src/cpu/sparc/vm/stubGenerator_sparc.cpp

Thu, 31 Jan 2019 04:49:46 -0800

author
kevinw
date
Thu, 31 Jan 2019 04:49:46 -0800
changeset 9655
a49d6f06f0d5
parent 7027
b20a35eae442
child 9703
2fdf635bcf28
child 9788
44ef77ad417c
permissions
-rw-r--r--

8209951: Problematic sparc intrinsic: com.sun.crypto.provider.CipherBlockChaining
Reviewed-by: kvn, thartmann
Contributed-by: fairoz.matte@oracle.com

duke@435 1 /*
kvn@6653 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4323 26 #include "asm/macroAssembler.inline.hpp"
stefank@2314 27 #include "interpreter/interpreter.hpp"
stefank@2314 28 #include "nativeInst_sparc.hpp"
stefank@2314 29 #include "oops/instanceOop.hpp"
coleenp@4037 30 #include "oops/method.hpp"
stefank@2314 31 #include "oops/objArrayKlass.hpp"
stefank@2314 32 #include "oops/oop.inline.hpp"
stefank@2314 33 #include "prims/methodHandles.hpp"
stefank@2314 34 #include "runtime/frame.inline.hpp"
stefank@2314 35 #include "runtime/handles.inline.hpp"
stefank@2314 36 #include "runtime/sharedRuntime.hpp"
stefank@2314 37 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 38 #include "runtime/stubRoutines.hpp"
stefank@4299 39 #include "runtime/thread.inline.hpp"
stefank@2314 40 #include "utilities/top.hpp"
stefank@2314 41 #ifdef COMPILER2
stefank@2314 42 #include "opto/runtime.hpp"
stefank@2314 43 #endif
duke@435 44
duke@435 45 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 46 // For a more detailed description of the stub routine structure
duke@435 47 // see the comment in stubRoutines.hpp.
duke@435 48
duke@435 49 #define __ _masm->
duke@435 50
duke@435 51 #ifdef PRODUCT
duke@435 52 #define BLOCK_COMMENT(str) /* nothing */
duke@435 53 #else
duke@435 54 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 55 #endif
duke@435 56
duke@435 57 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 58
duke@435 59 // Note: The register L7 is used as L7_thread_cache, and may not be used
duke@435 60 // any other way within this module.
duke@435 61
duke@435 62
duke@435 63 static const Register& Lstub_temp = L2;
duke@435 64
duke@435 65 // -------------------------------------------------------------------------------------------------------------------------
duke@435 66 // Stub Code definitions
duke@435 67
duke@435 68 static address handle_unsafe_access() {
duke@435 69 JavaThread* thread = JavaThread::current();
duke@435 70 address pc = thread->saved_exception_pc();
duke@435 71 address npc = thread->saved_exception_npc();
duke@435 72 // pc is the instruction which we must emulate
duke@435 73 // doing a no-op is fine: return garbage from the load
duke@435 74
duke@435 75 // request an async exception
duke@435 76 thread->set_pending_unsafe_access_error();
duke@435 77
duke@435 78 // return address of next instruction to execute
duke@435 79 return npc;
duke@435 80 }
duke@435 81
duke@435 82 class StubGenerator: public StubCodeGenerator {
duke@435 83 private:
duke@435 84
duke@435 85 #ifdef PRODUCT
mikael@6682 86 #define inc_counter_np(a,b,c)
duke@435 87 #else
duke@435 88 #define inc_counter_np(counter, t1, t2) \
duke@435 89 BLOCK_COMMENT("inc_counter " #counter); \
twisti@1162 90 __ inc_counter(&counter, t1, t2);
duke@435 91 #endif
duke@435 92
duke@435 93 //----------------------------------------------------------------------------------------------------
duke@435 94 // Call stubs are used to call Java from C
duke@435 95
duke@435 96 address generate_call_stub(address& return_pc) {
duke@435 97 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 98 address start = __ pc();
duke@435 99
duke@435 100 // Incoming arguments:
duke@435 101 //
duke@435 102 // o0 : call wrapper address
duke@435 103 // o1 : result (address)
duke@435 104 // o2 : result type
duke@435 105 // o3 : method
duke@435 106 // o4 : (interpreter) entry point
duke@435 107 // o5 : parameters (address)
duke@435 108 // [sp + 0x5c]: parameter size (in words)
duke@435 109 // [sp + 0x60]: thread
duke@435 110 //
duke@435 111 // +---------------+ <--- sp + 0
duke@435 112 // | |
duke@435 113 // . reg save area .
duke@435 114 // | |
duke@435 115 // +---------------+ <--- sp + 0x40
duke@435 116 // | |
duke@435 117 // . extra 7 slots .
duke@435 118 // | |
duke@435 119 // +---------------+ <--- sp + 0x5c
duke@435 120 // | param. size |
duke@435 121 // +---------------+ <--- sp + 0x60
duke@435 122 // | thread |
duke@435 123 // +---------------+
duke@435 124 // | |
duke@435 125
duke@435 126 // note: if the link argument position changes, adjust
duke@435 127 // the code in frame::entry_frame_call_wrapper()
duke@435 128
duke@435 129 const Argument link = Argument(0, false); // used only for GC
duke@435 130 const Argument result = Argument(1, false);
duke@435 131 const Argument result_type = Argument(2, false);
duke@435 132 const Argument method = Argument(3, false);
duke@435 133 const Argument entry_point = Argument(4, false);
duke@435 134 const Argument parameters = Argument(5, false);
duke@435 135 const Argument parameter_size = Argument(6, false);
duke@435 136 const Argument thread = Argument(7, false);
duke@435 137
duke@435 138 // setup thread register
duke@435 139 __ ld_ptr(thread.as_address(), G2_thread);
coleenp@548 140 __ reinit_heapbase();
duke@435 141
duke@435 142 #ifdef ASSERT
duke@435 143 // make sure we have no pending exceptions
duke@435 144 { const Register t = G3_scratch;
duke@435 145 Label L;
duke@435 146 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
kvn@3037 147 __ br_null_short(t, Assembler::pt, L);
duke@435 148 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 149 __ bind(L);
duke@435 150 }
duke@435 151 #endif
duke@435 152
duke@435 153 // create activation frame & allocate space for parameters
duke@435 154 { const Register t = G3_scratch;
duke@435 155 __ ld_ptr(parameter_size.as_address(), t); // get parameter size (in words)
duke@435 156 __ add(t, frame::memory_parameter_word_sp_offset, t); // add space for save area (in words)
duke@435 157 __ round_to(t, WordsPerLong); // make sure it is multiple of 2 (in words)
twisti@1861 158 __ sll(t, Interpreter::logStackElementSize, t); // compute number of bytes
duke@435 159 __ neg(t); // negate so it can be used with save
duke@435 160 __ save(SP, t, SP); // setup new frame
duke@435 161 }
duke@435 162
duke@435 163 // +---------------+ <--- sp + 0
duke@435 164 // | |
duke@435 165 // . reg save area .
duke@435 166 // | |
duke@435 167 // +---------------+ <--- sp + 0x40
duke@435 168 // | |
duke@435 169 // . extra 7 slots .
duke@435 170 // | |
duke@435 171 // +---------------+ <--- sp + 0x5c
duke@435 172 // | empty slot | (only if parameter size is even)
duke@435 173 // +---------------+
duke@435 174 // | |
duke@435 175 // . parameters .
duke@435 176 // | |
duke@435 177 // +---------------+ <--- fp + 0
duke@435 178 // | |
duke@435 179 // . reg save area .
duke@435 180 // | |
duke@435 181 // +---------------+ <--- fp + 0x40
duke@435 182 // | |
duke@435 183 // . extra 7 slots .
duke@435 184 // | |
duke@435 185 // +---------------+ <--- fp + 0x5c
duke@435 186 // | param. size |
duke@435 187 // +---------------+ <--- fp + 0x60
duke@435 188 // | thread |
duke@435 189 // +---------------+
duke@435 190 // | |
duke@435 191
duke@435 192 // pass parameters if any
duke@435 193 BLOCK_COMMENT("pass parameters if any");
duke@435 194 { const Register src = parameters.as_in().as_register();
duke@435 195 const Register dst = Lentry_args;
duke@435 196 const Register tmp = G3_scratch;
duke@435 197 const Register cnt = G4_scratch;
duke@435 198
duke@435 199 // test if any parameters & setup of Lentry_args
duke@435 200 Label exit;
duke@435 201 __ ld_ptr(parameter_size.as_in().as_address(), cnt); // parameter counter
duke@435 202 __ add( FP, STACK_BIAS, dst );
kvn@3037 203 __ cmp_zero_and_br(Assembler::zero, cnt, exit);
duke@435 204 __ delayed()->sub(dst, BytesPerWord, dst); // setup Lentry_args
duke@435 205
duke@435 206 // copy parameters if any
duke@435 207 Label loop;
duke@435 208 __ BIND(loop);
duke@435 209 // Store parameter value
duke@435 210 __ ld_ptr(src, 0, tmp);
duke@435 211 __ add(src, BytesPerWord, src);
twisti@1861 212 __ st_ptr(tmp, dst, 0);
duke@435 213 __ deccc(cnt);
duke@435 214 __ br(Assembler::greater, false, Assembler::pt, loop);
twisti@1861 215 __ delayed()->sub(dst, Interpreter::stackElementSize, dst);
duke@435 216
duke@435 217 // done
duke@435 218 __ BIND(exit);
duke@435 219 }
duke@435 220
duke@435 221 // setup parameters, method & call Java function
duke@435 222 #ifdef ASSERT
duke@435 223 // layout_activation_impl checks it's notion of saved SP against
duke@435 224 // this register, so if this changes update it as well.
duke@435 225 const Register saved_SP = Lscratch;
duke@435 226 __ mov(SP, saved_SP); // keep track of SP before call
duke@435 227 #endif
duke@435 228
duke@435 229 // setup parameters
duke@435 230 const Register t = G3_scratch;
duke@435 231 __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
twisti@1861 232 __ sll(t, Interpreter::logStackElementSize, t); // compute number of bytes
duke@435 233 __ sub(FP, t, Gargs); // setup parameter pointer
duke@435 234 #ifdef _LP64
duke@435 235 __ add( Gargs, STACK_BIAS, Gargs ); // Account for LP64 stack bias
duke@435 236 #endif
duke@435 237 __ mov(SP, O5_savedSP);
duke@435 238
duke@435 239
duke@435 240 // do the call
duke@435 241 //
duke@435 242 // the following register must be setup:
duke@435 243 //
duke@435 244 // G2_thread
duke@435 245 // G5_method
duke@435 246 // Gargs
duke@435 247 BLOCK_COMMENT("call Java function");
duke@435 248 __ jmpl(entry_point.as_in().as_register(), G0, O7);
duke@435 249 __ delayed()->mov(method.as_in().as_register(), G5_method); // setup method
duke@435 250
duke@435 251 BLOCK_COMMENT("call_stub_return_address:");
duke@435 252 return_pc = __ pc();
duke@435 253
duke@435 254 // The callee, if it wasn't interpreted, can return with SP changed so
duke@435 255 // we can no longer assert of change of SP.
duke@435 256
duke@435 257 // store result depending on type
duke@435 258 // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
duke@435 259 // is treated as T_INT)
duke@435 260 { const Register addr = result .as_in().as_register();
duke@435 261 const Register type = result_type.as_in().as_register();
duke@435 262 Label is_long, is_float, is_double, is_object, exit;
duke@435 263 __ cmp(type, T_OBJECT); __ br(Assembler::equal, false, Assembler::pn, is_object);
duke@435 264 __ delayed()->cmp(type, T_FLOAT); __ br(Assembler::equal, false, Assembler::pn, is_float);
duke@435 265 __ delayed()->cmp(type, T_DOUBLE); __ br(Assembler::equal, false, Assembler::pn, is_double);
duke@435 266 __ delayed()->cmp(type, T_LONG); __ br(Assembler::equal, false, Assembler::pn, is_long);
duke@435 267 __ delayed()->nop();
duke@435 268
duke@435 269 // store int result
duke@435 270 __ st(O0, addr, G0);
duke@435 271
duke@435 272 __ BIND(exit);
duke@435 273 __ ret();
duke@435 274 __ delayed()->restore();
duke@435 275
duke@435 276 __ BIND(is_object);
kvn@3037 277 __ ba(exit);
duke@435 278 __ delayed()->st_ptr(O0, addr, G0);
duke@435 279
duke@435 280 __ BIND(is_float);
kvn@3037 281 __ ba(exit);
duke@435 282 __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
duke@435 283
duke@435 284 __ BIND(is_double);
kvn@3037 285 __ ba(exit);
duke@435 286 __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
duke@435 287
duke@435 288 __ BIND(is_long);
duke@435 289 #ifdef _LP64
kvn@3037 290 __ ba(exit);
duke@435 291 __ delayed()->st_long(O0, addr, G0); // store entire long
duke@435 292 #else
duke@435 293 #if defined(COMPILER2)
duke@435 294 // All return values are where we want them, except for Longs. C2 returns
duke@435 295 // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
duke@435 296 // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
duke@435 297 // build we simply always use G1.
duke@435 298 // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
duke@435 299 // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
duke@435 300 // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
duke@435 301
kvn@3037 302 __ ba(exit);
duke@435 303 __ delayed()->stx(G1, addr, G0); // store entire long
duke@435 304 #else
duke@435 305 __ st(O1, addr, BytesPerInt);
kvn@3037 306 __ ba(exit);
duke@435 307 __ delayed()->st(O0, addr, G0);
duke@435 308 #endif /* COMPILER2 */
duke@435 309 #endif /* _LP64 */
duke@435 310 }
duke@435 311 return start;
duke@435 312 }
duke@435 313
duke@435 314
duke@435 315 //----------------------------------------------------------------------------------------------------
duke@435 316 // Return point for a Java call if there's an exception thrown in Java code.
duke@435 317 // The exception is caught and transformed into a pending exception stored in
duke@435 318 // JavaThread that can be tested from within the VM.
duke@435 319 //
duke@435 320 // Oexception: exception oop
duke@435 321
duke@435 322 address generate_catch_exception() {
duke@435 323 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 324
duke@435 325 address start = __ pc();
duke@435 326 // verify that thread corresponds
duke@435 327 __ verify_thread();
duke@435 328
duke@435 329 const Register& temp_reg = Gtemp;
twisti@1162 330 Address pending_exception_addr (G2_thread, Thread::pending_exception_offset());
twisti@1162 331 Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset ());
twisti@1162 332 Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset ());
duke@435 333
duke@435 334 // set pending exception
duke@435 335 __ verify_oop(Oexception);
duke@435 336 __ st_ptr(Oexception, pending_exception_addr);
duke@435 337 __ set((intptr_t)__FILE__, temp_reg);
duke@435 338 __ st_ptr(temp_reg, exception_file_offset_addr);
duke@435 339 __ set((intptr_t)__LINE__, temp_reg);
duke@435 340 __ st(temp_reg, exception_line_offset_addr);
duke@435 341
duke@435 342 // complete return to VM
duke@435 343 assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
duke@435 344
twisti@1162 345 AddressLiteral stub_ret(StubRoutines::_call_stub_return_address);
twisti@1162 346 __ jump_to(stub_ret, temp_reg);
duke@435 347 __ delayed()->nop();
duke@435 348
duke@435 349 return start;
duke@435 350 }
duke@435 351
duke@435 352
duke@435 353 //----------------------------------------------------------------------------------------------------
duke@435 354 // Continuation point for runtime calls returning with a pending exception
duke@435 355 // The pending exception check happened in the runtime or native call stub
duke@435 356 // The pending exception in Thread is converted into a Java-level exception
duke@435 357 //
duke@435 358 // Contract with Java-level exception handler: O0 = exception
duke@435 359 // O1 = throwing pc
duke@435 360
duke@435 361 address generate_forward_exception() {
duke@435 362 StubCodeMark mark(this, "StubRoutines", "forward_exception");
duke@435 363 address start = __ pc();
duke@435 364
duke@435 365 // Upon entry, O7 has the return address returning into Java
duke@435 366 // (interpreted or compiled) code; i.e. the return address
duke@435 367 // becomes the throwing pc.
duke@435 368
duke@435 369 const Register& handler_reg = Gtemp;
duke@435 370
twisti@1162 371 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 372
duke@435 373 #ifdef ASSERT
duke@435 374 // make sure that this code is only executed if there is a pending exception
duke@435 375 { Label L;
duke@435 376 __ ld_ptr(exception_addr, Gtemp);
kvn@3037 377 __ br_notnull_short(Gtemp, Assembler::pt, L);
duke@435 378 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 379 __ bind(L);
duke@435 380 }
duke@435 381 #endif
duke@435 382
duke@435 383 // compute exception handler into handler_reg
duke@435 384 __ get_thread();
duke@435 385 __ ld_ptr(exception_addr, Oexception);
duke@435 386 __ verify_oop(Oexception);
duke@435 387 __ save_frame(0); // compensates for compiler weakness
duke@435 388 __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
duke@435 389 BLOCK_COMMENT("call exception_handler_for_return_address");
twisti@1730 390 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Lscratch);
duke@435 391 __ mov(O0, handler_reg);
duke@435 392 __ restore(); // compensates for compiler weakness
duke@435 393
duke@435 394 __ ld_ptr(exception_addr, Oexception);
duke@435 395 __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
duke@435 396
duke@435 397 #ifdef ASSERT
duke@435 398 // make sure exception is set
duke@435 399 { Label L;
kvn@3037 400 __ br_notnull_short(Oexception, Assembler::pt, L);
duke@435 401 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 402 __ bind(L);
duke@435 403 }
duke@435 404 #endif
duke@435 405 // jump to exception handler
duke@435 406 __ jmp(handler_reg, 0);
duke@435 407 // clear pending exception
duke@435 408 __ delayed()->st_ptr(G0, exception_addr);
duke@435 409
duke@435 410 return start;
duke@435 411 }
duke@435 412
goetz@5400 413 // Safefetch stubs.
goetz@5400 414 void generate_safefetch(const char* name, int size, address* entry,
goetz@5400 415 address* fault_pc, address* continuation_pc) {
goetz@5400 416 // safefetch signatures:
goetz@5400 417 // int SafeFetch32(int* adr, int errValue);
goetz@5400 418 // intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
goetz@5400 419 //
goetz@5400 420 // arguments:
goetz@5400 421 // o0 = adr
goetz@5400 422 // o1 = errValue
goetz@5400 423 //
goetz@5400 424 // result:
goetz@5400 425 // o0 = *adr or errValue
goetz@5400 426
goetz@5400 427 StubCodeMark mark(this, "StubRoutines", name);
goetz@5400 428
goetz@5400 429 // Entry point, pc or function descriptor.
goetz@5400 430 __ align(CodeEntryAlignment);
goetz@5400 431 *entry = __ pc();
goetz@5400 432
goetz@5400 433 __ mov(O0, G1); // g1 = o0
goetz@5400 434 __ mov(O1, O0); // o0 = o1
goetz@5400 435 // Load *adr into c_rarg1, may fault.
goetz@5400 436 *fault_pc = __ pc();
goetz@5400 437 switch (size) {
goetz@5400 438 case 4:
goetz@5400 439 // int32_t
goetz@5400 440 __ ldsw(G1, 0, O0); // o0 = [g1]
goetz@5400 441 break;
goetz@5400 442 case 8:
goetz@5400 443 // int64_t
goetz@5400 444 __ ldx(G1, 0, O0); // o0 = [g1]
goetz@5400 445 break;
goetz@5400 446 default:
goetz@5400 447 ShouldNotReachHere();
goetz@5400 448 }
goetz@5400 449
goetz@5400 450 // return errValue or *adr
goetz@5400 451 *continuation_pc = __ pc();
goetz@5400 452 // By convention with the trap handler we ensure there is a non-CTI
goetz@5400 453 // instruction in the trap shadow.
goetz@5400 454 __ nop();
goetz@5400 455 __ retl();
goetz@5400 456 __ delayed()->nop();
goetz@5400 457 }
duke@435 458
duke@435 459 //------------------------------------------------------------------------------------------------------------------------
duke@435 460 // Continuation point for throwing of implicit exceptions that are not handled in
duke@435 461 // the current activation. Fabricates an exception oop and initiates normal
duke@435 462 // exception dispatching in this frame. Only callee-saved registers are preserved
duke@435 463 // (through the normal register window / RegisterMap handling).
duke@435 464 // If the compiler needs all registers to be preserved between the fault
duke@435 465 // point and the exception handler then it must assume responsibility for that in
duke@435 466 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 467 // continuation_for_implicit_division_by_zero_exception. All other implicit
duke@435 468 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
duke@435 469 // either at call sites or otherwise assume that stack unwinding will be initiated,
duke@435 470 // so caller saved registers were assumed volatile in the compiler.
duke@435 471
duke@435 472 // Note that we generate only this stub into a RuntimeStub, because it needs to be
duke@435 473 // properly traversed and ignored during GC, so we change the meaning of the "__"
duke@435 474 // macro within this method.
duke@435 475 #undef __
duke@435 476 #define __ masm->
duke@435 477
never@3136 478 address generate_throw_exception(const char* name, address runtime_entry,
never@2978 479 Register arg1 = noreg, Register arg2 = noreg) {
duke@435 480 #ifdef ASSERT
duke@435 481 int insts_size = VerifyThread ? 1 * K : 600;
duke@435 482 #else
duke@435 483 int insts_size = VerifyThread ? 1 * K : 256;
duke@435 484 #endif /* ASSERT */
duke@435 485 int locs_size = 32;
duke@435 486
duke@435 487 CodeBuffer code(name, insts_size, locs_size);
duke@435 488 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 489
duke@435 490 __ verify_thread();
duke@435 491
duke@435 492 // This is an inlined and slightly modified version of call_VM
duke@435 493 // which has the ability to fetch the return PC out of thread-local storage
duke@435 494 __ assert_not_delayed();
duke@435 495
duke@435 496 // Note that we always push a frame because on the SPARC
duke@435 497 // architecture, for all of our implicit exception kinds at call
duke@435 498 // sites, the implicit exception is taken before the callee frame
duke@435 499 // is pushed.
duke@435 500 __ save_frame(0);
duke@435 501
duke@435 502 int frame_complete = __ offset();
duke@435 503
duke@435 504 // Note that we always have a runtime stub frame on the top of stack by this point
duke@435 505 Register last_java_sp = SP;
duke@435 506 // 64-bit last_java_sp is biased!
duke@435 507 __ set_last_Java_frame(last_java_sp, G0);
duke@435 508 if (VerifyThread) __ mov(G2_thread, O0); // about to be smashed; pass early
duke@435 509 __ save_thread(noreg);
never@2978 510 if (arg1 != noreg) {
never@2978 511 assert(arg2 != O1, "clobbered");
never@2978 512 __ mov(arg1, O1);
never@2978 513 }
never@2978 514 if (arg2 != noreg) {
never@2978 515 __ mov(arg2, O2);
never@2978 516 }
duke@435 517 // do the call
duke@435 518 BLOCK_COMMENT("call runtime_entry");
duke@435 519 __ call(runtime_entry, relocInfo::runtime_call_type);
duke@435 520 if (!VerifyThread)
duke@435 521 __ delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 522 else
duke@435 523 __ delayed()->nop(); // (thread already passed)
duke@435 524 __ restore_thread(noreg);
duke@435 525 __ reset_last_Java_frame();
duke@435 526
duke@435 527 // check for pending exceptions. use Gtemp as scratch register.
duke@435 528 #ifdef ASSERT
duke@435 529 Label L;
duke@435 530
twisti@1162 531 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 532 Register scratch_reg = Gtemp;
duke@435 533 __ ld_ptr(exception_addr, scratch_reg);
kvn@3037 534 __ br_notnull_short(scratch_reg, Assembler::pt, L);
duke@435 535 __ should_not_reach_here();
duke@435 536 __ bind(L);
duke@435 537 #endif // ASSERT
duke@435 538 BLOCK_COMMENT("call forward_exception_entry");
duke@435 539 __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 540 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 541 __ delayed()->restore();
duke@435 542
duke@435 543 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
duke@435 544 return stub->entry_point();
duke@435 545 }
duke@435 546
duke@435 547 #undef __
duke@435 548 #define __ _masm->
duke@435 549
duke@435 550
duke@435 551 // Generate a routine that sets all the registers so we
duke@435 552 // can tell if the stop routine prints them correctly.
duke@435 553 address generate_test_stop() {
duke@435 554 StubCodeMark mark(this, "StubRoutines", "test_stop");
duke@435 555 address start = __ pc();
duke@435 556
duke@435 557 int i;
duke@435 558
duke@435 559 __ save_frame(0);
duke@435 560
duke@435 561 static jfloat zero = 0.0, one = 1.0;
duke@435 562
duke@435 563 // put addr in L0, then load through L0 to F0
duke@435 564 __ set((intptr_t)&zero, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F0);
duke@435 565 __ set((intptr_t)&one, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
duke@435 566
duke@435 567 // use add to put 2..18 in F2..F18
duke@435 568 for ( i = 2; i <= 18; ++i ) {
duke@435 569 __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1), as_FloatRegister(i));
duke@435 570 }
duke@435 571
duke@435 572 // Now put double 2 in F16, double 18 in F18
duke@435 573 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
duke@435 574 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
duke@435 575
duke@435 576 // use add to put 20..32 in F20..F32
duke@435 577 for (i = 20; i < 32; i += 2) {
duke@435 578 __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2), as_FloatRegister(i));
duke@435 579 }
duke@435 580
duke@435 581 // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
duke@435 582 for ( i = 0; i < 8; ++i ) {
duke@435 583 if (i < 6) {
duke@435 584 __ set( i, as_iRegister(i));
duke@435 585 __ set(16 + i, as_oRegister(i));
duke@435 586 __ set(24 + i, as_gRegister(i));
duke@435 587 }
duke@435 588 __ set( 8 + i, as_lRegister(i));
duke@435 589 }
duke@435 590
duke@435 591 __ stop("testing stop");
duke@435 592
duke@435 593
duke@435 594 __ ret();
duke@435 595 __ delayed()->restore();
duke@435 596
duke@435 597 return start;
duke@435 598 }
duke@435 599
duke@435 600
duke@435 601 address generate_stop_subroutine() {
duke@435 602 StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
duke@435 603 address start = __ pc();
duke@435 604
duke@435 605 __ stop_subroutine();
duke@435 606
duke@435 607 return start;
duke@435 608 }
duke@435 609
duke@435 610 address generate_flush_callers_register_windows() {
duke@435 611 StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
duke@435 612 address start = __ pc();
duke@435 613
morris@5283 614 __ flushw();
duke@435 615 __ retl(false);
duke@435 616 __ delayed()->add( FP, STACK_BIAS, O0 );
duke@435 617 // The returned value must be a stack pointer whose register save area
duke@435 618 // is flushed, and will stay flushed while the caller executes.
duke@435 619
duke@435 620 return start;
duke@435 621 }
duke@435 622
duke@435 623 // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
duke@435 624 //
morris@5283 625 // Arguments:
duke@435 626 //
duke@435 627 // exchange_value: O0
duke@435 628 // dest: O1
duke@435 629 //
duke@435 630 // Results:
duke@435 631 //
duke@435 632 // O0: the value previously stored in dest
duke@435 633 //
duke@435 634 address generate_atomic_xchg() {
duke@435 635 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 636 address start = __ pc();
duke@435 637
duke@435 638 if (UseCASForSwap) {
duke@435 639 // Use CAS instead of swap, just in case the MP hardware
duke@435 640 // prefers to work with just one kind of synch. instruction.
duke@435 641 Label retry;
duke@435 642 __ BIND(retry);
duke@435 643 __ mov(O0, O3); // scratch copy of exchange value
duke@435 644 __ ld(O1, 0, O2); // observe the previous value
duke@435 645 // try to replace O2 with O3
morris@5283 646 __ cas(O1, O2, O3);
kvn@3037 647 __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
duke@435 648
duke@435 649 __ retl(false);
duke@435 650 __ delayed()->mov(O2, O0); // report previous value to caller
duke@435 651 } else {
morris@5283 652 __ retl(false);
morris@5283 653 __ delayed()->swap(O1, 0, O0);
duke@435 654 }
duke@435 655
duke@435 656 return start;
duke@435 657 }
duke@435 658
duke@435 659
duke@435 660 // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
duke@435 661 //
morris@5283 662 // Arguments:
duke@435 663 //
duke@435 664 // exchange_value: O0
duke@435 665 // dest: O1
duke@435 666 // compare_value: O2
duke@435 667 //
duke@435 668 // Results:
duke@435 669 //
duke@435 670 // O0: the value previously stored in dest
duke@435 671 //
duke@435 672 address generate_atomic_cmpxchg() {
duke@435 673 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 674 address start = __ pc();
duke@435 675
duke@435 676 // cmpxchg(dest, compare_value, exchange_value)
morris@5283 677 __ cas(O1, O2, O0);
duke@435 678 __ retl(false);
duke@435 679 __ delayed()->nop();
duke@435 680
duke@435 681 return start;
duke@435 682 }
duke@435 683
duke@435 684 // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
duke@435 685 //
morris@5283 686 // Arguments:
duke@435 687 //
duke@435 688 // exchange_value: O1:O0
duke@435 689 // dest: O2
duke@435 690 // compare_value: O4:O3
duke@435 691 //
duke@435 692 // Results:
duke@435 693 //
duke@435 694 // O1:O0: the value previously stored in dest
duke@435 695 //
duke@435 696 // Overwrites: G1,G2,G3
duke@435 697 //
duke@435 698 address generate_atomic_cmpxchg_long() {
duke@435 699 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 700 address start = __ pc();
duke@435 701
duke@435 702 __ sllx(O0, 32, O0);
duke@435 703 __ srl(O1, 0, O1);
duke@435 704 __ or3(O0,O1,O0); // O0 holds 64-bit value from compare_value
duke@435 705 __ sllx(O3, 32, O3);
duke@435 706 __ srl(O4, 0, O4);
duke@435 707 __ or3(O3,O4,O3); // O3 holds 64-bit value from exchange_value
duke@435 708 __ casx(O2, O3, O0);
duke@435 709 __ srl(O0, 0, O1); // unpacked return value in O1:O0
duke@435 710 __ retl(false);
duke@435 711 __ delayed()->srlx(O0, 32, O0);
duke@435 712
duke@435 713 return start;
duke@435 714 }
duke@435 715
duke@435 716
duke@435 717 // Support for jint Atomic::add(jint add_value, volatile jint* dest).
duke@435 718 //
morris@5283 719 // Arguments:
duke@435 720 //
duke@435 721 // add_value: O0 (e.g., +1 or -1)
duke@435 722 // dest: O1
duke@435 723 //
duke@435 724 // Results:
duke@435 725 //
duke@435 726 // O0: the new value stored in dest
duke@435 727 //
morris@5283 728 // Overwrites: O3
duke@435 729 //
duke@435 730 address generate_atomic_add() {
duke@435 731 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 732 address start = __ pc();
duke@435 733 __ BIND(_atomic_add_stub);
duke@435 734
morris@5283 735 Label(retry);
morris@5283 736 __ BIND(retry);
morris@5283 737
morris@5283 738 __ lduw(O1, 0, O2);
morris@5283 739 __ add(O0, O2, O3);
morris@5283 740 __ cas(O1, O2, O3);
morris@5283 741 __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
morris@5283 742 __ retl(false);
morris@5283 743 __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
duke@435 744
duke@435 745 return start;
duke@435 746 }
duke@435 747 Label _atomic_add_stub; // called from other stubs
duke@435 748
duke@435 749
duke@435 750 //------------------------------------------------------------------------------------------------------------------------
duke@435 751 // The following routine generates a subroutine to throw an asynchronous
duke@435 752 // UnknownError when an unsafe access gets a fault that could not be
duke@435 753 // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
duke@435 754 //
duke@435 755 // Arguments :
duke@435 756 //
duke@435 757 // trapping PC: O7
duke@435 758 //
duke@435 759 // Results:
duke@435 760 // posts an asynchronous exception, skips the trapping instruction
duke@435 761 //
duke@435 762
duke@435 763 address generate_handler_for_unsafe_access() {
duke@435 764 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 765 address start = __ pc();
duke@435 766
duke@435 767 const int preserve_register_words = (64 * 2);
twisti@1162 768 Address preserve_addr(FP, (-preserve_register_words * wordSize) + STACK_BIAS);
duke@435 769
duke@435 770 Register Lthread = L7_thread_cache;
duke@435 771 int i;
duke@435 772
duke@435 773 __ save_frame(0);
duke@435 774 __ mov(G1, L1);
duke@435 775 __ mov(G2, L2);
duke@435 776 __ mov(G3, L3);
duke@435 777 __ mov(G4, L4);
duke@435 778 __ mov(G5, L5);
morris@5283 779 for (i = 0; i < 64; i += 2) {
duke@435 780 __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
duke@435 781 }
duke@435 782
duke@435 783 address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
duke@435 784 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 785 __ call(entry_point, relocInfo::runtime_call_type);
duke@435 786 __ delayed()->nop();
duke@435 787
duke@435 788 __ mov(L1, G1);
duke@435 789 __ mov(L2, G2);
duke@435 790 __ mov(L3, G3);
duke@435 791 __ mov(L4, G4);
duke@435 792 __ mov(L5, G5);
morris@5283 793 for (i = 0; i < 64; i += 2) {
duke@435 794 __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
duke@435 795 }
duke@435 796
duke@435 797 __ verify_thread();
duke@435 798
duke@435 799 __ jmp(O0, 0);
duke@435 800 __ delayed()->restore();
duke@435 801
duke@435 802 return start;
duke@435 803 }
duke@435 804
duke@435 805
duke@435 806 // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
duke@435 807 // Arguments :
duke@435 808 //
duke@435 809 // ret : O0, returned
duke@435 810 // icc/xcc: set as O0 (depending on wordSize)
duke@435 811 // sub : O1, argument, not changed
duke@435 812 // super: O2, argument, not changed
duke@435 813 // raddr: O7, blown by call
duke@435 814 address generate_partial_subtype_check() {
coleenp@548 815 __ align(CodeEntryAlignment);
duke@435 816 StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
duke@435 817 address start = __ pc();
jrose@1079 818 Label miss;
duke@435 819
duke@435 820 #if defined(COMPILER2) && !defined(_LP64)
duke@435 821 // Do not use a 'save' because it blows the 64-bit O registers.
coleenp@548 822 __ add(SP,-4*wordSize,SP); // Make space for 4 temps (stack must be 2 words aligned)
duke@435 823 __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
duke@435 824 __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
duke@435 825 __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
duke@435 826 __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
duke@435 827 Register Rret = O0;
duke@435 828 Register Rsub = O1;
duke@435 829 Register Rsuper = O2;
duke@435 830 #else
duke@435 831 __ save_frame(0);
duke@435 832 Register Rret = I0;
duke@435 833 Register Rsub = I1;
duke@435 834 Register Rsuper = I2;
duke@435 835 #endif
duke@435 836
duke@435 837 Register L0_ary_len = L0;
duke@435 838 Register L1_ary_ptr = L1;
duke@435 839 Register L2_super = L2;
duke@435 840 Register L3_index = L3;
duke@435 841
jrose@1079 842 __ check_klass_subtype_slow_path(Rsub, Rsuper,
jrose@1079 843 L0, L1, L2, L3,
jrose@1079 844 NULL, &miss);
jrose@1079 845
jrose@1079 846 // Match falls through here.
jrose@1079 847 __ addcc(G0,0,Rret); // set Z flags, Z result
duke@435 848
duke@435 849 #if defined(COMPILER2) && !defined(_LP64)
duke@435 850 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 851 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 852 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 853 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 854 __ retl(); // Result in Rret is zero; flags set to Z
duke@435 855 __ delayed()->add(SP,4*wordSize,SP);
duke@435 856 #else
duke@435 857 __ ret(); // Result in Rret is zero; flags set to Z
duke@435 858 __ delayed()->restore();
duke@435 859 #endif
duke@435 860
duke@435 861 __ BIND(miss);
duke@435 862 __ addcc(G0,1,Rret); // set NZ flags, NZ result
duke@435 863
duke@435 864 #if defined(COMPILER2) && !defined(_LP64)
duke@435 865 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 866 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 867 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 868 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 869 __ retl(); // Result in Rret is != 0; flags set to NZ
duke@435 870 __ delayed()->add(SP,4*wordSize,SP);
duke@435 871 #else
duke@435 872 __ ret(); // Result in Rret is != 0; flags set to NZ
duke@435 873 __ delayed()->restore();
duke@435 874 #endif
duke@435 875
duke@435 876 return start;
duke@435 877 }
duke@435 878
duke@435 879
duke@435 880 // Called from MacroAssembler::verify_oop
duke@435 881 //
duke@435 882 address generate_verify_oop_subroutine() {
duke@435 883 StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
duke@435 884
duke@435 885 address start = __ pc();
duke@435 886
duke@435 887 __ verify_oop_subroutine();
duke@435 888
duke@435 889 return start;
duke@435 890 }
duke@435 891
duke@435 892
duke@435 893 //
duke@435 894 // Verify that a register contains clean 32-bits positive value
duke@435 895 // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
duke@435 896 //
duke@435 897 // Input:
duke@435 898 // Rint - 32-bits value
duke@435 899 // Rtmp - scratch
duke@435 900 //
duke@435 901 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 902 #if defined(ASSERT) && defined(_LP64)
duke@435 903 __ signx(Rint, Rtmp);
duke@435 904 __ cmp(Rint, Rtmp);
duke@435 905 __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
duke@435 906 #endif
duke@435 907 }
duke@435 908
duke@435 909 //
duke@435 910 // Generate overlap test for array copy stubs
duke@435 911 //
duke@435 912 // Input:
duke@435 913 // O0 - array1
duke@435 914 // O1 - array2
duke@435 915 // O2 - element count
duke@435 916 //
duke@435 917 // Kills temps: O3, O4
duke@435 918 //
duke@435 919 void array_overlap_test(address no_overlap_target, int log2_elem_size) {
duke@435 920 assert(no_overlap_target != NULL, "must be generated");
duke@435 921 array_overlap_test(no_overlap_target, NULL, log2_elem_size);
duke@435 922 }
duke@435 923 void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
duke@435 924 array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
duke@435 925 }
duke@435 926 void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
duke@435 927 const Register from = O0;
duke@435 928 const Register to = O1;
duke@435 929 const Register count = O2;
duke@435 930 const Register to_from = O3; // to - from
duke@435 931 const Register byte_count = O4; // count << log2_elem_size
duke@435 932
duke@435 933 __ subcc(to, from, to_from);
duke@435 934 __ sll_ptr(count, log2_elem_size, byte_count);
duke@435 935 if (NOLp == NULL)
duke@435 936 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
duke@435 937 else
duke@435 938 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
duke@435 939 __ delayed()->cmp(to_from, byte_count);
duke@435 940 if (NOLp == NULL)
tonyp@2010 941 __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, no_overlap_target);
duke@435 942 else
tonyp@2010 943 __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, (*NOLp));
duke@435 944 __ delayed()->nop();
duke@435 945 }
duke@435 946
duke@435 947 //
duke@435 948 // Generate pre-write barrier for array.
duke@435 949 //
duke@435 950 // Input:
duke@435 951 // addr - register containing starting address
duke@435 952 // count - register containing element count
duke@435 953 // tmp - scratch register
duke@435 954 //
duke@435 955 // The input registers are overwritten.
duke@435 956 //
iveresov@2606 957 void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
duke@435 958 BarrierSet* bs = Universe::heap()->barrier_set();
iveresov@2606 959 switch (bs->kind()) {
iveresov@2606 960 case BarrierSet::G1SATBCT:
iveresov@2606 961 case BarrierSet::G1SATBCTLogging:
iveresov@2606 962 // With G1, don't generate the call if we statically know that the target in uninitialized
iveresov@2606 963 if (!dest_uninitialized) {
iveresov@2606 964 __ save_frame(0);
iveresov@2606 965 // Save the necessary global regs... will be used after.
iveresov@2606 966 if (addr->is_global()) {
iveresov@2606 967 __ mov(addr, L0);
iveresov@2606 968 }
iveresov@2606 969 if (count->is_global()) {
iveresov@2606 970 __ mov(count, L1);
iveresov@2606 971 }
iveresov@2606 972 __ mov(addr->after_save(), O0);
iveresov@2606 973 // Get the count into O1
iveresov@2606 974 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
iveresov@2606 975 __ delayed()->mov(count->after_save(), O1);
iveresov@2606 976 if (addr->is_global()) {
iveresov@2606 977 __ mov(L0, addr);
iveresov@2606 978 }
iveresov@2606 979 if (count->is_global()) {
iveresov@2606 980 __ mov(L1, count);
iveresov@2606 981 }
iveresov@2606 982 __ restore();
iveresov@2606 983 }
iveresov@2606 984 break;
iveresov@2606 985 case BarrierSet::CardTableModRef:
iveresov@2606 986 case BarrierSet::CardTableExtension:
iveresov@2606 987 case BarrierSet::ModRef:
iveresov@2606 988 break;
iveresov@2606 989 default:
iveresov@2606 990 ShouldNotReachHere();
duke@435 991 }
duke@435 992 }
duke@435 993 //
duke@435 994 // Generate post-write barrier for array.
duke@435 995 //
duke@435 996 // Input:
duke@435 997 // addr - register containing starting address
duke@435 998 // count - register containing element count
duke@435 999 // tmp - scratch register
duke@435 1000 //
duke@435 1001 // The input registers are overwritten.
duke@435 1002 //
duke@435 1003 void gen_write_ref_array_post_barrier(Register addr, Register count,
iveresov@2606 1004 Register tmp) {
duke@435 1005 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1006
duke@435 1007 switch (bs->kind()) {
duke@435 1008 case BarrierSet::G1SATBCT:
duke@435 1009 case BarrierSet::G1SATBCTLogging:
duke@435 1010 {
duke@435 1011 // Get some new fresh output registers.
duke@435 1012 __ save_frame(0);
ysr@777 1013 __ mov(addr->after_save(), O0);
duke@435 1014 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
ysr@777 1015 __ delayed()->mov(count->after_save(), O1);
duke@435 1016 __ restore();
duke@435 1017 }
duke@435 1018 break;
duke@435 1019 case BarrierSet::CardTableModRef:
duke@435 1020 case BarrierSet::CardTableExtension:
duke@435 1021 {
duke@435 1022 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1023 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1024 assert_different_registers(addr, count, tmp);
duke@435 1025
duke@435 1026 Label L_loop;
duke@435 1027
coleenp@548 1028 __ sll_ptr(count, LogBytesPerHeapOop, count);
coleenp@548 1029 __ sub(count, BytesPerHeapOop, count);
duke@435 1030 __ add(count, addr, count);
duke@435 1031 // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
duke@435 1032 __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
duke@435 1033 __ srl_ptr(count, CardTableModRefBS::card_shift, count);
duke@435 1034 __ sub(count, addr, count);
twisti@1162 1035 AddressLiteral rs(ct->byte_map_base);
twisti@1162 1036 __ set(rs, tmp);
duke@435 1037 __ BIND(L_loop);
twisti@1162 1038 __ stb(G0, tmp, addr);
duke@435 1039 __ subcc(count, 1, count);
duke@435 1040 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1041 __ delayed()->add(addr, 1, addr);
twisti@1162 1042 }
duke@435 1043 break;
duke@435 1044 case BarrierSet::ModRef:
duke@435 1045 break;
twisti@1162 1046 default:
duke@435 1047 ShouldNotReachHere();
duke@435 1048 }
duke@435 1049 }
duke@435 1050
kvn@3103 1051 //
kvn@3103 1052 // Generate main code for disjoint arraycopy
kvn@3103 1053 //
kvn@3103 1054 typedef void (StubGenerator::*CopyLoopFunc)(Register from, Register to, Register count, int count_dec,
kvn@3103 1055 Label& L_loop, bool use_prefetch, bool use_bis);
kvn@3103 1056
kvn@3103 1057 void disjoint_copy_core(Register from, Register to, Register count, int log2_elem_size,
mikael@6682 1058 int iter_size, StubGenerator::CopyLoopFunc copy_loop_func) {
kvn@3103 1059 Label L_copy;
kvn@3103 1060
kvn@3103 1061 assert(log2_elem_size <= 3, "the following code should be changed");
kvn@3103 1062 int count_dec = 16>>log2_elem_size;
kvn@3103 1063
kvn@3103 1064 int prefetch_dist = MAX2(ArraycopySrcPrefetchDistance, ArraycopyDstPrefetchDistance);
kvn@3103 1065 assert(prefetch_dist < 4096, "invalid value");
kvn@3103 1066 prefetch_dist = (prefetch_dist + (iter_size-1)) & (-iter_size); // round up to one iteration copy size
kvn@3103 1067 int prefetch_count = (prefetch_dist >> log2_elem_size); // elements count
kvn@3103 1068
kvn@3103 1069 if (UseBlockCopy) {
kvn@3103 1070 Label L_block_copy, L_block_copy_prefetch, L_skip_block_copy;
kvn@3103 1071
kvn@3103 1072 // 64 bytes tail + bytes copied in one loop iteration
kvn@3103 1073 int tail_size = 64 + iter_size;
kvn@3103 1074 int block_copy_count = (MAX2(tail_size, (int)BlockCopyLowLimit)) >> log2_elem_size;
kvn@3103 1075 // Use BIS copy only for big arrays since it requires membar.
kvn@3103 1076 __ set(block_copy_count, O4);
kvn@3103 1077 __ cmp_and_br_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_skip_block_copy);
kvn@3103 1078 // This code is for disjoint source and destination:
kvn@3103 1079 // to <= from || to >= from+count
kvn@3103 1080 // but BIS will stomp over 'from' if (to > from-tail_size && to <= from)
kvn@3103 1081 __ sub(from, to, O4);
kvn@3103 1082 __ srax(O4, 4, O4); // divide by 16 since following short branch have only 5 bits for imm.
kvn@3103 1083 __ cmp_and_br_short(O4, (tail_size>>4), Assembler::lessEqualUnsigned, Assembler::pn, L_skip_block_copy);
kvn@3103 1084
kvn@3103 1085 __ wrasi(G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
kvn@3103 1086 // BIS should not be used to copy tail (64 bytes+iter_size)
kvn@3103 1087 // to avoid zeroing of following values.
kvn@3103 1088 __ sub(count, (tail_size>>log2_elem_size), count); // count is still positive >= 0
kvn@3103 1089
kvn@3103 1090 if (prefetch_count > 0) { // rounded up to one iteration count
kvn@3103 1091 // Do prefetching only if copy size is bigger
kvn@3103 1092 // than prefetch distance.
kvn@3103 1093 __ set(prefetch_count, O4);
kvn@3103 1094 __ cmp_and_brx_short(count, O4, Assembler::less, Assembler::pt, L_block_copy);
kvn@3103 1095 __ sub(count, prefetch_count, count);
kvn@3103 1096
kvn@3103 1097 (this->*copy_loop_func)(from, to, count, count_dec, L_block_copy_prefetch, true, true);
kvn@3103 1098 __ add(count, prefetch_count, count); // restore count
kvn@3103 1099
kvn@3103 1100 } // prefetch_count > 0
kvn@3103 1101
kvn@3103 1102 (this->*copy_loop_func)(from, to, count, count_dec, L_block_copy, false, true);
kvn@3103 1103 __ add(count, (tail_size>>log2_elem_size), count); // restore count
kvn@3103 1104
kvn@3103 1105 __ wrasi(G0, Assembler::ASI_PRIMARY_NOFAULT);
kvn@3103 1106 // BIS needs membar.
kvn@3103 1107 __ membar(Assembler::StoreLoad);
kvn@3103 1108 // Copy tail
kvn@3103 1109 __ ba_short(L_copy);
kvn@3103 1110
kvn@3103 1111 __ BIND(L_skip_block_copy);
kvn@3103 1112 } // UseBlockCopy
kvn@3103 1113
kvn@3103 1114 if (prefetch_count > 0) { // rounded up to one iteration count
kvn@3103 1115 // Do prefetching only if copy size is bigger
kvn@3103 1116 // than prefetch distance.
kvn@3103 1117 __ set(prefetch_count, O4);
kvn@3103 1118 __ cmp_and_brx_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_copy);
kvn@3103 1119 __ sub(count, prefetch_count, count);
kvn@3103 1120
kvn@3103 1121 Label L_copy_prefetch;
kvn@3103 1122 (this->*copy_loop_func)(from, to, count, count_dec, L_copy_prefetch, true, false);
kvn@3103 1123 __ add(count, prefetch_count, count); // restore count
kvn@3103 1124
kvn@3103 1125 } // prefetch_count > 0
kvn@3103 1126
kvn@3103 1127 (this->*copy_loop_func)(from, to, count, count_dec, L_copy, false, false);
kvn@3103 1128 }
kvn@3103 1129
kvn@3103 1130
kvn@3103 1131
kvn@3103 1132 //
kvn@3103 1133 // Helper methods for copy_16_bytes_forward_with_shift()
kvn@3103 1134 //
kvn@3103 1135 void copy_16_bytes_shift_loop(Register from, Register to, Register count, int count_dec,
kvn@3103 1136 Label& L_loop, bool use_prefetch, bool use_bis) {
kvn@3103 1137
kvn@3103 1138 const Register left_shift = G1; // left shift bit counter
kvn@3103 1139 const Register right_shift = G5; // right shift bit counter
kvn@3103 1140
kvn@3103 1141 __ align(OptoLoopAlignment);
kvn@3103 1142 __ BIND(L_loop);
kvn@3103 1143 if (use_prefetch) {
kvn@3103 1144 if (ArraycopySrcPrefetchDistance > 0) {
kvn@3103 1145 __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
kvn@3103 1146 }
kvn@3103 1147 if (ArraycopyDstPrefetchDistance > 0) {
kvn@3103 1148 __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
kvn@3103 1149 }
kvn@3103 1150 }
kvn@3103 1151 __ ldx(from, 0, O4);
kvn@3103 1152 __ ldx(from, 8, G4);
kvn@3103 1153 __ inc(to, 16);
kvn@3103 1154 __ inc(from, 16);
kvn@3103 1155 __ deccc(count, count_dec); // Can we do next iteration after this one?
kvn@3103 1156 __ srlx(O4, right_shift, G3);
kvn@3103 1157 __ bset(G3, O3);
kvn@3103 1158 __ sllx(O4, left_shift, O4);
kvn@3103 1159 __ srlx(G4, right_shift, G3);
kvn@3103 1160 __ bset(G3, O4);
kvn@3103 1161 if (use_bis) {
kvn@3103 1162 __ stxa(O3, to, -16);
kvn@3103 1163 __ stxa(O4, to, -8);
kvn@3103 1164 } else {
kvn@3103 1165 __ stx(O3, to, -16);
kvn@3103 1166 __ stx(O4, to, -8);
kvn@3103 1167 }
kvn@3103 1168 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
kvn@3103 1169 __ delayed()->sllx(G4, left_shift, O3);
kvn@3103 1170 }
duke@435 1171
duke@435 1172 // Copy big chunks forward with shift
duke@435 1173 //
duke@435 1174 // Inputs:
duke@435 1175 // from - source arrays
duke@435 1176 // to - destination array aligned to 8-bytes
duke@435 1177 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1178 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1179 // L_copy_bytes - copy exit label
duke@435 1180 //
duke@435 1181 void copy_16_bytes_forward_with_shift(Register from, Register to,
kvn@3103 1182 Register count, int log2_elem_size, Label& L_copy_bytes) {
kvn@3103 1183 Label L_aligned_copy, L_copy_last_bytes;
kvn@3103 1184 assert(log2_elem_size <= 3, "the following code should be changed");
kvn@3103 1185 int count_dec = 16>>log2_elem_size;
duke@435 1186
duke@435 1187 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
kvn@3103 1188 __ andcc(from, 7, G1); // misaligned bytes
kvn@3103 1189 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
kvn@3103 1190 __ delayed()->nop();
duke@435 1191
duke@435 1192 const Register left_shift = G1; // left shift bit counter
duke@435 1193 const Register right_shift = G5; // right shift bit counter
duke@435 1194
kvn@3103 1195 __ sll(G1, LogBitsPerByte, left_shift);
kvn@3103 1196 __ mov(64, right_shift);
kvn@3103 1197 __ sub(right_shift, left_shift, right_shift);
duke@435 1198
duke@435 1199 //
duke@435 1200 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1201 // to form 2 aligned 8-bytes chunks to store.
duke@435 1202 //
kvn@3103 1203 __ dec(count, count_dec); // Pre-decrement 'count'
kvn@3103 1204 __ andn(from, 7, from); // Align address
kvn@3103 1205 __ ldx(from, 0, O3);
kvn@3103 1206 __ inc(from, 8);
kvn@3103 1207 __ sllx(O3, left_shift, O3);
kvn@3103 1208
mikael@6682 1209 disjoint_copy_core(from, to, count, log2_elem_size, 16, &StubGenerator::copy_16_bytes_shift_loop);
kvn@3103 1210
kvn@3103 1211 __ inccc(count, count_dec>>1 ); // + 8 bytes
kvn@3103 1212 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
kvn@3103 1213 __ delayed()->inc(count, count_dec>>1); // restore 'count'
kvn@3103 1214
kvn@3103 1215 // copy 8 bytes, part of them already loaded in O3
kvn@3103 1216 __ ldx(from, 0, O4);
kvn@3103 1217 __ inc(to, 8);
kvn@3103 1218 __ inc(from, 8);
kvn@3103 1219 __ srlx(O4, right_shift, G3);
kvn@3103 1220 __ bset(O3, G3);
kvn@3103 1221 __ stx(G3, to, -8);
duke@435 1222
duke@435 1223 __ BIND(L_copy_last_bytes);
kvn@3103 1224 __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
kvn@3103 1225 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
kvn@3103 1226 __ delayed()->sub(from, right_shift, from); // restore address
duke@435 1227
duke@435 1228 __ BIND(L_aligned_copy);
duke@435 1229 }
duke@435 1230
duke@435 1231 // Copy big chunks backward with shift
duke@435 1232 //
duke@435 1233 // Inputs:
duke@435 1234 // end_from - source arrays end address
duke@435 1235 // end_to - destination array end address aligned to 8-bytes
duke@435 1236 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1237 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1238 // L_aligned_copy - aligned copy exit label
duke@435 1239 // L_copy_bytes - copy exit label
duke@435 1240 //
duke@435 1241 void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
duke@435 1242 Register count, int count_dec,
duke@435 1243 Label& L_aligned_copy, Label& L_copy_bytes) {
duke@435 1244 Label L_loop, L_copy_last_bytes;
duke@435 1245
duke@435 1246 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
duke@435 1247 __ andcc(end_from, 7, G1); // misaligned bytes
duke@435 1248 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1249 __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
duke@435 1250
duke@435 1251 const Register left_shift = G1; // left shift bit counter
duke@435 1252 const Register right_shift = G5; // right shift bit counter
duke@435 1253
duke@435 1254 __ sll(G1, LogBitsPerByte, left_shift);
duke@435 1255 __ mov(64, right_shift);
duke@435 1256 __ sub(right_shift, left_shift, right_shift);
duke@435 1257
duke@435 1258 //
duke@435 1259 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1260 // to form 2 aligned 8-bytes chunks to store.
duke@435 1261 //
duke@435 1262 __ andn(end_from, 7, end_from); // Align address
duke@435 1263 __ ldx(end_from, 0, O3);
kvn@1800 1264 __ align(OptoLoopAlignment);
duke@435 1265 __ BIND(L_loop);
duke@435 1266 __ ldx(end_from, -8, O4);
duke@435 1267 __ deccc(count, count_dec); // Can we do next iteration after this one?
duke@435 1268 __ ldx(end_from, -16, G4);
duke@435 1269 __ dec(end_to, 16);
duke@435 1270 __ dec(end_from, 16);
duke@435 1271 __ srlx(O3, right_shift, O3);
duke@435 1272 __ sllx(O4, left_shift, G3);
duke@435 1273 __ bset(G3, O3);
duke@435 1274 __ stx(O3, end_to, 8);
duke@435 1275 __ srlx(O4, right_shift, O4);
duke@435 1276 __ sllx(G4, left_shift, G3);
duke@435 1277 __ bset(G3, O4);
duke@435 1278 __ stx(O4, end_to, 0);
duke@435 1279 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1280 __ delayed()->mov(G4, O3);
duke@435 1281
duke@435 1282 __ inccc(count, count_dec>>1 ); // + 8 bytes
duke@435 1283 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
duke@435 1284 __ delayed()->inc(count, count_dec>>1); // restore 'count'
duke@435 1285
duke@435 1286 // copy 8 bytes, part of them already loaded in O3
duke@435 1287 __ ldx(end_from, -8, O4);
duke@435 1288 __ dec(end_to, 8);
duke@435 1289 __ dec(end_from, 8);
duke@435 1290 __ srlx(O3, right_shift, O3);
duke@435 1291 __ sllx(O4, left_shift, G3);
duke@435 1292 __ bset(O3, G3);
duke@435 1293 __ stx(G3, end_to, 0);
duke@435 1294
duke@435 1295 __ BIND(L_copy_last_bytes);
duke@435 1296 __ srl(left_shift, LogBitsPerByte, left_shift); // misaligned bytes
duke@435 1297 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
duke@435 1298 __ delayed()->add(end_from, left_shift, end_from); // restore address
duke@435 1299 }
duke@435 1300
duke@435 1301 //
duke@435 1302 // Generate stub for disjoint byte copy. If "aligned" is true, the
duke@435 1303 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1304 //
duke@435 1305 // Arguments for generated stub:
duke@435 1306 // from: O0
duke@435 1307 // to: O1
duke@435 1308 // count: O2 treated as signed
duke@435 1309 //
iveresov@2595 1310 address generate_disjoint_byte_copy(bool aligned, address *entry, const char *name) {
duke@435 1311 __ align(CodeEntryAlignment);
duke@435 1312 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1313 address start = __ pc();
duke@435 1314
duke@435 1315 Label L_skip_alignment, L_align;
duke@435 1316 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1317
duke@435 1318 const Register from = O0; // source array address
duke@435 1319 const Register to = O1; // destination array address
duke@435 1320 const Register count = O2; // elements count
duke@435 1321 const Register offset = O5; // offset from start of arrays
duke@435 1322 // O3, O4, G3, G4 are used as temp registers
duke@435 1323
duke@435 1324 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1325
iveresov@2595 1326 if (entry != NULL) {
iveresov@2595 1327 *entry = __ pc();
iveresov@2595 1328 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1329 BLOCK_COMMENT("Entry:");
iveresov@2595 1330 }
duke@435 1331
duke@435 1332 // for short arrays, just do single element copy
duke@435 1333 __ cmp(count, 23); // 16 + 7
duke@435 1334 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1335 __ delayed()->mov(G0, offset);
duke@435 1336
duke@435 1337 if (aligned) {
duke@435 1338 // 'aligned' == true when it is known statically during compilation
duke@435 1339 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1340 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1341 //
duke@435 1342 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1343 // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
duke@435 1344 //
duke@435 1345 #ifndef _LP64
duke@435 1346 // copy a 4-bytes word if necessary to align 'to' to 8 bytes
duke@435 1347 __ andcc(to, 7, G0);
duke@435 1348 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
duke@435 1349 __ delayed()->ld(from, 0, O3);
duke@435 1350 __ inc(from, 4);
duke@435 1351 __ inc(to, 4);
duke@435 1352 __ dec(count, 4);
duke@435 1353 __ st(O3, to, -4);
duke@435 1354 __ BIND(L_skip_alignment);
duke@435 1355 #endif
duke@435 1356 } else {
duke@435 1357 // copy bytes to align 'to' on 8 byte boundary
duke@435 1358 __ andcc(to, 7, G1); // misaligned bytes
duke@435 1359 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1360 __ delayed()->neg(G1);
duke@435 1361 __ inc(G1, 8); // bytes need to copy to next 8-bytes alignment
duke@435 1362 __ sub(count, G1, count);
duke@435 1363 __ BIND(L_align);
duke@435 1364 __ ldub(from, 0, O3);
duke@435 1365 __ deccc(G1);
duke@435 1366 __ inc(from);
duke@435 1367 __ stb(O3, to, 0);
duke@435 1368 __ br(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1369 __ delayed()->inc(to);
duke@435 1370 __ BIND(L_skip_alignment);
duke@435 1371 }
duke@435 1372 #ifdef _LP64
duke@435 1373 if (!aligned)
duke@435 1374 #endif
duke@435 1375 {
duke@435 1376 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1377 // the same alignment mod 8, otherwise fall through to the next
duke@435 1378 // code for aligned copy.
duke@435 1379 // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
duke@435 1380 // Also jump over aligned copy after the copy with shift completed.
duke@435 1381
kvn@3103 1382 copy_16_bytes_forward_with_shift(from, to, count, 0, L_copy_byte);
duke@435 1383 }
duke@435 1384
duke@435 1385 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1386 __ and3(count, 7, G4); // Save count
duke@435 1387 __ srl(count, 3, count);
duke@435 1388 generate_disjoint_long_copy_core(aligned);
duke@435 1389 __ mov(G4, count); // Restore count
duke@435 1390
duke@435 1391 // copy tailing bytes
duke@435 1392 __ BIND(L_copy_byte);
kvn@3037 1393 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
kvn@1800 1394 __ align(OptoLoopAlignment);
duke@435 1395 __ BIND(L_copy_byte_loop);
duke@435 1396 __ ldub(from, offset, O3);
duke@435 1397 __ deccc(count);
duke@435 1398 __ stb(O3, to, offset);
duke@435 1399 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
duke@435 1400 __ delayed()->inc(offset);
duke@435 1401
duke@435 1402 __ BIND(L_exit);
duke@435 1403 // O3, O4 are used as temp registers
duke@435 1404 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1405 __ retl();
duke@435 1406 __ delayed()->mov(G0, O0); // return 0
duke@435 1407 return start;
duke@435 1408 }
duke@435 1409
duke@435 1410 //
duke@435 1411 // Generate stub for conjoint byte copy. If "aligned" is true, the
duke@435 1412 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1413 //
duke@435 1414 // Arguments for generated stub:
duke@435 1415 // from: O0
duke@435 1416 // to: O1
duke@435 1417 // count: O2 treated as signed
duke@435 1418 //
iveresov@2595 1419 address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
iveresov@2595 1420 address *entry, const char *name) {
duke@435 1421 // Do reverse copy.
duke@435 1422
duke@435 1423 __ align(CodeEntryAlignment);
duke@435 1424 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1425 address start = __ pc();
duke@435 1426
duke@435 1427 Label L_skip_alignment, L_align, L_aligned_copy;
duke@435 1428 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1429
duke@435 1430 const Register from = O0; // source array address
duke@435 1431 const Register to = O1; // destination array address
duke@435 1432 const Register count = O2; // elements count
duke@435 1433 const Register end_from = from; // source array end address
duke@435 1434 const Register end_to = to; // destination array end address
duke@435 1435
duke@435 1436 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1437
iveresov@2595 1438 if (entry != NULL) {
iveresov@2595 1439 *entry = __ pc();
iveresov@2595 1440 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1441 BLOCK_COMMENT("Entry:");
iveresov@2595 1442 }
duke@435 1443
duke@435 1444 array_overlap_test(nooverlap_target, 0);
duke@435 1445
duke@435 1446 __ add(to, count, end_to); // offset after last copied element
duke@435 1447
duke@435 1448 // for short arrays, just do single element copy
duke@435 1449 __ cmp(count, 23); // 16 + 7
duke@435 1450 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1451 __ delayed()->add(from, count, end_from);
duke@435 1452
duke@435 1453 {
duke@435 1454 // Align end of arrays since they could be not aligned even
duke@435 1455 // when arrays itself are aligned.
duke@435 1456
duke@435 1457 // copy bytes to align 'end_to' on 8 byte boundary
duke@435 1458 __ andcc(end_to, 7, G1); // misaligned bytes
duke@435 1459 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1460 __ delayed()->nop();
duke@435 1461 __ sub(count, G1, count);
duke@435 1462 __ BIND(L_align);
duke@435 1463 __ dec(end_from);
duke@435 1464 __ dec(end_to);
duke@435 1465 __ ldub(end_from, 0, O3);
duke@435 1466 __ deccc(G1);
duke@435 1467 __ brx(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1468 __ delayed()->stb(O3, end_to, 0);
duke@435 1469 __ BIND(L_skip_alignment);
duke@435 1470 }
duke@435 1471 #ifdef _LP64
duke@435 1472 if (aligned) {
duke@435 1473 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1474 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1475 // in unaligned case.
duke@435 1476 __ dec(count, 16);
duke@435 1477 } else
duke@435 1478 #endif
duke@435 1479 {
duke@435 1480 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1481 // the same alignment mod 8, otherwise jump to the next
duke@435 1482 // code for aligned copy (and substracting 16 from 'count' before jump).
duke@435 1483 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1484 // Also jump over aligned copy after the copy with shift completed.
duke@435 1485
duke@435 1486 copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
duke@435 1487 L_aligned_copy, L_copy_byte);
duke@435 1488 }
duke@435 1489 // copy 4 elements (16 bytes) at a time
kvn@1800 1490 __ align(OptoLoopAlignment);
duke@435 1491 __ BIND(L_aligned_copy);
duke@435 1492 __ dec(end_from, 16);
duke@435 1493 __ ldx(end_from, 8, O3);
duke@435 1494 __ ldx(end_from, 0, O4);
duke@435 1495 __ dec(end_to, 16);
duke@435 1496 __ deccc(count, 16);
duke@435 1497 __ stx(O3, end_to, 8);
duke@435 1498 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1499 __ delayed()->stx(O4, end_to, 0);
duke@435 1500 __ inc(count, 16);
duke@435 1501
duke@435 1502 // copy 1 element (2 bytes) at a time
duke@435 1503 __ BIND(L_copy_byte);
kvn@3037 1504 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
kvn@1800 1505 __ align(OptoLoopAlignment);
duke@435 1506 __ BIND(L_copy_byte_loop);
duke@435 1507 __ dec(end_from);
duke@435 1508 __ dec(end_to);
duke@435 1509 __ ldub(end_from, 0, O4);
duke@435 1510 __ deccc(count);
duke@435 1511 __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
duke@435 1512 __ delayed()->stb(O4, end_to, 0);
duke@435 1513
duke@435 1514 __ BIND(L_exit);
duke@435 1515 // O3, O4 are used as temp registers
duke@435 1516 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1517 __ retl();
duke@435 1518 __ delayed()->mov(G0, O0); // return 0
duke@435 1519 return start;
duke@435 1520 }
duke@435 1521
duke@435 1522 //
duke@435 1523 // Generate stub for disjoint short copy. If "aligned" is true, the
duke@435 1524 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1525 //
duke@435 1526 // Arguments for generated stub:
duke@435 1527 // from: O0
duke@435 1528 // to: O1
duke@435 1529 // count: O2 treated as signed
duke@435 1530 //
iveresov@2595 1531 address generate_disjoint_short_copy(bool aligned, address *entry, const char * name) {
duke@435 1532 __ align(CodeEntryAlignment);
duke@435 1533 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1534 address start = __ pc();
duke@435 1535
duke@435 1536 Label L_skip_alignment, L_skip_alignment2;
duke@435 1537 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1538
duke@435 1539 const Register from = O0; // source array address
duke@435 1540 const Register to = O1; // destination array address
duke@435 1541 const Register count = O2; // elements count
duke@435 1542 const Register offset = O5; // offset from start of arrays
duke@435 1543 // O3, O4, G3, G4 are used as temp registers
duke@435 1544
duke@435 1545 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1546
iveresov@2595 1547 if (entry != NULL) {
iveresov@2595 1548 *entry = __ pc();
iveresov@2595 1549 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1550 BLOCK_COMMENT("Entry:");
iveresov@2595 1551 }
duke@435 1552
duke@435 1553 // for short arrays, just do single element copy
duke@435 1554 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1555 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1556 __ delayed()->mov(G0, offset);
duke@435 1557
duke@435 1558 if (aligned) {
duke@435 1559 // 'aligned' == true when it is known statically during compilation
duke@435 1560 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1561 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1562 //
duke@435 1563 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1564 // and 8 bytes - in 64-bits VM.
duke@435 1565 //
duke@435 1566 #ifndef _LP64
duke@435 1567 // copy a 2-elements word if necessary to align 'to' to 8 bytes
duke@435 1568 __ andcc(to, 7, G0);
duke@435 1569 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1570 __ delayed()->ld(from, 0, O3);
duke@435 1571 __ inc(from, 4);
duke@435 1572 __ inc(to, 4);
duke@435 1573 __ dec(count, 2);
duke@435 1574 __ st(O3, to, -4);
duke@435 1575 __ BIND(L_skip_alignment);
duke@435 1576 #endif
duke@435 1577 } else {
duke@435 1578 // copy 1 element if necessary to align 'to' on an 4 bytes
duke@435 1579 __ andcc(to, 3, G0);
duke@435 1580 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1581 __ delayed()->lduh(from, 0, O3);
duke@435 1582 __ inc(from, 2);
duke@435 1583 __ inc(to, 2);
duke@435 1584 __ dec(count);
duke@435 1585 __ sth(O3, to, -2);
duke@435 1586 __ BIND(L_skip_alignment);
duke@435 1587
duke@435 1588 // copy 2 elements to align 'to' on an 8 byte boundary
duke@435 1589 __ andcc(to, 7, G0);
duke@435 1590 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1591 __ delayed()->lduh(from, 0, O3);
duke@435 1592 __ dec(count, 2);
duke@435 1593 __ lduh(from, 2, O4);
duke@435 1594 __ inc(from, 4);
duke@435 1595 __ inc(to, 4);
duke@435 1596 __ sth(O3, to, -4);
duke@435 1597 __ sth(O4, to, -2);
duke@435 1598 __ BIND(L_skip_alignment2);
duke@435 1599 }
duke@435 1600 #ifdef _LP64
duke@435 1601 if (!aligned)
duke@435 1602 #endif
duke@435 1603 {
duke@435 1604 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1605 // the same alignment mod 8, otherwise fall through to the next
duke@435 1606 // code for aligned copy.
duke@435 1607 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1608 // Also jump over aligned copy after the copy with shift completed.
duke@435 1609
kvn@3103 1610 copy_16_bytes_forward_with_shift(from, to, count, 1, L_copy_2_bytes);
duke@435 1611 }
duke@435 1612
duke@435 1613 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1614 __ and3(count, 3, G4); // Save
duke@435 1615 __ srl(count, 2, count);
duke@435 1616 generate_disjoint_long_copy_core(aligned);
duke@435 1617 __ mov(G4, count); // restore
duke@435 1618
duke@435 1619 // copy 1 element at a time
duke@435 1620 __ BIND(L_copy_2_bytes);
kvn@3037 1621 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
kvn@1800 1622 __ align(OptoLoopAlignment);
duke@435 1623 __ BIND(L_copy_2_bytes_loop);
duke@435 1624 __ lduh(from, offset, O3);
duke@435 1625 __ deccc(count);
duke@435 1626 __ sth(O3, to, offset);
duke@435 1627 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1628 __ delayed()->inc(offset, 2);
duke@435 1629
duke@435 1630 __ BIND(L_exit);
duke@435 1631 // O3, O4 are used as temp registers
duke@435 1632 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1633 __ retl();
duke@435 1634 __ delayed()->mov(G0, O0); // return 0
duke@435 1635 return start;
duke@435 1636 }
duke@435 1637
duke@435 1638 //
never@2118 1639 // Generate stub for disjoint short fill. If "aligned" is true, the
never@2118 1640 // "to" address is assumed to be heapword aligned.
never@2118 1641 //
never@2118 1642 // Arguments for generated stub:
never@2118 1643 // to: O0
never@2118 1644 // value: O1
never@2118 1645 // count: O2 treated as signed
never@2118 1646 //
never@2118 1647 address generate_fill(BasicType t, bool aligned, const char* name) {
never@2118 1648 __ align(CodeEntryAlignment);
never@2118 1649 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1650 address start = __ pc();
never@2118 1651
never@2118 1652 const Register to = O0; // source array address
never@2118 1653 const Register value = O1; // fill value
never@2118 1654 const Register count = O2; // elements count
never@2118 1655 // O3 is used as a temp register
never@2118 1656
never@2118 1657 assert_clean_int(count, O3); // Make sure 'count' is clean int.
never@2118 1658
never@2118 1659 Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
never@2149 1660 Label L_fill_2_bytes, L_fill_elements, L_fill_32_bytes;
never@2118 1661
never@2118 1662 int shift = -1;
never@2118 1663 switch (t) {
never@2118 1664 case T_BYTE:
never@2118 1665 shift = 2;
never@2118 1666 break;
never@2118 1667 case T_SHORT:
never@2118 1668 shift = 1;
never@2118 1669 break;
never@2118 1670 case T_INT:
never@2118 1671 shift = 0;
never@2118 1672 break;
never@2118 1673 default: ShouldNotReachHere();
never@2118 1674 }
never@2118 1675
never@2118 1676 BLOCK_COMMENT("Entry:");
never@2118 1677
never@2118 1678 if (t == T_BYTE) {
never@2118 1679 // Zero extend value
never@2118 1680 __ and3(value, 0xff, value);
never@2118 1681 __ sllx(value, 8, O3);
never@2118 1682 __ or3(value, O3, value);
never@2118 1683 }
never@2118 1684 if (t == T_SHORT) {
never@2118 1685 // Zero extend value
never@2149 1686 __ sllx(value, 48, value);
never@2149 1687 __ srlx(value, 48, value);
never@2118 1688 }
never@2118 1689 if (t == T_BYTE || t == T_SHORT) {
never@2118 1690 __ sllx(value, 16, O3);
never@2118 1691 __ or3(value, O3, value);
never@2118 1692 }
never@2118 1693
never@2118 1694 __ cmp(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
never@2149 1695 __ brx(Assembler::lessUnsigned, false, Assembler::pn, L_fill_elements); // use unsigned cmp
never@2149 1696 __ delayed()->andcc(count, 1, G0);
never@2118 1697
never@2118 1698 if (!aligned && (t == T_BYTE || t == T_SHORT)) {
never@2118 1699 // align source address at 4 bytes address boundary
never@2118 1700 if (t == T_BYTE) {
never@2118 1701 // One byte misalignment happens only for byte arrays
never@2118 1702 __ andcc(to, 1, G0);
never@2118 1703 __ br(Assembler::zero, false, Assembler::pt, L_skip_align1);
never@2118 1704 __ delayed()->nop();
never@2118 1705 __ stb(value, to, 0);
never@2118 1706 __ inc(to, 1);
never@2118 1707 __ dec(count, 1);
never@2118 1708 __ BIND(L_skip_align1);
never@2118 1709 }
never@2118 1710 // Two bytes misalignment happens only for byte and short (char) arrays
never@2118 1711 __ andcc(to, 2, G0);
never@2118 1712 __ br(Assembler::zero, false, Assembler::pt, L_skip_align2);
never@2118 1713 __ delayed()->nop();
never@2118 1714 __ sth(value, to, 0);
never@2118 1715 __ inc(to, 2);
never@2118 1716 __ dec(count, 1 << (shift - 1));
never@2118 1717 __ BIND(L_skip_align2);
never@2118 1718 }
never@2118 1719 #ifdef _LP64
never@2118 1720 if (!aligned) {
never@2118 1721 #endif
never@2118 1722 // align to 8 bytes, we know we are 4 byte aligned to start
never@2118 1723 __ andcc(to, 7, G0);
never@2118 1724 __ br(Assembler::zero, false, Assembler::pt, L_fill_32_bytes);
never@2118 1725 __ delayed()->nop();
never@2118 1726 __ stw(value, to, 0);
never@2118 1727 __ inc(to, 4);
never@2118 1728 __ dec(count, 1 << shift);
never@2118 1729 __ BIND(L_fill_32_bytes);
never@2118 1730 #ifdef _LP64
never@2118 1731 }
never@2118 1732 #endif
never@2118 1733
never@2118 1734 if (t == T_INT) {
never@2118 1735 // Zero extend value
never@2118 1736 __ srl(value, 0, value);
never@2118 1737 }
never@2118 1738 if (t == T_BYTE || t == T_SHORT || t == T_INT) {
never@2118 1739 __ sllx(value, 32, O3);
never@2118 1740 __ or3(value, O3, value);
never@2118 1741 }
never@2118 1742
never@2137 1743 Label L_check_fill_8_bytes;
never@2137 1744 // Fill 32-byte chunks
never@2137 1745 __ subcc(count, 8 << shift, count);
never@2137 1746 __ brx(Assembler::less, false, Assembler::pt, L_check_fill_8_bytes);
never@2137 1747 __ delayed()->nop();
never@2137 1748
never@2149 1749 Label L_fill_32_bytes_loop, L_fill_4_bytes;
never@2118 1750 __ align(16);
never@2118 1751 __ BIND(L_fill_32_bytes_loop);
never@2118 1752
never@2118 1753 __ stx(value, to, 0);
never@2118 1754 __ stx(value, to, 8);
never@2118 1755 __ stx(value, to, 16);
never@2118 1756 __ stx(value, to, 24);
never@2118 1757
never@2118 1758 __ subcc(count, 8 << shift, count);
never@2118 1759 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_fill_32_bytes_loop);
never@2118 1760 __ delayed()->add(to, 32, to);
never@2118 1761
never@2118 1762 __ BIND(L_check_fill_8_bytes);
never@2118 1763 __ addcc(count, 8 << shift, count);
never@2118 1764 __ brx(Assembler::zero, false, Assembler::pn, L_exit);
never@2118 1765 __ delayed()->subcc(count, 1 << (shift + 1), count);
never@2118 1766 __ brx(Assembler::less, false, Assembler::pn, L_fill_4_bytes);
never@2118 1767 __ delayed()->andcc(count, 1<<shift, G0);
never@2118 1768
never@2118 1769 //
never@2118 1770 // length is too short, just fill 8 bytes at a time
never@2118 1771 //
never@2118 1772 Label L_fill_8_bytes_loop;
never@2118 1773 __ BIND(L_fill_8_bytes_loop);
never@2118 1774 __ stx(value, to, 0);
never@2118 1775 __ subcc(count, 1 << (shift + 1), count);
never@2118 1776 __ brx(Assembler::greaterEqual, false, Assembler::pn, L_fill_8_bytes_loop);
never@2118 1777 __ delayed()->add(to, 8, to);
never@2118 1778
never@2118 1779 // fill trailing 4 bytes
never@2118 1780 __ andcc(count, 1<<shift, G0); // in delay slot of branches
never@2149 1781 if (t == T_INT) {
never@2149 1782 __ BIND(L_fill_elements);
never@2149 1783 }
never@2118 1784 __ BIND(L_fill_4_bytes);
never@2118 1785 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2_bytes);
never@2118 1786 if (t == T_BYTE || t == T_SHORT) {
never@2118 1787 __ delayed()->andcc(count, 1<<(shift-1), G0);
never@2118 1788 } else {
never@2118 1789 __ delayed()->nop();
never@2118 1790 }
never@2118 1791 __ stw(value, to, 0);
never@2118 1792 if (t == T_BYTE || t == T_SHORT) {
never@2118 1793 __ inc(to, 4);
never@2118 1794 // fill trailing 2 bytes
never@2118 1795 __ andcc(count, 1<<(shift-1), G0); // in delay slot of branches
never@2118 1796 __ BIND(L_fill_2_bytes);
never@2118 1797 __ brx(Assembler::zero, false, Assembler::pt, L_fill_byte);
never@2118 1798 __ delayed()->andcc(count, 1, count);
never@2118 1799 __ sth(value, to, 0);
never@2118 1800 if (t == T_BYTE) {
never@2118 1801 __ inc(to, 2);
never@2118 1802 // fill trailing byte
never@2118 1803 __ andcc(count, 1, count); // in delay slot of branches
never@2118 1804 __ BIND(L_fill_byte);
never@2118 1805 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2118 1806 __ delayed()->nop();
never@2118 1807 __ stb(value, to, 0);
never@2118 1808 } else {
never@2118 1809 __ BIND(L_fill_byte);
never@2118 1810 }
never@2118 1811 } else {
never@2118 1812 __ BIND(L_fill_2_bytes);
never@2118 1813 }
never@2118 1814 __ BIND(L_exit);
never@2118 1815 __ retl();
never@2149 1816 __ delayed()->nop();
never@2149 1817
never@2149 1818 // Handle copies less than 8 bytes. Int is handled elsewhere.
never@2149 1819 if (t == T_BYTE) {
never@2149 1820 __ BIND(L_fill_elements);
never@2149 1821 Label L_fill_2, L_fill_4;
never@2149 1822 // in delay slot __ andcc(count, 1, G0);
never@2149 1823 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
never@2149 1824 __ delayed()->andcc(count, 2, G0);
never@2149 1825 __ stb(value, to, 0);
never@2149 1826 __ inc(to, 1);
never@2149 1827 __ BIND(L_fill_2);
never@2149 1828 __ brx(Assembler::zero, false, Assembler::pt, L_fill_4);
never@2149 1829 __ delayed()->andcc(count, 4, G0);
never@2149 1830 __ stb(value, to, 0);
never@2149 1831 __ stb(value, to, 1);
never@2149 1832 __ inc(to, 2);
never@2149 1833 __ BIND(L_fill_4);
never@2149 1834 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2149 1835 __ delayed()->nop();
never@2149 1836 __ stb(value, to, 0);
never@2149 1837 __ stb(value, to, 1);
never@2149 1838 __ stb(value, to, 2);
never@2149 1839 __ retl();
never@2149 1840 __ delayed()->stb(value, to, 3);
never@2149 1841 }
never@2149 1842
never@2149 1843 if (t == T_SHORT) {
never@2149 1844 Label L_fill_2;
never@2149 1845 __ BIND(L_fill_elements);
never@2149 1846 // in delay slot __ andcc(count, 1, G0);
never@2149 1847 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
never@2149 1848 __ delayed()->andcc(count, 2, G0);
never@2149 1849 __ sth(value, to, 0);
never@2149 1850 __ inc(to, 2);
never@2149 1851 __ BIND(L_fill_2);
never@2149 1852 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2149 1853 __ delayed()->nop();
never@2149 1854 __ sth(value, to, 0);
never@2149 1855 __ retl();
never@2149 1856 __ delayed()->sth(value, to, 2);
never@2149 1857 }
never@2118 1858 return start;
never@2118 1859 }
never@2118 1860
never@2118 1861 //
duke@435 1862 // Generate stub for conjoint short copy. If "aligned" is true, the
duke@435 1863 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1864 //
duke@435 1865 // Arguments for generated stub:
duke@435 1866 // from: O0
duke@435 1867 // to: O1
duke@435 1868 // count: O2 treated as signed
duke@435 1869 //
iveresov@2595 1870 address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
iveresov@2595 1871 address *entry, const char *name) {
duke@435 1872 // Do reverse copy.
duke@435 1873
duke@435 1874 __ align(CodeEntryAlignment);
duke@435 1875 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1876 address start = __ pc();
duke@435 1877
duke@435 1878 Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
duke@435 1879 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1880
duke@435 1881 const Register from = O0; // source array address
duke@435 1882 const Register to = O1; // destination array address
duke@435 1883 const Register count = O2; // elements count
duke@435 1884 const Register end_from = from; // source array end address
duke@435 1885 const Register end_to = to; // destination array end address
duke@435 1886
duke@435 1887 const Register byte_count = O3; // bytes count to copy
duke@435 1888
duke@435 1889 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1890
iveresov@2595 1891 if (entry != NULL) {
iveresov@2595 1892 *entry = __ pc();
iveresov@2595 1893 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1894 BLOCK_COMMENT("Entry:");
iveresov@2595 1895 }
duke@435 1896
duke@435 1897 array_overlap_test(nooverlap_target, 1);
duke@435 1898
duke@435 1899 __ sllx(count, LogBytesPerShort, byte_count);
duke@435 1900 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 1901
duke@435 1902 // for short arrays, just do single element copy
duke@435 1903 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1904 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1905 __ delayed()->add(from, byte_count, end_from);
duke@435 1906
duke@435 1907 {
duke@435 1908 // Align end of arrays since they could be not aligned even
duke@435 1909 // when arrays itself are aligned.
duke@435 1910
duke@435 1911 // copy 1 element if necessary to align 'end_to' on an 4 bytes
duke@435 1912 __ andcc(end_to, 3, G0);
duke@435 1913 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1914 __ delayed()->lduh(end_from, -2, O3);
duke@435 1915 __ dec(end_from, 2);
duke@435 1916 __ dec(end_to, 2);
duke@435 1917 __ dec(count);
duke@435 1918 __ sth(O3, end_to, 0);
duke@435 1919 __ BIND(L_skip_alignment);
duke@435 1920
duke@435 1921 // copy 2 elements to align 'end_to' on an 8 byte boundary
duke@435 1922 __ andcc(end_to, 7, G0);
duke@435 1923 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1924 __ delayed()->lduh(end_from, -2, O3);
duke@435 1925 __ dec(count, 2);
duke@435 1926 __ lduh(end_from, -4, O4);
duke@435 1927 __ dec(end_from, 4);
duke@435 1928 __ dec(end_to, 4);
duke@435 1929 __ sth(O3, end_to, 2);
duke@435 1930 __ sth(O4, end_to, 0);
duke@435 1931 __ BIND(L_skip_alignment2);
duke@435 1932 }
duke@435 1933 #ifdef _LP64
duke@435 1934 if (aligned) {
duke@435 1935 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1936 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1937 // in unaligned case.
duke@435 1938 __ dec(count, 8);
duke@435 1939 } else
duke@435 1940 #endif
duke@435 1941 {
duke@435 1942 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1943 // the same alignment mod 8, otherwise jump to the next
duke@435 1944 // code for aligned copy (and substracting 8 from 'count' before jump).
duke@435 1945 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1946 // Also jump over aligned copy after the copy with shift completed.
duke@435 1947
duke@435 1948 copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
duke@435 1949 L_aligned_copy, L_copy_2_bytes);
duke@435 1950 }
duke@435 1951 // copy 4 elements (16 bytes) at a time
kvn@1800 1952 __ align(OptoLoopAlignment);
duke@435 1953 __ BIND(L_aligned_copy);
duke@435 1954 __ dec(end_from, 16);
duke@435 1955 __ ldx(end_from, 8, O3);
duke@435 1956 __ ldx(end_from, 0, O4);
duke@435 1957 __ dec(end_to, 16);
duke@435 1958 __ deccc(count, 8);
duke@435 1959 __ stx(O3, end_to, 8);
duke@435 1960 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1961 __ delayed()->stx(O4, end_to, 0);
duke@435 1962 __ inc(count, 8);
duke@435 1963
duke@435 1964 // copy 1 element (2 bytes) at a time
duke@435 1965 __ BIND(L_copy_2_bytes);
kvn@3037 1966 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
duke@435 1967 __ BIND(L_copy_2_bytes_loop);
duke@435 1968 __ dec(end_from, 2);
duke@435 1969 __ dec(end_to, 2);
duke@435 1970 __ lduh(end_from, 0, O4);
duke@435 1971 __ deccc(count);
duke@435 1972 __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1973 __ delayed()->sth(O4, end_to, 0);
duke@435 1974
duke@435 1975 __ BIND(L_exit);
duke@435 1976 // O3, O4 are used as temp registers
duke@435 1977 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1978 __ retl();
duke@435 1979 __ delayed()->mov(G0, O0); // return 0
duke@435 1980 return start;
duke@435 1981 }
duke@435 1982
duke@435 1983 //
kvn@3103 1984 // Helper methods for generate_disjoint_int_copy_core()
kvn@3103 1985 //
kvn@3103 1986 void copy_16_bytes_loop(Register from, Register to, Register count, int count_dec,
kvn@3103 1987 Label& L_loop, bool use_prefetch, bool use_bis) {
kvn@3103 1988
kvn@3103 1989 __ align(OptoLoopAlignment);
kvn@3103 1990 __ BIND(L_loop);
kvn@3103 1991 if (use_prefetch) {
kvn@3103 1992 if (ArraycopySrcPrefetchDistance > 0) {
kvn@3103 1993 __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
kvn@3103 1994 }
kvn@3103 1995 if (ArraycopyDstPrefetchDistance > 0) {
kvn@3103 1996 __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
kvn@3103 1997 }
kvn@3103 1998 }
kvn@3103 1999 __ ldx(from, 4, O4);
kvn@3103 2000 __ ldx(from, 12, G4);
kvn@3103 2001 __ inc(to, 16);
kvn@3103 2002 __ inc(from, 16);
kvn@3103 2003 __ deccc(count, 4); // Can we do next iteration after this one?
kvn@3103 2004
kvn@3103 2005 __ srlx(O4, 32, G3);
kvn@3103 2006 __ bset(G3, O3);
kvn@3103 2007 __ sllx(O4, 32, O4);
kvn@3103 2008 __ srlx(G4, 32, G3);
kvn@3103 2009 __ bset(G3, O4);
kvn@3103 2010 if (use_bis) {
kvn@3103 2011 __ stxa(O3, to, -16);
kvn@3103 2012 __ stxa(O4, to, -8);
kvn@3103 2013 } else {
kvn@3103 2014 __ stx(O3, to, -16);
kvn@3103 2015 __ stx(O4, to, -8);
kvn@3103 2016 }
kvn@3103 2017 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
kvn@3103 2018 __ delayed()->sllx(G4, 32, O3);
kvn@3103 2019
kvn@3103 2020 }
kvn@3103 2021
kvn@3103 2022 //
duke@435 2023 // Generate core code for disjoint int copy (and oop copy on 32-bit).
duke@435 2024 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 2025 // to be heapword aligned.
duke@435 2026 //
duke@435 2027 // Arguments:
duke@435 2028 // from: O0
duke@435 2029 // to: O1
duke@435 2030 // count: O2 treated as signed
duke@435 2031 //
duke@435 2032 void generate_disjoint_int_copy_core(bool aligned) {
duke@435 2033
duke@435 2034 Label L_skip_alignment, L_aligned_copy;
kvn@3103 2035 Label L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 2036
duke@435 2037 const Register from = O0; // source array address
duke@435 2038 const Register to = O1; // destination array address
duke@435 2039 const Register count = O2; // elements count
duke@435 2040 const Register offset = O5; // offset from start of arrays
duke@435 2041 // O3, O4, G3, G4 are used as temp registers
duke@435 2042
duke@435 2043 // 'aligned' == true when it is known statically during compilation
duke@435 2044 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 2045 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 2046 //
duke@435 2047 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 2048 // and 8 bytes - in 64-bits VM.
duke@435 2049 //
duke@435 2050 #ifdef _LP64
duke@435 2051 if (!aligned)
duke@435 2052 #endif
duke@435 2053 {
duke@435 2054 // The next check could be put under 'ifndef' since the code in
duke@435 2055 // generate_disjoint_long_copy_core() has own checks and set 'offset'.
duke@435 2056
duke@435 2057 // for short arrays, just do single element copy
duke@435 2058 __ cmp(count, 5); // 4 + 1 (20 bytes)
duke@435 2059 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 2060 __ delayed()->mov(G0, offset);
duke@435 2061
duke@435 2062 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 2063 __ andcc(to, 7, G0);
duke@435 2064 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 2065 __ delayed()->ld(from, 0, O3);
duke@435 2066 __ inc(from, 4);
duke@435 2067 __ inc(to, 4);
duke@435 2068 __ dec(count);
duke@435 2069 __ st(O3, to, -4);
duke@435 2070 __ BIND(L_skip_alignment);
duke@435 2071
duke@435 2072 // if arrays have same alignment mod 8, do 4 elements copy
duke@435 2073 __ andcc(from, 7, G0);
duke@435 2074 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 2075 __ delayed()->ld(from, 0, O3);
duke@435 2076
duke@435 2077 //
duke@435 2078 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 2079 // to form 2 aligned 8-bytes chunks to store.
duke@435 2080 //
duke@435 2081 // copy_16_bytes_forward_with_shift() is not used here since this
duke@435 2082 // code is more optimal.
duke@435 2083
duke@435 2084 // copy with shift 4 elements (16 bytes) at a time
duke@435 2085 __ dec(count, 4); // The cmp at the beginning guaranty count >= 4
kvn@3103 2086 __ sllx(O3, 32, O3);
kvn@3103 2087
mikael@6682 2088 disjoint_copy_core(from, to, count, 2, 16, &StubGenerator::copy_16_bytes_loop);
duke@435 2089
duke@435 2090 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 2091 __ delayed()->inc(count, 4); // restore 'count'
duke@435 2092
duke@435 2093 __ BIND(L_aligned_copy);
kvn@3103 2094 } // !aligned
kvn@3103 2095
duke@435 2096 // copy 4 elements (16 bytes) at a time
duke@435 2097 __ and3(count, 1, G4); // Save
duke@435 2098 __ srl(count, 1, count);
duke@435 2099 generate_disjoint_long_copy_core(aligned);
duke@435 2100 __ mov(G4, count); // Restore
duke@435 2101
duke@435 2102 // copy 1 element at a time
duke@435 2103 __ BIND(L_copy_4_bytes);
kvn@3037 2104 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
duke@435 2105 __ BIND(L_copy_4_bytes_loop);
duke@435 2106 __ ld(from, offset, O3);
duke@435 2107 __ deccc(count);
duke@435 2108 __ st(O3, to, offset);
duke@435 2109 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 2110 __ delayed()->inc(offset, 4);
duke@435 2111 __ BIND(L_exit);
duke@435 2112 }
duke@435 2113
duke@435 2114 //
duke@435 2115 // Generate stub for disjoint int copy. If "aligned" is true, the
duke@435 2116 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2117 //
duke@435 2118 // Arguments for generated stub:
duke@435 2119 // from: O0
duke@435 2120 // to: O1
duke@435 2121 // count: O2 treated as signed
duke@435 2122 //
iveresov@2595 2123 address generate_disjoint_int_copy(bool aligned, address *entry, const char *name) {
duke@435 2124 __ align(CodeEntryAlignment);
duke@435 2125 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2126 address start = __ pc();
duke@435 2127
duke@435 2128 const Register count = O2;
duke@435 2129 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2130
iveresov@2595 2131 if (entry != NULL) {
iveresov@2595 2132 *entry = __ pc();
iveresov@2595 2133 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2134 BLOCK_COMMENT("Entry:");
iveresov@2595 2135 }
duke@435 2136
duke@435 2137 generate_disjoint_int_copy_core(aligned);
duke@435 2138
duke@435 2139 // O3, O4 are used as temp registers
duke@435 2140 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 2141 __ retl();
duke@435 2142 __ delayed()->mov(G0, O0); // return 0
duke@435 2143 return start;
duke@435 2144 }
duke@435 2145
duke@435 2146 //
duke@435 2147 // Generate core code for conjoint int copy (and oop copy on 32-bit).
duke@435 2148 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 2149 // to be heapword aligned.
duke@435 2150 //
duke@435 2151 // Arguments:
duke@435 2152 // from: O0
duke@435 2153 // to: O1
duke@435 2154 // count: O2 treated as signed
duke@435 2155 //
duke@435 2156 void generate_conjoint_int_copy_core(bool aligned) {
duke@435 2157 // Do reverse copy.
duke@435 2158
duke@435 2159 Label L_skip_alignment, L_aligned_copy;
duke@435 2160 Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 2161
duke@435 2162 const Register from = O0; // source array address
duke@435 2163 const Register to = O1; // destination array address
duke@435 2164 const Register count = O2; // elements count
duke@435 2165 const Register end_from = from; // source array end address
duke@435 2166 const Register end_to = to; // destination array end address
duke@435 2167 // O3, O4, O5, G3 are used as temp registers
duke@435 2168
duke@435 2169 const Register byte_count = O3; // bytes count to copy
duke@435 2170
duke@435 2171 __ sllx(count, LogBytesPerInt, byte_count);
duke@435 2172 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 2173
duke@435 2174 __ cmp(count, 5); // for short arrays, just do single element copy
duke@435 2175 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 2176 __ delayed()->add(from, byte_count, end_from);
duke@435 2177
duke@435 2178 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 2179 __ andcc(end_to, 7, G0);
duke@435 2180 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 2181 __ delayed()->nop();
duke@435 2182 __ dec(count);
duke@435 2183 __ dec(end_from, 4);
duke@435 2184 __ dec(end_to, 4);
duke@435 2185 __ ld(end_from, 0, O4);
duke@435 2186 __ st(O4, end_to, 0);
duke@435 2187 __ BIND(L_skip_alignment);
duke@435 2188
duke@435 2189 // Check if 'end_from' and 'end_to' has the same alignment.
duke@435 2190 __ andcc(end_from, 7, G0);
duke@435 2191 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 2192 __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
duke@435 2193
duke@435 2194 // copy with shift 4 elements (16 bytes) at a time
duke@435 2195 //
duke@435 2196 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 2197 // to form 2 aligned 8-bytes chunks to store.
duke@435 2198 //
duke@435 2199 __ ldx(end_from, -4, O3);
kvn@1800 2200 __ align(OptoLoopAlignment);
duke@435 2201 __ BIND(L_copy_16_bytes);
duke@435 2202 __ ldx(end_from, -12, O4);
duke@435 2203 __ deccc(count, 4);
duke@435 2204 __ ldx(end_from, -20, O5);
duke@435 2205 __ dec(end_to, 16);
duke@435 2206 __ dec(end_from, 16);
duke@435 2207 __ srlx(O3, 32, O3);
duke@435 2208 __ sllx(O4, 32, G3);
duke@435 2209 __ bset(G3, O3);
duke@435 2210 __ stx(O3, end_to, 8);
duke@435 2211 __ srlx(O4, 32, O4);
duke@435 2212 __ sllx(O5, 32, G3);
duke@435 2213 __ bset(O4, G3);
duke@435 2214 __ stx(G3, end_to, 0);
duke@435 2215 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2216 __ delayed()->mov(O5, O3);
duke@435 2217
duke@435 2218 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 2219 __ delayed()->inc(count, 4);
duke@435 2220
duke@435 2221 // copy 4 elements (16 bytes) at a time
kvn@1800 2222 __ align(OptoLoopAlignment);
duke@435 2223 __ BIND(L_aligned_copy);
duke@435 2224 __ dec(end_from, 16);
duke@435 2225 __ ldx(end_from, 8, O3);
duke@435 2226 __ ldx(end_from, 0, O4);
duke@435 2227 __ dec(end_to, 16);
duke@435 2228 __ deccc(count, 4);
duke@435 2229 __ stx(O3, end_to, 8);
duke@435 2230 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 2231 __ delayed()->stx(O4, end_to, 0);
duke@435 2232 __ inc(count, 4);
duke@435 2233
duke@435 2234 // copy 1 element (4 bytes) at a time
duke@435 2235 __ BIND(L_copy_4_bytes);
kvn@3037 2236 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
duke@435 2237 __ BIND(L_copy_4_bytes_loop);
duke@435 2238 __ dec(end_from, 4);
duke@435 2239 __ dec(end_to, 4);
duke@435 2240 __ ld(end_from, 0, O4);
duke@435 2241 __ deccc(count);
duke@435 2242 __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 2243 __ delayed()->st(O4, end_to, 0);
duke@435 2244 __ BIND(L_exit);
duke@435 2245 }
duke@435 2246
duke@435 2247 //
duke@435 2248 // Generate stub for conjoint int copy. If "aligned" is true, the
duke@435 2249 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2250 //
duke@435 2251 // Arguments for generated stub:
duke@435 2252 // from: O0
duke@435 2253 // to: O1
duke@435 2254 // count: O2 treated as signed
duke@435 2255 //
iveresov@2595 2256 address generate_conjoint_int_copy(bool aligned, address nooverlap_target,
iveresov@2595 2257 address *entry, const char *name) {
duke@435 2258 __ align(CodeEntryAlignment);
duke@435 2259 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2260 address start = __ pc();
duke@435 2261
duke@435 2262 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2263
iveresov@2595 2264 if (entry != NULL) {
iveresov@2595 2265 *entry = __ pc();
iveresov@2595 2266 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2267 BLOCK_COMMENT("Entry:");
iveresov@2595 2268 }
duke@435 2269
duke@435 2270 array_overlap_test(nooverlap_target, 2);
duke@435 2271
duke@435 2272 generate_conjoint_int_copy_core(aligned);
duke@435 2273
duke@435 2274 // O3, O4 are used as temp registers
duke@435 2275 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 2276 __ retl();
duke@435 2277 __ delayed()->mov(G0, O0); // return 0
duke@435 2278 return start;
duke@435 2279 }
duke@435 2280
duke@435 2281 //
kvn@3103 2282 // Helper methods for generate_disjoint_long_copy_core()
kvn@3103 2283 //
kvn@3103 2284 void copy_64_bytes_loop(Register from, Register to, Register count, int count_dec,
kvn@3103 2285 Label& L_loop, bool use_prefetch, bool use_bis) {
kvn@3103 2286 __ align(OptoLoopAlignment);
kvn@3103 2287 __ BIND(L_loop);
kvn@3103 2288 for (int off = 0; off < 64; off += 16) {
kvn@3103 2289 if (use_prefetch && (off & 31) == 0) {
kvn@3103 2290 if (ArraycopySrcPrefetchDistance > 0) {
kvn@3157 2291 __ prefetch(from, ArraycopySrcPrefetchDistance+off, Assembler::severalReads);
kvn@3103 2292 }
kvn@3103 2293 if (ArraycopyDstPrefetchDistance > 0) {
kvn@3157 2294 __ prefetch(to, ArraycopyDstPrefetchDistance+off, Assembler::severalWritesAndPossiblyReads);
kvn@3103 2295 }
kvn@3103 2296 }
kvn@3103 2297 __ ldx(from, off+0, O4);
kvn@3103 2298 __ ldx(from, off+8, O5);
kvn@3103 2299 if (use_bis) {
kvn@3103 2300 __ stxa(O4, to, off+0);
kvn@3103 2301 __ stxa(O5, to, off+8);
kvn@3103 2302 } else {
kvn@3103 2303 __ stx(O4, to, off+0);
kvn@3103 2304 __ stx(O5, to, off+8);
kvn@3103 2305 }
kvn@3103 2306 }
kvn@3103 2307 __ deccc(count, 8);
kvn@3103 2308 __ inc(from, 64);
kvn@3103 2309 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
kvn@3103 2310 __ delayed()->inc(to, 64);
kvn@3103 2311 }
kvn@3103 2312
kvn@3103 2313 //
duke@435 2314 // Generate core code for disjoint long copy (and oop copy on 64-bit).
duke@435 2315 // "aligned" is ignored, because we must make the stronger
duke@435 2316 // assumption that both addresses are always 64-bit aligned.
duke@435 2317 //
duke@435 2318 // Arguments:
duke@435 2319 // from: O0
duke@435 2320 // to: O1
duke@435 2321 // count: O2 treated as signed
duke@435 2322 //
kvn@1799 2323 // count -= 2;
kvn@1799 2324 // if ( count >= 0 ) { // >= 2 elements
kvn@1799 2325 // if ( count > 6) { // >= 8 elements
kvn@1799 2326 // count -= 6; // original count - 8
kvn@1799 2327 // do {
kvn@1799 2328 // copy_8_elements;
kvn@1799 2329 // count -= 8;
kvn@1799 2330 // } while ( count >= 0 );
kvn@1799 2331 // count += 6;
kvn@1799 2332 // }
kvn@1799 2333 // if ( count >= 0 ) { // >= 2 elements
kvn@1799 2334 // do {
kvn@1799 2335 // copy_2_elements;
kvn@1799 2336 // } while ( (count=count-2) >= 0 );
kvn@1799 2337 // }
kvn@1799 2338 // }
kvn@1799 2339 // count += 2;
kvn@1799 2340 // if ( count != 0 ) { // 1 element left
kvn@1799 2341 // copy_1_element;
kvn@1799 2342 // }
kvn@1799 2343 //
duke@435 2344 void generate_disjoint_long_copy_core(bool aligned) {
duke@435 2345 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2346 const Register from = O0; // source array address
duke@435 2347 const Register to = O1; // destination array address
duke@435 2348 const Register count = O2; // elements count
duke@435 2349 const Register offset0 = O4; // element offset
duke@435 2350 const Register offset8 = O5; // next element offset
duke@435 2351
kvn@3103 2352 __ deccc(count, 2);
kvn@3103 2353 __ mov(G0, offset0); // offset from start of arrays (0)
kvn@3103 2354 __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
kvn@3103 2355 __ delayed()->add(offset0, 8, offset8);
kvn@1799 2356
kvn@1799 2357 // Copy by 64 bytes chunks
kvn@3103 2358
kvn@1799 2359 const Register from64 = O3; // source address
kvn@1799 2360 const Register to64 = G3; // destination address
kvn@3103 2361 __ subcc(count, 6, O3);
kvn@3103 2362 __ brx(Assembler::negative, false, Assembler::pt, L_copy_16_bytes );
kvn@3103 2363 __ delayed()->mov(to, to64);
kvn@3103 2364 // Now we can use O4(offset0), O5(offset8) as temps
kvn@3103 2365 __ mov(O3, count);
kvn@3103 2366 // count >= 0 (original count - 8)
kvn@3103 2367 __ mov(from, from64);
kvn@3103 2368
mikael@6682 2369 disjoint_copy_core(from64, to64, count, 3, 64, &StubGenerator::copy_64_bytes_loop);
kvn@1799 2370
kvn@1799 2371 // Restore O4(offset0), O5(offset8)
kvn@1799 2372 __ sub(from64, from, offset0);
kvn@3103 2373 __ inccc(count, 6); // restore count
kvn@1799 2374 __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
kvn@1799 2375 __ delayed()->add(offset0, 8, offset8);
kvn@1799 2376
kvn@1799 2377 // Copy by 16 bytes chunks
kvn@1800 2378 __ align(OptoLoopAlignment);
duke@435 2379 __ BIND(L_copy_16_bytes);
duke@435 2380 __ ldx(from, offset0, O3);
duke@435 2381 __ ldx(from, offset8, G3);
duke@435 2382 __ deccc(count, 2);
duke@435 2383 __ stx(O3, to, offset0);
duke@435 2384 __ inc(offset0, 16);
duke@435 2385 __ stx(G3, to, offset8);
duke@435 2386 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2387 __ delayed()->inc(offset8, 16);
duke@435 2388
kvn@1799 2389 // Copy last 8 bytes
duke@435 2390 __ BIND(L_copy_8_bytes);
duke@435 2391 __ inccc(count, 2);
duke@435 2392 __ brx(Assembler::zero, true, Assembler::pn, L_exit );
duke@435 2393 __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
duke@435 2394 __ ldx(from, offset0, O3);
duke@435 2395 __ stx(O3, to, offset0);
duke@435 2396 __ BIND(L_exit);
duke@435 2397 }
duke@435 2398
duke@435 2399 //
duke@435 2400 // Generate stub for disjoint long copy.
duke@435 2401 // "aligned" is ignored, because we must make the stronger
duke@435 2402 // assumption that both addresses are always 64-bit aligned.
duke@435 2403 //
duke@435 2404 // Arguments for generated stub:
duke@435 2405 // from: O0
duke@435 2406 // to: O1
duke@435 2407 // count: O2 treated as signed
duke@435 2408 //
iveresov@2595 2409 address generate_disjoint_long_copy(bool aligned, address *entry, const char *name) {
duke@435 2410 __ align(CodeEntryAlignment);
duke@435 2411 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2412 address start = __ pc();
duke@435 2413
duke@435 2414 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2415
iveresov@2595 2416 if (entry != NULL) {
iveresov@2595 2417 *entry = __ pc();
iveresov@2595 2418 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2419 BLOCK_COMMENT("Entry:");
iveresov@2595 2420 }
duke@435 2421
duke@435 2422 generate_disjoint_long_copy_core(aligned);
duke@435 2423
duke@435 2424 // O3, O4 are used as temp registers
duke@435 2425 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2426 __ retl();
duke@435 2427 __ delayed()->mov(G0, O0); // return 0
duke@435 2428 return start;
duke@435 2429 }
duke@435 2430
duke@435 2431 //
duke@435 2432 // Generate core code for conjoint long copy (and oop copy on 64-bit).
duke@435 2433 // "aligned" is ignored, because we must make the stronger
duke@435 2434 // assumption that both addresses are always 64-bit aligned.
duke@435 2435 //
duke@435 2436 // Arguments:
duke@435 2437 // from: O0
duke@435 2438 // to: O1
duke@435 2439 // count: O2 treated as signed
duke@435 2440 //
duke@435 2441 void generate_conjoint_long_copy_core(bool aligned) {
duke@435 2442 // Do reverse copy.
duke@435 2443 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2444 const Register from = O0; // source array address
duke@435 2445 const Register to = O1; // destination array address
duke@435 2446 const Register count = O2; // elements count
duke@435 2447 const Register offset8 = O4; // element offset
duke@435 2448 const Register offset0 = O5; // previous element offset
duke@435 2449
duke@435 2450 __ subcc(count, 1, count);
duke@435 2451 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
duke@435 2452 __ delayed()->sllx(count, LogBytesPerLong, offset8);
duke@435 2453 __ sub(offset8, 8, offset0);
kvn@1800 2454 __ align(OptoLoopAlignment);
duke@435 2455 __ BIND(L_copy_16_bytes);
duke@435 2456 __ ldx(from, offset8, O2);
duke@435 2457 __ ldx(from, offset0, O3);
duke@435 2458 __ stx(O2, to, offset8);
duke@435 2459 __ deccc(offset8, 16); // use offset8 as counter
duke@435 2460 __ stx(O3, to, offset0);
duke@435 2461 __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
duke@435 2462 __ delayed()->dec(offset0, 16);
duke@435 2463
duke@435 2464 __ BIND(L_copy_8_bytes);
duke@435 2465 __ brx(Assembler::negative, false, Assembler::pn, L_exit );
duke@435 2466 __ delayed()->nop();
duke@435 2467 __ ldx(from, 0, O3);
duke@435 2468 __ stx(O3, to, 0);
duke@435 2469 __ BIND(L_exit);
duke@435 2470 }
duke@435 2471
duke@435 2472 // Generate stub for conjoint long copy.
duke@435 2473 // "aligned" is ignored, because we must make the stronger
duke@435 2474 // assumption that both addresses are always 64-bit aligned.
duke@435 2475 //
duke@435 2476 // Arguments for generated stub:
duke@435 2477 // from: O0
duke@435 2478 // to: O1
duke@435 2479 // count: O2 treated as signed
duke@435 2480 //
iveresov@2595 2481 address generate_conjoint_long_copy(bool aligned, address nooverlap_target,
iveresov@2595 2482 address *entry, const char *name) {
duke@435 2483 __ align(CodeEntryAlignment);
duke@435 2484 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2485 address start = __ pc();
duke@435 2486
iveresov@2606 2487 assert(aligned, "Should always be aligned");
duke@435 2488
duke@435 2489 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2490
iveresov@2595 2491 if (entry != NULL) {
iveresov@2595 2492 *entry = __ pc();
iveresov@2595 2493 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2494 BLOCK_COMMENT("Entry:");
iveresov@2595 2495 }
duke@435 2496
duke@435 2497 array_overlap_test(nooverlap_target, 3);
duke@435 2498
duke@435 2499 generate_conjoint_long_copy_core(aligned);
duke@435 2500
duke@435 2501 // O3, O4 are used as temp registers
duke@435 2502 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2503 __ retl();
duke@435 2504 __ delayed()->mov(G0, O0); // return 0
duke@435 2505 return start;
duke@435 2506 }
duke@435 2507
duke@435 2508 // Generate stub for disjoint oop copy. If "aligned" is true, the
duke@435 2509 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2510 //
duke@435 2511 // Arguments for generated stub:
duke@435 2512 // from: O0
duke@435 2513 // to: O1
duke@435 2514 // count: O2 treated as signed
duke@435 2515 //
iveresov@2606 2516 address generate_disjoint_oop_copy(bool aligned, address *entry, const char *name,
iveresov@2606 2517 bool dest_uninitialized = false) {
duke@435 2518
duke@435 2519 const Register from = O0; // source array address
duke@435 2520 const Register to = O1; // destination array address
duke@435 2521 const Register count = O2; // elements count
duke@435 2522
duke@435 2523 __ align(CodeEntryAlignment);
duke@435 2524 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2525 address start = __ pc();
duke@435 2526
duke@435 2527 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2528
iveresov@2595 2529 if (entry != NULL) {
iveresov@2595 2530 *entry = __ pc();
iveresov@2595 2531 // caller can pass a 64-bit byte count here
iveresov@2595 2532 BLOCK_COMMENT("Entry:");
iveresov@2595 2533 }
duke@435 2534
duke@435 2535 // save arguments for barrier generation
duke@435 2536 __ mov(to, G1);
duke@435 2537 __ mov(count, G5);
iveresov@2606 2538 gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
duke@435 2539 #ifdef _LP64
coleenp@548 2540 assert_clean_int(count, O3); // Make sure 'count' is clean int.
coleenp@548 2541 if (UseCompressedOops) {
coleenp@548 2542 generate_disjoint_int_copy_core(aligned);
coleenp@548 2543 } else {
coleenp@548 2544 generate_disjoint_long_copy_core(aligned);
coleenp@548 2545 }
duke@435 2546 #else
duke@435 2547 generate_disjoint_int_copy_core(aligned);
duke@435 2548 #endif
duke@435 2549 // O0 is used as temp register
duke@435 2550 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2551
duke@435 2552 // O3, O4 are used as temp registers
duke@435 2553 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2554 __ retl();
duke@435 2555 __ delayed()->mov(G0, O0); // return 0
duke@435 2556 return start;
duke@435 2557 }
duke@435 2558
duke@435 2559 // Generate stub for conjoint oop copy. If "aligned" is true, the
duke@435 2560 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2561 //
duke@435 2562 // Arguments for generated stub:
duke@435 2563 // from: O0
duke@435 2564 // to: O1
duke@435 2565 // count: O2 treated as signed
duke@435 2566 //
iveresov@2595 2567 address generate_conjoint_oop_copy(bool aligned, address nooverlap_target,
iveresov@2606 2568 address *entry, const char *name,
iveresov@2606 2569 bool dest_uninitialized = false) {
duke@435 2570
duke@435 2571 const Register from = O0; // source array address
duke@435 2572 const Register to = O1; // destination array address
duke@435 2573 const Register count = O2; // elements count
duke@435 2574
duke@435 2575 __ align(CodeEntryAlignment);
duke@435 2576 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2577 address start = __ pc();
duke@435 2578
duke@435 2579 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2580
iveresov@2595 2581 if (entry != NULL) {
iveresov@2595 2582 *entry = __ pc();
iveresov@2595 2583 // caller can pass a 64-bit byte count here
iveresov@2595 2584 BLOCK_COMMENT("Entry:");
iveresov@2595 2585 }
iveresov@2595 2586
iveresov@2595 2587 array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
duke@435 2588
duke@435 2589 // save arguments for barrier generation
duke@435 2590 __ mov(to, G1);
duke@435 2591 __ mov(count, G5);
iveresov@2606 2592 gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
duke@435 2593
duke@435 2594 #ifdef _LP64
coleenp@548 2595 if (UseCompressedOops) {
coleenp@548 2596 generate_conjoint_int_copy_core(aligned);
coleenp@548 2597 } else {
coleenp@548 2598 generate_conjoint_long_copy_core(aligned);
coleenp@548 2599 }
duke@435 2600 #else
duke@435 2601 generate_conjoint_int_copy_core(aligned);
duke@435 2602 #endif
duke@435 2603
duke@435 2604 // O0 is used as temp register
duke@435 2605 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2606
duke@435 2607 // O3, O4 are used as temp registers
duke@435 2608 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2609 __ retl();
duke@435 2610 __ delayed()->mov(G0, O0); // return 0
duke@435 2611 return start;
duke@435 2612 }
duke@435 2613
duke@435 2614
duke@435 2615 // Helper for generating a dynamic type check.
duke@435 2616 // Smashes only the given temp registers.
duke@435 2617 void generate_type_check(Register sub_klass,
duke@435 2618 Register super_check_offset,
duke@435 2619 Register super_klass,
duke@435 2620 Register temp,
jrose@1079 2621 Label& L_success) {
duke@435 2622 assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
duke@435 2623
duke@435 2624 BLOCK_COMMENT("type_check:");
duke@435 2625
jrose@1079 2626 Label L_miss, L_pop_to_miss;
duke@435 2627
duke@435 2628 assert_clean_int(super_check_offset, temp);
duke@435 2629
jrose@1079 2630 __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
jrose@1079 2631 &L_success, &L_miss, NULL,
jrose@1079 2632 super_check_offset);
jrose@1079 2633
jrose@1079 2634 BLOCK_COMMENT("type_check_slow_path:");
duke@435 2635 __ save_frame(0);
jrose@1079 2636 __ check_klass_subtype_slow_path(sub_klass->after_save(),
jrose@1079 2637 super_klass->after_save(),
jrose@1079 2638 L0, L1, L2, L4,
jrose@1079 2639 NULL, &L_pop_to_miss);
kvn@3037 2640 __ ba(L_success);
jrose@1079 2641 __ delayed()->restore();
jrose@1079 2642
jrose@1079 2643 __ bind(L_pop_to_miss);
duke@435 2644 __ restore();
duke@435 2645
duke@435 2646 // Fall through on failure!
duke@435 2647 __ BIND(L_miss);
duke@435 2648 }
duke@435 2649
duke@435 2650
duke@435 2651 // Generate stub for checked oop copy.
duke@435 2652 //
duke@435 2653 // Arguments for generated stub:
duke@435 2654 // from: O0
duke@435 2655 // to: O1
duke@435 2656 // count: O2 treated as signed
duke@435 2657 // ckoff: O3 (super_check_offset)
duke@435 2658 // ckval: O4 (super_klass)
duke@435 2659 // ret: O0 zero for success; (-1^K) where K is partial transfer count
duke@435 2660 //
iveresov@2606 2661 address generate_checkcast_copy(const char *name, address *entry, bool dest_uninitialized = false) {
duke@435 2662
duke@435 2663 const Register O0_from = O0; // source array address
duke@435 2664 const Register O1_to = O1; // destination array address
duke@435 2665 const Register O2_count = O2; // elements count
duke@435 2666 const Register O3_ckoff = O3; // super_check_offset
duke@435 2667 const Register O4_ckval = O4; // super_klass
duke@435 2668
duke@435 2669 const Register O5_offset = O5; // loop var, with stride wordSize
duke@435 2670 const Register G1_remain = G1; // loop var, with stride -1
duke@435 2671 const Register G3_oop = G3; // actual oop copied
duke@435 2672 const Register G4_klass = G4; // oop._klass
duke@435 2673 const Register G5_super = G5; // oop._klass._primary_supers[ckval]
duke@435 2674
duke@435 2675 __ align(CodeEntryAlignment);
duke@435 2676 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2677 address start = __ pc();
duke@435 2678
duke@435 2679 #ifdef ASSERT
jrose@1079 2680 // We sometimes save a frame (see generate_type_check below).
duke@435 2681 // If this will cause trouble, let's fail now instead of later.
duke@435 2682 __ save_frame(0);
duke@435 2683 __ restore();
duke@435 2684 #endif
duke@435 2685
never@2199 2686 assert_clean_int(O2_count, G1); // Make sure 'count' is clean int.
never@2199 2687
duke@435 2688 #ifdef ASSERT
duke@435 2689 // caller guarantees that the arrays really are different
duke@435 2690 // otherwise, we would have to make conjoint checks
duke@435 2691 { Label L;
duke@435 2692 __ mov(O3, G1); // spill: overlap test smashes O3
duke@435 2693 __ mov(O4, G4); // spill: overlap test smashes O4
coleenp@548 2694 array_overlap_test(L, LogBytesPerHeapOop);
duke@435 2695 __ stop("checkcast_copy within a single array");
duke@435 2696 __ bind(L);
duke@435 2697 __ mov(G1, O3);
duke@435 2698 __ mov(G4, O4);
duke@435 2699 }
duke@435 2700 #endif //ASSERT
duke@435 2701
iveresov@2595 2702 if (entry != NULL) {
iveresov@2595 2703 *entry = __ pc();
iveresov@2595 2704 // caller can pass a 64-bit byte count here (from generic stub)
iveresov@2595 2705 BLOCK_COMMENT("Entry:");
iveresov@2595 2706 }
iveresov@2606 2707 gen_write_ref_array_pre_barrier(O1_to, O2_count, dest_uninitialized);
duke@435 2708
duke@435 2709 Label load_element, store_element, do_card_marks, fail, done;
duke@435 2710 __ addcc(O2_count, 0, G1_remain); // initialize loop index, and test it
duke@435 2711 __ brx(Assembler::notZero, false, Assembler::pt, load_element);
duke@435 2712 __ delayed()->mov(G0, O5_offset); // offset from start of arrays
duke@435 2713
duke@435 2714 // Empty array: Nothing to do.
duke@435 2715 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2716 __ retl();
duke@435 2717 __ delayed()->set(0, O0); // return 0 on (trivial) success
duke@435 2718
duke@435 2719 // ======== begin loop ========
duke@435 2720 // (Loop is rotated; its entry is load_element.)
duke@435 2721 // Loop variables:
duke@435 2722 // (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
duke@435 2723 // (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
duke@435 2724 // G3, G4, G5 --- current oop, oop.klass, oop.klass.super
kvn@1800 2725 __ align(OptoLoopAlignment);
duke@435 2726
jrose@1079 2727 __ BIND(store_element);
jrose@1079 2728 __ deccc(G1_remain); // decrement the count
coleenp@548 2729 __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
coleenp@548 2730 __ inc(O5_offset, heapOopSize); // step to next offset
duke@435 2731 __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
duke@435 2732 __ delayed()->set(0, O0); // return -1 on success
duke@435 2733
duke@435 2734 // ======== loop entry is here ========
jrose@1079 2735 __ BIND(load_element);
coleenp@548 2736 __ load_heap_oop(O0_from, O5_offset, G3_oop); // load the oop
kvn@3037 2737 __ br_null_short(G3_oop, Assembler::pt, store_element);
duke@435 2738
coleenp@548 2739 __ load_klass(G3_oop, G4_klass); // query the object klass
duke@435 2740
duke@435 2741 generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
duke@435 2742 // branch to this on success:
jrose@1079 2743 store_element);
duke@435 2744 // ======== end loop ========
duke@435 2745
duke@435 2746 // It was a real error; we must depend on the caller to finish the job.
duke@435 2747 // Register G1 has number of *remaining* oops, O2 number of *total* oops.
duke@435 2748 // Emit GC store barriers for the oops we have copied (O2 minus G1),
duke@435 2749 // and report their number to the caller.
jrose@1079 2750 __ BIND(fail);
duke@435 2751 __ subcc(O2_count, G1_remain, O2_count);
duke@435 2752 __ brx(Assembler::zero, false, Assembler::pt, done);
duke@435 2753 __ delayed()->not1(O2_count, O0); // report (-1^K) to caller
duke@435 2754
jrose@1079 2755 __ BIND(do_card_marks);
duke@435 2756 gen_write_ref_array_post_barrier(O1_to, O2_count, O3); // store check on O1[0..O2]
duke@435 2757
jrose@1079 2758 __ BIND(done);
duke@435 2759 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2760 __ retl();
duke@435 2761 __ delayed()->nop(); // return value in 00
duke@435 2762
duke@435 2763 return start;
duke@435 2764 }
duke@435 2765
duke@435 2766
duke@435 2767 // Generate 'unsafe' array copy stub
duke@435 2768 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2769 // size_t argument instead of an element count.
duke@435 2770 //
duke@435 2771 // Arguments for generated stub:
duke@435 2772 // from: O0
duke@435 2773 // to: O1
duke@435 2774 // count: O2 byte count, treated as ssize_t, can be zero
duke@435 2775 //
duke@435 2776 // Examines the alignment of the operands and dispatches
duke@435 2777 // to a long, int, short, or byte copy loop.
duke@435 2778 //
iveresov@2595 2779 address generate_unsafe_copy(const char* name,
iveresov@2595 2780 address byte_copy_entry,
iveresov@2595 2781 address short_copy_entry,
iveresov@2595 2782 address int_copy_entry,
iveresov@2595 2783 address long_copy_entry) {
duke@435 2784
duke@435 2785 const Register O0_from = O0; // source array address
duke@435 2786 const Register O1_to = O1; // destination array address
duke@435 2787 const Register O2_count = O2; // elements count
duke@435 2788
duke@435 2789 const Register G1_bits = G1; // test copy of low bits
duke@435 2790
duke@435 2791 __ align(CodeEntryAlignment);
duke@435 2792 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2793 address start = __ pc();
duke@435 2794
duke@435 2795 // bump this on entry, not on exit:
duke@435 2796 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
duke@435 2797
duke@435 2798 __ or3(O0_from, O1_to, G1_bits);
duke@435 2799 __ or3(O2_count, G1_bits, G1_bits);
duke@435 2800
duke@435 2801 __ btst(BytesPerLong-1, G1_bits);
duke@435 2802 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2803 long_copy_entry, relocInfo::runtime_call_type);
duke@435 2804 // scale the count on the way out:
duke@435 2805 __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
duke@435 2806
duke@435 2807 __ btst(BytesPerInt-1, G1_bits);
duke@435 2808 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2809 int_copy_entry, relocInfo::runtime_call_type);
duke@435 2810 // scale the count on the way out:
duke@435 2811 __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
duke@435 2812
duke@435 2813 __ btst(BytesPerShort-1, G1_bits);
duke@435 2814 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2815 short_copy_entry, relocInfo::runtime_call_type);
duke@435 2816 // scale the count on the way out:
duke@435 2817 __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
duke@435 2818
duke@435 2819 __ br(Assembler::always, false, Assembler::pt,
duke@435 2820 byte_copy_entry, relocInfo::runtime_call_type);
duke@435 2821 __ delayed()->nop();
duke@435 2822
duke@435 2823 return start;
duke@435 2824 }
duke@435 2825
duke@435 2826
duke@435 2827 // Perform range checks on the proposed arraycopy.
duke@435 2828 // Kills the two temps, but nothing else.
duke@435 2829 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2830 void arraycopy_range_checks(Register src, // source array oop (O0)
duke@435 2831 Register src_pos, // source position (O1)
duke@435 2832 Register dst, // destination array oo (O2)
duke@435 2833 Register dst_pos, // destination position (O3)
duke@435 2834 Register length, // length of copy (O4)
duke@435 2835 Register temp1, Register temp2,
duke@435 2836 Label& L_failed) {
duke@435 2837 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2838
duke@435 2839 // if (src_pos + length > arrayOop(src)->length() ) FAIL;
duke@435 2840
duke@435 2841 const Register array_length = temp1; // scratch
duke@435 2842 const Register end_pos = temp2; // scratch
duke@435 2843
duke@435 2844 // Note: This next instruction may be in the delay slot of a branch:
duke@435 2845 __ add(length, src_pos, end_pos); // src_pos + length
duke@435 2846 __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2847 __ cmp(end_pos, array_length);
duke@435 2848 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2849
duke@435 2850 // if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
duke@435 2851 __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
duke@435 2852 __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2853 __ cmp(end_pos, array_length);
duke@435 2854 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2855
duke@435 2856 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2857 // Move with sign extension can be used since they are positive.
duke@435 2858 __ delayed()->signx(src_pos, src_pos);
duke@435 2859 __ signx(dst_pos, dst_pos);
duke@435 2860
duke@435 2861 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2862 }
duke@435 2863
duke@435 2864
duke@435 2865 //
duke@435 2866 // Generate generic array copy stubs
duke@435 2867 //
duke@435 2868 // Input:
duke@435 2869 // O0 - src oop
duke@435 2870 // O1 - src_pos
duke@435 2871 // O2 - dst oop
duke@435 2872 // O3 - dst_pos
duke@435 2873 // O4 - element count
duke@435 2874 //
duke@435 2875 // Output:
duke@435 2876 // O0 == 0 - success
duke@435 2877 // O0 == -1 - need to call System.arraycopy
duke@435 2878 //
iveresov@2595 2879 address generate_generic_copy(const char *name,
iveresov@2595 2880 address entry_jbyte_arraycopy,
iveresov@2595 2881 address entry_jshort_arraycopy,
iveresov@2595 2882 address entry_jint_arraycopy,
iveresov@2595 2883 address entry_oop_arraycopy,
iveresov@2595 2884 address entry_jlong_arraycopy,
iveresov@2595 2885 address entry_checkcast_arraycopy) {
duke@435 2886 Label L_failed, L_objArray;
duke@435 2887
duke@435 2888 // Input registers
duke@435 2889 const Register src = O0; // source array oop
duke@435 2890 const Register src_pos = O1; // source position
duke@435 2891 const Register dst = O2; // destination array oop
duke@435 2892 const Register dst_pos = O3; // destination position
duke@435 2893 const Register length = O4; // elements count
duke@435 2894
duke@435 2895 // registers used as temp
duke@435 2896 const Register G3_src_klass = G3; // source array klass
duke@435 2897 const Register G4_dst_klass = G4; // destination array klass
duke@435 2898 const Register G5_lh = G5; // layout handler
duke@435 2899 const Register O5_temp = O5;
duke@435 2900
duke@435 2901 __ align(CodeEntryAlignment);
duke@435 2902 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2903 address start = __ pc();
duke@435 2904
duke@435 2905 // bump this on entry, not on exit:
duke@435 2906 inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
duke@435 2907
duke@435 2908 // In principle, the int arguments could be dirty.
duke@435 2909 //assert_clean_int(src_pos, G1);
duke@435 2910 //assert_clean_int(dst_pos, G1);
duke@435 2911 //assert_clean_int(length, G1);
duke@435 2912
duke@435 2913 //-----------------------------------------------------------------------
duke@435 2914 // Assembler stubs will be used for this call to arraycopy
duke@435 2915 // if the following conditions are met:
duke@435 2916 //
duke@435 2917 // (1) src and dst must not be null.
duke@435 2918 // (2) src_pos must not be negative.
duke@435 2919 // (3) dst_pos must not be negative.
duke@435 2920 // (4) length must not be negative.
duke@435 2921 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2922 // (6) src and dst should be arrays.
duke@435 2923 // (7) src_pos + length must not exceed length of src.
duke@435 2924 // (8) dst_pos + length must not exceed length of dst.
duke@435 2925 BLOCK_COMMENT("arraycopy initial argument checks");
duke@435 2926
duke@435 2927 // if (src == NULL) return -1;
duke@435 2928 __ br_null(src, false, Assembler::pn, L_failed);
duke@435 2929
duke@435 2930 // if (src_pos < 0) return -1;
duke@435 2931 __ delayed()->tst(src_pos);
duke@435 2932 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2933 __ delayed()->nop();
duke@435 2934
duke@435 2935 // if (dst == NULL) return -1;
duke@435 2936 __ br_null(dst, false, Assembler::pn, L_failed);
duke@435 2937
duke@435 2938 // if (dst_pos < 0) return -1;
duke@435 2939 __ delayed()->tst(dst_pos);
duke@435 2940 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2941
duke@435 2942 // if (length < 0) return -1;
duke@435 2943 __ delayed()->tst(length);
duke@435 2944 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2945
duke@435 2946 BLOCK_COMMENT("arraycopy argument klass checks");
duke@435 2947 // get src->klass()
ehelin@5694 2948 if (UseCompressedClassPointers) {
coleenp@548 2949 __ delayed()->nop(); // ??? not good
coleenp@548 2950 __ load_klass(src, G3_src_klass);
coleenp@548 2951 } else {
coleenp@548 2952 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
coleenp@548 2953 }
duke@435 2954
duke@435 2955 #ifdef ASSERT
duke@435 2956 // assert(src->klass() != NULL);
duke@435 2957 BLOCK_COMMENT("assert klasses not null");
duke@435 2958 { Label L_a, L_b;
kvn@3037 2959 __ br_notnull_short(G3_src_klass, Assembler::pt, L_b); // it is broken if klass is NULL
duke@435 2960 __ bind(L_a);
duke@435 2961 __ stop("broken null klass");
duke@435 2962 __ bind(L_b);
coleenp@548 2963 __ load_klass(dst, G4_dst_klass);
duke@435 2964 __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
duke@435 2965 __ delayed()->mov(G0, G4_dst_klass); // scribble the temp
duke@435 2966 BLOCK_COMMENT("assert done");
duke@435 2967 }
duke@435 2968 #endif
duke@435 2969
duke@435 2970 // Load layout helper
duke@435 2971 //
duke@435 2972 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2973 // 32 30 24 16 8 2 0
duke@435 2974 //
duke@435 2975 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2976 //
duke@435 2977
stefank@3391 2978 int lh_offset = in_bytes(Klass::layout_helper_offset());
duke@435 2979
duke@435 2980 // Load 32-bits signed value. Use br() instruction with it to check icc.
duke@435 2981 __ lduw(G3_src_klass, lh_offset, G5_lh);
duke@435 2982
ehelin@5694 2983 if (UseCompressedClassPointers) {
coleenp@548 2984 __ load_klass(dst, G4_dst_klass);
coleenp@548 2985 }
duke@435 2986 // Handle objArrays completely differently...
duke@435 2987 juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 2988 __ set(objArray_lh, O5_temp);
duke@435 2989 __ cmp(G5_lh, O5_temp);
duke@435 2990 __ br(Assembler::equal, false, Assembler::pt, L_objArray);
ehelin@5694 2991 if (UseCompressedClassPointers) {
coleenp@548 2992 __ delayed()->nop();
coleenp@548 2993 } else {
coleenp@548 2994 __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
coleenp@548 2995 }
duke@435 2996
duke@435 2997 // if (src->klass() != dst->klass()) return -1;
kvn@3037 2998 __ cmp_and_brx_short(G3_src_klass, G4_dst_klass, Assembler::notEqual, Assembler::pn, L_failed);
duke@435 2999
duke@435 3000 // if (!src->is_Array()) return -1;
duke@435 3001 __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
duke@435 3002 __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
duke@435 3003
duke@435 3004 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 3005 #ifdef ASSERT
duke@435 3006 __ delayed()->nop();
duke@435 3007 { Label L;
duke@435 3008 jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
duke@435 3009 __ set(lh_prim_tag_in_place, O5_temp);
duke@435 3010 __ cmp(G5_lh, O5_temp);
duke@435 3011 __ br(Assembler::greaterEqual, false, Assembler::pt, L);
duke@435 3012 __ delayed()->nop();
duke@435 3013 __ stop("must be a primitive array");
duke@435 3014 __ bind(L);
duke@435 3015 }
duke@435 3016 #else
duke@435 3017 __ delayed(); // match next insn to prev branch
duke@435 3018 #endif
duke@435 3019
duke@435 3020 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 3021 O5_temp, G4_dst_klass, L_failed);
duke@435 3022
coleenp@4142 3023 // TypeArrayKlass
duke@435 3024 //
duke@435 3025 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 3026 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 3027 //
duke@435 3028
duke@435 3029 const Register G4_offset = G4_dst_klass; // array offset
duke@435 3030 const Register G3_elsize = G3_src_klass; // log2 element size
duke@435 3031
duke@435 3032 __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
duke@435 3033 __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
duke@435 3034 __ add(src, G4_offset, src); // src array offset
duke@435 3035 __ add(dst, G4_offset, dst); // dst array offset
duke@435 3036 __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
duke@435 3037
duke@435 3038 // next registers should be set before the jump to corresponding stub
duke@435 3039 const Register from = O0; // source array address
duke@435 3040 const Register to = O1; // destination array address
duke@435 3041 const Register count = O2; // elements count
duke@435 3042
duke@435 3043 // 'from', 'to', 'count' registers should be set in this order
duke@435 3044 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 3045
duke@435 3046 BLOCK_COMMENT("scale indexes to element size");
duke@435 3047 __ sll_ptr(src_pos, G3_elsize, src_pos);
duke@435 3048 __ sll_ptr(dst_pos, G3_elsize, dst_pos);
duke@435 3049 __ add(src, src_pos, from); // src_addr
duke@435 3050 __ add(dst, dst_pos, to); // dst_addr
duke@435 3051
duke@435 3052 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 3053 __ cmp(G3_elsize, 0);
iveresov@2595 3054 __ br(Assembler::equal, true, Assembler::pt, entry_jbyte_arraycopy);
duke@435 3055 __ delayed()->signx(length, count); // length
duke@435 3056
duke@435 3057 __ cmp(G3_elsize, LogBytesPerShort);
iveresov@2595 3058 __ br(Assembler::equal, true, Assembler::pt, entry_jshort_arraycopy);
duke@435 3059 __ delayed()->signx(length, count); // length
duke@435 3060
duke@435 3061 __ cmp(G3_elsize, LogBytesPerInt);
iveresov@2595 3062 __ br(Assembler::equal, true, Assembler::pt, entry_jint_arraycopy);
duke@435 3063 __ delayed()->signx(length, count); // length
duke@435 3064 #ifdef ASSERT
duke@435 3065 { Label L;
kvn@3037 3066 __ cmp_and_br_short(G3_elsize, LogBytesPerLong, Assembler::equal, Assembler::pt, L);
duke@435 3067 __ stop("must be long copy, but elsize is wrong");
duke@435 3068 __ bind(L);
duke@435 3069 }
duke@435 3070 #endif
iveresov@2595 3071 __ br(Assembler::always, false, Assembler::pt, entry_jlong_arraycopy);
duke@435 3072 __ delayed()->signx(length, count); // length
duke@435 3073
coleenp@4142 3074 // ObjArrayKlass
duke@435 3075 __ BIND(L_objArray);
duke@435 3076 // live at this point: G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
duke@435 3077
duke@435 3078 Label L_plain_copy, L_checkcast_copy;
duke@435 3079 // test array classes for subtyping
duke@435 3080 __ cmp(G3_src_klass, G4_dst_klass); // usual case is exact equality
duke@435 3081 __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
duke@435 3082 __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
duke@435 3083
duke@435 3084 // Identically typed arrays can be copied without element-wise checks.
duke@435 3085 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 3086 O5_temp, G5_lh, L_failed);
duke@435 3087
duke@435 3088 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 3089 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 3090 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 3091 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 3092 __ add(src, src_pos, from); // src_addr
duke@435 3093 __ add(dst, dst_pos, to); // dst_addr
duke@435 3094 __ BIND(L_plain_copy);
iveresov@2595 3095 __ br(Assembler::always, false, Assembler::pt, entry_oop_arraycopy);
duke@435 3096 __ delayed()->signx(length, count); // length
duke@435 3097
duke@435 3098 __ BIND(L_checkcast_copy);
duke@435 3099 // live at this point: G3_src_klass, G4_dst_klass
duke@435 3100 {
duke@435 3101 // Before looking at dst.length, make sure dst is also an objArray.
duke@435 3102 // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
duke@435 3103 __ cmp(G5_lh, O5_temp);
duke@435 3104 __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
duke@435 3105
duke@435 3106 // It is safe to examine both src.length and dst.length.
duke@435 3107 __ delayed(); // match next insn to prev branch
duke@435 3108 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 3109 O5_temp, G5_lh, L_failed);
duke@435 3110
duke@435 3111 // Marshal the base address arguments now, freeing registers.
duke@435 3112 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 3113 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 3114 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 3115 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 3116 __ add(src, src_pos, from); // src_addr
duke@435 3117 __ add(dst, dst_pos, to); // dst_addr
duke@435 3118 __ signx(length, count); // length (reloaded)
duke@435 3119
duke@435 3120 Register sco_temp = O3; // this register is free now
duke@435 3121 assert_different_registers(from, to, count, sco_temp,
duke@435 3122 G4_dst_klass, G3_src_klass);
duke@435 3123
duke@435 3124 // Generate the type check.
stefank@3391 3125 int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 3126 __ lduw(G4_dst_klass, sco_offset, sco_temp);
duke@435 3127 generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
duke@435 3128 O5_temp, L_plain_copy);
duke@435 3129
coleenp@4142 3130 // Fetch destination element klass from the ObjArrayKlass header.
coleenp@4142 3131 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
duke@435 3132
duke@435 3133 // the checkcast_copy loop needs two extra arguments:
duke@435 3134 __ ld_ptr(G4_dst_klass, ek_offset, O4); // dest elem klass
duke@435 3135 // lduw(O4, sco_offset, O3); // sco of elem klass
duke@435 3136
iveresov@2595 3137 __ br(Assembler::always, false, Assembler::pt, entry_checkcast_arraycopy);
duke@435 3138 __ delayed()->lduw(O4, sco_offset, O3);
duke@435 3139 }
duke@435 3140
duke@435 3141 __ BIND(L_failed);
duke@435 3142 __ retl();
duke@435 3143 __ delayed()->sub(G0, 1, O0); // return -1
duke@435 3144 return start;
duke@435 3145 }
duke@435 3146
kvn@3092 3147 //
kvn@3092 3148 // Generate stub for heap zeroing.
kvn@3092 3149 // "to" address is aligned to jlong (8 bytes).
kvn@3092 3150 //
kvn@3092 3151 // Arguments for generated stub:
kvn@3092 3152 // to: O0
kvn@3092 3153 // count: O1 treated as signed (count of HeapWord)
kvn@3092 3154 // count could be 0
kvn@3092 3155 //
kvn@3092 3156 address generate_zero_aligned_words(const char* name) {
kvn@3092 3157 __ align(CodeEntryAlignment);
kvn@3092 3158 StubCodeMark mark(this, "StubRoutines", name);
kvn@3092 3159 address start = __ pc();
kvn@3092 3160
kvn@3092 3161 const Register to = O0; // source array address
kvn@3092 3162 const Register count = O1; // HeapWords count
kvn@3092 3163 const Register temp = O2; // scratch
kvn@3092 3164
kvn@3092 3165 Label Ldone;
kvn@3092 3166 __ sllx(count, LogHeapWordSize, count); // to bytes count
kvn@3092 3167 // Use BIS for zeroing
kvn@3092 3168 __ bis_zeroing(to, count, temp, Ldone);
kvn@3092 3169 __ bind(Ldone);
kvn@3092 3170 __ retl();
kvn@3092 3171 __ delayed()->nop();
kvn@3092 3172 return start;
kvn@3092 3173 }
kvn@3092 3174
duke@435 3175 void generate_arraycopy_stubs() {
iveresov@2595 3176 address entry;
iveresov@2595 3177 address entry_jbyte_arraycopy;
iveresov@2595 3178 address entry_jshort_arraycopy;
iveresov@2595 3179 address entry_jint_arraycopy;
iveresov@2595 3180 address entry_oop_arraycopy;
iveresov@2595 3181 address entry_jlong_arraycopy;
iveresov@2595 3182 address entry_checkcast_arraycopy;
iveresov@2595 3183
iveresov@2606 3184 //*** jbyte
iveresov@2606 3185 // Always need aligned and unaligned versions
iveresov@2606 3186 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
iveresov@2606 3187 "jbyte_disjoint_arraycopy");
iveresov@2606 3188 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry,
iveresov@2606 3189 &entry_jbyte_arraycopy,
iveresov@2606 3190 "jbyte_arraycopy");
iveresov@2606 3191 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, &entry,
iveresov@2606 3192 "arrayof_jbyte_disjoint_arraycopy");
iveresov@2606 3193 StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, entry, NULL,
iveresov@2606 3194 "arrayof_jbyte_arraycopy");
iveresov@2606 3195
iveresov@2606 3196 //*** jshort
iveresov@2606 3197 // Always need aligned and unaligned versions
iveresov@2606 3198 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
iveresov@2606 3199 "jshort_disjoint_arraycopy");
iveresov@2606 3200 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry,
iveresov@2606 3201 &entry_jshort_arraycopy,
iveresov@2606 3202 "jshort_arraycopy");
iveresov@2595 3203 StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, &entry,
iveresov@2595 3204 "arrayof_jshort_disjoint_arraycopy");
iveresov@2595 3205 StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, entry, NULL,
iveresov@2595 3206 "arrayof_jshort_arraycopy");
iveresov@2595 3207
iveresov@2606 3208 //*** jint
iveresov@2606 3209 // Aligned versions
iveresov@2606 3210 StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, &entry,
iveresov@2606 3211 "arrayof_jint_disjoint_arraycopy");
iveresov@2606 3212 StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, entry, &entry_jint_arraycopy,
iveresov@2606 3213 "arrayof_jint_arraycopy");
duke@435 3214 #ifdef _LP64
iveresov@2606 3215 // In 64 bit we need both aligned and unaligned versions of jint arraycopy.
iveresov@2606 3216 // entry_jint_arraycopy always points to the unaligned version (notice that we overwrite it).
iveresov@2606 3217 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, &entry,
iveresov@2606 3218 "jint_disjoint_arraycopy");
iveresov@2606 3219 StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, entry,
iveresov@2606 3220 &entry_jint_arraycopy,
iveresov@2606 3221 "jint_arraycopy");
iveresov@2606 3222 #else
iveresov@2606 3223 // In 32 bit jints are always HeapWordSize aligned, so always use the aligned version
iveresov@2606 3224 // (in fact in 32bit we always have a pre-loop part even in the aligned version,
iveresov@2606 3225 // because it uses 64-bit loads/stores, so the aligned flag is actually ignored).
iveresov@2606 3226 StubRoutines::_jint_disjoint_arraycopy = StubRoutines::_arrayof_jint_disjoint_arraycopy;
iveresov@2606 3227 StubRoutines::_jint_arraycopy = StubRoutines::_arrayof_jint_arraycopy;
duke@435 3228 #endif
iveresov@2595 3229
iveresov@2606 3230
iveresov@2606 3231 //*** jlong
iveresov@2606 3232 // It is always aligned
iveresov@2606 3233 StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, &entry,
iveresov@2606 3234 "arrayof_jlong_disjoint_arraycopy");
iveresov@2606 3235 StubRoutines::_arrayof_jlong_arraycopy = generate_conjoint_long_copy(true, entry, &entry_jlong_arraycopy,
iveresov@2606 3236 "arrayof_jlong_arraycopy");
iveresov@2606 3237 StubRoutines::_jlong_disjoint_arraycopy = StubRoutines::_arrayof_jlong_disjoint_arraycopy;
iveresov@2606 3238 StubRoutines::_jlong_arraycopy = StubRoutines::_arrayof_jlong_arraycopy;
iveresov@2606 3239
iveresov@2606 3240
iveresov@2606 3241 //*** oops
iveresov@2606 3242 // Aligned versions
iveresov@2606 3243 StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, &entry,
iveresov@2606 3244 "arrayof_oop_disjoint_arraycopy");
iveresov@2606 3245 StubRoutines::_arrayof_oop_arraycopy = generate_conjoint_oop_copy(true, entry, &entry_oop_arraycopy,
iveresov@2606 3246 "arrayof_oop_arraycopy");
iveresov@2606 3247 // Aligned versions without pre-barriers
iveresov@2606 3248 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, &entry,
iveresov@2606 3249 "arrayof_oop_disjoint_arraycopy_uninit",
iveresov@2606 3250 /*dest_uninitialized*/true);
iveresov@2606 3251 StubRoutines::_arrayof_oop_arraycopy_uninit = generate_conjoint_oop_copy(true, entry, NULL,
iveresov@2606 3252 "arrayof_oop_arraycopy_uninit",
iveresov@2606 3253 /*dest_uninitialized*/true);
iveresov@2606 3254 #ifdef _LP64
iveresov@2606 3255 if (UseCompressedOops) {
iveresov@2606 3256 // With compressed oops we need unaligned versions, notice that we overwrite entry_oop_arraycopy.
iveresov@2606 3257 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, &entry,
iveresov@2606 3258 "oop_disjoint_arraycopy");
iveresov@2606 3259 StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, entry, &entry_oop_arraycopy,
iveresov@2606 3260 "oop_arraycopy");
iveresov@2606 3261 // Unaligned versions without pre-barriers
iveresov@2606 3262 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(false, &entry,
iveresov@2606 3263 "oop_disjoint_arraycopy_uninit",
iveresov@2606 3264 /*dest_uninitialized*/true);
iveresov@2606 3265 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_oop_copy(false, entry, NULL,
iveresov@2606 3266 "oop_arraycopy_uninit",
iveresov@2606 3267 /*dest_uninitialized*/true);
iveresov@2606 3268 } else
iveresov@2606 3269 #endif
iveresov@2606 3270 {
iveresov@2606 3271 // oop arraycopy is always aligned on 32bit and 64bit without compressed oops
iveresov@2606 3272 StubRoutines::_oop_disjoint_arraycopy = StubRoutines::_arrayof_oop_disjoint_arraycopy;
iveresov@2606 3273 StubRoutines::_oop_arraycopy = StubRoutines::_arrayof_oop_arraycopy;
iveresov@2606 3274 StubRoutines::_oop_disjoint_arraycopy_uninit = StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit;
iveresov@2606 3275 StubRoutines::_oop_arraycopy_uninit = StubRoutines::_arrayof_oop_arraycopy_uninit;
iveresov@2606 3276 }
iveresov@2606 3277
iveresov@2606 3278 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
iveresov@2606 3279 StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
iveresov@2606 3280 /*dest_uninitialized*/true);
iveresov@2606 3281
iveresov@2595 3282 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
iveresov@2595 3283 entry_jbyte_arraycopy,
iveresov@2595 3284 entry_jshort_arraycopy,
iveresov@2595 3285 entry_jint_arraycopy,
iveresov@2595 3286 entry_jlong_arraycopy);
iveresov@2595 3287 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
iveresov@2595 3288 entry_jbyte_arraycopy,
iveresov@2595 3289 entry_jshort_arraycopy,
iveresov@2595 3290 entry_jint_arraycopy,
iveresov@2595 3291 entry_oop_arraycopy,
iveresov@2595 3292 entry_jlong_arraycopy,
iveresov@2595 3293 entry_checkcast_arraycopy);
never@2118 3294
never@2118 3295 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 3296 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 3297 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 3298 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 3299 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 3300 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
kvn@3092 3301
kvn@3092 3302 if (UseBlockZeroing) {
kvn@3092 3303 StubRoutines::_zero_aligned_words = generate_zero_aligned_words("zero_aligned_words");
kvn@3092 3304 }
duke@435 3305 }
duke@435 3306
kvn@6312 3307 address generate_aescrypt_encryptBlock() {
kvn@6653 3308 // required since we read expanded key 'int' array starting first element without alignment considerations
kvn@6653 3309 assert((arrayOopDesc::base_offset_in_bytes(T_INT) & 7) == 0,
kvn@6653 3310 "the following code assumes that first element of an int array is aligned to 8 bytes");
kvn@6312 3311 __ align(CodeEntryAlignment);
kvn@6653 3312 StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
kvn@6653 3313 Label L_load_misaligned_input, L_load_expanded_key, L_doLast128bit, L_storeOutput, L_store_misaligned_output;
kvn@6312 3314 address start = __ pc();
kvn@6312 3315 Register from = O0; // source byte array
kvn@6312 3316 Register to = O1; // destination byte array
kvn@6312 3317 Register key = O2; // expanded key array
kvn@6312 3318 const Register keylen = O4; //reg for storing expanded key array length
kvn@6312 3319
kvn@6312 3320 // read expanded key length
kvn@6312 3321 __ ldsw(Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)), keylen, 0);
kvn@6312 3322
kvn@6653 3323 // Method to address arbitrary alignment for load instructions:
kvn@6653 3324 // Check last 3 bits of 'from' address to see if it is aligned to 8-byte boundary
kvn@6653 3325 // If zero/aligned then continue with double FP load instructions
kvn@6653 3326 // If not zero/mis-aligned then alignaddr will set GSR.align with number of bytes to skip during faligndata
kvn@6653 3327 // alignaddr will also convert arbitrary aligned 'from' address to nearest 8-byte aligned address
kvn@6653 3328 // load 3 * 8-byte components (to read 16 bytes input) in 3 different FP regs starting at this aligned address
kvn@6653 3329 // faligndata will then extract (based on GSR.align value) the appropriate 8 bytes from the 2 source regs
kvn@6653 3330
kvn@6653 3331 // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
kvn@6653 3332 __ andcc(from, 7, G0);
kvn@6653 3333 __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input);
kvn@6653 3334 __ delayed()->alignaddr(from, G0, from);
kvn@6653 3335
kvn@6653 3336 // aligned case: load input into F54-F56
kvn@6653 3337 __ ldf(FloatRegisterImpl::D, from, 0, F54);
kvn@6653 3338 __ ldf(FloatRegisterImpl::D, from, 8, F56);
kvn@6653 3339 __ ba_short(L_load_expanded_key);
kvn@6653 3340
kvn@6653 3341 __ BIND(L_load_misaligned_input);
kvn@6653 3342 __ ldf(FloatRegisterImpl::D, from, 0, F54);
kvn@6653 3343 __ ldf(FloatRegisterImpl::D, from, 8, F56);
kvn@6653 3344 __ ldf(FloatRegisterImpl::D, from, 16, F58);
kvn@6653 3345 __ faligndata(F54, F56, F54);
kvn@6653 3346 __ faligndata(F56, F58, F56);
kvn@6653 3347
kvn@6653 3348 __ BIND(L_load_expanded_key);
kvn@6653 3349 // Since we load expanded key buffers starting first element, 8-byte alignment is guaranteed
kvn@6312 3350 for ( int i = 0; i <= 38; i += 2 ) {
kvn@6312 3351 __ ldf(FloatRegisterImpl::D, key, i*4, as_FloatRegister(i));
kvn@6312 3352 }
kvn@6312 3353
kvn@6312 3354 // perform cipher transformation
kvn@6312 3355 __ fxor(FloatRegisterImpl::D, F0, F54, F54);
kvn@6312 3356 __ fxor(FloatRegisterImpl::D, F2, F56, F56);
kvn@6312 3357 // rounds 1 through 8
kvn@6312 3358 for ( int i = 4; i <= 28; i += 8 ) {
kvn@6312 3359 __ aes_eround01(as_FloatRegister(i), F54, F56, F58);
kvn@6312 3360 __ aes_eround23(as_FloatRegister(i+2), F54, F56, F60);
kvn@6312 3361 __ aes_eround01(as_FloatRegister(i+4), F58, F60, F54);
kvn@6312 3362 __ aes_eround23(as_FloatRegister(i+6), F58, F60, F56);
kvn@6312 3363 }
kvn@6312 3364 __ aes_eround01(F36, F54, F56, F58); //round 9
kvn@6312 3365 __ aes_eround23(F38, F54, F56, F60);
kvn@6312 3366
kvn@6312 3367 // 128-bit original key size
kvn@6312 3368 __ cmp_and_brx_short(keylen, 44, Assembler::equal, Assembler::pt, L_doLast128bit);
kvn@6312 3369
kvn@6312 3370 for ( int i = 40; i <= 50; i += 2 ) {
kvn@6312 3371 __ ldf(FloatRegisterImpl::D, key, i*4, as_FloatRegister(i) );
kvn@6312 3372 }
kvn@6312 3373 __ aes_eround01(F40, F58, F60, F54); //round 10
kvn@6312 3374 __ aes_eround23(F42, F58, F60, F56);
kvn@6312 3375 __ aes_eround01(F44, F54, F56, F58); //round 11
kvn@6312 3376 __ aes_eround23(F46, F54, F56, F60);
kvn@6312 3377
kvn@6312 3378 // 192-bit original key size
kvn@6312 3379 __ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pt, L_storeOutput);
kvn@6312 3380
kvn@6312 3381 __ ldf(FloatRegisterImpl::D, key, 208, F52);
kvn@6312 3382 __ aes_eround01(F48, F58, F60, F54); //round 12
kvn@6312 3383 __ aes_eround23(F50, F58, F60, F56);
kvn@6312 3384 __ ldf(FloatRegisterImpl::D, key, 216, F46);
kvn@6312 3385 __ ldf(FloatRegisterImpl::D, key, 224, F48);
kvn@6312 3386 __ ldf(FloatRegisterImpl::D, key, 232, F50);
kvn@6312 3387 __ aes_eround01(F52, F54, F56, F58); //round 13
kvn@6312 3388 __ aes_eround23(F46, F54, F56, F60);
kvn@6653 3389 __ ba_short(L_storeOutput);
kvn@6312 3390
kvn@6312 3391 __ BIND(L_doLast128bit);
kvn@6312 3392 __ ldf(FloatRegisterImpl::D, key, 160, F48);
kvn@6312 3393 __ ldf(FloatRegisterImpl::D, key, 168, F50);
kvn@6312 3394
kvn@6312 3395 __ BIND(L_storeOutput);
kvn@6312 3396 // perform last round of encryption common for all key sizes
kvn@6312 3397 __ aes_eround01_l(F48, F58, F60, F54); //last round
kvn@6312 3398 __ aes_eround23_l(F50, F58, F60, F56);
kvn@6312 3399
kvn@6653 3400 // Method to address arbitrary alignment for store instructions:
kvn@6653 3401 // Check last 3 bits of 'dest' address to see if it is aligned to 8-byte boundary
kvn@6653 3402 // If zero/aligned then continue with double FP store instructions
kvn@6653 3403 // If not zero/mis-aligned then edge8n will generate edge mask in result reg (O3 in below case)
kvn@6653 3404 // Example: If dest address is 0x07 and nearest 8-byte aligned address is 0x00 then edge mask will be 00000001
kvn@6653 3405 // Compute (8-n) where n is # of bytes skipped by partial store(stpartialf) inst from edge mask, n=7 in this case
kvn@6653 3406 // We get the value of n from the andcc that checks 'dest' alignment. n is available in O5 in below case.
kvn@6653 3407 // Set GSR.align to (8-n) using alignaddr
kvn@6653 3408 // Circular byte shift store values by n places so that the original bytes are at correct position for stpartialf
kvn@6653 3409 // Set the arbitrarily aligned 'dest' address to nearest 8-byte aligned address
kvn@6653 3410 // Store (partial) the original first (8-n) bytes starting at the original 'dest' address
kvn@6653 3411 // Negate the edge mask so that the subsequent stpartialf can store the original (8-n-1)th through 8th bytes at appropriate address
kvn@6653 3412 // We need to execute this process for both the 8-byte result values
kvn@6653 3413
kvn@6653 3414 // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
kvn@6653 3415 __ andcc(to, 7, O5);
kvn@6653 3416 __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output);
kvn@6653 3417 __ delayed()->edge8n(to, G0, O3);
kvn@6653 3418
kvn@6653 3419 // aligned case: store output into the destination array
kvn@6653 3420 __ stf(FloatRegisterImpl::D, F54, to, 0);
kvn@6312 3421 __ retl();
kvn@6653 3422 __ delayed()->stf(FloatRegisterImpl::D, F56, to, 8);
kvn@6653 3423
kvn@6653 3424 __ BIND(L_store_misaligned_output);
kvn@6653 3425 __ add(to, 8, O4);
kvn@6653 3426 __ mov(8, O2);
kvn@6653 3427 __ sub(O2, O5, O2);
kvn@6653 3428 __ alignaddr(O2, G0, O2);
kvn@6653 3429 __ faligndata(F54, F54, F54);
kvn@6653 3430 __ faligndata(F56, F56, F56);
kvn@6653 3431 __ and3(to, -8, to);
kvn@6653 3432 __ and3(O4, -8, O4);
kvn@6653 3433 __ stpartialf(to, O3, F54, Assembler::ASI_PST8_PRIMARY);
kvn@6653 3434 __ stpartialf(O4, O3, F56, Assembler::ASI_PST8_PRIMARY);
kvn@6653 3435 __ add(to, 8, to);
kvn@6653 3436 __ add(O4, 8, O4);
kvn@6653 3437 __ orn(G0, O3, O3);
kvn@6653 3438 __ stpartialf(to, O3, F54, Assembler::ASI_PST8_PRIMARY);
kvn@6653 3439 __ retl();
kvn@6653 3440 __ delayed()->stpartialf(O4, O3, F56, Assembler::ASI_PST8_PRIMARY);
kvn@6312 3441
kvn@6312 3442 return start;
kvn@6312 3443 }
kvn@6312 3444
kvn@6312 3445 address generate_aescrypt_decryptBlock() {
kvn@6653 3446 assert((arrayOopDesc::base_offset_in_bytes(T_INT) & 7) == 0,
kvn@6653 3447 "the following code assumes that first element of an int array is aligned to 8 bytes");
kvn@6653 3448 // required since we read original key 'byte' array as well in the decryption stubs
kvn@6653 3449 assert((arrayOopDesc::base_offset_in_bytes(T_BYTE) & 7) == 0,
kvn@6653 3450 "the following code assumes that first element of a byte array is aligned to 8 bytes");
kvn@6312 3451 __ align(CodeEntryAlignment);
kvn@6653 3452 StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
kvn@6312 3453 address start = __ pc();
kvn@6653 3454 Label L_load_misaligned_input, L_load_original_key, L_expand192bit, L_expand256bit, L_reload_misaligned_input;
kvn@6653 3455 Label L_256bit_transform, L_common_transform, L_store_misaligned_output;
kvn@6312 3456 Register from = O0; // source byte array
kvn@6312 3457 Register to = O1; // destination byte array
kvn@6312 3458 Register key = O2; // expanded key array
kvn@6312 3459 Register original_key = O3; // original key array only required during decryption
kvn@6312 3460 const Register keylen = O4; // reg for storing expanded key array length
kvn@6312 3461
kvn@6312 3462 // read expanded key array length
kvn@6312 3463 __ ldsw(Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)), keylen, 0);
kvn@6312 3464
kvn@6653 3465 // save 'from' since we may need to recheck alignment in case of 256-bit decryption
kvn@6653 3466 __ mov(from, G1);
kvn@6653 3467
kvn@6653 3468 // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
kvn@6653 3469 __ andcc(from, 7, G0);
kvn@6653 3470 __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input);
kvn@6653 3471 __ delayed()->alignaddr(from, G0, from);
kvn@6653 3472
kvn@6653 3473 // aligned case: load input into F52-F54
kvn@6653 3474 __ ldf(FloatRegisterImpl::D, from, 0, F52);
kvn@6653 3475 __ ldf(FloatRegisterImpl::D, from, 8, F54);
kvn@6653 3476 __ ba_short(L_load_original_key);
kvn@6653 3477
kvn@6653 3478 __ BIND(L_load_misaligned_input);
kvn@6653 3479 __ ldf(FloatRegisterImpl::D, from, 0, F52);
kvn@6653 3480 __ ldf(FloatRegisterImpl::D, from, 8, F54);
kvn@6653 3481 __ ldf(FloatRegisterImpl::D, from, 16, F56);
kvn@6653 3482 __ faligndata(F52, F54, F52);
kvn@6653 3483 __ faligndata(F54, F56, F54);
kvn@6653 3484
kvn@6653 3485 __ BIND(L_load_original_key);
kvn@6312 3486 // load original key from SunJCE expanded decryption key
kvn@6653 3487 // Since we load original key buffer starting first element, 8-byte alignment is guaranteed
kvn@6312 3488 for ( int i = 0; i <= 3; i++ ) {
kvn@6312 3489 __ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i));
kvn@6312 3490 }
kvn@6312 3491
kvn@6312 3492 // 256-bit original key size
kvn@6312 3493 __ cmp_and_brx_short(keylen, 60, Assembler::equal, Assembler::pn, L_expand256bit);
kvn@6312 3494
kvn@6312 3495 // 192-bit original key size
kvn@6312 3496 __ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pn, L_expand192bit);
kvn@6312 3497
kvn@6312 3498 // 128-bit original key size
kvn@6312 3499 // perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions
kvn@6312 3500 for ( int i = 0; i <= 36; i += 4 ) {
kvn@6312 3501 __ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+2), i/4, as_FloatRegister(i+4));
kvn@6312 3502 __ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+4), as_FloatRegister(i+6));
kvn@6312 3503 }
kvn@6312 3504
kvn@6312 3505 // perform 128-bit key specific inverse cipher transformation
kvn@6312 3506 __ fxor(FloatRegisterImpl::D, F42, F54, F54);
kvn@6312 3507 __ fxor(FloatRegisterImpl::D, F40, F52, F52);
kvn@6653 3508 __ ba_short(L_common_transform);
kvn@6312 3509
kvn@6312 3510 __ BIND(L_expand192bit);
kvn@6312 3511
kvn@6312 3512 // start loading rest of the 192-bit key
kvn@6312 3513 __ ldf(FloatRegisterImpl::S, original_key, 16, F4);
kvn@6312 3514 __ ldf(FloatRegisterImpl::S, original_key, 20, F5);
kvn@6312 3515
kvn@6312 3516 // perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions
kvn@6312 3517 for ( int i = 0; i <= 36; i += 6 ) {
kvn@6312 3518 __ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+4), i/6, as_FloatRegister(i+6));
kvn@6312 3519 __ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+6), as_FloatRegister(i+8));
kvn@6312 3520 __ aes_kexpand2(as_FloatRegister(i+4), as_FloatRegister(i+8), as_FloatRegister(i+10));
kvn@6312 3521 }
kvn@6312 3522 __ aes_kexpand1(F42, F46, 7, F48);
kvn@6312 3523 __ aes_kexpand2(F44, F48, F50);
kvn@6312 3524
kvn@6312 3525 // perform 192-bit key specific inverse cipher transformation
kvn@6312 3526 __ fxor(FloatRegisterImpl::D, F50, F54, F54);
kvn@6312 3527 __ fxor(FloatRegisterImpl::D, F48, F52, F52);
kvn@6312 3528 __ aes_dround23(F46, F52, F54, F58);
kvn@6312 3529 __ aes_dround01(F44, F52, F54, F56);
kvn@6312 3530 __ aes_dround23(F42, F56, F58, F54);
kvn@6312 3531 __ aes_dround01(F40, F56, F58, F52);
kvn@6653 3532 __ ba_short(L_common_transform);
kvn@6312 3533
kvn@6312 3534 __ BIND(L_expand256bit);
kvn@6312 3535
kvn@6312 3536 // load rest of the 256-bit key
kvn@6312 3537 for ( int i = 4; i <= 7; i++ ) {
kvn@6312 3538 __ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i));
kvn@6312 3539 }
kvn@6312 3540
kvn@6312 3541 // perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions
kvn@6312 3542 for ( int i = 0; i <= 40; i += 8 ) {
kvn@6312 3543 __ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+6), i/8, as_FloatRegister(i+8));
kvn@6312 3544 __ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+8), as_FloatRegister(i+10));
kvn@6312 3545 __ aes_kexpand0(as_FloatRegister(i+4), as_FloatRegister(i+10), as_FloatRegister(i+12));
kvn@6312 3546 __ aes_kexpand2(as_FloatRegister(i+6), as_FloatRegister(i+12), as_FloatRegister(i+14));
kvn@6312 3547 }
kvn@6312 3548 __ aes_kexpand1(F48, F54, 6, F56);
kvn@6312 3549 __ aes_kexpand2(F50, F56, F58);
kvn@6312 3550
kvn@6312 3551 for ( int i = 0; i <= 6; i += 2 ) {
kvn@6653 3552 __ fsrc2(FloatRegisterImpl::D, as_FloatRegister(58-i), as_FloatRegister(i));
kvn@6312 3553 }
kvn@6312 3554
kvn@6653 3555 // reload original 'from' address
kvn@6653 3556 __ mov(G1, from);
kvn@6653 3557
kvn@6653 3558 // re-check 8-byte alignment
kvn@6653 3559 __ andcc(from, 7, G0);
kvn@6653 3560 __ br(Assembler::notZero, true, Assembler::pn, L_reload_misaligned_input);
kvn@6653 3561 __ delayed()->alignaddr(from, G0, from);
kvn@6653 3562
kvn@6653 3563 // aligned case: load input into F52-F54
kvn@6312 3564 __ ldf(FloatRegisterImpl::D, from, 0, F52);
kvn@6312 3565 __ ldf(FloatRegisterImpl::D, from, 8, F54);
kvn@6653 3566 __ ba_short(L_256bit_transform);
kvn@6653 3567
kvn@6653 3568 __ BIND(L_reload_misaligned_input);
kvn@6653 3569 __ ldf(FloatRegisterImpl::D, from, 0, F52);
kvn@6653 3570 __ ldf(FloatRegisterImpl::D, from, 8, F54);
kvn@6653 3571 __ ldf(FloatRegisterImpl::D, from, 16, F56);
kvn@6653 3572 __ faligndata(F52, F54, F52);
kvn@6653 3573 __ faligndata(F54, F56, F54);
kvn@6312 3574
kvn@6312 3575 // perform 256-bit key specific inverse cipher transformation
kvn@6653 3576 __ BIND(L_256bit_transform);
kvn@6312 3577 __ fxor(FloatRegisterImpl::D, F0, F54, F54);
kvn@6312 3578 __ fxor(FloatRegisterImpl::D, F2, F52, F52);
kvn@6312 3579 __ aes_dround23(F4, F52, F54, F58);
kvn@6312 3580 __ aes_dround01(F6, F52, F54, F56);
kvn@6312 3581 __ aes_dround23(F50, F56, F58, F54);
kvn@6312 3582 __ aes_dround01(F48, F56, F58, F52);
kvn@6312 3583 __ aes_dround23(F46, F52, F54, F58);
kvn@6312 3584 __ aes_dround01(F44, F52, F54, F56);
kvn@6312 3585 __ aes_dround23(F42, F56, F58, F54);
kvn@6312 3586 __ aes_dround01(F40, F56, F58, F52);
kvn@6312 3587
kvn@6312 3588 for ( int i = 0; i <= 7; i++ ) {
kvn@6312 3589 __ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i));
kvn@6312 3590 }
kvn@6312 3591
kvn@6312 3592 // perform inverse cipher transformations common for all key sizes
kvn@6312 3593 __ BIND(L_common_transform);
kvn@6312 3594 for ( int i = 38; i >= 6; i -= 8 ) {
kvn@6312 3595 __ aes_dround23(as_FloatRegister(i), F52, F54, F58);
kvn@6312 3596 __ aes_dround01(as_FloatRegister(i-2), F52, F54, F56);
kvn@6312 3597 if ( i != 6) {
kvn@6312 3598 __ aes_dround23(as_FloatRegister(i-4), F56, F58, F54);
kvn@6312 3599 __ aes_dround01(as_FloatRegister(i-6), F56, F58, F52);
kvn@6312 3600 } else {
kvn@6312 3601 __ aes_dround23_l(as_FloatRegister(i-4), F56, F58, F54);
kvn@6312 3602 __ aes_dround01_l(as_FloatRegister(i-6), F56, F58, F52);
kvn@6312 3603 }
kvn@6312 3604 }
kvn@6312 3605
kvn@6653 3606 // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
kvn@6653 3607 __ andcc(to, 7, O5);
kvn@6653 3608 __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output);
kvn@6653 3609 __ delayed()->edge8n(to, G0, O3);
kvn@6653 3610
kvn@6653 3611 // aligned case: store output into the destination array
kvn@6653 3612 __ stf(FloatRegisterImpl::D, F52, to, 0);
kvn@6312 3613 __ retl();
kvn@6653 3614 __ delayed()->stf(FloatRegisterImpl::D, F54, to, 8);
kvn@6653 3615
kvn@6653 3616 __ BIND(L_store_misaligned_output);
kvn@6653 3617 __ add(to, 8, O4);
kvn@6653 3618 __ mov(8, O2);
kvn@6653 3619 __ sub(O2, O5, O2);
kvn@6653 3620 __ alignaddr(O2, G0, O2);
kvn@6653 3621 __ faligndata(F52, F52, F52);
kvn@6653 3622 __ faligndata(F54, F54, F54);
kvn@6653 3623 __ and3(to, -8, to);
kvn@6653 3624 __ and3(O4, -8, O4);
kvn@6653 3625 __ stpartialf(to, O3, F52, Assembler::ASI_PST8_PRIMARY);
kvn@6653 3626 __ stpartialf(O4, O3, F54, Assembler::ASI_PST8_PRIMARY);
kvn@6653 3627 __ add(to, 8, to);
kvn@6653 3628 __ add(O4, 8, O4);
kvn@6653 3629 __ orn(G0, O3, O3);
kvn@6653 3630 __ stpartialf(to, O3, F52, Assembler::ASI_PST8_PRIMARY);
kvn@6653 3631 __ retl();
kvn@6653 3632 __ delayed()->stpartialf(O4, O3, F54, Assembler::ASI_PST8_PRIMARY);
kvn@6312 3633
kvn@6312 3634 return start;
kvn@6312 3635 }
kvn@6312 3636
kvn@6312 3637 address generate_cipherBlockChaining_encryptAESCrypt() {
kvn@6653 3638 assert((arrayOopDesc::base_offset_in_bytes(T_INT) & 7) == 0,
kvn@6653 3639 "the following code assumes that first element of an int array is aligned to 8 bytes");
kvn@6653 3640 assert((arrayOopDesc::base_offset_in_bytes(T_BYTE) & 7) == 0,
kvn@6653 3641 "the following code assumes that first element of a byte array is aligned to 8 bytes");
kvn@6312 3642 __ align(CodeEntryAlignment);
kvn@6312 3643 StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
kvn@6653 3644 Label L_cbcenc128, L_load_misaligned_input_128bit, L_128bit_transform, L_store_misaligned_output_128bit;
kvn@6653 3645 Label L_check_loop_end_128bit, L_cbcenc192, L_load_misaligned_input_192bit, L_192bit_transform;
kvn@6653 3646 Label L_store_misaligned_output_192bit, L_check_loop_end_192bit, L_cbcenc256, L_load_misaligned_input_256bit;
kvn@6653 3647 Label L_256bit_transform, L_store_misaligned_output_256bit, L_check_loop_end_256bit;
kvn@6312 3648 address start = __ pc();
kvn@6653 3649 Register from = I0; // source byte array
kvn@6653 3650 Register to = I1; // destination byte array
kvn@6653 3651 Register key = I2; // expanded key array
kvn@6653 3652 Register rvec = I3; // init vector
kvn@6653 3653 const Register len_reg = I4; // cipher length
kvn@6653 3654 const Register keylen = I5; // reg for storing expanded key array length
kvn@6653 3655
kvn@6653 3656 __ save_frame(0);
kvn@6697 3657 // save cipher len to return in the end
kvn@6697 3658 __ mov(len_reg, L0);
kvn@6312 3659
kvn@6312 3660 // read expanded key length
kvn@6312 3661 __ ldsw(Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)), keylen, 0);
kvn@6312 3662
kvn@6653 3663 // load initial vector, 8-byte alignment is guranteed
kvn@6312 3664 __ ldf(FloatRegisterImpl::D, rvec, 0, F60);
kvn@6312 3665 __ ldf(FloatRegisterImpl::D, rvec, 8, F62);
kvn@6653 3666 // load key, 8-byte alignment is guranteed
kvn@6312 3667 __ ldx(key,0,G1);
kvn@6653 3668 __ ldx(key,8,G5);
kvn@6653 3669
kvn@6653 3670 // start loading expanded key, 8-byte alignment is guranteed
kvn@6312 3671 for ( int i = 0, j = 16; i <= 38; i += 2, j += 8 ) {
kvn@6312 3672 __ ldf(FloatRegisterImpl::D, key, j, as_FloatRegister(i));
kvn@6312 3673 }
kvn@6312 3674
kvn@6312 3675 // 128-bit original key size
kvn@6312 3676 __ cmp_and_brx_short(keylen, 44, Assembler::equal, Assembler::pt, L_cbcenc128);
kvn@6312 3677
kvn@6312 3678 for ( int i = 40, j = 176; i <= 46; i += 2, j += 8 ) {
kvn@6312 3679 __ ldf(FloatRegisterImpl::D, key, j, as_FloatRegister(i));
kvn@6312 3680 }
kvn@6312 3681
kvn@6312 3682 // 192-bit original key size
kvn@6312 3683 __ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pt, L_cbcenc192);
kvn@6312 3684
kvn@6312 3685 for ( int i = 48, j = 208; i <= 54; i += 2, j += 8 ) {
kvn@6312 3686 __ ldf(FloatRegisterImpl::D, key, j, as_FloatRegister(i));
kvn@6312 3687 }
kvn@6312 3688
kvn@6312 3689 // 256-bit original key size
kvn@6653 3690 __ ba_short(L_cbcenc256);
kvn@6312 3691
kvn@6312 3692 __ align(OptoLoopAlignment);
kvn@6312 3693 __ BIND(L_cbcenc128);
kvn@6653 3694 // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
kvn@6653 3695 __ andcc(from, 7, G0);
kvn@6653 3696 __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input_128bit);
kvn@6653 3697 __ delayed()->mov(from, L1); // save original 'from' address before alignaddr
kvn@6653 3698
kvn@6653 3699 // aligned case: load input into G3 and G4
kvn@6312 3700 __ ldx(from,0,G3);
kvn@6312 3701 __ ldx(from,8,G4);
kvn@6653 3702 __ ba_short(L_128bit_transform);
kvn@6653 3703
kvn@6653 3704 __ BIND(L_load_misaligned_input_128bit);
kvn@6653 3705 // can clobber F48, F50 and F52 as they are not used in 128 and 192-bit key encryption
kvn@6653 3706 __ alignaddr(from, G0, from);
kvn@6653 3707 __ ldf(FloatRegisterImpl::D, from, 0, F48);
kvn@6653 3708 __ ldf(FloatRegisterImpl::D, from, 8, F50);
kvn@6653 3709 __ ldf(FloatRegisterImpl::D, from, 16, F52);
kvn@6653 3710 __ faligndata(F48, F50, F48);
kvn@6653 3711 __ faligndata(F50, F52, F50);
kvn@6653 3712 __ movdtox(F48, G3);
kvn@6653 3713 __ movdtox(F50, G4);
kvn@6653 3714 __ mov(L1, from);
kvn@6653 3715
kvn@6653 3716 __ BIND(L_128bit_transform);
kvn@6312 3717 __ xor3(G1,G3,G3);
kvn@6653 3718 __ xor3(G5,G4,G4);
kvn@6312 3719 __ movxtod(G3,F56);
kvn@6312 3720 __ movxtod(G4,F58);
kvn@6312 3721 __ fxor(FloatRegisterImpl::D, F60, F56, F60);
kvn@6312 3722 __ fxor(FloatRegisterImpl::D, F62, F58, F62);
kvn@6312 3723
kvn@6312 3724 // TEN_EROUNDS
kvn@6312 3725 for ( int i = 0; i <= 32; i += 8 ) {
kvn@6312 3726 __ aes_eround01(as_FloatRegister(i), F60, F62, F56);
kvn@6312 3727 __ aes_eround23(as_FloatRegister(i+2), F60, F62, F58);
kvn@6312 3728 if (i != 32 ) {
kvn@6312 3729 __ aes_eround01(as_FloatRegister(i+4), F56, F58, F60);
kvn@6312 3730 __ aes_eround23(as_FloatRegister(i+6), F56, F58, F62);
kvn@6312 3731 } else {
kvn@6312 3732 __ aes_eround01_l(as_FloatRegister(i+4), F56, F58, F60);
kvn@6312 3733 __ aes_eround23_l(as_FloatRegister(i+6), F56, F58, F62);
kvn@6312 3734 }
kvn@6312 3735 }
kvn@6312 3736
kvn@6653 3737 // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
kvn@6653 3738 __ andcc(to, 7, L1);
kvn@6653 3739 __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_128bit);
kvn@6653 3740 __ delayed()->edge8n(to, G0, L2);
kvn@6653 3741
kvn@6653 3742 // aligned case: store output into the destination array
kvn@6312 3743 __ stf(FloatRegisterImpl::D, F60, to, 0);
kvn@6312 3744 __ stf(FloatRegisterImpl::D, F62, to, 8);
kvn@6653 3745 __ ba_short(L_check_loop_end_128bit);
kvn@6653 3746
kvn@6653 3747 __ BIND(L_store_misaligned_output_128bit);
kvn@6653 3748 __ add(to, 8, L3);
kvn@6653 3749 __ mov(8, L4);
kvn@6653 3750 __ sub(L4, L1, L4);
kvn@6653 3751 __ alignaddr(L4, G0, L4);
kvn@6653 3752 // save cipher text before circular right shift
kvn@6653 3753 // as it needs to be stored as iv for next block (see code before next retl)
kvn@6653 3754 __ movdtox(F60, L6);
kvn@6653 3755 __ movdtox(F62, L7);
kvn@6653 3756 __ faligndata(F60, F60, F60);
kvn@6653 3757 __ faligndata(F62, F62, F62);
kvn@6653 3758 __ mov(to, L5);
kvn@6653 3759 __ and3(to, -8, to);
kvn@6653 3760 __ and3(L3, -8, L3);
kvn@6653 3761 __ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY);
kvn@6653 3762 __ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY);
kvn@6653 3763 __ add(to, 8, to);
kvn@6653 3764 __ add(L3, 8, L3);
kvn@6653 3765 __ orn(G0, L2, L2);
kvn@6653 3766 __ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY);
kvn@6653 3767 __ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY);
kvn@6653 3768 __ mov(L5, to);
kvn@6653 3769 __ movxtod(L6, F60);
kvn@6653 3770 __ movxtod(L7, F62);
kvn@6653 3771
kvn@6653 3772 __ BIND(L_check_loop_end_128bit);
kvn@6312 3773 __ add(from, 16, from);
kvn@6312 3774 __ add(to, 16, to);
kvn@6312 3775 __ subcc(len_reg, 16, len_reg);
kvn@6312 3776 __ br(Assembler::notEqual, false, Assembler::pt, L_cbcenc128);
kvn@6312 3777 __ delayed()->nop();
kvn@6653 3778 // re-init intial vector for next block, 8-byte alignment is guaranteed
kvn@6312 3779 __ stf(FloatRegisterImpl::D, F60, rvec, 0);
kvn@6312 3780 __ stf(FloatRegisterImpl::D, F62, rvec, 8);
kvn@6697 3781 __ mov(L0, I0);
kvn@6697 3782 __ ret();
kvn@6697 3783 __ delayed()->restore();
kvn@6312 3784
kvn@6312 3785 __ align(OptoLoopAlignment);
kvn@6312 3786 __ BIND(L_cbcenc192);
kvn@6653 3787 // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
kvn@6653 3788 __ andcc(from, 7, G0);
kvn@6653 3789 __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input_192bit);
kvn@6653 3790 __ delayed()->mov(from, L1); // save original 'from' address before alignaddr
kvn@6653 3791
kvn@6653 3792 // aligned case: load input into G3 and G4
kvn@6312 3793 __ ldx(from,0,G3);
kvn@6312 3794 __ ldx(from,8,G4);
kvn@6653 3795 __ ba_short(L_192bit_transform);
kvn@6653 3796
kvn@6653 3797 __ BIND(L_load_misaligned_input_192bit);
kvn@6653 3798 // can clobber F48, F50 and F52 as they are not used in 128 and 192-bit key encryption
kvn@6653 3799 __ alignaddr(from, G0, from);
kvn@6653 3800 __ ldf(FloatRegisterImpl::D, from, 0, F48);
kvn@6653 3801 __ ldf(FloatRegisterImpl::D, from, 8, F50);
kvn@6653 3802 __ ldf(FloatRegisterImpl::D, from, 16, F52);
kvn@6653 3803 __ faligndata(F48, F50, F48);
kvn@6653 3804 __ faligndata(F50, F52, F50);
kvn@6653 3805 __ movdtox(F48, G3);
kvn@6653 3806 __ movdtox(F50, G4);
kvn@6653 3807 __ mov(L1, from);
kvn@6653 3808
kvn@6653 3809 __ BIND(L_192bit_transform);
kvn@6312 3810 __ xor3(G1,G3,G3);
kvn@6653 3811 __ xor3(G5,G4,G4);
kvn@6312 3812 __ movxtod(G3,F56);
kvn@6312 3813 __ movxtod(G4,F58);
kvn@6312 3814 __ fxor(FloatRegisterImpl::D, F60, F56, F60);
kvn@6312 3815 __ fxor(FloatRegisterImpl::D, F62, F58, F62);
kvn@6312 3816
kvn@6312 3817 // TWELEVE_EROUNDS
kvn@6312 3818 for ( int i = 0; i <= 40; i += 8 ) {
kvn@6312 3819 __ aes_eround01(as_FloatRegister(i), F60, F62, F56);
kvn@6312 3820 __ aes_eround23(as_FloatRegister(i+2), F60, F62, F58);
kvn@6312 3821 if (i != 40 ) {
kvn@6312 3822 __ aes_eround01(as_FloatRegister(i+4), F56, F58, F60);
kvn@6312 3823 __ aes_eround23(as_FloatRegister(i+6), F56, F58, F62);
kvn@6312 3824 } else {
kvn@6312 3825 __ aes_eround01_l(as_FloatRegister(i+4), F56, F58, F60);
kvn@6312 3826 __ aes_eround23_l(as_FloatRegister(i+6), F56, F58, F62);
kvn@6312 3827 }
kvn@6312 3828 }
kvn@6312 3829
kvn@6653 3830 // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
kvn@6653 3831 __ andcc(to, 7, L1);
kvn@6653 3832 __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_192bit);
kvn@6653 3833 __ delayed()->edge8n(to, G0, L2);
kvn@6653 3834
kvn@6653 3835 // aligned case: store output into the destination array
kvn@6312 3836 __ stf(FloatRegisterImpl::D, F60, to, 0);
kvn@6312 3837 __ stf(FloatRegisterImpl::D, F62, to, 8);
kvn@6653 3838 __ ba_short(L_check_loop_end_192bit);
kvn@6653 3839
kvn@6653 3840 __ BIND(L_store_misaligned_output_192bit);
kvn@6653 3841 __ add(to, 8, L3);
kvn@6653 3842 __ mov(8, L4);
kvn@6653 3843 __ sub(L4, L1, L4);
kvn@6653 3844 __ alignaddr(L4, G0, L4);
kvn@6653 3845 __ movdtox(F60, L6);
kvn@6653 3846 __ movdtox(F62, L7);
kvn@6653 3847 __ faligndata(F60, F60, F60);
kvn@6653 3848 __ faligndata(F62, F62, F62);
kvn@6653 3849 __ mov(to, L5);
kvn@6653 3850 __ and3(to, -8, to);
kvn@6653 3851 __ and3(L3, -8, L3);
kvn@6653 3852 __ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY);
kvn@6653 3853 __ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY);
kvn@6653 3854 __ add(to, 8, to);
kvn@6653 3855 __ add(L3, 8, L3);
kvn@6653 3856 __ orn(G0, L2, L2);
kvn@6653 3857 __ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY);
kvn@6653 3858 __ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY);
kvn@6653 3859 __ mov(L5, to);
kvn@6653 3860 __ movxtod(L6, F60);
kvn@6653 3861 __ movxtod(L7, F62);
kvn@6653 3862
kvn@6653 3863 __ BIND(L_check_loop_end_192bit);
kvn@6312 3864 __ add(from, 16, from);
kvn@6312 3865 __ subcc(len_reg, 16, len_reg);
kvn@6312 3866 __ add(to, 16, to);
kvn@6312 3867 __ br(Assembler::notEqual, false, Assembler::pt, L_cbcenc192);
kvn@6312 3868 __ delayed()->nop();
kvn@6653 3869 // re-init intial vector for next block, 8-byte alignment is guaranteed
kvn@6312 3870 __ stf(FloatRegisterImpl::D, F60, rvec, 0);
kvn@6312 3871 __ stf(FloatRegisterImpl::D, F62, rvec, 8);
kvn@6697 3872 __ mov(L0, I0);
kvn@6697 3873 __ ret();
kvn@6697 3874 __ delayed()->restore();
kvn@6312 3875
kvn@6312 3876 __ align(OptoLoopAlignment);
kvn@6312 3877 __ BIND(L_cbcenc256);
kvn@6653 3878 // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
kvn@6653 3879 __ andcc(from, 7, G0);
kvn@6653 3880 __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input_256bit);
kvn@6653 3881 __ delayed()->mov(from, L1); // save original 'from' address before alignaddr
kvn@6653 3882
kvn@6653 3883 // aligned case: load input into G3 and G4
kvn@6312 3884 __ ldx(from,0,G3);
kvn@6312 3885 __ ldx(from,8,G4);
kvn@6653 3886 __ ba_short(L_256bit_transform);
kvn@6653 3887
kvn@6653 3888 __ BIND(L_load_misaligned_input_256bit);
kvn@6653 3889 // cannot clobber F48, F50 and F52. F56, F58 can be used though
kvn@6653 3890 __ alignaddr(from, G0, from);
kvn@6653 3891 __ movdtox(F60, L2); // save F60 before overwriting
kvn@6653 3892 __ ldf(FloatRegisterImpl::D, from, 0, F56);
kvn@6653 3893 __ ldf(FloatRegisterImpl::D, from, 8, F58);
kvn@6653 3894 __ ldf(FloatRegisterImpl::D, from, 16, F60);
kvn@6653 3895 __ faligndata(F56, F58, F56);
kvn@6653 3896 __ faligndata(F58, F60, F58);
kvn@6653 3897 __ movdtox(F56, G3);
kvn@6653 3898 __ movdtox(F58, G4);
kvn@6653 3899 __ mov(L1, from);
kvn@6653 3900 __ movxtod(L2, F60);
kvn@6653 3901
kvn@6653 3902 __ BIND(L_256bit_transform);
kvn@6312 3903 __ xor3(G1,G3,G3);
kvn@6653 3904 __ xor3(G5,G4,G4);
kvn@6312 3905 __ movxtod(G3,F56);
kvn@6312 3906 __ movxtod(G4,F58);
kvn@6312 3907 __ fxor(FloatRegisterImpl::D, F60, F56, F60);
kvn@6312 3908 __ fxor(FloatRegisterImpl::D, F62, F58, F62);
kvn@6312 3909
kvn@6312 3910 // FOURTEEN_EROUNDS
kvn@6312 3911 for ( int i = 0; i <= 48; i += 8 ) {
kvn@6312 3912 __ aes_eround01(as_FloatRegister(i), F60, F62, F56);
kvn@6312 3913 __ aes_eround23(as_FloatRegister(i+2), F60, F62, F58);
kvn@6312 3914 if (i != 48 ) {
kvn@6312 3915 __ aes_eround01(as_FloatRegister(i+4), F56, F58, F60);
kvn@6312 3916 __ aes_eround23(as_FloatRegister(i+6), F56, F58, F62);
kvn@6312 3917 } else {
kvn@6312 3918 __ aes_eround01_l(as_FloatRegister(i+4), F56, F58, F60);
kvn@6312 3919 __ aes_eround23_l(as_FloatRegister(i+6), F56, F58, F62);
kvn@6312 3920 }
kvn@6312 3921 }
kvn@6312 3922
kvn@6653 3923 // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
kvn@6653 3924 __ andcc(to, 7, L1);
kvn@6653 3925 __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_256bit);
kvn@6653 3926 __ delayed()->edge8n(to, G0, L2);
kvn@6653 3927
kvn@6653 3928 // aligned case: store output into the destination array
kvn@6312 3929 __ stf(FloatRegisterImpl::D, F60, to, 0);
kvn@6312 3930 __ stf(FloatRegisterImpl::D, F62, to, 8);
kvn@6653 3931 __ ba_short(L_check_loop_end_256bit);
kvn@6653 3932
kvn@6653 3933 __ BIND(L_store_misaligned_output_256bit);
kvn@6653 3934 __ add(to, 8, L3);
kvn@6653 3935 __ mov(8, L4);
kvn@6653 3936 __ sub(L4, L1, L4);
kvn@6653 3937 __ alignaddr(L4, G0, L4);
kvn@6653 3938 __ movdtox(F60, L6);
kvn@6653 3939 __ movdtox(F62, L7);
kvn@6653 3940 __ faligndata(F60, F60, F60);
kvn@6653 3941 __ faligndata(F62, F62, F62);
kvn@6653 3942 __ mov(to, L5);
kvn@6653 3943 __ and3(to, -8, to);
kvn@6653 3944 __ and3(L3, -8, L3);
kvn@6653 3945 __ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY);
kvn@6653 3946 __ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY);
kvn@6653 3947 __ add(to, 8, to);
kvn@6653 3948 __ add(L3, 8, L3);
kvn@6653 3949 __ orn(G0, L2, L2);
kvn@6653 3950 __ stpartialf(to, L2, F60, Assembler::ASI_PST8_PRIMARY);
kvn@6653 3951 __ stpartialf(L3, L2, F62, Assembler::ASI_PST8_PRIMARY);
kvn@6653 3952 __ mov(L5, to);
kvn@6653 3953 __ movxtod(L6, F60);
kvn@6653 3954 __ movxtod(L7, F62);
kvn@6653 3955
kvn@6653 3956 __ BIND(L_check_loop_end_256bit);
kvn@6312 3957 __ add(from, 16, from);
kvn@6312 3958 __ subcc(len_reg, 16, len_reg);
kvn@6312 3959 __ add(to, 16, to);
kvn@6312 3960 __ br(Assembler::notEqual, false, Assembler::pt, L_cbcenc256);
kvn@6312 3961 __ delayed()->nop();
kvn@6653 3962 // re-init intial vector for next block, 8-byte alignment is guaranteed
kvn@6312 3963 __ stf(FloatRegisterImpl::D, F60, rvec, 0);
kvn@6312 3964 __ stf(FloatRegisterImpl::D, F62, rvec, 8);
kvn@6697 3965 __ mov(L0, I0);
kvn@6697 3966 __ ret();
kvn@6697 3967 __ delayed()->restore();
kvn@6312 3968
kvn@6312 3969 return start;
kvn@6312 3970 }
kvn@6312 3971
kvn@6312 3972 address generate_cipherBlockChaining_decryptAESCrypt_Parallel() {
kvn@6653 3973 assert((arrayOopDesc::base_offset_in_bytes(T_INT) & 7) == 0,
kvn@6653 3974 "the following code assumes that first element of an int array is aligned to 8 bytes");
kvn@6653 3975 assert((arrayOopDesc::base_offset_in_bytes(T_BYTE) & 7) == 0,
kvn@6653 3976 "the following code assumes that first element of a byte array is aligned to 8 bytes");
kvn@6312 3977 __ align(CodeEntryAlignment);
kvn@6312 3978 StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
kvn@6312 3979 Label L_cbcdec_end, L_expand192bit, L_expand256bit, L_dec_first_block_start;
kvn@6312 3980 Label L_dec_first_block128, L_dec_first_block192, L_dec_next2_blocks128, L_dec_next2_blocks192, L_dec_next2_blocks256;
kvn@6653 3981 Label L_load_misaligned_input_first_block, L_transform_first_block, L_load_misaligned_next2_blocks128, L_transform_next2_blocks128;
kvn@6653 3982 Label L_load_misaligned_next2_blocks192, L_transform_next2_blocks192, L_load_misaligned_next2_blocks256, L_transform_next2_blocks256;
kvn@6653 3983 Label L_store_misaligned_output_first_block, L_check_decrypt_end, L_store_misaligned_output_next2_blocks128;
kvn@6653 3984 Label L_check_decrypt_loop_end128, L_store_misaligned_output_next2_blocks192, L_check_decrypt_loop_end192;
kvn@6653 3985 Label L_store_misaligned_output_next2_blocks256, L_check_decrypt_loop_end256;
kvn@6312 3986 address start = __ pc();
kvn@6312 3987 Register from = I0; // source byte array
kvn@6312 3988 Register to = I1; // destination byte array
kvn@6312 3989 Register key = I2; // expanded key array
kvn@6312 3990 Register rvec = I3; // init vector
kvn@6312 3991 const Register len_reg = I4; // cipher length
kvn@6312 3992 const Register original_key = I5; // original key array only required during decryption
kvn@6312 3993 const Register keylen = L6; // reg for storing expanded key array length
kvn@6312 3994
kvn@6312 3995 __ save_frame(0); //args are read from I* registers since we save the frame in the beginning
kvn@6697 3996 // save cipher len to return in the end
kvn@6697 3997 __ mov(len_reg, L7);
kvn@6312 3998
kvn@6312 3999 // load original key from SunJCE expanded decryption key
kvn@6653 4000 // Since we load original key buffer starting first element, 8-byte alignment is guaranteed
kvn@6312 4001 for ( int i = 0; i <= 3; i++ ) {
kvn@6312 4002 __ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i));
kvn@6312 4003 }
kvn@6312 4004
kvn@6653 4005 // load initial vector, 8-byte alignment is guaranteed
kvn@6312 4006 __ ldx(rvec,0,L0);
kvn@6312 4007 __ ldx(rvec,8,L1);
kvn@6312 4008
kvn@6312 4009 // read expanded key array length
kvn@6312 4010 __ ldsw(Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)), keylen, 0);
kvn@6312 4011
kvn@6312 4012 // 256-bit original key size
kvn@6312 4013 __ cmp_and_brx_short(keylen, 60, Assembler::equal, Assembler::pn, L_expand256bit);
kvn@6312 4014
kvn@6312 4015 // 192-bit original key size
kvn@6312 4016 __ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pn, L_expand192bit);
kvn@6312 4017
kvn@6312 4018 // 128-bit original key size
kvn@6312 4019 // perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions
kvn@6312 4020 for ( int i = 0; i <= 36; i += 4 ) {
kvn@6312 4021 __ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+2), i/4, as_FloatRegister(i+4));
kvn@6312 4022 __ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+4), as_FloatRegister(i+6));
kvn@6312 4023 }
kvn@6312 4024
kvn@6312 4025 // load expanded key[last-1] and key[last] elements
kvn@6312 4026 __ movdtox(F40,L2);
kvn@6312 4027 __ movdtox(F42,L3);
kvn@6312 4028
kvn@6312 4029 __ and3(len_reg, 16, L4);
kvn@6653 4030 __ br_null_short(L4, Assembler::pt, L_dec_next2_blocks128);
kvn@6653 4031 __ nop();
kvn@6653 4032
kvn@6653 4033 __ ba_short(L_dec_first_block_start);
kvn@6312 4034
kvn@6312 4035 __ BIND(L_expand192bit);
kvn@6312 4036 // load rest of the 192-bit key
kvn@6312 4037 __ ldf(FloatRegisterImpl::S, original_key, 16, F4);
kvn@6312 4038 __ ldf(FloatRegisterImpl::S, original_key, 20, F5);
kvn@6312 4039
kvn@6312 4040 // perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions
kvn@6312 4041 for ( int i = 0; i <= 36; i += 6 ) {
kvn@6312 4042 __ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+4), i/6, as_FloatRegister(i+6));
kvn@6312 4043 __ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+6), as_FloatRegister(i+8));
kvn@6312 4044 __ aes_kexpand2(as_FloatRegister(i+4), as_FloatRegister(i+8), as_FloatRegister(i+10));
kvn@6312 4045 }
kvn@6312 4046 __ aes_kexpand1(F42, F46, 7, F48);
kvn@6312 4047 __ aes_kexpand2(F44, F48, F50);
kvn@6312 4048
kvn@6312 4049 // load expanded key[last-1] and key[last] elements
kvn@6312 4050 __ movdtox(F48,L2);
kvn@6312 4051 __ movdtox(F50,L3);
kvn@6312 4052
kvn@6312 4053 __ and3(len_reg, 16, L4);
kvn@6653 4054 __ br_null_short(L4, Assembler::pt, L_dec_next2_blocks192);
kvn@6653 4055 __ nop();
kvn@6653 4056
kvn@6653 4057 __ ba_short(L_dec_first_block_start);
kvn@6312 4058
kvn@6312 4059 __ BIND(L_expand256bit);
kvn@6312 4060 // load rest of the 256-bit key
kvn@6312 4061 for ( int i = 4; i <= 7; i++ ) {
kvn@6312 4062 __ ldf(FloatRegisterImpl::S, original_key, i*4, as_FloatRegister(i));
kvn@6312 4063 }
kvn@6312 4064
kvn@6312 4065 // perform key expansion since SunJCE decryption-key expansion is not compatible with SPARC crypto instructions
kvn@6312 4066 for ( int i = 0; i <= 40; i += 8 ) {
kvn@6312 4067 __ aes_kexpand1(as_FloatRegister(i), as_FloatRegister(i+6), i/8, as_FloatRegister(i+8));
kvn@6312 4068 __ aes_kexpand2(as_FloatRegister(i+2), as_FloatRegister(i+8), as_FloatRegister(i+10));
kvn@6312 4069 __ aes_kexpand0(as_FloatRegister(i+4), as_FloatRegister(i+10), as_FloatRegister(i+12));
kvn@6312 4070 __ aes_kexpand2(as_FloatRegister(i+6), as_FloatRegister(i+12), as_FloatRegister(i+14));
kvn@6312 4071 }
kvn@6312 4072 __ aes_kexpand1(F48, F54, 6, F56);
kvn@6312 4073 __ aes_kexpand2(F50, F56, F58);
kvn@6312 4074
kvn@6312 4075 // load expanded key[last-1] and key[last] elements
kvn@6312 4076 __ movdtox(F56,L2);
kvn@6312 4077 __ movdtox(F58,L3);
kvn@6312 4078
kvn@6312 4079 __ and3(len_reg, 16, L4);
kvn@6653 4080 __ br_null_short(L4, Assembler::pt, L_dec_next2_blocks256);
kvn@6312 4081
kvn@6312 4082 __ BIND(L_dec_first_block_start);
kvn@6653 4083 // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
kvn@6653 4084 __ andcc(from, 7, G0);
kvn@6653 4085 __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_input_first_block);
kvn@6653 4086 __ delayed()->mov(from, G1); // save original 'from' address before alignaddr
kvn@6653 4087
kvn@6653 4088 // aligned case: load input into L4 and L5
kvn@6312 4089 __ ldx(from,0,L4);
kvn@6312 4090 __ ldx(from,8,L5);
kvn@6653 4091 __ ba_short(L_transform_first_block);
kvn@6653 4092
kvn@6653 4093 __ BIND(L_load_misaligned_input_first_block);
kvn@6653 4094 __ alignaddr(from, G0, from);
kvn@6653 4095 // F58, F60, F62 can be clobbered
kvn@6653 4096 __ ldf(FloatRegisterImpl::D, from, 0, F58);
kvn@6653 4097 __ ldf(FloatRegisterImpl::D, from, 8, F60);
kvn@6653 4098 __ ldf(FloatRegisterImpl::D, from, 16, F62);
kvn@6653 4099 __ faligndata(F58, F60, F58);
kvn@6653 4100 __ faligndata(F60, F62, F60);
kvn@6653 4101 __ movdtox(F58, L4);
kvn@6653 4102 __ movdtox(F60, L5);
kvn@6653 4103 __ mov(G1, from);
kvn@6653 4104
kvn@6653 4105 __ BIND(L_transform_first_block);
kvn@6312 4106 __ xor3(L2,L4,G1);
kvn@6312 4107 __ movxtod(G1,F60);
kvn@6312 4108 __ xor3(L3,L5,G1);
kvn@6312 4109 __ movxtod(G1,F62);
kvn@6312 4110
kvn@6312 4111 // 128-bit original key size
kvn@6312 4112 __ cmp_and_brx_short(keylen, 44, Assembler::equal, Assembler::pn, L_dec_first_block128);
kvn@6312 4113
kvn@6312 4114 // 192-bit original key size
kvn@6312 4115 __ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pn, L_dec_first_block192);
kvn@6312 4116
kvn@6312 4117 __ aes_dround23(F54, F60, F62, F58);
kvn@6312 4118 __ aes_dround01(F52, F60, F62, F56);
kvn@6312 4119 __ aes_dround23(F50, F56, F58, F62);
kvn@6312 4120 __ aes_dround01(F48, F56, F58, F60);
kvn@6312 4121
kvn@6312 4122 __ BIND(L_dec_first_block192);
kvn@6312 4123 __ aes_dround23(F46, F60, F62, F58);
kvn@6312 4124 __ aes_dround01(F44, F60, F62, F56);
kvn@6312 4125 __ aes_dround23(F42, F56, F58, F62);
kvn@6312 4126 __ aes_dround01(F40, F56, F58, F60);
kvn@6312 4127
kvn@6312 4128 __ BIND(L_dec_first_block128);
kvn@6312 4129 for ( int i = 38; i >= 6; i -= 8 ) {
kvn@6312 4130 __ aes_dround23(as_FloatRegister(i), F60, F62, F58);
kvn@6312 4131 __ aes_dround01(as_FloatRegister(i-2), F60, F62, F56);
kvn@6312 4132 if ( i != 6) {
kvn@6312 4133 __ aes_dround23(as_FloatRegister(i-4), F56, F58, F62);
kvn@6312 4134 __ aes_dround01(as_FloatRegister(i-6), F56, F58, F60);
kvn@6312 4135 } else {
kvn@6312 4136 __ aes_dround23_l(as_FloatRegister(i-4), F56, F58, F62);
kvn@6312 4137 __ aes_dround01_l(as_FloatRegister(i-6), F56, F58, F60);
kvn@6312 4138 }
kvn@6312 4139 }
kvn@6312 4140
kvn@6312 4141 __ movxtod(L0,F56);
kvn@6312 4142 __ movxtod(L1,F58);
kvn@6312 4143 __ mov(L4,L0);
kvn@6312 4144 __ mov(L5,L1);
kvn@6312 4145 __ fxor(FloatRegisterImpl::D, F56, F60, F60);
kvn@6312 4146 __ fxor(FloatRegisterImpl::D, F58, F62, F62);
kvn@6312 4147
kvn@6653 4148 // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
kvn@6653 4149 __ andcc(to, 7, G1);
kvn@6653 4150 __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_first_block);
kvn@6653 4151 __ delayed()->edge8n(to, G0, G2);
kvn@6653 4152
kvn@6653 4153 // aligned case: store output into the destination array
kvn@6312 4154 __ stf(FloatRegisterImpl::D, F60, to, 0);
kvn@6312 4155 __ stf(FloatRegisterImpl::D, F62, to, 8);
kvn@6653 4156 __ ba_short(L_check_decrypt_end);
kvn@6653 4157
kvn@6653 4158 __ BIND(L_store_misaligned_output_first_block);
kvn@6653 4159 __ add(to, 8, G3);
kvn@6653 4160 __ mov(8, G4);
kvn@6653 4161 __ sub(G4, G1, G4);
kvn@6653 4162 __ alignaddr(G4, G0, G4);
kvn@6653 4163 __ faligndata(F60, F60, F60);
kvn@6653 4164 __ faligndata(F62, F62, F62);
kvn@6653 4165 __ mov(to, G1);
kvn@6653 4166 __ and3(to, -8, to);
kvn@6653 4167 __ and3(G3, -8, G3);
kvn@6653 4168 __ stpartialf(to, G2, F60, Assembler::ASI_PST8_PRIMARY);
kvn@6653 4169 __ stpartialf(G3, G2, F62, Assembler::ASI_PST8_PRIMARY);
kvn@6653 4170 __ add(to, 8, to);
kvn@6653 4171 __ add(G3, 8, G3);
kvn@6653 4172 __ orn(G0, G2, G2);
kvn@6653 4173 __ stpartialf(to, G2, F60, Assembler::ASI_PST8_PRIMARY);
kvn@6653 4174 __ stpartialf(G3, G2, F62, Assembler::ASI_PST8_PRIMARY);
kvn@6653 4175 __ mov(G1, to);
kvn@6653 4176
kvn@6653 4177 __ BIND(L_check_decrypt_end);
kvn@6312 4178 __ add(from, 16, from);
kvn@6312 4179 __ add(to, 16, to);
kvn@6312 4180 __ subcc(len_reg, 16, len_reg);
kvn@6312 4181 __ br(Assembler::equal, false, Assembler::pt, L_cbcdec_end);
kvn@6312 4182 __ delayed()->nop();
kvn@6312 4183
kvn@6312 4184 // 256-bit original key size
kvn@6312 4185 __ cmp_and_brx_short(keylen, 60, Assembler::equal, Assembler::pn, L_dec_next2_blocks256);
kvn@6312 4186
kvn@6312 4187 // 192-bit original key size
kvn@6312 4188 __ cmp_and_brx_short(keylen, 52, Assembler::equal, Assembler::pn, L_dec_next2_blocks192);
kvn@6312 4189
kvn@6312 4190 __ align(OptoLoopAlignment);
kvn@6312 4191 __ BIND(L_dec_next2_blocks128);
kvn@6312 4192 __ nop();
kvn@6312 4193
kvn@6653 4194 // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
kvn@6653 4195 __ andcc(from, 7, G0);
kvn@6653 4196 __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_next2_blocks128);
kvn@6653 4197 __ delayed()->mov(from, G1); // save original 'from' address before alignaddr
kvn@6653 4198
kvn@6653 4199 // aligned case: load input into G4, G5, L4 and L5
kvn@6312 4200 __ ldx(from,0,G4);
kvn@6312 4201 __ ldx(from,8,G5);
kvn@6653 4202 __ ldx(from,16,L4);
kvn@6653 4203 __ ldx(from,24,L5);
kvn@6653 4204 __ ba_short(L_transform_next2_blocks128);
kvn@6653 4205
kvn@6653 4206 __ BIND(L_load_misaligned_next2_blocks128);
kvn@6653 4207 __ alignaddr(from, G0, from);
kvn@6653 4208 // F40, F42, F58, F60, F62 can be clobbered
kvn@6653 4209 __ ldf(FloatRegisterImpl::D, from, 0, F40);
kvn@6653 4210 __ ldf(FloatRegisterImpl::D, from, 8, F42);
kvn@6653 4211 __ ldf(FloatRegisterImpl::D, from, 16, F60);
kvn@6653 4212 __ ldf(FloatRegisterImpl::D, from, 24, F62);
kvn@6653 4213 __ ldf(FloatRegisterImpl::D, from, 32, F58);
kvn@6653 4214 __ faligndata(F40, F42, F40);
kvn@6653 4215 __ faligndata(F42, F60, F42);
kvn@6653 4216 __ faligndata(F60, F62, F60);
kvn@6653 4217 __ faligndata(F62, F58, F62);
kvn@6653 4218 __ movdtox(F40, G4);
kvn@6653 4219 __ movdtox(F42, G5);
kvn@6653 4220 __ movdtox(F60, L4);
kvn@6653 4221 __ movdtox(F62, L5);
kvn@6653 4222 __ mov(G1, from);
kvn@6653 4223
kvn@6653 4224 __ BIND(L_transform_next2_blocks128);
kvn@6653 4225 // F40:F42 used for first 16-bytes
kvn@6312 4226 __ xor3(L2,G4,G1);
kvn@6312 4227 __ movxtod(G1,F40);
kvn@6312 4228 __ xor3(L3,G5,G1);
kvn@6312 4229 __ movxtod(G1,F42);
kvn@6312 4230
kvn@6312 4231 // F60:F62 used for next 16-bytes
kvn@6312 4232 __ xor3(L2,L4,G1);
kvn@6312 4233 __ movxtod(G1,F60);
kvn@6312 4234 __ xor3(L3,L5,G1);
kvn@6312 4235 __ movxtod(G1,F62);
kvn@6312 4236
kvn@6312 4237 for ( int i = 38; i >= 6; i -= 8 ) {
kvn@6312 4238 __ aes_dround23(as_FloatRegister(i), F40, F42, F44);
kvn@6312 4239 __ aes_dround01(as_FloatRegister(i-2), F40, F42, F46);
kvn@6312 4240 __ aes_dround23(as_FloatRegister(i), F60, F62, F58);
kvn@6312 4241 __ aes_dround01(as_FloatRegister(i-2), F60, F62, F56);
kvn@6312 4242 if (i != 6 ) {
kvn@6312 4243 __ aes_dround23(as_FloatRegister(i-4), F46, F44, F42);
kvn@6312 4244 __ aes_dround01(as_FloatRegister(i-6), F46, F44, F40);
kvn@6312 4245 __ aes_dround23(as_FloatRegister(i-4), F56, F58, F62);
kvn@6312 4246 __ aes_dround01(as_FloatRegister(i-6), F56, F58, F60);
kvn@6312 4247 } else {
kvn@6312 4248 __ aes_dround23_l(as_FloatRegister(i-4), F46, F44, F42);
kvn@6312 4249 __ aes_dround01_l(as_FloatRegister(i-6), F46, F44, F40);
kvn@6312 4250 __ aes_dround23_l(as_FloatRegister(i-4), F56, F58, F62);
kvn@6312 4251 __ aes_dround01_l(as_FloatRegister(i-6), F56, F58, F60);
kvn@6312 4252 }
kvn@6312 4253 }
kvn@6312 4254
kvn@6312 4255 __ movxtod(L0,F46);
kvn@6312 4256 __ movxtod(L1,F44);
kvn@6312 4257 __ fxor(FloatRegisterImpl::D, F46, F40, F40);
kvn@6312 4258 __ fxor(FloatRegisterImpl::D, F44, F42, F42);
kvn@6312 4259
kvn@6312 4260 __ movxtod(G4,F56);
kvn@6312 4261 __ movxtod(G5,F58);
kvn@6312 4262 __ mov(L4,L0);
kvn@6312 4263 __ mov(L5,L1);
kvn@6312 4264 __ fxor(FloatRegisterImpl::D, F56, F60, F60);
kvn@6312 4265 __ fxor(FloatRegisterImpl::D, F58, F62, F62);
kvn@6312 4266
kvn@6653 4267 // For mis-aligned store of 32 bytes of result we can do:
kvn@6653 4268 // Circular right-shift all 4 FP registers so that 'head' and 'tail'
kvn@6653 4269 // parts that need to be stored starting at mis-aligned address are in a FP reg
kvn@6653 4270 // the other 3 FP regs can thus be stored using regular store
kvn@6653 4271 // we then use the edge + partial-store mechanism to store the 'head' and 'tail' parts
kvn@6653 4272
kvn@6653 4273 // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
kvn@6653 4274 __ andcc(to, 7, G1);
kvn@6653 4275 __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_next2_blocks128);
kvn@6653 4276 __ delayed()->edge8n(to, G0, G2);
kvn@6653 4277
kvn@6653 4278 // aligned case: store output into the destination array
kvn@6653 4279 __ stf(FloatRegisterImpl::D, F40, to, 0);
kvn@6653 4280 __ stf(FloatRegisterImpl::D, F42, to, 8);
kvn@6312 4281 __ stf(FloatRegisterImpl::D, F60, to, 16);
kvn@6312 4282 __ stf(FloatRegisterImpl::D, F62, to, 24);
kvn@6653 4283 __ ba_short(L_check_decrypt_loop_end128);
kvn@6653 4284
kvn@6653 4285 __ BIND(L_store_misaligned_output_next2_blocks128);
kvn@6653 4286 __ mov(8, G4);
kvn@6653 4287 __ sub(G4, G1, G4);
kvn@6653 4288 __ alignaddr(G4, G0, G4);
kvn@6653 4289 __ faligndata(F40, F42, F56); // F56 can be clobbered
kvn@6653 4290 __ faligndata(F42, F60, F42);
kvn@6653 4291 __ faligndata(F60, F62, F60);
kvn@6653 4292 __ faligndata(F62, F40, F40);
kvn@6653 4293 __ mov(to, G1);
kvn@6653 4294 __ and3(to, -8, to);
kvn@6653 4295 __ stpartialf(to, G2, F40, Assembler::ASI_PST8_PRIMARY);
kvn@6653 4296 __ stf(FloatRegisterImpl::D, F56, to, 8);
kvn@6653 4297 __ stf(FloatRegisterImpl::D, F42, to, 16);
kvn@6653 4298 __ stf(FloatRegisterImpl::D, F60, to, 24);
kvn@6653 4299 __ add(to, 32, to);
kvn@6653 4300 __ orn(G0, G2, G2);
kvn@6653 4301 __ stpartialf(to, G2, F40, Assembler::ASI_PST8_PRIMARY);
kvn@6653 4302 __ mov(G1, to);
kvn@6653 4303
kvn@6653 4304 __ BIND(L_check_decrypt_loop_end128);
kvn@6312 4305 __ add(from, 32, from);
kvn@6312 4306 __ add(to, 32, to);
kvn@6312 4307 __ subcc(len_reg, 32, len_reg);
kvn@6312 4308 __ br(Assembler::notEqual, false, Assembler::pt, L_dec_next2_blocks128);
kvn@6312 4309 __ delayed()->nop();
kvn@6653 4310 __ ba_short(L_cbcdec_end);
kvn@6312 4311
kvn@6312 4312 __ align(OptoLoopAlignment);
kvn@6312 4313 __ BIND(L_dec_next2_blocks192);
kvn@6312 4314 __ nop();
kvn@6312 4315
kvn@6653 4316 // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
kvn@6653 4317 __ andcc(from, 7, G0);
kvn@6653 4318 __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_next2_blocks192);
kvn@6653 4319 __ delayed()->mov(from, G1); // save original 'from' address before alignaddr
kvn@6653 4320
kvn@6653 4321 // aligned case: load input into G4, G5, L4 and L5
kvn@6312 4322 __ ldx(from,0,G4);
kvn@6312 4323 __ ldx(from,8,G5);
kvn@6653 4324 __ ldx(from,16,L4);
kvn@6653 4325 __ ldx(from,24,L5);
kvn@6653 4326 __ ba_short(L_transform_next2_blocks192);
kvn@6653 4327
kvn@6653 4328 __ BIND(L_load_misaligned_next2_blocks192);
kvn@6653 4329 __ alignaddr(from, G0, from);
kvn@6653 4330 // F48, F50, F52, F60, F62 can be clobbered
kvn@6653 4331 __ ldf(FloatRegisterImpl::D, from, 0, F48);
kvn@6653 4332 __ ldf(FloatRegisterImpl::D, from, 8, F50);
kvn@6653 4333 __ ldf(FloatRegisterImpl::D, from, 16, F60);
kvn@6653 4334 __ ldf(FloatRegisterImpl::D, from, 24, F62);
kvn@6653 4335 __ ldf(FloatRegisterImpl::D, from, 32, F52);
kvn@6653 4336 __ faligndata(F48, F50, F48);
kvn@6653 4337 __ faligndata(F50, F60, F50);
kvn@6653 4338 __ faligndata(F60, F62, F60);
kvn@6653 4339 __ faligndata(F62, F52, F62);
kvn@6653 4340 __ movdtox(F48, G4);
kvn@6653 4341 __ movdtox(F50, G5);
kvn@6653 4342 __ movdtox(F60, L4);
kvn@6653 4343 __ movdtox(F62, L5);
kvn@6653 4344 __ mov(G1, from);
kvn@6653 4345
kvn@6653 4346 __ BIND(L_transform_next2_blocks192);
kvn@6653 4347 // F48:F50 used for first 16-bytes
kvn@6312 4348 __ xor3(L2,G4,G1);
kvn@6312 4349 __ movxtod(G1,F48);
kvn@6312 4350 __ xor3(L3,G5,G1);
kvn@6312 4351 __ movxtod(G1,F50);
kvn@6312 4352
kvn@6312 4353 // F60:F62 used for next 16-bytes
kvn@6312 4354 __ xor3(L2,L4,G1);
kvn@6312 4355 __ movxtod(G1,F60);
kvn@6312 4356 __ xor3(L3,L5,G1);
kvn@6312 4357 __ movxtod(G1,F62);
kvn@6312 4358
kvn@6312 4359 for ( int i = 46; i >= 6; i -= 8 ) {
kvn@6312 4360 __ aes_dround23(as_FloatRegister(i), F48, F50, F52);
kvn@6312 4361 __ aes_dround01(as_FloatRegister(i-2), F48, F50, F54);
kvn@6312 4362 __ aes_dround23(as_FloatRegister(i), F60, F62, F58);
kvn@6312 4363 __ aes_dround01(as_FloatRegister(i-2), F60, F62, F56);
kvn@6312 4364 if (i != 6 ) {
kvn@6312 4365 __ aes_dround23(as_FloatRegister(i-4), F54, F52, F50);
kvn@6312 4366 __ aes_dround01(as_FloatRegister(i-6), F54, F52, F48);
kvn@6312 4367 __ aes_dround23(as_FloatRegister(i-4), F56, F58, F62);
kvn@6312 4368 __ aes_dround01(as_FloatRegister(i-6), F56, F58, F60);
kvn@6312 4369 } else {
kvn@6312 4370 __ aes_dround23_l(as_FloatRegister(i-4), F54, F52, F50);
kvn@6312 4371 __ aes_dround01_l(as_FloatRegister(i-6), F54, F52, F48);
kvn@6312 4372 __ aes_dround23_l(as_FloatRegister(i-4), F56, F58, F62);
kvn@6312 4373 __ aes_dround01_l(as_FloatRegister(i-6), F56, F58, F60);
kvn@6312 4374 }
kvn@6312 4375 }
kvn@6312 4376
kvn@6312 4377 __ movxtod(L0,F54);
kvn@6312 4378 __ movxtod(L1,F52);
kvn@6312 4379 __ fxor(FloatRegisterImpl::D, F54, F48, F48);
kvn@6312 4380 __ fxor(FloatRegisterImpl::D, F52, F50, F50);
kvn@6312 4381
kvn@6312 4382 __ movxtod(G4,F56);
kvn@6312 4383 __ movxtod(G5,F58);
kvn@6312 4384 __ mov(L4,L0);
kvn@6312 4385 __ mov(L5,L1);
kvn@6312 4386 __ fxor(FloatRegisterImpl::D, F56, F60, F60);
kvn@6312 4387 __ fxor(FloatRegisterImpl::D, F58, F62, F62);
kvn@6312 4388
kvn@6653 4389 // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
kvn@6653 4390 __ andcc(to, 7, G1);
kvn@6653 4391 __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_next2_blocks192);
kvn@6653 4392 __ delayed()->edge8n(to, G0, G2);
kvn@6653 4393
kvn@6653 4394 // aligned case: store output into the destination array
kvn@6653 4395 __ stf(FloatRegisterImpl::D, F48, to, 0);
kvn@6653 4396 __ stf(FloatRegisterImpl::D, F50, to, 8);
kvn@6312 4397 __ stf(FloatRegisterImpl::D, F60, to, 16);
kvn@6312 4398 __ stf(FloatRegisterImpl::D, F62, to, 24);
kvn@6653 4399 __ ba_short(L_check_decrypt_loop_end192);
kvn@6653 4400
kvn@6653 4401 __ BIND(L_store_misaligned_output_next2_blocks192);
kvn@6653 4402 __ mov(8, G4);
kvn@6653 4403 __ sub(G4, G1, G4);
kvn@6653 4404 __ alignaddr(G4, G0, G4);
kvn@6653 4405 __ faligndata(F48, F50, F56); // F56 can be clobbered
kvn@6653 4406 __ faligndata(F50, F60, F50);
kvn@6653 4407 __ faligndata(F60, F62, F60);
kvn@6653 4408 __ faligndata(F62, F48, F48);
kvn@6653 4409 __ mov(to, G1);
kvn@6653 4410 __ and3(to, -8, to);
kvn@6653 4411 __ stpartialf(to, G2, F48, Assembler::ASI_PST8_PRIMARY);
kvn@6653 4412 __ stf(FloatRegisterImpl::D, F56, to, 8);
kvn@6653 4413 __ stf(FloatRegisterImpl::D, F50, to, 16);
kvn@6653 4414 __ stf(FloatRegisterImpl::D, F60, to, 24);
kvn@6653 4415 __ add(to, 32, to);
kvn@6653 4416 __ orn(G0, G2, G2);
kvn@6653 4417 __ stpartialf(to, G2, F48, Assembler::ASI_PST8_PRIMARY);
kvn@6653 4418 __ mov(G1, to);
kvn@6653 4419
kvn@6653 4420 __ BIND(L_check_decrypt_loop_end192);
kvn@6312 4421 __ add(from, 32, from);
kvn@6312 4422 __ add(to, 32, to);
kvn@6312 4423 __ subcc(len_reg, 32, len_reg);
kvn@6312 4424 __ br(Assembler::notEqual, false, Assembler::pt, L_dec_next2_blocks192);
kvn@6312 4425 __ delayed()->nop();
kvn@6653 4426 __ ba_short(L_cbcdec_end);
kvn@6312 4427
kvn@6312 4428 __ align(OptoLoopAlignment);
kvn@6312 4429 __ BIND(L_dec_next2_blocks256);
kvn@6312 4430 __ nop();
kvn@6312 4431
kvn@6653 4432 // check for 8-byte alignment since source byte array may have an arbitrary alignment if offset mod 8 is non-zero
kvn@6653 4433 __ andcc(from, 7, G0);
kvn@6653 4434 __ br(Assembler::notZero, true, Assembler::pn, L_load_misaligned_next2_blocks256);
kvn@6653 4435 __ delayed()->mov(from, G1); // save original 'from' address before alignaddr
kvn@6653 4436
kvn@6653 4437 // aligned case: load input into G4, G5, L4 and L5
kvn@6312 4438 __ ldx(from,0,G4);
kvn@6312 4439 __ ldx(from,8,G5);
kvn@6653 4440 __ ldx(from,16,L4);
kvn@6653 4441 __ ldx(from,24,L5);
kvn@6653 4442 __ ba_short(L_transform_next2_blocks256);
kvn@6653 4443
kvn@6653 4444 __ BIND(L_load_misaligned_next2_blocks256);
kvn@6653 4445 __ alignaddr(from, G0, from);
kvn@6653 4446 // F0, F2, F4, F60, F62 can be clobbered
kvn@6653 4447 __ ldf(FloatRegisterImpl::D, from, 0, F0);
kvn@6653 4448 __ ldf(FloatRegisterImpl::D, from, 8, F2);
kvn@6653 4449 __ ldf(FloatRegisterImpl::D, from, 16, F60);
kvn@6653 4450 __ ldf(FloatRegisterImpl::D, from, 24, F62);
kvn@6653 4451 __ ldf(FloatRegisterImpl::D, from, 32, F4);
kvn@6653 4452 __ faligndata(F0, F2, F0);
kvn@6653 4453 __ faligndata(F2, F60, F2);
kvn@6653 4454 __ faligndata(F60, F62, F60);
kvn@6653 4455 __ faligndata(F62, F4, F62);
kvn@6653 4456 __ movdtox(F0, G4);
kvn@6653 4457 __ movdtox(F2, G5);
kvn@6653 4458 __ movdtox(F60, L4);
kvn@6653 4459 __ movdtox(F62, L5);
kvn@6653 4460 __ mov(G1, from);
kvn@6653 4461
kvn@6653 4462 __ BIND(L_transform_next2_blocks256);
kvn@6653 4463 // F0:F2 used for first 16-bytes
kvn@6312 4464 __ xor3(L2,G4,G1);
kvn@6312 4465 __ movxtod(G1,F0);
kvn@6312 4466 __ xor3(L3,G5,G1);
kvn@6312 4467 __ movxtod(G1,F2);
kvn@6312 4468
kvn@6312 4469 // F60:F62 used for next 16-bytes
kvn@6312 4470 __ xor3(L2,L4,G1);
kvn@6312 4471 __ movxtod(G1,F60);
kvn@6312 4472 __ xor3(L3,L5,G1);
kvn@6312 4473 __ movxtod(G1,F62);
kvn@6312 4474
kvn@6312 4475 __ aes_dround23(F54, F0, F2, F4);
kvn@6312 4476 __ aes_dround01(F52, F0, F2, F6);
kvn@6312 4477 __ aes_dround23(F54, F60, F62, F58);
kvn@6312 4478 __ aes_dround01(F52, F60, F62, F56);
kvn@6312 4479 __ aes_dround23(F50, F6, F4, F2);
kvn@6312 4480 __ aes_dround01(F48, F6, F4, F0);
kvn@6312 4481 __ aes_dround23(F50, F56, F58, F62);
kvn@6312 4482 __ aes_dround01(F48, F56, F58, F60);
kvn@6312 4483 // save F48:F54 in temp registers
kvn@6312 4484 __ movdtox(F54,G2);
kvn@6312 4485 __ movdtox(F52,G3);
kevinw@9655 4486 __ movdtox(F50,L6);
kvn@6312 4487 __ movdtox(F48,G1);
kvn@6312 4488 for ( int i = 46; i >= 14; i -= 8 ) {
kvn@6312 4489 __ aes_dround23(as_FloatRegister(i), F0, F2, F4);
kvn@6312 4490 __ aes_dround01(as_FloatRegister(i-2), F0, F2, F6);
kvn@6312 4491 __ aes_dround23(as_FloatRegister(i), F60, F62, F58);
kvn@6312 4492 __ aes_dround01(as_FloatRegister(i-2), F60, F62, F56);
kvn@6312 4493 __ aes_dround23(as_FloatRegister(i-4), F6, F4, F2);
kvn@6312 4494 __ aes_dround01(as_FloatRegister(i-6), F6, F4, F0);
kvn@6312 4495 __ aes_dround23(as_FloatRegister(i-4), F56, F58, F62);
kvn@6312 4496 __ aes_dround01(as_FloatRegister(i-6), F56, F58, F60);
kvn@6312 4497 }
kvn@6312 4498 // init F48:F54 with F0:F6 values (original key)
kvn@6312 4499 __ ldf(FloatRegisterImpl::D, original_key, 0, F48);
kvn@6312 4500 __ ldf(FloatRegisterImpl::D, original_key, 8, F50);
kvn@6312 4501 __ ldf(FloatRegisterImpl::D, original_key, 16, F52);
kvn@6312 4502 __ ldf(FloatRegisterImpl::D, original_key, 24, F54);
kvn@6312 4503 __ aes_dround23(F54, F0, F2, F4);
kvn@6312 4504 __ aes_dround01(F52, F0, F2, F6);
kvn@6312 4505 __ aes_dround23(F54, F60, F62, F58);
kvn@6312 4506 __ aes_dround01(F52, F60, F62, F56);
kvn@6312 4507 __ aes_dround23_l(F50, F6, F4, F2);
kvn@6312 4508 __ aes_dround01_l(F48, F6, F4, F0);
kvn@6312 4509 __ aes_dround23_l(F50, F56, F58, F62);
kvn@6312 4510 __ aes_dround01_l(F48, F56, F58, F60);
kvn@6312 4511 // re-init F48:F54 with their original values
kvn@6312 4512 __ movxtod(G2,F54);
kvn@6312 4513 __ movxtod(G3,F52);
kevinw@9655 4514 __ movxtod(L6,F50);
kvn@6312 4515 __ movxtod(G1,F48);
kvn@6312 4516
kvn@6312 4517 __ movxtod(L0,F6);
kvn@6312 4518 __ movxtod(L1,F4);
kvn@6312 4519 __ fxor(FloatRegisterImpl::D, F6, F0, F0);
kvn@6312 4520 __ fxor(FloatRegisterImpl::D, F4, F2, F2);
kvn@6312 4521
kvn@6312 4522 __ movxtod(G4,F56);
kvn@6312 4523 __ movxtod(G5,F58);
kvn@6312 4524 __ mov(L4,L0);
kvn@6312 4525 __ mov(L5,L1);
kvn@6312 4526 __ fxor(FloatRegisterImpl::D, F56, F60, F60);
kvn@6312 4527 __ fxor(FloatRegisterImpl::D, F58, F62, F62);
kvn@6312 4528
kvn@6653 4529 // check for 8-byte alignment since dest byte array may have arbitrary alignment if offset mod 8 is non-zero
kvn@6653 4530 __ andcc(to, 7, G1);
kvn@6653 4531 __ br(Assembler::notZero, true, Assembler::pn, L_store_misaligned_output_next2_blocks256);
kvn@6653 4532 __ delayed()->edge8n(to, G0, G2);
kvn@6653 4533
kvn@6653 4534 // aligned case: store output into the destination array
kvn@6653 4535 __ stf(FloatRegisterImpl::D, F0, to, 0);
kvn@6653 4536 __ stf(FloatRegisterImpl::D, F2, to, 8);
kvn@6312 4537 __ stf(FloatRegisterImpl::D, F60, to, 16);
kvn@6312 4538 __ stf(FloatRegisterImpl::D, F62, to, 24);
kvn@6653 4539 __ ba_short(L_check_decrypt_loop_end256);
kvn@6653 4540
kvn@6653 4541 __ BIND(L_store_misaligned_output_next2_blocks256);
kvn@6653 4542 __ mov(8, G4);
kvn@6653 4543 __ sub(G4, G1, G4);
kvn@6653 4544 __ alignaddr(G4, G0, G4);
kvn@6653 4545 __ faligndata(F0, F2, F56); // F56 can be clobbered
kvn@6653 4546 __ faligndata(F2, F60, F2);
kvn@6653 4547 __ faligndata(F60, F62, F60);
kvn@6653 4548 __ faligndata(F62, F0, F0);
kvn@6653 4549 __ mov(to, G1);
kvn@6653 4550 __ and3(to, -8, to);
kvn@6653 4551 __ stpartialf(to, G2, F0, Assembler::ASI_PST8_PRIMARY);
kvn@6653 4552 __ stf(FloatRegisterImpl::D, F56, to, 8);
kvn@6653 4553 __ stf(FloatRegisterImpl::D, F2, to, 16);
kvn@6653 4554 __ stf(FloatRegisterImpl::D, F60, to, 24);
kvn@6653 4555 __ add(to, 32, to);
kvn@6653 4556 __ orn(G0, G2, G2);
kvn@6653 4557 __ stpartialf(to, G2, F0, Assembler::ASI_PST8_PRIMARY);
kvn@6653 4558 __ mov(G1, to);
kvn@6653 4559
kvn@6653 4560 __ BIND(L_check_decrypt_loop_end256);
kvn@6312 4561 __ add(from, 32, from);
kvn@6312 4562 __ add(to, 32, to);
kvn@6312 4563 __ subcc(len_reg, 32, len_reg);
kvn@6312 4564 __ br(Assembler::notEqual, false, Assembler::pt, L_dec_next2_blocks256);
kvn@6312 4565 __ delayed()->nop();
kvn@6312 4566
kvn@6312 4567 __ BIND(L_cbcdec_end);
kvn@6653 4568 // re-init intial vector for next block, 8-byte alignment is guaranteed
kvn@6312 4569 __ stx(L0, rvec, 0);
kvn@6312 4570 __ stx(L1, rvec, 8);
kvn@6697 4571 __ mov(L7, I0);
kvn@6697 4572 __ ret();
kvn@6697 4573 __ delayed()->restore();
kvn@6312 4574
kvn@6312 4575 return start;
kvn@6312 4576 }
kvn@6312 4577
kvn@7027 4578 address generate_sha1_implCompress(bool multi_block, const char *name) {
kvn@7027 4579 __ align(CodeEntryAlignment);
kvn@7027 4580 StubCodeMark mark(this, "StubRoutines", name);
kvn@7027 4581 address start = __ pc();
kvn@7027 4582
kvn@7027 4583 Label L_sha1_loop, L_sha1_unaligned_input, L_sha1_unaligned_input_loop;
kvn@7027 4584 int i;
kvn@7027 4585
kvn@7027 4586 Register buf = O0; // byte[] source+offset
kvn@7027 4587 Register state = O1; // int[] SHA.state
kvn@7027 4588 Register ofs = O2; // int offset
kvn@7027 4589 Register limit = O3; // int limit
kvn@7027 4590
kvn@7027 4591 // load state into F0-F4
kvn@7027 4592 for (i = 0; i < 5; i++) {
kvn@7027 4593 __ ldf(FloatRegisterImpl::S, state, i*4, as_FloatRegister(i));
kvn@7027 4594 }
kvn@7027 4595
kvn@7027 4596 __ andcc(buf, 7, G0);
kvn@7027 4597 __ br(Assembler::notZero, false, Assembler::pn, L_sha1_unaligned_input);
kvn@7027 4598 __ delayed()->nop();
kvn@7027 4599
kvn@7027 4600 __ BIND(L_sha1_loop);
kvn@7027 4601 // load buf into F8-F22
kvn@7027 4602 for (i = 0; i < 8; i++) {
kvn@7027 4603 __ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 8));
kvn@7027 4604 }
kvn@7027 4605 __ sha1();
kvn@7027 4606 if (multi_block) {
kvn@7027 4607 __ add(ofs, 64, ofs);
kvn@7027 4608 __ add(buf, 64, buf);
kvn@7027 4609 __ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha1_loop);
kvn@7027 4610 __ mov(ofs, O0); // to be returned
kvn@7027 4611 }
kvn@7027 4612
kvn@7027 4613 // store F0-F4 into state and return
kvn@7027 4614 for (i = 0; i < 4; i++) {
kvn@7027 4615 __ stf(FloatRegisterImpl::S, as_FloatRegister(i), state, i*4);
kvn@7027 4616 }
kvn@7027 4617 __ retl();
kvn@7027 4618 __ delayed()->stf(FloatRegisterImpl::S, F4, state, 0x10);
kvn@7027 4619
kvn@7027 4620 __ BIND(L_sha1_unaligned_input);
kvn@7027 4621 __ alignaddr(buf, G0, buf);
kvn@7027 4622
kvn@7027 4623 __ BIND(L_sha1_unaligned_input_loop);
kvn@7027 4624 // load buf into F8-F22
kvn@7027 4625 for (i = 0; i < 9; i++) {
kvn@7027 4626 __ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 8));
kvn@7027 4627 }
kvn@7027 4628 for (i = 0; i < 8; i++) {
kvn@7027 4629 __ faligndata(as_FloatRegister(i*2 + 8), as_FloatRegister(i*2 + 10), as_FloatRegister(i*2 + 8));
kvn@7027 4630 }
kvn@7027 4631 __ sha1();
kvn@7027 4632 if (multi_block) {
kvn@7027 4633 __ add(ofs, 64, ofs);
kvn@7027 4634 __ add(buf, 64, buf);
kvn@7027 4635 __ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha1_unaligned_input_loop);
kvn@7027 4636 __ mov(ofs, O0); // to be returned
kvn@7027 4637 }
kvn@7027 4638
kvn@7027 4639 // store F0-F4 into state and return
kvn@7027 4640 for (i = 0; i < 4; i++) {
kvn@7027 4641 __ stf(FloatRegisterImpl::S, as_FloatRegister(i), state, i*4);
kvn@7027 4642 }
kvn@7027 4643 __ retl();
kvn@7027 4644 __ delayed()->stf(FloatRegisterImpl::S, F4, state, 0x10);
kvn@7027 4645
kvn@7027 4646 return start;
kvn@7027 4647 }
kvn@7027 4648
kvn@7027 4649 address generate_sha256_implCompress(bool multi_block, const char *name) {
kvn@7027 4650 __ align(CodeEntryAlignment);
kvn@7027 4651 StubCodeMark mark(this, "StubRoutines", name);
kvn@7027 4652 address start = __ pc();
kvn@7027 4653
kvn@7027 4654 Label L_sha256_loop, L_sha256_unaligned_input, L_sha256_unaligned_input_loop;
kvn@7027 4655 int i;
kvn@7027 4656
kvn@7027 4657 Register buf = O0; // byte[] source+offset
kvn@7027 4658 Register state = O1; // int[] SHA2.state
kvn@7027 4659 Register ofs = O2; // int offset
kvn@7027 4660 Register limit = O3; // int limit
kvn@7027 4661
kvn@7027 4662 // load state into F0-F7
kvn@7027 4663 for (i = 0; i < 8; i++) {
kvn@7027 4664 __ ldf(FloatRegisterImpl::S, state, i*4, as_FloatRegister(i));
kvn@7027 4665 }
kvn@7027 4666
kvn@7027 4667 __ andcc(buf, 7, G0);
kvn@7027 4668 __ br(Assembler::notZero, false, Assembler::pn, L_sha256_unaligned_input);
kvn@7027 4669 __ delayed()->nop();
kvn@7027 4670
kvn@7027 4671 __ BIND(L_sha256_loop);
kvn@7027 4672 // load buf into F8-F22
kvn@7027 4673 for (i = 0; i < 8; i++) {
kvn@7027 4674 __ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 8));
kvn@7027 4675 }
kvn@7027 4676 __ sha256();
kvn@7027 4677 if (multi_block) {
kvn@7027 4678 __ add(ofs, 64, ofs);
kvn@7027 4679 __ add(buf, 64, buf);
kvn@7027 4680 __ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha256_loop);
kvn@7027 4681 __ mov(ofs, O0); // to be returned
kvn@7027 4682 }
kvn@7027 4683
kvn@7027 4684 // store F0-F7 into state and return
kvn@7027 4685 for (i = 0; i < 7; i++) {
kvn@7027 4686 __ stf(FloatRegisterImpl::S, as_FloatRegister(i), state, i*4);
kvn@7027 4687 }
kvn@7027 4688 __ retl();
kvn@7027 4689 __ delayed()->stf(FloatRegisterImpl::S, F7, state, 0x1c);
kvn@7027 4690
kvn@7027 4691 __ BIND(L_sha256_unaligned_input);
kvn@7027 4692 __ alignaddr(buf, G0, buf);
kvn@7027 4693
kvn@7027 4694 __ BIND(L_sha256_unaligned_input_loop);
kvn@7027 4695 // load buf into F8-F22
kvn@7027 4696 for (i = 0; i < 9; i++) {
kvn@7027 4697 __ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 8));
kvn@7027 4698 }
kvn@7027 4699 for (i = 0; i < 8; i++) {
kvn@7027 4700 __ faligndata(as_FloatRegister(i*2 + 8), as_FloatRegister(i*2 + 10), as_FloatRegister(i*2 + 8));
kvn@7027 4701 }
kvn@7027 4702 __ sha256();
kvn@7027 4703 if (multi_block) {
kvn@7027 4704 __ add(ofs, 64, ofs);
kvn@7027 4705 __ add(buf, 64, buf);
kvn@7027 4706 __ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha256_unaligned_input_loop);
kvn@7027 4707 __ mov(ofs, O0); // to be returned
kvn@7027 4708 }
kvn@7027 4709
kvn@7027 4710 // store F0-F7 into state and return
kvn@7027 4711 for (i = 0; i < 7; i++) {
kvn@7027 4712 __ stf(FloatRegisterImpl::S, as_FloatRegister(i), state, i*4);
kvn@7027 4713 }
kvn@7027 4714 __ retl();
kvn@7027 4715 __ delayed()->stf(FloatRegisterImpl::S, F7, state, 0x1c);
kvn@7027 4716
kvn@7027 4717 return start;
kvn@7027 4718 }
kvn@7027 4719
kvn@7027 4720 address generate_sha512_implCompress(bool multi_block, const char *name) {
kvn@7027 4721 __ align(CodeEntryAlignment);
kvn@7027 4722 StubCodeMark mark(this, "StubRoutines", name);
kvn@7027 4723 address start = __ pc();
kvn@7027 4724
kvn@7027 4725 Label L_sha512_loop, L_sha512_unaligned_input, L_sha512_unaligned_input_loop;
kvn@7027 4726 int i;
kvn@7027 4727
kvn@7027 4728 Register buf = O0; // byte[] source+offset
kvn@7027 4729 Register state = O1; // long[] SHA5.state
kvn@7027 4730 Register ofs = O2; // int offset
kvn@7027 4731 Register limit = O3; // int limit
kvn@7027 4732
kvn@7027 4733 // load state into F0-F14
kvn@7027 4734 for (i = 0; i < 8; i++) {
kvn@7027 4735 __ ldf(FloatRegisterImpl::D, state, i*8, as_FloatRegister(i*2));
kvn@7027 4736 }
kvn@7027 4737
kvn@7027 4738 __ andcc(buf, 7, G0);
kvn@7027 4739 __ br(Assembler::notZero, false, Assembler::pn, L_sha512_unaligned_input);
kvn@7027 4740 __ delayed()->nop();
kvn@7027 4741
kvn@7027 4742 __ BIND(L_sha512_loop);
kvn@7027 4743 // load buf into F16-F46
kvn@7027 4744 for (i = 0; i < 16; i++) {
kvn@7027 4745 __ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 16));
kvn@7027 4746 }
kvn@7027 4747 __ sha512();
kvn@7027 4748 if (multi_block) {
kvn@7027 4749 __ add(ofs, 128, ofs);
kvn@7027 4750 __ add(buf, 128, buf);
kvn@7027 4751 __ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha512_loop);
kvn@7027 4752 __ mov(ofs, O0); // to be returned
kvn@7027 4753 }
kvn@7027 4754
kvn@7027 4755 // store F0-F14 into state and return
kvn@7027 4756 for (i = 0; i < 7; i++) {
kvn@7027 4757 __ stf(FloatRegisterImpl::D, as_FloatRegister(i*2), state, i*8);
kvn@7027 4758 }
kvn@7027 4759 __ retl();
kvn@7027 4760 __ delayed()->stf(FloatRegisterImpl::D, F14, state, 0x38);
kvn@7027 4761
kvn@7027 4762 __ BIND(L_sha512_unaligned_input);
kvn@7027 4763 __ alignaddr(buf, G0, buf);
kvn@7027 4764
kvn@7027 4765 __ BIND(L_sha512_unaligned_input_loop);
kvn@7027 4766 // load buf into F16-F46
kvn@7027 4767 for (i = 0; i < 17; i++) {
kvn@7027 4768 __ ldf(FloatRegisterImpl::D, buf, i*8, as_FloatRegister(i*2 + 16));
kvn@7027 4769 }
kvn@7027 4770 for (i = 0; i < 16; i++) {
kvn@7027 4771 __ faligndata(as_FloatRegister(i*2 + 16), as_FloatRegister(i*2 + 18), as_FloatRegister(i*2 + 16));
kvn@7027 4772 }
kvn@7027 4773 __ sha512();
kvn@7027 4774 if (multi_block) {
kvn@7027 4775 __ add(ofs, 128, ofs);
kvn@7027 4776 __ add(buf, 128, buf);
kvn@7027 4777 __ cmp_and_brx_short(ofs, limit, Assembler::lessEqual, Assembler::pt, L_sha512_unaligned_input_loop);
kvn@7027 4778 __ mov(ofs, O0); // to be returned
kvn@7027 4779 }
kvn@7027 4780
kvn@7027 4781 // store F0-F14 into state and return
kvn@7027 4782 for (i = 0; i < 7; i++) {
kvn@7027 4783 __ stf(FloatRegisterImpl::D, as_FloatRegister(i*2), state, i*8);
kvn@7027 4784 }
kvn@7027 4785 __ retl();
kvn@7027 4786 __ delayed()->stf(FloatRegisterImpl::D, F14, state, 0x38);
kvn@7027 4787
kvn@7027 4788 return start;
kvn@7027 4789 }
kvn@7027 4790
duke@435 4791 void generate_initial() {
duke@435 4792 // Generates all stubs and initializes the entry points
duke@435 4793
duke@435 4794 //------------------------------------------------------------------------------------------------------------------------
duke@435 4795 // entry points that exist in all platforms
duke@435 4796 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
duke@435 4797 // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
duke@435 4798 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 4799
duke@435 4800 StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 4801 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 4802
duke@435 4803 //------------------------------------------------------------------------------------------------------------------------
duke@435 4804 // entry points that are platform specific
duke@435 4805 StubRoutines::Sparc::_test_stop_entry = generate_test_stop();
duke@435 4806
duke@435 4807 StubRoutines::Sparc::_stop_subroutine_entry = generate_stop_subroutine();
duke@435 4808 StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
duke@435 4809
duke@435 4810 #if !defined(COMPILER2) && !defined(_LP64)
duke@435 4811 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 4812 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 4813 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 4814 StubRoutines::_atomic_xchg_ptr_entry = StubRoutines::_atomic_xchg_entry;
duke@435 4815 StubRoutines::_atomic_cmpxchg_ptr_entry = StubRoutines::_atomic_cmpxchg_entry;
duke@435 4816 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 4817 StubRoutines::_atomic_add_ptr_entry = StubRoutines::_atomic_add_entry;
duke@435 4818 #endif // COMPILER2 !=> _LP64
never@2978 4819
bdelsart@3372 4820 // Build this early so it's available for the interpreter.
bdelsart@3372 4821 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
duke@435 4822 }
duke@435 4823
duke@435 4824
duke@435 4825 void generate_all() {
duke@435 4826 // Generates all stubs and initializes the entry points
duke@435 4827
kvn@1077 4828 // Generate partial_subtype_check first here since its code depends on
kvn@1077 4829 // UseZeroBaseCompressedOops which is defined after heap initialization.
kvn@1077 4830 StubRoutines::Sparc::_partial_subtype_check = generate_partial_subtype_check();
duke@435 4831 // These entry points require SharedInfo::stack0 to be set up in non-core builds
never@3136 4832 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
never@3136 4833 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
never@3136 4834 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
duke@435 4835
duke@435 4836 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 4837 generate_handler_for_unsafe_access();
duke@435 4838
duke@435 4839 // support for verify_oop (must happen after universe_init)
duke@435 4840 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop_subroutine();
duke@435 4841
duke@435 4842 // arraycopy stubs used by compilers
duke@435 4843 generate_arraycopy_stubs();
never@1609 4844
never@1609 4845 // Don't initialize the platform math functions since sparc
never@1609 4846 // doesn't have intrinsics for these operations.
goetz@5400 4847
goetz@5400 4848 // Safefetch stubs.
goetz@5400 4849 generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
goetz@5400 4850 &StubRoutines::_safefetch32_fault_pc,
goetz@5400 4851 &StubRoutines::_safefetch32_continuation_pc);
goetz@5400 4852 generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
goetz@5400 4853 &StubRoutines::_safefetchN_fault_pc,
goetz@5400 4854 &StubRoutines::_safefetchN_continuation_pc);
kvn@6312 4855
kvn@6312 4856 // generate AES intrinsics code
kvn@6312 4857 if (UseAESIntrinsics) {
kvn@6312 4858 StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
kvn@6312 4859 StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
kvn@6312 4860 StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
kvn@6312 4861 StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel();
kvn@6312 4862 }
kvn@7027 4863
kvn@7027 4864 // generate SHA1/SHA256/SHA512 intrinsics code
kvn@7027 4865 if (UseSHA1Intrinsics) {
kvn@7027 4866 StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress");
kvn@7027 4867 StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB");
kvn@7027 4868 }
kvn@7027 4869 if (UseSHA256Intrinsics) {
kvn@7027 4870 StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress");
kvn@7027 4871 StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB");
kvn@7027 4872 }
kvn@7027 4873 if (UseSHA512Intrinsics) {
kvn@7027 4874 StubRoutines::_sha512_implCompress = generate_sha512_implCompress(false, "sha512_implCompress");
kvn@7027 4875 StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB");
kvn@7027 4876 }
duke@435 4877 }
duke@435 4878
duke@435 4879
duke@435 4880 public:
duke@435 4881 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 4882 // replace the standard masm with a special one:
duke@435 4883 _masm = new MacroAssembler(code);
duke@435 4884
duke@435 4885 _stub_count = !all ? 0x100 : 0x200;
duke@435 4886 if (all) {
duke@435 4887 generate_all();
duke@435 4888 } else {
duke@435 4889 generate_initial();
duke@435 4890 }
duke@435 4891
duke@435 4892 // make sure this stub is available for all local calls
duke@435 4893 if (_atomic_add_stub.is_unbound()) {
duke@435 4894 // generate a second time, if necessary
duke@435 4895 (void) generate_atomic_add();
duke@435 4896 }
duke@435 4897 }
duke@435 4898
duke@435 4899
duke@435 4900 private:
duke@435 4901 int _stub_count;
duke@435 4902 void stub_prolog(StubCodeDesc* cdesc) {
duke@435 4903 # ifdef ASSERT
duke@435 4904 // put extra information in the stub code, to make it more readable
duke@435 4905 #ifdef _LP64
duke@435 4906 // Write the high part of the address
duke@435 4907 // [RGV] Check if there is a dependency on the size of this prolog
duke@435 4908 __ emit_data((intptr_t)cdesc >> 32, relocInfo::none);
duke@435 4909 #endif
duke@435 4910 __ emit_data((intptr_t)cdesc, relocInfo::none);
duke@435 4911 __ emit_data(++_stub_count, relocInfo::none);
duke@435 4912 # endif
duke@435 4913 align(true);
duke@435 4914 }
duke@435 4915
duke@435 4916 void align(bool at_header = false) {
duke@435 4917 // %%%%% move this constant somewhere else
duke@435 4918 // UltraSPARC cache line size is 8 instructions:
duke@435 4919 const unsigned int icache_line_size = 32;
duke@435 4920 const unsigned int icache_half_line_size = 16;
duke@435 4921
duke@435 4922 if (at_header) {
duke@435 4923 while ((intptr_t)(__ pc()) % icache_line_size != 0) {
duke@435 4924 __ emit_data(0, relocInfo::none);
duke@435 4925 }
duke@435 4926 } else {
duke@435 4927 while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
duke@435 4928 __ nop();
duke@435 4929 }
duke@435 4930 }
duke@435 4931 }
duke@435 4932
duke@435 4933 }; // end class declaration
duke@435 4934
duke@435 4935 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 4936 StubGenerator g(code, all);
duke@435 4937 }

mercurial