src/share/vm/opto/loopTransform.cpp

Mon, 21 Mar 2011 11:28:14 -0700

author
kvn
date
Mon, 21 Mar 2011 11:28:14 -0700
changeset 2665
9dc311b8473e
parent 2314
f95d63e2154a
child 2685
1927db75dd85
permissions
-rw-r--r--

7008866: Missing loop predicate for loop with multiple entries
Summary: Add predicates when loop head bytecode is parsed instead of when back branch bytecode is parsed.
Reviewed-by: never

duke@435 1 /*
trims@1907 2 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "compiler/compileLog.hpp"
stefank@2314 27 #include "memory/allocation.inline.hpp"
stefank@2314 28 #include "opto/addnode.hpp"
stefank@2314 29 #include "opto/callnode.hpp"
stefank@2314 30 #include "opto/connode.hpp"
stefank@2314 31 #include "opto/divnode.hpp"
stefank@2314 32 #include "opto/loopnode.hpp"
stefank@2314 33 #include "opto/mulnode.hpp"
stefank@2314 34 #include "opto/rootnode.hpp"
stefank@2314 35 #include "opto/runtime.hpp"
stefank@2314 36 #include "opto/subnode.hpp"
duke@435 37
duke@435 38 //------------------------------is_loop_exit-----------------------------------
duke@435 39 // Given an IfNode, return the loop-exiting projection or NULL if both
duke@435 40 // arms remain in the loop.
duke@435 41 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
duke@435 42 if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
duke@435 43 PhaseIdealLoop *phase = _phase;
duke@435 44 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 45 // we need loop unswitching instead of peeling.
duke@435 46 if( !is_member(phase->get_loop( iff->raw_out(0) )) )
duke@435 47 return iff->raw_out(0);
duke@435 48 if( !is_member(phase->get_loop( iff->raw_out(1) )) )
duke@435 49 return iff->raw_out(1);
duke@435 50 return NULL;
duke@435 51 }
duke@435 52
duke@435 53
duke@435 54 //=============================================================================
duke@435 55
duke@435 56
duke@435 57 //------------------------------record_for_igvn----------------------------
duke@435 58 // Put loop body on igvn work list
duke@435 59 void IdealLoopTree::record_for_igvn() {
duke@435 60 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 61 Node *n = _body.at(i);
duke@435 62 _phase->_igvn._worklist.push(n);
duke@435 63 }
duke@435 64 }
duke@435 65
duke@435 66 //------------------------------compute_profile_trip_cnt----------------------------
duke@435 67 // Compute loop trip count from profile data as
duke@435 68 // (backedge_count + loop_exit_count) / loop_exit_count
duke@435 69 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
duke@435 70 if (!_head->is_CountedLoop()) {
duke@435 71 return;
duke@435 72 }
duke@435 73 CountedLoopNode* head = _head->as_CountedLoop();
duke@435 74 if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
duke@435 75 return; // Already computed
duke@435 76 }
duke@435 77 float trip_cnt = (float)max_jint; // default is big
duke@435 78
duke@435 79 Node* back = head->in(LoopNode::LoopBackControl);
duke@435 80 while (back != head) {
duke@435 81 if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
duke@435 82 back->in(0) &&
duke@435 83 back->in(0)->is_If() &&
duke@435 84 back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
duke@435 85 back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
duke@435 86 break;
duke@435 87 }
duke@435 88 back = phase->idom(back);
duke@435 89 }
duke@435 90 if (back != head) {
duke@435 91 assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
duke@435 92 back->in(0), "if-projection exists");
duke@435 93 IfNode* back_if = back->in(0)->as_If();
duke@435 94 float loop_back_cnt = back_if->_fcnt * back_if->_prob;
duke@435 95
duke@435 96 // Now compute a loop exit count
duke@435 97 float loop_exit_cnt = 0.0f;
duke@435 98 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 99 Node *n = _body[i];
duke@435 100 if( n->is_If() ) {
duke@435 101 IfNode *iff = n->as_If();
duke@435 102 if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
duke@435 103 Node *exit = is_loop_exit(iff);
duke@435 104 if( exit ) {
duke@435 105 float exit_prob = iff->_prob;
duke@435 106 if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
duke@435 107 if (exit_prob > PROB_MIN) {
duke@435 108 float exit_cnt = iff->_fcnt * exit_prob;
duke@435 109 loop_exit_cnt += exit_cnt;
duke@435 110 }
duke@435 111 }
duke@435 112 }
duke@435 113 }
duke@435 114 }
duke@435 115 if (loop_exit_cnt > 0.0f) {
duke@435 116 trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
duke@435 117 } else {
duke@435 118 // No exit count so use
duke@435 119 trip_cnt = loop_back_cnt;
duke@435 120 }
duke@435 121 }
duke@435 122 #ifndef PRODUCT
duke@435 123 if (TraceProfileTripCount) {
duke@435 124 tty->print_cr("compute_profile_trip_cnt lp: %d cnt: %f\n", head->_idx, trip_cnt);
duke@435 125 }
duke@435 126 #endif
duke@435 127 head->set_profile_trip_cnt(trip_cnt);
duke@435 128 }
duke@435 129
duke@435 130 //---------------------is_invariant_addition-----------------------------
duke@435 131 // Return nonzero index of invariant operand for an Add or Sub
twisti@1040 132 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
duke@435 133 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
duke@435 134 int op = n->Opcode();
duke@435 135 if (op == Op_AddI || op == Op_SubI) {
duke@435 136 bool in1_invar = this->is_invariant(n->in(1));
duke@435 137 bool in2_invar = this->is_invariant(n->in(2));
duke@435 138 if (in1_invar && !in2_invar) return 1;
duke@435 139 if (!in1_invar && in2_invar) return 2;
duke@435 140 }
duke@435 141 return 0;
duke@435 142 }
duke@435 143
duke@435 144 //---------------------reassociate_add_sub-----------------------------
duke@435 145 // Reassociate invariant add and subtract expressions:
duke@435 146 //
duke@435 147 // inv1 + (x + inv2) => ( inv1 + inv2) + x
duke@435 148 // (x + inv2) + inv1 => ( inv1 + inv2) + x
duke@435 149 // inv1 + (x - inv2) => ( inv1 - inv2) + x
duke@435 150 // inv1 - (inv2 - x) => ( inv1 - inv2) + x
duke@435 151 // (x + inv2) - inv1 => (-inv1 + inv2) + x
duke@435 152 // (x - inv2) + inv1 => ( inv1 - inv2) + x
duke@435 153 // (x - inv2) - inv1 => (-inv1 - inv2) + x
duke@435 154 // inv1 + (inv2 - x) => ( inv1 + inv2) - x
duke@435 155 // inv1 - (x - inv2) => ( inv1 + inv2) - x
duke@435 156 // (inv2 - x) + inv1 => ( inv1 + inv2) - x
duke@435 157 // (inv2 - x) - inv1 => (-inv1 + inv2) - x
duke@435 158 // inv1 - (x + inv2) => ( inv1 - inv2) - x
duke@435 159 //
duke@435 160 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
duke@435 161 if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
duke@435 162 if (is_invariant(n1)) return NULL;
duke@435 163 int inv1_idx = is_invariant_addition(n1, phase);
duke@435 164 if (!inv1_idx) return NULL;
duke@435 165 // Don't mess with add of constant (igvn moves them to expression tree root.)
duke@435 166 if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
duke@435 167 Node* inv1 = n1->in(inv1_idx);
duke@435 168 Node* n2 = n1->in(3 - inv1_idx);
duke@435 169 int inv2_idx = is_invariant_addition(n2, phase);
duke@435 170 if (!inv2_idx) return NULL;
duke@435 171 Node* x = n2->in(3 - inv2_idx);
duke@435 172 Node* inv2 = n2->in(inv2_idx);
duke@435 173
duke@435 174 bool neg_x = n2->is_Sub() && inv2_idx == 1;
duke@435 175 bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
duke@435 176 bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
duke@435 177 if (n1->is_Sub() && inv1_idx == 1) {
duke@435 178 neg_x = !neg_x;
duke@435 179 neg_inv2 = !neg_inv2;
duke@435 180 }
duke@435 181 Node* inv1_c = phase->get_ctrl(inv1);
duke@435 182 Node* inv2_c = phase->get_ctrl(inv2);
duke@435 183 Node* n_inv1;
duke@435 184 if (neg_inv1) {
duke@435 185 Node *zero = phase->_igvn.intcon(0);
duke@435 186 phase->set_ctrl(zero, phase->C->root());
duke@435 187 n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
duke@435 188 phase->register_new_node(n_inv1, inv1_c);
duke@435 189 } else {
duke@435 190 n_inv1 = inv1;
duke@435 191 }
duke@435 192 Node* inv;
duke@435 193 if (neg_inv2) {
duke@435 194 inv = new (phase->C, 3) SubINode(n_inv1, inv2);
duke@435 195 } else {
duke@435 196 inv = new (phase->C, 3) AddINode(n_inv1, inv2);
duke@435 197 }
duke@435 198 phase->register_new_node(inv, phase->get_early_ctrl(inv));
duke@435 199
duke@435 200 Node* addx;
duke@435 201 if (neg_x) {
duke@435 202 addx = new (phase->C, 3) SubINode(inv, x);
duke@435 203 } else {
duke@435 204 addx = new (phase->C, 3) AddINode(x, inv);
duke@435 205 }
duke@435 206 phase->register_new_node(addx, phase->get_ctrl(x));
kvn@1976 207 phase->_igvn.replace_node(n1, addx);
kvn@2665 208 assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
kvn@2665 209 _body.yank(n1);
duke@435 210 return addx;
duke@435 211 }
duke@435 212
duke@435 213 //---------------------reassociate_invariants-----------------------------
duke@435 214 // Reassociate invariant expressions:
duke@435 215 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
duke@435 216 for (int i = _body.size() - 1; i >= 0; i--) {
duke@435 217 Node *n = _body.at(i);
duke@435 218 for (int j = 0; j < 5; j++) {
duke@435 219 Node* nn = reassociate_add_sub(n, phase);
duke@435 220 if (nn == NULL) break;
duke@435 221 n = nn; // again
duke@435 222 };
duke@435 223 }
duke@435 224 }
duke@435 225
duke@435 226 //------------------------------policy_peeling---------------------------------
duke@435 227 // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
duke@435 228 // make some loop-invariant test (usually a null-check) happen before the loop.
duke@435 229 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
duke@435 230 Node *test = ((IdealLoopTree*)this)->tail();
duke@435 231 int body_size = ((IdealLoopTree*)this)->_body.size();
duke@435 232 int uniq = phase->C->unique();
duke@435 233 // Peeling does loop cloning which can result in O(N^2) node construction
duke@435 234 if( body_size > 255 /* Prevent overflow for large body_size */
duke@435 235 || (body_size * body_size + uniq > MaxNodeLimit) ) {
duke@435 236 return false; // too large to safely clone
duke@435 237 }
duke@435 238 while( test != _head ) { // Scan till run off top of loop
duke@435 239 if( test->is_If() ) { // Test?
duke@435 240 Node *ctrl = phase->get_ctrl(test->in(1));
duke@435 241 if (ctrl->is_top())
duke@435 242 return false; // Found dead test on live IF? No peeling!
duke@435 243 // Standard IF only has one input value to check for loop invariance
duke@435 244 assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
duke@435 245 // Condition is not a member of this loop?
duke@435 246 if( !is_member(phase->get_loop(ctrl)) &&
duke@435 247 is_loop_exit(test) )
duke@435 248 return true; // Found reason to peel!
duke@435 249 }
duke@435 250 // Walk up dominators to loop _head looking for test which is
duke@435 251 // executed on every path thru loop.
duke@435 252 test = phase->idom(test);
duke@435 253 }
duke@435 254 return false;
duke@435 255 }
duke@435 256
duke@435 257 //------------------------------peeled_dom_test_elim---------------------------
duke@435 258 // If we got the effect of peeling, either by actually peeling or by making
duke@435 259 // a pre-loop which must execute at least once, we can remove all
duke@435 260 // loop-invariant dominated tests in the main body.
duke@435 261 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 262 bool progress = true;
duke@435 263 while( progress ) {
duke@435 264 progress = false; // Reset for next iteration
duke@435 265 Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
duke@435 266 Node *test = prev->in(0);
duke@435 267 while( test != loop->_head ) { // Scan till run off top of loop
duke@435 268
duke@435 269 int p_op = prev->Opcode();
duke@435 270 if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
duke@435 271 test->is_If() && // Test?
duke@435 272 !test->in(1)->is_Con() && // And not already obvious?
duke@435 273 // Condition is not a member of this loop?
duke@435 274 !loop->is_member(get_loop(get_ctrl(test->in(1))))){
duke@435 275 // Walk loop body looking for instances of this test
duke@435 276 for( uint i = 0; i < loop->_body.size(); i++ ) {
duke@435 277 Node *n = loop->_body.at(i);
duke@435 278 if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
duke@435 279 // IfNode was dominated by version in peeled loop body
duke@435 280 progress = true;
duke@435 281 dominated_by( old_new[prev->_idx], n );
duke@435 282 }
duke@435 283 }
duke@435 284 }
duke@435 285 prev = test;
duke@435 286 test = idom(test);
duke@435 287 } // End of scan tests in loop
duke@435 288
duke@435 289 } // End of while( progress )
duke@435 290 }
duke@435 291
duke@435 292 //------------------------------do_peeling-------------------------------------
duke@435 293 // Peel the first iteration of the given loop.
duke@435 294 // Step 1: Clone the loop body. The clone becomes the peeled iteration.
duke@435 295 // The pre-loop illegally has 2 control users (old & new loops).
duke@435 296 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
duke@435 297 // Do this by making the old-loop fall-in edges act as if they came
duke@435 298 // around the loopback from the prior iteration (follow the old-loop
duke@435 299 // backedges) and then map to the new peeled iteration. This leaves
duke@435 300 // the pre-loop with only 1 user (the new peeled iteration), but the
duke@435 301 // peeled-loop backedge has 2 users.
duke@435 302 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
duke@435 303 // extra backedge user.
duke@435 304 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 305
duke@435 306 C->set_major_progress();
duke@435 307 // Peeling a 'main' loop in a pre/main/post situation obfuscates the
duke@435 308 // 'pre' loop from the main and the 'pre' can no longer have it's
duke@435 309 // iterations adjusted. Therefore, we need to declare this loop as
duke@435 310 // no longer a 'main' loop; it will need new pre and post loops before
duke@435 311 // we can do further RCE.
kvn@2665 312 #ifndef PRODUCT
kvn@2665 313 if (TraceLoopOpts) {
kvn@2665 314 tty->print("Peel ");
kvn@2665 315 loop->dump_head();
kvn@2665 316 }
kvn@2665 317 #endif
duke@435 318 Node *h = loop->_head;
kvn@2665 319 if (h->is_CountedLoop()) {
duke@435 320 CountedLoopNode *cl = h->as_CountedLoop();
duke@435 321 assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
duke@435 322 cl->set_trip_count(cl->trip_count() - 1);
kvn@2665 323 if (cl->is_main_loop()) {
duke@435 324 cl->set_normal_loop();
duke@435 325 #ifndef PRODUCT
kvn@2665 326 if (PrintOpto && VerifyLoopOptimizations) {
duke@435 327 tty->print("Peeling a 'main' loop; resetting to 'normal' ");
duke@435 328 loop->dump_head();
duke@435 329 }
duke@435 330 #endif
duke@435 331 }
duke@435 332 }
duke@435 333
duke@435 334 // Step 1: Clone the loop body. The clone becomes the peeled iteration.
duke@435 335 // The pre-loop illegally has 2 control users (old & new loops).
duke@435 336 clone_loop( loop, old_new, dom_depth(loop->_head) );
duke@435 337
duke@435 338
duke@435 339 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
duke@435 340 // Do this by making the old-loop fall-in edges act as if they came
duke@435 341 // around the loopback from the prior iteration (follow the old-loop
duke@435 342 // backedges) and then map to the new peeled iteration. This leaves
duke@435 343 // the pre-loop with only 1 user (the new peeled iteration), but the
duke@435 344 // peeled-loop backedge has 2 users.
duke@435 345 for (DUIterator_Fast jmax, j = loop->_head->fast_outs(jmax); j < jmax; j++) {
duke@435 346 Node* old = loop->_head->fast_out(j);
duke@435 347 if( old->in(0) == loop->_head && old->req() == 3 &&
duke@435 348 (old->is_Loop() || old->is_Phi()) ) {
duke@435 349 Node *new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
duke@435 350 if( !new_exit_value ) // Backedge value is ALSO loop invariant?
duke@435 351 // Then loop body backedge value remains the same.
duke@435 352 new_exit_value = old->in(LoopNode::LoopBackControl);
duke@435 353 _igvn.hash_delete(old);
duke@435 354 old->set_req(LoopNode::EntryControl, new_exit_value);
duke@435 355 }
duke@435 356 }
duke@435 357
duke@435 358
duke@435 359 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
duke@435 360 // extra backedge user.
duke@435 361 Node *nnn = old_new[loop->_head->_idx];
duke@435 362 _igvn.hash_delete(nnn);
duke@435 363 nnn->set_req(LoopNode::LoopBackControl, C->top());
duke@435 364 for (DUIterator_Fast j2max, j2 = nnn->fast_outs(j2max); j2 < j2max; j2++) {
duke@435 365 Node* use = nnn->fast_out(j2);
duke@435 366 if( use->in(0) == nnn && use->req() == 3 && use->is_Phi() ) {
duke@435 367 _igvn.hash_delete(use);
duke@435 368 use->set_req(LoopNode::LoopBackControl, C->top());
duke@435 369 }
duke@435 370 }
duke@435 371
duke@435 372
duke@435 373 // Step 4: Correct dom-depth info. Set to loop-head depth.
duke@435 374 int dd = dom_depth(loop->_head);
duke@435 375 set_idom(loop->_head, loop->_head->in(1), dd);
duke@435 376 for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
duke@435 377 Node *old = loop->_body.at(j3);
duke@435 378 Node *nnn = old_new[old->_idx];
duke@435 379 if (!has_ctrl(nnn))
duke@435 380 set_idom(nnn, idom(nnn), dd-1);
duke@435 381 // While we're at it, remove any SafePoints from the peeled code
duke@435 382 if( old->Opcode() == Op_SafePoint ) {
duke@435 383 Node *nnn = old_new[old->_idx];
duke@435 384 lazy_replace(nnn,nnn->in(TypeFunc::Control));
duke@435 385 }
duke@435 386 }
duke@435 387
duke@435 388 // Now force out all loop-invariant dominating tests. The optimizer
duke@435 389 // finds some, but we _know_ they are all useless.
duke@435 390 peeled_dom_test_elim(loop,old_new);
duke@435 391
duke@435 392 loop->record_for_igvn();
duke@435 393 }
duke@435 394
duke@435 395 //------------------------------policy_maximally_unroll------------------------
duke@435 396 // Return exact loop trip count, or 0 if not maximally unrolling
duke@435 397 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
duke@435 398 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 399 assert( cl->is_normal_loop(), "" );
duke@435 400
duke@435 401 Node *init_n = cl->init_trip();
duke@435 402 Node *limit_n = cl->limit();
duke@435 403
duke@435 404 // Non-constant bounds
duke@435 405 if( init_n == NULL || !init_n->is_Con() ||
duke@435 406 limit_n == NULL || !limit_n->is_Con() ||
duke@435 407 // protect against stride not being a constant
duke@435 408 !cl->stride_is_con() ) {
duke@435 409 return false;
duke@435 410 }
duke@435 411 int init = init_n->get_int();
duke@435 412 int limit = limit_n->get_int();
duke@435 413 int span = limit - init;
duke@435 414 int stride = cl->stride_con();
duke@435 415
duke@435 416 if (init >= limit || stride > span) {
duke@435 417 // return a false (no maximally unroll) and the regular unroll/peel
duke@435 418 // route will make a small mess which CCP will fold away.
duke@435 419 return false;
duke@435 420 }
duke@435 421 uint trip_count = span/stride; // trip_count can be greater than 2 Gig.
duke@435 422 assert( (int)trip_count*stride == span, "must divide evenly" );
duke@435 423
duke@435 424 // Real policy: if we maximally unroll, does it get too big?
duke@435 425 // Allow the unrolled mess to get larger than standard loop
duke@435 426 // size. After all, it will no longer be a loop.
duke@435 427 uint body_size = _body.size();
duke@435 428 uint unroll_limit = (uint)LoopUnrollLimit * 4;
duke@435 429 assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
duke@435 430 cl->set_trip_count(trip_count);
duke@435 431 if( trip_count <= unroll_limit && body_size <= unroll_limit ) {
duke@435 432 uint new_body_size = body_size * trip_count;
duke@435 433 if (new_body_size <= unroll_limit &&
duke@435 434 body_size == new_body_size / trip_count &&
duke@435 435 // Unrolling can result in a large amount of node construction
duke@435 436 new_body_size < MaxNodeLimit - phase->C->unique()) {
duke@435 437 return true; // maximally unroll
duke@435 438 }
duke@435 439 }
duke@435 440
duke@435 441 return false; // Do not maximally unroll
duke@435 442 }
duke@435 443
duke@435 444
duke@435 445 //------------------------------policy_unroll----------------------------------
duke@435 446 // Return TRUE or FALSE if the loop should be unrolled or not. Unroll if
duke@435 447 // the loop is a CountedLoop and the body is small enough.
duke@435 448 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
duke@435 449
duke@435 450 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 451 assert( cl->is_normal_loop() || cl->is_main_loop(), "" );
duke@435 452
duke@435 453 // protect against stride not being a constant
duke@435 454 if( !cl->stride_is_con() ) return false;
duke@435 455
duke@435 456 // protect against over-unrolling
duke@435 457 if( cl->trip_count() <= 1 ) return false;
duke@435 458
duke@435 459 int future_unroll_ct = cl->unrolled_count() * 2;
duke@435 460
duke@435 461 // Don't unroll if the next round of unrolling would push us
duke@435 462 // over the expected trip count of the loop. One is subtracted
duke@435 463 // from the expected trip count because the pre-loop normally
duke@435 464 // executes 1 iteration.
duke@435 465 if (UnrollLimitForProfileCheck > 0 &&
duke@435 466 cl->profile_trip_cnt() != COUNT_UNKNOWN &&
duke@435 467 future_unroll_ct > UnrollLimitForProfileCheck &&
duke@435 468 (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
duke@435 469 return false;
duke@435 470 }
duke@435 471
duke@435 472 // When unroll count is greater than LoopUnrollMin, don't unroll if:
duke@435 473 // the residual iterations are more than 10% of the trip count
duke@435 474 // and rounds of "unroll,optimize" are not making significant progress
duke@435 475 // Progress defined as current size less than 20% larger than previous size.
duke@435 476 if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
duke@435 477 future_unroll_ct > LoopUnrollMin &&
duke@435 478 (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
duke@435 479 1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
duke@435 480 return false;
duke@435 481 }
duke@435 482
duke@435 483 Node *init_n = cl->init_trip();
duke@435 484 Node *limit_n = cl->limit();
duke@435 485 // Non-constant bounds.
duke@435 486 // Protect against over-unrolling when init or/and limit are not constant
duke@435 487 // (so that trip_count's init value is maxint) but iv range is known.
duke@435 488 if( init_n == NULL || !init_n->is_Con() ||
duke@435 489 limit_n == NULL || !limit_n->is_Con() ) {
duke@435 490 Node* phi = cl->phi();
duke@435 491 if( phi != NULL ) {
duke@435 492 assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
duke@435 493 const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
duke@435 494 int next_stride = cl->stride_con() * 2; // stride after this unroll
duke@435 495 if( next_stride > 0 ) {
duke@435 496 if( iv_type->_lo + next_stride <= iv_type->_lo || // overflow
duke@435 497 iv_type->_lo + next_stride > iv_type->_hi ) {
duke@435 498 return false; // over-unrolling
duke@435 499 }
duke@435 500 } else if( next_stride < 0 ) {
duke@435 501 if( iv_type->_hi + next_stride >= iv_type->_hi || // overflow
duke@435 502 iv_type->_hi + next_stride < iv_type->_lo ) {
duke@435 503 return false; // over-unrolling
duke@435 504 }
duke@435 505 }
duke@435 506 }
duke@435 507 }
duke@435 508
duke@435 509 // Adjust body_size to determine if we unroll or not
duke@435 510 uint body_size = _body.size();
duke@435 511 // Key test to unroll CaffeineMark's Logic test
duke@435 512 int xors_in_loop = 0;
duke@435 513 // Also count ModL, DivL and MulL which expand mightly
duke@435 514 for( uint k = 0; k < _body.size(); k++ ) {
duke@435 515 switch( _body.at(k)->Opcode() ) {
duke@435 516 case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
duke@435 517 case Op_ModL: body_size += 30; break;
duke@435 518 case Op_DivL: body_size += 30; break;
duke@435 519 case Op_MulL: body_size += 10; break;
duke@435 520 }
duke@435 521 }
duke@435 522
duke@435 523 // Check for being too big
duke@435 524 if( body_size > (uint)LoopUnrollLimit ) {
duke@435 525 if( xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
duke@435 526 // Normal case: loop too big
duke@435 527 return false;
duke@435 528 }
duke@435 529
duke@435 530 // Check for stride being a small enough constant
duke@435 531 if( abs(cl->stride_con()) > (1<<3) ) return false;
duke@435 532
duke@435 533 // Unroll once! (Each trip will soon do double iterations)
duke@435 534 return true;
duke@435 535 }
duke@435 536
duke@435 537 //------------------------------policy_align-----------------------------------
duke@435 538 // Return TRUE or FALSE if the loop should be cache-line aligned. Gather the
duke@435 539 // expression that does the alignment. Note that only one array base can be
twisti@1040 540 // aligned in a loop (unless the VM guarantees mutual alignment). Note that
duke@435 541 // if we vectorize short memory ops into longer memory ops, we may want to
duke@435 542 // increase alignment.
duke@435 543 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
duke@435 544 return false;
duke@435 545 }
duke@435 546
duke@435 547 //------------------------------policy_range_check-----------------------------
duke@435 548 // Return TRUE or FALSE if the loop should be range-check-eliminated.
duke@435 549 // Actually we do iteration-splitting, a more powerful form of RCE.
duke@435 550 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
duke@435 551 if( !RangeCheckElimination ) return false;
duke@435 552
duke@435 553 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 554 // If we unrolled with no intention of doing RCE and we later
duke@435 555 // changed our minds, we got no pre-loop. Either we need to
duke@435 556 // make a new pre-loop, or we gotta disallow RCE.
duke@435 557 if( cl->is_main_no_pre_loop() ) return false; // Disallowed for now.
duke@435 558 Node *trip_counter = cl->phi();
duke@435 559
duke@435 560 // Check loop body for tests of trip-counter plus loop-invariant vs
duke@435 561 // loop-invariant.
duke@435 562 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 563 Node *iff = _body[i];
duke@435 564 if( iff->Opcode() == Op_If ) { // Test?
duke@435 565
duke@435 566 // Comparing trip+off vs limit
duke@435 567 Node *bol = iff->in(1);
duke@435 568 if( bol->req() != 2 ) continue; // dead constant test
cfang@1607 569 if (!bol->is_Bool()) {
cfang@1607 570 assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
cfang@1607 571 continue;
cfang@1607 572 }
duke@435 573 Node *cmp = bol->in(1);
duke@435 574
duke@435 575 Node *rc_exp = cmp->in(1);
duke@435 576 Node *limit = cmp->in(2);
duke@435 577
duke@435 578 Node *limit_c = phase->get_ctrl(limit);
duke@435 579 if( limit_c == phase->C->top() )
duke@435 580 return false; // Found dead test on live IF? No RCE!
duke@435 581 if( is_member(phase->get_loop(limit_c) ) ) {
duke@435 582 // Compare might have operands swapped; commute them
duke@435 583 rc_exp = cmp->in(2);
duke@435 584 limit = cmp->in(1);
duke@435 585 limit_c = phase->get_ctrl(limit);
duke@435 586 if( is_member(phase->get_loop(limit_c) ) )
duke@435 587 continue; // Both inputs are loop varying; cannot RCE
duke@435 588 }
duke@435 589
duke@435 590 if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
duke@435 591 continue;
duke@435 592 }
duke@435 593 // Yeah! Found a test like 'trip+off vs limit'
duke@435 594 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 595 // we need loop unswitching instead of iteration splitting.
duke@435 596 if( is_loop_exit(iff) )
duke@435 597 return true; // Found reason to split iterations
duke@435 598 } // End of is IF
duke@435 599 }
duke@435 600
duke@435 601 return false;
duke@435 602 }
duke@435 603
duke@435 604 //------------------------------policy_peel_only-------------------------------
duke@435 605 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned. Useful
duke@435 606 // for unrolling loops with NO array accesses.
duke@435 607 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
duke@435 608
duke@435 609 for( uint i = 0; i < _body.size(); i++ )
duke@435 610 if( _body[i]->is_Mem() )
duke@435 611 return false;
duke@435 612
duke@435 613 // No memory accesses at all!
duke@435 614 return true;
duke@435 615 }
duke@435 616
duke@435 617 //------------------------------clone_up_backedge_goo--------------------------
duke@435 618 // If Node n lives in the back_ctrl block and cannot float, we clone a private
duke@435 619 // version of n in preheader_ctrl block and return that, otherwise return n.
duke@435 620 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
duke@435 621 if( get_ctrl(n) != back_ctrl ) return n;
duke@435 622
duke@435 623 Node *x = NULL; // If required, a clone of 'n'
duke@435 624 // Check for 'n' being pinned in the backedge.
duke@435 625 if( n->in(0) && n->in(0) == back_ctrl ) {
duke@435 626 x = n->clone(); // Clone a copy of 'n' to preheader
duke@435 627 x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
duke@435 628 }
duke@435 629
duke@435 630 // Recursive fixup any other input edges into x.
duke@435 631 // If there are no changes we can just return 'n', otherwise
duke@435 632 // we need to clone a private copy and change it.
duke@435 633 for( uint i = 1; i < n->req(); i++ ) {
duke@435 634 Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
duke@435 635 if( g != n->in(i) ) {
duke@435 636 if( !x )
duke@435 637 x = n->clone();
duke@435 638 x->set_req(i, g);
duke@435 639 }
duke@435 640 }
duke@435 641 if( x ) { // x can legally float to pre-header location
duke@435 642 register_new_node( x, preheader_ctrl );
duke@435 643 return x;
duke@435 644 } else { // raise n to cover LCA of uses
duke@435 645 set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
duke@435 646 }
duke@435 647 return n;
duke@435 648 }
duke@435 649
duke@435 650 //------------------------------insert_pre_post_loops--------------------------
duke@435 651 // Insert pre and post loops. If peel_only is set, the pre-loop can not have
duke@435 652 // more iterations added. It acts as a 'peel' only, no lower-bound RCE, no
duke@435 653 // alignment. Useful to unroll loops that do no array accesses.
duke@435 654 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
duke@435 655
kvn@2665 656 #ifndef PRODUCT
kvn@2665 657 if (TraceLoopOpts) {
kvn@2665 658 if (peel_only)
kvn@2665 659 tty->print("PeelMainPost ");
kvn@2665 660 else
kvn@2665 661 tty->print("PreMainPost ");
kvn@2665 662 loop->dump_head();
kvn@2665 663 }
kvn@2665 664 #endif
duke@435 665 C->set_major_progress();
duke@435 666
duke@435 667 // Find common pieces of the loop being guarded with pre & post loops
duke@435 668 CountedLoopNode *main_head = loop->_head->as_CountedLoop();
duke@435 669 assert( main_head->is_normal_loop(), "" );
duke@435 670 CountedLoopEndNode *main_end = main_head->loopexit();
duke@435 671 assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
duke@435 672 uint dd_main_head = dom_depth(main_head);
duke@435 673 uint max = main_head->outcnt();
duke@435 674
duke@435 675 Node *pre_header= main_head->in(LoopNode::EntryControl);
duke@435 676 Node *init = main_head->init_trip();
duke@435 677 Node *incr = main_end ->incr();
duke@435 678 Node *limit = main_end ->limit();
duke@435 679 Node *stride = main_end ->stride();
duke@435 680 Node *cmp = main_end ->cmp_node();
duke@435 681 BoolTest::mask b_test = main_end->test_trip();
duke@435 682
duke@435 683 // Need only 1 user of 'bol' because I will be hacking the loop bounds.
duke@435 684 Node *bol = main_end->in(CountedLoopEndNode::TestValue);
duke@435 685 if( bol->outcnt() != 1 ) {
duke@435 686 bol = bol->clone();
duke@435 687 register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
duke@435 688 _igvn.hash_delete(main_end);
duke@435 689 main_end->set_req(CountedLoopEndNode::TestValue, bol);
duke@435 690 }
duke@435 691 // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
duke@435 692 if( cmp->outcnt() != 1 ) {
duke@435 693 cmp = cmp->clone();
duke@435 694 register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
duke@435 695 _igvn.hash_delete(bol);
duke@435 696 bol->set_req(1, cmp);
duke@435 697 }
duke@435 698
duke@435 699 //------------------------------
duke@435 700 // Step A: Create Post-Loop.
duke@435 701 Node* main_exit = main_end->proj_out(false);
duke@435 702 assert( main_exit->Opcode() == Op_IfFalse, "" );
duke@435 703 int dd_main_exit = dom_depth(main_exit);
duke@435 704
duke@435 705 // Step A1: Clone the loop body. The clone becomes the post-loop. The main
duke@435 706 // loop pre-header illegally has 2 control users (old & new loops).
duke@435 707 clone_loop( loop, old_new, dd_main_exit );
duke@435 708 assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
duke@435 709 CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
duke@435 710 post_head->set_post_loop(main_head);
duke@435 711
kvn@835 712 // Reduce the post-loop trip count.
kvn@835 713 CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
kvn@835 714 post_end->_prob = PROB_FAIR;
kvn@835 715
duke@435 716 // Build the main-loop normal exit.
duke@435 717 IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
duke@435 718 _igvn.register_new_node_with_optimizer( new_main_exit );
duke@435 719 set_idom(new_main_exit, main_end, dd_main_exit );
duke@435 720 set_loop(new_main_exit, loop->_parent);
duke@435 721
duke@435 722 // Step A2: Build a zero-trip guard for the post-loop. After leaving the
duke@435 723 // main-loop, the post-loop may not execute at all. We 'opaque' the incr
duke@435 724 // (the main-loop trip-counter exit value) because we will be changing
duke@435 725 // the exit value (via unrolling) so we cannot constant-fold away the zero
duke@435 726 // trip guard until all unrolling is done.
kvn@651 727 Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
duke@435 728 Node *zer_cmp = new (C, 3) CmpINode( zer_opaq, limit );
duke@435 729 Node *zer_bol = new (C, 2) BoolNode( zer_cmp, b_test );
duke@435 730 register_new_node( zer_opaq, new_main_exit );
duke@435 731 register_new_node( zer_cmp , new_main_exit );
duke@435 732 register_new_node( zer_bol , new_main_exit );
duke@435 733
duke@435 734 // Build the IfNode
duke@435 735 IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
duke@435 736 _igvn.register_new_node_with_optimizer( zer_iff );
duke@435 737 set_idom(zer_iff, new_main_exit, dd_main_exit);
duke@435 738 set_loop(zer_iff, loop->_parent);
duke@435 739
duke@435 740 // Plug in the false-path, taken if we need to skip post-loop
duke@435 741 _igvn.hash_delete( main_exit );
duke@435 742 main_exit->set_req(0, zer_iff);
duke@435 743 _igvn._worklist.push(main_exit);
duke@435 744 set_idom(main_exit, zer_iff, dd_main_exit);
duke@435 745 set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
duke@435 746 // Make the true-path, must enter the post loop
duke@435 747 Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
duke@435 748 _igvn.register_new_node_with_optimizer( zer_taken );
duke@435 749 set_idom(zer_taken, zer_iff, dd_main_exit);
duke@435 750 set_loop(zer_taken, loop->_parent);
duke@435 751 // Plug in the true path
duke@435 752 _igvn.hash_delete( post_head );
duke@435 753 post_head->set_req(LoopNode::EntryControl, zer_taken);
duke@435 754 set_idom(post_head, zer_taken, dd_main_exit);
duke@435 755
duke@435 756 // Step A3: Make the fall-in values to the post-loop come from the
duke@435 757 // fall-out values of the main-loop.
duke@435 758 for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
duke@435 759 Node* main_phi = main_head->fast_out(i);
duke@435 760 if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
duke@435 761 Node *post_phi = old_new[main_phi->_idx];
duke@435 762 Node *fallmain = clone_up_backedge_goo(main_head->back_control(),
duke@435 763 post_head->init_control(),
duke@435 764 main_phi->in(LoopNode::LoopBackControl));
duke@435 765 _igvn.hash_delete(post_phi);
duke@435 766 post_phi->set_req( LoopNode::EntryControl, fallmain );
duke@435 767 }
duke@435 768 }
duke@435 769
duke@435 770 // Update local caches for next stanza
duke@435 771 main_exit = new_main_exit;
duke@435 772
duke@435 773
duke@435 774 //------------------------------
duke@435 775 // Step B: Create Pre-Loop.
duke@435 776
duke@435 777 // Step B1: Clone the loop body. The clone becomes the pre-loop. The main
duke@435 778 // loop pre-header illegally has 2 control users (old & new loops).
duke@435 779 clone_loop( loop, old_new, dd_main_head );
duke@435 780 CountedLoopNode* pre_head = old_new[main_head->_idx]->as_CountedLoop();
duke@435 781 CountedLoopEndNode* pre_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
duke@435 782 pre_head->set_pre_loop(main_head);
duke@435 783 Node *pre_incr = old_new[incr->_idx];
duke@435 784
kvn@835 785 // Reduce the pre-loop trip count.
kvn@835 786 pre_end->_prob = PROB_FAIR;
kvn@835 787
duke@435 788 // Find the pre-loop normal exit.
duke@435 789 Node* pre_exit = pre_end->proj_out(false);
duke@435 790 assert( pre_exit->Opcode() == Op_IfFalse, "" );
duke@435 791 IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
duke@435 792 _igvn.register_new_node_with_optimizer( new_pre_exit );
duke@435 793 set_idom(new_pre_exit, pre_end, dd_main_head);
duke@435 794 set_loop(new_pre_exit, loop->_parent);
duke@435 795
duke@435 796 // Step B2: Build a zero-trip guard for the main-loop. After leaving the
duke@435 797 // pre-loop, the main-loop may not execute at all. Later in life this
duke@435 798 // zero-trip guard will become the minimum-trip guard when we unroll
duke@435 799 // the main-loop.
kvn@651 800 Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
duke@435 801 Node *min_cmp = new (C, 3) CmpINode( pre_incr, min_opaq );
duke@435 802 Node *min_bol = new (C, 2) BoolNode( min_cmp, b_test );
duke@435 803 register_new_node( min_opaq, new_pre_exit );
duke@435 804 register_new_node( min_cmp , new_pre_exit );
duke@435 805 register_new_node( min_bol , new_pre_exit );
duke@435 806
kvn@835 807 // Build the IfNode (assume the main-loop is executed always).
kvn@835 808 IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
duke@435 809 _igvn.register_new_node_with_optimizer( min_iff );
duke@435 810 set_idom(min_iff, new_pre_exit, dd_main_head);
duke@435 811 set_loop(min_iff, loop->_parent);
duke@435 812
duke@435 813 // Plug in the false-path, taken if we need to skip main-loop
duke@435 814 _igvn.hash_delete( pre_exit );
duke@435 815 pre_exit->set_req(0, min_iff);
duke@435 816 set_idom(pre_exit, min_iff, dd_main_head);
duke@435 817 set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
duke@435 818 // Make the true-path, must enter the main loop
duke@435 819 Node *min_taken = new (C, 1) IfTrueNode( min_iff );
duke@435 820 _igvn.register_new_node_with_optimizer( min_taken );
duke@435 821 set_idom(min_taken, min_iff, dd_main_head);
duke@435 822 set_loop(min_taken, loop->_parent);
duke@435 823 // Plug in the true path
duke@435 824 _igvn.hash_delete( main_head );
duke@435 825 main_head->set_req(LoopNode::EntryControl, min_taken);
duke@435 826 set_idom(main_head, min_taken, dd_main_head);
duke@435 827
duke@435 828 // Step B3: Make the fall-in values to the main-loop come from the
duke@435 829 // fall-out values of the pre-loop.
duke@435 830 for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
duke@435 831 Node* main_phi = main_head->fast_out(i2);
duke@435 832 if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
duke@435 833 Node *pre_phi = old_new[main_phi->_idx];
duke@435 834 Node *fallpre = clone_up_backedge_goo(pre_head->back_control(),
duke@435 835 main_head->init_control(),
duke@435 836 pre_phi->in(LoopNode::LoopBackControl));
duke@435 837 _igvn.hash_delete(main_phi);
duke@435 838 main_phi->set_req( LoopNode::EntryControl, fallpre );
duke@435 839 }
duke@435 840 }
duke@435 841
duke@435 842 // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
duke@435 843 // RCE and alignment may change this later.
duke@435 844 Node *cmp_end = pre_end->cmp_node();
duke@435 845 assert( cmp_end->in(2) == limit, "" );
duke@435 846 Node *pre_limit = new (C, 3) AddINode( init, stride );
duke@435 847
duke@435 848 // Save the original loop limit in this Opaque1 node for
duke@435 849 // use by range check elimination.
kvn@651 850 Node *pre_opaq = new (C, 3) Opaque1Node(C, pre_limit, limit);
duke@435 851
duke@435 852 register_new_node( pre_limit, pre_head->in(0) );
duke@435 853 register_new_node( pre_opaq , pre_head->in(0) );
duke@435 854
duke@435 855 // Since no other users of pre-loop compare, I can hack limit directly
duke@435 856 assert( cmp_end->outcnt() == 1, "no other users" );
duke@435 857 _igvn.hash_delete(cmp_end);
duke@435 858 cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
duke@435 859
duke@435 860 // Special case for not-equal loop bounds:
duke@435 861 // Change pre loop test, main loop test, and the
duke@435 862 // main loop guard test to use lt or gt depending on stride
duke@435 863 // direction:
duke@435 864 // positive stride use <
duke@435 865 // negative stride use >
duke@435 866
duke@435 867 if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
duke@435 868
duke@435 869 BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
duke@435 870 // Modify pre loop end condition
duke@435 871 Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
duke@435 872 BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
duke@435 873 register_new_node( new_bol0, pre_head->in(0) );
duke@435 874 _igvn.hash_delete(pre_end);
duke@435 875 pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
duke@435 876 // Modify main loop guard condition
duke@435 877 assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
duke@435 878 BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
duke@435 879 register_new_node( new_bol1, new_pre_exit );
duke@435 880 _igvn.hash_delete(min_iff);
duke@435 881 min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
duke@435 882 // Modify main loop end condition
duke@435 883 BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
duke@435 884 BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
duke@435 885 register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
duke@435 886 _igvn.hash_delete(main_end);
duke@435 887 main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
duke@435 888 }
duke@435 889
duke@435 890 // Flag main loop
duke@435 891 main_head->set_main_loop();
duke@435 892 if( peel_only ) main_head->set_main_no_pre_loop();
duke@435 893
duke@435 894 // It's difficult to be precise about the trip-counts
duke@435 895 // for the pre/post loops. They are usually very short,
duke@435 896 // so guess that 4 trips is a reasonable value.
duke@435 897 post_head->set_profile_trip_cnt(4.0);
duke@435 898 pre_head->set_profile_trip_cnt(4.0);
duke@435 899
duke@435 900 // Now force out all loop-invariant dominating tests. The optimizer
duke@435 901 // finds some, but we _know_ they are all useless.
duke@435 902 peeled_dom_test_elim(loop,old_new);
duke@435 903 }
duke@435 904
duke@435 905 //------------------------------is_invariant-----------------------------
duke@435 906 // Return true if n is invariant
duke@435 907 bool IdealLoopTree::is_invariant(Node* n) const {
cfang@1607 908 Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
duke@435 909 if (n_c->is_top()) return false;
duke@435 910 return !is_member(_phase->get_loop(n_c));
duke@435 911 }
duke@435 912
duke@435 913
duke@435 914 //------------------------------do_unroll--------------------------------------
duke@435 915 // Unroll the loop body one step - make each trip do 2 iterations.
duke@435 916 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
kvn@2665 917 assert(LoopUnrollLimit, "");
kvn@2665 918 CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
kvn@2665 919 CountedLoopEndNode *loop_end = loop_head->loopexit();
kvn@2665 920 assert(loop_end, "");
duke@435 921 #ifndef PRODUCT
kvn@2665 922 if (PrintOpto && VerifyLoopOptimizations) {
duke@435 923 tty->print("Unrolling ");
duke@435 924 loop->dump_head();
kvn@2665 925 } else if (TraceLoopOpts) {
kvn@2665 926 tty->print("Unroll %d ", loop_head->unrolled_count()*2);
kvn@2665 927 loop->dump_head();
duke@435 928 }
duke@435 929 #endif
duke@435 930
duke@435 931 // Remember loop node count before unrolling to detect
duke@435 932 // if rounds of unroll,optimize are making progress
duke@435 933 loop_head->set_node_count_before_unroll(loop->_body.size());
duke@435 934
duke@435 935 Node *ctrl = loop_head->in(LoopNode::EntryControl);
duke@435 936 Node *limit = loop_head->limit();
duke@435 937 Node *init = loop_head->init_trip();
kvn@2665 938 Node *stride = loop_head->stride();
duke@435 939
duke@435 940 Node *opaq = NULL;
duke@435 941 if( adjust_min_trip ) { // If not maximally unrolling, need adjustment
duke@435 942 assert( loop_head->is_main_loop(), "" );
duke@435 943 assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
duke@435 944 Node *iff = ctrl->in(0);
duke@435 945 assert( iff->Opcode() == Op_If, "" );
duke@435 946 Node *bol = iff->in(1);
duke@435 947 assert( bol->Opcode() == Op_Bool, "" );
duke@435 948 Node *cmp = bol->in(1);
duke@435 949 assert( cmp->Opcode() == Op_CmpI, "" );
duke@435 950 opaq = cmp->in(2);
duke@435 951 // Occasionally it's possible for a pre-loop Opaque1 node to be
duke@435 952 // optimized away and then another round of loop opts attempted.
duke@435 953 // We can not optimize this particular loop in that case.
duke@435 954 if( opaq->Opcode() != Op_Opaque1 )
duke@435 955 return; // Cannot find pre-loop! Bail out!
duke@435 956 }
duke@435 957
duke@435 958 C->set_major_progress();
duke@435 959
duke@435 960 // Adjust max trip count. The trip count is intentionally rounded
duke@435 961 // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
duke@435 962 // the main, unrolled, part of the loop will never execute as it is protected
duke@435 963 // by the min-trip test. See bug 4834191 for a case where we over-unrolled
duke@435 964 // and later determined that part of the unrolled loop was dead.
duke@435 965 loop_head->set_trip_count(loop_head->trip_count() / 2);
duke@435 966
duke@435 967 // Double the count of original iterations in the unrolled loop body.
duke@435 968 loop_head->double_unrolled_count();
duke@435 969
duke@435 970 // -----------
duke@435 971 // Step 2: Cut back the trip counter for an unroll amount of 2.
duke@435 972 // Loop will normally trip (limit - init)/stride_con. Since it's a
duke@435 973 // CountedLoop this is exact (stride divides limit-init exactly).
duke@435 974 // We are going to double the loop body, so we want to knock off any
duke@435 975 // odd iteration: (trip_cnt & ~1). Then back compute a new limit.
duke@435 976 Node *span = new (C, 3) SubINode( limit, init );
duke@435 977 register_new_node( span, ctrl );
kvn@2665 978 Node *trip = new (C, 3) DivINode( 0, span, stride );
duke@435 979 register_new_node( trip, ctrl );
duke@435 980 Node *mtwo = _igvn.intcon(-2);
duke@435 981 set_ctrl(mtwo, C->root());
duke@435 982 Node *rond = new (C, 3) AndINode( trip, mtwo );
duke@435 983 register_new_node( rond, ctrl );
kvn@2665 984 Node *spn2 = new (C, 3) MulINode( rond, stride );
duke@435 985 register_new_node( spn2, ctrl );
duke@435 986 Node *lim2 = new (C, 3) AddINode( spn2, init );
duke@435 987 register_new_node( lim2, ctrl );
duke@435 988
duke@435 989 // Hammer in the new limit
duke@435 990 Node *ctrl2 = loop_end->in(0);
duke@435 991 Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), lim2 );
duke@435 992 register_new_node( cmp2, ctrl2 );
duke@435 993 Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
duke@435 994 register_new_node( bol2, ctrl2 );
duke@435 995 _igvn.hash_delete(loop_end);
duke@435 996 loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
duke@435 997
duke@435 998 // Step 3: Find the min-trip test guaranteed before a 'main' loop.
duke@435 999 // Make it a 1-trip test (means at least 2 trips).
duke@435 1000 if( adjust_min_trip ) {
duke@435 1001 // Guard test uses an 'opaque' node which is not shared. Hence I
duke@435 1002 // can edit it's inputs directly. Hammer in the new limit for the
duke@435 1003 // minimum-trip guard.
duke@435 1004 assert( opaq->outcnt() == 1, "" );
duke@435 1005 _igvn.hash_delete(opaq);
duke@435 1006 opaq->set_req(1, lim2);
duke@435 1007 }
duke@435 1008
duke@435 1009 // ---------
duke@435 1010 // Step 4: Clone the loop body. Move it inside the loop. This loop body
duke@435 1011 // represents the odd iterations; since the loop trips an even number of
duke@435 1012 // times its backedge is never taken. Kill the backedge.
duke@435 1013 uint dd = dom_depth(loop_head);
duke@435 1014 clone_loop( loop, old_new, dd );
duke@435 1015
duke@435 1016 // Make backedges of the clone equal to backedges of the original.
duke@435 1017 // Make the fall-in from the original come from the fall-out of the clone.
duke@435 1018 for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
duke@435 1019 Node* phi = loop_head->fast_out(j);
duke@435 1020 if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
duke@435 1021 Node *newphi = old_new[phi->_idx];
duke@435 1022 _igvn.hash_delete( phi );
duke@435 1023 _igvn.hash_delete( newphi );
duke@435 1024
duke@435 1025 phi ->set_req(LoopNode:: EntryControl, newphi->in(LoopNode::LoopBackControl));
duke@435 1026 newphi->set_req(LoopNode::LoopBackControl, phi ->in(LoopNode::LoopBackControl));
duke@435 1027 phi ->set_req(LoopNode::LoopBackControl, C->top());
duke@435 1028 }
duke@435 1029 }
duke@435 1030 Node *clone_head = old_new[loop_head->_idx];
duke@435 1031 _igvn.hash_delete( clone_head );
duke@435 1032 loop_head ->set_req(LoopNode:: EntryControl, clone_head->in(LoopNode::LoopBackControl));
duke@435 1033 clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
duke@435 1034 loop_head ->set_req(LoopNode::LoopBackControl, C->top());
duke@435 1035 loop->_head = clone_head; // New loop header
duke@435 1036
duke@435 1037 set_idom(loop_head, loop_head ->in(LoopNode::EntryControl), dd);
duke@435 1038 set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
duke@435 1039
duke@435 1040 // Kill the clone's backedge
duke@435 1041 Node *newcle = old_new[loop_end->_idx];
duke@435 1042 _igvn.hash_delete( newcle );
duke@435 1043 Node *one = _igvn.intcon(1);
duke@435 1044 set_ctrl(one, C->root());
duke@435 1045 newcle->set_req(1, one);
duke@435 1046 // Force clone into same loop body
duke@435 1047 uint max = loop->_body.size();
duke@435 1048 for( uint k = 0; k < max; k++ ) {
duke@435 1049 Node *old = loop->_body.at(k);
duke@435 1050 Node *nnn = old_new[old->_idx];
duke@435 1051 loop->_body.push(nnn);
duke@435 1052 if (!has_ctrl(old))
duke@435 1053 set_loop(nnn, loop);
duke@435 1054 }
never@802 1055
never@802 1056 loop->record_for_igvn();
duke@435 1057 }
duke@435 1058
duke@435 1059 //------------------------------do_maximally_unroll----------------------------
duke@435 1060
duke@435 1061 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 1062 CountedLoopNode *cl = loop->_head->as_CountedLoop();
kvn@2665 1063 assert(cl->trip_count() > 0, "");
kvn@2665 1064 #ifndef PRODUCT
kvn@2665 1065 if (TraceLoopOpts) {
kvn@2665 1066 tty->print("MaxUnroll %d ", cl->trip_count());
kvn@2665 1067 loop->dump_head();
kvn@2665 1068 }
kvn@2665 1069 #endif
duke@435 1070
duke@435 1071 // If loop is tripping an odd number of times, peel odd iteration
kvn@2665 1072 if ((cl->trip_count() & 1) == 1) {
kvn@2665 1073 do_peeling(loop, old_new);
duke@435 1074 }
duke@435 1075
duke@435 1076 // Now its tripping an even number of times remaining. Double loop body.
duke@435 1077 // Do not adjust pre-guards; they are not needed and do not exist.
kvn@2665 1078 if (cl->trip_count() > 0) {
kvn@2665 1079 do_unroll(loop, old_new, false);
duke@435 1080 }
duke@435 1081 }
duke@435 1082
duke@435 1083 //------------------------------dominates_backedge---------------------------------
duke@435 1084 // Returns true if ctrl is executed on every complete iteration
duke@435 1085 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
duke@435 1086 assert(ctrl->is_CFG(), "must be control");
duke@435 1087 Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
duke@435 1088 return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
duke@435 1089 }
duke@435 1090
duke@435 1091 //------------------------------add_constraint---------------------------------
duke@435 1092 // Constrain the main loop iterations so the condition:
duke@435 1093 // scale_con * I + offset < limit
duke@435 1094 // always holds true. That is, either increase the number of iterations in
duke@435 1095 // the pre-loop or the post-loop until the condition holds true in the main
duke@435 1096 // loop. Stride, scale, offset and limit are all loop invariant. Further,
duke@435 1097 // stride and scale are constants (offset and limit often are).
duke@435 1098 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
duke@435 1099
duke@435 1100 // Compute "I :: (limit-offset)/scale_con"
duke@435 1101 Node *con = new (C, 3) SubINode( limit, offset );
duke@435 1102 register_new_node( con, pre_ctrl );
duke@435 1103 Node *scale = _igvn.intcon(scale_con);
duke@435 1104 set_ctrl(scale, C->root());
duke@435 1105 Node *X = new (C, 3) DivINode( 0, con, scale );
duke@435 1106 register_new_node( X, pre_ctrl );
duke@435 1107
duke@435 1108 // For positive stride, the pre-loop limit always uses a MAX function
duke@435 1109 // and the main loop a MIN function. For negative stride these are
duke@435 1110 // reversed.
duke@435 1111
duke@435 1112 // Also for positive stride*scale the affine function is increasing, so the
duke@435 1113 // pre-loop must check for underflow and the post-loop for overflow.
duke@435 1114 // Negative stride*scale reverses this; pre-loop checks for overflow and
duke@435 1115 // post-loop for underflow.
duke@435 1116 if( stride_con*scale_con > 0 ) {
duke@435 1117 // Compute I < (limit-offset)/scale_con
duke@435 1118 // Adjust main-loop last iteration to be MIN/MAX(main_loop,X)
duke@435 1119 *main_limit = (stride_con > 0)
duke@435 1120 ? (Node*)(new (C, 3) MinINode( *main_limit, X ))
duke@435 1121 : (Node*)(new (C, 3) MaxINode( *main_limit, X ));
duke@435 1122 register_new_node( *main_limit, pre_ctrl );
duke@435 1123
duke@435 1124 } else {
duke@435 1125 // Compute (limit-offset)/scale_con + SGN(-scale_con) <= I
duke@435 1126 // Add the negation of the main-loop constraint to the pre-loop.
duke@435 1127 // See footnote [++] below for a derivation of the limit expression.
duke@435 1128 Node *incr = _igvn.intcon(scale_con > 0 ? -1 : 1);
duke@435 1129 set_ctrl(incr, C->root());
duke@435 1130 Node *adj = new (C, 3) AddINode( X, incr );
duke@435 1131 register_new_node( adj, pre_ctrl );
duke@435 1132 *pre_limit = (scale_con > 0)
duke@435 1133 ? (Node*)new (C, 3) MinINode( *pre_limit, adj )
duke@435 1134 : (Node*)new (C, 3) MaxINode( *pre_limit, adj );
duke@435 1135 register_new_node( *pre_limit, pre_ctrl );
duke@435 1136
duke@435 1137 // [++] Here's the algebra that justifies the pre-loop limit expression:
duke@435 1138 //
duke@435 1139 // NOT( scale_con * I + offset < limit )
duke@435 1140 // ==
duke@435 1141 // scale_con * I + offset >= limit
duke@435 1142 // ==
duke@435 1143 // SGN(scale_con) * I >= (limit-offset)/|scale_con|
duke@435 1144 // ==
duke@435 1145 // (limit-offset)/|scale_con| <= I * SGN(scale_con)
duke@435 1146 // ==
duke@435 1147 // (limit-offset)/|scale_con|-1 < I * SGN(scale_con)
duke@435 1148 // ==
duke@435 1149 // ( if (scale_con > 0) /*common case*/
duke@435 1150 // (limit-offset)/scale_con - 1 < I
duke@435 1151 // else
duke@435 1152 // (limit-offset)/scale_con + 1 > I
duke@435 1153 // )
duke@435 1154 // ( if (scale_con > 0) /*common case*/
duke@435 1155 // (limit-offset)/scale_con + SGN(-scale_con) < I
duke@435 1156 // else
duke@435 1157 // (limit-offset)/scale_con + SGN(-scale_con) > I
duke@435 1158 }
duke@435 1159 }
duke@435 1160
duke@435 1161
duke@435 1162 //------------------------------is_scaled_iv---------------------------------
duke@435 1163 // Return true if exp is a constant times an induction var
duke@435 1164 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
duke@435 1165 if (exp == iv) {
duke@435 1166 if (p_scale != NULL) {
duke@435 1167 *p_scale = 1;
duke@435 1168 }
duke@435 1169 return true;
duke@435 1170 }
duke@435 1171 int opc = exp->Opcode();
duke@435 1172 if (opc == Op_MulI) {
duke@435 1173 if (exp->in(1) == iv && exp->in(2)->is_Con()) {
duke@435 1174 if (p_scale != NULL) {
duke@435 1175 *p_scale = exp->in(2)->get_int();
duke@435 1176 }
duke@435 1177 return true;
duke@435 1178 }
duke@435 1179 if (exp->in(2) == iv && exp->in(1)->is_Con()) {
duke@435 1180 if (p_scale != NULL) {
duke@435 1181 *p_scale = exp->in(1)->get_int();
duke@435 1182 }
duke@435 1183 return true;
duke@435 1184 }
duke@435 1185 } else if (opc == Op_LShiftI) {
duke@435 1186 if (exp->in(1) == iv && exp->in(2)->is_Con()) {
duke@435 1187 if (p_scale != NULL) {
duke@435 1188 *p_scale = 1 << exp->in(2)->get_int();
duke@435 1189 }
duke@435 1190 return true;
duke@435 1191 }
duke@435 1192 }
duke@435 1193 return false;
duke@435 1194 }
duke@435 1195
duke@435 1196 //-----------------------------is_scaled_iv_plus_offset------------------------------
duke@435 1197 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
duke@435 1198 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
duke@435 1199 if (is_scaled_iv(exp, iv, p_scale)) {
duke@435 1200 if (p_offset != NULL) {
duke@435 1201 Node *zero = _igvn.intcon(0);
duke@435 1202 set_ctrl(zero, C->root());
duke@435 1203 *p_offset = zero;
duke@435 1204 }
duke@435 1205 return true;
duke@435 1206 }
duke@435 1207 int opc = exp->Opcode();
duke@435 1208 if (opc == Op_AddI) {
duke@435 1209 if (is_scaled_iv(exp->in(1), iv, p_scale)) {
duke@435 1210 if (p_offset != NULL) {
duke@435 1211 *p_offset = exp->in(2);
duke@435 1212 }
duke@435 1213 return true;
duke@435 1214 }
duke@435 1215 if (exp->in(2)->is_Con()) {
duke@435 1216 Node* offset2 = NULL;
duke@435 1217 if (depth < 2 &&
duke@435 1218 is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
duke@435 1219 p_offset != NULL ? &offset2 : NULL, depth+1)) {
duke@435 1220 if (p_offset != NULL) {
duke@435 1221 Node *ctrl_off2 = get_ctrl(offset2);
duke@435 1222 Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
duke@435 1223 register_new_node(offset, ctrl_off2);
duke@435 1224 *p_offset = offset;
duke@435 1225 }
duke@435 1226 return true;
duke@435 1227 }
duke@435 1228 }
duke@435 1229 } else if (opc == Op_SubI) {
duke@435 1230 if (is_scaled_iv(exp->in(1), iv, p_scale)) {
duke@435 1231 if (p_offset != NULL) {
duke@435 1232 Node *zero = _igvn.intcon(0);
duke@435 1233 set_ctrl(zero, C->root());
duke@435 1234 Node *ctrl_off = get_ctrl(exp->in(2));
duke@435 1235 Node* offset = new (C, 3) SubINode(zero, exp->in(2));
duke@435 1236 register_new_node(offset, ctrl_off);
duke@435 1237 *p_offset = offset;
duke@435 1238 }
duke@435 1239 return true;
duke@435 1240 }
duke@435 1241 if (is_scaled_iv(exp->in(2), iv, p_scale)) {
duke@435 1242 if (p_offset != NULL) {
duke@435 1243 *p_scale *= -1;
duke@435 1244 *p_offset = exp->in(1);
duke@435 1245 }
duke@435 1246 return true;
duke@435 1247 }
duke@435 1248 }
duke@435 1249 return false;
duke@435 1250 }
duke@435 1251
duke@435 1252 //------------------------------do_range_check---------------------------------
duke@435 1253 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
duke@435 1254 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 1255 #ifndef PRODUCT
kvn@2665 1256 if (PrintOpto && VerifyLoopOptimizations) {
duke@435 1257 tty->print("Range Check Elimination ");
duke@435 1258 loop->dump_head();
kvn@2665 1259 } else if (TraceLoopOpts) {
kvn@2665 1260 tty->print("RangeCheck ");
kvn@2665 1261 loop->dump_head();
duke@435 1262 }
duke@435 1263 #endif
kvn@2665 1264 assert(RangeCheckElimination, "");
duke@435 1265 CountedLoopNode *cl = loop->_head->as_CountedLoop();
kvn@2665 1266 assert(cl->is_main_loop(), "");
kvn@2665 1267
kvn@2665 1268 // protect against stride not being a constant
kvn@2665 1269 if (!cl->stride_is_con())
kvn@2665 1270 return;
duke@435 1271
duke@435 1272 // Find the trip counter; we are iteration splitting based on it
duke@435 1273 Node *trip_counter = cl->phi();
duke@435 1274 // Find the main loop limit; we will trim it's iterations
duke@435 1275 // to not ever trip end tests
duke@435 1276 Node *main_limit = cl->limit();
kvn@2665 1277
kvn@2665 1278 // Need to find the main-loop zero-trip guard
kvn@2665 1279 Node *ctrl = cl->in(LoopNode::EntryControl);
kvn@2665 1280 assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
kvn@2665 1281 Node *iffm = ctrl->in(0);
kvn@2665 1282 assert(iffm->Opcode() == Op_If, "");
kvn@2665 1283 Node *bolzm = iffm->in(1);
kvn@2665 1284 assert(bolzm->Opcode() == Op_Bool, "");
kvn@2665 1285 Node *cmpzm = bolzm->in(1);
kvn@2665 1286 assert(cmpzm->is_Cmp(), "");
kvn@2665 1287 Node *opqzm = cmpzm->in(2);
kvn@2665 1288 // Can not optimize a loop if pre-loop Opaque1 node is optimized
kvn@2665 1289 // away and then another round of loop opts attempted.
kvn@2665 1290 if (opqzm->Opcode() != Op_Opaque1)
kvn@2665 1291 return;
kvn@2665 1292 assert(opqzm->in(1) == main_limit, "do not understand situation");
kvn@2665 1293
duke@435 1294 // Find the pre-loop limit; we will expand it's iterations to
duke@435 1295 // not ever trip low tests.
duke@435 1296 Node *p_f = iffm->in(0);
kvn@2665 1297 assert(p_f->Opcode() == Op_IfFalse, "");
duke@435 1298 CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
kvn@2665 1299 assert(pre_end->loopnode()->is_pre_loop(), "");
duke@435 1300 Node *pre_opaq1 = pre_end->limit();
duke@435 1301 // Occasionally it's possible for a pre-loop Opaque1 node to be
duke@435 1302 // optimized away and then another round of loop opts attempted.
duke@435 1303 // We can not optimize this particular loop in that case.
kvn@2665 1304 if (pre_opaq1->Opcode() != Op_Opaque1)
duke@435 1305 return;
duke@435 1306 Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
duke@435 1307 Node *pre_limit = pre_opaq->in(1);
duke@435 1308
duke@435 1309 // Where do we put new limit calculations
duke@435 1310 Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
duke@435 1311
duke@435 1312 // Ensure the original loop limit is available from the
duke@435 1313 // pre-loop Opaque1 node.
duke@435 1314 Node *orig_limit = pre_opaq->original_loop_limit();
kvn@2665 1315 if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
duke@435 1316 return;
duke@435 1317
duke@435 1318 // Must know if its a count-up or count-down loop
duke@435 1319
duke@435 1320 int stride_con = cl->stride_con();
duke@435 1321 Node *zero = _igvn.intcon(0);
duke@435 1322 Node *one = _igvn.intcon(1);
duke@435 1323 set_ctrl(zero, C->root());
duke@435 1324 set_ctrl(one, C->root());
duke@435 1325
duke@435 1326 // Range checks that do not dominate the loop backedge (ie.
duke@435 1327 // conditionally executed) can lengthen the pre loop limit beyond
duke@435 1328 // the original loop limit. To prevent this, the pre limit is
duke@435 1329 // (for stride > 0) MINed with the original loop limit (MAXed
duke@435 1330 // stride < 0) when some range_check (rc) is conditionally
duke@435 1331 // executed.
duke@435 1332 bool conditional_rc = false;
duke@435 1333
duke@435 1334 // Check loop body for tests of trip-counter plus loop-invariant vs
duke@435 1335 // loop-invariant.
duke@435 1336 for( uint i = 0; i < loop->_body.size(); i++ ) {
duke@435 1337 Node *iff = loop->_body[i];
duke@435 1338 if( iff->Opcode() == Op_If ) { // Test?
duke@435 1339
duke@435 1340 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 1341 // we need loop unswitching instead of iteration splitting.
duke@435 1342 Node *exit = loop->is_loop_exit(iff);
duke@435 1343 if( !exit ) continue;
duke@435 1344 int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
duke@435 1345
duke@435 1346 // Get boolean condition to test
duke@435 1347 Node *i1 = iff->in(1);
duke@435 1348 if( !i1->is_Bool() ) continue;
duke@435 1349 BoolNode *bol = i1->as_Bool();
duke@435 1350 BoolTest b_test = bol->_test;
duke@435 1351 // Flip sense of test if exit condition is flipped
duke@435 1352 if( flip )
duke@435 1353 b_test = b_test.negate();
duke@435 1354
duke@435 1355 // Get compare
duke@435 1356 Node *cmp = bol->in(1);
duke@435 1357
duke@435 1358 // Look for trip_counter + offset vs limit
duke@435 1359 Node *rc_exp = cmp->in(1);
duke@435 1360 Node *limit = cmp->in(2);
duke@435 1361 jint scale_con= 1; // Assume trip counter not scaled
duke@435 1362
duke@435 1363 Node *limit_c = get_ctrl(limit);
duke@435 1364 if( loop->is_member(get_loop(limit_c) ) ) {
duke@435 1365 // Compare might have operands swapped; commute them
duke@435 1366 b_test = b_test.commute();
duke@435 1367 rc_exp = cmp->in(2);
duke@435 1368 limit = cmp->in(1);
duke@435 1369 limit_c = get_ctrl(limit);
duke@435 1370 if( loop->is_member(get_loop(limit_c) ) )
duke@435 1371 continue; // Both inputs are loop varying; cannot RCE
duke@435 1372 }
duke@435 1373 // Here we know 'limit' is loop invariant
duke@435 1374
duke@435 1375 // 'limit' maybe pinned below the zero trip test (probably from a
duke@435 1376 // previous round of rce), in which case, it can't be used in the
duke@435 1377 // zero trip test expression which must occur before the zero test's if.
duke@435 1378 if( limit_c == ctrl ) {
duke@435 1379 continue; // Don't rce this check but continue looking for other candidates.
duke@435 1380 }
duke@435 1381
duke@435 1382 // Check for scaled induction variable plus an offset
duke@435 1383 Node *offset = NULL;
duke@435 1384
duke@435 1385 if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
duke@435 1386 continue;
duke@435 1387 }
duke@435 1388
duke@435 1389 Node *offset_c = get_ctrl(offset);
duke@435 1390 if( loop->is_member( get_loop(offset_c) ) )
duke@435 1391 continue; // Offset is not really loop invariant
duke@435 1392 // Here we know 'offset' is loop invariant.
duke@435 1393
duke@435 1394 // As above for the 'limit', the 'offset' maybe pinned below the
duke@435 1395 // zero trip test.
duke@435 1396 if( offset_c == ctrl ) {
duke@435 1397 continue; // Don't rce this check but continue looking for other candidates.
duke@435 1398 }
duke@435 1399
duke@435 1400 // At this point we have the expression as:
duke@435 1401 // scale_con * trip_counter + offset :: limit
duke@435 1402 // where scale_con, offset and limit are loop invariant. Trip_counter
duke@435 1403 // monotonically increases by stride_con, a constant. Both (or either)
duke@435 1404 // stride_con and scale_con can be negative which will flip about the
duke@435 1405 // sense of the test.
duke@435 1406
duke@435 1407 // Adjust pre and main loop limits to guard the correct iteration set
duke@435 1408 if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
duke@435 1409 if( b_test._test == BoolTest::lt ) { // Range checks always use lt
duke@435 1410 // The overflow limit: scale*I+offset < limit
duke@435 1411 add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
duke@435 1412 // The underflow limit: 0 <= scale*I+offset.
duke@435 1413 // Some math yields: -scale*I-(offset+1) < 0
duke@435 1414 Node *plus_one = new (C, 3) AddINode( offset, one );
duke@435 1415 register_new_node( plus_one, pre_ctrl );
duke@435 1416 Node *neg_offset = new (C, 3) SubINode( zero, plus_one );
duke@435 1417 register_new_node( neg_offset, pre_ctrl );
duke@435 1418 add_constraint( stride_con, -scale_con, neg_offset, zero, pre_ctrl, &pre_limit, &main_limit );
duke@435 1419 if (!conditional_rc) {
duke@435 1420 conditional_rc = !loop->dominates_backedge(iff);
duke@435 1421 }
duke@435 1422 } else {
duke@435 1423 #ifndef PRODUCT
duke@435 1424 if( PrintOpto )
duke@435 1425 tty->print_cr("missed RCE opportunity");
duke@435 1426 #endif
duke@435 1427 continue; // In release mode, ignore it
duke@435 1428 }
duke@435 1429 } else { // Otherwise work on normal compares
duke@435 1430 switch( b_test._test ) {
duke@435 1431 case BoolTest::ge: // Convert X >= Y to -X <= -Y
duke@435 1432 scale_con = -scale_con;
duke@435 1433 offset = new (C, 3) SubINode( zero, offset );
duke@435 1434 register_new_node( offset, pre_ctrl );
duke@435 1435 limit = new (C, 3) SubINode( zero, limit );
duke@435 1436 register_new_node( limit, pre_ctrl );
duke@435 1437 // Fall into LE case
duke@435 1438 case BoolTest::le: // Convert X <= Y to X < Y+1
duke@435 1439 limit = new (C, 3) AddINode( limit, one );
duke@435 1440 register_new_node( limit, pre_ctrl );
duke@435 1441 // Fall into LT case
duke@435 1442 case BoolTest::lt:
duke@435 1443 add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
duke@435 1444 if (!conditional_rc) {
duke@435 1445 conditional_rc = !loop->dominates_backedge(iff);
duke@435 1446 }
duke@435 1447 break;
duke@435 1448 default:
duke@435 1449 #ifndef PRODUCT
duke@435 1450 if( PrintOpto )
duke@435 1451 tty->print_cr("missed RCE opportunity");
duke@435 1452 #endif
duke@435 1453 continue; // Unhandled case
duke@435 1454 }
duke@435 1455 }
duke@435 1456
duke@435 1457 // Kill the eliminated test
duke@435 1458 C->set_major_progress();
duke@435 1459 Node *kill_con = _igvn.intcon( 1-flip );
duke@435 1460 set_ctrl(kill_con, C->root());
duke@435 1461 _igvn.hash_delete(iff);
duke@435 1462 iff->set_req(1, kill_con);
duke@435 1463 _igvn._worklist.push(iff);
duke@435 1464 // Find surviving projection
duke@435 1465 assert(iff->is_If(), "");
duke@435 1466 ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
duke@435 1467 // Find loads off the surviving projection; remove their control edge
duke@435 1468 for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
duke@435 1469 Node* cd = dp->fast_out(i); // Control-dependent node
duke@435 1470 if( cd->is_Load() ) { // Loads can now float around in the loop
duke@435 1471 _igvn.hash_delete(cd);
duke@435 1472 // Allow the load to float around in the loop, or before it
duke@435 1473 // but NOT before the pre-loop.
duke@435 1474 cd->set_req(0, ctrl); // ctrl, not NULL
duke@435 1475 _igvn._worklist.push(cd);
duke@435 1476 --i;
duke@435 1477 --imax;
duke@435 1478 }
duke@435 1479 }
duke@435 1480
duke@435 1481 } // End of is IF
duke@435 1482
duke@435 1483 }
duke@435 1484
duke@435 1485 // Update loop limits
duke@435 1486 if (conditional_rc) {
duke@435 1487 pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
duke@435 1488 : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
duke@435 1489 register_new_node(pre_limit, pre_ctrl);
duke@435 1490 }
duke@435 1491 _igvn.hash_delete(pre_opaq);
duke@435 1492 pre_opaq->set_req(1, pre_limit);
duke@435 1493
duke@435 1494 // Note:: we are making the main loop limit no longer precise;
duke@435 1495 // need to round up based on stride.
duke@435 1496 if( stride_con != 1 && stride_con != -1 ) { // Cutout for common case
duke@435 1497 // "Standard" round-up logic: ([main_limit-init+(y-1)]/y)*y+init
duke@435 1498 // Hopefully, compiler will optimize for powers of 2.
duke@435 1499 Node *ctrl = get_ctrl(main_limit);
duke@435 1500 Node *stride = cl->stride();
duke@435 1501 Node *init = cl->init_trip();
duke@435 1502 Node *span = new (C, 3) SubINode(main_limit,init);
duke@435 1503 register_new_node(span,ctrl);
duke@435 1504 Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
duke@435 1505 Node *add = new (C, 3) AddINode(span,rndup);
duke@435 1506 register_new_node(add,ctrl);
duke@435 1507 Node *div = new (C, 3) DivINode(0,add,stride);
duke@435 1508 register_new_node(div,ctrl);
duke@435 1509 Node *mul = new (C, 3) MulINode(div,stride);
duke@435 1510 register_new_node(mul,ctrl);
duke@435 1511 Node *newlim = new (C, 3) AddINode(mul,init);
duke@435 1512 register_new_node(newlim,ctrl);
duke@435 1513 main_limit = newlim;
duke@435 1514 }
duke@435 1515
duke@435 1516 Node *main_cle = cl->loopexit();
duke@435 1517 Node *main_bol = main_cle->in(1);
duke@435 1518 // Hacking loop bounds; need private copies of exit test
duke@435 1519 if( main_bol->outcnt() > 1 ) {// BoolNode shared?
duke@435 1520 _igvn.hash_delete(main_cle);
duke@435 1521 main_bol = main_bol->clone();// Clone a private BoolNode
duke@435 1522 register_new_node( main_bol, main_cle->in(0) );
duke@435 1523 main_cle->set_req(1,main_bol);
duke@435 1524 }
duke@435 1525 Node *main_cmp = main_bol->in(1);
duke@435 1526 if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
duke@435 1527 _igvn.hash_delete(main_bol);
duke@435 1528 main_cmp = main_cmp->clone();// Clone a private CmpNode
duke@435 1529 register_new_node( main_cmp, main_cle->in(0) );
duke@435 1530 main_bol->set_req(1,main_cmp);
duke@435 1531 }
duke@435 1532 // Hack the now-private loop bounds
duke@435 1533 _igvn.hash_delete(main_cmp);
duke@435 1534 main_cmp->set_req(2, main_limit);
duke@435 1535 _igvn._worklist.push(main_cmp);
duke@435 1536 // The OpaqueNode is unshared by design
duke@435 1537 _igvn.hash_delete(opqzm);
duke@435 1538 assert( opqzm->outcnt() == 1, "cannot hack shared node" );
duke@435 1539 opqzm->set_req(1,main_limit);
duke@435 1540 _igvn._worklist.push(opqzm);
duke@435 1541 }
duke@435 1542
duke@435 1543 //------------------------------DCE_loop_body----------------------------------
duke@435 1544 // Remove simplistic dead code from loop body
duke@435 1545 void IdealLoopTree::DCE_loop_body() {
duke@435 1546 for( uint i = 0; i < _body.size(); i++ )
duke@435 1547 if( _body.at(i)->outcnt() == 0 )
duke@435 1548 _body.map( i--, _body.pop() );
duke@435 1549 }
duke@435 1550
duke@435 1551
duke@435 1552 //------------------------------adjust_loop_exit_prob--------------------------
duke@435 1553 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
duke@435 1554 // Replace with a 1-in-10 exit guess.
duke@435 1555 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
duke@435 1556 Node *test = tail();
duke@435 1557 while( test != _head ) {
duke@435 1558 uint top = test->Opcode();
duke@435 1559 if( top == Op_IfTrue || top == Op_IfFalse ) {
duke@435 1560 int test_con = ((ProjNode*)test)->_con;
duke@435 1561 assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
duke@435 1562 IfNode *iff = test->in(0)->as_If();
duke@435 1563 if( iff->outcnt() == 2 ) { // Ignore dead tests
duke@435 1564 Node *bol = iff->in(1);
duke@435 1565 if( bol && bol->req() > 1 && bol->in(1) &&
duke@435 1566 ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
kvn@855 1567 (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
duke@435 1568 (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
duke@435 1569 (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
duke@435 1570 (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
coleenp@548 1571 (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
coleenp@548 1572 (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
duke@435 1573 return; // Allocation loops RARELY take backedge
duke@435 1574 // Find the OTHER exit path from the IF
duke@435 1575 Node* ex = iff->proj_out(1-test_con);
duke@435 1576 float p = iff->_prob;
duke@435 1577 if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
duke@435 1578 if( top == Op_IfTrue ) {
duke@435 1579 if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
duke@435 1580 iff->_prob = PROB_STATIC_FREQUENT;
duke@435 1581 }
duke@435 1582 } else {
duke@435 1583 if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
duke@435 1584 iff->_prob = PROB_STATIC_INFREQUENT;
duke@435 1585 }
duke@435 1586 }
duke@435 1587 }
duke@435 1588 }
duke@435 1589 }
duke@435 1590 test = phase->idom(test);
duke@435 1591 }
duke@435 1592 }
duke@435 1593
duke@435 1594
duke@435 1595 //------------------------------policy_do_remove_empty_loop--------------------
duke@435 1596 // Micro-benchmark spamming. Policy is to always remove empty loops.
duke@435 1597 // The 'DO' part is to replace the trip counter with the value it will
duke@435 1598 // have on the last iteration. This will break the loop.
duke@435 1599 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
duke@435 1600 // Minimum size must be empty loop
kvn@2665 1601 if (_body.size() > 7/*number of nodes in an empty loop*/)
kvn@2665 1602 return false;
duke@435 1603
kvn@2665 1604 if (!_head->is_CountedLoop())
kvn@2665 1605 return false; // Dead loop
duke@435 1606 CountedLoopNode *cl = _head->as_CountedLoop();
kvn@2665 1607 if (!cl->loopexit())
kvn@2665 1608 return false; // Malformed loop
kvn@2665 1609 if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
duke@435 1610 return false; // Infinite loop
duke@435 1611 #ifndef PRODUCT
kvn@2665 1612 if (PrintOpto) {
kvn@2665 1613 tty->print("Removing empty loop");
kvn@2665 1614 this->dump_head();
kvn@2665 1615 } else if (TraceLoopOpts) {
kvn@2665 1616 tty->print("Empty ");
kvn@2665 1617 this->dump_head();
kvn@2665 1618 }
duke@435 1619 #endif
duke@435 1620 #ifdef ASSERT
duke@435 1621 // Ensure only one phi which is the iv.
duke@435 1622 Node* iv = NULL;
duke@435 1623 for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
duke@435 1624 Node* n = cl->fast_out(i);
duke@435 1625 if (n->Opcode() == Op_Phi) {
duke@435 1626 assert(iv == NULL, "Too many phis" );
duke@435 1627 iv = n;
duke@435 1628 }
duke@435 1629 }
duke@435 1630 assert(iv == cl->phi(), "Wrong phi" );
duke@435 1631 #endif
duke@435 1632 // Replace the phi at loop head with the final value of the last
duke@435 1633 // iteration. Then the CountedLoopEnd will collapse (backedge never
duke@435 1634 // taken) and all loop-invariant uses of the exit values will be correct.
duke@435 1635 Node *phi = cl->phi();
duke@435 1636 Node *final = new (phase->C, 3) SubINode( cl->limit(), cl->stride() );
duke@435 1637 phase->register_new_node(final,cl->in(LoopNode::EntryControl));
kvn@1976 1638 phase->_igvn.replace_node(phi,final);
duke@435 1639 phase->C->set_major_progress();
duke@435 1640 return true;
duke@435 1641 }
duke@435 1642
duke@435 1643
duke@435 1644 //=============================================================================
duke@435 1645 //------------------------------iteration_split_impl---------------------------
never@836 1646 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
duke@435 1647 // Check and remove empty loops (spam micro-benchmarks)
duke@435 1648 if( policy_do_remove_empty_loop(phase) )
cfang@1607 1649 return true; // Here we removed an empty loop
duke@435 1650
duke@435 1651 bool should_peel = policy_peeling(phase); // Should we peel?
duke@435 1652
duke@435 1653 bool should_unswitch = policy_unswitching(phase);
duke@435 1654
duke@435 1655 // Non-counted loops may be peeled; exactly 1 iteration is peeled.
duke@435 1656 // This removes loop-invariant tests (usually null checks).
duke@435 1657 if( !_head->is_CountedLoop() ) { // Non-counted loop
duke@435 1658 if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
never@836 1659 // Partial peel succeeded so terminate this round of loop opts
never@836 1660 return false;
duke@435 1661 }
duke@435 1662 if( should_peel ) { // Should we peel?
duke@435 1663 #ifndef PRODUCT
duke@435 1664 if (PrintOpto) tty->print_cr("should_peel");
duke@435 1665 #endif
duke@435 1666 phase->do_peeling(this,old_new);
duke@435 1667 } else if( should_unswitch ) {
duke@435 1668 phase->do_unswitching(this, old_new);
duke@435 1669 }
never@836 1670 return true;
duke@435 1671 }
duke@435 1672 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 1673
never@836 1674 if( !cl->loopexit() ) return true; // Ignore various kinds of broken loops
duke@435 1675
duke@435 1676 // Do nothing special to pre- and post- loops
never@836 1677 if( cl->is_pre_loop() || cl->is_post_loop() ) return true;
duke@435 1678
duke@435 1679 // Compute loop trip count from profile data
duke@435 1680 compute_profile_trip_cnt(phase);
duke@435 1681
duke@435 1682 // Before attempting fancy unrolling, RCE or alignment, see if we want
duke@435 1683 // to completely unroll this loop or do loop unswitching.
duke@435 1684 if( cl->is_normal_loop() ) {
cfang@1224 1685 if (should_unswitch) {
cfang@1224 1686 phase->do_unswitching(this, old_new);
cfang@1224 1687 return true;
cfang@1224 1688 }
duke@435 1689 bool should_maximally_unroll = policy_maximally_unroll(phase);
duke@435 1690 if( should_maximally_unroll ) {
duke@435 1691 // Here we did some unrolling and peeling. Eventually we will
duke@435 1692 // completely unroll this loop and it will no longer be a loop.
duke@435 1693 phase->do_maximally_unroll(this,old_new);
never@836 1694 return true;
duke@435 1695 }
duke@435 1696 }
duke@435 1697
duke@435 1698
duke@435 1699 // Counted loops may be peeled, may need some iterations run up
duke@435 1700 // front for RCE, and may want to align loop refs to a cache
duke@435 1701 // line. Thus we clone a full loop up front whose trip count is
duke@435 1702 // at least 1 (if peeling), but may be several more.
duke@435 1703
duke@435 1704 // The main loop will start cache-line aligned with at least 1
duke@435 1705 // iteration of the unrolled body (zero-trip test required) and
duke@435 1706 // will have some range checks removed.
duke@435 1707
duke@435 1708 // A post-loop will finish any odd iterations (leftover after
duke@435 1709 // unrolling), plus any needed for RCE purposes.
duke@435 1710
duke@435 1711 bool should_unroll = policy_unroll(phase);
duke@435 1712
duke@435 1713 bool should_rce = policy_range_check(phase);
duke@435 1714
duke@435 1715 bool should_align = policy_align(phase);
duke@435 1716
duke@435 1717 // If not RCE'ing (iteration splitting) or Aligning, then we do not
duke@435 1718 // need a pre-loop. We may still need to peel an initial iteration but
duke@435 1719 // we will not be needing an unknown number of pre-iterations.
duke@435 1720 //
duke@435 1721 // Basically, if may_rce_align reports FALSE first time through,
duke@435 1722 // we will not be able to later do RCE or Aligning on this loop.
duke@435 1723 bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
duke@435 1724
duke@435 1725 // If we have any of these conditions (RCE, alignment, unrolling) met, then
duke@435 1726 // we switch to the pre-/main-/post-loop model. This model also covers
duke@435 1727 // peeling.
duke@435 1728 if( should_rce || should_align || should_unroll ) {
duke@435 1729 if( cl->is_normal_loop() ) // Convert to 'pre/main/post' loops
duke@435 1730 phase->insert_pre_post_loops(this,old_new, !may_rce_align);
duke@435 1731
duke@435 1732 // Adjust the pre- and main-loop limits to let the pre and post loops run
duke@435 1733 // with full checks, but the main-loop with no checks. Remove said
duke@435 1734 // checks from the main body.
duke@435 1735 if( should_rce )
duke@435 1736 phase->do_range_check(this,old_new);
duke@435 1737
duke@435 1738 // Double loop body for unrolling. Adjust the minimum-trip test (will do
duke@435 1739 // twice as many iterations as before) and the main body limit (only do
duke@435 1740 // an even number of trips). If we are peeling, we might enable some RCE
duke@435 1741 // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
duke@435 1742 // peeling.
cfang@1607 1743 if( should_unroll && !should_peel )
cfang@1607 1744 phase->do_unroll(this,old_new, true);
duke@435 1745
duke@435 1746 // Adjust the pre-loop limits to align the main body
duke@435 1747 // iterations.
duke@435 1748 if( should_align )
duke@435 1749 Unimplemented();
duke@435 1750
duke@435 1751 } else { // Else we have an unchanged counted loop
duke@435 1752 if( should_peel ) // Might want to peel but do nothing else
duke@435 1753 phase->do_peeling(this,old_new);
duke@435 1754 }
never@836 1755 return true;
duke@435 1756 }
duke@435 1757
duke@435 1758
duke@435 1759 //=============================================================================
duke@435 1760 //------------------------------iteration_split--------------------------------
never@836 1761 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
duke@435 1762 // Recursively iteration split nested loops
kvn@2665 1763 if (_child && !_child->iteration_split(phase, old_new))
never@836 1764 return false;
duke@435 1765
duke@435 1766 // Clean out prior deadwood
duke@435 1767 DCE_loop_body();
duke@435 1768
duke@435 1769
duke@435 1770 // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
duke@435 1771 // Replace with a 1-in-10 exit guess.
kvn@2665 1772 if (_parent /*not the root loop*/ &&
duke@435 1773 !_irreducible &&
duke@435 1774 // Also ignore the occasional dead backedge
kvn@2665 1775 !tail()->is_top()) {
duke@435 1776 adjust_loop_exit_prob(phase);
duke@435 1777 }
duke@435 1778
duke@435 1779 // Gate unrolling, RCE and peeling efforts.
kvn@2665 1780 if (!_child && // If not an inner loop, do not split
duke@435 1781 !_irreducible &&
kvn@474 1782 _allow_optimizations &&
kvn@2665 1783 !tail()->is_top()) { // Also ignore the occasional dead backedge
duke@435 1784 if (!_has_call) {
kvn@2665 1785 if (!iteration_split_impl(phase, old_new)) {
cfang@1607 1786 return false;
cfang@1607 1787 }
duke@435 1788 } else if (policy_unswitching(phase)) {
duke@435 1789 phase->do_unswitching(this, old_new);
duke@435 1790 }
duke@435 1791 }
duke@435 1792
duke@435 1793 // Minor offset re-organization to remove loop-fallout uses of
kvn@2665 1794 // trip counter when there was no major reshaping.
kvn@2665 1795 phase->reorg_offsets(this);
kvn@2665 1796
kvn@2665 1797 if (_next && !_next->iteration_split(phase, old_new))
never@836 1798 return false;
never@836 1799 return true;
duke@435 1800 }
cfang@1607 1801
cfang@1607 1802 //-------------------------------is_uncommon_trap_proj----------------------------
cfang@1607 1803 // Return true if proj is the form of "proj->[region->..]call_uct"
kvn@2665 1804 bool PhaseIdealLoop::is_uncommon_trap_proj(ProjNode* proj, Deoptimization::DeoptReason reason) {
cfang@1607 1805 int path_limit = 10;
cfang@1607 1806 assert(proj, "invalid argument");
cfang@1607 1807 Node* out = proj;
cfang@1607 1808 for (int ct = 0; ct < path_limit; ct++) {
cfang@1607 1809 out = out->unique_ctrl_out();
cfang@1607 1810 if (out == NULL || out->is_Root() || out->is_Start())
cfang@1607 1811 return false;
cfang@1607 1812 if (out->is_CallStaticJava()) {
cfang@1607 1813 int req = out->as_CallStaticJava()->uncommon_trap_request();
cfang@1607 1814 if (req != 0) {
kvn@2665 1815 Deoptimization::DeoptReason trap_reason = Deoptimization::trap_request_reason(req);
kvn@2665 1816 if (trap_reason == reason || reason == Deoptimization::Reason_none) {
cfang@1607 1817 return true;
cfang@1607 1818 }
cfang@1607 1819 }
cfang@1607 1820 return false; // don't do further after call
cfang@1607 1821 }
cfang@1607 1822 }
cfang@1607 1823 return false;
cfang@1607 1824 }
cfang@1607 1825
cfang@1607 1826 //-------------------------------is_uncommon_trap_if_pattern-------------------------
cfang@1607 1827 // Return true for "if(test)-> proj -> ...
cfang@1607 1828 // |
cfang@1607 1829 // V
cfang@1607 1830 // other_proj->[region->..]call_uct"
cfang@1607 1831 //
cfang@1607 1832 // "must_reason_predicate" means the uct reason must be Reason_predicate
kvn@2665 1833 bool PhaseIdealLoop::is_uncommon_trap_if_pattern(ProjNode *proj, Deoptimization::DeoptReason reason) {
cfang@1607 1834 Node *in0 = proj->in(0);
cfang@1607 1835 if (!in0->is_If()) return false;
kvn@1715 1836 // Variation of a dead If node.
kvn@1715 1837 if (in0->outcnt() < 2) return false;
cfang@1607 1838 IfNode* iff = in0->as_If();
cfang@1607 1839
kvn@2665 1840 // we need "If(Conv2B(Opaque1(...)))" pattern for reason_predicate
kvn@2665 1841 if (reason != Deoptimization::Reason_none) {
cfang@1607 1842 if (iff->in(1)->Opcode() != Op_Conv2B ||
cfang@1607 1843 iff->in(1)->in(1)->Opcode() != Op_Opaque1) {
cfang@1607 1844 return false;
cfang@1607 1845 }
cfang@1607 1846 }
cfang@1607 1847
cfang@1607 1848 ProjNode* other_proj = iff->proj_out(1-proj->_con)->as_Proj();
kvn@2665 1849 return is_uncommon_trap_proj(other_proj, reason);
kvn@2665 1850 }
kvn@2665 1851
kvn@2665 1852 //-------------------------------register_control-------------------------
kvn@2665 1853 void PhaseIdealLoop::register_control(Node* n, IdealLoopTree *loop, Node* pred) {
kvn@2665 1854 assert(n->is_CFG(), "must be control node");
kvn@2665 1855 _igvn.register_new_node_with_optimizer(n);
kvn@2665 1856 loop->_body.push(n);
kvn@2665 1857 set_loop(n, loop);
kvn@2665 1858 // When called from beautify_loops() idom is not constructed yet.
kvn@2665 1859 if (_idom != NULL) {
kvn@2665 1860 set_idom(n, pred, dom_depth(pred));
kvn@2665 1861 }
cfang@1607 1862 }
cfang@1607 1863
cfang@1607 1864 //------------------------------create_new_if_for_predicate------------------------
cfang@1607 1865 // create a new if above the uct_if_pattern for the predicate to be promoted.
cfang@1607 1866 //
cfang@1607 1867 // before after
cfang@1607 1868 // ---------- ----------
cfang@1607 1869 // ctrl ctrl
cfang@1607 1870 // | |
cfang@1607 1871 // | |
cfang@1607 1872 // v v
cfang@1607 1873 // iff new_iff
cfang@1607 1874 // / \ / \
cfang@1607 1875 // / \ / \
cfang@1607 1876 // v v v v
cfang@1607 1877 // uncommon_proj cont_proj if_uct if_cont
cfang@1607 1878 // \ | | | |
cfang@1607 1879 // \ | | | |
cfang@1607 1880 // v v v | v
cfang@1607 1881 // rgn loop | iff
cfang@1607 1882 // | | / \
cfang@1607 1883 // | | / \
cfang@1607 1884 // v | v v
cfang@1607 1885 // uncommon_trap | uncommon_proj cont_proj
cfang@1607 1886 // \ \ | |
cfang@1607 1887 // \ \ | |
cfang@1607 1888 // v v v v
cfang@1607 1889 // rgn loop
cfang@1607 1890 // |
cfang@1607 1891 // |
cfang@1607 1892 // v
cfang@1607 1893 // uncommon_trap
cfang@1607 1894 //
cfang@1607 1895 //
cfang@1607 1896 // We will create a region to guard the uct call if there is no one there.
cfang@1607 1897 // The true projecttion (if_cont) of the new_iff is returned.
kvn@2665 1898 // This code is also used to clone predicates to clonned loops.
kvn@2665 1899 ProjNode* PhaseIdealLoop::create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
kvn@2665 1900 Deoptimization::DeoptReason reason) {
kvn@2665 1901 assert(is_uncommon_trap_if_pattern(cont_proj, reason), "must be a uct if pattern!");
cfang@1607 1902 IfNode* iff = cont_proj->in(0)->as_If();
cfang@1607 1903
cfang@1607 1904 ProjNode *uncommon_proj = iff->proj_out(1 - cont_proj->_con);
cfang@1607 1905 Node *rgn = uncommon_proj->unique_ctrl_out();
cfang@1607 1906 assert(rgn->is_Region() || rgn->is_Call(), "must be a region or call uct");
cfang@1607 1907
cfang@1607 1908 if (!rgn->is_Region()) { // create a region to guard the call
cfang@1607 1909 assert(rgn->is_Call(), "must be call uct");
cfang@1607 1910 CallNode* call = rgn->as_Call();
kvn@2665 1911 IdealLoopTree* loop = get_loop(call);
cfang@1607 1912 rgn = new (C, 1) RegionNode(1);
cfang@1607 1913 rgn->add_req(uncommon_proj);
kvn@2665 1914 register_control(rgn, loop, uncommon_proj);
cfang@1607 1915 _igvn.hash_delete(call);
cfang@1607 1916 call->set_req(0, rgn);
kvn@2665 1917 // When called from beautify_loops() idom is not constructed yet.
kvn@2665 1918 if (_idom != NULL) {
kvn@2665 1919 set_idom(call, rgn, dom_depth(rgn));
kvn@2665 1920 }
cfang@1607 1921 }
cfang@1607 1922
kvn@2665 1923 Node* entry = iff->in(0);
kvn@2665 1924 if (new_entry != NULL) {
kvn@2665 1925 // Clonning the predicate to new location.
kvn@2665 1926 entry = new_entry;
kvn@2665 1927 }
cfang@1607 1928 // Create new_iff
kvn@2665 1929 IdealLoopTree* lp = get_loop(entry);
kvn@2665 1930 IfNode *new_iff = new (C, 2) IfNode(entry, NULL, iff->_prob, iff->_fcnt);
kvn@2665 1931 register_control(new_iff, lp, entry);
cfang@1607 1932 Node *if_cont = new (C, 1) IfTrueNode(new_iff);
cfang@1607 1933 Node *if_uct = new (C, 1) IfFalseNode(new_iff);
cfang@1607 1934 if (cont_proj->is_IfFalse()) {
cfang@1607 1935 // Swap
cfang@1607 1936 Node* tmp = if_uct; if_uct = if_cont; if_cont = tmp;
cfang@1607 1937 }
kvn@2665 1938 register_control(if_cont, lp, new_iff);
kvn@2665 1939 register_control(if_uct, get_loop(rgn), new_iff);
cfang@1607 1940
cfang@1607 1941 // if_uct to rgn
cfang@1607 1942 _igvn.hash_delete(rgn);
cfang@1607 1943 rgn->add_req(if_uct);
kvn@2665 1944 // When called from beautify_loops() idom is not constructed yet.
kvn@2665 1945 if (_idom != NULL) {
kvn@2665 1946 Node* ridom = idom(rgn);
kvn@2665 1947 Node* nrdom = dom_lca(ridom, new_iff);
kvn@2665 1948 set_idom(rgn, nrdom, dom_depth(rgn));
kvn@2665 1949 }
cfang@1607 1950 // rgn must have no phis
cfang@1607 1951 assert(!rgn->as_Region()->has_phi(), "region must have no phis");
cfang@1607 1952
kvn@2665 1953 if (new_entry == NULL) {
kvn@2665 1954 // Attach if_cont to iff
kvn@2665 1955 _igvn.hash_delete(iff);
kvn@2665 1956 iff->set_req(0, if_cont);
kvn@2665 1957 if (_idom != NULL) {
kvn@2665 1958 set_idom(iff, if_cont, dom_depth(iff));
kvn@2665 1959 }
kvn@2665 1960 }
cfang@1607 1961 return if_cont->as_Proj();
cfang@1607 1962 }
cfang@1607 1963
kvn@2665 1964 //--------------------------find_predicate_insertion_point-------------------
cfang@1607 1965 // Find a good location to insert a predicate
kvn@2665 1966 ProjNode* PhaseIdealLoop::find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason) {
kvn@2665 1967 if (start_c == NULL || !start_c->is_Proj())
cfang@1607 1968 return NULL;
kvn@2665 1969 if (is_uncommon_trap_if_pattern(start_c->as_Proj(), reason)) {
cfang@1607 1970 return start_c->as_Proj();
cfang@1607 1971 }
cfang@1607 1972 return NULL;
cfang@1607 1973 }
cfang@1607 1974
kvn@2665 1975 //--------------------------find_predicate------------------------------------
kvn@2665 1976 // Find a predicate
kvn@2665 1977 Node* PhaseIdealLoop::find_predicate(Node* entry) {
kvn@2665 1978 Node* predicate = NULL;
kvn@2665 1979 if (UseLoopPredicate) {
kvn@2665 1980 predicate = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
kvn@2665 1981 if (predicate != NULL) { // right pattern that can be used by loop predication
kvn@2665 1982 assert(entry->in(0)->in(1)->in(1)->Opcode()==Op_Opaque1, "must be");
kvn@2665 1983 return entry;
kvn@2665 1984 }
kvn@2665 1985 }
kvn@2665 1986 return NULL;
kvn@2665 1987 }
kvn@2665 1988
cfang@1607 1989 //------------------------------Invariance-----------------------------------
cfang@1607 1990 // Helper class for loop_predication_impl to compute invariance on the fly and
cfang@1607 1991 // clone invariants.
cfang@1607 1992 class Invariance : public StackObj {
cfang@1607 1993 VectorSet _visited, _invariant;
cfang@1607 1994 Node_Stack _stack;
cfang@1607 1995 VectorSet _clone_visited;
cfang@1607 1996 Node_List _old_new; // map of old to new (clone)
cfang@1607 1997 IdealLoopTree* _lpt;
cfang@1607 1998 PhaseIdealLoop* _phase;
cfang@1607 1999
cfang@1607 2000 // Helper function to set up the invariance for invariance computation
cfang@1607 2001 // If n is a known invariant, set up directly. Otherwise, look up the
cfang@1607 2002 // the possibility to push n onto the stack for further processing.
cfang@1607 2003 void visit(Node* use, Node* n) {
cfang@1607 2004 if (_lpt->is_invariant(n)) { // known invariant
cfang@1607 2005 _invariant.set(n->_idx);
cfang@1607 2006 } else if (!n->is_CFG()) {
cfang@1607 2007 Node *n_ctrl = _phase->ctrl_or_self(n);
cfang@1607 2008 Node *u_ctrl = _phase->ctrl_or_self(use); // self if use is a CFG
cfang@1607 2009 if (_phase->is_dominator(n_ctrl, u_ctrl)) {
cfang@1607 2010 _stack.push(n, n->in(0) == NULL ? 1 : 0);
cfang@1607 2011 }
cfang@1607 2012 }
cfang@1607 2013 }
cfang@1607 2014
cfang@1607 2015 // Compute invariance for "the_node" and (possibly) all its inputs recursively
cfang@1607 2016 // on the fly
cfang@1607 2017 void compute_invariance(Node* n) {
cfang@1607 2018 assert(_visited.test(n->_idx), "must be");
cfang@1607 2019 visit(n, n);
cfang@1607 2020 while (_stack.is_nonempty()) {
cfang@1607 2021 Node* n = _stack.node();
cfang@1607 2022 uint idx = _stack.index();
cfang@1607 2023 if (idx == n->req()) { // all inputs are processed
cfang@1607 2024 _stack.pop();
cfang@1607 2025 // n is invariant if it's inputs are all invariant
cfang@1607 2026 bool all_inputs_invariant = true;
cfang@1607 2027 for (uint i = 0; i < n->req(); i++) {
cfang@1607 2028 Node* in = n->in(i);
cfang@1607 2029 if (in == NULL) continue;
cfang@1607 2030 assert(_visited.test(in->_idx), "must have visited input");
cfang@1607 2031 if (!_invariant.test(in->_idx)) { // bad guy
cfang@1607 2032 all_inputs_invariant = false;
cfang@1607 2033 break;
cfang@1607 2034 }
cfang@1607 2035 }
cfang@1607 2036 if (all_inputs_invariant) {
cfang@1607 2037 _invariant.set(n->_idx); // I am a invariant too
cfang@1607 2038 }
cfang@1607 2039 } else { // process next input
cfang@1607 2040 _stack.set_index(idx + 1);
cfang@1607 2041 Node* m = n->in(idx);
cfang@1607 2042 if (m != NULL && !_visited.test_set(m->_idx)) {
cfang@1607 2043 visit(n, m);
cfang@1607 2044 }
cfang@1607 2045 }
cfang@1607 2046 }
cfang@1607 2047 }
cfang@1607 2048
cfang@1607 2049 // Helper function to set up _old_new map for clone_nodes.
cfang@1607 2050 // If n is a known invariant, set up directly ("clone" of n == n).
cfang@1607 2051 // Otherwise, push n onto the stack for real cloning.
cfang@1607 2052 void clone_visit(Node* n) {
cfang@1607 2053 assert(_invariant.test(n->_idx), "must be invariant");
cfang@1607 2054 if (_lpt->is_invariant(n)) { // known invariant
cfang@1607 2055 _old_new.map(n->_idx, n);
cfang@1607 2056 } else{ // to be cloned
cfang@1607 2057 assert (!n->is_CFG(), "should not see CFG here");
cfang@1607 2058 _stack.push(n, n->in(0) == NULL ? 1 : 0);
cfang@1607 2059 }
cfang@1607 2060 }
cfang@1607 2061
cfang@1607 2062 // Clone "n" and (possibly) all its inputs recursively
cfang@1607 2063 void clone_nodes(Node* n, Node* ctrl) {
cfang@1607 2064 clone_visit(n);
cfang@1607 2065 while (_stack.is_nonempty()) {
cfang@1607 2066 Node* n = _stack.node();
cfang@1607 2067 uint idx = _stack.index();
cfang@1607 2068 if (idx == n->req()) { // all inputs processed, clone n!
cfang@1607 2069 _stack.pop();
cfang@1607 2070 // clone invariant node
cfang@1607 2071 Node* n_cl = n->clone();
cfang@1607 2072 _old_new.map(n->_idx, n_cl);
cfang@1607 2073 _phase->register_new_node(n_cl, ctrl);
cfang@1607 2074 for (uint i = 0; i < n->req(); i++) {
cfang@1607 2075 Node* in = n_cl->in(i);
cfang@1607 2076 if (in == NULL) continue;
cfang@1607 2077 n_cl->set_req(i, _old_new[in->_idx]);
cfang@1607 2078 }
cfang@1607 2079 } else { // process next input
cfang@1607 2080 _stack.set_index(idx + 1);
cfang@1607 2081 Node* m = n->in(idx);
cfang@1607 2082 if (m != NULL && !_clone_visited.test_set(m->_idx)) {
cfang@1607 2083 clone_visit(m); // visit the input
cfang@1607 2084 }
cfang@1607 2085 }
cfang@1607 2086 }
cfang@1607 2087 }
cfang@1607 2088
cfang@1607 2089 public:
cfang@1607 2090 Invariance(Arena* area, IdealLoopTree* lpt) :
cfang@1607 2091 _lpt(lpt), _phase(lpt->_phase),
cfang@1607 2092 _visited(area), _invariant(area), _stack(area, 10 /* guess */),
cfang@1607 2093 _clone_visited(area), _old_new(area)
cfang@1607 2094 {}
cfang@1607 2095
cfang@1607 2096 // Map old to n for invariance computation and clone
cfang@1607 2097 void map_ctrl(Node* old, Node* n) {
cfang@1607 2098 assert(old->is_CFG() && n->is_CFG(), "must be");
cfang@1607 2099 _old_new.map(old->_idx, n); // "clone" of old is n
cfang@1607 2100 _invariant.set(old->_idx); // old is invariant
cfang@1607 2101 _clone_visited.set(old->_idx);
cfang@1607 2102 }
cfang@1607 2103
cfang@1607 2104 // Driver function to compute invariance
cfang@1607 2105 bool is_invariant(Node* n) {
cfang@1607 2106 if (!_visited.test_set(n->_idx))
cfang@1607 2107 compute_invariance(n);
cfang@1607 2108 return (_invariant.test(n->_idx) != 0);
cfang@1607 2109 }
cfang@1607 2110
cfang@1607 2111 // Driver function to clone invariant
cfang@1607 2112 Node* clone(Node* n, Node* ctrl) {
cfang@1607 2113 assert(ctrl->is_CFG(), "must be");
cfang@1607 2114 assert(_invariant.test(n->_idx), "must be an invariant");
cfang@1607 2115 if (!_clone_visited.test(n->_idx))
cfang@1607 2116 clone_nodes(n, ctrl);
cfang@1607 2117 return _old_new[n->_idx];
cfang@1607 2118 }
cfang@1607 2119 };
cfang@1607 2120
cfang@1607 2121 //------------------------------is_range_check_if -----------------------------------
cfang@1607 2122 // Returns true if the predicate of iff is in "scale*iv + offset u< load_range(ptr)" format
cfang@1607 2123 // Note: this function is particularly designed for loop predication. We require load_range
cfang@1607 2124 // and offset to be loop invariant computed on the fly by "invar"
cfang@1607 2125 bool IdealLoopTree::is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const {
cfang@1607 2126 if (!is_loop_exit(iff)) {
cfang@1607 2127 return false;
cfang@1607 2128 }
cfang@1607 2129 if (!iff->in(1)->is_Bool()) {
cfang@1607 2130 return false;
cfang@1607 2131 }
cfang@1607 2132 const BoolNode *bol = iff->in(1)->as_Bool();
cfang@1607 2133 if (bol->_test._test != BoolTest::lt) {
cfang@1607 2134 return false;
cfang@1607 2135 }
cfang@1607 2136 if (!bol->in(1)->is_Cmp()) {
cfang@1607 2137 return false;
cfang@1607 2138 }
cfang@1607 2139 const CmpNode *cmp = bol->in(1)->as_Cmp();
cfang@1607 2140 if (cmp->Opcode() != Op_CmpU ) {
cfang@1607 2141 return false;
cfang@1607 2142 }
never@2118 2143 Node* range = cmp->in(2);
never@2118 2144 if (range->Opcode() != Op_LoadRange) {
never@2118 2145 const TypeInt* tint = phase->_igvn.type(range)->isa_int();
never@2118 2146 if (!OptimizeFill || tint == NULL || tint->empty() || tint->_lo < 0) {
never@2118 2147 // Allow predication on positive values that aren't LoadRanges.
never@2118 2148 // This allows optimization of loops where the length of the
never@2118 2149 // array is a known value and doesn't need to be loaded back
never@2118 2150 // from the array.
never@2118 2151 return false;
never@2118 2152 }
cfang@1607 2153 }
never@2118 2154 if (!invar.is_invariant(range)) {
cfang@1607 2155 return false;
cfang@1607 2156 }
cfang@1607 2157 Node *iv = _head->as_CountedLoop()->phi();
cfang@1607 2158 int scale = 0;
cfang@1607 2159 Node *offset = NULL;
cfang@1607 2160 if (!phase->is_scaled_iv_plus_offset(cmp->in(1), iv, &scale, &offset)) {
cfang@1607 2161 return false;
cfang@1607 2162 }
cfang@1607 2163 if(offset && !invar.is_invariant(offset)) { // offset must be invariant
cfang@1607 2164 return false;
cfang@1607 2165 }
cfang@1607 2166 return true;
cfang@1607 2167 }
cfang@1607 2168
cfang@1607 2169 //------------------------------rc_predicate-----------------------------------
cfang@1607 2170 // Create a range check predicate
cfang@1607 2171 //
cfang@1607 2172 // for (i = init; i < limit; i += stride) {
cfang@1607 2173 // a[scale*i+offset]
cfang@1607 2174 // }
cfang@1607 2175 //
cfang@1607 2176 // Compute max(scale*i + offset) for init <= i < limit and build the predicate
cfang@1607 2177 // as "max(scale*i + offset) u< a.length".
cfang@1607 2178 //
cfang@1607 2179 // There are two cases for max(scale*i + offset):
cfang@1607 2180 // (1) stride*scale > 0
cfang@1607 2181 // max(scale*i + offset) = scale*(limit-stride) + offset
cfang@1607 2182 // (2) stride*scale < 0
cfang@1607 2183 // max(scale*i + offset) = scale*init + offset
cfang@1607 2184 BoolNode* PhaseIdealLoop::rc_predicate(Node* ctrl,
cfang@1607 2185 int scale, Node* offset,
cfang@1607 2186 Node* init, Node* limit, Node* stride,
never@1738 2187 Node* range, bool upper) {
never@1738 2188 DEBUG_ONLY(ttyLocker ttyl);
never@1738 2189 if (TraceLoopPredicate) tty->print("rc_predicate ");
never@1738 2190
cfang@1607 2191 Node* max_idx_expr = init;
cfang@1607 2192 int stride_con = stride->get_int();
never@1738 2193 if ((stride_con > 0) == (scale > 0) == upper) {
cfang@1607 2194 max_idx_expr = new (C, 3) SubINode(limit, stride);
cfang@1607 2195 register_new_node(max_idx_expr, ctrl);
never@1738 2196 if (TraceLoopPredicate) tty->print("(limit - stride) ");
never@1738 2197 } else {
never@1738 2198 if (TraceLoopPredicate) tty->print("init ");
cfang@1607 2199 }
cfang@1607 2200
cfang@1607 2201 if (scale != 1) {
cfang@1607 2202 ConNode* con_scale = _igvn.intcon(scale);
cfang@1607 2203 max_idx_expr = new (C, 3) MulINode(max_idx_expr, con_scale);
cfang@1607 2204 register_new_node(max_idx_expr, ctrl);
never@1738 2205 if (TraceLoopPredicate) tty->print("* %d ", scale);
cfang@1607 2206 }
cfang@1607 2207
cfang@1607 2208 if (offset && (!offset->is_Con() || offset->get_int() != 0)){
cfang@1607 2209 max_idx_expr = new (C, 3) AddINode(max_idx_expr, offset);
cfang@1607 2210 register_new_node(max_idx_expr, ctrl);
never@1738 2211 if (TraceLoopPredicate)
never@1738 2212 if (offset->is_Con()) tty->print("+ %d ", offset->get_int());
never@1738 2213 else tty->print("+ offset ");
cfang@1607 2214 }
cfang@1607 2215
cfang@1607 2216 CmpUNode* cmp = new (C, 3) CmpUNode(max_idx_expr, range);
cfang@1607 2217 register_new_node(cmp, ctrl);
cfang@1607 2218 BoolNode* bol = new (C, 2) BoolNode(cmp, BoolTest::lt);
cfang@1607 2219 register_new_node(bol, ctrl);
never@1738 2220
never@1738 2221 if (TraceLoopPredicate) tty->print_cr("<u range");
cfang@1607 2222 return bol;
cfang@1607 2223 }
cfang@1607 2224
cfang@1607 2225 //------------------------------ loop_predication_impl--------------------------
cfang@1607 2226 // Insert loop predicates for null checks and range checks
cfang@1607 2227 bool PhaseIdealLoop::loop_predication_impl(IdealLoopTree *loop) {
cfang@1607 2228 if (!UseLoopPredicate) return false;
cfang@1607 2229
never@1710 2230 if (!loop->_head->is_Loop()) {
never@1710 2231 // Could be a simple region when irreducible loops are present.
never@1710 2232 return false;
never@1710 2233 }
never@1710 2234
kvn@2665 2235 if (loop->_head->unique_ctrl_out()->Opcode() == Op_NeverBranch) {
kvn@2665 2236 // do nothing for infinite loops
kvn@2665 2237 return false;
kvn@2665 2238 }
kvn@2665 2239
never@1710 2240 CountedLoopNode *cl = NULL;
never@1710 2241 if (loop->_head->is_CountedLoop()) {
never@1710 2242 cl = loop->_head->as_CountedLoop();
never@1710 2243 // do nothing for iteration-splitted loops
never@1710 2244 if (!cl->is_normal_loop()) return false;
never@1710 2245 }
never@1710 2246
cfang@1607 2247 LoopNode *lpn = loop->_head->as_Loop();
cfang@1607 2248 Node* entry = lpn->in(LoopNode::EntryControl);
cfang@1607 2249
kvn@2665 2250 ProjNode *predicate_proj = find_predicate_insertion_point(entry, Deoptimization::Reason_predicate);
kvn@2665 2251 if (!predicate_proj) {
cfang@1607 2252 #ifndef PRODUCT
cfang@1607 2253 if (TraceLoopPredicate) {
cfang@1607 2254 tty->print("missing predicate:");
cfang@1607 2255 loop->dump_head();
kvn@2665 2256 lpn->dump(1);
cfang@1607 2257 }
cfang@1607 2258 #endif
cfang@1607 2259 return false;
cfang@1607 2260 }
cfang@1607 2261 ConNode* zero = _igvn.intcon(0);
cfang@1607 2262 set_ctrl(zero, C->root());
cfang@1607 2263
cfang@1607 2264 ResourceArea *area = Thread::current()->resource_area();
cfang@1607 2265 Invariance invar(area, loop);
cfang@1607 2266
cfang@1607 2267 // Create list of if-projs such that a newer proj dominates all older
cfang@1607 2268 // projs in the list, and they all dominate loop->tail()
cfang@1607 2269 Node_List if_proj_list(area);
cfang@1607 2270 LoopNode *head = loop->_head->as_Loop();
cfang@1607 2271 Node *current_proj = loop->tail(); //start from tail
cfang@1607 2272 while ( current_proj != head ) {
cfang@1607 2273 if (loop == get_loop(current_proj) && // still in the loop ?
cfang@1607 2274 current_proj->is_Proj() && // is a projection ?
cfang@1607 2275 current_proj->in(0)->Opcode() == Op_If) { // is a if projection ?
cfang@1607 2276 if_proj_list.push(current_proj);
cfang@1607 2277 }
cfang@1607 2278 current_proj = idom(current_proj);
cfang@1607 2279 }
cfang@1607 2280
cfang@1607 2281 bool hoisted = false; // true if at least one proj is promoted
cfang@1607 2282 while (if_proj_list.size() > 0) {
cfang@1607 2283 // Following are changed to nonnull when a predicate can be hoisted
cfang@1607 2284 ProjNode* new_predicate_proj = NULL;
cfang@1607 2285
cfang@1607 2286 ProjNode* proj = if_proj_list.pop()->as_Proj();
cfang@1607 2287 IfNode* iff = proj->in(0)->as_If();
cfang@1607 2288
kvn@2665 2289 if (!is_uncommon_trap_if_pattern(proj, Deoptimization::Reason_none)) {
cfang@1607 2290 if (loop->is_loop_exit(iff)) {
cfang@1607 2291 // stop processing the remaining projs in the list because the execution of them
cfang@1607 2292 // depends on the condition of "iff" (iff->in(1)).
cfang@1607 2293 break;
cfang@1607 2294 } else {
cfang@1607 2295 // Both arms are inside the loop. There are two cases:
cfang@1607 2296 // (1) there is one backward branch. In this case, any remaining proj
cfang@1607 2297 // in the if_proj list post-dominates "iff". So, the condition of "iff"
cfang@1607 2298 // does not determine the execution the remining projs directly, and we
cfang@1607 2299 // can safely continue.
cfang@1607 2300 // (2) both arms are forwarded, i.e. a diamond shape. In this case, "proj"
cfang@1607 2301 // does not dominate loop->tail(), so it can not be in the if_proj list.
cfang@1607 2302 continue;
cfang@1607 2303 }
cfang@1607 2304 }
cfang@1607 2305
cfang@1607 2306 Node* test = iff->in(1);
cfang@1607 2307 if (!test->is_Bool()){ //Conv2B, ...
cfang@1607 2308 continue;
cfang@1607 2309 }
cfang@1607 2310 BoolNode* bol = test->as_Bool();
cfang@1607 2311 if (invar.is_invariant(bol)) {
cfang@1607 2312 // Invariant test
kvn@2665 2313 new_predicate_proj = create_new_if_for_predicate(predicate_proj, NULL,
kvn@2665 2314 Deoptimization::Reason_predicate);
cfang@1607 2315 Node* ctrl = new_predicate_proj->in(0)->as_If()->in(0);
never@1738 2316 BoolNode* new_predicate_bol = invar.clone(bol, ctrl)->as_Bool();
never@1738 2317
never@1738 2318 // Negate test if necessary
never@1738 2319 bool negated = false;
never@1738 2320 if (proj->_con != predicate_proj->_con) {
never@1738 2321 new_predicate_bol = new (C, 2) BoolNode(new_predicate_bol->in(1), new_predicate_bol->_test.negate());
never@1738 2322 register_new_node(new_predicate_bol, ctrl);
never@1738 2323 negated = true;
never@1738 2324 }
never@1738 2325 IfNode* new_predicate_iff = new_predicate_proj->in(0)->as_If();
never@1738 2326 _igvn.hash_delete(new_predicate_iff);
never@1738 2327 new_predicate_iff->set_req(1, new_predicate_bol);
kvn@2665 2328 #ifndef PRODUCT
kvn@2665 2329 if (TraceLoopPredicate) {
kvn@2665 2330 tty->print("Predicate invariant if%s: %d ", negated ? " negated" : "", new_predicate_iff->_idx);
kvn@2665 2331 loop->dump_head();
kvn@2665 2332 } else if (TraceLoopOpts) {
kvn@2665 2333 tty->print("Predicate IC ");
kvn@2665 2334 loop->dump_head();
kvn@2665 2335 }
kvn@2665 2336 #endif
cfang@1607 2337 } else if (cl != NULL && loop->is_range_check_if(iff, this, invar)) {
never@1738 2338 assert(proj->_con == predicate_proj->_con, "must match");
never@1738 2339
never@1738 2340 // Range check for counted loops
cfang@1607 2341 const Node* cmp = bol->in(1)->as_Cmp();
cfang@1607 2342 Node* idx = cmp->in(1);
cfang@1607 2343 assert(!invar.is_invariant(idx), "index is variant");
never@2118 2344 assert(cmp->in(2)->Opcode() == Op_LoadRange || OptimizeFill, "must be");
never@2118 2345 Node* rng = cmp->in(2);
never@2118 2346 assert(invar.is_invariant(rng), "range must be invariant");
cfang@1607 2347 int scale = 1;
cfang@1607 2348 Node* offset = zero;
cfang@1607 2349 bool ok = is_scaled_iv_plus_offset(idx, cl->phi(), &scale, &offset);
cfang@1607 2350 assert(ok, "must be index expression");
never@1738 2351
never@1738 2352 Node* init = cl->init_trip();
never@1738 2353 Node* limit = cl->limit();
never@1738 2354 Node* stride = cl->stride();
never@1738 2355
never@1738 2356 // Build if's for the upper and lower bound tests. The
never@1738 2357 // lower_bound test will dominate the upper bound test and all
never@1738 2358 // cloned or created nodes will use the lower bound test as
never@1738 2359 // their declared control.
kvn@2665 2360 ProjNode* lower_bound_proj = create_new_if_for_predicate(predicate_proj, NULL, Deoptimization::Reason_predicate);
kvn@2665 2361 ProjNode* upper_bound_proj = create_new_if_for_predicate(predicate_proj, NULL, Deoptimization::Reason_predicate);
never@1738 2362 assert(upper_bound_proj->in(0)->as_If()->in(0) == lower_bound_proj, "should dominate");
never@1738 2363 Node *ctrl = lower_bound_proj->in(0)->as_If()->in(0);
never@1738 2364
never@1738 2365 // Perform cloning to keep Invariance state correct since the
never@1738 2366 // late schedule will place invariant things in the loop.
never@2118 2367 rng = invar.clone(rng, ctrl);
cfang@1607 2368 if (offset && offset != zero) {
cfang@1607 2369 assert(invar.is_invariant(offset), "offset must be loop invariant");
cfang@1607 2370 offset = invar.clone(offset, ctrl);
cfang@1607 2371 }
cfang@1607 2372
never@1738 2373 // Test the lower bound
never@2118 2374 Node* lower_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, rng, false);
never@1738 2375 IfNode* lower_bound_iff = lower_bound_proj->in(0)->as_If();
never@1738 2376 _igvn.hash_delete(lower_bound_iff);
never@1738 2377 lower_bound_iff->set_req(1, lower_bound_bol);
never@1738 2378 if (TraceLoopPredicate) tty->print_cr("lower bound check if: %d", lower_bound_iff->_idx);
never@1738 2379
never@1738 2380 // Test the upper bound
never@2118 2381 Node* upper_bound_bol = rc_predicate(ctrl, scale, offset, init, limit, stride, rng, true);
never@1738 2382 IfNode* upper_bound_iff = upper_bound_proj->in(0)->as_If();
never@1738 2383 _igvn.hash_delete(upper_bound_iff);
never@1738 2384 upper_bound_iff->set_req(1, upper_bound_bol);
never@1738 2385 if (TraceLoopPredicate) tty->print_cr("upper bound check if: %d", lower_bound_iff->_idx);
never@1738 2386
never@1738 2387 // Fall through into rest of the clean up code which will move
never@1738 2388 // any dependent nodes onto the upper bound test.
never@1738 2389 new_predicate_proj = upper_bound_proj;
kvn@2665 2390
kvn@2665 2391 #ifndef PRODUCT
kvn@2665 2392 if (TraceLoopOpts && !TraceLoopPredicate) {
kvn@2665 2393 tty->print("Predicate RC ");
kvn@2665 2394 loop->dump_head();
kvn@2665 2395 }
kvn@2665 2396 #endif
never@1738 2397 } else {
kvn@2665 2398 // Loop variant check (for example, range check in non-counted loop)
kvn@2665 2399 // with uncommon trap.
cfang@1607 2400 continue;
never@1738 2401 }
kvn@2665 2402 assert(new_predicate_proj != NULL, "sanity");
never@1738 2403 // Success - attach condition (new_predicate_bol) to predicate if
never@1738 2404 invar.map_ctrl(proj, new_predicate_proj); // so that invariance test can be appropriate
never@1738 2405
kvn@2665 2406 // Eliminate the old If in the loop body
kvn@2665 2407 dominated_by( new_predicate_proj, iff, proj->_con != new_predicate_proj->_con );
cfang@1607 2408
never@1738 2409 hoisted = true;
never@1738 2410 C->set_major_progress();
cfang@1607 2411 } // end while
cfang@1607 2412
cfang@1607 2413 #ifndef PRODUCT
never@1738 2414 // report that the loop predication has been actually performed
never@1738 2415 // for this loop
never@1738 2416 if (TraceLoopPredicate && hoisted) {
never@1738 2417 tty->print("Loop Predication Performed:");
never@1738 2418 loop->dump_head();
never@1738 2419 }
cfang@1607 2420 #endif
cfang@1607 2421
cfang@1607 2422 return hoisted;
cfang@1607 2423 }
cfang@1607 2424
cfang@1607 2425 //------------------------------loop_predication--------------------------------
cfang@1607 2426 // driver routine for loop predication optimization
cfang@1607 2427 bool IdealLoopTree::loop_predication( PhaseIdealLoop *phase) {
cfang@1607 2428 bool hoisted = false;
cfang@1607 2429 // Recursively promote predicates
cfang@1607 2430 if ( _child ) {
cfang@1607 2431 hoisted = _child->loop_predication( phase);
cfang@1607 2432 }
cfang@1607 2433
cfang@1607 2434 // self
cfang@1607 2435 if (!_irreducible && !tail()->is_top()) {
cfang@1607 2436 hoisted |= phase->loop_predication_impl(this);
cfang@1607 2437 }
cfang@1607 2438
cfang@1607 2439 if ( _next ) { //sibling
cfang@1607 2440 hoisted |= _next->loop_predication( phase);
cfang@1607 2441 }
cfang@1607 2442
cfang@1607 2443 return hoisted;
cfang@1607 2444 }
never@2118 2445
never@2118 2446
never@2118 2447 // Process all the loops in the loop tree and replace any fill
never@2118 2448 // patterns with an intrisc version.
never@2118 2449 bool PhaseIdealLoop::do_intrinsify_fill() {
never@2118 2450 bool changed = false;
never@2118 2451 for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
never@2118 2452 IdealLoopTree* lpt = iter.current();
never@2118 2453 changed |= intrinsify_fill(lpt);
never@2118 2454 }
never@2118 2455 return changed;
never@2118 2456 }
never@2118 2457
never@2118 2458
never@2118 2459 // Examine an inner loop looking for a a single store of an invariant
never@2118 2460 // value in a unit stride loop,
never@2118 2461 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
never@2118 2462 Node*& shift, Node*& con) {
never@2118 2463 const char* msg = NULL;
never@2118 2464 Node* msg_node = NULL;
never@2118 2465
never@2118 2466 store_value = NULL;
never@2118 2467 con = NULL;
never@2118 2468 shift = NULL;
never@2118 2469
never@2118 2470 // Process the loop looking for stores. If there are multiple
never@2118 2471 // stores or extra control flow give at this point.
never@2118 2472 CountedLoopNode* head = lpt->_head->as_CountedLoop();
never@2118 2473 for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
never@2118 2474 Node* n = lpt->_body.at(i);
never@2118 2475 if (n->outcnt() == 0) continue; // Ignore dead
never@2118 2476 if (n->is_Store()) {
never@2118 2477 if (store != NULL) {
never@2118 2478 msg = "multiple stores";
never@2118 2479 break;
never@2118 2480 }
never@2118 2481 int opc = n->Opcode();
never@2118 2482 if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreCM) {
never@2118 2483 msg = "oop fills not handled";
never@2118 2484 break;
never@2118 2485 }
never@2118 2486 Node* value = n->in(MemNode::ValueIn);
never@2118 2487 if (!lpt->is_invariant(value)) {
never@2118 2488 msg = "variant store value";
never@2140 2489 } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
never@2140 2490 msg = "not array address";
never@2118 2491 }
never@2118 2492 store = n;
never@2118 2493 store_value = value;
never@2118 2494 } else if (n->is_If() && n != head->loopexit()) {
never@2118 2495 msg = "extra control flow";
never@2118 2496 msg_node = n;
never@2118 2497 }
never@2118 2498 }
never@2118 2499
never@2118 2500 if (store == NULL) {
never@2118 2501 // No store in loop
never@2118 2502 return false;
never@2118 2503 }
never@2118 2504
never@2118 2505 if (msg == NULL && head->stride_con() != 1) {
never@2118 2506 // could handle negative strides too
never@2118 2507 if (head->stride_con() < 0) {
never@2118 2508 msg = "negative stride";
never@2118 2509 } else {
never@2118 2510 msg = "non-unit stride";
never@2118 2511 }
never@2118 2512 }
never@2118 2513
never@2118 2514 if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
never@2118 2515 msg = "can't handle store address";
never@2118 2516 msg_node = store->in(MemNode::Address);
never@2118 2517 }
never@2118 2518
never@2168 2519 if (msg == NULL &&
never@2168 2520 (!store->in(MemNode::Memory)->is_Phi() ||
never@2168 2521 store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
never@2168 2522 msg = "store memory isn't proper phi";
never@2168 2523 msg_node = store->in(MemNode::Memory);
never@2168 2524 }
never@2168 2525
never@2118 2526 // Make sure there is an appropriate fill routine
never@2118 2527 BasicType t = store->as_Mem()->memory_type();
never@2118 2528 const char* fill_name;
never@2118 2529 if (msg == NULL &&
never@2118 2530 StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
never@2118 2531 msg = "unsupported store";
never@2118 2532 msg_node = store;
never@2118 2533 }
never@2118 2534
never@2118 2535 if (msg != NULL) {
never@2118 2536 #ifndef PRODUCT
never@2118 2537 if (TraceOptimizeFill) {
never@2118 2538 tty->print_cr("not fill intrinsic candidate: %s", msg);
never@2118 2539 if (msg_node != NULL) msg_node->dump();
never@2118 2540 }
never@2118 2541 #endif
never@2118 2542 return false;
never@2118 2543 }
never@2118 2544
never@2118 2545 // Make sure the address expression can be handled. It should be
never@2118 2546 // head->phi * elsize + con. head->phi might have a ConvI2L.
never@2118 2547 Node* elements[4];
never@2118 2548 Node* conv = NULL;
never@2140 2549 bool found_index = false;
never@2118 2550 int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
never@2118 2551 for (int e = 0; e < count; e++) {
never@2118 2552 Node* n = elements[e];
never@2118 2553 if (n->is_Con() && con == NULL) {
never@2118 2554 con = n;
never@2118 2555 } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
never@2118 2556 Node* value = n->in(1);
never@2118 2557 #ifdef _LP64
never@2118 2558 if (value->Opcode() == Op_ConvI2L) {
never@2118 2559 conv = value;
never@2118 2560 value = value->in(1);
never@2118 2561 }
never@2118 2562 #endif
never@2118 2563 if (value != head->phi()) {
never@2118 2564 msg = "unhandled shift in address";
never@2118 2565 } else {
never@2140 2566 found_index = true;
never@2118 2567 shift = n;
never@2118 2568 assert(type2aelembytes(store->as_Mem()->memory_type(), true) == 1 << shift->in(2)->get_int(), "scale should match");
never@2118 2569 }
never@2118 2570 } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
never@2118 2571 if (n->in(1) == head->phi()) {
never@2140 2572 found_index = true;
never@2118 2573 conv = n;
never@2118 2574 } else {
never@2118 2575 msg = "unhandled input to ConvI2L";
never@2118 2576 }
never@2118 2577 } else if (n == head->phi()) {
never@2118 2578 // no shift, check below for allowed cases
never@2140 2579 found_index = true;
never@2118 2580 } else {
never@2118 2581 msg = "unhandled node in address";
never@2118 2582 msg_node = n;
never@2118 2583 }
never@2118 2584 }
never@2118 2585
never@2118 2586 if (count == -1) {
never@2118 2587 msg = "malformed address expression";
never@2118 2588 msg_node = store;
never@2118 2589 }
never@2118 2590
never@2140 2591 if (!found_index) {
never@2140 2592 msg = "missing use of index";
never@2140 2593 }
never@2140 2594
never@2118 2595 // byte sized items won't have a shift
never@2118 2596 if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
never@2118 2597 msg = "can't find shift";
never@2118 2598 msg_node = store;
never@2118 2599 }
never@2118 2600
never@2118 2601 if (msg != NULL) {
never@2118 2602 #ifndef PRODUCT
never@2118 2603 if (TraceOptimizeFill) {
never@2118 2604 tty->print_cr("not fill intrinsic: %s", msg);
never@2118 2605 if (msg_node != NULL) msg_node->dump();
never@2118 2606 }
never@2118 2607 #endif
never@2118 2608 return false;
never@2118 2609 }
never@2118 2610
never@2118 2611 // No make sure all the other nodes in the loop can be handled
never@2118 2612 VectorSet ok(Thread::current()->resource_area());
never@2118 2613
never@2118 2614 // store related values are ok
never@2118 2615 ok.set(store->_idx);
never@2118 2616 ok.set(store->in(MemNode::Memory)->_idx);
never@2118 2617
never@2118 2618 // Loop structure is ok
never@2118 2619 ok.set(head->_idx);
never@2118 2620 ok.set(head->loopexit()->_idx);
never@2118 2621 ok.set(head->phi()->_idx);
never@2118 2622 ok.set(head->incr()->_idx);
never@2118 2623 ok.set(head->loopexit()->cmp_node()->_idx);
never@2118 2624 ok.set(head->loopexit()->in(1)->_idx);
never@2118 2625
never@2118 2626 // Address elements are ok
never@2118 2627 if (con) ok.set(con->_idx);
never@2118 2628 if (shift) ok.set(shift->_idx);
never@2118 2629 if (conv) ok.set(conv->_idx);
never@2118 2630
never@2118 2631 for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
never@2118 2632 Node* n = lpt->_body.at(i);
never@2118 2633 if (n->outcnt() == 0) continue; // Ignore dead
never@2118 2634 if (ok.test(n->_idx)) continue;
never@2118 2635 // Backedge projection is ok
never@2118 2636 if (n->is_IfTrue() && n->in(0) == head->loopexit()) continue;
never@2118 2637 if (!n->is_AddP()) {
never@2118 2638 msg = "unhandled node";
never@2118 2639 msg_node = n;
never@2118 2640 break;
never@2118 2641 }
never@2118 2642 }
never@2118 2643
never@2118 2644 // Make sure no unexpected values are used outside the loop
never@2118 2645 for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
never@2118 2646 Node* n = lpt->_body.at(i);
never@2118 2647 // These values can be replaced with other nodes if they are used
never@2118 2648 // outside the loop.
never@2168 2649 if (n == store || n == head->loopexit() || n == head->incr() || n == store->in(MemNode::Memory)) continue;
never@2118 2650 for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
never@2118 2651 Node* use = iter.get();
never@2118 2652 if (!lpt->_body.contains(use)) {
never@2118 2653 msg = "node is used outside loop";
never@2118 2654 // lpt->_body.dump();
never@2118 2655 msg_node = n;
never@2118 2656 break;
never@2118 2657 }
never@2118 2658 }
never@2118 2659 }
never@2118 2660
never@2118 2661 #ifdef ASSERT
never@2118 2662 if (TraceOptimizeFill) {
never@2118 2663 if (msg != NULL) {
never@2118 2664 tty->print_cr("no fill intrinsic: %s", msg);
never@2118 2665 if (msg_node != NULL) msg_node->dump();
never@2118 2666 } else {
never@2118 2667 tty->print_cr("fill intrinsic for:");
never@2118 2668 }
never@2118 2669 store->dump();
never@2118 2670 if (Verbose) {
never@2118 2671 lpt->_body.dump();
never@2118 2672 }
never@2118 2673 }
never@2118 2674 #endif
never@2118 2675
never@2118 2676 return msg == NULL;
never@2118 2677 }
never@2118 2678
never@2118 2679
never@2118 2680
never@2118 2681 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
never@2118 2682 // Only for counted inner loops
never@2118 2683 if (!lpt->is_counted() || !lpt->is_inner()) {
never@2118 2684 return false;
never@2118 2685 }
never@2118 2686
never@2118 2687 // Must have constant stride
never@2118 2688 CountedLoopNode* head = lpt->_head->as_CountedLoop();
never@2118 2689 if (!head->stride_is_con() || !head->is_normal_loop()) {
never@2118 2690 return false;
never@2118 2691 }
never@2118 2692
never@2118 2693 // Check that the body only contains a store of a loop invariant
never@2118 2694 // value that is indexed by the loop phi.
never@2118 2695 Node* store = NULL;
never@2118 2696 Node* store_value = NULL;
never@2118 2697 Node* shift = NULL;
never@2118 2698 Node* offset = NULL;
never@2118 2699 if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
never@2118 2700 return false;
never@2118 2701 }
never@2118 2702
never@2118 2703 // Now replace the whole loop body by a call to a fill routine that
never@2118 2704 // covers the same region as the loop.
never@2118 2705 Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
never@2118 2706
never@2118 2707 // Build an expression for the beginning of the copy region
never@2118 2708 Node* index = head->init_trip();
never@2118 2709 #ifdef _LP64
never@2118 2710 index = new (C, 2) ConvI2LNode(index);
never@2118 2711 _igvn.register_new_node_with_optimizer(index);
never@2118 2712 #endif
never@2118 2713 if (shift != NULL) {
never@2118 2714 // byte arrays don't require a shift but others do.
never@2118 2715 index = new (C, 3) LShiftXNode(index, shift->in(2));
never@2118 2716 _igvn.register_new_node_with_optimizer(index);
never@2118 2717 }
never@2118 2718 index = new (C, 4) AddPNode(base, base, index);
never@2118 2719 _igvn.register_new_node_with_optimizer(index);
never@2118 2720 Node* from = new (C, 4) AddPNode(base, index, offset);
never@2118 2721 _igvn.register_new_node_with_optimizer(from);
never@2118 2722 // Compute the number of elements to copy
never@2118 2723 Node* len = new (C, 3) SubINode(head->limit(), head->init_trip());
never@2118 2724 _igvn.register_new_node_with_optimizer(len);
never@2118 2725
never@2118 2726 BasicType t = store->as_Mem()->memory_type();
never@2118 2727 bool aligned = false;
never@2118 2728 if (offset != NULL && head->init_trip()->is_Con()) {
never@2118 2729 int element_size = type2aelembytes(t);
never@2118 2730 aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
never@2118 2731 }
never@2118 2732
never@2118 2733 // Build a call to the fill routine
never@2118 2734 const char* fill_name;
never@2118 2735 address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
never@2118 2736 assert(fill != NULL, "what?");
never@2118 2737
never@2118 2738 // Convert float/double to int/long for fill routines
never@2118 2739 if (t == T_FLOAT) {
never@2118 2740 store_value = new (C, 2) MoveF2INode(store_value);
never@2118 2741 _igvn.register_new_node_with_optimizer(store_value);
never@2118 2742 } else if (t == T_DOUBLE) {
never@2118 2743 store_value = new (C, 2) MoveD2LNode(store_value);
never@2118 2744 _igvn.register_new_node_with_optimizer(store_value);
never@2118 2745 }
never@2118 2746
never@2118 2747 Node* mem_phi = store->in(MemNode::Memory);
never@2118 2748 Node* result_ctrl;
never@2118 2749 Node* result_mem;
never@2118 2750 const TypeFunc* call_type = OptoRuntime::array_fill_Type();
never@2118 2751 int size = call_type->domain()->cnt();
never@2118 2752 CallLeafNode *call = new (C, size) CallLeafNoFPNode(call_type, fill,
never@2118 2753 fill_name, TypeAryPtr::get_array_body_type(t));
never@2118 2754 call->init_req(TypeFunc::Parms+0, from);
never@2118 2755 call->init_req(TypeFunc::Parms+1, store_value);
never@2199 2756 #ifdef _LP64
never@2199 2757 len = new (C, 2) ConvI2LNode(len);
never@2199 2758 _igvn.register_new_node_with_optimizer(len);
never@2199 2759 #endif
never@2118 2760 call->init_req(TypeFunc::Parms+2, len);
never@2199 2761 #ifdef _LP64
never@2199 2762 call->init_req(TypeFunc::Parms+3, C->top());
never@2199 2763 #endif
never@2118 2764 call->init_req( TypeFunc::Control, head->init_control());
never@2118 2765 call->init_req( TypeFunc::I_O , C->top() ) ; // does no i/o
never@2118 2766 call->init_req( TypeFunc::Memory , mem_phi->in(LoopNode::EntryControl) );
never@2118 2767 call->init_req( TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr) );
never@2118 2768 call->init_req( TypeFunc::FramePtr, C->start()->proj_out(TypeFunc::FramePtr) );
never@2118 2769 _igvn.register_new_node_with_optimizer(call);
never@2118 2770 result_ctrl = new (C, 1) ProjNode(call,TypeFunc::Control);
never@2118 2771 _igvn.register_new_node_with_optimizer(result_ctrl);
never@2118 2772 result_mem = new (C, 1) ProjNode(call,TypeFunc::Memory);
never@2118 2773 _igvn.register_new_node_with_optimizer(result_mem);
never@2118 2774
never@2118 2775 // If this fill is tightly coupled to an allocation and overwrites
never@2118 2776 // the whole body, allow it to take over the zeroing.
never@2118 2777 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
never@2118 2778 if (alloc != NULL && alloc->is_AllocateArray()) {
never@2118 2779 Node* length = alloc->as_AllocateArray()->Ideal_length();
never@2118 2780 if (head->limit() == length &&
never@2118 2781 head->init_trip() == _igvn.intcon(0)) {
never@2118 2782 if (TraceOptimizeFill) {
never@2118 2783 tty->print_cr("Eliminated zeroing in allocation");
never@2118 2784 }
never@2118 2785 alloc->maybe_set_complete(&_igvn);
never@2118 2786 } else {
never@2118 2787 #ifdef ASSERT
never@2118 2788 if (TraceOptimizeFill) {
never@2118 2789 tty->print_cr("filling array but bounds don't match");
never@2118 2790 alloc->dump();
never@2118 2791 head->init_trip()->dump();
never@2118 2792 head->limit()->dump();
never@2118 2793 length->dump();
never@2118 2794 }
never@2118 2795 #endif
never@2118 2796 }
never@2118 2797 }
never@2118 2798
never@2118 2799 // Redirect the old control and memory edges that are outside the loop.
never@2118 2800 Node* exit = head->loopexit()->proj_out(0);
never@2168 2801 // Sometimes the memory phi of the head is used as the outgoing
never@2168 2802 // state of the loop. It's safe in this case to replace it with the
never@2168 2803 // result_mem.
never@2168 2804 _igvn.replace_node(store->in(MemNode::Memory), result_mem);
never@2118 2805 _igvn.replace_node(exit, result_ctrl);
never@2118 2806 _igvn.replace_node(store, result_mem);
never@2118 2807 // Any uses the increment outside of the loop become the loop limit.
never@2118 2808 _igvn.replace_node(head->incr(), head->limit());
never@2118 2809
never@2118 2810 // Disconnect the head from the loop.
never@2118 2811 for (uint i = 0; i < lpt->_body.size(); i++) {
never@2118 2812 Node* n = lpt->_body.at(i);
never@2118 2813 _igvn.replace_node(n, C->top());
never@2118 2814 }
never@2118 2815
never@2118 2816 return true;
never@2118 2817 }

mercurial