src/share/vm/opto/loopTransform.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 855
a1980da045cc
child 1224
273b2358ef1a
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

duke@435 1 /*
xdono@631 2 * Copyright 2000-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_loopTransform.cpp.incl"
duke@435 27
duke@435 28 //------------------------------is_loop_exit-----------------------------------
duke@435 29 // Given an IfNode, return the loop-exiting projection or NULL if both
duke@435 30 // arms remain in the loop.
duke@435 31 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
duke@435 32 if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
duke@435 33 PhaseIdealLoop *phase = _phase;
duke@435 34 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 35 // we need loop unswitching instead of peeling.
duke@435 36 if( !is_member(phase->get_loop( iff->raw_out(0) )) )
duke@435 37 return iff->raw_out(0);
duke@435 38 if( !is_member(phase->get_loop( iff->raw_out(1) )) )
duke@435 39 return iff->raw_out(1);
duke@435 40 return NULL;
duke@435 41 }
duke@435 42
duke@435 43
duke@435 44 //=============================================================================
duke@435 45
duke@435 46
duke@435 47 //------------------------------record_for_igvn----------------------------
duke@435 48 // Put loop body on igvn work list
duke@435 49 void IdealLoopTree::record_for_igvn() {
duke@435 50 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 51 Node *n = _body.at(i);
duke@435 52 _phase->_igvn._worklist.push(n);
duke@435 53 }
duke@435 54 }
duke@435 55
duke@435 56 //------------------------------compute_profile_trip_cnt----------------------------
duke@435 57 // Compute loop trip count from profile data as
duke@435 58 // (backedge_count + loop_exit_count) / loop_exit_count
duke@435 59 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
duke@435 60 if (!_head->is_CountedLoop()) {
duke@435 61 return;
duke@435 62 }
duke@435 63 CountedLoopNode* head = _head->as_CountedLoop();
duke@435 64 if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
duke@435 65 return; // Already computed
duke@435 66 }
duke@435 67 float trip_cnt = (float)max_jint; // default is big
duke@435 68
duke@435 69 Node* back = head->in(LoopNode::LoopBackControl);
duke@435 70 while (back != head) {
duke@435 71 if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
duke@435 72 back->in(0) &&
duke@435 73 back->in(0)->is_If() &&
duke@435 74 back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
duke@435 75 back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
duke@435 76 break;
duke@435 77 }
duke@435 78 back = phase->idom(back);
duke@435 79 }
duke@435 80 if (back != head) {
duke@435 81 assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
duke@435 82 back->in(0), "if-projection exists");
duke@435 83 IfNode* back_if = back->in(0)->as_If();
duke@435 84 float loop_back_cnt = back_if->_fcnt * back_if->_prob;
duke@435 85
duke@435 86 // Now compute a loop exit count
duke@435 87 float loop_exit_cnt = 0.0f;
duke@435 88 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 89 Node *n = _body[i];
duke@435 90 if( n->is_If() ) {
duke@435 91 IfNode *iff = n->as_If();
duke@435 92 if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
duke@435 93 Node *exit = is_loop_exit(iff);
duke@435 94 if( exit ) {
duke@435 95 float exit_prob = iff->_prob;
duke@435 96 if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
duke@435 97 if (exit_prob > PROB_MIN) {
duke@435 98 float exit_cnt = iff->_fcnt * exit_prob;
duke@435 99 loop_exit_cnt += exit_cnt;
duke@435 100 }
duke@435 101 }
duke@435 102 }
duke@435 103 }
duke@435 104 }
duke@435 105 if (loop_exit_cnt > 0.0f) {
duke@435 106 trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
duke@435 107 } else {
duke@435 108 // No exit count so use
duke@435 109 trip_cnt = loop_back_cnt;
duke@435 110 }
duke@435 111 }
duke@435 112 #ifndef PRODUCT
duke@435 113 if (TraceProfileTripCount) {
duke@435 114 tty->print_cr("compute_profile_trip_cnt lp: %d cnt: %f\n", head->_idx, trip_cnt);
duke@435 115 }
duke@435 116 #endif
duke@435 117 head->set_profile_trip_cnt(trip_cnt);
duke@435 118 }
duke@435 119
duke@435 120 //---------------------is_invariant_addition-----------------------------
duke@435 121 // Return nonzero index of invariant operand for an Add or Sub
twisti@1040 122 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
duke@435 123 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
duke@435 124 int op = n->Opcode();
duke@435 125 if (op == Op_AddI || op == Op_SubI) {
duke@435 126 bool in1_invar = this->is_invariant(n->in(1));
duke@435 127 bool in2_invar = this->is_invariant(n->in(2));
duke@435 128 if (in1_invar && !in2_invar) return 1;
duke@435 129 if (!in1_invar && in2_invar) return 2;
duke@435 130 }
duke@435 131 return 0;
duke@435 132 }
duke@435 133
duke@435 134 //---------------------reassociate_add_sub-----------------------------
duke@435 135 // Reassociate invariant add and subtract expressions:
duke@435 136 //
duke@435 137 // inv1 + (x + inv2) => ( inv1 + inv2) + x
duke@435 138 // (x + inv2) + inv1 => ( inv1 + inv2) + x
duke@435 139 // inv1 + (x - inv2) => ( inv1 - inv2) + x
duke@435 140 // inv1 - (inv2 - x) => ( inv1 - inv2) + x
duke@435 141 // (x + inv2) - inv1 => (-inv1 + inv2) + x
duke@435 142 // (x - inv2) + inv1 => ( inv1 - inv2) + x
duke@435 143 // (x - inv2) - inv1 => (-inv1 - inv2) + x
duke@435 144 // inv1 + (inv2 - x) => ( inv1 + inv2) - x
duke@435 145 // inv1 - (x - inv2) => ( inv1 + inv2) - x
duke@435 146 // (inv2 - x) + inv1 => ( inv1 + inv2) - x
duke@435 147 // (inv2 - x) - inv1 => (-inv1 + inv2) - x
duke@435 148 // inv1 - (x + inv2) => ( inv1 - inv2) - x
duke@435 149 //
duke@435 150 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
duke@435 151 if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
duke@435 152 if (is_invariant(n1)) return NULL;
duke@435 153 int inv1_idx = is_invariant_addition(n1, phase);
duke@435 154 if (!inv1_idx) return NULL;
duke@435 155 // Don't mess with add of constant (igvn moves them to expression tree root.)
duke@435 156 if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
duke@435 157 Node* inv1 = n1->in(inv1_idx);
duke@435 158 Node* n2 = n1->in(3 - inv1_idx);
duke@435 159 int inv2_idx = is_invariant_addition(n2, phase);
duke@435 160 if (!inv2_idx) return NULL;
duke@435 161 Node* x = n2->in(3 - inv2_idx);
duke@435 162 Node* inv2 = n2->in(inv2_idx);
duke@435 163
duke@435 164 bool neg_x = n2->is_Sub() && inv2_idx == 1;
duke@435 165 bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
duke@435 166 bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
duke@435 167 if (n1->is_Sub() && inv1_idx == 1) {
duke@435 168 neg_x = !neg_x;
duke@435 169 neg_inv2 = !neg_inv2;
duke@435 170 }
duke@435 171 Node* inv1_c = phase->get_ctrl(inv1);
duke@435 172 Node* inv2_c = phase->get_ctrl(inv2);
duke@435 173 Node* n_inv1;
duke@435 174 if (neg_inv1) {
duke@435 175 Node *zero = phase->_igvn.intcon(0);
duke@435 176 phase->set_ctrl(zero, phase->C->root());
duke@435 177 n_inv1 = new (phase->C, 3) SubINode(zero, inv1);
duke@435 178 phase->register_new_node(n_inv1, inv1_c);
duke@435 179 } else {
duke@435 180 n_inv1 = inv1;
duke@435 181 }
duke@435 182 Node* inv;
duke@435 183 if (neg_inv2) {
duke@435 184 inv = new (phase->C, 3) SubINode(n_inv1, inv2);
duke@435 185 } else {
duke@435 186 inv = new (phase->C, 3) AddINode(n_inv1, inv2);
duke@435 187 }
duke@435 188 phase->register_new_node(inv, phase->get_early_ctrl(inv));
duke@435 189
duke@435 190 Node* addx;
duke@435 191 if (neg_x) {
duke@435 192 addx = new (phase->C, 3) SubINode(inv, x);
duke@435 193 } else {
duke@435 194 addx = new (phase->C, 3) AddINode(x, inv);
duke@435 195 }
duke@435 196 phase->register_new_node(addx, phase->get_ctrl(x));
duke@435 197 phase->_igvn.hash_delete(n1);
duke@435 198 phase->_igvn.subsume_node(n1, addx);
duke@435 199 return addx;
duke@435 200 }
duke@435 201
duke@435 202 //---------------------reassociate_invariants-----------------------------
duke@435 203 // Reassociate invariant expressions:
duke@435 204 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
duke@435 205 for (int i = _body.size() - 1; i >= 0; i--) {
duke@435 206 Node *n = _body.at(i);
duke@435 207 for (int j = 0; j < 5; j++) {
duke@435 208 Node* nn = reassociate_add_sub(n, phase);
duke@435 209 if (nn == NULL) break;
duke@435 210 n = nn; // again
duke@435 211 };
duke@435 212 }
duke@435 213 }
duke@435 214
duke@435 215 //------------------------------policy_peeling---------------------------------
duke@435 216 // Return TRUE or FALSE if the loop should be peeled or not. Peel if we can
duke@435 217 // make some loop-invariant test (usually a null-check) happen before the loop.
duke@435 218 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
duke@435 219 Node *test = ((IdealLoopTree*)this)->tail();
duke@435 220 int body_size = ((IdealLoopTree*)this)->_body.size();
duke@435 221 int uniq = phase->C->unique();
duke@435 222 // Peeling does loop cloning which can result in O(N^2) node construction
duke@435 223 if( body_size > 255 /* Prevent overflow for large body_size */
duke@435 224 || (body_size * body_size + uniq > MaxNodeLimit) ) {
duke@435 225 return false; // too large to safely clone
duke@435 226 }
duke@435 227 while( test != _head ) { // Scan till run off top of loop
duke@435 228 if( test->is_If() ) { // Test?
duke@435 229 Node *ctrl = phase->get_ctrl(test->in(1));
duke@435 230 if (ctrl->is_top())
duke@435 231 return false; // Found dead test on live IF? No peeling!
duke@435 232 // Standard IF only has one input value to check for loop invariance
duke@435 233 assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
duke@435 234 // Condition is not a member of this loop?
duke@435 235 if( !is_member(phase->get_loop(ctrl)) &&
duke@435 236 is_loop_exit(test) )
duke@435 237 return true; // Found reason to peel!
duke@435 238 }
duke@435 239 // Walk up dominators to loop _head looking for test which is
duke@435 240 // executed on every path thru loop.
duke@435 241 test = phase->idom(test);
duke@435 242 }
duke@435 243 return false;
duke@435 244 }
duke@435 245
duke@435 246 //------------------------------peeled_dom_test_elim---------------------------
duke@435 247 // If we got the effect of peeling, either by actually peeling or by making
duke@435 248 // a pre-loop which must execute at least once, we can remove all
duke@435 249 // loop-invariant dominated tests in the main body.
duke@435 250 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 251 bool progress = true;
duke@435 252 while( progress ) {
duke@435 253 progress = false; // Reset for next iteration
duke@435 254 Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
duke@435 255 Node *test = prev->in(0);
duke@435 256 while( test != loop->_head ) { // Scan till run off top of loop
duke@435 257
duke@435 258 int p_op = prev->Opcode();
duke@435 259 if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
duke@435 260 test->is_If() && // Test?
duke@435 261 !test->in(1)->is_Con() && // And not already obvious?
duke@435 262 // Condition is not a member of this loop?
duke@435 263 !loop->is_member(get_loop(get_ctrl(test->in(1))))){
duke@435 264 // Walk loop body looking for instances of this test
duke@435 265 for( uint i = 0; i < loop->_body.size(); i++ ) {
duke@435 266 Node *n = loop->_body.at(i);
duke@435 267 if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
duke@435 268 // IfNode was dominated by version in peeled loop body
duke@435 269 progress = true;
duke@435 270 dominated_by( old_new[prev->_idx], n );
duke@435 271 }
duke@435 272 }
duke@435 273 }
duke@435 274 prev = test;
duke@435 275 test = idom(test);
duke@435 276 } // End of scan tests in loop
duke@435 277
duke@435 278 } // End of while( progress )
duke@435 279 }
duke@435 280
duke@435 281 //------------------------------do_peeling-------------------------------------
duke@435 282 // Peel the first iteration of the given loop.
duke@435 283 // Step 1: Clone the loop body. The clone becomes the peeled iteration.
duke@435 284 // The pre-loop illegally has 2 control users (old & new loops).
duke@435 285 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
duke@435 286 // Do this by making the old-loop fall-in edges act as if they came
duke@435 287 // around the loopback from the prior iteration (follow the old-loop
duke@435 288 // backedges) and then map to the new peeled iteration. This leaves
duke@435 289 // the pre-loop with only 1 user (the new peeled iteration), but the
duke@435 290 // peeled-loop backedge has 2 users.
duke@435 291 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
duke@435 292 // extra backedge user.
duke@435 293 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 294
duke@435 295 C->set_major_progress();
duke@435 296 // Peeling a 'main' loop in a pre/main/post situation obfuscates the
duke@435 297 // 'pre' loop from the main and the 'pre' can no longer have it's
duke@435 298 // iterations adjusted. Therefore, we need to declare this loop as
duke@435 299 // no longer a 'main' loop; it will need new pre and post loops before
duke@435 300 // we can do further RCE.
duke@435 301 Node *h = loop->_head;
duke@435 302 if( h->is_CountedLoop() ) {
duke@435 303 CountedLoopNode *cl = h->as_CountedLoop();
duke@435 304 assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
duke@435 305 cl->set_trip_count(cl->trip_count() - 1);
duke@435 306 if( cl->is_main_loop() ) {
duke@435 307 cl->set_normal_loop();
duke@435 308 #ifndef PRODUCT
duke@435 309 if( PrintOpto && VerifyLoopOptimizations ) {
duke@435 310 tty->print("Peeling a 'main' loop; resetting to 'normal' ");
duke@435 311 loop->dump_head();
duke@435 312 }
duke@435 313 #endif
duke@435 314 }
duke@435 315 }
duke@435 316
duke@435 317 // Step 1: Clone the loop body. The clone becomes the peeled iteration.
duke@435 318 // The pre-loop illegally has 2 control users (old & new loops).
duke@435 319 clone_loop( loop, old_new, dom_depth(loop->_head) );
duke@435 320
duke@435 321
duke@435 322 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
duke@435 323 // Do this by making the old-loop fall-in edges act as if they came
duke@435 324 // around the loopback from the prior iteration (follow the old-loop
duke@435 325 // backedges) and then map to the new peeled iteration. This leaves
duke@435 326 // the pre-loop with only 1 user (the new peeled iteration), but the
duke@435 327 // peeled-loop backedge has 2 users.
duke@435 328 for (DUIterator_Fast jmax, j = loop->_head->fast_outs(jmax); j < jmax; j++) {
duke@435 329 Node* old = loop->_head->fast_out(j);
duke@435 330 if( old->in(0) == loop->_head && old->req() == 3 &&
duke@435 331 (old->is_Loop() || old->is_Phi()) ) {
duke@435 332 Node *new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
duke@435 333 if( !new_exit_value ) // Backedge value is ALSO loop invariant?
duke@435 334 // Then loop body backedge value remains the same.
duke@435 335 new_exit_value = old->in(LoopNode::LoopBackControl);
duke@435 336 _igvn.hash_delete(old);
duke@435 337 old->set_req(LoopNode::EntryControl, new_exit_value);
duke@435 338 }
duke@435 339 }
duke@435 340
duke@435 341
duke@435 342 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
duke@435 343 // extra backedge user.
duke@435 344 Node *nnn = old_new[loop->_head->_idx];
duke@435 345 _igvn.hash_delete(nnn);
duke@435 346 nnn->set_req(LoopNode::LoopBackControl, C->top());
duke@435 347 for (DUIterator_Fast j2max, j2 = nnn->fast_outs(j2max); j2 < j2max; j2++) {
duke@435 348 Node* use = nnn->fast_out(j2);
duke@435 349 if( use->in(0) == nnn && use->req() == 3 && use->is_Phi() ) {
duke@435 350 _igvn.hash_delete(use);
duke@435 351 use->set_req(LoopNode::LoopBackControl, C->top());
duke@435 352 }
duke@435 353 }
duke@435 354
duke@435 355
duke@435 356 // Step 4: Correct dom-depth info. Set to loop-head depth.
duke@435 357 int dd = dom_depth(loop->_head);
duke@435 358 set_idom(loop->_head, loop->_head->in(1), dd);
duke@435 359 for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
duke@435 360 Node *old = loop->_body.at(j3);
duke@435 361 Node *nnn = old_new[old->_idx];
duke@435 362 if (!has_ctrl(nnn))
duke@435 363 set_idom(nnn, idom(nnn), dd-1);
duke@435 364 // While we're at it, remove any SafePoints from the peeled code
duke@435 365 if( old->Opcode() == Op_SafePoint ) {
duke@435 366 Node *nnn = old_new[old->_idx];
duke@435 367 lazy_replace(nnn,nnn->in(TypeFunc::Control));
duke@435 368 }
duke@435 369 }
duke@435 370
duke@435 371 // Now force out all loop-invariant dominating tests. The optimizer
duke@435 372 // finds some, but we _know_ they are all useless.
duke@435 373 peeled_dom_test_elim(loop,old_new);
duke@435 374
duke@435 375 loop->record_for_igvn();
duke@435 376 }
duke@435 377
duke@435 378 //------------------------------policy_maximally_unroll------------------------
duke@435 379 // Return exact loop trip count, or 0 if not maximally unrolling
duke@435 380 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
duke@435 381 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 382 assert( cl->is_normal_loop(), "" );
duke@435 383
duke@435 384 Node *init_n = cl->init_trip();
duke@435 385 Node *limit_n = cl->limit();
duke@435 386
duke@435 387 // Non-constant bounds
duke@435 388 if( init_n == NULL || !init_n->is_Con() ||
duke@435 389 limit_n == NULL || !limit_n->is_Con() ||
duke@435 390 // protect against stride not being a constant
duke@435 391 !cl->stride_is_con() ) {
duke@435 392 return false;
duke@435 393 }
duke@435 394 int init = init_n->get_int();
duke@435 395 int limit = limit_n->get_int();
duke@435 396 int span = limit - init;
duke@435 397 int stride = cl->stride_con();
duke@435 398
duke@435 399 if (init >= limit || stride > span) {
duke@435 400 // return a false (no maximally unroll) and the regular unroll/peel
duke@435 401 // route will make a small mess which CCP will fold away.
duke@435 402 return false;
duke@435 403 }
duke@435 404 uint trip_count = span/stride; // trip_count can be greater than 2 Gig.
duke@435 405 assert( (int)trip_count*stride == span, "must divide evenly" );
duke@435 406
duke@435 407 // Real policy: if we maximally unroll, does it get too big?
duke@435 408 // Allow the unrolled mess to get larger than standard loop
duke@435 409 // size. After all, it will no longer be a loop.
duke@435 410 uint body_size = _body.size();
duke@435 411 uint unroll_limit = (uint)LoopUnrollLimit * 4;
duke@435 412 assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
duke@435 413 cl->set_trip_count(trip_count);
duke@435 414 if( trip_count <= unroll_limit && body_size <= unroll_limit ) {
duke@435 415 uint new_body_size = body_size * trip_count;
duke@435 416 if (new_body_size <= unroll_limit &&
duke@435 417 body_size == new_body_size / trip_count &&
duke@435 418 // Unrolling can result in a large amount of node construction
duke@435 419 new_body_size < MaxNodeLimit - phase->C->unique()) {
duke@435 420 return true; // maximally unroll
duke@435 421 }
duke@435 422 }
duke@435 423
duke@435 424 return false; // Do not maximally unroll
duke@435 425 }
duke@435 426
duke@435 427
duke@435 428 //------------------------------policy_unroll----------------------------------
duke@435 429 // Return TRUE or FALSE if the loop should be unrolled or not. Unroll if
duke@435 430 // the loop is a CountedLoop and the body is small enough.
duke@435 431 bool IdealLoopTree::policy_unroll( PhaseIdealLoop *phase ) const {
duke@435 432
duke@435 433 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 434 assert( cl->is_normal_loop() || cl->is_main_loop(), "" );
duke@435 435
duke@435 436 // protect against stride not being a constant
duke@435 437 if( !cl->stride_is_con() ) return false;
duke@435 438
duke@435 439 // protect against over-unrolling
duke@435 440 if( cl->trip_count() <= 1 ) return false;
duke@435 441
duke@435 442 int future_unroll_ct = cl->unrolled_count() * 2;
duke@435 443
duke@435 444 // Don't unroll if the next round of unrolling would push us
duke@435 445 // over the expected trip count of the loop. One is subtracted
duke@435 446 // from the expected trip count because the pre-loop normally
duke@435 447 // executes 1 iteration.
duke@435 448 if (UnrollLimitForProfileCheck > 0 &&
duke@435 449 cl->profile_trip_cnt() != COUNT_UNKNOWN &&
duke@435 450 future_unroll_ct > UnrollLimitForProfileCheck &&
duke@435 451 (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
duke@435 452 return false;
duke@435 453 }
duke@435 454
duke@435 455 // When unroll count is greater than LoopUnrollMin, don't unroll if:
duke@435 456 // the residual iterations are more than 10% of the trip count
duke@435 457 // and rounds of "unroll,optimize" are not making significant progress
duke@435 458 // Progress defined as current size less than 20% larger than previous size.
duke@435 459 if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
duke@435 460 future_unroll_ct > LoopUnrollMin &&
duke@435 461 (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
duke@435 462 1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
duke@435 463 return false;
duke@435 464 }
duke@435 465
duke@435 466 Node *init_n = cl->init_trip();
duke@435 467 Node *limit_n = cl->limit();
duke@435 468 // Non-constant bounds.
duke@435 469 // Protect against over-unrolling when init or/and limit are not constant
duke@435 470 // (so that trip_count's init value is maxint) but iv range is known.
duke@435 471 if( init_n == NULL || !init_n->is_Con() ||
duke@435 472 limit_n == NULL || !limit_n->is_Con() ) {
duke@435 473 Node* phi = cl->phi();
duke@435 474 if( phi != NULL ) {
duke@435 475 assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
duke@435 476 const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
duke@435 477 int next_stride = cl->stride_con() * 2; // stride after this unroll
duke@435 478 if( next_stride > 0 ) {
duke@435 479 if( iv_type->_lo + next_stride <= iv_type->_lo || // overflow
duke@435 480 iv_type->_lo + next_stride > iv_type->_hi ) {
duke@435 481 return false; // over-unrolling
duke@435 482 }
duke@435 483 } else if( next_stride < 0 ) {
duke@435 484 if( iv_type->_hi + next_stride >= iv_type->_hi || // overflow
duke@435 485 iv_type->_hi + next_stride < iv_type->_lo ) {
duke@435 486 return false; // over-unrolling
duke@435 487 }
duke@435 488 }
duke@435 489 }
duke@435 490 }
duke@435 491
duke@435 492 // Adjust body_size to determine if we unroll or not
duke@435 493 uint body_size = _body.size();
duke@435 494 // Key test to unroll CaffeineMark's Logic test
duke@435 495 int xors_in_loop = 0;
duke@435 496 // Also count ModL, DivL and MulL which expand mightly
duke@435 497 for( uint k = 0; k < _body.size(); k++ ) {
duke@435 498 switch( _body.at(k)->Opcode() ) {
duke@435 499 case Op_XorI: xors_in_loop++; break; // CaffeineMark's Logic test
duke@435 500 case Op_ModL: body_size += 30; break;
duke@435 501 case Op_DivL: body_size += 30; break;
duke@435 502 case Op_MulL: body_size += 10; break;
duke@435 503 }
duke@435 504 }
duke@435 505
duke@435 506 // Check for being too big
duke@435 507 if( body_size > (uint)LoopUnrollLimit ) {
duke@435 508 if( xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
duke@435 509 // Normal case: loop too big
duke@435 510 return false;
duke@435 511 }
duke@435 512
duke@435 513 // Check for stride being a small enough constant
duke@435 514 if( abs(cl->stride_con()) > (1<<3) ) return false;
duke@435 515
duke@435 516 // Unroll once! (Each trip will soon do double iterations)
duke@435 517 return true;
duke@435 518 }
duke@435 519
duke@435 520 //------------------------------policy_align-----------------------------------
duke@435 521 // Return TRUE or FALSE if the loop should be cache-line aligned. Gather the
duke@435 522 // expression that does the alignment. Note that only one array base can be
twisti@1040 523 // aligned in a loop (unless the VM guarantees mutual alignment). Note that
duke@435 524 // if we vectorize short memory ops into longer memory ops, we may want to
duke@435 525 // increase alignment.
duke@435 526 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
duke@435 527 return false;
duke@435 528 }
duke@435 529
duke@435 530 //------------------------------policy_range_check-----------------------------
duke@435 531 // Return TRUE or FALSE if the loop should be range-check-eliminated.
duke@435 532 // Actually we do iteration-splitting, a more powerful form of RCE.
duke@435 533 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
duke@435 534 if( !RangeCheckElimination ) return false;
duke@435 535
duke@435 536 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 537 // If we unrolled with no intention of doing RCE and we later
duke@435 538 // changed our minds, we got no pre-loop. Either we need to
duke@435 539 // make a new pre-loop, or we gotta disallow RCE.
duke@435 540 if( cl->is_main_no_pre_loop() ) return false; // Disallowed for now.
duke@435 541 Node *trip_counter = cl->phi();
duke@435 542
duke@435 543 // Check loop body for tests of trip-counter plus loop-invariant vs
duke@435 544 // loop-invariant.
duke@435 545 for( uint i = 0; i < _body.size(); i++ ) {
duke@435 546 Node *iff = _body[i];
duke@435 547 if( iff->Opcode() == Op_If ) { // Test?
duke@435 548
duke@435 549 // Comparing trip+off vs limit
duke@435 550 Node *bol = iff->in(1);
duke@435 551 if( bol->req() != 2 ) continue; // dead constant test
duke@435 552 Node *cmp = bol->in(1);
duke@435 553
duke@435 554 Node *rc_exp = cmp->in(1);
duke@435 555 Node *limit = cmp->in(2);
duke@435 556
duke@435 557 Node *limit_c = phase->get_ctrl(limit);
duke@435 558 if( limit_c == phase->C->top() )
duke@435 559 return false; // Found dead test on live IF? No RCE!
duke@435 560 if( is_member(phase->get_loop(limit_c) ) ) {
duke@435 561 // Compare might have operands swapped; commute them
duke@435 562 rc_exp = cmp->in(2);
duke@435 563 limit = cmp->in(1);
duke@435 564 limit_c = phase->get_ctrl(limit);
duke@435 565 if( is_member(phase->get_loop(limit_c) ) )
duke@435 566 continue; // Both inputs are loop varying; cannot RCE
duke@435 567 }
duke@435 568
duke@435 569 if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
duke@435 570 continue;
duke@435 571 }
duke@435 572 // Yeah! Found a test like 'trip+off vs limit'
duke@435 573 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 574 // we need loop unswitching instead of iteration splitting.
duke@435 575 if( is_loop_exit(iff) )
duke@435 576 return true; // Found reason to split iterations
duke@435 577 } // End of is IF
duke@435 578 }
duke@435 579
duke@435 580 return false;
duke@435 581 }
duke@435 582
duke@435 583 //------------------------------policy_peel_only-------------------------------
duke@435 584 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned. Useful
duke@435 585 // for unrolling loops with NO array accesses.
duke@435 586 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
duke@435 587
duke@435 588 for( uint i = 0; i < _body.size(); i++ )
duke@435 589 if( _body[i]->is_Mem() )
duke@435 590 return false;
duke@435 591
duke@435 592 // No memory accesses at all!
duke@435 593 return true;
duke@435 594 }
duke@435 595
duke@435 596 //------------------------------clone_up_backedge_goo--------------------------
duke@435 597 // If Node n lives in the back_ctrl block and cannot float, we clone a private
duke@435 598 // version of n in preheader_ctrl block and return that, otherwise return n.
duke@435 599 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n ) {
duke@435 600 if( get_ctrl(n) != back_ctrl ) return n;
duke@435 601
duke@435 602 Node *x = NULL; // If required, a clone of 'n'
duke@435 603 // Check for 'n' being pinned in the backedge.
duke@435 604 if( n->in(0) && n->in(0) == back_ctrl ) {
duke@435 605 x = n->clone(); // Clone a copy of 'n' to preheader
duke@435 606 x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
duke@435 607 }
duke@435 608
duke@435 609 // Recursive fixup any other input edges into x.
duke@435 610 // If there are no changes we can just return 'n', otherwise
duke@435 611 // we need to clone a private copy and change it.
duke@435 612 for( uint i = 1; i < n->req(); i++ ) {
duke@435 613 Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i) );
duke@435 614 if( g != n->in(i) ) {
duke@435 615 if( !x )
duke@435 616 x = n->clone();
duke@435 617 x->set_req(i, g);
duke@435 618 }
duke@435 619 }
duke@435 620 if( x ) { // x can legally float to pre-header location
duke@435 621 register_new_node( x, preheader_ctrl );
duke@435 622 return x;
duke@435 623 } else { // raise n to cover LCA of uses
duke@435 624 set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
duke@435 625 }
duke@435 626 return n;
duke@435 627 }
duke@435 628
duke@435 629 //------------------------------insert_pre_post_loops--------------------------
duke@435 630 // Insert pre and post loops. If peel_only is set, the pre-loop can not have
duke@435 631 // more iterations added. It acts as a 'peel' only, no lower-bound RCE, no
duke@435 632 // alignment. Useful to unroll loops that do no array accesses.
duke@435 633 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
duke@435 634
duke@435 635 C->set_major_progress();
duke@435 636
duke@435 637 // Find common pieces of the loop being guarded with pre & post loops
duke@435 638 CountedLoopNode *main_head = loop->_head->as_CountedLoop();
duke@435 639 assert( main_head->is_normal_loop(), "" );
duke@435 640 CountedLoopEndNode *main_end = main_head->loopexit();
duke@435 641 assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
duke@435 642 uint dd_main_head = dom_depth(main_head);
duke@435 643 uint max = main_head->outcnt();
duke@435 644
duke@435 645 Node *pre_header= main_head->in(LoopNode::EntryControl);
duke@435 646 Node *init = main_head->init_trip();
duke@435 647 Node *incr = main_end ->incr();
duke@435 648 Node *limit = main_end ->limit();
duke@435 649 Node *stride = main_end ->stride();
duke@435 650 Node *cmp = main_end ->cmp_node();
duke@435 651 BoolTest::mask b_test = main_end->test_trip();
duke@435 652
duke@435 653 // Need only 1 user of 'bol' because I will be hacking the loop bounds.
duke@435 654 Node *bol = main_end->in(CountedLoopEndNode::TestValue);
duke@435 655 if( bol->outcnt() != 1 ) {
duke@435 656 bol = bol->clone();
duke@435 657 register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
duke@435 658 _igvn.hash_delete(main_end);
duke@435 659 main_end->set_req(CountedLoopEndNode::TestValue, bol);
duke@435 660 }
duke@435 661 // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
duke@435 662 if( cmp->outcnt() != 1 ) {
duke@435 663 cmp = cmp->clone();
duke@435 664 register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
duke@435 665 _igvn.hash_delete(bol);
duke@435 666 bol->set_req(1, cmp);
duke@435 667 }
duke@435 668
duke@435 669 //------------------------------
duke@435 670 // Step A: Create Post-Loop.
duke@435 671 Node* main_exit = main_end->proj_out(false);
duke@435 672 assert( main_exit->Opcode() == Op_IfFalse, "" );
duke@435 673 int dd_main_exit = dom_depth(main_exit);
duke@435 674
duke@435 675 // Step A1: Clone the loop body. The clone becomes the post-loop. The main
duke@435 676 // loop pre-header illegally has 2 control users (old & new loops).
duke@435 677 clone_loop( loop, old_new, dd_main_exit );
duke@435 678 assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
duke@435 679 CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
duke@435 680 post_head->set_post_loop(main_head);
duke@435 681
kvn@835 682 // Reduce the post-loop trip count.
kvn@835 683 CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
kvn@835 684 post_end->_prob = PROB_FAIR;
kvn@835 685
duke@435 686 // Build the main-loop normal exit.
duke@435 687 IfFalseNode *new_main_exit = new (C, 1) IfFalseNode(main_end);
duke@435 688 _igvn.register_new_node_with_optimizer( new_main_exit );
duke@435 689 set_idom(new_main_exit, main_end, dd_main_exit );
duke@435 690 set_loop(new_main_exit, loop->_parent);
duke@435 691
duke@435 692 // Step A2: Build a zero-trip guard for the post-loop. After leaving the
duke@435 693 // main-loop, the post-loop may not execute at all. We 'opaque' the incr
duke@435 694 // (the main-loop trip-counter exit value) because we will be changing
duke@435 695 // the exit value (via unrolling) so we cannot constant-fold away the zero
duke@435 696 // trip guard until all unrolling is done.
kvn@651 697 Node *zer_opaq = new (C, 2) Opaque1Node(C, incr);
duke@435 698 Node *zer_cmp = new (C, 3) CmpINode( zer_opaq, limit );
duke@435 699 Node *zer_bol = new (C, 2) BoolNode( zer_cmp, b_test );
duke@435 700 register_new_node( zer_opaq, new_main_exit );
duke@435 701 register_new_node( zer_cmp , new_main_exit );
duke@435 702 register_new_node( zer_bol , new_main_exit );
duke@435 703
duke@435 704 // Build the IfNode
duke@435 705 IfNode *zer_iff = new (C, 2) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
duke@435 706 _igvn.register_new_node_with_optimizer( zer_iff );
duke@435 707 set_idom(zer_iff, new_main_exit, dd_main_exit);
duke@435 708 set_loop(zer_iff, loop->_parent);
duke@435 709
duke@435 710 // Plug in the false-path, taken if we need to skip post-loop
duke@435 711 _igvn.hash_delete( main_exit );
duke@435 712 main_exit->set_req(0, zer_iff);
duke@435 713 _igvn._worklist.push(main_exit);
duke@435 714 set_idom(main_exit, zer_iff, dd_main_exit);
duke@435 715 set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
duke@435 716 // Make the true-path, must enter the post loop
duke@435 717 Node *zer_taken = new (C, 1) IfTrueNode( zer_iff );
duke@435 718 _igvn.register_new_node_with_optimizer( zer_taken );
duke@435 719 set_idom(zer_taken, zer_iff, dd_main_exit);
duke@435 720 set_loop(zer_taken, loop->_parent);
duke@435 721 // Plug in the true path
duke@435 722 _igvn.hash_delete( post_head );
duke@435 723 post_head->set_req(LoopNode::EntryControl, zer_taken);
duke@435 724 set_idom(post_head, zer_taken, dd_main_exit);
duke@435 725
duke@435 726 // Step A3: Make the fall-in values to the post-loop come from the
duke@435 727 // fall-out values of the main-loop.
duke@435 728 for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
duke@435 729 Node* main_phi = main_head->fast_out(i);
duke@435 730 if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
duke@435 731 Node *post_phi = old_new[main_phi->_idx];
duke@435 732 Node *fallmain = clone_up_backedge_goo(main_head->back_control(),
duke@435 733 post_head->init_control(),
duke@435 734 main_phi->in(LoopNode::LoopBackControl));
duke@435 735 _igvn.hash_delete(post_phi);
duke@435 736 post_phi->set_req( LoopNode::EntryControl, fallmain );
duke@435 737 }
duke@435 738 }
duke@435 739
duke@435 740 // Update local caches for next stanza
duke@435 741 main_exit = new_main_exit;
duke@435 742
duke@435 743
duke@435 744 //------------------------------
duke@435 745 // Step B: Create Pre-Loop.
duke@435 746
duke@435 747 // Step B1: Clone the loop body. The clone becomes the pre-loop. The main
duke@435 748 // loop pre-header illegally has 2 control users (old & new loops).
duke@435 749 clone_loop( loop, old_new, dd_main_head );
duke@435 750 CountedLoopNode* pre_head = old_new[main_head->_idx]->as_CountedLoop();
duke@435 751 CountedLoopEndNode* pre_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
duke@435 752 pre_head->set_pre_loop(main_head);
duke@435 753 Node *pre_incr = old_new[incr->_idx];
duke@435 754
kvn@835 755 // Reduce the pre-loop trip count.
kvn@835 756 pre_end->_prob = PROB_FAIR;
kvn@835 757
duke@435 758 // Find the pre-loop normal exit.
duke@435 759 Node* pre_exit = pre_end->proj_out(false);
duke@435 760 assert( pre_exit->Opcode() == Op_IfFalse, "" );
duke@435 761 IfFalseNode *new_pre_exit = new (C, 1) IfFalseNode(pre_end);
duke@435 762 _igvn.register_new_node_with_optimizer( new_pre_exit );
duke@435 763 set_idom(new_pre_exit, pre_end, dd_main_head);
duke@435 764 set_loop(new_pre_exit, loop->_parent);
duke@435 765
duke@435 766 // Step B2: Build a zero-trip guard for the main-loop. After leaving the
duke@435 767 // pre-loop, the main-loop may not execute at all. Later in life this
duke@435 768 // zero-trip guard will become the minimum-trip guard when we unroll
duke@435 769 // the main-loop.
kvn@651 770 Node *min_opaq = new (C, 2) Opaque1Node(C, limit);
duke@435 771 Node *min_cmp = new (C, 3) CmpINode( pre_incr, min_opaq );
duke@435 772 Node *min_bol = new (C, 2) BoolNode( min_cmp, b_test );
duke@435 773 register_new_node( min_opaq, new_pre_exit );
duke@435 774 register_new_node( min_cmp , new_pre_exit );
duke@435 775 register_new_node( min_bol , new_pre_exit );
duke@435 776
kvn@835 777 // Build the IfNode (assume the main-loop is executed always).
kvn@835 778 IfNode *min_iff = new (C, 2) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
duke@435 779 _igvn.register_new_node_with_optimizer( min_iff );
duke@435 780 set_idom(min_iff, new_pre_exit, dd_main_head);
duke@435 781 set_loop(min_iff, loop->_parent);
duke@435 782
duke@435 783 // Plug in the false-path, taken if we need to skip main-loop
duke@435 784 _igvn.hash_delete( pre_exit );
duke@435 785 pre_exit->set_req(0, min_iff);
duke@435 786 set_idom(pre_exit, min_iff, dd_main_head);
duke@435 787 set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
duke@435 788 // Make the true-path, must enter the main loop
duke@435 789 Node *min_taken = new (C, 1) IfTrueNode( min_iff );
duke@435 790 _igvn.register_new_node_with_optimizer( min_taken );
duke@435 791 set_idom(min_taken, min_iff, dd_main_head);
duke@435 792 set_loop(min_taken, loop->_parent);
duke@435 793 // Plug in the true path
duke@435 794 _igvn.hash_delete( main_head );
duke@435 795 main_head->set_req(LoopNode::EntryControl, min_taken);
duke@435 796 set_idom(main_head, min_taken, dd_main_head);
duke@435 797
duke@435 798 // Step B3: Make the fall-in values to the main-loop come from the
duke@435 799 // fall-out values of the pre-loop.
duke@435 800 for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
duke@435 801 Node* main_phi = main_head->fast_out(i2);
duke@435 802 if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
duke@435 803 Node *pre_phi = old_new[main_phi->_idx];
duke@435 804 Node *fallpre = clone_up_backedge_goo(pre_head->back_control(),
duke@435 805 main_head->init_control(),
duke@435 806 pre_phi->in(LoopNode::LoopBackControl));
duke@435 807 _igvn.hash_delete(main_phi);
duke@435 808 main_phi->set_req( LoopNode::EntryControl, fallpre );
duke@435 809 }
duke@435 810 }
duke@435 811
duke@435 812 // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
duke@435 813 // RCE and alignment may change this later.
duke@435 814 Node *cmp_end = pre_end->cmp_node();
duke@435 815 assert( cmp_end->in(2) == limit, "" );
duke@435 816 Node *pre_limit = new (C, 3) AddINode( init, stride );
duke@435 817
duke@435 818 // Save the original loop limit in this Opaque1 node for
duke@435 819 // use by range check elimination.
kvn@651 820 Node *pre_opaq = new (C, 3) Opaque1Node(C, pre_limit, limit);
duke@435 821
duke@435 822 register_new_node( pre_limit, pre_head->in(0) );
duke@435 823 register_new_node( pre_opaq , pre_head->in(0) );
duke@435 824
duke@435 825 // Since no other users of pre-loop compare, I can hack limit directly
duke@435 826 assert( cmp_end->outcnt() == 1, "no other users" );
duke@435 827 _igvn.hash_delete(cmp_end);
duke@435 828 cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
duke@435 829
duke@435 830 // Special case for not-equal loop bounds:
duke@435 831 // Change pre loop test, main loop test, and the
duke@435 832 // main loop guard test to use lt or gt depending on stride
duke@435 833 // direction:
duke@435 834 // positive stride use <
duke@435 835 // negative stride use >
duke@435 836
duke@435 837 if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
duke@435 838
duke@435 839 BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
duke@435 840 // Modify pre loop end condition
duke@435 841 Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
duke@435 842 BoolNode* new_bol0 = new (C, 2) BoolNode(pre_bol->in(1), new_test);
duke@435 843 register_new_node( new_bol0, pre_head->in(0) );
duke@435 844 _igvn.hash_delete(pre_end);
duke@435 845 pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
duke@435 846 // Modify main loop guard condition
duke@435 847 assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
duke@435 848 BoolNode* new_bol1 = new (C, 2) BoolNode(min_bol->in(1), new_test);
duke@435 849 register_new_node( new_bol1, new_pre_exit );
duke@435 850 _igvn.hash_delete(min_iff);
duke@435 851 min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
duke@435 852 // Modify main loop end condition
duke@435 853 BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
duke@435 854 BoolNode* new_bol2 = new (C, 2) BoolNode(main_bol->in(1), new_test);
duke@435 855 register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
duke@435 856 _igvn.hash_delete(main_end);
duke@435 857 main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
duke@435 858 }
duke@435 859
duke@435 860 // Flag main loop
duke@435 861 main_head->set_main_loop();
duke@435 862 if( peel_only ) main_head->set_main_no_pre_loop();
duke@435 863
duke@435 864 // It's difficult to be precise about the trip-counts
duke@435 865 // for the pre/post loops. They are usually very short,
duke@435 866 // so guess that 4 trips is a reasonable value.
duke@435 867 post_head->set_profile_trip_cnt(4.0);
duke@435 868 pre_head->set_profile_trip_cnt(4.0);
duke@435 869
duke@435 870 // Now force out all loop-invariant dominating tests. The optimizer
duke@435 871 // finds some, but we _know_ they are all useless.
duke@435 872 peeled_dom_test_elim(loop,old_new);
duke@435 873 }
duke@435 874
duke@435 875 //------------------------------is_invariant-----------------------------
duke@435 876 // Return true if n is invariant
duke@435 877 bool IdealLoopTree::is_invariant(Node* n) const {
duke@435 878 Node *n_c = _phase->get_ctrl(n);
duke@435 879 if (n_c->is_top()) return false;
duke@435 880 return !is_member(_phase->get_loop(n_c));
duke@435 881 }
duke@435 882
duke@435 883
duke@435 884 //------------------------------do_unroll--------------------------------------
duke@435 885 // Unroll the loop body one step - make each trip do 2 iterations.
duke@435 886 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
duke@435 887 assert( LoopUnrollLimit, "" );
duke@435 888 #ifndef PRODUCT
duke@435 889 if( PrintOpto && VerifyLoopOptimizations ) {
duke@435 890 tty->print("Unrolling ");
duke@435 891 loop->dump_head();
duke@435 892 }
duke@435 893 #endif
duke@435 894 CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
duke@435 895 CountedLoopEndNode *loop_end = loop_head->loopexit();
duke@435 896 assert( loop_end, "" );
duke@435 897
duke@435 898 // Remember loop node count before unrolling to detect
duke@435 899 // if rounds of unroll,optimize are making progress
duke@435 900 loop_head->set_node_count_before_unroll(loop->_body.size());
duke@435 901
duke@435 902 Node *ctrl = loop_head->in(LoopNode::EntryControl);
duke@435 903 Node *limit = loop_head->limit();
duke@435 904 Node *init = loop_head->init_trip();
duke@435 905 Node *strid = loop_head->stride();
duke@435 906
duke@435 907 Node *opaq = NULL;
duke@435 908 if( adjust_min_trip ) { // If not maximally unrolling, need adjustment
duke@435 909 assert( loop_head->is_main_loop(), "" );
duke@435 910 assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
duke@435 911 Node *iff = ctrl->in(0);
duke@435 912 assert( iff->Opcode() == Op_If, "" );
duke@435 913 Node *bol = iff->in(1);
duke@435 914 assert( bol->Opcode() == Op_Bool, "" );
duke@435 915 Node *cmp = bol->in(1);
duke@435 916 assert( cmp->Opcode() == Op_CmpI, "" );
duke@435 917 opaq = cmp->in(2);
duke@435 918 // Occasionally it's possible for a pre-loop Opaque1 node to be
duke@435 919 // optimized away and then another round of loop opts attempted.
duke@435 920 // We can not optimize this particular loop in that case.
duke@435 921 if( opaq->Opcode() != Op_Opaque1 )
duke@435 922 return; // Cannot find pre-loop! Bail out!
duke@435 923 }
duke@435 924
duke@435 925 C->set_major_progress();
duke@435 926
duke@435 927 // Adjust max trip count. The trip count is intentionally rounded
duke@435 928 // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
duke@435 929 // the main, unrolled, part of the loop will never execute as it is protected
duke@435 930 // by the min-trip test. See bug 4834191 for a case where we over-unrolled
duke@435 931 // and later determined that part of the unrolled loop was dead.
duke@435 932 loop_head->set_trip_count(loop_head->trip_count() / 2);
duke@435 933
duke@435 934 // Double the count of original iterations in the unrolled loop body.
duke@435 935 loop_head->double_unrolled_count();
duke@435 936
duke@435 937 // -----------
duke@435 938 // Step 2: Cut back the trip counter for an unroll amount of 2.
duke@435 939 // Loop will normally trip (limit - init)/stride_con. Since it's a
duke@435 940 // CountedLoop this is exact (stride divides limit-init exactly).
duke@435 941 // We are going to double the loop body, so we want to knock off any
duke@435 942 // odd iteration: (trip_cnt & ~1). Then back compute a new limit.
duke@435 943 Node *span = new (C, 3) SubINode( limit, init );
duke@435 944 register_new_node( span, ctrl );
duke@435 945 Node *trip = new (C, 3) DivINode( 0, span, strid );
duke@435 946 register_new_node( trip, ctrl );
duke@435 947 Node *mtwo = _igvn.intcon(-2);
duke@435 948 set_ctrl(mtwo, C->root());
duke@435 949 Node *rond = new (C, 3) AndINode( trip, mtwo );
duke@435 950 register_new_node( rond, ctrl );
duke@435 951 Node *spn2 = new (C, 3) MulINode( rond, strid );
duke@435 952 register_new_node( spn2, ctrl );
duke@435 953 Node *lim2 = new (C, 3) AddINode( spn2, init );
duke@435 954 register_new_node( lim2, ctrl );
duke@435 955
duke@435 956 // Hammer in the new limit
duke@435 957 Node *ctrl2 = loop_end->in(0);
duke@435 958 Node *cmp2 = new (C, 3) CmpINode( loop_head->incr(), lim2 );
duke@435 959 register_new_node( cmp2, ctrl2 );
duke@435 960 Node *bol2 = new (C, 2) BoolNode( cmp2, loop_end->test_trip() );
duke@435 961 register_new_node( bol2, ctrl2 );
duke@435 962 _igvn.hash_delete(loop_end);
duke@435 963 loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
duke@435 964
duke@435 965 // Step 3: Find the min-trip test guaranteed before a 'main' loop.
duke@435 966 // Make it a 1-trip test (means at least 2 trips).
duke@435 967 if( adjust_min_trip ) {
duke@435 968 // Guard test uses an 'opaque' node which is not shared. Hence I
duke@435 969 // can edit it's inputs directly. Hammer in the new limit for the
duke@435 970 // minimum-trip guard.
duke@435 971 assert( opaq->outcnt() == 1, "" );
duke@435 972 _igvn.hash_delete(opaq);
duke@435 973 opaq->set_req(1, lim2);
duke@435 974 }
duke@435 975
duke@435 976 // ---------
duke@435 977 // Step 4: Clone the loop body. Move it inside the loop. This loop body
duke@435 978 // represents the odd iterations; since the loop trips an even number of
duke@435 979 // times its backedge is never taken. Kill the backedge.
duke@435 980 uint dd = dom_depth(loop_head);
duke@435 981 clone_loop( loop, old_new, dd );
duke@435 982
duke@435 983 // Make backedges of the clone equal to backedges of the original.
duke@435 984 // Make the fall-in from the original come from the fall-out of the clone.
duke@435 985 for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
duke@435 986 Node* phi = loop_head->fast_out(j);
duke@435 987 if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
duke@435 988 Node *newphi = old_new[phi->_idx];
duke@435 989 _igvn.hash_delete( phi );
duke@435 990 _igvn.hash_delete( newphi );
duke@435 991
duke@435 992 phi ->set_req(LoopNode:: EntryControl, newphi->in(LoopNode::LoopBackControl));
duke@435 993 newphi->set_req(LoopNode::LoopBackControl, phi ->in(LoopNode::LoopBackControl));
duke@435 994 phi ->set_req(LoopNode::LoopBackControl, C->top());
duke@435 995 }
duke@435 996 }
duke@435 997 Node *clone_head = old_new[loop_head->_idx];
duke@435 998 _igvn.hash_delete( clone_head );
duke@435 999 loop_head ->set_req(LoopNode:: EntryControl, clone_head->in(LoopNode::LoopBackControl));
duke@435 1000 clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
duke@435 1001 loop_head ->set_req(LoopNode::LoopBackControl, C->top());
duke@435 1002 loop->_head = clone_head; // New loop header
duke@435 1003
duke@435 1004 set_idom(loop_head, loop_head ->in(LoopNode::EntryControl), dd);
duke@435 1005 set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
duke@435 1006
duke@435 1007 // Kill the clone's backedge
duke@435 1008 Node *newcle = old_new[loop_end->_idx];
duke@435 1009 _igvn.hash_delete( newcle );
duke@435 1010 Node *one = _igvn.intcon(1);
duke@435 1011 set_ctrl(one, C->root());
duke@435 1012 newcle->set_req(1, one);
duke@435 1013 // Force clone into same loop body
duke@435 1014 uint max = loop->_body.size();
duke@435 1015 for( uint k = 0; k < max; k++ ) {
duke@435 1016 Node *old = loop->_body.at(k);
duke@435 1017 Node *nnn = old_new[old->_idx];
duke@435 1018 loop->_body.push(nnn);
duke@435 1019 if (!has_ctrl(old))
duke@435 1020 set_loop(nnn, loop);
duke@435 1021 }
never@802 1022
never@802 1023 loop->record_for_igvn();
duke@435 1024 }
duke@435 1025
duke@435 1026 //------------------------------do_maximally_unroll----------------------------
duke@435 1027
duke@435 1028 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 1029 CountedLoopNode *cl = loop->_head->as_CountedLoop();
duke@435 1030 assert( cl->trip_count() > 0, "");
duke@435 1031
duke@435 1032 // If loop is tripping an odd number of times, peel odd iteration
duke@435 1033 if( (cl->trip_count() & 1) == 1 ) {
duke@435 1034 do_peeling( loop, old_new );
duke@435 1035 }
duke@435 1036
duke@435 1037 // Now its tripping an even number of times remaining. Double loop body.
duke@435 1038 // Do not adjust pre-guards; they are not needed and do not exist.
duke@435 1039 if( cl->trip_count() > 0 ) {
duke@435 1040 do_unroll( loop, old_new, false );
duke@435 1041 }
duke@435 1042 }
duke@435 1043
duke@435 1044 //------------------------------dominates_backedge---------------------------------
duke@435 1045 // Returns true if ctrl is executed on every complete iteration
duke@435 1046 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
duke@435 1047 assert(ctrl->is_CFG(), "must be control");
duke@435 1048 Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
duke@435 1049 return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
duke@435 1050 }
duke@435 1051
duke@435 1052 //------------------------------add_constraint---------------------------------
duke@435 1053 // Constrain the main loop iterations so the condition:
duke@435 1054 // scale_con * I + offset < limit
duke@435 1055 // always holds true. That is, either increase the number of iterations in
duke@435 1056 // the pre-loop or the post-loop until the condition holds true in the main
duke@435 1057 // loop. Stride, scale, offset and limit are all loop invariant. Further,
duke@435 1058 // stride and scale are constants (offset and limit often are).
duke@435 1059 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
duke@435 1060
duke@435 1061 // Compute "I :: (limit-offset)/scale_con"
duke@435 1062 Node *con = new (C, 3) SubINode( limit, offset );
duke@435 1063 register_new_node( con, pre_ctrl );
duke@435 1064 Node *scale = _igvn.intcon(scale_con);
duke@435 1065 set_ctrl(scale, C->root());
duke@435 1066 Node *X = new (C, 3) DivINode( 0, con, scale );
duke@435 1067 register_new_node( X, pre_ctrl );
duke@435 1068
duke@435 1069 // For positive stride, the pre-loop limit always uses a MAX function
duke@435 1070 // and the main loop a MIN function. For negative stride these are
duke@435 1071 // reversed.
duke@435 1072
duke@435 1073 // Also for positive stride*scale the affine function is increasing, so the
duke@435 1074 // pre-loop must check for underflow and the post-loop for overflow.
duke@435 1075 // Negative stride*scale reverses this; pre-loop checks for overflow and
duke@435 1076 // post-loop for underflow.
duke@435 1077 if( stride_con*scale_con > 0 ) {
duke@435 1078 // Compute I < (limit-offset)/scale_con
duke@435 1079 // Adjust main-loop last iteration to be MIN/MAX(main_loop,X)
duke@435 1080 *main_limit = (stride_con > 0)
duke@435 1081 ? (Node*)(new (C, 3) MinINode( *main_limit, X ))
duke@435 1082 : (Node*)(new (C, 3) MaxINode( *main_limit, X ));
duke@435 1083 register_new_node( *main_limit, pre_ctrl );
duke@435 1084
duke@435 1085 } else {
duke@435 1086 // Compute (limit-offset)/scale_con + SGN(-scale_con) <= I
duke@435 1087 // Add the negation of the main-loop constraint to the pre-loop.
duke@435 1088 // See footnote [++] below for a derivation of the limit expression.
duke@435 1089 Node *incr = _igvn.intcon(scale_con > 0 ? -1 : 1);
duke@435 1090 set_ctrl(incr, C->root());
duke@435 1091 Node *adj = new (C, 3) AddINode( X, incr );
duke@435 1092 register_new_node( adj, pre_ctrl );
duke@435 1093 *pre_limit = (scale_con > 0)
duke@435 1094 ? (Node*)new (C, 3) MinINode( *pre_limit, adj )
duke@435 1095 : (Node*)new (C, 3) MaxINode( *pre_limit, adj );
duke@435 1096 register_new_node( *pre_limit, pre_ctrl );
duke@435 1097
duke@435 1098 // [++] Here's the algebra that justifies the pre-loop limit expression:
duke@435 1099 //
duke@435 1100 // NOT( scale_con * I + offset < limit )
duke@435 1101 // ==
duke@435 1102 // scale_con * I + offset >= limit
duke@435 1103 // ==
duke@435 1104 // SGN(scale_con) * I >= (limit-offset)/|scale_con|
duke@435 1105 // ==
duke@435 1106 // (limit-offset)/|scale_con| <= I * SGN(scale_con)
duke@435 1107 // ==
duke@435 1108 // (limit-offset)/|scale_con|-1 < I * SGN(scale_con)
duke@435 1109 // ==
duke@435 1110 // ( if (scale_con > 0) /*common case*/
duke@435 1111 // (limit-offset)/scale_con - 1 < I
duke@435 1112 // else
duke@435 1113 // (limit-offset)/scale_con + 1 > I
duke@435 1114 // )
duke@435 1115 // ( if (scale_con > 0) /*common case*/
duke@435 1116 // (limit-offset)/scale_con + SGN(-scale_con) < I
duke@435 1117 // else
duke@435 1118 // (limit-offset)/scale_con + SGN(-scale_con) > I
duke@435 1119 }
duke@435 1120 }
duke@435 1121
duke@435 1122
duke@435 1123 //------------------------------is_scaled_iv---------------------------------
duke@435 1124 // Return true if exp is a constant times an induction var
duke@435 1125 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
duke@435 1126 if (exp == iv) {
duke@435 1127 if (p_scale != NULL) {
duke@435 1128 *p_scale = 1;
duke@435 1129 }
duke@435 1130 return true;
duke@435 1131 }
duke@435 1132 int opc = exp->Opcode();
duke@435 1133 if (opc == Op_MulI) {
duke@435 1134 if (exp->in(1) == iv && exp->in(2)->is_Con()) {
duke@435 1135 if (p_scale != NULL) {
duke@435 1136 *p_scale = exp->in(2)->get_int();
duke@435 1137 }
duke@435 1138 return true;
duke@435 1139 }
duke@435 1140 if (exp->in(2) == iv && exp->in(1)->is_Con()) {
duke@435 1141 if (p_scale != NULL) {
duke@435 1142 *p_scale = exp->in(1)->get_int();
duke@435 1143 }
duke@435 1144 return true;
duke@435 1145 }
duke@435 1146 } else if (opc == Op_LShiftI) {
duke@435 1147 if (exp->in(1) == iv && exp->in(2)->is_Con()) {
duke@435 1148 if (p_scale != NULL) {
duke@435 1149 *p_scale = 1 << exp->in(2)->get_int();
duke@435 1150 }
duke@435 1151 return true;
duke@435 1152 }
duke@435 1153 }
duke@435 1154 return false;
duke@435 1155 }
duke@435 1156
duke@435 1157 //-----------------------------is_scaled_iv_plus_offset------------------------------
duke@435 1158 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
duke@435 1159 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
duke@435 1160 if (is_scaled_iv(exp, iv, p_scale)) {
duke@435 1161 if (p_offset != NULL) {
duke@435 1162 Node *zero = _igvn.intcon(0);
duke@435 1163 set_ctrl(zero, C->root());
duke@435 1164 *p_offset = zero;
duke@435 1165 }
duke@435 1166 return true;
duke@435 1167 }
duke@435 1168 int opc = exp->Opcode();
duke@435 1169 if (opc == Op_AddI) {
duke@435 1170 if (is_scaled_iv(exp->in(1), iv, p_scale)) {
duke@435 1171 if (p_offset != NULL) {
duke@435 1172 *p_offset = exp->in(2);
duke@435 1173 }
duke@435 1174 return true;
duke@435 1175 }
duke@435 1176 if (exp->in(2)->is_Con()) {
duke@435 1177 Node* offset2 = NULL;
duke@435 1178 if (depth < 2 &&
duke@435 1179 is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
duke@435 1180 p_offset != NULL ? &offset2 : NULL, depth+1)) {
duke@435 1181 if (p_offset != NULL) {
duke@435 1182 Node *ctrl_off2 = get_ctrl(offset2);
duke@435 1183 Node* offset = new (C, 3) AddINode(offset2, exp->in(2));
duke@435 1184 register_new_node(offset, ctrl_off2);
duke@435 1185 *p_offset = offset;
duke@435 1186 }
duke@435 1187 return true;
duke@435 1188 }
duke@435 1189 }
duke@435 1190 } else if (opc == Op_SubI) {
duke@435 1191 if (is_scaled_iv(exp->in(1), iv, p_scale)) {
duke@435 1192 if (p_offset != NULL) {
duke@435 1193 Node *zero = _igvn.intcon(0);
duke@435 1194 set_ctrl(zero, C->root());
duke@435 1195 Node *ctrl_off = get_ctrl(exp->in(2));
duke@435 1196 Node* offset = new (C, 3) SubINode(zero, exp->in(2));
duke@435 1197 register_new_node(offset, ctrl_off);
duke@435 1198 *p_offset = offset;
duke@435 1199 }
duke@435 1200 return true;
duke@435 1201 }
duke@435 1202 if (is_scaled_iv(exp->in(2), iv, p_scale)) {
duke@435 1203 if (p_offset != NULL) {
duke@435 1204 *p_scale *= -1;
duke@435 1205 *p_offset = exp->in(1);
duke@435 1206 }
duke@435 1207 return true;
duke@435 1208 }
duke@435 1209 }
duke@435 1210 return false;
duke@435 1211 }
duke@435 1212
duke@435 1213 //------------------------------do_range_check---------------------------------
duke@435 1214 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
duke@435 1215 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
duke@435 1216 #ifndef PRODUCT
duke@435 1217 if( PrintOpto && VerifyLoopOptimizations ) {
duke@435 1218 tty->print("Range Check Elimination ");
duke@435 1219 loop->dump_head();
duke@435 1220 }
duke@435 1221 #endif
duke@435 1222 assert( RangeCheckElimination, "" );
duke@435 1223 CountedLoopNode *cl = loop->_head->as_CountedLoop();
duke@435 1224 assert( cl->is_main_loop(), "" );
duke@435 1225
duke@435 1226 // Find the trip counter; we are iteration splitting based on it
duke@435 1227 Node *trip_counter = cl->phi();
duke@435 1228 // Find the main loop limit; we will trim it's iterations
duke@435 1229 // to not ever trip end tests
duke@435 1230 Node *main_limit = cl->limit();
duke@435 1231 // Find the pre-loop limit; we will expand it's iterations to
duke@435 1232 // not ever trip low tests.
duke@435 1233 Node *ctrl = cl->in(LoopNode::EntryControl);
duke@435 1234 assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
duke@435 1235 Node *iffm = ctrl->in(0);
duke@435 1236 assert( iffm->Opcode() == Op_If, "" );
duke@435 1237 Node *p_f = iffm->in(0);
duke@435 1238 assert( p_f->Opcode() == Op_IfFalse, "" );
duke@435 1239 CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
duke@435 1240 assert( pre_end->loopnode()->is_pre_loop(), "" );
duke@435 1241 Node *pre_opaq1 = pre_end->limit();
duke@435 1242 // Occasionally it's possible for a pre-loop Opaque1 node to be
duke@435 1243 // optimized away and then another round of loop opts attempted.
duke@435 1244 // We can not optimize this particular loop in that case.
duke@435 1245 if( pre_opaq1->Opcode() != Op_Opaque1 )
duke@435 1246 return;
duke@435 1247 Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
duke@435 1248 Node *pre_limit = pre_opaq->in(1);
duke@435 1249
duke@435 1250 // Where do we put new limit calculations
duke@435 1251 Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
duke@435 1252
duke@435 1253 // Ensure the original loop limit is available from the
duke@435 1254 // pre-loop Opaque1 node.
duke@435 1255 Node *orig_limit = pre_opaq->original_loop_limit();
duke@435 1256 if( orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP )
duke@435 1257 return;
duke@435 1258
duke@435 1259 // Need to find the main-loop zero-trip guard
duke@435 1260 Node *bolzm = iffm->in(1);
duke@435 1261 assert( bolzm->Opcode() == Op_Bool, "" );
duke@435 1262 Node *cmpzm = bolzm->in(1);
duke@435 1263 assert( cmpzm->is_Cmp(), "" );
duke@435 1264 Node *opqzm = cmpzm->in(2);
duke@435 1265 if( opqzm->Opcode() != Op_Opaque1 )
duke@435 1266 return;
duke@435 1267 assert( opqzm->in(1) == main_limit, "do not understand situation" );
duke@435 1268
duke@435 1269 // Must know if its a count-up or count-down loop
duke@435 1270
duke@435 1271 // protect against stride not being a constant
duke@435 1272 if ( !cl->stride_is_con() ) {
duke@435 1273 return;
duke@435 1274 }
duke@435 1275 int stride_con = cl->stride_con();
duke@435 1276 Node *zero = _igvn.intcon(0);
duke@435 1277 Node *one = _igvn.intcon(1);
duke@435 1278 set_ctrl(zero, C->root());
duke@435 1279 set_ctrl(one, C->root());
duke@435 1280
duke@435 1281 // Range checks that do not dominate the loop backedge (ie.
duke@435 1282 // conditionally executed) can lengthen the pre loop limit beyond
duke@435 1283 // the original loop limit. To prevent this, the pre limit is
duke@435 1284 // (for stride > 0) MINed with the original loop limit (MAXed
duke@435 1285 // stride < 0) when some range_check (rc) is conditionally
duke@435 1286 // executed.
duke@435 1287 bool conditional_rc = false;
duke@435 1288
duke@435 1289 // Check loop body for tests of trip-counter plus loop-invariant vs
duke@435 1290 // loop-invariant.
duke@435 1291 for( uint i = 0; i < loop->_body.size(); i++ ) {
duke@435 1292 Node *iff = loop->_body[i];
duke@435 1293 if( iff->Opcode() == Op_If ) { // Test?
duke@435 1294
duke@435 1295 // Test is an IfNode, has 2 projections. If BOTH are in the loop
duke@435 1296 // we need loop unswitching instead of iteration splitting.
duke@435 1297 Node *exit = loop->is_loop_exit(iff);
duke@435 1298 if( !exit ) continue;
duke@435 1299 int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
duke@435 1300
duke@435 1301 // Get boolean condition to test
duke@435 1302 Node *i1 = iff->in(1);
duke@435 1303 if( !i1->is_Bool() ) continue;
duke@435 1304 BoolNode *bol = i1->as_Bool();
duke@435 1305 BoolTest b_test = bol->_test;
duke@435 1306 // Flip sense of test if exit condition is flipped
duke@435 1307 if( flip )
duke@435 1308 b_test = b_test.negate();
duke@435 1309
duke@435 1310 // Get compare
duke@435 1311 Node *cmp = bol->in(1);
duke@435 1312
duke@435 1313 // Look for trip_counter + offset vs limit
duke@435 1314 Node *rc_exp = cmp->in(1);
duke@435 1315 Node *limit = cmp->in(2);
duke@435 1316 jint scale_con= 1; // Assume trip counter not scaled
duke@435 1317
duke@435 1318 Node *limit_c = get_ctrl(limit);
duke@435 1319 if( loop->is_member(get_loop(limit_c) ) ) {
duke@435 1320 // Compare might have operands swapped; commute them
duke@435 1321 b_test = b_test.commute();
duke@435 1322 rc_exp = cmp->in(2);
duke@435 1323 limit = cmp->in(1);
duke@435 1324 limit_c = get_ctrl(limit);
duke@435 1325 if( loop->is_member(get_loop(limit_c) ) )
duke@435 1326 continue; // Both inputs are loop varying; cannot RCE
duke@435 1327 }
duke@435 1328 // Here we know 'limit' is loop invariant
duke@435 1329
duke@435 1330 // 'limit' maybe pinned below the zero trip test (probably from a
duke@435 1331 // previous round of rce), in which case, it can't be used in the
duke@435 1332 // zero trip test expression which must occur before the zero test's if.
duke@435 1333 if( limit_c == ctrl ) {
duke@435 1334 continue; // Don't rce this check but continue looking for other candidates.
duke@435 1335 }
duke@435 1336
duke@435 1337 // Check for scaled induction variable plus an offset
duke@435 1338 Node *offset = NULL;
duke@435 1339
duke@435 1340 if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
duke@435 1341 continue;
duke@435 1342 }
duke@435 1343
duke@435 1344 Node *offset_c = get_ctrl(offset);
duke@435 1345 if( loop->is_member( get_loop(offset_c) ) )
duke@435 1346 continue; // Offset is not really loop invariant
duke@435 1347 // Here we know 'offset' is loop invariant.
duke@435 1348
duke@435 1349 // As above for the 'limit', the 'offset' maybe pinned below the
duke@435 1350 // zero trip test.
duke@435 1351 if( offset_c == ctrl ) {
duke@435 1352 continue; // Don't rce this check but continue looking for other candidates.
duke@435 1353 }
duke@435 1354
duke@435 1355 // At this point we have the expression as:
duke@435 1356 // scale_con * trip_counter + offset :: limit
duke@435 1357 // where scale_con, offset and limit are loop invariant. Trip_counter
duke@435 1358 // monotonically increases by stride_con, a constant. Both (or either)
duke@435 1359 // stride_con and scale_con can be negative which will flip about the
duke@435 1360 // sense of the test.
duke@435 1361
duke@435 1362 // Adjust pre and main loop limits to guard the correct iteration set
duke@435 1363 if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
duke@435 1364 if( b_test._test == BoolTest::lt ) { // Range checks always use lt
duke@435 1365 // The overflow limit: scale*I+offset < limit
duke@435 1366 add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
duke@435 1367 // The underflow limit: 0 <= scale*I+offset.
duke@435 1368 // Some math yields: -scale*I-(offset+1) < 0
duke@435 1369 Node *plus_one = new (C, 3) AddINode( offset, one );
duke@435 1370 register_new_node( plus_one, pre_ctrl );
duke@435 1371 Node *neg_offset = new (C, 3) SubINode( zero, plus_one );
duke@435 1372 register_new_node( neg_offset, pre_ctrl );
duke@435 1373 add_constraint( stride_con, -scale_con, neg_offset, zero, pre_ctrl, &pre_limit, &main_limit );
duke@435 1374 if (!conditional_rc) {
duke@435 1375 conditional_rc = !loop->dominates_backedge(iff);
duke@435 1376 }
duke@435 1377 } else {
duke@435 1378 #ifndef PRODUCT
duke@435 1379 if( PrintOpto )
duke@435 1380 tty->print_cr("missed RCE opportunity");
duke@435 1381 #endif
duke@435 1382 continue; // In release mode, ignore it
duke@435 1383 }
duke@435 1384 } else { // Otherwise work on normal compares
duke@435 1385 switch( b_test._test ) {
duke@435 1386 case BoolTest::ge: // Convert X >= Y to -X <= -Y
duke@435 1387 scale_con = -scale_con;
duke@435 1388 offset = new (C, 3) SubINode( zero, offset );
duke@435 1389 register_new_node( offset, pre_ctrl );
duke@435 1390 limit = new (C, 3) SubINode( zero, limit );
duke@435 1391 register_new_node( limit, pre_ctrl );
duke@435 1392 // Fall into LE case
duke@435 1393 case BoolTest::le: // Convert X <= Y to X < Y+1
duke@435 1394 limit = new (C, 3) AddINode( limit, one );
duke@435 1395 register_new_node( limit, pre_ctrl );
duke@435 1396 // Fall into LT case
duke@435 1397 case BoolTest::lt:
duke@435 1398 add_constraint( stride_con, scale_con, offset, limit, pre_ctrl, &pre_limit, &main_limit );
duke@435 1399 if (!conditional_rc) {
duke@435 1400 conditional_rc = !loop->dominates_backedge(iff);
duke@435 1401 }
duke@435 1402 break;
duke@435 1403 default:
duke@435 1404 #ifndef PRODUCT
duke@435 1405 if( PrintOpto )
duke@435 1406 tty->print_cr("missed RCE opportunity");
duke@435 1407 #endif
duke@435 1408 continue; // Unhandled case
duke@435 1409 }
duke@435 1410 }
duke@435 1411
duke@435 1412 // Kill the eliminated test
duke@435 1413 C->set_major_progress();
duke@435 1414 Node *kill_con = _igvn.intcon( 1-flip );
duke@435 1415 set_ctrl(kill_con, C->root());
duke@435 1416 _igvn.hash_delete(iff);
duke@435 1417 iff->set_req(1, kill_con);
duke@435 1418 _igvn._worklist.push(iff);
duke@435 1419 // Find surviving projection
duke@435 1420 assert(iff->is_If(), "");
duke@435 1421 ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
duke@435 1422 // Find loads off the surviving projection; remove their control edge
duke@435 1423 for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
duke@435 1424 Node* cd = dp->fast_out(i); // Control-dependent node
duke@435 1425 if( cd->is_Load() ) { // Loads can now float around in the loop
duke@435 1426 _igvn.hash_delete(cd);
duke@435 1427 // Allow the load to float around in the loop, or before it
duke@435 1428 // but NOT before the pre-loop.
duke@435 1429 cd->set_req(0, ctrl); // ctrl, not NULL
duke@435 1430 _igvn._worklist.push(cd);
duke@435 1431 --i;
duke@435 1432 --imax;
duke@435 1433 }
duke@435 1434 }
duke@435 1435
duke@435 1436 } // End of is IF
duke@435 1437
duke@435 1438 }
duke@435 1439
duke@435 1440 // Update loop limits
duke@435 1441 if (conditional_rc) {
duke@435 1442 pre_limit = (stride_con > 0) ? (Node*)new (C,3) MinINode(pre_limit, orig_limit)
duke@435 1443 : (Node*)new (C,3) MaxINode(pre_limit, orig_limit);
duke@435 1444 register_new_node(pre_limit, pre_ctrl);
duke@435 1445 }
duke@435 1446 _igvn.hash_delete(pre_opaq);
duke@435 1447 pre_opaq->set_req(1, pre_limit);
duke@435 1448
duke@435 1449 // Note:: we are making the main loop limit no longer precise;
duke@435 1450 // need to round up based on stride.
duke@435 1451 if( stride_con != 1 && stride_con != -1 ) { // Cutout for common case
duke@435 1452 // "Standard" round-up logic: ([main_limit-init+(y-1)]/y)*y+init
duke@435 1453 // Hopefully, compiler will optimize for powers of 2.
duke@435 1454 Node *ctrl = get_ctrl(main_limit);
duke@435 1455 Node *stride = cl->stride();
duke@435 1456 Node *init = cl->init_trip();
duke@435 1457 Node *span = new (C, 3) SubINode(main_limit,init);
duke@435 1458 register_new_node(span,ctrl);
duke@435 1459 Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
duke@435 1460 Node *add = new (C, 3) AddINode(span,rndup);
duke@435 1461 register_new_node(add,ctrl);
duke@435 1462 Node *div = new (C, 3) DivINode(0,add,stride);
duke@435 1463 register_new_node(div,ctrl);
duke@435 1464 Node *mul = new (C, 3) MulINode(div,stride);
duke@435 1465 register_new_node(mul,ctrl);
duke@435 1466 Node *newlim = new (C, 3) AddINode(mul,init);
duke@435 1467 register_new_node(newlim,ctrl);
duke@435 1468 main_limit = newlim;
duke@435 1469 }
duke@435 1470
duke@435 1471 Node *main_cle = cl->loopexit();
duke@435 1472 Node *main_bol = main_cle->in(1);
duke@435 1473 // Hacking loop bounds; need private copies of exit test
duke@435 1474 if( main_bol->outcnt() > 1 ) {// BoolNode shared?
duke@435 1475 _igvn.hash_delete(main_cle);
duke@435 1476 main_bol = main_bol->clone();// Clone a private BoolNode
duke@435 1477 register_new_node( main_bol, main_cle->in(0) );
duke@435 1478 main_cle->set_req(1,main_bol);
duke@435 1479 }
duke@435 1480 Node *main_cmp = main_bol->in(1);
duke@435 1481 if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
duke@435 1482 _igvn.hash_delete(main_bol);
duke@435 1483 main_cmp = main_cmp->clone();// Clone a private CmpNode
duke@435 1484 register_new_node( main_cmp, main_cle->in(0) );
duke@435 1485 main_bol->set_req(1,main_cmp);
duke@435 1486 }
duke@435 1487 // Hack the now-private loop bounds
duke@435 1488 _igvn.hash_delete(main_cmp);
duke@435 1489 main_cmp->set_req(2, main_limit);
duke@435 1490 _igvn._worklist.push(main_cmp);
duke@435 1491 // The OpaqueNode is unshared by design
duke@435 1492 _igvn.hash_delete(opqzm);
duke@435 1493 assert( opqzm->outcnt() == 1, "cannot hack shared node" );
duke@435 1494 opqzm->set_req(1,main_limit);
duke@435 1495 _igvn._worklist.push(opqzm);
duke@435 1496 }
duke@435 1497
duke@435 1498 //------------------------------DCE_loop_body----------------------------------
duke@435 1499 // Remove simplistic dead code from loop body
duke@435 1500 void IdealLoopTree::DCE_loop_body() {
duke@435 1501 for( uint i = 0; i < _body.size(); i++ )
duke@435 1502 if( _body.at(i)->outcnt() == 0 )
duke@435 1503 _body.map( i--, _body.pop() );
duke@435 1504 }
duke@435 1505
duke@435 1506
duke@435 1507 //------------------------------adjust_loop_exit_prob--------------------------
duke@435 1508 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
duke@435 1509 // Replace with a 1-in-10 exit guess.
duke@435 1510 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
duke@435 1511 Node *test = tail();
duke@435 1512 while( test != _head ) {
duke@435 1513 uint top = test->Opcode();
duke@435 1514 if( top == Op_IfTrue || top == Op_IfFalse ) {
duke@435 1515 int test_con = ((ProjNode*)test)->_con;
duke@435 1516 assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
duke@435 1517 IfNode *iff = test->in(0)->as_If();
duke@435 1518 if( iff->outcnt() == 2 ) { // Ignore dead tests
duke@435 1519 Node *bol = iff->in(1);
duke@435 1520 if( bol && bol->req() > 1 && bol->in(1) &&
duke@435 1521 ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
kvn@855 1522 (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
duke@435 1523 (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
duke@435 1524 (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
duke@435 1525 (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
coleenp@548 1526 (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
coleenp@548 1527 (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
duke@435 1528 return; // Allocation loops RARELY take backedge
duke@435 1529 // Find the OTHER exit path from the IF
duke@435 1530 Node* ex = iff->proj_out(1-test_con);
duke@435 1531 float p = iff->_prob;
duke@435 1532 if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
duke@435 1533 if( top == Op_IfTrue ) {
duke@435 1534 if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
duke@435 1535 iff->_prob = PROB_STATIC_FREQUENT;
duke@435 1536 }
duke@435 1537 } else {
duke@435 1538 if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
duke@435 1539 iff->_prob = PROB_STATIC_INFREQUENT;
duke@435 1540 }
duke@435 1541 }
duke@435 1542 }
duke@435 1543 }
duke@435 1544 }
duke@435 1545 test = phase->idom(test);
duke@435 1546 }
duke@435 1547 }
duke@435 1548
duke@435 1549
duke@435 1550 //------------------------------policy_do_remove_empty_loop--------------------
duke@435 1551 // Micro-benchmark spamming. Policy is to always remove empty loops.
duke@435 1552 // The 'DO' part is to replace the trip counter with the value it will
duke@435 1553 // have on the last iteration. This will break the loop.
duke@435 1554 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
duke@435 1555 // Minimum size must be empty loop
duke@435 1556 if( _body.size() > 7/*number of nodes in an empty loop*/ ) return false;
duke@435 1557
duke@435 1558 if( !_head->is_CountedLoop() ) return false; // Dead loop
duke@435 1559 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 1560 if( !cl->loopexit() ) return false; // Malformed loop
duke@435 1561 if( !phase->is_member(this,phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue)) ) )
duke@435 1562 return false; // Infinite loop
duke@435 1563 #ifndef PRODUCT
duke@435 1564 if( PrintOpto )
duke@435 1565 tty->print_cr("Removing empty loop");
duke@435 1566 #endif
duke@435 1567 #ifdef ASSERT
duke@435 1568 // Ensure only one phi which is the iv.
duke@435 1569 Node* iv = NULL;
duke@435 1570 for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
duke@435 1571 Node* n = cl->fast_out(i);
duke@435 1572 if (n->Opcode() == Op_Phi) {
duke@435 1573 assert(iv == NULL, "Too many phis" );
duke@435 1574 iv = n;
duke@435 1575 }
duke@435 1576 }
duke@435 1577 assert(iv == cl->phi(), "Wrong phi" );
duke@435 1578 #endif
duke@435 1579 // Replace the phi at loop head with the final value of the last
duke@435 1580 // iteration. Then the CountedLoopEnd will collapse (backedge never
duke@435 1581 // taken) and all loop-invariant uses of the exit values will be correct.
duke@435 1582 Node *phi = cl->phi();
duke@435 1583 Node *final = new (phase->C, 3) SubINode( cl->limit(), cl->stride() );
duke@435 1584 phase->register_new_node(final,cl->in(LoopNode::EntryControl));
duke@435 1585 phase->_igvn.hash_delete(phi);
duke@435 1586 phase->_igvn.subsume_node(phi,final);
duke@435 1587 phase->C->set_major_progress();
duke@435 1588 return true;
duke@435 1589 }
duke@435 1590
duke@435 1591
duke@435 1592 //=============================================================================
duke@435 1593 //------------------------------iteration_split_impl---------------------------
never@836 1594 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
duke@435 1595 // Check and remove empty loops (spam micro-benchmarks)
duke@435 1596 if( policy_do_remove_empty_loop(phase) )
never@836 1597 return true; // Here we removed an empty loop
duke@435 1598
duke@435 1599 bool should_peel = policy_peeling(phase); // Should we peel?
duke@435 1600
duke@435 1601 bool should_unswitch = policy_unswitching(phase);
duke@435 1602
duke@435 1603 // Non-counted loops may be peeled; exactly 1 iteration is peeled.
duke@435 1604 // This removes loop-invariant tests (usually null checks).
duke@435 1605 if( !_head->is_CountedLoop() ) { // Non-counted loop
duke@435 1606 if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
never@836 1607 // Partial peel succeeded so terminate this round of loop opts
never@836 1608 return false;
duke@435 1609 }
duke@435 1610 if( should_peel ) { // Should we peel?
duke@435 1611 #ifndef PRODUCT
duke@435 1612 if (PrintOpto) tty->print_cr("should_peel");
duke@435 1613 #endif
duke@435 1614 phase->do_peeling(this,old_new);
duke@435 1615 } else if( should_unswitch ) {
duke@435 1616 phase->do_unswitching(this, old_new);
duke@435 1617 }
never@836 1618 return true;
duke@435 1619 }
duke@435 1620 CountedLoopNode *cl = _head->as_CountedLoop();
duke@435 1621
never@836 1622 if( !cl->loopexit() ) return true; // Ignore various kinds of broken loops
duke@435 1623
duke@435 1624 // Do nothing special to pre- and post- loops
never@836 1625 if( cl->is_pre_loop() || cl->is_post_loop() ) return true;
duke@435 1626
duke@435 1627 // Compute loop trip count from profile data
duke@435 1628 compute_profile_trip_cnt(phase);
duke@435 1629
duke@435 1630 // Before attempting fancy unrolling, RCE or alignment, see if we want
duke@435 1631 // to completely unroll this loop or do loop unswitching.
duke@435 1632 if( cl->is_normal_loop() ) {
duke@435 1633 bool should_maximally_unroll = policy_maximally_unroll(phase);
duke@435 1634 if( should_maximally_unroll ) {
duke@435 1635 // Here we did some unrolling and peeling. Eventually we will
duke@435 1636 // completely unroll this loop and it will no longer be a loop.
duke@435 1637 phase->do_maximally_unroll(this,old_new);
never@836 1638 return true;
duke@435 1639 }
duke@435 1640 if (should_unswitch) {
duke@435 1641 phase->do_unswitching(this, old_new);
never@836 1642 return true;
duke@435 1643 }
duke@435 1644 }
duke@435 1645
duke@435 1646
duke@435 1647 // Counted loops may be peeled, may need some iterations run up
duke@435 1648 // front for RCE, and may want to align loop refs to a cache
duke@435 1649 // line. Thus we clone a full loop up front whose trip count is
duke@435 1650 // at least 1 (if peeling), but may be several more.
duke@435 1651
duke@435 1652 // The main loop will start cache-line aligned with at least 1
duke@435 1653 // iteration of the unrolled body (zero-trip test required) and
duke@435 1654 // will have some range checks removed.
duke@435 1655
duke@435 1656 // A post-loop will finish any odd iterations (leftover after
duke@435 1657 // unrolling), plus any needed for RCE purposes.
duke@435 1658
duke@435 1659 bool should_unroll = policy_unroll(phase);
duke@435 1660
duke@435 1661 bool should_rce = policy_range_check(phase);
duke@435 1662
duke@435 1663 bool should_align = policy_align(phase);
duke@435 1664
duke@435 1665 // If not RCE'ing (iteration splitting) or Aligning, then we do not
duke@435 1666 // need a pre-loop. We may still need to peel an initial iteration but
duke@435 1667 // we will not be needing an unknown number of pre-iterations.
duke@435 1668 //
duke@435 1669 // Basically, if may_rce_align reports FALSE first time through,
duke@435 1670 // we will not be able to later do RCE or Aligning on this loop.
duke@435 1671 bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
duke@435 1672
duke@435 1673 // If we have any of these conditions (RCE, alignment, unrolling) met, then
duke@435 1674 // we switch to the pre-/main-/post-loop model. This model also covers
duke@435 1675 // peeling.
duke@435 1676 if( should_rce || should_align || should_unroll ) {
duke@435 1677 if( cl->is_normal_loop() ) // Convert to 'pre/main/post' loops
duke@435 1678 phase->insert_pre_post_loops(this,old_new, !may_rce_align);
duke@435 1679
duke@435 1680 // Adjust the pre- and main-loop limits to let the pre and post loops run
duke@435 1681 // with full checks, but the main-loop with no checks. Remove said
duke@435 1682 // checks from the main body.
duke@435 1683 if( should_rce )
duke@435 1684 phase->do_range_check(this,old_new);
duke@435 1685
duke@435 1686 // Double loop body for unrolling. Adjust the minimum-trip test (will do
duke@435 1687 // twice as many iterations as before) and the main body limit (only do
duke@435 1688 // an even number of trips). If we are peeling, we might enable some RCE
duke@435 1689 // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
duke@435 1690 // peeling.
duke@435 1691 if( should_unroll && !should_peel )
duke@435 1692 phase->do_unroll(this,old_new, true);
duke@435 1693
duke@435 1694 // Adjust the pre-loop limits to align the main body
duke@435 1695 // iterations.
duke@435 1696 if( should_align )
duke@435 1697 Unimplemented();
duke@435 1698
duke@435 1699 } else { // Else we have an unchanged counted loop
duke@435 1700 if( should_peel ) // Might want to peel but do nothing else
duke@435 1701 phase->do_peeling(this,old_new);
duke@435 1702 }
never@836 1703 return true;
duke@435 1704 }
duke@435 1705
duke@435 1706
duke@435 1707 //=============================================================================
duke@435 1708 //------------------------------iteration_split--------------------------------
never@836 1709 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
duke@435 1710 // Recursively iteration split nested loops
never@836 1711 if( _child && !_child->iteration_split( phase, old_new ))
never@836 1712 return false;
duke@435 1713
duke@435 1714 // Clean out prior deadwood
duke@435 1715 DCE_loop_body();
duke@435 1716
duke@435 1717
duke@435 1718 // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
duke@435 1719 // Replace with a 1-in-10 exit guess.
duke@435 1720 if( _parent /*not the root loop*/ &&
duke@435 1721 !_irreducible &&
duke@435 1722 // Also ignore the occasional dead backedge
duke@435 1723 !tail()->is_top() ) {
duke@435 1724 adjust_loop_exit_prob(phase);
duke@435 1725 }
duke@435 1726
duke@435 1727
duke@435 1728 // Gate unrolling, RCE and peeling efforts.
duke@435 1729 if( !_child && // If not an inner loop, do not split
duke@435 1730 !_irreducible &&
kvn@474 1731 _allow_optimizations &&
duke@435 1732 !tail()->is_top() ) { // Also ignore the occasional dead backedge
duke@435 1733 if (!_has_call) {
never@836 1734 if (!iteration_split_impl( phase, old_new )) {
never@836 1735 return false;
never@836 1736 }
duke@435 1737 } else if (policy_unswitching(phase)) {
duke@435 1738 phase->do_unswitching(this, old_new);
duke@435 1739 }
duke@435 1740 }
duke@435 1741
duke@435 1742 // Minor offset re-organization to remove loop-fallout uses of
duke@435 1743 // trip counter.
duke@435 1744 if( _head->is_CountedLoop() ) phase->reorg_offsets( this );
never@836 1745 if( _next && !_next->iteration_split( phase, old_new ))
never@836 1746 return false;
never@836 1747 return true;
duke@435 1748 }

mercurial