 IfNode* back_if = back->in(0)->as_If();
duke@435 84 float loop_back_cnt = back_if->_fcnt * back_if->_prob;
duke@435 85
duke@435 86 // Now compute a loop exit count
duke@435 87 float loop_exit_cnt = 0.0f;
duke@435 88 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 89 Node *n = _body[i];
duke@435 90 if( n->is_If() ) {
duke@435 91 IfNode *iff = n->as_If();
duke@435 92 if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
duke@435 93 Node *exit = is_loop_exit(iff);
duke@435 94 if( exit ) {
duke@435 95 float exit_prob = iff->_prob;
duke@435 96 if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
duke@435 97 if (exit_prob > PROB_MIN) {
duke@435 98 float exit_cnt = iff->_fcnt * exit_prob;
duke@435 99 loop_exit_cnt += exit_cnt;
duke@435 100 }
duke@435 101 }
duke@435 102 }
duke@435 103 }
duke@435 104 }
duke@435 105 if (loop_exit_cnt > 0.0f) {
duke@435 106 trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
duke@435 107 } else {
duke@435 108 // No exit count so use
duke@435 109 trip_cnt = loop_back_cnt;
duke@435 110 }
duke@435 111 }
duke@435 112 #ifndef PRODUCT
duke@435 113 if (TraceProfileTripCount) {
duke@435 114 tty->print_cr("compute_profile_trip_cnt lp: %d cnt: %f\n", head->_idx, trip_cnt);
duke@435 115 }
duke@435 116 #endif
duke@435 117 head->set_profile_trip_cnt(trip_cnt);
duke@435 118 }
duke@435 119
duke@435 120 //---------------------is_invariant_addition-----------------------------
duke@435 121 // Return nonzero index of invariant operand for an Add or Sub
twisti@1040 122 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
duke@435 123 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
duke@435 124 int op = n->Opcode();
duke@435 125 if (op == Op_AddI || op == Op_SubI) {
duke@435 126 bool in1_invar = this->is_invariant(n->in(1));
duke@435 127 bool in2_invar = this->is_invariant(n->in(2));
duke@435 128 if (in1_invar && !in2_invar) return 1;
duke@435 129 if (!in1_invar && in2_invar) return 2;
duke@435 130 }
duke@435 131 return 0;
duke@435 132 }
duke@435 133
duke@435 134 //---------------------reassociate_add_sub-----------------------------
duke@435 135 // Reassociate invariant add and subtract expressions:
duke@435 136 //
duke@435 137 // inv1 + (x + inv2) => ( inv1 + inv2) + x
duke@435 138 // (x + inv2) + inv1 => ( inv1 + inv2) + x
duke@435 139 // inv1 + (x - inv2) => ( inv1 - inv2) + x
duke@435 140 // inv1 - (inv2 - x) => ( inv1 - inv2) + x
duke@435 141 // (x + inv2) - inv1 => (-inv1 + inv2) + x
duke@435 142 // (x - inv2) + inv1 => ( inv1 - inv2) + x
duke@435 143 // (x - inv2) - inv1 => (-inv1 - inv2) + x
duke@435 144 // inv1 + (inv2 - x) => ( inv1 + inv2) - x
duke@435 145 // inv1 - (x - inv2) => ( inv1 + inv2) - x
duke@435 146 // (inv2 - x) + inv1 => ( inv1 + inv2) - x
duke@435 147 // (inv2 - x) - inv1 => (-inv1 + inv2) - x
duke@435 148 // inv1 - (x + inv2) => ( inv1 - inv2) - x
duke@435 149 //
duke@435 150 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
duke@435 151 if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
duke@435 152 if (is_invariant(n1)) return NULL;
duke@435 153 int inv1_idx = is_invariant_addition(n1, phase);
duke@435 154 if (!inv1_idx) return NULL;
duke@435 155 // Don't mess with add of constant (igvn moves them to expression tree root.)
duke@435 156 if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
duke@435 157 Node* inv1 = n1->in(inv1_idx);
duke@435 158 Node* n2 = n1->in(3 - inv1_idx);
duke@435 159 int inv2_idx = is_invariant_addition(n2, phase);
duke@435 160 if (!inv2_idx) return NULL;
duke@435 161 Node* x = n2->in(3 - inv2_idx);
duke@435 162 Node* inv2 = n2->in(inv2_idx);
duke@435 163
duke@435 164 bool neg_x = n2->is_Sub() && inv2_idx == 1;
duke@435 165 bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
duke@435 166 bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
duke@435 167 if (n1->is_Sub() && inv1_idx == 1) {
duke@435 168 neg_x = !neg_x;
duke@435 169 neg_inv2 = !neg_inv2;
duke@435 170 }
duke@435 171 Node* inv1_c = phase->get_ctrl(inv1);
duke@435 172 Node* inv2_c = phase->get_ctrl(inv2);
duke@435 173 Node* n_inv1;
duke@435 174 if (neg_inv1) {
duke@435 175 Node *zero = phase->_igvn.intcon(0);
duke@435 176 phase->set_ctrl(zero, phase->C->root());
duke@435 177 n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
duke@435 178 phase->register_new_node(n_inv1, inv1_c);
duke@435 179 } else {
duke@435 180 n_inv1 = inv1;
duke@435 181 }
duke@435 182 Node* inv;
duke@435 183 if (neg_inv2) {
duke@435 184 inv = new (phase->C, 3) SubINode(n_inv1, inv2);
duke@435 185 } else {
duke@435 186 inv = new (phase->C, 3) AddINode(n_inv1, inv2);
duke@435 187 }
duke@435 188 phase->register_new_node(inv, phase->get_early_ctrl(inv));
duke@435 189
duke@435 190 Node* addx;
duke@435 191 if (neg_x) {
duke@435 192 addx = new (phase->C, 3) SubINode(inv, x);
duke@435 193 } else {
duke@435 194 addx = new (phase->C, 3) AddINode(x, inv);
duke@435 195 }
duke@435 196 phase->register_new_node(addx, phase->get_ctrl(x));
duke@435 197 phase->_igvn.hash_delete(n1);
duke@435 198 phase->_igvn.subsume_node(n1, addx);
duke@435 199 return addx;
duke@435 200 }
duke@435 201
duke@435 202 //---------------------reassociate_invariants-----------------------------
duke@435 203 // Reassociate invariant expressions:
duke@435 204 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
duke@435 205 for (int i = _body.size() - 1; i >= 0; i--) {
duke@435 206 Node *n = _body.at(i);
duke@435 207 for (int j = 0; j < 5; j++) {
duke@435 208 Node* nn = reassociate_add_sub(n, phase);
duke@435 209 if (nn == NULL) break;
duke@435 210 n = nn; // again
duke@435 211 };
duke@435 212 }
duke@435 213 }
duke@435 214
duke@435 215 //------------------------------policy_peeling---------------------------------
duke@435 216 // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
duke@435 217 // make some loop-invariant test (usually a null-check) happen before the loop.
duke@435 218 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
duke@435 219 Node *test = ((IdealLoopTree*)this)->tail();
duke@435 220 int body_size = ((IdealLoopTree*)this)->_body.size();
duke@435 221 int uniq = phase->C->unique();
duke@435 222 // Peeling does loop cloning which can result in O(N^2) node construction
duke@435 223 if( body_size > 255 /* Prevent overflow for large body_size */
duke@435 224 || (body_size * body_size + uniq > MaxNodeLimit) ) {
duke@435 225 return false; // too large to safely clone
duke@435 226 }
duke@435 227 while( test != _head ) { // Scan till run off top of loop
duke@435 228 if( test->is_If() ) { // Test?
duke@435 229 Node *ctrl = phase->get_ctrl(test->in(1));
duke@435 230 if (ctrl->is_top())
duke@435 231 return false; // Found dead test on live IF? No peeling!
duke@435 232 // Standard IF only has one input value to check for loop invariance
duke@435 233 assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
duke@435 234 // Condition is not a member of this loop?
duke@435 235 if( !is_member(phase->get_loop(ctrl)) &&
duke@435 236 is_loop_exit(test) )
duke@435 237 return true; // Found reason to peel!
duke@435 238 }
duke@435 239 // Walk up dominators to loop _head looking for test which is
duke@435 240 // executed on every path thru loop.
duke@435 241 test = phase->idom(test);
duke@435 242 }
duke@435 243 return false;
duke@435 244 }
duke@435 245
duke@435 246 //------------------------------peeled_dom_test_elim---------------------------
duke@435 247 // If we got the effect of peeling, either by actually peeling or by making
duke@435 248 // a pre-loop which must execute at least once, we can remove all
duke@435 249 // loop-invariant dominated tests in the main body.
duke@435 250 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 251 bool progress = true;
duke@435 252 while( progress ) {
duke@435 253 progress = false; // Reset for next iteration
duke@435 254 Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
duke@435 255 Node *test = prev->in(0);
duke@435 256 while( test != loop->_head ) { // Scan till run off top of loop
duke@435 257
duke@435 258 int p_op = prev->Opcode();
duke@435 259 if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
duke@435 260 test->is_If() && // Test?
duke@435 261 !test->in(1)->is_Con() && // And not already obvious?
duke@435 262 // Condition is not a member of this loop?
duke@435 263 !loop->is_member(get_loop(get_ctrl(test->in(1))))){
duke@435 264 // Walk loop body looking for instances of this test
duke@435 265 for( uint i = 0; i < loop->_body.size(); i++ ) {
duke@435 266 Node *n = loop->_body.at(i);
duke@435 267 if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
duke@435 268 // IfNode was dominated by version in peeled loop body
duke@435 269 progress = true;
duke@435 270 dominated_by( old_new[prev->_idx], n );
duke@435 271 }
duke@435 272 }
duke@435 273 }
duke@435 274 prev = test;
duke@435 275 test = idom(test);
duke@435 276 } // End of scan tests in loop
duke@435 277
duke@435 278 } // End of while( progress )
duke@435 279 }
duke@435 280
duke@435 281 //------------------------------do_peeling-------------------------------------
duke@435 282 // Peel the first iteration of the given loop.
duke@435 283 // Step 1: Clone the loop body. The clone becomes the peeled iteration.
duke@435 284 // The pre-loop illegally has 2 control users (old & new loops).
duke@435 285 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
duke@435 286 // Do this by making the old-loop fall-in edges act as if they came
duke@435 287 // around the loopback from the prior iteration (follow the old-loop
duke@435 288 // backedges) and then map to the new peeled iteration. This leaves
duke@435 289 // the pre-loop with only 1 user (the new peeled iteration), but the
duke@435 290 // peeled-loop backedge has 2 users.
duke@435 291 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
duke@435 292 // extra backedge user.
duke@435 293 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 294
duke@435 295 C->set_major_progress();
duke@435 296 // Peeling a 'main' loop in a pre/main/post situation obfuscates the
duke@435 297 // 'pre' loop from the main and the 'pre' can no longer have it's
duke@435 298 // iterations adjusted. Therefore, we need to declare this loop as
duke@435 299 // no longer a 'main' loop; it will need new pre and post loops before
duke@435 300 // we can do further RCE.
duke@435 301 Node *h = loop->_head;
duke@435 302 if( h->is_CountedLoop() ) {
duke@435 303 CountedLoopNode *cl = h->as_CountedLoop();
duke@435 304 assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
duke@435 305 cl->set_trip_count(cl->trip_count() - 1);
duke@435 306 if( cl->is_main_loop() ) {
duke@435 307 cl->set_normal_loop();
duke@435 308 #ifndef PRODUCT
duke@435 309 if( PrintOpto && VerifyLoopOptimizations ) {
duke@435 310 tty->print("Peeling a 'main' loop; resetting to 'normal' ");
duke@435 311 loop->dump_head();
duke@435 312 }
duke@435 313 #endif
duke@435 314 }
duke@435 315 }
duke@435 316
duke@435 317 // Step 1: Clone the loop body. The clone becomes the peeled iteration.
duke@435 318 // The pre-loop illegally has 2 control users (old & new loops).
duke@435 319 clone_loop( loop, old_new, dom_depth(loop->_head) );
duke@435 320
duke@435 321
duke@435 322 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
duke@435 323 // Do this by making the old-loop fall-in edges act as if they came
duke@435 324 // around the loopback from the prior iteration (follow the old-loop
duke@435 325 // backedges) and then map to the new peeled iteration. This leaves
duke@435 326 // the pre-loop with only 1 user (the new peeled iteration), but the
duke@435 327 // peeled-loop backedge has 2 users.
duke@435 328 for (DUIterator_Fast jmax, j = loop->_head->fast_outs(jmax); j < jmax; j++) {
duke@435 329 Node* old = loop->_head->fast_out(j);
duke@435 330 if( old->in(0) == loop->_head && old->req() == 3 &&
duke@435 331 (old->is_Loop() || old->is_Phi()) ) {
duke@435 332 Node *new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
duke@435 333 if( !new_exit_value ) // Backedge value is ALSO loop invariant?
duke@435 334 // Then loop body backedge value remains the same.
duke@435 335 new_exit_value = old->in(LoopNode::LoopBackControl);
duke@435 336 _igvn.hash_delete(old);
duke@435 337 old->set_req(LoopNode::EntryControl, new_exit_value);
duke@435 338 }
duke@435 339 }
duke@435 340
duke@435 341
duke@435 342 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
duke@435 343 // extra backedge user.
duke@435 344 Node *nnn = old_new[loop->_head->_idx];
duke@435 345 _igvn.hash_delete(nnn);
duke@435 346 nnn->set_req(LoopNode::LoopBackControl, C->top());
duke@435 347 for (DUIterator_Fast j2max, j2 = nnn->fast_outs(j2max); j2 < j2max; j2++) {
duke@435 348 Node* use = nnn->fast_out(j2);
duke@435 349 if( use->in(0) == nnn && use->req() == 3 && use->is_Phi() ) {
duke@435 350 _igvn.hash_delete(use);
duke@435 351 use->set_req(LoopNode::LoopBackControl, C->top());
duke@435 352 }
duke@435 353 }
duke@435 354
duke@435 355
duke@435 356 // Step 4: Correct dom-depth info. Set to loop-head depth.
duke@435 357 int dd = dom_depth(loop->_head);
duke@435 358 set_idom(loop->_head, loop->_head->in(1), dd);
duke@435 359 for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
duke@435 360 Node *old = loop->_body.at(j3);
duke@435 361 Node *nnn = old_new[old->_idx];
duke@435 362 if (!has_ctrl(nnn))
duke@435 363 set_idom(nnn, idom(nnn), dd-1);
duke@435 364 // While we're at it, remove any SafePoints from the peeled code
duke@435 365 if( old->Opcode() == Op_SafePoint ) {
duke@435 366 Node *nnn = old_new[old->_idx];
duke@435 367 lazy_replace(nnn,nnn->in(TypeFunc::Control));
duke@435 368 }
duke@435 369 }
duke@435 370
duke@435 371 // Now force out all loop-invariant dominating tests. The optimizer
duke@435 372 // finds some, but we _know_ they are all useless.
duke@435 373 peeled_dom_test_elim(loop,old_new);
duke@435 374
duke@435 375 loop->record_for_igvn();
duke@435 376 }
duke@435 377
duke@435 378 //------------------------------policy_maximally_unroll------------------------
duke@435 379 // Return exact loop trip count, or 0 if not maximally unrolling
duke@435 380 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
duke@435 381 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 382 assert( cl->is_normal_loop(), "" );
duke@435 383
duke@435 384 Node *init_n = cl->init_trip();
duke@435 385 Node *limit_n = cl->limit();
duke@435 386
duke@435 387 // Non-constant bounds
duke@435 388 if( init_n == NULL || !init_n->is_Con() ||
duke@435 389 limit_n == NULL || !limit_n->is_Con() ||
duke@435 390 // protect against stride not being a constant
duke@435 391 !cl->stride_is_con() ) {
duke@435 392 return false;
duke@435 393 }
duke@435 394 int init = init_n->get_int();
duke@435 395 int limit = limit_n->get_int();
duke@435 396 int span = limit - init;
duke@435 397 int stride = cl->stride_con();
duke@435 398
duke@435 399 if (init >= limit || stride > span) {
duke@435 400 // return a false (no maximally unroll) and the regular unroll/peel
duke@435 401 // route will make a small mess which CCP will fold away.
duke@435 402 return false;
duke@435 403 }
duke@435 404 uint trip_count = span/stride; // trip_count can be greater than 2 Gig.
duke@435 405 assert( (int)trip_count*stride == span, "must divide evenly" );
duke@435 406
duke@435 407 // Real policy: if we maximally unroll, does it get too big?
duke@435 408 // Allow the unrolled mess to get larger than standard loop
duke@435 409 // size. After all, it will no longer be a loop.
duke@435 410 uint body_size = _body.size();
duke@435 411 uint unroll_limit = (uint)LoopUnrollLimit * 4;
duke@435 412 assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
duke@435 413 cl->set_trip_count(trip_count);
duke@435 414 if( trip_count <= unroll_limit && body_size <= unroll_limit ) {
duke@435 415 uint new_body_size = body_size * trip_count;
duke@435 416 if (new_body_size <= unroll_limit &&
duke@435 417 body_size == new_body_size / trip_count &&
duke@435 418 // Unrolling can result in a large amount of node construction
duke@435 419 new_body_size < MaxNodeLimit - phase->C->unique()) {
duke@435 420 return true; // maximally unroll
duke@435 421 }
duke@435 422 }
duke@435 423
duke@435 424 return false; // Do not maximally unroll
duke@435 425 }
duke@435 426
duke@435 427
duke@435 428 //------------------------------policy_unroll----------------------------------
duke@435 429 // Return TRUE or FALSE if the loop should be unrolled or not. Unroll if
duke@435 430 // the loop is a CountedLoop and the body is small enough.
duke@435 431 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
duke@435 432
duke@435 433 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 434 assert( cl->is_normal_loop() || cl->is_main_loop(), "" );
duke@435 435
duke@435 436 // protect against stride not being a constant
duke@435 437 if( !cl->stride_is_con() ) return false;
duke@435 438
duke@435 439 // protect against over-unrolling
duke@435 440 if( cl->trip_count() <= 1 ) return false;
duke@435 441
duke@435 442 int future_unroll_ct = cl->unrolled_count() * 2;
duke@435 443
duke@435 444 // Don't unroll if the next round of unrolling would push us
duke@435 445 // over the expected trip count of the loop. One is subtracted
duke@435 446 // from the expected trip count because the pre-loop normally
duke@435 447 // executes 1 iteration.
duke@435 448 if (UnrollLimitForProfileCheck > 0 &&
duke@435 449 cl->profile_trip_cnt() != COUNT_UNKNOWN &&
duke@435 450 future_unroll_ct > UnrollLimitForProfileCheck &&
duke@435 451 (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
duke@435 452 return false;
duke@435 453 }
duke@435 454
duke@435 455 // When unroll count is greater than LoopUnrollMin, don't unroll if:
duke@435 456 // the residual iterations are more than 10% of the trip count
duke@435 457 // and rounds of "unroll,optimize" are not making significant progress
duke@435 458 // Progress defined as current size less than 20% larger than previous size.
duke@435 459 if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
duke@435 460 future_unroll_ct > LoopUnrollMin &&
duke@435 461 (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
duke@435 462 1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
duke@435 463 return false;
duke@435 464 }
duke@435 465
duke@435 466 Node *init_n = cl->init_trip();
duke@435 467 Node *limit_n = cl->limit();
duke@435 468 // Non-constant bounds.
duke@435 469 // Protect against over-unrolling when init or/and limit are not constant
duke@435 470 // (so that trip_count's init value is maxint) but iv range is known.
duke@435 471 if( init_n == NULL || !init_n->is_Con() ||
duke@435 472 limit_n == NULL || !limit_n->is_Con() ) {
duke@435 473 Node* phi = cl->phi();
duke@435 474 if( phi != NULL ) {
duke@435 475 assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
duke@435 476 const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
duke@435 477 int next_stride = cl->stride_con() * 2; // stride after this unroll
duke@435 478 if( next_stride > 0 ) {
duke@435 479 if( iv_type->_lo + next_stride <= iv_type->_lo || // overflow
duke@435 480 iv_type->_lo + next_stride > iv_type->_hi ) {
duke@435 481 return false; // over-unrolling
duke@435 482 }
duke@435 483 } else if( next_stride < 0 ) {
duke@435 484 if( iv_type->_hi + next_stride >= iv_type->_hi || // overflow
duke@435 485 iv_type->_hi + next_stride < iv_type->_lo ) {
duke@435 486 return false; // over-unrolling
duke@435 487 }
duke@435 488 }
duke@435 489 }
duke@435 490 }
duke@435 491
duke@435 492 // Adjust body_size to determine if we unroll or not
duke@435 493 uint body_size = _body.size();
duke@435 494 // Key test to unroll CaffeineMark's Logic test
duke@435 495 int xors_in_loop = 0;
duke@435 496 // Also count ModL, DivL and MulL which expand mightly
duke@435 497 for( uint k = 0; k < _body.size(); k++ ) {
duke@435 498 switch( _body.at(k)->Opcode() ) {
duke@435 499 case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
duke@435 500 case Op_ModL: body_size += 30; break;
duke@435 501 case Op_DivL: body_size += 30; break;
duke@435 502 case Op_MulL: body_size += 10; break;
duke@435 503 }
duke@435 504 }
duke@435 505
duke@435 506 // Check for being too big
duke@435 507 if( body_size > (uint)LoopUnrollLimit ) {
duke@435 508 if( xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
duke@435 509 // Normal case: loop too big
duke@435 510 return false;
duke@435 511 }
duke@435 512
duke@435 513 // Check for stride being a small enough constant
duke@435 514 if( abs(cl->stride_con()) > (1<<3) ) return false;
duke@435 515
duke@435 516 // Unroll once! (Each trip will soon do double iterations)
duke@435 517 return true;
duke@435 518 }
duke@435 519
duke@435 520 //------------------------------policy_align-----------------------------------
duke@435 521 // Return TRUE or FALSE if the loop should be cache-line aligned. Gather the
duke@435 522 // expression that does the alignment. Note that only one array base can be
twisti@1040 523 // aligned in a loop (unless the VM guarantees mutual alignment). Note that
duke@435 524 // if we vectorize short memory ops into longer memory ops, we may want to
duke@435 525 // increase alignment.
duke@435 526 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
duke@435 527 return false;
duke@435 528 }
duke@435 529
duke@435 530 //------------------------------policy_range_check-----------------------------
duke@435 531 // Return TRUE or FALSE if the loop should be range-check-eliminated.
duke@435 532 // Actually we do iteration-splitting, a more powerful form of RCE.
duke@435 533 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
duke@435 534 if( !RangeCheckElimination ) return false;
duke@435 535
duke@435 536 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 537 // If we unrolled with no intention of doing RCE and we later
duke@435 538 // changed our minds, we got no pre-loop. Either we need to
duke@435 539 // make a new pre-loop, or we gotta disallow RCE.
duke@435 540 if( cl->is_main_no_pre_loop() ) return false; // Disallowed for now.
duke@435 541 Node *trip_counter = cl->phi();
duke@435 542
duke@435 543 // Check loop body for tests of trip-counter plus loop-invariant vs
duke@435 544 // loop-invariant.
duke@435 545 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 546 Node *iff = _body[i];
duke@435 547 if( iff->Opcode() == Op_If ) { // Test?
duke@435 548
duke@435 549 // Comparing trip+off vs limit
duke@435 550 Node *bol = iff->in(1);
duke@435 551 if( bol->req() != 2 ) continue; // dead constant test
cfang@1607 552 if (!bol->is_Bool()) {
cfang@1607 553 assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
cfang@1607 554 continue;
cfang@1607 555 }
duke@435 556 Node *cmp = bol->in(1);
duke@435 557
duke@435 558 Node *rc_exp = cmp->in(1);
duke@435 559 Node *limit = cmp->in(2);
duke@435 560
duke@435 561 Node *limit_c = phase->get_ctrl(limit);
duke@435 562 if( limit_c == phase->C->top() )
duke@435 563 return false; // Found dead test on live IF? No RCE!
duke@435 564 if( is_member(phase->get_loop(limit_c) ) ) {
duke@435 565 // Compare might have operands swapped; commute them
duke@435 566 rc_exp = cmp->in(2);
duke@435 567 limit = cmp->in(1);
duke@435 568 limit_c = phase->get_ctrl(limit);
duke@435 569 if( is_member(phase->get_loop(limit_c) ) )
duke@435 570 continue; // Both inputs are loop varying; cannot RCE
duke@435 571 }
duke@435 572
duke@435 573 if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
duke@435 574 continue;
duke@435 575 }
duke@435 576 // Yeah! Found a test like 'trip+off vs limit'
duke@435 577 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 578 // we need loop unswitching instead of iteration splitting.
duke@435 579 if( is_loop_exit(iff) )
duke@435 580 return true; // Found reason to split iterations
duke@435 581 } // End of is IF
duke@435 582 }
duke@435 583
duke@435 584 return false;
duke@435 585 }
duke@435 586
duke@435 587 //------------------------------policy_peel_only-------------------------------
duke@435 588 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned. Useful
duke@435 589 // for unrolling loops with NO array accesses.
duke@435 590 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
duke@435 591
duke@435 592 for( uint i = 0; i < _body.size(); i++ )
duke@435 593 if( _body[i]->is_Mem() )
duke@435 594 return false;
duke@435 595
duke@435 596 // No memory accesses at all!
duke@435 597 return true;
duke@435 598 }
duke@435 599
duke@435 600 //------------------------------clone_up_backedge_goo--------------------------
duke@435 601 // If Node n lives in the back_ctrl block and cannot float, we clone a private
duke@435 602 // version of n in preheader_ctrl block and return that, otherwise return n.
duke@435 603 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
duke@435 604 if( get_ctrl(n) != back_ctrl ) return n;
duke@435 605
duke@435 606 Node *x = NULL; // If required, a clone of 'n'
duke@435 607 // Check for 'n' being pinned in the backedge.
duke@435 608 if( n->in(0) && n->in(0) == back_ctrl ) {
duke@435 609 x = n->clone(); // Clone a copy of 'n' to preheader
duke@435 610 x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
duke@435 611 }
duke@435 612
duke@435 613 // Recursive fixup any other input edges into x.
duke@435 614 // If there are no changes we can just return 'n', otherwise
duke@435 615 // we need to clone a private copy and change it.
duke@435 616 for( uint i = 1; i < n->req(); i++ ) {
duke@435 617 Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
duke@435 618 if( g != n->in(i) ) {
duke@435 619 if( !x )
duke@435 620 x = n->clone();
duke@435 621 x->set_req(i, g);
duke@435 622 }
duke@435 623 }
duke@435 624 if( x ) { // x can legally float to pre-header location
duke@435 625 register_new_node( x, preheader_ctrl );
duke@435 626 return x;
duke@435 627 } else { // raise n to cover LCA of uses
duke@435 628 set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
duke@435 629 }
duke@435 630 return n;
duke@435 631 }
duke@435 632
duke@435 633 //------------------------------insert_pre_post_loops--------------------------
duke@435 634 // Insert pre and post loops. If peel_only is set, the pre-loop can not have
duke@435 635 // more iterations added. It acts as a 'peel' only, no lower-bound RCE, no
duke@435 636 // alignment. Useful to unroll loops that do no array accesses.
duke@435 637 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
duke@435 638
duke@435 639 C->set_major_progress();
duke@435 640
duke@435 641 // Find common pieces of the loop being guarded with pre & post loops
duke@435 642 CountedLoopNode *main_head = loop->_head->as_CountedLoop();
duke@435 643 assert( main_head->is_normal_loop(), "" );
duke@435 644 CountedLoopEndNode *main_end = main_head->loopexit();
duke@435 645 assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
duke@435 646 uint dd_main_head = dom_depth(main_head);
duke@435 647 uint max = main_head->outcnt();
duke@435 648
duke@435 649 Node *pre_header= main_head->in(LoopNode::EntryControl);
duke@435 650 Node *init = main_head->init_trip();
duke@435 651 Node *incr = main_end ->incr();
duke@435 652 Node *limit = main_end ->limit();
duke@435 653 Node *stride = main_end ->stride();
duke@435 654 Node *cmp = main_end ->cmp_node();
duke@435 655 BoolTest::mask b_test = main_end->test_trip();
duke@435 656
duke@435 657 // Need only 1 user of 'bol' because I will be hacking the loop bounds.
duke@435 658 Node *bol = main_end->in(CountedLoopEndNode::TestValue);
duke@435 659 if( bol->outcnt() != 1 ) {
duke@435 660 bol = bol->clone();
duke@435 661 register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
duke@435 662 _igvn.hash_delete(main_end);
duke@435 663 main_end->set_req(CountedLoopEndNode::TestValue, bol);
duke@435 664 }
duke@435 665 // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
duke@435 666 if( cmp->outcnt() != 1 ) {
duke@435 667 cmp = cmp->clone();
duke@435 668 register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
duke@435 669 _igvn.hash_delete(bol);
duke@435 670 bol->set_req(1, cmp);
duke@435 671 }
duke@435 672
duke@435 673 //------------------------------
duke@435 674 // Step A: Create Post-Loop.
duke@435 675 Node* main_exit = main_end->proj_out(false);
duke@435 676 assert( main_exit->Opcode() == Op_IfFalse, "" );
duke@435 677 int dd_main_exit = dom_depth(main_exit);
duke@435 678
duke@435 679 // Step A1: Clone the loop body. The clone becomes the post-loop. The main
duke@435 680 // loop pre-header illegally has 2 control users (old & new loops).
duke@435 681 clone_loop( loop, old_new, dd_main_exit );
duke@435 682 assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
duke@435 683 CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
duke@435 684 post_head->set_post_loop(main_head);
duke@435 685
kvn@835 686 // Reduce the post-loop trip count.
kvn@835 687 CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
kvn@835 688 post_end->_prob = PROB_FAIR;
kvn@835 689
duke@435 690 // Build the main-loop normal exit.
duke@435 691 IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
duke@435 692 _igvn.register_new_node_with_optimizer( new_main_exit );
duke@435 693 set_idom(new_main_exit, main_end, dd_main_exit );
duke@435 694 set_loop(new_main_exit, loop->_parent);
duke@435 695
duke@435 696 // Step A2: Build a zero-trip guard for the post-loop. After leaving the
duke@435 697 // main-loop, the post-loop may not execute at all. We 'opaque' the incr
duke@435 698 // (the main-loop trip-counter exit value) because we will be changing
duke@435 699 // the exit value (via unrolling) so we cannot constant-fold away the zero
duke@435 700 // trip guard until all unrolling is done.
kvn@651 701 Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
duke@435 702 Node *zer_cmp = new (C, 3) CmpINode( zer_opaq, limit );
duke@435 703 Node *zer_bol = new (C, 2) BoolNode( zer_cmp, b_test );
duke@435 704 register_new_node( zer_opaq, new_main_exit );
duke@435 705 register_new_node( zer_cmp , new_main_exit );
duke@435 706 register_new_node( zer_bol , new_main_exit );
duke@435 707
duke@435 708 // Build the IfNode
duke@435 709 IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
duke@435 710 _igvn.register_new_node_with_optimizer( zer_iff );
duke@435 711 set_idom(zer_iff, new_main_exit, dd_main_exit);
duke@435 712 set_loop(zer_iff, loop->_parent);
duke@435 713
duke@435 714 // Plug in the false-path, taken if we need to skip post-loop
duke@435 715 _igvn.hash_delete( main_exit );
duke@435 716 main_exit->set_req(0, zer_iff);
duke@435 717 _igvn._worklist.push(main_exit);
duke@435 718 set_idom(main_exit, zer_iff, dd_main_exit);
duke@435 719 set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
duke@435 720 // Make the true-path, must enter the post loop
duke@435 721 Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
duke@435 722 _igvn.register_new_node_with_optimizer( zer_taken );
duke@435 723 set_idom(zer_taken, zer_iff, dd_main_exit);
duke@435 724 set_loop(zer_taken, loop->_parent);
duke@435 725 // Plug in the true path
duke@435 726 _igvn.hash_delete( post_head );
duke@435 727 post_head->set_req(LoopNode::EntryControl, zer_taken);
duke@435 728 set_idom(post_head, zer_taken, dd_main_exit);
duke@435 729
duke@435 730 // Step A3: Make the fall-in values to the post-loop come from the
duke@435 731 // fall-out values of the main-loop.
duke@435 732 for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
duke@435 733 Node* main_phi = main_head->fast_out(i);
duke@435 734 if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
duke@435 735 Node *post_phi = old_new[main_phi->_idx];
duke@435 736 Node *fallmain = clone_up_backedge_goo(main_head->back_control(),
duke@435 737 post_head->init_control(),
duke@435 738 main_phi->in(LoopNode::LoopBackControl));
duke@435 739 _igvn.hash_delete(post_phi);
duke@435 740 post_phi->set_req( LoopNode::EntryControl, fallmain );
duke@435 741 }
duke@435 742 }
duke@435 743
duke@435 744 // Update local caches for next stanza
duke@435 745 main_exit = new_main_exit;
duke@435 746
duke@435 747
duke@435 748 //------------------------------
duke@435 749 // Step B: Create Pre-Loop.
duke@435 750
duke@435 751 // Step B1: Clone the loop body. The clone becomes the pre-loop. The main
duke@435 752 // loop pre-header illegally has 2 control users (old & new loops).
duke@435 753 clone_loop( loop, old_new, dd_main_head );
duke@435 754 CountedLoopNode* pre_head = old_new[main_head->_idx]->as_CountedLoop();
duke@435 755 CountedLoopEndNode* pre_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
duke@435 756 pre_head->set_pre_loop(main_head);
duke@435 757 Node *pre_incr = old_new[incr->_idx];
duke@435 758
kvn@835 759 // Reduce the pre-loop trip count.
kvn@835 760 pre_end->_prob = PROB_FAIR;
kvn@835 761
duke@435 762 // Find the pre-loop normal exit.
duke@435 763 Node* pre_exit = pre_end->proj_out(false);
duke@435 764 assert( pre_exit->Opcode() == Op_IfFalse, "" );
duke@435 765 IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
duke@435 766 _igvn.register_new_node_with_optimizer( new_pre_exit );
duke@435 767 set_idom(new_pre_exit, pre_end, dd_main_head);
duke@435 768 set_loop(new_pre_exit, loop->_parent);
duke@435 769
duke@435 770 // Step B2: Build a zero-trip guard for the main-loop. After leaving the
duke@435 771 // pre-loop, the main-loop may not execute at all. Later in life this
duke@435 772 // zero-trip guard will become the minimum-trip guard when we unroll
duke@435 773 // the main-loop.
kvn@651 774 Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
duke@435 775 Node *min_cmp = new (C, 3) CmpINode( pre_incr, min_opaq );
duke@435 776 Node *min_bol = new (C, 2) BoolNode( min_cmp, b_test );
duke@435 777 register_new_node( min_opaq, new_pre_exit );
duke@435 778 register_new_node( min_cmp , new_pre_exit );
duke@435 779 register_new_node( min_bol , new_pre_exit );
duke@435 780
kvn@835 781 // Build the IfNode (assume the main-loop is executed always).
kvn@835 782 IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
duke@435 783 _igvn.register_new_node_with_optimizer( min_iff );
duke@435 784 set_idom(min_iff, new_pre_exit, dd_main_head);
duke@435 785 set_loop(min_iff, loop->_parent);
duke@435 786
duke@435 787 // Plug in the false-path, taken if we need to skip main-loop
duke@435 788 _igvn.hash_delete( pre_exit );
duke@435 789 pre_exit->set_req(0, min_iff);
duke@435 790 set_idom(pre_exit, min_iff, dd_main_head);
duke@435 791 set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
duke@435 792 // Make the true-path, must enter the main loop
duke@435 793 Node *min_taken = new (C, 1) IfTrueNode( min_iff );
duke@435 794 _igvn.register_new_node_with_optimizer( min_taken );
duke@435 795 set_idom(min_taken, min_iff, dd_main_head);
duke@435 796 set_loop(min_taken, loop->_parent);
duke@435 797 // Plug in the true path
duke@435 798 _igvn.hash_delete( main_head );
duke@435 799 main_head->set_req(LoopNode::EntryControl, min_taken);
duke@435 800 set_idom(main_head, min_taken, dd_main_head);
duke@435 801
duke@435 802 // Step B3: Make the fall-in values to the main-loop come from the
duke@435 803 // fall-out values of the pre-loop.
duke@435 804 for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
duke@435 805 Node* main_phi = main_head->fast_out(i2);
duke@435 806 if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
duke@435 807 Node *pre_phi = old_new[main_phi->_idx];
duke@435 808 Node *fallpre = clone_up_backedge_goo(pre_head->back_control(),
duke@435 809 main_head->init_control(),
duke@435 810 pre_phi->in(LoopNode::LoopBackControl));
duke@435 811 _igvn.hash_delete(main_phi);
duke@435 812 main_phi->set_req( LoopNode::EntryControl, fallpre );
duke@435 813 }
duke@435 814 }
duke@435 815
duke@435 816 // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
duke@435 817 // RCE and alignment may change this later.
duke@435 818 Node *cmp_end = pre_end->cmp_node();
duke@435 819 assert( cmp_end->in(2) == limit, "" );
duke@435 820 Node *pre_limit = new (C, 3) AddINode( init, stride );
duke@435 821
duke@435 822 // Save the original loop limit in this Opaque1 node for
duke@435 823 // use by range check elimination.
kvn@651 824 Node *pre_opaq = new (C, 3) Opaque1Node(C, pre_limit, limit);
duke@435 825
duke@435 826 register_new_node( pre_limit, pre_head->in(0) );
duke@435 827 register_new_node( pre_opaq , pre_head->in(0) );
duke@435 828
duke@435 829 // Since no other users of pre-loop compare, I can hack limit directly
duke@435 830 assert( cmp_end->outcnt() == 1, "no other users" );
duke@435 831 _igvn.hash_delete(cmp_end);
duke@435 832 cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
duke@435 833
duke@435 834 // Special case for not-equal loop bounds:
duke@435 835 // Change pre loop test, main loop test, and the
duke@435 836 // main loop guard test to use lt or gt depending on stride
duke@435 837 // direction:
duke@435 838 // positive stride use <
duke@435 839 // negative stride use >
duke@435 840
duke@435 841 if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
duke@435 842
duke@435 843 BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
duke@435 844 // Modify pre loop end condition
duke@435 845 Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
duke@435 846 BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
duke@435 847 register_new_node( new_bol0, pre_head->in(0) );
duke@435 848 _igvn.hash_delete(pre_end);
duke@435 849 pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
duke@435 850 // Modify main loop guard condition
duke@435 851 assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
duke@435 852 BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
duke@435 853 register_new_node( new_bol1, new_pre_exit );
duke@435 854 _igvn.hash_delete(min_iff);
duke@435 855 min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
duke@435 856 // Modify main loop end condition
duke@435 857 BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
duke@435 858 BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
duke@435 859 register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
duke@435 860 _igvn.hash_delete(main_end);
duke@435 861 main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
duke@435 862 }
duke@435 863
duke@435 864 // Flag main loop
duke@435 865 main_head->set_main_loop();
duke@435 866 if( peel_only ) main_head->set_main_no_pre_loop();
duke@435 867
duke@435 868 // It's difficult to be precise about the trip-counts
duke@435 869 // for the pre/post loops. They are usually very short,
duke@435 870 // so guess that 4 trips is a reasonable value.
duke@435 871 post_head->set_profile_trip_cnt(4.0);
duke@435 872 pre_head->set_profile_trip_cnt(4.0);
duke@435 873
duke@435 874 // Now force out all loop-invariant dominating tests. The optimizer
duke@435 875 // finds some, but we _know_ they are all useless.
duke@435 876 peeled_dom_test_elim(loop,old_new);
duke@435 877 }
duke@435 878
duke@435 879 //------------------------------is_invariant-----------------------------
duke@435 880 // Return true if n is invariant
duke@435 881 bool IdealLoopTree::is_invariant(Node* n) const {
cfang@1607 882 Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
duke@435 883 if (n_c->is_top()) return false;
duke@435 884 return !is_member(_phase->get_loop(n_c));
duke@435 885 }
duke@435 886
duke@435 887
duke@435 888 //------------------------------do_unroll--------------------------------------
duke@435 889 // Unroll the loop body one step - make each trip do 2 iterations.
duke@435 890 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
duke@435 891 assert( LoopUnrollLimit, "" );
duke@435 892 #ifndef PRODUCT
duke@435 893 if( PrintOpto && VerifyLoopOptimizations ) {
duke@435 894 tty->print("Unrolling ");
duke@435 895 loop->dump_head();
duke@435 896 }
duke@435 897 #endif
duke@435 898 CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
duke@435 899 CountedLoopEndNode *loop_end = loop_head->loopexit();
duke@435 900 assert( loop_end, "" );
duke@435 901
duke@435 902 // Remember loop node count before unrolling to detect
duke@435 903 // if rounds of unroll,optimize are making progress
duke@435 904 loop_head->set_node_count_before_unroll(loop->_body.size());
duke@435 905
duke@435 906 Node *ctrl = loop_head->in(LoopNode::EntryControl);
duke@435 907 Node *limit = loop_head->limit();
duke@435 908 Node *init = loop_head->init_trip();
duke@435 909 Node *strid = loop_head->stride();
duke@435 910
duke@435 911 Node *opaq = NULL;
duke@435 912 if( adjust_min_trip ) { // If not maximally unrolling, need adjustment
duke@435 913 assert( loop_head->is_main_loop(), "" );
duke@435 914 assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
duke@435 915 Node *iff = ctrl->in(0);
duke@435 916 assert( iff->Opcode() == Op_If, "" );
duke@435 917 Node *bol = iff->in(1);
duke@435 918 assert( bol->Opcode() == Op_Bool, "" );
duke@435 919 Node *cmp = bol->in(1);
duke@435 920 assert( cmp->Opcode() == Op_CmpI, "" );
duke@435 921 opaq = cmp->in(2);
duke@435 922 // Occasionally it's possible for a pre-loop Opaque1 node to be
duke@435 923 // optimized away and then another round of loop opts attempted.
duke@435 924 // We can not optimize this particular loop in that case.
duke@435 925 if( opaq->Opcode() != Op_Opaque1 )
duke@435 926 return; // Cannot find pre-loop! Bail out!
duke@435 927 }
duke@435 928
duke@435 929 C->set_major_progress();
duke@435 930
duke@435 931 // Adjust max trip count. The trip count is intentionally rounded
duke@435 932 // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
duke@435 933 // the main, unrolled, part of the loop will never execute as it is protected
duke@435 934 // by the min-trip test. See bug 4834191 for a case where we over-unrolled
duke@435 935 // and later determined that part of the unrolled loop was dead.
duke@435 936 loop_head->set_trip_count(loop_head->trip_count() / 2);
duke@435 937
duke@435 938 // Double the count of original iterations in the unrolled loop body.
duke@435 939 loop_head->double_unrolled_count();
duke@435 940
duke@435 941 // -----------
duke@435 942 // Step 2: Cut back the trip counter for an unroll amount of 2.
duke@435 943 // Loop will normally trip (limit - init)/stride_con. Since it's a
duke@435 944 // CountedLoop this is exact (stride divides limit-init exactly).
duke@435 945 // We are going to double the loop body, so we want to knock off any
duke@435 946 // odd iteration: (trip_cnt & ~1). Then back compute a new limit.
duke@435 947 Node *span = new (C, 3) SubINode( limit, init );
duke@435 948 register_new_node( span, ctrl );
duke@435 949 Node *trip = new (C, 3) DivINode( 0, span, strid );
duke@435 950 register_new_node( trip, ctrl );
duke@435 951 Node *mtwo = _igvn.intcon(-2);
duke@435 952 set_ctrl(mtwo, C->root());
duke@435 953 Node *rond = new (C, 3) AndINode( trip, mtwo );
duke@435 954 register_new_node( rond, ctrl );
duke@435 955 Node *spn2 = new (C, 3) MulINode( rond, strid );
duke@435 956 register_new_node( spn2, ctrl );
duke@435 957 Node *lim2 = new (C, 3) AddINode( spn2, init );
duke@435 958 register_new_node( lim2, ctrl );
duke@435 959
duke@435 960 // Hammer in the new limit
duke@435 961 Node *ctrl2 = loop_end->in(0);
duke@435 962 Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), lim2 );
duke@435 963 register_new_node( cmp2, ctrl2 );
duke@435 964 Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
duke@435 965 register_new_node( bol2, ctrl2 );
duke@435 966 _igvn.hash_delete(loop_end);
duke@435 967 loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
duke@435 968
duke@435 969 // Step 3: Find the min-trip test guaranteed before a 'main' loop.
duke@435 970 // Make it a 1-trip test (means at least 2 trips).
duke@435 971 if( adjust_min_trip ) {
duke@435 972 // Guard test uses an 'opaque' node which is not shared. Hence I
duke@435 973 // can edit it's inputs directly. Hammer in the new limit for the
duke@435 974 // minimum-trip guard.
duke@435 975 assert( opaq->outcnt() == 1, "" );
duke@435 976 _igvn.hash_delete(opaq);
duke@435 977 opaq->set_req(1, lim2);
duke@435 978 }
duke@435 979
duke@435 980 // ---------
duke@435 981 // Step 4: Clone the loop body. Move it inside the loop. This loop body
duke@435 982 // represents the odd iterations; since the loop trips an even number of
duke@435 983 // times its backedge is never taken. Kill the backedge.
duke@435 984 uint dd = dom_depth(loop_head);
duke@435 985 clone_loop( loop, old_new, dd );
duke@435 986
duke@435 987 // Make backedges of the clone equal to backedges of the original.
duke@435 988 // Make the fall-in from the original come from the fall-out of the clone.
duke@435 989 for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
duke@435 990 Node* phi = loop_head->fast_out(j);
duke@435 991 if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
duke@435 992 Node *newphi = old_new[phi->_idx];
duke@435 993 _igvn.hash_delete( phi );
duke@435 994 _igvn.hash_delete( newphi );
duke@435 995
duke@435 996 phi ->set_req(LoopNode:: EntryControl, newphi->in(LoopNode::LoopBackControl));
duke@435 997 newphi->set_req(LoopNode::LoopBackControl, phi ->in(LoopNode::LoopBackControl));
duke@435 998 phi ->set_req(LoopNode::LoopBackControl, C->top());
duke@435 999 }
duke@435 1000 }
duke@435 1001 Node *clone_head = old_new[loop_head->_idx];
duke@435 1002 _igvn.hash_delete( clone_head );
duke@435 1003 loop_head ->set_req(LoopNode:: EntryControl, clone_head->in(LoopNode::LoopBackControl));
duke@435 1004 clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
duke@435 1005 loop_head ->set_req(LoopNode::LoopBackControl, C->top());
duke@435 1006 loop->_head = clone_head; // New loop header
duke@435 1007
duke@435 1008 set_idom(loop_head, loop_head ->in(LoopNode::EntryControl), dd);
duke@435 1009 set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
duke@435 1010
duke@435 1011 // Kill the clone's backedge
duke@435 1012 Node *newcle = old_new[loop_end->_idx];
duke@435 1013 _igvn.hash_delete( newcle );
duke@435 1014 Node *one = _igvn.intcon(1);
duke@435 1015 set_ctrl(one, C->root());
duke@435 1016 newcle->set_req(1, one);
duke@435 1017 // Force clone into same loop body
duke@435 1018 uint max = loop->_body.size();
duke@435 1019 for( uint k = 0; k < max; k++ ) {
duke@435 1020 Node *old = loop->_body.at(k);
duke@435 1021 Node *nnn = old_new[old->_idx];
duke@435 1022 loop->_body.push(nnn);
duke@435 1023 if (!has_ctrl(old))
duke@435 1024 set_loop(nnn, loop);
duke@435 1025 }
never@802 1026
never@802 1027 loop->record_for_igvn();
duke@435 1028 }
duke@435 1029
duke@435 1030 //------------------------------do_maximally_unroll----------------------------
duke@435 1031
duke@435 1032 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 1033 CountedLoopNode *cl = loop->_head->as_CountedLoop();
duke@435 1034 assert( cl->trip_count() > 0, "");
duke@435 1035
duke@435 1036 // If loop is tripping an odd number of times, peel odd iteration
duke@435 1037 if( (cl->trip_count() & 1) == 1 ) {
duke@435 1038 do_peeling( loop, old_new );
duke@435 1039 }
duke@435 1040
duke@435 1041 // Now its tripping an even number of times remaining. Double loop body.
duke@435 1042 // Do not adjust pre-guards; they are not needed and do not exist.
duke@435 1043 if( cl->trip_count() > 0 ) {
duke@435 1044 do_unroll( loop, old_new, false );
duke@435 1045 }
duke@435 1046 }
duke@435 1047
duke@435 1048 //------------------------------dominates_backedge---------------------------------
duke@435 1049 // Returns true if ctrl is executed on every complete iteration
duke@435 1050 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
duke@435 1051 assert(ctrl->is_CFG(), "must be control");
duke@435 1052 Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
duke@435 1053 return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
duke@435 1054 }
duke@435 1055
duke@435 1056 //------------------------------add_constraint---------------------------------
duke@435 1057 // Constrain the main loop iterations so the condition:
duke@435 1058 // scale_con * I + offset < limit
duke@435 1059 // always holds true. That is, either increase the number of iterations in
duke@435 1060 // the pre-loop or the post-loop until the condition holds true in the main
duke@435 1061 // loop. Stride, scale, offset and limit are all loop invariant. Further,
duke@435 1062 // stride and scale are constants (offset and limit often are).
duke@435 1063 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
duke@435 1064
duke@435 1065 // Compute "I :: (limit-offset)/scale_con"
duke@435 1066 Node *con = new (C, 3) SubINode( limit, offset );
duke@435 1067 register_new_node( con, pre_ctrl );
duke@435 1068 Node *scale = _igvn.intcon(scale_con);
duke@435 1069 set_ctrl(scale, C->root());
duke@435 1070 Node *X = new (C, 3) DivINode( 0, con, scale );
duke@435 1071 register_new_node( X, pre_ctrl );
duke@435 1072
duke@435 1073 // For positive stride, the pre-loop limit always uses a MAX function
duke@435 1074 // and the main loop a MIN function. For negative stride these are
duke@435 1075 // reversed.
duke@435 1076
duke@435 1077 // Also for positive stride*scale the affine function is increasing, so the
duke@435 1078 // pre-loop must check for underflow and the post-loop for overflow.
duke@435 1079 // Negative stride*scale reverses this; pre-loop checks for overflow and
duke@435 1080 // post-loop for underflow.
duke@435 1081 if( stride_con*scale_con > 0 ) {
duke@435 1082 // Compute I < (limit-offset)/scale_con
duke@435 1083 // Adjust main-loop last iteration to be MIN/MAX(main_loop,X)
duke@435 1084 *main_limit = (stride_con > 0)
duke@435 1085 ? (Node*)(new (C, 3) MinINode( *main_limit, X ))
duke@435 1086 : (Node*)(new (C, 3) MaxINode( *main_limit, X ));
duke@435 1087 register_new_node( *main_limit, pre_ctrl );
duke@435 1088
duke@435 1089 } else {
duke@435 1090 // Compute (limit-offset)/scale_con + SGN(-scale_con) <= I
duke@435 1091 // Add the negation of the main-loop constraint to the pre-loop.
duke@435 1092 // See footnote [++] below for a derivation of the limit expression.
duke@435 1093 Node *incr = _igvn.intcon(scale_con > 0 ? -1 : 1);
duke@435 1094 set_ctrl(incr, C->root());
duke@435 1095 Node *adj = new (C, 3) AddINode( X, incr );
duke@435 1096 register_new_node( adj, pre_ctrl );
duke@435 1097 *pre_limit = (scale_con > 0)
duke@435 1098 ? (Node*)new (C, 3) MinINode( *pre_limit, adj )
duke@435 1099 : (Node*)new (C, 3) MaxINode( *pre_limit, adj );
duke@435 1100 register_new_node( *pre_limit, pre_ctrl );
duke@435 1101
duke@435 1102 // [++] Here's the algebra that justifies the pre-loop limit expression:
duke@435 1103 //
duke@435 1104 // NOT( scale_con * I + offset < limit )
duke@435 1105 // ==
duke@435 1106 // scale_con * I + offset >= limit
duke@435 1107 // ==
duke@435 1108 // SGN(scale_con) * I >= (limit-offset)/|scale_con|
duke@435 1109 // ==
duke@435 1110 // (limit-offset)/|scale_con| <= I * SGN(scale_con)
duke@435 1111 // ==
duke@435 1112 // (limit-offset)/|scale_con|-1 < I * SGN(scale_con)
duke@435 1113 // ==
duke@435 1114 // ( if (scale_con > 0) /*common case*/
duke@435 1115 // (limit-offset)/scale_con - 1 < I
duke@435 1116 // else
duke@435 1117 // (limit-offset)/scale_con + 1 > I
duke@435 1118 // )
duke@435 1119 // ( if (scale_con > 0) /*common case*/
duke@435 1120 // (limit-offset)/scale_con + SGN(-scale_con) < I
duke@435 1121 // else
duke@435 1122 // (limit-offset)/scale_con + SGN(-scale_con) > I
duke@435 1123 }
duke@435 1124 }
duke@435 1125
duke@435 1126
duke@435 1127 //------------------------------is_scaled_iv---------------------------------
duke@435 1128 // Return true if exp is a constant times an induction var
duke@435 1129 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
duke@435 1130 if (exp == iv) {
duke@435 1131 if (p_scale != NULL) {
duke@435 1132 *p_scale = 1;
duke@435 1133 }
duke@435 1134 return true;
duke@435 1135 }
duke@435 1136 int opc = exp->Opcode();
duke@435 1137 if (opc == Op_MulI) {
duke@435 1138 if (exp->in(1) == iv && exp->in(2)->is_Con()) {
duke@435 1139 if (p_scale != NULL) {
duke@435 1140 *p_scale = exp->in(2)->get_int();
duke@435 1141 }
duke@435 1142 return true;
duke@435 1143 }
duke@435 1144 if (exp->in(2) == iv && exp->in(1)->is_Con()) {
duke@435 1145 if (p_scale != NULL) {
duke@435 1146 *p_scale = exp->in(1)->get_int();
duke@435 1147 }
duke@435 1148 return true;
duke@435 1149 }
duke@435 1150 } else if (opc == Op_LShiftI) {
duke@435 1151 if (exp->in(1) == iv && exp->in(2)->is_Con()) {
duke@435 1152 if (p_scale != NULL) {
duke@435 1153 *p_scale = 1 << exp->in(2)->get_int();
duke@435 1154 }
duke@435 1155 return true;
duke@435 1156 }
duke@435 1157 }
duke@435 1158 return false;
duke@435 1159 }
duke@435 1160
duke@435 1161 //-----------------------------is_scaled_iv_plus_offset------------------------------
duke@435 1162 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
duke@435 1163 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
duke@435 1164 if (is_scaled_iv(exp, iv, p_scale)) {
duke@435 1165 if (p_offset != NULL) {
duke@435 1166 Node *zero = _igvn.intcon(0);
duke@435 1167 set_ctrl(zero, C->root());
duke@435 1168 *p_offset = zero;
duke@435 1169 }
duke@435 1170 return true;
duke@435 1171 }
duke@435 1172 int opc = exp->Opcode();
duke@435 1173 if (opc == Op_AddI) {
duke@435 1174 if (is_scaled_iv(exp->in(1), iv, p_scale)) {
duke@435 1175 if (p_offset != NULL) {
duke@435 1176 *p_offset = exp->in(2);
duke@435 1177 }
duke@435 1178 return true;
duke@435 1179 }
duke@435 1180 if (exp->in(2)->is_Con()) {
duke@435 1181 Node* offset2 = NULL;
duke@435 1182 if (depth < 2 &&
duke@435 1183 is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
duke@435 1184 p_offset != NULL ? &offset2 : NULL, depth+1)) {
duke@435 1185 if (p_offset != NULL) {
duke@435 1186 Node *ctrl_off2 = get_ctrl(offset2);
duke@435 1187 Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
duke@435 1188 register_new_node(offset, ctrl_off2);
duke@435 1189 *p_offset = offset;
duke@435 1190 }
duke@435 1191 return true;
duke@435 1192 }
duke@435 1193 }
duke@435 1194 } else if (opc == Op_SubI) {
duke@435 1195 if (is_scaled_iv(exp->in(1), iv, p_scale)) {
duke@435 1196 if (p_offset != NULL) {
duke@435 1197 Node *zero = _igvn.intcon(0);
duke@435 1198 set_ctrl(zero, C->root());
duke@435 1199 Node *ctrl_off = get_ctrl(exp->in(2));
duke@435 1200 Node* offset = new (C, 3) SubINode(zero, exp->in(2));
duke@435 1201 register_new_node(offset, ctrl_off);
duke@435 1202 *p_offset = offset;
duke@435 1203 }
duke@435 1204 return true;
duke@435 1205 }
duke@435 1206 if (is_scaled_iv(exp->in(2), iv, p_scale)) {
duke@435 1207 if (p_offset != NULL) {
duke@435 1208 *p_scale *= -1;
duke@435 1209 *p_offset = exp->in(1);
duke@435 1210 }
duke@435 1211 return true;
duke@435 1212 }
duke@435 1213 }
duke@435 1214 return false;
duke@435 1215 }
duke@435 1216
duke@435 1217 //------------------------------do_range_check---------------------------------
duke@435 1218 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
duke@435 1219 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 1220 #ifndef PRODUCT
duke@435 1221 if( PrintOpto && VerifyLoopOptimizations ) {
duke@435 1222 tty->print("Range Check Elimination ");
duke@435 1223 loop->dump_head();
duke@435 1224 }
duke@435 1225 #endif
duke@435 1226 assert( RangeCheckElimination, "" );
duke@435 1227 CountedLoopNode *cl = loop->_head->as_CountedLoop();
duke@435 1228 assert( cl->is_main_loop(), "" );
duke@435 1229
duke@435 1230 // Find the trip counter; we are iteration splitting based on it
duke@435 1231 Node *trip_counter = cl->phi();
duke@435 1232 // Find the main loop limit; we will trim it's iterations
duke@435 1233 // to not ever trip end tests
duke@435 1234 Node *main_limit = cl->limit();
duke@435 1235 // Find the pre-loop limit; we will expand it's iterations to
duke@435 1236 // not ever trip low tests.
duke@435 1237 Node *ctrl = cl->in(LoopNode::EntryControl);
duke@435 1238 assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
duke@435 1239 Node *iffm = ctrl->in(0);
duke@435 1240 assert( iffm->Opcode() == Op_If, "" );
duke@435 1241 Node *p_f = iffm->in(0);
duke@435 1242 assert( p_f->Opcode() == Op_IfFalse, "" );
duke@435 1243 CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
duke@435 1244 assert( pre_end->loopnode()->is_pre_loop(), "" );
duke@435 1245 Node *pre_opaq1 = pre_end->limit();
duke@435 1246 // Occasionally it's possible for a pre-loop Opaque1 node to be
duke@435 1247 // optimized away and then another round of loop opts attempted.
duke@435 1248 // We can not optimize this particular loop in that case.
duke@435 1249 if( pre_opaq1->Opcode() != Op_Opaque1 )
duke@435 1250 return;
duke@435 1251 Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
duke@435 1252 Node *pre_limit = pre_opaq->in(1);
duke@435 1253
duke@435 1254 // Where do we put new limit calculations
duke@435 1255 Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
duke@435 1256
duke@435 1257 // Ensure the original loop limit is available from the
duke@435 1258 // pre-loop Opaque1 node.
duke@435 1259 Node *orig_limit = pre_opaq->original_loop_limit();
duke@435 1260 if( orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP )
duke@435 1261 return;
duke@435 1262
duke@435 1263 // Need to find the main-loop zero-trip guard
duke@435 1264 Node *bolzm = iffm->in(1);
duke@435 1265 assert( bolzm->Opcode() == Op_Bool, "" );
duke@435 1266 Node *cmpzm = bolzm->in(1);
duke@435 1267 assert( cmpzm->is_Cmp(), "" );
duke@435 1268 Node *opqzm = cmpzm->in(2);
duke@435 1269 if( opqzm->Opcode() != Op_Opaque1 )
duke@435 1270 return;
duke@435 1271 assert( opqzm->in(1) == main_limit, "do not understand situation" );
duke@435 1272
duke@435 1273 // Must know if its a count-up or count-down loop
duke@435 1274
duke@435 1275 // protect against stride not being a constant
duke@435 1276 if ( !cl->stride_is_con() ) {
duke@435 1277 return;
duke@435 1278 }
duke@435 1279 int stride_con = cl->stride_con();
duke@435 1280 Node *zero = _igvn.intcon(0);
duke@435 1281 Node *one = _igvn.intcon(1);
duke@435 1282 set_ctrl(zero, C->root());
duke@435 1283 set_ctrl(one, C->root());
duke@435 1284
duke@435 1285 // Range checks that do not dominate the loop backedge (ie.
duke@435 1286 // conditionally executed) can lengthen the pre loop limit beyond
duke@435 1287 // the original loop limit. To prevent this, the pre limit is
duke@435 1288 // (for stride > 0) MINed with the original loop limit (MAXed
duke@435 1289 // stride < 0) when some range_check (rc) is conditionally
duke@435 1290 // executed.
duke@435 1291 bool conditional_rc = false;
duke@435 1292
duke@435 1293 // Check loop body for tests of trip-counter plus loop-invariant vs
duke@435 1294 // loop-invariant.
duke@435 1295 for( uint i = 0; i < loop->_body.size(); i++ ) {
duke@435 1296 Node *iff = loop->_body[i];
duke@435 1297 if( iff->Opcode() == Op_If ) { // Test?
duke@435 1298
duke@435 1299 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 1300 // we need loop unswitching instead of iteration splitting.
duke@435 1301 Node *exit = loop->is_loop_exit(iff);
duke@435 1302 if( !exit ) continue;
duke@435 1303 int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
duke@435 1304
duke@435 1305 // Get boolean condition to test
duke@435 1306 Node *i1 = iff->in(1);
duke@435 1307 if( !i1->is_Bool() ) continue;
duke@435 1308 BoolNode *bol = i1->as_Bool();
duke@435 1309 BoolTest b_test = bol->_test;
duke@435 1310 // Flip sense of test if exit condition is flipped
duke@435 1311 if( flip )
duke@435 1312 b_test = b_test.negate();
duke@435 1313
duke@435 1314 // Get compare
duke@435 1315 Node *cmp = bol->in(1);
duke@435 1316
duke@435 1317 // Look for trip_counter + offset vs limit
duke@435 1318 Node *rc_exp = cmp->in(1);
duke@435 1319 Node *limit = cmp->in(2);
duke@435 1320 jint scale_con= 1; // Assume trip counter not scaled
duke@435 1321
duke@435 1322 Node *limit_c = get_ctrl(limit);
duke@435 1323 if( loop->is_member(get_loop(limit_c) ) ) {
duke@435 1324 // Compare might have operands swapped; commute them
duke@435 1325 b_test = b_test.commute();
duke@435 1326 rc_exp = cmp->in(2);
duke@435 1327 limit = cmp->in(1);
duke@435 1328 limit_c = get_ctrl(limit);
duke@435 1329 if( loop->is_member(get_loop(limit_c) ) )
duke@435 1330 continue; // Both inputs are loop varying; cannot RCE
duke@435 1331 }
duke@435 1332 // Here we know 'limit' is loop invariant
duke@435 1333
duke@435 1334 // 'limit' maybe pinned below the zero trip test (probably from a
duke@435 1335 // previous round of rce), in which case, it can't be used in the
duke@435 1336 // zero trip test expression which must occur before the zero test's if.
duke@435 1337 if( limit_c == ctrl ) {
duke@435 1338 continue; // Don't rce this check but continue looking for other candidates.
duke@435 1339 }
duke@435 1340
duke@435 1341 // Check for scaled induction variable plus an offset
duke@435 1342 Node *offset = NULL;
duke@435 1343
duke@435 1344 if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
duke@435 1345 continue;
duke@435 1346 }
duke@435 1347
duke@435 1348 Node *offset_c = get_ctrl(offset);
duke@435 1349 if( loop->is_member( get_loop(offset_c) ) )
duke@435 1350 continue; // Offset is not really loop invariant
duke@435 1351 // Here we know 'offset' is loop invariant.
duke@435 1352
duke@435 1353 // As above for the 'limit', the 'offset' maybe pinned below the
duke@435 1354 // zero trip test.
duke@435 1355 if( offset_c == ctrl ) {
duke@435 1356 continue; // Don't rce this check but continue looking for other candidates.
duke@435 1357 }
duke@435 1358
duke@435 1359 // At this point we have the expression as:
duke@435 1360 // scale_con * trip_counter + offset :: limit
duke@435 1361 // where scale_con, offset and limit are loop invariant. Trip_counter
duke@435 1362 // monotonically increases by stride_con, a constant. Both (or either)
duke@435 1363 // stride_con and scale_con can be negative which will flip about the
duke@435 1364 // sense of the test.
duke@435 1365
duke@435 1366 // Adjust pre and main loop limits to guard the correct iteration set
duke@435 1367 if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
duke@435 1368 if( b_test._test == BoolTest::lt ) { // Range checks always use lt
duke@435 1369 // The overflow limit: scale*I+offset < limit
duke@435 1370 add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
duke@435 1371 // The underflow limit: 0 <= scale*I+offset.
duke@435 1372 // Some math yields: -scale*I-(offset+1) < 0
duke@435 1373 Node *plus_one = new (C, 3) AddINode( offset, one );
duke@435 1374 register_new_node( plus_one, pre_ctrl );
duke@435 1375 Node *neg_offset = new (C, 3) SubINode( zero, plus_one );
duke@435 1376 register_new_node( neg_offset, pre_ctrl );
duke@435 1377 add_constraint( stride_con, -scale_con, neg_offset, zero, pre_ctrl, &pre_limit, &main_limit );
duke@435 1378 if (!conditional_rc) {
duke@435 1379 conditional_rc = !loop->dominates_backedge(iff);
duke@435 1380 }
duke@435 1381 } else {
duke@435 1382 #ifndef PRODUCT
duke@435 1383 if( PrintOpto )
duke@435 1384 tty->print_cr("missed RCE opportunity");
duke@435 1385 #endif
duke@435 1386 continue; // In release mode, ignore it
duke@435 1387 }
duke@435 1388 } else { // Otherwise work on normal compares
duke@435 1389 switch( b_test._test ) {
duke@435 1390 case BoolTest::ge: // Convert X >= Y to -X <= -Y
duke@435 1391 scale_con = -scale_con;
duke@435 1392 offset = new (C, 3) SubINode( zero, offset );
duke@435 1393 register_new_node( offset, pre_ctrl );
duke@435 1394 limit = new (C, 3) SubINode( zero, limit );
duke@435 1395 register_new_node( limit, pre_ctrl );
duke@435 1396 // Fall into LE case
duke@435 1397 case BoolTest::le: // Convert X <= Y to X < Y+1
duke@435 1398 limit = new (C, 3) AddINode( limit, one );
duke@435 1399 register_new_node( limit, pre_ctrl );
duke@435 1400 // Fall into LT case
duke@435 1401 case BoolTest::lt:
duke@435 1402 add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
duke@435 1403 if (!conditional_rc) {
duke@435 1404 conditional_rc = !loop->dominates_backedge(iff);
duke@435 1405 }
duke@435 1406 break;
duke@435 1407 default:
duke@435 1408 #ifndef PRODUCT
duke@435 1409 if( PrintOpto )
duke@435 1410 tty->print_cr("missed RCE opportunity");
duke@435 1411 #endif
duke@435 1412 continue; // Unhandled case
duke@435 1413 }
duke@435 1414 }
duke@435 1415
duke@435 1416 // Kill the eliminated test
duke@435 1417 C->set_major_progress();
duke@435 1418 Node *kill_con = _igvn.intcon( 1-flip );
duke@435 1419 set_ctrl(kill_con, C->root());
duke@435 1420 _igvn.hash_delete(iff);
duke@435 1421 iff->set_req(1, kill_con);
duke@435 1422 _igvn._worklist.push(iff);
duke@435 1423 // Find surviving projection
duke@435 1424 assert(iff->is_If(), "");
duke@435 1425 ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
duke@435 1426 // Find loads off the surviving projection; remove their control edge
duke@435 1427 for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
duke@435 1428 Node* cd = dp->fast_out(i); // Control-dependent node
duke@435 1429 if( cd->is_Load() ) { // Loads can now float around in the loop
duke@435 1430 _igvn.hash_delete(cd);
duke@435 1431 // Allow the load to float around in the loop, or before it
duke@435 1432 // but NOT before the pre-loop.
duke@435 1433 cd->set_req(0, ctrl); // ctrl, not NULL
duke@435 1434 _igvn._worklist.push(cd);
duke@435 1435 --i;
duke@435 1436 --imax;
duke@435 1437 }
duke@435 1438 }
duke@435 1439
duke@435 1440 } // End of is IF
duke@435 1441
duke@435 1442 }
duke@435 1443
duke@435 1444 // Update loop limits
duke@435 1445 if (conditional_rc) {
duke@435 1446 pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
duke@435 1447 : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
duke@435 1448 register_new_node(pre_limit, pre_ctrl);
duke@435 1449 }
duke@435 1450 _igvn.hash_delete(pre_opaq);
duke@435 1451 pre_opaq->set_req(1, pre_limit);
duke@435 1452
duke@435 1453 // Note:: we are making the main loop limit no longer precise;
duke@435 1454 // need to round up based on stride.
duke@435 1455 if( stride_con != 1 && stride_con != -1 ) { // Cutout for common case
duke@435 1456 // "Standard" round-up logic: ([main_limit-init+(y-1)]/y)*y+init
duke@435 1457 // Hopefully, compiler will optimize for powers of 2.
duke@435 1458 Node *ctrl = get_ctrl(main_limit);
duke@435 1459 Node *stride = cl->stride();
duke@435 1460 Node *init = cl->init_trip();
duke@435 1461 Node *span = new (C, 3) SubINode(main_limit,init);
duke@435 1462 register_new_node(span,ctrl);
duke@435 1463 Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
duke@435 1464 Node *add = new (C, 3) AddINode(span,rndup);
duke@435 1465 register_new_node(add,ctrl);
duke@435 1466 Node *div = new (C, 3) DivINode(0,add,stride);
duke@435 1467 register_new_node(div,ctrl);
duke@435 1468 Node *mul = new (C, 3) MulINode(div,stride);
duke@435 1469 register_new_node(mul,ctrl);
duke@435 1470 Node *newlim = new (C, 3) AddINode(mul,init);
duke@435 1471 register_new_node(newlim,ctrl);
duke@435 1472 main_limit = newlim;
duke@435 1473 }
duke@435 1474
duke@435 1475 Node *main_cle = cl->loopexit();
duke@435 1476 Node *main_bol = main_cle->in(1);
duke@435 1477 // Hacking loop bounds; need private copies of exit test
duke@435 1478 if( main_bol->outcnt() > 1 ) {// BoolNode shared?
duke@435 1479 _igvn.hash_delete(main_cle);
duke@435 1480 main_bol = main_bol->clone();// Clone a private BoolNode
duke@435 1481 register_new_node( main_bol, main_cle->in(0) );
duke@435 1482 main_cle->set_req(1,main_bol);
duke@435 1483 }
duke@435 1484 Node *main_cmp = main_bol->in(1);
duke@435 1485 if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
duke@435 1486 _igvn.hash_delete(main_bol);
duke@435 1487 main_cmp = main_cmp->clone();// Clone a private CmpNode
duke@435 1488 register_new_node( main_cmp, main_cle->in(0) );
duke@435 1489 main_bol->set_req(1,main_cmp);
duke@435 1490 }
duke@435 1491 // Hack the now-private loop bounds
duke@435 1492 _igvn.hash_delete(main_cmp);
duke@435 1493 main_cmp->set_req(2, main_limit);
duke@435 1494 _igvn._worklist.push(main_cmp);
duke@435 1495 // The OpaqueNode is unshared by design
duke@435 1496 _igvn.hash_delete(opqzm);
duke@435 1497 assert( opqzm->outcnt() == 1, "cannot hack shared node" );
duke@435 1498 opqzm->set_req(1,main_limit);
duke@435 1499 _igvn._worklist.push(opqzm);
duke@435 1500 }
duke@435 1501
duke@435 1502 //------------------------------DCE_loop_body----------------------------------
duke@435 1503 // Remove simplistic dead code from loop body
duke@435 1504 void IdealLoopTree::DCE_loop_body() {
duke@435 1505 for( uint i = 0; i < _body.size(); i++ )
duke@435 1506 if( _body.at(i)->outcnt() == 0 )
duke@435 1507 _body.map( i--, _body.pop() );
duke@435 1508 }
duke@435 1509
duke@435 1510
duke@435 1511 //------------------------------adjust_loop_exit_prob--------------------------
duke@435 1512 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
duke@435 1513 // Replace with a 1-in-10 exit guess.
duke@435 1514 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
duke@435 1515 Node *test = tail();
duke@435 1516 while( test != _head ) {
duke@435 1517 uint top = test->Opcode();
duke@435 1518 if( top == Op_IfTrue || top == Op_IfFalse ) {
duke@435 1519 int test_con = ((ProjNode*)test)->_con;
duke@435 1520 assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
duke@435 1521 IfNode *iff = test->in(0)->as_If();
duke@435 1522 if( iff->outcnt() == 2 ) { // Ignore dead tests
duke@435 1523 Node *bol = iff->in(1);
duke@435 1524 if( bol && bol->req() > 1 && bol->in(1) &&
duke@435 1525 ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
kvn@855 1526 (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
duke@435 1527 (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
duke@435 1528 (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
duke@435 1529 (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
coleenp@548 1530 (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
coleenp@548 1531 (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
duke@435 1532 return; // Allocation loops RARELY take backedge
duke@435 1533 // Find the OTHER exit path from the IF
duke@435 1534 Node* ex = iff->proj_out(1-test_con);
duke@435 1535 float p = iff->_prob;
duke@435 1536 if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
duke@435 1537 if( top == Op_IfTrue ) {
duke@435 1538 if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
duke@435 1539 iff->_prob = PROB_STATIC_FREQUENT;
duke@435 1540 }
duke@435 1541 } else {
duke@435 1542 if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
duke@435 1543 iff->_prob = PROB_STATIC_INFREQUENT;
duke@435 1544 }
duke@435 1545 }
duke@435 1546 }
duke@435 1547 }
duke@435 1548 }
duke@435 1549 test = phase->idom(test);
duke@435 1550 }
duke@435 1551 }
duke@435 1552
duke@435 1553
duke@435 1554 //------------------------------policy_do_remove_empty_loop--------------------
duke@435 1555 // Micro-benchmark spamming. Policy is to always remove empty loops.
duke@435 1556 // The 'DO' part is to replace the trip counter with the value it will
duke@435 1557 // have on the last iteration. This will break the loop.
duke@435 1558 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
duke@435 1559 // Minimum size must be empty loop
duke@435 1560 if( _body.size() > 7/*number of nodes in an empty loop*/ ) return false;
duke@435 1561
duke@435 1562 if( !_head->is_CountedLoop() ) return false; // Dead loop
duke@435 1563 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 1564 if( !cl->loopexit() ) return false; // Malformed loop
duke@435 1565 if( !phase->is_member(this,phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue)) ) )
duke@435 1566 return false; // Infinite loop
duke@435 1567 #ifndef PRODUCT
duke@435 1568 if( PrintOpto )
duke@435 1569 tty->print_cr("Removing empty loop");
duke@435 1570 #endif
duke@435 1571 #ifdef ASSERT
duke@435 1572 // Ensure only one phi which is the iv.
duke@435 1573 Node* iv = NULL;
duke@435 1574 for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
duke@435 1575 Node* n = cl->fast_out(i);
duke@435 1576 if (n->Opcode() == Op_Phi) {
duke@435 1577 assert(iv == NULL, "Too many phis" );
duke@435 1578 iv = n;
duke@435 1579 }
duke@435 1580 }
duke@435 1581 assert(iv == cl->phi(), "Wrong phi" );
duke@435 1582 #endif
duke@435 1583 // Replace the phi at loop head with the final value of the last
duke@435 1584 // iteration. Then the CountedLoopEnd will collapse (backedge never
duke@435 1585 // taken) and all loop-invariant uses of the exit values will be correct.
duke@435 1586 Node *phi = cl->phi();
duke@435 1587 Node *final = new (phase->C, 3) SubINode( cl->limit(), cl->stride() );
duke@435 1588 phase->register_new_node(final,cl->in(LoopNode::EntryControl));
duke@435 1589 phase->_igvn.hash_delete(phi);
duke@435 1590 phase->_igvn.subsume_node(phi,final);
duke@435 1591 phase->C->set_major_progress();
duke@435 1592 return true;
duke@435 1593 }
duke@435 1594
duke@435 1595
duke@435 1596 //=============================================================================
duke@435 1597 //------------------------------iteration_split_impl---------------------------
never@836 1598 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
duke@435 1599 // Check and remove empty loops (spam micro-benchmarks)
duke@435 1600 if( policy_do_remove_empty_loop(phase) )
cfang@1607 1601 return true; // Here we removed an empty loop
duke@435 1602
duke@435 1603 bool should_peel = policy_peeling(phase); // Should we peel?
duke@435 1604
duke@435 1605 bool should_unswitch = policy_unswitching(phase);
duke@435 1606
duke@435 1607 // Non-counted loops may be peeled; exactly 1 iteration is peeled.
duke@435 1608 // This removes loop-invariant tests (usually null checks).
duke@435 1609 if( !_head->is_CountedLoop() ) { // Non-counted loop
duke@435 1610 if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
never@836 1611 // Partial peel succeeded so terminate this round of loop opts
never@836 1612 return false;
duke@435 1613 }
duke@435 1614 if( should_peel ) { // Should we peel?
duke@435 1615 #ifndef PRODUCT
duke@435 1616 if (PrintOpto) tty->print_cr("should_peel");
duke@435 1617 #endif
duke@435 1618 phase->do_peeling(this,old_new);
duke@435 1619 } else if( should_unswitch ) {
duke@435 1620 phase->do_unswitching(this, old_new);
duke@435 1621 }
never@836 1622 return true;
duke@435 1623 }
duke@435 1624 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 1625
never@836 1626 if( !cl->loopexit() ) return true; // Ignore various kinds of broken loops
duke@435 1627
duke@435 1628 // Do nothing special to pre- and post- loops
never@836 1629 if( cl->is_pre_loop() || cl->is_post_loop() ) return true;
duke@435 1630
duke@435 1631 // Compute loop trip count from profile data
duke@435 1632 compute_profile_trip_cnt(phase);
duke@435 1633
duke@435 1634 // Before attempting fancy unrolling, RCE or alignment, see if we want
duke@435 1635 // to completely unroll this loop or do loop unswitching.
duke@435 1636 if( cl->is_normal_loop() ) {
cfang@1224 1637 if (should_unswitch) {
cfang@1224 1638 phase->do_unswitching(this, old_new);
cfang@1224 1639 return true;
cfang@1224 1640 }
duke@435 1641 bool should_maximally_unroll = policy_maximally_unroll(phase);
duke@435 1642 if( should_maximally_unroll ) {
duke@435 1643 // Here we did some unrolling and peeling. Eventually we will
duke@435 1644 // completely unroll this loop and it will no longer be a loop.
duke@435 1645 phase->do_maximally_unroll(this,old_new);
never@836 1646 return true;
duke@435 1647 }
duke@435 1648 }
duke@435 1649
duke@435 1650
duke@435 1651 // Counted loops may be peeled, may need some iterations run up
duke@435 1652 // front for RCE, and may want to align loop refs to a cache
duke@435 1653 // line. Thus we clone a full loop up front whose trip count is
duke@435 1654 // at least 1 (if peeling), but may be several more.
duke@435 1655
duke@435 1656 // The main loop will start cache-line aligned with at least 1
duke@435 1657 // iteration of the unrolled body (zero-trip test required) and
duke@435 1658 // will have some range checks removed.
duke@435 1659
duke@435 1660 // A post-loop will finish any odd iterations (leftover after
duke@435 1661 // unrolling), plus any needed for RCE purposes.
duke@435 1662
duke@435 1663 bool should_unroll = policy_unroll(phase);
duke@435 1664
duke@435 1665 bool should_rce = policy_range_check(phase);
duke@435 1666
duke@435 1667 bool should_align = policy_align(phase);
duke@435 1668
duke@435 1669 // If not RCE'ing (iteration splitting) or Aligning, then we do not
duke@435 1670 // need a pre-loop. We may still need to peel an initial iteration but
duke@435 1671 // we will not be needing an unknown number of pre-iterations.
duke@435 1672 //
duke@435 1673 // Basically, if may_rce_align reports FALSE first time through,
duke@435 1674 // we will not be able to later do RCE or Aligning on this loop.
duke@435 1675 bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
duke@435 1676
duke@435 1677 // If we have any of these conditions (RCE, alignment, unrolling) met, then
duke@435 1678 // we switch to the pre-/main-/post-loop model. This model also covers
duke@435 1679 // peeling.
duke@435 1680 if( should_rce || should_align || should_unroll ) {
duke@435 1681 if( cl->is_normal_loop() ) // Convert to 'pre/main/post' loops
duke@435 1682 phase->insert_pre_post_loops(this,old_new, !may_rce_align);
duke@435 1683
duke@435 1684 // Adjust the pre- and main-loop limits to let the pre and post loops run
duke@435 1685 // with full checks, but the main-loop with no checks. Remove said
duke@435 1686 // checks from the main body.
duke@435 1687 if( should_rce )
duke@435 1688 phase->do_range_check(this,old_new);
duke@435 1689
duke@435 1690 // Double loop body for unrolling. Adjust the minimum-trip test (will do
duke@435 1691 // twice as many iterations as before) and the main body limit (only do
duke@435 1692 // an even number of trips). If we are peeling, we might enable some RCE
duke@435 1693 // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
duke@435 1694 // peeling.
cfang@1607 1695 if( should_unroll && !should_peel )
cfang@1607 1696 phase->do_unroll(this,old_new, true);
duke@435 1697
duke@435 1698 // Adjust the pre-loop limits to align the main body
duke@435 1699 // iterations.
duke@435 1700 if( should_align )
duke@435 1701 Unimplemented();
duke@435 1702
duke@435 1703 } else { // Else we have an unchanged counted loop
duke@435 1704 if( should_peel ) // Might want to peel but do nothing else
duke@435 1705 phase->do_peeling(this,old_new);
duke@435 1706 }
never@836 1707 return true;
duke@435 1708 }
duke@435 1709
duke@435 1710
duke@435 1711 //=============================================================================
duke@435 1712 //------------------------------iteration_split--------------------------------
never@836 1713 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
duke@435 1714 // Recursively iteration split nested loops
never@836 1715 if( _child && !_child->iteration_split( phase, old_new ))
never@836 1716 return false;
duke@435 1717
duke@435 1718 // Clean out prior deadwood
duke@435 1719 DCE_loop_body();
duke@435 1720
duke@435 1721
duke@435 1722 // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
duke@435 1723 // Replace with a 1-in-10 exit guess.
duke@435 1724 if( _parent /*not the root loop*/ &&
duke@435 1725 !_irreducible &&
duke@435 1726 // Also ignore the occasional dead backedge
duke@435 1727 !tail()->is_top() ) {
duke@435 1728 adjust_loop_exit_prob(phase);
duke@435 1729 }
duke@435 1730
duke@435 1731
duke@435 1732 // Gate unrolling, RCE and peeling efforts.
duke@435 1733 if( !_child && // If not an inner loop, do not split
duke@435 1734 !_irreducible &&
kvn@474 1735 _allow_optimizations &&
duke@435 1736 !tail()->is_top() ) { // Also ignore the occasional dead backedge
duke@435 1737 if (!_has_call) {
cfang@1607 1738 if (!iteration_split_impl( phase, old_new )) {
cfang@1607 1739 return false;
cfang@1607 1740 }
duke@435 1741 } else if (policy_unswitching(phase)) {
duke@435 1742 phase->do_unswitching(this, old_new);
duke@435 1743 }
duke@435 1744 }
duke@435 1745
duke@435 1746 // Minor offset re-organization to remove loop-fallout uses of
duke@435 1747 // trip counter.
duke@435 1748 if( _head->is_CountedLoop() ) phase->reorg_offsets( this );
never@836 1749 if( _next && !_next->iteration_split( phase, old_new ))
never@836 1750 return false;
never@836 1751 return true;
duke@435 1752 }
cfang@1607 1753
cfang@1607 1754 //-------------------------------is_uncommon_trap_proj----------------------------
cfang@1607 1755 // Return true if proj is the form of "proj->[region->..]call_uct"
cfang@1607 1756 bool PhaseIdealLoop::is_uncommon_trap_proj(ProjNode* proj, bool must_reason_predicate) {
cfang@1607 1757 int path_limit = 10;
cfang@1607 1758 assert(proj, "invalid argument");
cfang@1607 1759 Node* out = proj;
cfang@1607 1760 for (int ct = 0; ct < path_limit; ct++) {
cfang@1607 1761 out = out->unique_ctrl_out();
cfang@1607 1762 if (out == NULL || out->is_Root() || out->is_Start())
cfang@1607 1763 return false;
cfang@1607 1764 if (out->is_CallStaticJava()) {
cfang@1607 1765 int req = out->as_CallStaticJava()->uncommon_trap_request();
cfang@1607 1766 if (req != 0) {
cfang@1607 1767 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(req);
cfang@1607 1768 if (!must_reason_predicate || reason == Deoptimization::Reason_predicate){
cfang@1607 1769 return true;
cfang@1607 1770 }
cfang@1607 1771 }
cfang@1607 1772 return false; // don't do further after call
cfang@1607 1773 }
cfang@1607 1774 }
cfang@1607 1775 return false;
cfang@1607 1776 }
cfang@1607 1777
cfang@1607 1778 //-------------------------------is_uncommon_trap_if_pattern-------------------------
cfang@1607 1779 // Return true for "if(test)-> proj -> ...
cfang@1607 1780 // |
cfang@1607 1781 // V
cfang@1607 1782 // other_proj->[region->..]call_uct"
cfang@1607 1783 //
cfang@1607 1784 // "must_reason_predicate" means the uct reason must be Reason_predicate
cfang@1607 1785 bool PhaseIdealLoop::is_uncommon_trap_if_pattern(ProjNode *proj, bool must_reason_predicate) {
cfang@1607 1786 Node *in0 = proj->in(0);
cfang@1607 1787 if (!in0->is_If()) return false;
kvn@1715 1788 // Variation of a dead If node.
kvn@1715 1789 if (in0->outcnt() < 2) return false;
cfang@1607 1790 IfNode* iff = in0->as_If();
cfang@1607 1791
cfang@1607 1792 // we need "If(Conv2B(Opaque1(...)))" pattern for must_reason_predicate
cfang@1607 1793 if (must_reason_predicate) {
cfang@1607 1794 if (iff->in(1)->Opcode() != Op_Conv2B ||
cfang@1607 1795 iff->in(1)->in(1)->Opcode() != Op_Opaque1) {
cfang@1607 1796 return false;
cfang@1607 1797 }
cfang@1607 1798 }
cfang@1607 1799
cfang@1607 1800 ProjNode* other_proj = iff->proj_out(1-proj->_con)->as_Proj();
cfang@1607 1801 return is_uncommon_trap_proj(other_proj, must_reason_predicate);
cfang@1607 1802 }
cfang@1607 1803
cfang@1607 1804 //------------------------------create_new_if_for_predicate------------------------
cfang@1607 1805 // create a new if above the uct_if_pattern for the predicate to be promoted.
cfang@1607 1806 //
cfang@1607 1807 // before after
cfang@1607 1808 // ---------- ----------
cfang@1607 1809 // ctrl ctrl
cfang@1607 1810 // | |
cfang@1607 1811 // | |
cfang@1607 1812 // v v
cfang@1607 1813 // iff new_iff
cfang@1607 1814 // / \ / \
cfang@1607 1815 // / \ / \
cfang@1607 1816 // v v v v
cfang@1607 1817 // uncommon_proj cont_proj if_uct if_cont
cfang@1607 1818 // \ | | | |
cfang@1607 1819 // \ | | | |
cfang@1607 1820 // v v v | v
cfang@1607 1821 // rgn loop | iff
cfang@1607 1822 // | | / \
cfang@1607 1823 // | | / \
cfang@1607 1824 // v | v v
cfang@1607 1825 // uncommon_trap | uncommon_proj cont_proj
cfang@1607 1826 // \ \ | |
cfang@1607 1827 // \ \ | |
cfang@1607 1828 // v v v v
cfang@1607 1829 // rgn loop
cfang@1607 1830 // |
cfang@1607 1831 // |
cfang@1607 1832 // v
cfang@1607 1833 // uncommon_trap
cfang@1607 1834 //
cfang@1607 1835 //
cfang@1607 1836 // We will create a region to guard the uct call if there is no one there.
cfang@1607 1837 // The true projecttion (if_cont) of the new_iff is returned.
cfang@1607 1838 ProjNode* PhaseIdealLoop::create_new_if_for_predicate(ProjNode* cont_proj) {
cfang@1607 1839 assert(is_uncommon_trap_if_pattern(cont_proj, true), "must be a uct if pattern!");
cfang@1607 1840 IfNode* iff = cont_proj->in(0)->as_If();
cfang@1607 1841
cfang@1607 1842 ProjNode *uncommon_proj = iff->proj_out(1 - cont_proj->_con);
cfang@1607 1843 Node *rgn = uncommon_proj->unique_ctrl_out();
cfang@1607 1844 assert(rgn->is_Region() || rgn->is_Call(), "must be a region or call uct");
cfang@1607 1845
cfang@1607 1846 if (!rgn->is_Region()) { // create a region to guard the call
cfang@1607 1847 assert(rgn->is_Call(), "must be call uct");
cfang@1607 1848 CallNode* call = rgn->as_Call();
cfang@1607 1849 rgn = new (C, 1) RegionNode(1);
cfang@1607 1850 _igvn.set_type(rgn, rgn->bottom_type());
cfang@1607 1851 rgn->add_req(uncommon_proj);
cfang@1607 1852 set_idom(rgn, idom(uncommon_proj), dom_depth(uncommon_proj)+1);
cfang@1607 1853 _igvn.hash_delete(call);
cfang@1607 1854 call->set_req(0, rgn);
cfang@1607 1855 }
cfang@1607 1856
cfang@1607 1857 // Create new_iff
cfang@1607 1858 uint iffdd = dom_depth(iff);
cfang@1607 1859 IdealLoopTree* lp = get_loop(iff);
cfang@1607 1860 IfNode *new_iff = new (C, 2) IfNode(iff->in(0), NULL, iff->_prob, iff->_fcnt);
cfang@1607 1861 register_node(new_iff, lp, idom(iff), iffdd);
cfang@1607 1862 Node *if_cont = new (C, 1) IfTrueNode(new_iff);
cfang@1607 1863 Node *if_uct = new (C, 1) IfFalseNode(new_iff);
cfang@1607 1864 if (cont_proj->is_IfFalse()) {
cfang@1607 1865 // Swap
cfang@1607 1866 Node* tmp = if_uct; if_uct = if_cont; if_cont = tmp;
cfang@1607 1867 }
cfang@1607 1868 register_node(if_cont, lp, new_iff, iffdd);
cfang@1607 1869 register_node(if_uct, get_loop(rgn), new_iff, iffdd);
cfang@1607 1870
cfang@1607 1871 // if_cont to iff
cfang@1607 1872 _igvn.hash_delete(iff);
cfang@1607 1873 iff->set_req(0, if_cont);
cfang@1607 1874 set_idom(iff, if_cont, dom_depth(iff));
cfang@1607 1875
cfang@1607 1876 // if_uct to rgn
cfang@1607 1877 _igvn.hash_delete(rgn);
cfang@1607 1878 rgn->add_req(if_uct);
cfang@1607 1879 Node* ridom = idom(rgn);
cfang@1607 1880 Node* nrdom = dom_lca(ridom, new_iff);
cfang@1607 1881 set_idom(rgn, nrdom, dom_depth(rgn));
cfang@1607 1882
cfang@1607 1883 // rgn must have no phis
cfang@1607 1884 assert(!rgn->as_Region()->has_phi(), "region must have no phis");
cfang@1607 1885
cfang@1607 1886 return if_cont->as_Proj();
cfang@1607 1887 }
cfang@1607 1888
cfang@1607 1889 //------------------------------find_predicate_insertion_point--------------------------
cfang@1607 1890 // Find a good location to insert a predicate
cfang@1607 1891 ProjNode* PhaseIdealLoop::find_predicate_insertion_point(Node* start_c) {
cfang@1607 1892 if (start_c == C->root() || !start_c->is_Proj())
cfang@1607 1893 return NULL;
cfang@1607 1894 if (is_uncommon_trap_if_pattern(start_c->as_Proj(), true/*Reason_Predicate*/)) {
cfang@1607 1895 return start_c->as_Proj();
cfang@1607 1896 }
cfang@1607 1897 return NULL;
cfang@1607 1898 }
cfang@1607 1899
cfang@1607 1900 //------------------------------Invariance-----------------------------------
cfang@1607 1901 // Helper class for loop_predication_impl to compute invariance on the fly and
cfang@1607 1902 // clone invariants.
cfang@1607 1903 class Invariance : public StackObj {
cfang@1607 1904 VectorSet _visited, _invariant;
cfang@1607 1905 Node_Stack _stack;
cfang@1607 1906 VectorSet _clone_visited;
cfang@1607 1907 Node_List _old_new; // map of old to new (clone)
cfang@1607 1908 IdealLoopTree* _lpt;
cfang@1607 1909 PhaseIdealLoop* _phase;
cfang@1607 1910
cfang@1607 1911 // Helper function to set up the invariance for invariance computation
cfang@1607 1912 // If n is a known invariant, set up directly. Otherwise, look up the
cfang@1607 1913 // the possibility to push n onto the stack for further processing.
cfang@1607 1914 void visit(Node* use, Node* n) {
cfang@1607 1915 if (_lpt->is_invariant(n)) { // known invariant
cfang@1607 1916 _invariant.set(n->_idx);
cfang@1607 1917 } else if (!n->is_CFG()) {
cfang@1607 1918 Node *n_ctrl = _phase->ctrl_or_self(n);
cfang@1607 1919 Node *u_ctrl = _phase->ctrl_or_self(use); // self if use is a CFG
cfang@1607 1920 if (_phase->is_dominator(n_ctrl, u_ctrl)) {
cfang@1607 1921 _stack.push(n, n->in(0) == NULL ? 1 : 0);
cfang@1607 1922 }
cfang@1607 1923 }
cfang@1607 1924 }
cfang@1607 1925
cfang@1607 1926 // Compute invariance for "the_node" and (possibly) all its inputs recursively
cfang@1607 1927 // on the fly
cfang@1607 1928 void compute_invariance(Node* n) {
cfang@1607 1929 assert(_visited.test(n->_idx), "must be");
cfang@1607 1930 visit(n, n);
cfang@1607 1931 while (_stack.is_nonempty()) {
cfang@1607 1932 Node* n = _stack.node();
cfang@1607 1933 uint idx = _stack.index();
cfang@1607 1934 if (idx == n->req()) { // all inputs are processed
cfang@1607 1935 _stack.pop();
cfang@1607 1936 // n is invariant if it's inputs are all invariant
cfang@1607 1937 bool all_inputs_invariant = true;
cfang@1607 1938 for (uint i = 0; i < n->req(); i++) {
cfang@1607 1939 Node* in = n->in(i);
cfang@1607 1940 if (in == NULL) continue;
cfang@1607 1941 assert(_visited.test(in->_idx), "must have visited input");
cfang@1607 1942 if (!_invariant.test(in->_idx)) { // bad guy
cfang@1607 1943 all_inputs_invariant = false;
cfang@1607 1944 break;
cfang@1607 1945 }
cfang@1607 1946 }
cfang@1607 1947 if (all_inputs_invariant) {
cfang@1607 1948 _invariant.set(n->_idx); // I am a invariant too
cfang@1607 1949 }
cfang@1607 1950 } else { // process next input
cfang@1607 1951 _stack.set_index(idx + 1);
cfang@1607 1952 Node* m = n->in(idx);
cfang@1607 1953 if (m != NULL && !_visited.test_set(m->_idx)) {
cfang@1607 1954 visit(n, m);
cfang@1607 1955 }
cfang@1607 1956 }
cfang@1607 1957 }
cfang@1607 1958 }
cfang@1607 1959
cfang@1607 1960 // Helper function to set up _old_new map for clone_nodes.
cfang@1607 1961 // If n is a known invariant, set up directly ("clone" of n == n).
cfang@1607 1962 // Otherwise, push n onto the stack for real cloning.
cfang@1607 1963 void clone_visit(Node* n) {
cfang@1607 1964 assert(_invariant.test(n->_idx), "must be invariant");
cfang@1607 1965 if (_lpt->is_invariant(n)) { // known invariant
cfang@1607 1966 _old_new.map(n->_idx, n);
cfang@1607 1967 } else{ // to be cloned
cfang@1607 1968 assert (!n->is_CFG(), "should not see CFG here");
cfang@1607 1969 _stack.push(n, n->in(0) == NULL ? 1 : 0);
cfang@1607 1970 }
cfang@1607 1971 }
cfang@1607 1972
cfang@1607 1973 // Clone "n" and (possibly) all its inputs recursively
cfang@1607 1974 void clone_nodes(Node* n, Node* ctrl) {
cfang@1607 1975 clone_visit(n);
cfang@1607 1976 while (_stack.is_nonempty()) {
cfang@1607 1977 Node* n = _stack.node();
cfang@1607 1978 uint idx = _stack.index();
cfang@1607 1979 if (idx == n->req()) { // all inputs processed, clone n!
cfang@1607 1980 _stack.pop();
cfang@1607 1981 // clone invariant node
cfang@1607 1982 Node* n_cl = n->clone();
cfang@1607 1983 _old_new.map(n->_idx, n_cl);
cfang@1607 1984 _phase->register_new_node(n_cl, ctrl);
cfang@1607 1985 for (uint i = 0; i < n->req(); i++) {
cfang@1607 1986 Node* in = n_cl->in(i);
cfang@1607 1987 if (in == NULL) continue;
cfang@1607 1988 n_cl->set_req(i, _old_new[in->_idx]);
cfang@1607 1989 }
cfang@1607 1990 } else { // process next input
cfang@1607 1991 _stack.set_index(idx + 1);
cfang@1607 1992 Node* m = n->in(idx);
cfang@1607 1993 if (m != NULL && !_clone_visited.test_set(m->_idx)) {
cfang@1607 1994 clone_visit(m); // visit the input
cfang@1607 1995 }
cfang@1607 1996 }
cfang@1607 1997 }
cfang@1607 1998 }
cfang@1607 1999
cfang@1607 2000 public:
cfang@1607 2001 Invariance(Arena* area, IdealLoopTree* lpt) :
cfang@1607 2002 _lpt(lpt), _phase(lpt->_phase),
cfang@1607 2003 _visited(area), _invariant(area), _stack(area, 10 /* guess */),
cfang@1607 2004 _clone_visited(area), _old_new(area)
cfang@1607 2005 {}
cfang@1607 2006
cfang@1607 2007 // Map old to n for invariance computation and clone
cfang@1607 2008 void map_ctrl(Node* old, Node* n) {
cfang@1607 2009 assert(old->is_CFG() && n->is_CFG(), "must be");
cfang@1607 2010 _old_new.map(old->_idx, n); // "clone" of old is n
cfang@1607 2011 _invariant.set(old->_idx); // old is invariant
cfang@1607 2012 _clone_visited.set(old->_idx);
cfang@1607 2013 }
cfang@1607 2014
cfang@1607 2015 // Driver function to compute invariance
cfang@1607 2016 bool is_invariant(Node* n) {
cfang@1607 2017 if (!_visited.test_set(n->_idx))
cfang@1607 2018 compute_invariance(n);
cfang@1607 2019 return (_invariant.test(n->_idx) != 0);
cfang@1607 2020 }
cfang@1607 2021
cfang@1607 2022 // Driver function to clone invariant
cfang@1607 2023 Node* clone(Node* n, Node* ctrl) {
cfang@1607 2024 assert(ctrl->is_CFG(), "must be");
cfang@1607 2025 assert(_invariant.test(n->_idx), "must be an invariant");
cfang@1607 2026 if (!_clone_visited.test(n->_idx))
cfang@1607 2027 clone_nodes(n, ctrl);
cfang@1607 2028 return _old_new[n->_idx];
cfang@1607 2029 }
cfang@1607 2030 };
cfang@1607 2031
cfang@1607 2032 //------------------------------is_range_check_if -----------------------------------
cfang@1607 2033 // Returns true if the predicate of iff is in "scale*iv + offset u< load_range(ptr)" format
cfang@1607 2034 // Note: this function is particularly designed for loop predication. We require load_range
cfang@1607 2035 // and offset to be loop invariant computed on the fly by "invar"
cfang@1607 2036 bool IdealLoopTree::is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const {
cfang@1607 2037 if (!is_loop_exit(iff)) {
cfang@1607 2038 return false;
cfang@1607 2039 }
cfang@1607 2040 if (!iff->in(1)->is_Bool()) {
cfang@1607 2041 return false;
cfang@1607 2042 }
cfang@1607 2043 const BoolNode *bol = iff->in(1)->as_Bool();
cfang@1607 2044 if (bol->_test._test != BoolTest::lt) {
cfang@1607 2045 return false;
cfang@1607 2046 }
cfang@1607 2047 if (!bol->in(1)->is_Cmp()) {
cfang@1607 2048 return false;
cfang@1607 2049 }
cfang@1607 2050 const CmpNode *cmp = bol->in(1)->as_Cmp();
cfang@1607 2051 if (cmp->Opcode() != Op_CmpU ) {
cfang@1607 2052 return false;
cfang@1607 2053 }
cfang@1607 2054 if (cmp->in(2)->Opcode() != Op_LoadRange) {
cfang@1607 2055 return false;
cfang@1607 2056 }
cfang@1607 2057 LoadRangeNode* lr = (LoadRangeNode*)cmp->in(2);
cfang@1607 2058 if (!invar.is_invariant(lr)) { // loadRange must be invariant
cfang@1607 2059 return false;
cfang@1607 2060 }
cfang@1607 2061 Node *iv = _head->as_CountedLoop()->phi();
cfang@1607 2062 int scale = 0;
cfang@1607 2063 Node *offset = NULL;
cfang@1607 2064 if (!phase->is_scaled_iv_plus_offset(cmp->in(1), iv, &scale, &offset)) {
cfang@1607 2065 return false;
cfang@1607 2066 }
cfang@1607 2067 if(offset && !invar.is_invariant(offset)) { // offset must be invariant
cfang@1607 2068 return false;
cfang@1607 2069 }
cfang@1607 2070 return true;
cfang@1607 2071 }
cfang@1607 2072
cfang@1607 2073 //------------------------------rc_predicate-----------------------------------
cfang@1607 2074 // Create a range check predicate
cfang@1607 2075 //
cfang@1607 2076 // for (i = init; i < limit; i += stride) {
cfang@1607 2077 // a[scale*i+offset]
cfang@1607 2078 // }
cfang@1607 2079 //
cfang@1607 2080 // Compute max(scale*i + offset) for init <= i < limit and build the predicate
cfang@1607 2081 // as "max(scale*i + offset) u< a.length".
cfang@1607 2082 //
cfang@1607 2083 // There are two cases for max(scale*i + offset):
cfang@1607 2084 // (1) stride*scale > 0
cfang@1607 2085 // max(scale*i + offset) = scale*(limit-stride) + offset
cfang@1607 2086 // (2) stride*scale < 0
cfang@1607 2087 // max(scale*i + offset) = scale*init + offset
cfang@1607 2088 BoolNode* PhaseIdealLoop::rc_predicate(Node* ctrl,
cfang@1607 2089 int scale, Node* offset,
cfang@1607 2090 Node* init, Node* limit, Node* stride,
never@1738 2091 Node* range, bool upper) {
never@1738 2092 DEBUG_ONLY(ttyLocker ttyl);
never@1738 2093 if (TraceLoopPredicate) tty->print("rc_predicate ");
never@1738 2094
cfang@1607 2095 Node* max_idx_expr = init;
cfang@1607 2096 int stride_con = stride->get_int();
never@1738 2097 if ((stride_con > 0) == (scale > 0) == upper) {
cfang@1607 2098 max_idx_expr = new (C, 3) SubINode(limit, stride);
cfang@1607 2099 register_new_node(max_idx_expr, ctrl);
never@1738 2100 if (TraceLoopPredicate) tty->print("(limit - stride) ");
never@1738 2101 } else {
never@1738 2102 if (TraceLoopPredicate) tty->print("init ");
cfang@1607 2103 }
cfang@1607 2104
cfang@1607 2105 if (scale != 1) {
cfang@1607 2106 ConNode* con_scale = _igvn.intcon(scale);
cfang@1607 2107 max_idx_expr = new (C, 3) MulINode(max_idx_expr, con_scale);
cfang@1607 2108 register_new_node(max_idx_expr, ctrl);
never@1738 2109 if (TraceLoopPredicate) tty->print("* %d ", scale);
cfang@1607 2110 }
cfang@1607 2111
cfang@1607 2112 if (offset && (!offset->is_Con() || offset->get_int() != 0)){
cfang@1607 2113 max_idx_expr = new (C, 3) AddINode(max_idx_expr, offset);
cfang@1607 2114 register_new_node(max_idx_expr, ctrl);
never@1738 2115 if (TraceLoopPredicate)
never@1738 2116 if (offset->is_Con()) tty->print("+ %d ", offset->get_int());
never@1738 2117 else tty->print("+ offset ");
cfang@1607 2118 }
cfang@1607 2119
cfang@1607 2120 CmpUNode* cmp = new (C, 3) CmpUNode(max_idx_expr, range);
cfang@1607 2121 register_new_node(cmp, ctrl);
cfang@1607 2122 BoolNode* bol = new (C, 2) BoolNode(cmp, BoolTest::lt);
cfang@1607 2123 register_new_node(bol, ctrl);
never@1738 2124
never@1738 2125 if (TraceLoopPredicate) tty->print_cr("<u range");
cfang@1607 2126 return bol;
cfang@1607 2127 }
cfang@1607 2128
cfang@1607 2129 //------------------------------ loop_predication_impl--------------------------
cfang@1607 2130 // Insert loop predicates for null checks and range checks
cfang@1607 2131 bool PhaseIdealLoop::loop_predication_impl(IdealLoopTree *loop) {
cfang@1607 2132 if (!UseLoopPredicate) return false;
cfang@1607 2133
never@1710 2134 if (!loop->_head->is_Loop()) {
never@1710 2135 // Could be a simple region when irreducible loops are present.
never@1710 2136 return false;
never@1710 2137 }
never@1710 2138
never@1710 2139 CountedLoopNode *cl = NULL;
never@1710 2140 if (loop->_head->is_CountedLoop()) {
never@1710 2141 cl = loop->_head->as_CountedLoop();
never@1710 2142 // do nothing for iteration-splitted loops
never@1710 2143 if (!cl->is_normal_loop()) return false;
never@1710 2144 }
never@1710 2145
cfang@1607 2146 // Too many traps seen?
cfang@1607 2147 bool tmt = C->too_many_traps(C->method(), 0, Deoptimization::Reason_predicate);
cfang@1607 2148 int tc = C->trap_count(Deoptimization::Reason_predicate);
cfang@1607 2149 if (tmt || tc > 0) {
cfang@1607 2150 if (TraceLoopPredicate) {
cfang@1607 2151 tty->print_cr("too many predicate traps: %d", tc);
cfang@1607 2152 C->method()->print(); // which method has too many predicate traps
cfang@1607 2153 tty->print_cr("");
cfang@1607 2154 }
cfang@1607 2155 return false;
cfang@1607 2156 }
cfang@1607 2157
cfang@1607 2158 LoopNode *lpn = loop->_head->as_Loop();
cfang@1607 2159 Node* entry = lpn->in(LoopNode::EntryControl);
cfang@1607 2160
cfang@1607 2161 ProjNode *predicate_proj = find_predicate_insertion_point(entry);
cfang@1607 2162 if (!predicate_proj){
cfang@1607 2163 #ifndef PRODUCT
cfang@1607 2164 if (TraceLoopPredicate) {
cfang@1607 2165 tty->print("missing predicate:");
cfang@1607 2166 loop->dump_head();
cfang@1607 2167 }
cfang@1607 2168 #endif
cfang@1607 2169 return false;
cfang@1607 2170 }
cfang@1607 2171
cfang@1607 2172 ConNode* zero = _igvn.intcon(0);
cfang@1607 2173 set_ctrl(zero, C->root());
cfang@1607 2174 Node *cond_false = new (C, 2) Conv2BNode(zero);
cfang@1607 2175 register_new_node(cond_false, C->root());
cfang@1607 2176 ConNode* one = _igvn.intcon(1);
cfang@1607 2177 set_ctrl(one, C->root());
cfang@1607 2178 Node *cond_true = new (C, 2) Conv2BNode(one);
cfang@1607 2179 register_new_node(cond_true, C->root());
cfang@1607 2180
cfang@1607 2181 ResourceArea *area = Thread::current()->resource_area();
cfang@1607 2182 Invariance invar(area, loop);
cfang@1607 2183
cfang@1607 2184 // Create list of if-projs such that a newer proj dominates all older
cfang@1607 2185 // projs in the list, and they all dominate loop->tail()
cfang@1607 2186 Node_List if_proj_list(area);
cfang@1607 2187 LoopNode *head = loop->_head->as_Loop();
cfang@1607 2188 Node *current_proj = loop->tail(); //start from tail
cfang@1607 2189 while ( current_proj != head ) {
cfang@1607 2190 if (loop == get_loop(current_proj) && // still in the loop ?
cfang@1607 2191 current_proj->is_Proj() && // is a projection ?
cfang@1607 2192 current_proj->in(0)->Opcode() == Op_If) { // is a if projection ?
cfang@1607 2193 if_proj_list.push(current_proj);
cfang@1607 2194 }
cfang@1607 2195 current_proj = idom(current_proj);
cfang@1607 2196 }
cfang@1607 2197
cfang@1607 2198 bool hoisted = false; // true if at least one proj is promoted
cfang@1607 2199 while (if_proj_list.size() > 0) {
cfang@1607 2200 // Following are changed to nonnull when a predicate can be hoisted
cfang@1607 2201 ProjNode* new_predicate_proj = NULL;
cfang@1607 2202
cfang@1607 2203 ProjNode* proj = if_proj_list.pop()->as_Proj();
cfang@1607 2204 IfNode* iff = proj->in(0)->as_If();
cfang@1607 2205
cfang@1607 2206 if (!is_uncommon_trap_if_pattern(proj)) {
cfang@1607 2207 if (loop->is_loop_exit(iff)) {
cfang@1607 2208 // stop processing the remaining projs in the list because the execution of them
cfang@1607 2209 // depends on the condition of "iff" (iff->in(1)).
cfang@1607 2210 break;
cfang@1607 2211 } else {
cfang@1607 2212 // Both arms are inside the loop. There are two cases:
cfang@1607 2213 // (1) there is one backward branch. In this case, any remaining proj
cfang@1607 2214 // in the if_proj list post-dominates "iff". So, the condition of "iff"
cfang@1607 2215 // does not determine the execution the remining projs directly, and we
cfang@1607 2216 // can safely continue.
cfang@1607 2217 // (2) both arms are forwarded, i.e. a diamond shape. In this case, "proj"
cfang@1607 2218 // does not dominate loop->tail(), so it can not be in the if_proj list.
cfang@1607 2219 continue;
cfang@1607 2220 }
cfang@1607 2221 }
cfang@1607 2222
cfang@1607 2223 Node* test = iff->in(1);
cfang@1607 2224 if (!test->is_Bool()){ //Conv2B, ...
cfang@1607 2225 continue;
cfang@1607 2226 }
cfang@1607 2227 BoolNode* bol = test->as_Bool();
cfang@1607 2228 if (invar.is_invariant(bol)) {
cfang@1607 2229 // Invariant test
cfang@1607 2230 new_predicate_proj = create_new_if_for_predicate(predicate_proj);
cfang@1607 2231 Node* ctrl = new_predicate_proj->in(0)->as_If()->in(0);
never@1738 2232 BoolNode* new_predicate_bol = invar.clone(bol, ctrl)->as_Bool();
never@1738 2233
never@1738 2234 // Negate test if necessary
never@1738 2235 bool negated = false;
never@1738 2236 if (proj->_con != predicate_proj->_con) {
never@1738 2237 new_predicate_bol = new (C, 2) BoolNode(new_predicate_bol->in(1), new_predicate_bol->_test.negate());
never@1738 2238 register_new_node(new_predicate_bol, ctrl);
never@1738 2239 negated = true;
never@1738 2240 }
never@1738 2241 IfNode* new_predicate_iff = new_predicate_proj->in(0)->as_If();
never@1738 2242 _igvn.hash_delete(new_predicate_iff);
never@1738 2243 new_predicate_iff->set_req(1, new_predicate_bol);
never@1738 2244 if (TraceLoopPredicate) tty->print_cr("invariant if%s: %d", negated ? " negated" : "", new_predicate_iff->_idx);
never@1738 2245
cfang@1607 2246 } else if (cl != NULL && loop->is_range_check_if(iff, this, invar)) {
never@1738 2247 assert(proj->_con == predicate_proj->_con, "must match");
never@1738 2248
never@1738 2249 // Range check for counted loops
cfang@1607 2250 const Node* cmp = bol->in(1)->as_Cmp();
cfang@1607 2251 Node* idx = cmp->in(1);
cfang@1607 2252 assert(!invar.is_invariant(idx), "index is variant");
cfang@1607 2253 assert(cmp->in(2)->Opcode() == Op_LoadRange, "must be");
never@1738 2254 Node* ld_rng = cmp->in(2); // LoadRangeNode
cfang@1607 2255 assert(invar.is_invariant(ld_rng), "load range must be invariant");
cfang@1607 2256 int scale = 1;
cfang@1607 2257 Node* offset = zero;
cfang@1607 2258 bool ok = is_scaled_iv_plus_offset(idx, cl->phi(), &scale, &offset);
cfang@1607 2259 assert(ok, "must be index expression");
never@1738 2260
never@1738 2261 Node* init = cl->init_trip();
never@1738 2262 Node* limit = cl->limit();
never@1738 2263 Node* stride = cl->stride();
never@1738 2264
never@1738 2265 // Build if's for the upper and lower bound tests. The
never@1738 2266 // lower_bound test will dominate the upper bound test and all
never@1738 2267 // cloned or created nodes will use the lower bound test as
never@1738 2268 // their declared control.
never@1738 2269 ProjNode* lower_bound_proj = create_new_if_for_predicate(predicate_proj);
never@1738 2270 ProjNode* upper_bound_proj = create_new_if_for_predicate(predicate_proj);
never@1738 2271 assert(upper_bound_proj->in(0)->as_If()->in(0) == lower_bound_proj, "should dominate");
never@1738 2272 Node *ctrl = lower_bound_proj->in(0)->as_If()->in(0);
never@1738 2273
never@1738 2274 // Perform cloning to keep Invariance state correct since the
never@1738 2275 // late schedule will place invariant things in the loop.
never@1738 2276 ld_rng = invar.clone(ld_rng, ctrl);
cfang@1607 2277 if (offset && offset != zero) {
cfang@1607 2278 assert(invar.is_invariant(offset), "offset must be loop invariant");
cfang@1607 2279 offset = invar.clone(offset, ctrl);
cfang@1607 2280 }
cfang@1607 2281
never@1738 2282 // Test the lower bound
never@1738 2283 Node* lower_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, ld_rng, false);
never@1738 2284 IfNode* lower_bound_iff = lower_bound_proj->in(0)->as_If();
never@1738 2285 _igvn.hash_delete(lower_bound_iff);
never@1738 2286 lower_bound_iff->set_req(1, lower_bound_bol);
never@1738 2287 if (TraceLoopPredicate) tty->print_cr("lower bound check if: %d", lower_bound_iff->_idx);
never@1738 2288
never@1738 2289 // Test the upper bound
never@1738 2290 Node* upper_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, ld_rng, true);
never@1738 2291 IfNode* upper_bound_iff = upper_bound_proj->in(0)->as_If();
never@1738 2292 _igvn.hash_delete(upper_bound_iff);
never@1738 2293 upper_bound_iff->set_req(1, upper_bound_bol);
never@1738 2294 if (TraceLoopPredicate) tty->print_cr("upper bound check if: %d", lower_bound_iff->_idx);
never@1738 2295
never@1738 2296 // Fall through into rest of the clean up code which will move
never@1738 2297 // any dependent nodes onto the upper bound test.
never@1738 2298 new_predicate_proj = upper_bound_proj;
never@1738 2299 } else {
cfang@1607 2300 // The other proj of the "iff" is a uncommon trap projection, and we can assume
cfang@1607 2301 // the other proj will not be executed ("executed" means uct raised).
cfang@1607 2302 continue;
never@1738 2303 }
cfang@1607 2304
never@1738 2305 // Success - attach condition (new_predicate_bol) to predicate if
never@1738 2306 invar.map_ctrl(proj, new_predicate_proj); // so that invariance test can be appropriate
never@1738 2307
never@1738 2308 // Eliminate the old if in the loop body
never@1738 2309 _igvn.hash_delete(iff);
never@1738 2310 iff->set_req(1, proj->is_IfFalse() ? cond_false : cond_true);
never@1738 2311
never@1738 2312 Node* ctrl = new_predicate_proj; // new control
never@1738 2313 ProjNode* dp = proj; // old control
never@1738 2314 assert(get_loop(dp) == loop, "guaranteed at the time of collecting proj");
never@1738 2315 // Find nodes (depends only on the test) off the surviving projection;
never@1738 2316 // move them outside the loop with the control of proj_clone
never@1738 2317 for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
never@1738 2318 Node* cd = dp->fast_out(i); // Control-dependent node
never@1738 2319 if (cd->depends_only_on_test()) {
never@1738 2320 assert(cd->in(0) == dp, "");
never@1738 2321 _igvn.hash_delete(cd);
never@1738 2322 cd->set_req(0, ctrl); // ctrl, not NULL
never@1738 2323 set_early_ctrl(cd);
never@1738 2324 _igvn._worklist.push(cd);
never@1738 2325 IdealLoopTree *new_loop = get_loop(get_ctrl(cd));
never@1738 2326 if (new_loop != loop) {
never@1738 2327 if (!loop->_child) loop->_body.yank(cd);
never@1738 2328 if (!new_loop->_child ) new_loop->_body.push(cd);
never@1738 2329 }
never@1738 2330 --i;
never@1738 2331 --imax;
cfang@1607 2332 }
never@1738 2333 }
cfang@1607 2334
never@1738 2335 hoisted = true;
never@1738 2336 C->set_major_progress();
cfang@1607 2337 } // end while
cfang@1607 2338
cfang@1607 2339 #ifndef PRODUCT
never@1738 2340 // report that the loop predication has been actually performed
never@1738 2341 // for this loop
never@1738 2342 if (TraceLoopPredicate && hoisted) {
never@1738 2343 tty->print("Loop Predication Performed:");
never@1738 2344 loop->dump_head();
never@1738 2345 }
cfang@1607 2346 #endif
cfang@1607 2347
cfang@1607 2348 return hoisted;
cfang@1607 2349 }
cfang@1607 2350
cfang@1607 2351 //------------------------------loop_predication--------------------------------
cfang@1607 2352 // driver routine for loop predication optimization
cfang@1607 2353 bool IdealLoopTree::loop_predication( PhaseIdealLoop *phase) {
cfang@1607 2354 bool hoisted = false;
cfang@1607 2355 // Recursively promote predicates
cfang@1607 2356 if ( _child ) {
cfang@1607 2357 hoisted = _child->loop_predication( phase);
cfang@1607 2358 }
cfang@1607 2359
cfang@1607 2360 // self
cfang@1607 2361 if (!_irreducible && !tail()->is_top()) {
cfang@1607 2362 hoisted |= phase->loop_predication_impl(this);
cfang@1607 2363 }
cfang@1607 2364
cfang@1607 2365 if ( _next ) { //sibling
cfang@1607 2366 hoisted |= _next->loop_predication( phase);
cfang@1607 2367 }
cfang@1607 2368
cfang@1607 2369 return hoisted;
cfang@1607 2370 }

mercurial