src/cpu/sparc/vm/stubGenerator_sparc.cpp

Fri, 07 Jun 2013 16:46:37 -0700

author
morris
date
Fri, 07 Jun 2013 16:46:37 -0700
changeset 5283
46c544b8fbfc
parent 4325
d2f8c38e543d
child 5400
980532a806a5
permissions
-rw-r--r--

8008407: remove SPARC V8 support
Summary: Removed most of the SPARC V8 instructions
Reviewed-by: kvn, twisti

duke@435 1 /*
coleenp@4037 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@4323 26 #include "asm/macroAssembler.inline.hpp"
stefank@2314 27 #include "interpreter/interpreter.hpp"
stefank@2314 28 #include "nativeInst_sparc.hpp"
stefank@2314 29 #include "oops/instanceOop.hpp"
coleenp@4037 30 #include "oops/method.hpp"
stefank@2314 31 #include "oops/objArrayKlass.hpp"
stefank@2314 32 #include "oops/oop.inline.hpp"
stefank@2314 33 #include "prims/methodHandles.hpp"
stefank@2314 34 #include "runtime/frame.inline.hpp"
stefank@2314 35 #include "runtime/handles.inline.hpp"
stefank@2314 36 #include "runtime/sharedRuntime.hpp"
stefank@2314 37 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 38 #include "runtime/stubRoutines.hpp"
stefank@4299 39 #include "runtime/thread.inline.hpp"
stefank@2314 40 #include "utilities/top.hpp"
stefank@2314 41 #ifdef COMPILER2
stefank@2314 42 #include "opto/runtime.hpp"
stefank@2314 43 #endif
duke@435 44
duke@435 45 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 46 // For a more detailed description of the stub routine structure
duke@435 47 // see the comment in stubRoutines.hpp.
duke@435 48
duke@435 49 #define __ _masm->
duke@435 50
duke@435 51 #ifdef PRODUCT
duke@435 52 #define BLOCK_COMMENT(str) /* nothing */
duke@435 53 #else
duke@435 54 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 55 #endif
duke@435 56
duke@435 57 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 58
duke@435 59 // Note: The register L7 is used as L7_thread_cache, and may not be used
duke@435 60 // any other way within this module.
duke@435 61
duke@435 62
duke@435 63 static const Register& Lstub_temp = L2;
duke@435 64
duke@435 65 // -------------------------------------------------------------------------------------------------------------------------
duke@435 66 // Stub Code definitions
duke@435 67
duke@435 68 static address handle_unsafe_access() {
duke@435 69 JavaThread* thread = JavaThread::current();
duke@435 70 address pc = thread->saved_exception_pc();
duke@435 71 address npc = thread->saved_exception_npc();
duke@435 72 // pc is the instruction which we must emulate
duke@435 73 // doing a no-op is fine: return garbage from the load
duke@435 74
duke@435 75 // request an async exception
duke@435 76 thread->set_pending_unsafe_access_error();
duke@435 77
duke@435 78 // return address of next instruction to execute
duke@435 79 return npc;
duke@435 80 }
duke@435 81
duke@435 82 class StubGenerator: public StubCodeGenerator {
duke@435 83 private:
duke@435 84
duke@435 85 #ifdef PRODUCT
duke@435 86 #define inc_counter_np(a,b,c) (0)
duke@435 87 #else
duke@435 88 #define inc_counter_np(counter, t1, t2) \
duke@435 89 BLOCK_COMMENT("inc_counter " #counter); \
twisti@1162 90 __ inc_counter(&counter, t1, t2);
duke@435 91 #endif
duke@435 92
duke@435 93 //----------------------------------------------------------------------------------------------------
duke@435 94 // Call stubs are used to call Java from C
duke@435 95
duke@435 96 address generate_call_stub(address& return_pc) {
duke@435 97 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 98 address start = __ pc();
duke@435 99
duke@435 100 // Incoming arguments:
duke@435 101 //
duke@435 102 // o0 : call wrapper address
duke@435 103 // o1 : result (address)
duke@435 104 // o2 : result type
duke@435 105 // o3 : method
duke@435 106 // o4 : (interpreter) entry point
duke@435 107 // o5 : parameters (address)
duke@435 108 // [sp + 0x5c]: parameter size (in words)
duke@435 109 // [sp + 0x60]: thread
duke@435 110 //
duke@435 111 // +---------------+ <--- sp + 0
duke@435 112 // | |
duke@435 113 // . reg save area .
duke@435 114 // | |
duke@435 115 // +---------------+ <--- sp + 0x40
duke@435 116 // | |
duke@435 117 // . extra 7 slots .
duke@435 118 // | |
duke@435 119 // +---------------+ <--- sp + 0x5c
duke@435 120 // | param. size |
duke@435 121 // +---------------+ <--- sp + 0x60
duke@435 122 // | thread |
duke@435 123 // +---------------+
duke@435 124 // | |
duke@435 125
duke@435 126 // note: if the link argument position changes, adjust
duke@435 127 // the code in frame::entry_frame_call_wrapper()
duke@435 128
duke@435 129 const Argument link = Argument(0, false); // used only for GC
duke@435 130 const Argument result = Argument(1, false);
duke@435 131 const Argument result_type = Argument(2, false);
duke@435 132 const Argument method = Argument(3, false);
duke@435 133 const Argument entry_point = Argument(4, false);
duke@435 134 const Argument parameters = Argument(5, false);
duke@435 135 const Argument parameter_size = Argument(6, false);
duke@435 136 const Argument thread = Argument(7, false);
duke@435 137
duke@435 138 // setup thread register
duke@435 139 __ ld_ptr(thread.as_address(), G2_thread);
coleenp@548 140 __ reinit_heapbase();
duke@435 141
duke@435 142 #ifdef ASSERT
duke@435 143 // make sure we have no pending exceptions
duke@435 144 { const Register t = G3_scratch;
duke@435 145 Label L;
duke@435 146 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
kvn@3037 147 __ br_null_short(t, Assembler::pt, L);
duke@435 148 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 149 __ bind(L);
duke@435 150 }
duke@435 151 #endif
duke@435 152
duke@435 153 // create activation frame & allocate space for parameters
duke@435 154 { const Register t = G3_scratch;
duke@435 155 __ ld_ptr(parameter_size.as_address(), t); // get parameter size (in words)
duke@435 156 __ add(t, frame::memory_parameter_word_sp_offset, t); // add space for save area (in words)
duke@435 157 __ round_to(t, WordsPerLong); // make sure it is multiple of 2 (in words)
twisti@1861 158 __ sll(t, Interpreter::logStackElementSize, t); // compute number of bytes
duke@435 159 __ neg(t); // negate so it can be used with save
duke@435 160 __ save(SP, t, SP); // setup new frame
duke@435 161 }
duke@435 162
duke@435 163 // +---------------+ <--- sp + 0
duke@435 164 // | |
duke@435 165 // . reg save area .
duke@435 166 // | |
duke@435 167 // +---------------+ <--- sp + 0x40
duke@435 168 // | |
duke@435 169 // . extra 7 slots .
duke@435 170 // | |
duke@435 171 // +---------------+ <--- sp + 0x5c
duke@435 172 // | empty slot | (only if parameter size is even)
duke@435 173 // +---------------+
duke@435 174 // | |
duke@435 175 // . parameters .
duke@435 176 // | |
duke@435 177 // +---------------+ <--- fp + 0
duke@435 178 // | |
duke@435 179 // . reg save area .
duke@435 180 // | |
duke@435 181 // +---------------+ <--- fp + 0x40
duke@435 182 // | |
duke@435 183 // . extra 7 slots .
duke@435 184 // | |
duke@435 185 // +---------------+ <--- fp + 0x5c
duke@435 186 // | param. size |
duke@435 187 // +---------------+ <--- fp + 0x60
duke@435 188 // | thread |
duke@435 189 // +---------------+
duke@435 190 // | |
duke@435 191
duke@435 192 // pass parameters if any
duke@435 193 BLOCK_COMMENT("pass parameters if any");
duke@435 194 { const Register src = parameters.as_in().as_register();
duke@435 195 const Register dst = Lentry_args;
duke@435 196 const Register tmp = G3_scratch;
duke@435 197 const Register cnt = G4_scratch;
duke@435 198
duke@435 199 // test if any parameters & setup of Lentry_args
duke@435 200 Label exit;
duke@435 201 __ ld_ptr(parameter_size.as_in().as_address(), cnt); // parameter counter
duke@435 202 __ add( FP, STACK_BIAS, dst );
kvn@3037 203 __ cmp_zero_and_br(Assembler::zero, cnt, exit);
duke@435 204 __ delayed()->sub(dst, BytesPerWord, dst); // setup Lentry_args
duke@435 205
duke@435 206 // copy parameters if any
duke@435 207 Label loop;
duke@435 208 __ BIND(loop);
duke@435 209 // Store parameter value
duke@435 210 __ ld_ptr(src, 0, tmp);
duke@435 211 __ add(src, BytesPerWord, src);
twisti@1861 212 __ st_ptr(tmp, dst, 0);
duke@435 213 __ deccc(cnt);
duke@435 214 __ br(Assembler::greater, false, Assembler::pt, loop);
twisti@1861 215 __ delayed()->sub(dst, Interpreter::stackElementSize, dst);
duke@435 216
duke@435 217 // done
duke@435 218 __ BIND(exit);
duke@435 219 }
duke@435 220
duke@435 221 // setup parameters, method & call Java function
duke@435 222 #ifdef ASSERT
duke@435 223 // layout_activation_impl checks it's notion of saved SP against
duke@435 224 // this register, so if this changes update it as well.
duke@435 225 const Register saved_SP = Lscratch;
duke@435 226 __ mov(SP, saved_SP); // keep track of SP before call
duke@435 227 #endif
duke@435 228
duke@435 229 // setup parameters
duke@435 230 const Register t = G3_scratch;
duke@435 231 __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
twisti@1861 232 __ sll(t, Interpreter::logStackElementSize, t); // compute number of bytes
duke@435 233 __ sub(FP, t, Gargs); // setup parameter pointer
duke@435 234 #ifdef _LP64
duke@435 235 __ add( Gargs, STACK_BIAS, Gargs ); // Account for LP64 stack bias
duke@435 236 #endif
duke@435 237 __ mov(SP, O5_savedSP);
duke@435 238
duke@435 239
duke@435 240 // do the call
duke@435 241 //
duke@435 242 // the following register must be setup:
duke@435 243 //
duke@435 244 // G2_thread
duke@435 245 // G5_method
duke@435 246 // Gargs
duke@435 247 BLOCK_COMMENT("call Java function");
duke@435 248 __ jmpl(entry_point.as_in().as_register(), G0, O7);
duke@435 249 __ delayed()->mov(method.as_in().as_register(), G5_method); // setup method
duke@435 250
duke@435 251 BLOCK_COMMENT("call_stub_return_address:");
duke@435 252 return_pc = __ pc();
duke@435 253
duke@435 254 // The callee, if it wasn't interpreted, can return with SP changed so
duke@435 255 // we can no longer assert of change of SP.
duke@435 256
duke@435 257 // store result depending on type
duke@435 258 // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
duke@435 259 // is treated as T_INT)
duke@435 260 { const Register addr = result .as_in().as_register();
duke@435 261 const Register type = result_type.as_in().as_register();
duke@435 262 Label is_long, is_float, is_double, is_object, exit;
duke@435 263 __ cmp(type, T_OBJECT); __ br(Assembler::equal, false, Assembler::pn, is_object);
duke@435 264 __ delayed()->cmp(type, T_FLOAT); __ br(Assembler::equal, false, Assembler::pn, is_float);
duke@435 265 __ delayed()->cmp(type, T_DOUBLE); __ br(Assembler::equal, false, Assembler::pn, is_double);
duke@435 266 __ delayed()->cmp(type, T_LONG); __ br(Assembler::equal, false, Assembler::pn, is_long);
duke@435 267 __ delayed()->nop();
duke@435 268
duke@435 269 // store int result
duke@435 270 __ st(O0, addr, G0);
duke@435 271
duke@435 272 __ BIND(exit);
duke@435 273 __ ret();
duke@435 274 __ delayed()->restore();
duke@435 275
duke@435 276 __ BIND(is_object);
kvn@3037 277 __ ba(exit);
duke@435 278 __ delayed()->st_ptr(O0, addr, G0);
duke@435 279
duke@435 280 __ BIND(is_float);
kvn@3037 281 __ ba(exit);
duke@435 282 __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
duke@435 283
duke@435 284 __ BIND(is_double);
kvn@3037 285 __ ba(exit);
duke@435 286 __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
duke@435 287
duke@435 288 __ BIND(is_long);
duke@435 289 #ifdef _LP64
kvn@3037 290 __ ba(exit);
duke@435 291 __ delayed()->st_long(O0, addr, G0); // store entire long
duke@435 292 #else
duke@435 293 #if defined(COMPILER2)
duke@435 294 // All return values are where we want them, except for Longs. C2 returns
duke@435 295 // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
duke@435 296 // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
duke@435 297 // build we simply always use G1.
duke@435 298 // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
duke@435 299 // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
duke@435 300 // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
duke@435 301
kvn@3037 302 __ ba(exit);
duke@435 303 __ delayed()->stx(G1, addr, G0); // store entire long
duke@435 304 #else
duke@435 305 __ st(O1, addr, BytesPerInt);
kvn@3037 306 __ ba(exit);
duke@435 307 __ delayed()->st(O0, addr, G0);
duke@435 308 #endif /* COMPILER2 */
duke@435 309 #endif /* _LP64 */
duke@435 310 }
duke@435 311 return start;
duke@435 312 }
duke@435 313
duke@435 314
duke@435 315 //----------------------------------------------------------------------------------------------------
duke@435 316 // Return point for a Java call if there's an exception thrown in Java code.
duke@435 317 // The exception is caught and transformed into a pending exception stored in
duke@435 318 // JavaThread that can be tested from within the VM.
duke@435 319 //
duke@435 320 // Oexception: exception oop
duke@435 321
duke@435 322 address generate_catch_exception() {
duke@435 323 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 324
duke@435 325 address start = __ pc();
duke@435 326 // verify that thread corresponds
duke@435 327 __ verify_thread();
duke@435 328
duke@435 329 const Register& temp_reg = Gtemp;
twisti@1162 330 Address pending_exception_addr (G2_thread, Thread::pending_exception_offset());
twisti@1162 331 Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset ());
twisti@1162 332 Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset ());
duke@435 333
duke@435 334 // set pending exception
duke@435 335 __ verify_oop(Oexception);
duke@435 336 __ st_ptr(Oexception, pending_exception_addr);
duke@435 337 __ set((intptr_t)__FILE__, temp_reg);
duke@435 338 __ st_ptr(temp_reg, exception_file_offset_addr);
duke@435 339 __ set((intptr_t)__LINE__, temp_reg);
duke@435 340 __ st(temp_reg, exception_line_offset_addr);
duke@435 341
duke@435 342 // complete return to VM
duke@435 343 assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
duke@435 344
twisti@1162 345 AddressLiteral stub_ret(StubRoutines::_call_stub_return_address);
twisti@1162 346 __ jump_to(stub_ret, temp_reg);
duke@435 347 __ delayed()->nop();
duke@435 348
duke@435 349 return start;
duke@435 350 }
duke@435 351
duke@435 352
duke@435 353 //----------------------------------------------------------------------------------------------------
duke@435 354 // Continuation point for runtime calls returning with a pending exception
duke@435 355 // The pending exception check happened in the runtime or native call stub
duke@435 356 // The pending exception in Thread is converted into a Java-level exception
duke@435 357 //
duke@435 358 // Contract with Java-level exception handler: O0 = exception
duke@435 359 // O1 = throwing pc
duke@435 360
duke@435 361 address generate_forward_exception() {
duke@435 362 StubCodeMark mark(this, "StubRoutines", "forward_exception");
duke@435 363 address start = __ pc();
duke@435 364
duke@435 365 // Upon entry, O7 has the return address returning into Java
duke@435 366 // (interpreted or compiled) code; i.e. the return address
duke@435 367 // becomes the throwing pc.
duke@435 368
duke@435 369 const Register& handler_reg = Gtemp;
duke@435 370
twisti@1162 371 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 372
duke@435 373 #ifdef ASSERT
duke@435 374 // make sure that this code is only executed if there is a pending exception
duke@435 375 { Label L;
duke@435 376 __ ld_ptr(exception_addr, Gtemp);
kvn@3037 377 __ br_notnull_short(Gtemp, Assembler::pt, L);
duke@435 378 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 379 __ bind(L);
duke@435 380 }
duke@435 381 #endif
duke@435 382
duke@435 383 // compute exception handler into handler_reg
duke@435 384 __ get_thread();
duke@435 385 __ ld_ptr(exception_addr, Oexception);
duke@435 386 __ verify_oop(Oexception);
duke@435 387 __ save_frame(0); // compensates for compiler weakness
duke@435 388 __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
duke@435 389 BLOCK_COMMENT("call exception_handler_for_return_address");
twisti@1730 390 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Lscratch);
duke@435 391 __ mov(O0, handler_reg);
duke@435 392 __ restore(); // compensates for compiler weakness
duke@435 393
duke@435 394 __ ld_ptr(exception_addr, Oexception);
duke@435 395 __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
duke@435 396
duke@435 397 #ifdef ASSERT
duke@435 398 // make sure exception is set
duke@435 399 { Label L;
kvn@3037 400 __ br_notnull_short(Oexception, Assembler::pt, L);
duke@435 401 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 402 __ bind(L);
duke@435 403 }
duke@435 404 #endif
duke@435 405 // jump to exception handler
duke@435 406 __ jmp(handler_reg, 0);
duke@435 407 // clear pending exception
duke@435 408 __ delayed()->st_ptr(G0, exception_addr);
duke@435 409
duke@435 410 return start;
duke@435 411 }
duke@435 412
duke@435 413
duke@435 414 //------------------------------------------------------------------------------------------------------------------------
duke@435 415 // Continuation point for throwing of implicit exceptions that are not handled in
duke@435 416 // the current activation. Fabricates an exception oop and initiates normal
duke@435 417 // exception dispatching in this frame. Only callee-saved registers are preserved
duke@435 418 // (through the normal register window / RegisterMap handling).
duke@435 419 // If the compiler needs all registers to be preserved between the fault
duke@435 420 // point and the exception handler then it must assume responsibility for that in
duke@435 421 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 422 // continuation_for_implicit_division_by_zero_exception. All other implicit
duke@435 423 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
duke@435 424 // either at call sites or otherwise assume that stack unwinding will be initiated,
duke@435 425 // so caller saved registers were assumed volatile in the compiler.
duke@435 426
duke@435 427 // Note that we generate only this stub into a RuntimeStub, because it needs to be
duke@435 428 // properly traversed and ignored during GC, so we change the meaning of the "__"
duke@435 429 // macro within this method.
duke@435 430 #undef __
duke@435 431 #define __ masm->
duke@435 432
never@3136 433 address generate_throw_exception(const char* name, address runtime_entry,
never@2978 434 Register arg1 = noreg, Register arg2 = noreg) {
duke@435 435 #ifdef ASSERT
duke@435 436 int insts_size = VerifyThread ? 1 * K : 600;
duke@435 437 #else
duke@435 438 int insts_size = VerifyThread ? 1 * K : 256;
duke@435 439 #endif /* ASSERT */
duke@435 440 int locs_size = 32;
duke@435 441
duke@435 442 CodeBuffer code(name, insts_size, locs_size);
duke@435 443 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 444
duke@435 445 __ verify_thread();
duke@435 446
duke@435 447 // This is an inlined and slightly modified version of call_VM
duke@435 448 // which has the ability to fetch the return PC out of thread-local storage
duke@435 449 __ assert_not_delayed();
duke@435 450
duke@435 451 // Note that we always push a frame because on the SPARC
duke@435 452 // architecture, for all of our implicit exception kinds at call
duke@435 453 // sites, the implicit exception is taken before the callee frame
duke@435 454 // is pushed.
duke@435 455 __ save_frame(0);
duke@435 456
duke@435 457 int frame_complete = __ offset();
duke@435 458
duke@435 459 // Note that we always have a runtime stub frame on the top of stack by this point
duke@435 460 Register last_java_sp = SP;
duke@435 461 // 64-bit last_java_sp is biased!
duke@435 462 __ set_last_Java_frame(last_java_sp, G0);
duke@435 463 if (VerifyThread) __ mov(G2_thread, O0); // about to be smashed; pass early
duke@435 464 __ save_thread(noreg);
never@2978 465 if (arg1 != noreg) {
never@2978 466 assert(arg2 != O1, "clobbered");
never@2978 467 __ mov(arg1, O1);
never@2978 468 }
never@2978 469 if (arg2 != noreg) {
never@2978 470 __ mov(arg2, O2);
never@2978 471 }
duke@435 472 // do the call
duke@435 473 BLOCK_COMMENT("call runtime_entry");
duke@435 474 __ call(runtime_entry, relocInfo::runtime_call_type);
duke@435 475 if (!VerifyThread)
duke@435 476 __ delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 477 else
duke@435 478 __ delayed()->nop(); // (thread already passed)
duke@435 479 __ restore_thread(noreg);
duke@435 480 __ reset_last_Java_frame();
duke@435 481
duke@435 482 // check for pending exceptions. use Gtemp as scratch register.
duke@435 483 #ifdef ASSERT
duke@435 484 Label L;
duke@435 485
twisti@1162 486 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 487 Register scratch_reg = Gtemp;
duke@435 488 __ ld_ptr(exception_addr, scratch_reg);
kvn@3037 489 __ br_notnull_short(scratch_reg, Assembler::pt, L);
duke@435 490 __ should_not_reach_here();
duke@435 491 __ bind(L);
duke@435 492 #endif // ASSERT
duke@435 493 BLOCK_COMMENT("call forward_exception_entry");
duke@435 494 __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 495 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 496 __ delayed()->restore();
duke@435 497
duke@435 498 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
duke@435 499 return stub->entry_point();
duke@435 500 }
duke@435 501
duke@435 502 #undef __
duke@435 503 #define __ _masm->
duke@435 504
duke@435 505
duke@435 506 // Generate a routine that sets all the registers so we
duke@435 507 // can tell if the stop routine prints them correctly.
duke@435 508 address generate_test_stop() {
duke@435 509 StubCodeMark mark(this, "StubRoutines", "test_stop");
duke@435 510 address start = __ pc();
duke@435 511
duke@435 512 int i;
duke@435 513
duke@435 514 __ save_frame(0);
duke@435 515
duke@435 516 static jfloat zero = 0.0, one = 1.0;
duke@435 517
duke@435 518 // put addr in L0, then load through L0 to F0
duke@435 519 __ set((intptr_t)&zero, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F0);
duke@435 520 __ set((intptr_t)&one, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
duke@435 521
duke@435 522 // use add to put 2..18 in F2..F18
duke@435 523 for ( i = 2; i <= 18; ++i ) {
duke@435 524 __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1), as_FloatRegister(i));
duke@435 525 }
duke@435 526
duke@435 527 // Now put double 2 in F16, double 18 in F18
duke@435 528 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
duke@435 529 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
duke@435 530
duke@435 531 // use add to put 20..32 in F20..F32
duke@435 532 for (i = 20; i < 32; i += 2) {
duke@435 533 __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2), as_FloatRegister(i));
duke@435 534 }
duke@435 535
duke@435 536 // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
duke@435 537 for ( i = 0; i < 8; ++i ) {
duke@435 538 if (i < 6) {
duke@435 539 __ set( i, as_iRegister(i));
duke@435 540 __ set(16 + i, as_oRegister(i));
duke@435 541 __ set(24 + i, as_gRegister(i));
duke@435 542 }
duke@435 543 __ set( 8 + i, as_lRegister(i));
duke@435 544 }
duke@435 545
duke@435 546 __ stop("testing stop");
duke@435 547
duke@435 548
duke@435 549 __ ret();
duke@435 550 __ delayed()->restore();
duke@435 551
duke@435 552 return start;
duke@435 553 }
duke@435 554
duke@435 555
duke@435 556 address generate_stop_subroutine() {
duke@435 557 StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
duke@435 558 address start = __ pc();
duke@435 559
duke@435 560 __ stop_subroutine();
duke@435 561
duke@435 562 return start;
duke@435 563 }
duke@435 564
duke@435 565 address generate_flush_callers_register_windows() {
duke@435 566 StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
duke@435 567 address start = __ pc();
duke@435 568
morris@5283 569 __ flushw();
duke@435 570 __ retl(false);
duke@435 571 __ delayed()->add( FP, STACK_BIAS, O0 );
duke@435 572 // The returned value must be a stack pointer whose register save area
duke@435 573 // is flushed, and will stay flushed while the caller executes.
duke@435 574
duke@435 575 return start;
duke@435 576 }
duke@435 577
duke@435 578 // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
duke@435 579 //
morris@5283 580 // Arguments:
duke@435 581 //
duke@435 582 // exchange_value: O0
duke@435 583 // dest: O1
duke@435 584 //
duke@435 585 // Results:
duke@435 586 //
duke@435 587 // O0: the value previously stored in dest
duke@435 588 //
duke@435 589 address generate_atomic_xchg() {
duke@435 590 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 591 address start = __ pc();
duke@435 592
duke@435 593 if (UseCASForSwap) {
duke@435 594 // Use CAS instead of swap, just in case the MP hardware
duke@435 595 // prefers to work with just one kind of synch. instruction.
duke@435 596 Label retry;
duke@435 597 __ BIND(retry);
duke@435 598 __ mov(O0, O3); // scratch copy of exchange value
duke@435 599 __ ld(O1, 0, O2); // observe the previous value
duke@435 600 // try to replace O2 with O3
morris@5283 601 __ cas(O1, O2, O3);
kvn@3037 602 __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
duke@435 603
duke@435 604 __ retl(false);
duke@435 605 __ delayed()->mov(O2, O0); // report previous value to caller
duke@435 606 } else {
morris@5283 607 __ retl(false);
morris@5283 608 __ delayed()->swap(O1, 0, O0);
duke@435 609 }
duke@435 610
duke@435 611 return start;
duke@435 612 }
duke@435 613
duke@435 614
duke@435 615 // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
duke@435 616 //
morris@5283 617 // Arguments:
duke@435 618 //
duke@435 619 // exchange_value: O0
duke@435 620 // dest: O1
duke@435 621 // compare_value: O2
duke@435 622 //
duke@435 623 // Results:
duke@435 624 //
duke@435 625 // O0: the value previously stored in dest
duke@435 626 //
duke@435 627 address generate_atomic_cmpxchg() {
duke@435 628 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 629 address start = __ pc();
duke@435 630
duke@435 631 // cmpxchg(dest, compare_value, exchange_value)
morris@5283 632 __ cas(O1, O2, O0);
duke@435 633 __ retl(false);
duke@435 634 __ delayed()->nop();
duke@435 635
duke@435 636 return start;
duke@435 637 }
duke@435 638
duke@435 639 // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
duke@435 640 //
morris@5283 641 // Arguments:
duke@435 642 //
duke@435 643 // exchange_value: O1:O0
duke@435 644 // dest: O2
duke@435 645 // compare_value: O4:O3
duke@435 646 //
duke@435 647 // Results:
duke@435 648 //
duke@435 649 // O1:O0: the value previously stored in dest
duke@435 650 //
duke@435 651 // Overwrites: G1,G2,G3
duke@435 652 //
duke@435 653 address generate_atomic_cmpxchg_long() {
duke@435 654 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 655 address start = __ pc();
duke@435 656
duke@435 657 __ sllx(O0, 32, O0);
duke@435 658 __ srl(O1, 0, O1);
duke@435 659 __ or3(O0,O1,O0); // O0 holds 64-bit value from compare_value
duke@435 660 __ sllx(O3, 32, O3);
duke@435 661 __ srl(O4, 0, O4);
duke@435 662 __ or3(O3,O4,O3); // O3 holds 64-bit value from exchange_value
duke@435 663 __ casx(O2, O3, O0);
duke@435 664 __ srl(O0, 0, O1); // unpacked return value in O1:O0
duke@435 665 __ retl(false);
duke@435 666 __ delayed()->srlx(O0, 32, O0);
duke@435 667
duke@435 668 return start;
duke@435 669 }
duke@435 670
duke@435 671
duke@435 672 // Support for jint Atomic::add(jint add_value, volatile jint* dest).
duke@435 673 //
morris@5283 674 // Arguments:
duke@435 675 //
duke@435 676 // add_value: O0 (e.g., +1 or -1)
duke@435 677 // dest: O1
duke@435 678 //
duke@435 679 // Results:
duke@435 680 //
duke@435 681 // O0: the new value stored in dest
duke@435 682 //
morris@5283 683 // Overwrites: O3
duke@435 684 //
duke@435 685 address generate_atomic_add() {
duke@435 686 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 687 address start = __ pc();
duke@435 688 __ BIND(_atomic_add_stub);
duke@435 689
morris@5283 690 Label(retry);
morris@5283 691 __ BIND(retry);
morris@5283 692
morris@5283 693 __ lduw(O1, 0, O2);
morris@5283 694 __ add(O0, O2, O3);
morris@5283 695 __ cas(O1, O2, O3);
morris@5283 696 __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
morris@5283 697 __ retl(false);
morris@5283 698 __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
duke@435 699
duke@435 700 return start;
duke@435 701 }
duke@435 702 Label _atomic_add_stub; // called from other stubs
duke@435 703
duke@435 704
duke@435 705 //------------------------------------------------------------------------------------------------------------------------
duke@435 706 // The following routine generates a subroutine to throw an asynchronous
duke@435 707 // UnknownError when an unsafe access gets a fault that could not be
duke@435 708 // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
duke@435 709 //
duke@435 710 // Arguments :
duke@435 711 //
duke@435 712 // trapping PC: O7
duke@435 713 //
duke@435 714 // Results:
duke@435 715 // posts an asynchronous exception, skips the trapping instruction
duke@435 716 //
duke@435 717
duke@435 718 address generate_handler_for_unsafe_access() {
duke@435 719 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 720 address start = __ pc();
duke@435 721
duke@435 722 const int preserve_register_words = (64 * 2);
twisti@1162 723 Address preserve_addr(FP, (-preserve_register_words * wordSize) + STACK_BIAS);
duke@435 724
duke@435 725 Register Lthread = L7_thread_cache;
duke@435 726 int i;
duke@435 727
duke@435 728 __ save_frame(0);
duke@435 729 __ mov(G1, L1);
duke@435 730 __ mov(G2, L2);
duke@435 731 __ mov(G3, L3);
duke@435 732 __ mov(G4, L4);
duke@435 733 __ mov(G5, L5);
morris@5283 734 for (i = 0; i < 64; i += 2) {
duke@435 735 __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
duke@435 736 }
duke@435 737
duke@435 738 address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
duke@435 739 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 740 __ call(entry_point, relocInfo::runtime_call_type);
duke@435 741 __ delayed()->nop();
duke@435 742
duke@435 743 __ mov(L1, G1);
duke@435 744 __ mov(L2, G2);
duke@435 745 __ mov(L3, G3);
duke@435 746 __ mov(L4, G4);
duke@435 747 __ mov(L5, G5);
morris@5283 748 for (i = 0; i < 64; i += 2) {
duke@435 749 __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
duke@435 750 }
duke@435 751
duke@435 752 __ verify_thread();
duke@435 753
duke@435 754 __ jmp(O0, 0);
duke@435 755 __ delayed()->restore();
duke@435 756
duke@435 757 return start;
duke@435 758 }
duke@435 759
duke@435 760
duke@435 761 // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
duke@435 762 // Arguments :
duke@435 763 //
duke@435 764 // ret : O0, returned
duke@435 765 // icc/xcc: set as O0 (depending on wordSize)
duke@435 766 // sub : O1, argument, not changed
duke@435 767 // super: O2, argument, not changed
duke@435 768 // raddr: O7, blown by call
duke@435 769 address generate_partial_subtype_check() {
coleenp@548 770 __ align(CodeEntryAlignment);
duke@435 771 StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
duke@435 772 address start = __ pc();
jrose@1079 773 Label miss;
duke@435 774
duke@435 775 #if defined(COMPILER2) && !defined(_LP64)
duke@435 776 // Do not use a 'save' because it blows the 64-bit O registers.
coleenp@548 777 __ add(SP,-4*wordSize,SP); // Make space for 4 temps (stack must be 2 words aligned)
duke@435 778 __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
duke@435 779 __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
duke@435 780 __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
duke@435 781 __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
duke@435 782 Register Rret = O0;
duke@435 783 Register Rsub = O1;
duke@435 784 Register Rsuper = O2;
duke@435 785 #else
duke@435 786 __ save_frame(0);
duke@435 787 Register Rret = I0;
duke@435 788 Register Rsub = I1;
duke@435 789 Register Rsuper = I2;
duke@435 790 #endif
duke@435 791
duke@435 792 Register L0_ary_len = L0;
duke@435 793 Register L1_ary_ptr = L1;
duke@435 794 Register L2_super = L2;
duke@435 795 Register L3_index = L3;
duke@435 796
jrose@1079 797 __ check_klass_subtype_slow_path(Rsub, Rsuper,
jrose@1079 798 L0, L1, L2, L3,
jrose@1079 799 NULL, &miss);
jrose@1079 800
jrose@1079 801 // Match falls through here.
jrose@1079 802 __ addcc(G0,0,Rret); // set Z flags, Z result
duke@435 803
duke@435 804 #if defined(COMPILER2) && !defined(_LP64)
duke@435 805 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 806 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 807 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 808 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 809 __ retl(); // Result in Rret is zero; flags set to Z
duke@435 810 __ delayed()->add(SP,4*wordSize,SP);
duke@435 811 #else
duke@435 812 __ ret(); // Result in Rret is zero; flags set to Z
duke@435 813 __ delayed()->restore();
duke@435 814 #endif
duke@435 815
duke@435 816 __ BIND(miss);
duke@435 817 __ addcc(G0,1,Rret); // set NZ flags, NZ result
duke@435 818
duke@435 819 #if defined(COMPILER2) && !defined(_LP64)
duke@435 820 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 821 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 822 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 823 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 824 __ retl(); // Result in Rret is != 0; flags set to NZ
duke@435 825 __ delayed()->add(SP,4*wordSize,SP);
duke@435 826 #else
duke@435 827 __ ret(); // Result in Rret is != 0; flags set to NZ
duke@435 828 __ delayed()->restore();
duke@435 829 #endif
duke@435 830
duke@435 831 return start;
duke@435 832 }
duke@435 833
duke@435 834
duke@435 835 // Called from MacroAssembler::verify_oop
duke@435 836 //
duke@435 837 address generate_verify_oop_subroutine() {
duke@435 838 StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
duke@435 839
duke@435 840 address start = __ pc();
duke@435 841
duke@435 842 __ verify_oop_subroutine();
duke@435 843
duke@435 844 return start;
duke@435 845 }
duke@435 846
duke@435 847
duke@435 848 //
duke@435 849 // Verify that a register contains clean 32-bits positive value
duke@435 850 // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
duke@435 851 //
duke@435 852 // Input:
duke@435 853 // Rint - 32-bits value
duke@435 854 // Rtmp - scratch
duke@435 855 //
duke@435 856 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 857 #if defined(ASSERT) && defined(_LP64)
duke@435 858 __ signx(Rint, Rtmp);
duke@435 859 __ cmp(Rint, Rtmp);
duke@435 860 __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
duke@435 861 #endif
duke@435 862 }
duke@435 863
duke@435 864 //
duke@435 865 // Generate overlap test for array copy stubs
duke@435 866 //
duke@435 867 // Input:
duke@435 868 // O0 - array1
duke@435 869 // O1 - array2
duke@435 870 // O2 - element count
duke@435 871 //
duke@435 872 // Kills temps: O3, O4
duke@435 873 //
duke@435 874 void array_overlap_test(address no_overlap_target, int log2_elem_size) {
duke@435 875 assert(no_overlap_target != NULL, "must be generated");
duke@435 876 array_overlap_test(no_overlap_target, NULL, log2_elem_size);
duke@435 877 }
duke@435 878 void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
duke@435 879 array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
duke@435 880 }
duke@435 881 void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
duke@435 882 const Register from = O0;
duke@435 883 const Register to = O1;
duke@435 884 const Register count = O2;
duke@435 885 const Register to_from = O3; // to - from
duke@435 886 const Register byte_count = O4; // count << log2_elem_size
duke@435 887
duke@435 888 __ subcc(to, from, to_from);
duke@435 889 __ sll_ptr(count, log2_elem_size, byte_count);
duke@435 890 if (NOLp == NULL)
duke@435 891 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
duke@435 892 else
duke@435 893 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
duke@435 894 __ delayed()->cmp(to_from, byte_count);
duke@435 895 if (NOLp == NULL)
tonyp@2010 896 __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, no_overlap_target);
duke@435 897 else
tonyp@2010 898 __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, (*NOLp));
duke@435 899 __ delayed()->nop();
duke@435 900 }
duke@435 901
duke@435 902 //
duke@435 903 // Generate pre-write barrier for array.
duke@435 904 //
duke@435 905 // Input:
duke@435 906 // addr - register containing starting address
duke@435 907 // count - register containing element count
duke@435 908 // tmp - scratch register
duke@435 909 //
duke@435 910 // The input registers are overwritten.
duke@435 911 //
iveresov@2606 912 void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
duke@435 913 BarrierSet* bs = Universe::heap()->barrier_set();
iveresov@2606 914 switch (bs->kind()) {
iveresov@2606 915 case BarrierSet::G1SATBCT:
iveresov@2606 916 case BarrierSet::G1SATBCTLogging:
iveresov@2606 917 // With G1, don't generate the call if we statically know that the target in uninitialized
iveresov@2606 918 if (!dest_uninitialized) {
iveresov@2606 919 __ save_frame(0);
iveresov@2606 920 // Save the necessary global regs... will be used after.
iveresov@2606 921 if (addr->is_global()) {
iveresov@2606 922 __ mov(addr, L0);
iveresov@2606 923 }
iveresov@2606 924 if (count->is_global()) {
iveresov@2606 925 __ mov(count, L1);
iveresov@2606 926 }
iveresov@2606 927 __ mov(addr->after_save(), O0);
iveresov@2606 928 // Get the count into O1
iveresov@2606 929 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
iveresov@2606 930 __ delayed()->mov(count->after_save(), O1);
iveresov@2606 931 if (addr->is_global()) {
iveresov@2606 932 __ mov(L0, addr);
iveresov@2606 933 }
iveresov@2606 934 if (count->is_global()) {
iveresov@2606 935 __ mov(L1, count);
iveresov@2606 936 }
iveresov@2606 937 __ restore();
iveresov@2606 938 }
iveresov@2606 939 break;
iveresov@2606 940 case BarrierSet::CardTableModRef:
iveresov@2606 941 case BarrierSet::CardTableExtension:
iveresov@2606 942 case BarrierSet::ModRef:
iveresov@2606 943 break;
iveresov@2606 944 default:
iveresov@2606 945 ShouldNotReachHere();
duke@435 946 }
duke@435 947 }
duke@435 948 //
duke@435 949 // Generate post-write barrier for array.
duke@435 950 //
duke@435 951 // Input:
duke@435 952 // addr - register containing starting address
duke@435 953 // count - register containing element count
duke@435 954 // tmp - scratch register
duke@435 955 //
duke@435 956 // The input registers are overwritten.
duke@435 957 //
duke@435 958 void gen_write_ref_array_post_barrier(Register addr, Register count,
iveresov@2606 959 Register tmp) {
duke@435 960 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 961
duke@435 962 switch (bs->kind()) {
duke@435 963 case BarrierSet::G1SATBCT:
duke@435 964 case BarrierSet::G1SATBCTLogging:
duke@435 965 {
duke@435 966 // Get some new fresh output registers.
duke@435 967 __ save_frame(0);
ysr@777 968 __ mov(addr->after_save(), O0);
duke@435 969 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
ysr@777 970 __ delayed()->mov(count->after_save(), O1);
duke@435 971 __ restore();
duke@435 972 }
duke@435 973 break;
duke@435 974 case BarrierSet::CardTableModRef:
duke@435 975 case BarrierSet::CardTableExtension:
duke@435 976 {
duke@435 977 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 978 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 979 assert_different_registers(addr, count, tmp);
duke@435 980
duke@435 981 Label L_loop;
duke@435 982
coleenp@548 983 __ sll_ptr(count, LogBytesPerHeapOop, count);
coleenp@548 984 __ sub(count, BytesPerHeapOop, count);
duke@435 985 __ add(count, addr, count);
duke@435 986 // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
duke@435 987 __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
duke@435 988 __ srl_ptr(count, CardTableModRefBS::card_shift, count);
duke@435 989 __ sub(count, addr, count);
twisti@1162 990 AddressLiteral rs(ct->byte_map_base);
twisti@1162 991 __ set(rs, tmp);
duke@435 992 __ BIND(L_loop);
twisti@1162 993 __ stb(G0, tmp, addr);
duke@435 994 __ subcc(count, 1, count);
duke@435 995 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 996 __ delayed()->add(addr, 1, addr);
twisti@1162 997 }
duke@435 998 break;
duke@435 999 case BarrierSet::ModRef:
duke@435 1000 break;
twisti@1162 1001 default:
duke@435 1002 ShouldNotReachHere();
duke@435 1003 }
duke@435 1004 }
duke@435 1005
kvn@3103 1006 //
kvn@3103 1007 // Generate main code for disjoint arraycopy
kvn@3103 1008 //
kvn@3103 1009 typedef void (StubGenerator::*CopyLoopFunc)(Register from, Register to, Register count, int count_dec,
kvn@3103 1010 Label& L_loop, bool use_prefetch, bool use_bis);
kvn@3103 1011
kvn@3103 1012 void disjoint_copy_core(Register from, Register to, Register count, int log2_elem_size,
kvn@3103 1013 int iter_size, CopyLoopFunc copy_loop_func) {
kvn@3103 1014 Label L_copy;
kvn@3103 1015
kvn@3103 1016 assert(log2_elem_size <= 3, "the following code should be changed");
kvn@3103 1017 int count_dec = 16>>log2_elem_size;
kvn@3103 1018
kvn@3103 1019 int prefetch_dist = MAX2(ArraycopySrcPrefetchDistance, ArraycopyDstPrefetchDistance);
kvn@3103 1020 assert(prefetch_dist < 4096, "invalid value");
kvn@3103 1021 prefetch_dist = (prefetch_dist + (iter_size-1)) & (-iter_size); // round up to one iteration copy size
kvn@3103 1022 int prefetch_count = (prefetch_dist >> log2_elem_size); // elements count
kvn@3103 1023
kvn@3103 1024 if (UseBlockCopy) {
kvn@3103 1025 Label L_block_copy, L_block_copy_prefetch, L_skip_block_copy;
kvn@3103 1026
kvn@3103 1027 // 64 bytes tail + bytes copied in one loop iteration
kvn@3103 1028 int tail_size = 64 + iter_size;
kvn@3103 1029 int block_copy_count = (MAX2(tail_size, (int)BlockCopyLowLimit)) >> log2_elem_size;
kvn@3103 1030 // Use BIS copy only for big arrays since it requires membar.
kvn@3103 1031 __ set(block_copy_count, O4);
kvn@3103 1032 __ cmp_and_br_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_skip_block_copy);
kvn@3103 1033 // This code is for disjoint source and destination:
kvn@3103 1034 // to <= from || to >= from+count
kvn@3103 1035 // but BIS will stomp over 'from' if (to > from-tail_size && to <= from)
kvn@3103 1036 __ sub(from, to, O4);
kvn@3103 1037 __ srax(O4, 4, O4); // divide by 16 since following short branch have only 5 bits for imm.
kvn@3103 1038 __ cmp_and_br_short(O4, (tail_size>>4), Assembler::lessEqualUnsigned, Assembler::pn, L_skip_block_copy);
kvn@3103 1039
kvn@3103 1040 __ wrasi(G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
kvn@3103 1041 // BIS should not be used to copy tail (64 bytes+iter_size)
kvn@3103 1042 // to avoid zeroing of following values.
kvn@3103 1043 __ sub(count, (tail_size>>log2_elem_size), count); // count is still positive >= 0
kvn@3103 1044
kvn@3103 1045 if (prefetch_count > 0) { // rounded up to one iteration count
kvn@3103 1046 // Do prefetching only if copy size is bigger
kvn@3103 1047 // than prefetch distance.
kvn@3103 1048 __ set(prefetch_count, O4);
kvn@3103 1049 __ cmp_and_brx_short(count, O4, Assembler::less, Assembler::pt, L_block_copy);
kvn@3103 1050 __ sub(count, prefetch_count, count);
kvn@3103 1051
kvn@3103 1052 (this->*copy_loop_func)(from, to, count, count_dec, L_block_copy_prefetch, true, true);
kvn@3103 1053 __ add(count, prefetch_count, count); // restore count
kvn@3103 1054
kvn@3103 1055 } // prefetch_count > 0
kvn@3103 1056
kvn@3103 1057 (this->*copy_loop_func)(from, to, count, count_dec, L_block_copy, false, true);
kvn@3103 1058 __ add(count, (tail_size>>log2_elem_size), count); // restore count
kvn@3103 1059
kvn@3103 1060 __ wrasi(G0, Assembler::ASI_PRIMARY_NOFAULT);
kvn@3103 1061 // BIS needs membar.
kvn@3103 1062 __ membar(Assembler::StoreLoad);
kvn@3103 1063 // Copy tail
kvn@3103 1064 __ ba_short(L_copy);
kvn@3103 1065
kvn@3103 1066 __ BIND(L_skip_block_copy);
kvn@3103 1067 } // UseBlockCopy
kvn@3103 1068
kvn@3103 1069 if (prefetch_count > 0) { // rounded up to one iteration count
kvn@3103 1070 // Do prefetching only if copy size is bigger
kvn@3103 1071 // than prefetch distance.
kvn@3103 1072 __ set(prefetch_count, O4);
kvn@3103 1073 __ cmp_and_brx_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_copy);
kvn@3103 1074 __ sub(count, prefetch_count, count);
kvn@3103 1075
kvn@3103 1076 Label L_copy_prefetch;
kvn@3103 1077 (this->*copy_loop_func)(from, to, count, count_dec, L_copy_prefetch, true, false);
kvn@3103 1078 __ add(count, prefetch_count, count); // restore count
kvn@3103 1079
kvn@3103 1080 } // prefetch_count > 0
kvn@3103 1081
kvn@3103 1082 (this->*copy_loop_func)(from, to, count, count_dec, L_copy, false, false);
kvn@3103 1083 }
kvn@3103 1084
kvn@3103 1085
kvn@3103 1086
kvn@3103 1087 //
kvn@3103 1088 // Helper methods for copy_16_bytes_forward_with_shift()
kvn@3103 1089 //
kvn@3103 1090 void copy_16_bytes_shift_loop(Register from, Register to, Register count, int count_dec,
kvn@3103 1091 Label& L_loop, bool use_prefetch, bool use_bis) {
kvn@3103 1092
kvn@3103 1093 const Register left_shift = G1; // left shift bit counter
kvn@3103 1094 const Register right_shift = G5; // right shift bit counter
kvn@3103 1095
kvn@3103 1096 __ align(OptoLoopAlignment);
kvn@3103 1097 __ BIND(L_loop);
kvn@3103 1098 if (use_prefetch) {
kvn@3103 1099 if (ArraycopySrcPrefetchDistance > 0) {
kvn@3103 1100 __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
kvn@3103 1101 }
kvn@3103 1102 if (ArraycopyDstPrefetchDistance > 0) {
kvn@3103 1103 __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
kvn@3103 1104 }
kvn@3103 1105 }
kvn@3103 1106 __ ldx(from, 0, O4);
kvn@3103 1107 __ ldx(from, 8, G4);
kvn@3103 1108 __ inc(to, 16);
kvn@3103 1109 __ inc(from, 16);
kvn@3103 1110 __ deccc(count, count_dec); // Can we do next iteration after this one?
kvn@3103 1111 __ srlx(O4, right_shift, G3);
kvn@3103 1112 __ bset(G3, O3);
kvn@3103 1113 __ sllx(O4, left_shift, O4);
kvn@3103 1114 __ srlx(G4, right_shift, G3);
kvn@3103 1115 __ bset(G3, O4);
kvn@3103 1116 if (use_bis) {
kvn@3103 1117 __ stxa(O3, to, -16);
kvn@3103 1118 __ stxa(O4, to, -8);
kvn@3103 1119 } else {
kvn@3103 1120 __ stx(O3, to, -16);
kvn@3103 1121 __ stx(O4, to, -8);
kvn@3103 1122 }
kvn@3103 1123 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
kvn@3103 1124 __ delayed()->sllx(G4, left_shift, O3);
kvn@3103 1125 }
duke@435 1126
duke@435 1127 // Copy big chunks forward with shift
duke@435 1128 //
duke@435 1129 // Inputs:
duke@435 1130 // from - source arrays
duke@435 1131 // to - destination array aligned to 8-bytes
duke@435 1132 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1133 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1134 // L_copy_bytes - copy exit label
duke@435 1135 //
duke@435 1136 void copy_16_bytes_forward_with_shift(Register from, Register to,
kvn@3103 1137 Register count, int log2_elem_size, Label& L_copy_bytes) {
kvn@3103 1138 Label L_aligned_copy, L_copy_last_bytes;
kvn@3103 1139 assert(log2_elem_size <= 3, "the following code should be changed");
kvn@3103 1140 int count_dec = 16>>log2_elem_size;
duke@435 1141
duke@435 1142 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
kvn@3103 1143 __ andcc(from, 7, G1); // misaligned bytes
kvn@3103 1144 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
kvn@3103 1145 __ delayed()->nop();
duke@435 1146
duke@435 1147 const Register left_shift = G1; // left shift bit counter
duke@435 1148 const Register right_shift = G5; // right shift bit counter
duke@435 1149
kvn@3103 1150 __ sll(G1, LogBitsPerByte, left_shift);
kvn@3103 1151 __ mov(64, right_shift);
kvn@3103 1152 __ sub(right_shift, left_shift, right_shift);
duke@435 1153
duke@435 1154 //
duke@435 1155 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1156 // to form 2 aligned 8-bytes chunks to store.
duke@435 1157 //
kvn@3103 1158 __ dec(count, count_dec); // Pre-decrement 'count'
kvn@3103 1159 __ andn(from, 7, from); // Align address
kvn@3103 1160 __ ldx(from, 0, O3);
kvn@3103 1161 __ inc(from, 8);
kvn@3103 1162 __ sllx(O3, left_shift, O3);
kvn@3103 1163
kvn@3103 1164 disjoint_copy_core(from, to, count, log2_elem_size, 16, copy_16_bytes_shift_loop);
kvn@3103 1165
kvn@3103 1166 __ inccc(count, count_dec>>1 ); // + 8 bytes
kvn@3103 1167 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
kvn@3103 1168 __ delayed()->inc(count, count_dec>>1); // restore 'count'
kvn@3103 1169
kvn@3103 1170 // copy 8 bytes, part of them already loaded in O3
kvn@3103 1171 __ ldx(from, 0, O4);
kvn@3103 1172 __ inc(to, 8);
kvn@3103 1173 __ inc(from, 8);
kvn@3103 1174 __ srlx(O4, right_shift, G3);
kvn@3103 1175 __ bset(O3, G3);
kvn@3103 1176 __ stx(G3, to, -8);
duke@435 1177
duke@435 1178 __ BIND(L_copy_last_bytes);
kvn@3103 1179 __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
kvn@3103 1180 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
kvn@3103 1181 __ delayed()->sub(from, right_shift, from); // restore address
duke@435 1182
duke@435 1183 __ BIND(L_aligned_copy);
duke@435 1184 }
duke@435 1185
duke@435 1186 // Copy big chunks backward with shift
duke@435 1187 //
duke@435 1188 // Inputs:
duke@435 1189 // end_from - source arrays end address
duke@435 1190 // end_to - destination array end address aligned to 8-bytes
duke@435 1191 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1192 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1193 // L_aligned_copy - aligned copy exit label
duke@435 1194 // L_copy_bytes - copy exit label
duke@435 1195 //
duke@435 1196 void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
duke@435 1197 Register count, int count_dec,
duke@435 1198 Label& L_aligned_copy, Label& L_copy_bytes) {
duke@435 1199 Label L_loop, L_copy_last_bytes;
duke@435 1200
duke@435 1201 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
duke@435 1202 __ andcc(end_from, 7, G1); // misaligned bytes
duke@435 1203 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1204 __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
duke@435 1205
duke@435 1206 const Register left_shift = G1; // left shift bit counter
duke@435 1207 const Register right_shift = G5; // right shift bit counter
duke@435 1208
duke@435 1209 __ sll(G1, LogBitsPerByte, left_shift);
duke@435 1210 __ mov(64, right_shift);
duke@435 1211 __ sub(right_shift, left_shift, right_shift);
duke@435 1212
duke@435 1213 //
duke@435 1214 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1215 // to form 2 aligned 8-bytes chunks to store.
duke@435 1216 //
duke@435 1217 __ andn(end_from, 7, end_from); // Align address
duke@435 1218 __ ldx(end_from, 0, O3);
kvn@1800 1219 __ align(OptoLoopAlignment);
duke@435 1220 __ BIND(L_loop);
duke@435 1221 __ ldx(end_from, -8, O4);
duke@435 1222 __ deccc(count, count_dec); // Can we do next iteration after this one?
duke@435 1223 __ ldx(end_from, -16, G4);
duke@435 1224 __ dec(end_to, 16);
duke@435 1225 __ dec(end_from, 16);
duke@435 1226 __ srlx(O3, right_shift, O3);
duke@435 1227 __ sllx(O4, left_shift, G3);
duke@435 1228 __ bset(G3, O3);
duke@435 1229 __ stx(O3, end_to, 8);
duke@435 1230 __ srlx(O4, right_shift, O4);
duke@435 1231 __ sllx(G4, left_shift, G3);
duke@435 1232 __ bset(G3, O4);
duke@435 1233 __ stx(O4, end_to, 0);
duke@435 1234 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1235 __ delayed()->mov(G4, O3);
duke@435 1236
duke@435 1237 __ inccc(count, count_dec>>1 ); // + 8 bytes
duke@435 1238 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
duke@435 1239 __ delayed()->inc(count, count_dec>>1); // restore 'count'
duke@435 1240
duke@435 1241 // copy 8 bytes, part of them already loaded in O3
duke@435 1242 __ ldx(end_from, -8, O4);
duke@435 1243 __ dec(end_to, 8);
duke@435 1244 __ dec(end_from, 8);
duke@435 1245 __ srlx(O3, right_shift, O3);
duke@435 1246 __ sllx(O4, left_shift, G3);
duke@435 1247 __ bset(O3, G3);
duke@435 1248 __ stx(G3, end_to, 0);
duke@435 1249
duke@435 1250 __ BIND(L_copy_last_bytes);
duke@435 1251 __ srl(left_shift, LogBitsPerByte, left_shift); // misaligned bytes
duke@435 1252 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
duke@435 1253 __ delayed()->add(end_from, left_shift, end_from); // restore address
duke@435 1254 }
duke@435 1255
duke@435 1256 //
duke@435 1257 // Generate stub for disjoint byte copy. If "aligned" is true, the
duke@435 1258 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1259 //
duke@435 1260 // Arguments for generated stub:
duke@435 1261 // from: O0
duke@435 1262 // to: O1
duke@435 1263 // count: O2 treated as signed
duke@435 1264 //
iveresov@2595 1265 address generate_disjoint_byte_copy(bool aligned, address *entry, const char *name) {
duke@435 1266 __ align(CodeEntryAlignment);
duke@435 1267 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1268 address start = __ pc();
duke@435 1269
duke@435 1270 Label L_skip_alignment, L_align;
duke@435 1271 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1272
duke@435 1273 const Register from = O0; // source array address
duke@435 1274 const Register to = O1; // destination array address
duke@435 1275 const Register count = O2; // elements count
duke@435 1276 const Register offset = O5; // offset from start of arrays
duke@435 1277 // O3, O4, G3, G4 are used as temp registers
duke@435 1278
duke@435 1279 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1280
iveresov@2595 1281 if (entry != NULL) {
iveresov@2595 1282 *entry = __ pc();
iveresov@2595 1283 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1284 BLOCK_COMMENT("Entry:");
iveresov@2595 1285 }
duke@435 1286
duke@435 1287 // for short arrays, just do single element copy
duke@435 1288 __ cmp(count, 23); // 16 + 7
duke@435 1289 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1290 __ delayed()->mov(G0, offset);
duke@435 1291
duke@435 1292 if (aligned) {
duke@435 1293 // 'aligned' == true when it is known statically during compilation
duke@435 1294 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1295 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1296 //
duke@435 1297 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1298 // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
duke@435 1299 //
duke@435 1300 #ifndef _LP64
duke@435 1301 // copy a 4-bytes word if necessary to align 'to' to 8 bytes
duke@435 1302 __ andcc(to, 7, G0);
duke@435 1303 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
duke@435 1304 __ delayed()->ld(from, 0, O3);
duke@435 1305 __ inc(from, 4);
duke@435 1306 __ inc(to, 4);
duke@435 1307 __ dec(count, 4);
duke@435 1308 __ st(O3, to, -4);
duke@435 1309 __ BIND(L_skip_alignment);
duke@435 1310 #endif
duke@435 1311 } else {
duke@435 1312 // copy bytes to align 'to' on 8 byte boundary
duke@435 1313 __ andcc(to, 7, G1); // misaligned bytes
duke@435 1314 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1315 __ delayed()->neg(G1);
duke@435 1316 __ inc(G1, 8); // bytes need to copy to next 8-bytes alignment
duke@435 1317 __ sub(count, G1, count);
duke@435 1318 __ BIND(L_align);
duke@435 1319 __ ldub(from, 0, O3);
duke@435 1320 __ deccc(G1);
duke@435 1321 __ inc(from);
duke@435 1322 __ stb(O3, to, 0);
duke@435 1323 __ br(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1324 __ delayed()->inc(to);
duke@435 1325 __ BIND(L_skip_alignment);
duke@435 1326 }
duke@435 1327 #ifdef _LP64
duke@435 1328 if (!aligned)
duke@435 1329 #endif
duke@435 1330 {
duke@435 1331 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1332 // the same alignment mod 8, otherwise fall through to the next
duke@435 1333 // code for aligned copy.
duke@435 1334 // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
duke@435 1335 // Also jump over aligned copy after the copy with shift completed.
duke@435 1336
kvn@3103 1337 copy_16_bytes_forward_with_shift(from, to, count, 0, L_copy_byte);
duke@435 1338 }
duke@435 1339
duke@435 1340 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1341 __ and3(count, 7, G4); // Save count
duke@435 1342 __ srl(count, 3, count);
duke@435 1343 generate_disjoint_long_copy_core(aligned);
duke@435 1344 __ mov(G4, count); // Restore count
duke@435 1345
duke@435 1346 // copy tailing bytes
duke@435 1347 __ BIND(L_copy_byte);
kvn@3037 1348 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
kvn@1800 1349 __ align(OptoLoopAlignment);
duke@435 1350 __ BIND(L_copy_byte_loop);
duke@435 1351 __ ldub(from, offset, O3);
duke@435 1352 __ deccc(count);
duke@435 1353 __ stb(O3, to, offset);
duke@435 1354 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
duke@435 1355 __ delayed()->inc(offset);
duke@435 1356
duke@435 1357 __ BIND(L_exit);
duke@435 1358 // O3, O4 are used as temp registers
duke@435 1359 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1360 __ retl();
duke@435 1361 __ delayed()->mov(G0, O0); // return 0
duke@435 1362 return start;
duke@435 1363 }
duke@435 1364
duke@435 1365 //
duke@435 1366 // Generate stub for conjoint byte copy. If "aligned" is true, the
duke@435 1367 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1368 //
duke@435 1369 // Arguments for generated stub:
duke@435 1370 // from: O0
duke@435 1371 // to: O1
duke@435 1372 // count: O2 treated as signed
duke@435 1373 //
iveresov@2595 1374 address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
iveresov@2595 1375 address *entry, const char *name) {
duke@435 1376 // Do reverse copy.
duke@435 1377
duke@435 1378 __ align(CodeEntryAlignment);
duke@435 1379 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1380 address start = __ pc();
duke@435 1381
duke@435 1382 Label L_skip_alignment, L_align, L_aligned_copy;
duke@435 1383 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1384
duke@435 1385 const Register from = O0; // source array address
duke@435 1386 const Register to = O1; // destination array address
duke@435 1387 const Register count = O2; // elements count
duke@435 1388 const Register end_from = from; // source array end address
duke@435 1389 const Register end_to = to; // destination array end address
duke@435 1390
duke@435 1391 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1392
iveresov@2595 1393 if (entry != NULL) {
iveresov@2595 1394 *entry = __ pc();
iveresov@2595 1395 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1396 BLOCK_COMMENT("Entry:");
iveresov@2595 1397 }
duke@435 1398
duke@435 1399 array_overlap_test(nooverlap_target, 0);
duke@435 1400
duke@435 1401 __ add(to, count, end_to); // offset after last copied element
duke@435 1402
duke@435 1403 // for short arrays, just do single element copy
duke@435 1404 __ cmp(count, 23); // 16 + 7
duke@435 1405 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1406 __ delayed()->add(from, count, end_from);
duke@435 1407
duke@435 1408 {
duke@435 1409 // Align end of arrays since they could be not aligned even
duke@435 1410 // when arrays itself are aligned.
duke@435 1411
duke@435 1412 // copy bytes to align 'end_to' on 8 byte boundary
duke@435 1413 __ andcc(end_to, 7, G1); // misaligned bytes
duke@435 1414 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1415 __ delayed()->nop();
duke@435 1416 __ sub(count, G1, count);
duke@435 1417 __ BIND(L_align);
duke@435 1418 __ dec(end_from);
duke@435 1419 __ dec(end_to);
duke@435 1420 __ ldub(end_from, 0, O3);
duke@435 1421 __ deccc(G1);
duke@435 1422 __ brx(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1423 __ delayed()->stb(O3, end_to, 0);
duke@435 1424 __ BIND(L_skip_alignment);
duke@435 1425 }
duke@435 1426 #ifdef _LP64
duke@435 1427 if (aligned) {
duke@435 1428 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1429 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1430 // in unaligned case.
duke@435 1431 __ dec(count, 16);
duke@435 1432 } else
duke@435 1433 #endif
duke@435 1434 {
duke@435 1435 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1436 // the same alignment mod 8, otherwise jump to the next
duke@435 1437 // code for aligned copy (and substracting 16 from 'count' before jump).
duke@435 1438 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1439 // Also jump over aligned copy after the copy with shift completed.
duke@435 1440
duke@435 1441 copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
duke@435 1442 L_aligned_copy, L_copy_byte);
duke@435 1443 }
duke@435 1444 // copy 4 elements (16 bytes) at a time
kvn@1800 1445 __ align(OptoLoopAlignment);
duke@435 1446 __ BIND(L_aligned_copy);
duke@435 1447 __ dec(end_from, 16);
duke@435 1448 __ ldx(end_from, 8, O3);
duke@435 1449 __ ldx(end_from, 0, O4);
duke@435 1450 __ dec(end_to, 16);
duke@435 1451 __ deccc(count, 16);
duke@435 1452 __ stx(O3, end_to, 8);
duke@435 1453 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1454 __ delayed()->stx(O4, end_to, 0);
duke@435 1455 __ inc(count, 16);
duke@435 1456
duke@435 1457 // copy 1 element (2 bytes) at a time
duke@435 1458 __ BIND(L_copy_byte);
kvn@3037 1459 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
kvn@1800 1460 __ align(OptoLoopAlignment);
duke@435 1461 __ BIND(L_copy_byte_loop);
duke@435 1462 __ dec(end_from);
duke@435 1463 __ dec(end_to);
duke@435 1464 __ ldub(end_from, 0, O4);
duke@435 1465 __ deccc(count);
duke@435 1466 __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
duke@435 1467 __ delayed()->stb(O4, end_to, 0);
duke@435 1468
duke@435 1469 __ BIND(L_exit);
duke@435 1470 // O3, O4 are used as temp registers
duke@435 1471 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1472 __ retl();
duke@435 1473 __ delayed()->mov(G0, O0); // return 0
duke@435 1474 return start;
duke@435 1475 }
duke@435 1476
duke@435 1477 //
duke@435 1478 // Generate stub for disjoint short copy. If "aligned" is true, the
duke@435 1479 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1480 //
duke@435 1481 // Arguments for generated stub:
duke@435 1482 // from: O0
duke@435 1483 // to: O1
duke@435 1484 // count: O2 treated as signed
duke@435 1485 //
iveresov@2595 1486 address generate_disjoint_short_copy(bool aligned, address *entry, const char * name) {
duke@435 1487 __ align(CodeEntryAlignment);
duke@435 1488 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1489 address start = __ pc();
duke@435 1490
duke@435 1491 Label L_skip_alignment, L_skip_alignment2;
duke@435 1492 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1493
duke@435 1494 const Register from = O0; // source array address
duke@435 1495 const Register to = O1; // destination array address
duke@435 1496 const Register count = O2; // elements count
duke@435 1497 const Register offset = O5; // offset from start of arrays
duke@435 1498 // O3, O4, G3, G4 are used as temp registers
duke@435 1499
duke@435 1500 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1501
iveresov@2595 1502 if (entry != NULL) {
iveresov@2595 1503 *entry = __ pc();
iveresov@2595 1504 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1505 BLOCK_COMMENT("Entry:");
iveresov@2595 1506 }
duke@435 1507
duke@435 1508 // for short arrays, just do single element copy
duke@435 1509 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1510 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1511 __ delayed()->mov(G0, offset);
duke@435 1512
duke@435 1513 if (aligned) {
duke@435 1514 // 'aligned' == true when it is known statically during compilation
duke@435 1515 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1516 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1517 //
duke@435 1518 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1519 // and 8 bytes - in 64-bits VM.
duke@435 1520 //
duke@435 1521 #ifndef _LP64
duke@435 1522 // copy a 2-elements word if necessary to align 'to' to 8 bytes
duke@435 1523 __ andcc(to, 7, G0);
duke@435 1524 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1525 __ delayed()->ld(from, 0, O3);
duke@435 1526 __ inc(from, 4);
duke@435 1527 __ inc(to, 4);
duke@435 1528 __ dec(count, 2);
duke@435 1529 __ st(O3, to, -4);
duke@435 1530 __ BIND(L_skip_alignment);
duke@435 1531 #endif
duke@435 1532 } else {
duke@435 1533 // copy 1 element if necessary to align 'to' on an 4 bytes
duke@435 1534 __ andcc(to, 3, G0);
duke@435 1535 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1536 __ delayed()->lduh(from, 0, O3);
duke@435 1537 __ inc(from, 2);
duke@435 1538 __ inc(to, 2);
duke@435 1539 __ dec(count);
duke@435 1540 __ sth(O3, to, -2);
duke@435 1541 __ BIND(L_skip_alignment);
duke@435 1542
duke@435 1543 // copy 2 elements to align 'to' on an 8 byte boundary
duke@435 1544 __ andcc(to, 7, G0);
duke@435 1545 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1546 __ delayed()->lduh(from, 0, O3);
duke@435 1547 __ dec(count, 2);
duke@435 1548 __ lduh(from, 2, O4);
duke@435 1549 __ inc(from, 4);
duke@435 1550 __ inc(to, 4);
duke@435 1551 __ sth(O3, to, -4);
duke@435 1552 __ sth(O4, to, -2);
duke@435 1553 __ BIND(L_skip_alignment2);
duke@435 1554 }
duke@435 1555 #ifdef _LP64
duke@435 1556 if (!aligned)
duke@435 1557 #endif
duke@435 1558 {
duke@435 1559 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1560 // the same alignment mod 8, otherwise fall through to the next
duke@435 1561 // code for aligned copy.
duke@435 1562 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1563 // Also jump over aligned copy after the copy with shift completed.
duke@435 1564
kvn@3103 1565 copy_16_bytes_forward_with_shift(from, to, count, 1, L_copy_2_bytes);
duke@435 1566 }
duke@435 1567
duke@435 1568 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1569 __ and3(count, 3, G4); // Save
duke@435 1570 __ srl(count, 2, count);
duke@435 1571 generate_disjoint_long_copy_core(aligned);
duke@435 1572 __ mov(G4, count); // restore
duke@435 1573
duke@435 1574 // copy 1 element at a time
duke@435 1575 __ BIND(L_copy_2_bytes);
kvn@3037 1576 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
kvn@1800 1577 __ align(OptoLoopAlignment);
duke@435 1578 __ BIND(L_copy_2_bytes_loop);
duke@435 1579 __ lduh(from, offset, O3);
duke@435 1580 __ deccc(count);
duke@435 1581 __ sth(O3, to, offset);
duke@435 1582 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1583 __ delayed()->inc(offset, 2);
duke@435 1584
duke@435 1585 __ BIND(L_exit);
duke@435 1586 // O3, O4 are used as temp registers
duke@435 1587 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1588 __ retl();
duke@435 1589 __ delayed()->mov(G0, O0); // return 0
duke@435 1590 return start;
duke@435 1591 }
duke@435 1592
duke@435 1593 //
never@2118 1594 // Generate stub for disjoint short fill. If "aligned" is true, the
never@2118 1595 // "to" address is assumed to be heapword aligned.
never@2118 1596 //
never@2118 1597 // Arguments for generated stub:
never@2118 1598 // to: O0
never@2118 1599 // value: O1
never@2118 1600 // count: O2 treated as signed
never@2118 1601 //
never@2118 1602 address generate_fill(BasicType t, bool aligned, const char* name) {
never@2118 1603 __ align(CodeEntryAlignment);
never@2118 1604 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1605 address start = __ pc();
never@2118 1606
never@2118 1607 const Register to = O0; // source array address
never@2118 1608 const Register value = O1; // fill value
never@2118 1609 const Register count = O2; // elements count
never@2118 1610 // O3 is used as a temp register
never@2118 1611
never@2118 1612 assert_clean_int(count, O3); // Make sure 'count' is clean int.
never@2118 1613
never@2118 1614 Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
never@2149 1615 Label L_fill_2_bytes, L_fill_elements, L_fill_32_bytes;
never@2118 1616
never@2118 1617 int shift = -1;
never@2118 1618 switch (t) {
never@2118 1619 case T_BYTE:
never@2118 1620 shift = 2;
never@2118 1621 break;
never@2118 1622 case T_SHORT:
never@2118 1623 shift = 1;
never@2118 1624 break;
never@2118 1625 case T_INT:
never@2118 1626 shift = 0;
never@2118 1627 break;
never@2118 1628 default: ShouldNotReachHere();
never@2118 1629 }
never@2118 1630
never@2118 1631 BLOCK_COMMENT("Entry:");
never@2118 1632
never@2118 1633 if (t == T_BYTE) {
never@2118 1634 // Zero extend value
never@2118 1635 __ and3(value, 0xff, value);
never@2118 1636 __ sllx(value, 8, O3);
never@2118 1637 __ or3(value, O3, value);
never@2118 1638 }
never@2118 1639 if (t == T_SHORT) {
never@2118 1640 // Zero extend value
never@2149 1641 __ sllx(value, 48, value);
never@2149 1642 __ srlx(value, 48, value);
never@2118 1643 }
never@2118 1644 if (t == T_BYTE || t == T_SHORT) {
never@2118 1645 __ sllx(value, 16, O3);
never@2118 1646 __ or3(value, O3, value);
never@2118 1647 }
never@2118 1648
never@2118 1649 __ cmp(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
never@2149 1650 __ brx(Assembler::lessUnsigned, false, Assembler::pn, L_fill_elements); // use unsigned cmp
never@2149 1651 __ delayed()->andcc(count, 1, G0);
never@2118 1652
never@2118 1653 if (!aligned && (t == T_BYTE || t == T_SHORT)) {
never@2118 1654 // align source address at 4 bytes address boundary
never@2118 1655 if (t == T_BYTE) {
never@2118 1656 // One byte misalignment happens only for byte arrays
never@2118 1657 __ andcc(to, 1, G0);
never@2118 1658 __ br(Assembler::zero, false, Assembler::pt, L_skip_align1);
never@2118 1659 __ delayed()->nop();
never@2118 1660 __ stb(value, to, 0);
never@2118 1661 __ inc(to, 1);
never@2118 1662 __ dec(count, 1);
never@2118 1663 __ BIND(L_skip_align1);
never@2118 1664 }
never@2118 1665 // Two bytes misalignment happens only for byte and short (char) arrays
never@2118 1666 __ andcc(to, 2, G0);
never@2118 1667 __ br(Assembler::zero, false, Assembler::pt, L_skip_align2);
never@2118 1668 __ delayed()->nop();
never@2118 1669 __ sth(value, to, 0);
never@2118 1670 __ inc(to, 2);
never@2118 1671 __ dec(count, 1 << (shift - 1));
never@2118 1672 __ BIND(L_skip_align2);
never@2118 1673 }
never@2118 1674 #ifdef _LP64
never@2118 1675 if (!aligned) {
never@2118 1676 #endif
never@2118 1677 // align to 8 bytes, we know we are 4 byte aligned to start
never@2118 1678 __ andcc(to, 7, G0);
never@2118 1679 __ br(Assembler::zero, false, Assembler::pt, L_fill_32_bytes);
never@2118 1680 __ delayed()->nop();
never@2118 1681 __ stw(value, to, 0);
never@2118 1682 __ inc(to, 4);
never@2118 1683 __ dec(count, 1 << shift);
never@2118 1684 __ BIND(L_fill_32_bytes);
never@2118 1685 #ifdef _LP64
never@2118 1686 }
never@2118 1687 #endif
never@2118 1688
never@2118 1689 if (t == T_INT) {
never@2118 1690 // Zero extend value
never@2118 1691 __ srl(value, 0, value);
never@2118 1692 }
never@2118 1693 if (t == T_BYTE || t == T_SHORT || t == T_INT) {
never@2118 1694 __ sllx(value, 32, O3);
never@2118 1695 __ or3(value, O3, value);
never@2118 1696 }
never@2118 1697
never@2137 1698 Label L_check_fill_8_bytes;
never@2137 1699 // Fill 32-byte chunks
never@2137 1700 __ subcc(count, 8 << shift, count);
never@2137 1701 __ brx(Assembler::less, false, Assembler::pt, L_check_fill_8_bytes);
never@2137 1702 __ delayed()->nop();
never@2137 1703
never@2149 1704 Label L_fill_32_bytes_loop, L_fill_4_bytes;
never@2118 1705 __ align(16);
never@2118 1706 __ BIND(L_fill_32_bytes_loop);
never@2118 1707
never@2118 1708 __ stx(value, to, 0);
never@2118 1709 __ stx(value, to, 8);
never@2118 1710 __ stx(value, to, 16);
never@2118 1711 __ stx(value, to, 24);
never@2118 1712
never@2118 1713 __ subcc(count, 8 << shift, count);
never@2118 1714 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_fill_32_bytes_loop);
never@2118 1715 __ delayed()->add(to, 32, to);
never@2118 1716
never@2118 1717 __ BIND(L_check_fill_8_bytes);
never@2118 1718 __ addcc(count, 8 << shift, count);
never@2118 1719 __ brx(Assembler::zero, false, Assembler::pn, L_exit);
never@2118 1720 __ delayed()->subcc(count, 1 << (shift + 1), count);
never@2118 1721 __ brx(Assembler::less, false, Assembler::pn, L_fill_4_bytes);
never@2118 1722 __ delayed()->andcc(count, 1<<shift, G0);
never@2118 1723
never@2118 1724 //
never@2118 1725 // length is too short, just fill 8 bytes at a time
never@2118 1726 //
never@2118 1727 Label L_fill_8_bytes_loop;
never@2118 1728 __ BIND(L_fill_8_bytes_loop);
never@2118 1729 __ stx(value, to, 0);
never@2118 1730 __ subcc(count, 1 << (shift + 1), count);
never@2118 1731 __ brx(Assembler::greaterEqual, false, Assembler::pn, L_fill_8_bytes_loop);
never@2118 1732 __ delayed()->add(to, 8, to);
never@2118 1733
never@2118 1734 // fill trailing 4 bytes
never@2118 1735 __ andcc(count, 1<<shift, G0); // in delay slot of branches
never@2149 1736 if (t == T_INT) {
never@2149 1737 __ BIND(L_fill_elements);
never@2149 1738 }
never@2118 1739 __ BIND(L_fill_4_bytes);
never@2118 1740 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2_bytes);
never@2118 1741 if (t == T_BYTE || t == T_SHORT) {
never@2118 1742 __ delayed()->andcc(count, 1<<(shift-1), G0);
never@2118 1743 } else {
never@2118 1744 __ delayed()->nop();
never@2118 1745 }
never@2118 1746 __ stw(value, to, 0);
never@2118 1747 if (t == T_BYTE || t == T_SHORT) {
never@2118 1748 __ inc(to, 4);
never@2118 1749 // fill trailing 2 bytes
never@2118 1750 __ andcc(count, 1<<(shift-1), G0); // in delay slot of branches
never@2118 1751 __ BIND(L_fill_2_bytes);
never@2118 1752 __ brx(Assembler::zero, false, Assembler::pt, L_fill_byte);
never@2118 1753 __ delayed()->andcc(count, 1, count);
never@2118 1754 __ sth(value, to, 0);
never@2118 1755 if (t == T_BYTE) {
never@2118 1756 __ inc(to, 2);
never@2118 1757 // fill trailing byte
never@2118 1758 __ andcc(count, 1, count); // in delay slot of branches
never@2118 1759 __ BIND(L_fill_byte);
never@2118 1760 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2118 1761 __ delayed()->nop();
never@2118 1762 __ stb(value, to, 0);
never@2118 1763 } else {
never@2118 1764 __ BIND(L_fill_byte);
never@2118 1765 }
never@2118 1766 } else {
never@2118 1767 __ BIND(L_fill_2_bytes);
never@2118 1768 }
never@2118 1769 __ BIND(L_exit);
never@2118 1770 __ retl();
never@2149 1771 __ delayed()->nop();
never@2149 1772
never@2149 1773 // Handle copies less than 8 bytes. Int is handled elsewhere.
never@2149 1774 if (t == T_BYTE) {
never@2149 1775 __ BIND(L_fill_elements);
never@2149 1776 Label L_fill_2, L_fill_4;
never@2149 1777 // in delay slot __ andcc(count, 1, G0);
never@2149 1778 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
never@2149 1779 __ delayed()->andcc(count, 2, G0);
never@2149 1780 __ stb(value, to, 0);
never@2149 1781 __ inc(to, 1);
never@2149 1782 __ BIND(L_fill_2);
never@2149 1783 __ brx(Assembler::zero, false, Assembler::pt, L_fill_4);
never@2149 1784 __ delayed()->andcc(count, 4, G0);
never@2149 1785 __ stb(value, to, 0);
never@2149 1786 __ stb(value, to, 1);
never@2149 1787 __ inc(to, 2);
never@2149 1788 __ BIND(L_fill_4);
never@2149 1789 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2149 1790 __ delayed()->nop();
never@2149 1791 __ stb(value, to, 0);
never@2149 1792 __ stb(value, to, 1);
never@2149 1793 __ stb(value, to, 2);
never@2149 1794 __ retl();
never@2149 1795 __ delayed()->stb(value, to, 3);
never@2149 1796 }
never@2149 1797
never@2149 1798 if (t == T_SHORT) {
never@2149 1799 Label L_fill_2;
never@2149 1800 __ BIND(L_fill_elements);
never@2149 1801 // in delay slot __ andcc(count, 1, G0);
never@2149 1802 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
never@2149 1803 __ delayed()->andcc(count, 2, G0);
never@2149 1804 __ sth(value, to, 0);
never@2149 1805 __ inc(to, 2);
never@2149 1806 __ BIND(L_fill_2);
never@2149 1807 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2149 1808 __ delayed()->nop();
never@2149 1809 __ sth(value, to, 0);
never@2149 1810 __ retl();
never@2149 1811 __ delayed()->sth(value, to, 2);
never@2149 1812 }
never@2118 1813 return start;
never@2118 1814 }
never@2118 1815
never@2118 1816 //
duke@435 1817 // Generate stub for conjoint short copy. If "aligned" is true, the
duke@435 1818 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1819 //
duke@435 1820 // Arguments for generated stub:
duke@435 1821 // from: O0
duke@435 1822 // to: O1
duke@435 1823 // count: O2 treated as signed
duke@435 1824 //
iveresov@2595 1825 address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
iveresov@2595 1826 address *entry, const char *name) {
duke@435 1827 // Do reverse copy.
duke@435 1828
duke@435 1829 __ align(CodeEntryAlignment);
duke@435 1830 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1831 address start = __ pc();
duke@435 1832
duke@435 1833 Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
duke@435 1834 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1835
duke@435 1836 const Register from = O0; // source array address
duke@435 1837 const Register to = O1; // destination array address
duke@435 1838 const Register count = O2; // elements count
duke@435 1839 const Register end_from = from; // source array end address
duke@435 1840 const Register end_to = to; // destination array end address
duke@435 1841
duke@435 1842 const Register byte_count = O3; // bytes count to copy
duke@435 1843
duke@435 1844 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1845
iveresov@2595 1846 if (entry != NULL) {
iveresov@2595 1847 *entry = __ pc();
iveresov@2595 1848 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1849 BLOCK_COMMENT("Entry:");
iveresov@2595 1850 }
duke@435 1851
duke@435 1852 array_overlap_test(nooverlap_target, 1);
duke@435 1853
duke@435 1854 __ sllx(count, LogBytesPerShort, byte_count);
duke@435 1855 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 1856
duke@435 1857 // for short arrays, just do single element copy
duke@435 1858 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1859 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1860 __ delayed()->add(from, byte_count, end_from);
duke@435 1861
duke@435 1862 {
duke@435 1863 // Align end of arrays since they could be not aligned even
duke@435 1864 // when arrays itself are aligned.
duke@435 1865
duke@435 1866 // copy 1 element if necessary to align 'end_to' on an 4 bytes
duke@435 1867 __ andcc(end_to, 3, G0);
duke@435 1868 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1869 __ delayed()->lduh(end_from, -2, O3);
duke@435 1870 __ dec(end_from, 2);
duke@435 1871 __ dec(end_to, 2);
duke@435 1872 __ dec(count);
duke@435 1873 __ sth(O3, end_to, 0);
duke@435 1874 __ BIND(L_skip_alignment);
duke@435 1875
duke@435 1876 // copy 2 elements to align 'end_to' on an 8 byte boundary
duke@435 1877 __ andcc(end_to, 7, G0);
duke@435 1878 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1879 __ delayed()->lduh(end_from, -2, O3);
duke@435 1880 __ dec(count, 2);
duke@435 1881 __ lduh(end_from, -4, O4);
duke@435 1882 __ dec(end_from, 4);
duke@435 1883 __ dec(end_to, 4);
duke@435 1884 __ sth(O3, end_to, 2);
duke@435 1885 __ sth(O4, end_to, 0);
duke@435 1886 __ BIND(L_skip_alignment2);
duke@435 1887 }
duke@435 1888 #ifdef _LP64
duke@435 1889 if (aligned) {
duke@435 1890 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1891 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1892 // in unaligned case.
duke@435 1893 __ dec(count, 8);
duke@435 1894 } else
duke@435 1895 #endif
duke@435 1896 {
duke@435 1897 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1898 // the same alignment mod 8, otherwise jump to the next
duke@435 1899 // code for aligned copy (and substracting 8 from 'count' before jump).
duke@435 1900 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1901 // Also jump over aligned copy after the copy with shift completed.
duke@435 1902
duke@435 1903 copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
duke@435 1904 L_aligned_copy, L_copy_2_bytes);
duke@435 1905 }
duke@435 1906 // copy 4 elements (16 bytes) at a time
kvn@1800 1907 __ align(OptoLoopAlignment);
duke@435 1908 __ BIND(L_aligned_copy);
duke@435 1909 __ dec(end_from, 16);
duke@435 1910 __ ldx(end_from, 8, O3);
duke@435 1911 __ ldx(end_from, 0, O4);
duke@435 1912 __ dec(end_to, 16);
duke@435 1913 __ deccc(count, 8);
duke@435 1914 __ stx(O3, end_to, 8);
duke@435 1915 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1916 __ delayed()->stx(O4, end_to, 0);
duke@435 1917 __ inc(count, 8);
duke@435 1918
duke@435 1919 // copy 1 element (2 bytes) at a time
duke@435 1920 __ BIND(L_copy_2_bytes);
kvn@3037 1921 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
duke@435 1922 __ BIND(L_copy_2_bytes_loop);
duke@435 1923 __ dec(end_from, 2);
duke@435 1924 __ dec(end_to, 2);
duke@435 1925 __ lduh(end_from, 0, O4);
duke@435 1926 __ deccc(count);
duke@435 1927 __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1928 __ delayed()->sth(O4, end_to, 0);
duke@435 1929
duke@435 1930 __ BIND(L_exit);
duke@435 1931 // O3, O4 are used as temp registers
duke@435 1932 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1933 __ retl();
duke@435 1934 __ delayed()->mov(G0, O0); // return 0
duke@435 1935 return start;
duke@435 1936 }
duke@435 1937
duke@435 1938 //
kvn@3103 1939 // Helper methods for generate_disjoint_int_copy_core()
kvn@3103 1940 //
kvn@3103 1941 void copy_16_bytes_loop(Register from, Register to, Register count, int count_dec,
kvn@3103 1942 Label& L_loop, bool use_prefetch, bool use_bis) {
kvn@3103 1943
kvn@3103 1944 __ align(OptoLoopAlignment);
kvn@3103 1945 __ BIND(L_loop);
kvn@3103 1946 if (use_prefetch) {
kvn@3103 1947 if (ArraycopySrcPrefetchDistance > 0) {
kvn@3103 1948 __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
kvn@3103 1949 }
kvn@3103 1950 if (ArraycopyDstPrefetchDistance > 0) {
kvn@3103 1951 __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
kvn@3103 1952 }
kvn@3103 1953 }
kvn@3103 1954 __ ldx(from, 4, O4);
kvn@3103 1955 __ ldx(from, 12, G4);
kvn@3103 1956 __ inc(to, 16);
kvn@3103 1957 __ inc(from, 16);
kvn@3103 1958 __ deccc(count, 4); // Can we do next iteration after this one?
kvn@3103 1959
kvn@3103 1960 __ srlx(O4, 32, G3);
kvn@3103 1961 __ bset(G3, O3);
kvn@3103 1962 __ sllx(O4, 32, O4);
kvn@3103 1963 __ srlx(G4, 32, G3);
kvn@3103 1964 __ bset(G3, O4);
kvn@3103 1965 if (use_bis) {
kvn@3103 1966 __ stxa(O3, to, -16);
kvn@3103 1967 __ stxa(O4, to, -8);
kvn@3103 1968 } else {
kvn@3103 1969 __ stx(O3, to, -16);
kvn@3103 1970 __ stx(O4, to, -8);
kvn@3103 1971 }
kvn@3103 1972 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
kvn@3103 1973 __ delayed()->sllx(G4, 32, O3);
kvn@3103 1974
kvn@3103 1975 }
kvn@3103 1976
kvn@3103 1977 //
duke@435 1978 // Generate core code for disjoint int copy (and oop copy on 32-bit).
duke@435 1979 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 1980 // to be heapword aligned.
duke@435 1981 //
duke@435 1982 // Arguments:
duke@435 1983 // from: O0
duke@435 1984 // to: O1
duke@435 1985 // count: O2 treated as signed
duke@435 1986 //
duke@435 1987 void generate_disjoint_int_copy_core(bool aligned) {
duke@435 1988
duke@435 1989 Label L_skip_alignment, L_aligned_copy;
kvn@3103 1990 Label L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 1991
duke@435 1992 const Register from = O0; // source array address
duke@435 1993 const Register to = O1; // destination array address
duke@435 1994 const Register count = O2; // elements count
duke@435 1995 const Register offset = O5; // offset from start of arrays
duke@435 1996 // O3, O4, G3, G4 are used as temp registers
duke@435 1997
duke@435 1998 // 'aligned' == true when it is known statically during compilation
duke@435 1999 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 2000 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 2001 //
duke@435 2002 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 2003 // and 8 bytes - in 64-bits VM.
duke@435 2004 //
duke@435 2005 #ifdef _LP64
duke@435 2006 if (!aligned)
duke@435 2007 #endif
duke@435 2008 {
duke@435 2009 // The next check could be put under 'ifndef' since the code in
duke@435 2010 // generate_disjoint_long_copy_core() has own checks and set 'offset'.
duke@435 2011
duke@435 2012 // for short arrays, just do single element copy
duke@435 2013 __ cmp(count, 5); // 4 + 1 (20 bytes)
duke@435 2014 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 2015 __ delayed()->mov(G0, offset);
duke@435 2016
duke@435 2017 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 2018 __ andcc(to, 7, G0);
duke@435 2019 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 2020 __ delayed()->ld(from, 0, O3);
duke@435 2021 __ inc(from, 4);
duke@435 2022 __ inc(to, 4);
duke@435 2023 __ dec(count);
duke@435 2024 __ st(O3, to, -4);
duke@435 2025 __ BIND(L_skip_alignment);
duke@435 2026
duke@435 2027 // if arrays have same alignment mod 8, do 4 elements copy
duke@435 2028 __ andcc(from, 7, G0);
duke@435 2029 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 2030 __ delayed()->ld(from, 0, O3);
duke@435 2031
duke@435 2032 //
duke@435 2033 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 2034 // to form 2 aligned 8-bytes chunks to store.
duke@435 2035 //
duke@435 2036 // copy_16_bytes_forward_with_shift() is not used here since this
duke@435 2037 // code is more optimal.
duke@435 2038
duke@435 2039 // copy with shift 4 elements (16 bytes) at a time
duke@435 2040 __ dec(count, 4); // The cmp at the beginning guaranty count >= 4
kvn@3103 2041 __ sllx(O3, 32, O3);
kvn@3103 2042
kvn@3103 2043 disjoint_copy_core(from, to, count, 2, 16, copy_16_bytes_loop);
duke@435 2044
duke@435 2045 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 2046 __ delayed()->inc(count, 4); // restore 'count'
duke@435 2047
duke@435 2048 __ BIND(L_aligned_copy);
kvn@3103 2049 } // !aligned
kvn@3103 2050
duke@435 2051 // copy 4 elements (16 bytes) at a time
duke@435 2052 __ and3(count, 1, G4); // Save
duke@435 2053 __ srl(count, 1, count);
duke@435 2054 generate_disjoint_long_copy_core(aligned);
duke@435 2055 __ mov(G4, count); // Restore
duke@435 2056
duke@435 2057 // copy 1 element at a time
duke@435 2058 __ BIND(L_copy_4_bytes);
kvn@3037 2059 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
duke@435 2060 __ BIND(L_copy_4_bytes_loop);
duke@435 2061 __ ld(from, offset, O3);
duke@435 2062 __ deccc(count);
duke@435 2063 __ st(O3, to, offset);
duke@435 2064 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 2065 __ delayed()->inc(offset, 4);
duke@435 2066 __ BIND(L_exit);
duke@435 2067 }
duke@435 2068
duke@435 2069 //
duke@435 2070 // Generate stub for disjoint int copy. If "aligned" is true, the
duke@435 2071 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2072 //
duke@435 2073 // Arguments for generated stub:
duke@435 2074 // from: O0
duke@435 2075 // to: O1
duke@435 2076 // count: O2 treated as signed
duke@435 2077 //
iveresov@2595 2078 address generate_disjoint_int_copy(bool aligned, address *entry, const char *name) {
duke@435 2079 __ align(CodeEntryAlignment);
duke@435 2080 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2081 address start = __ pc();
duke@435 2082
duke@435 2083 const Register count = O2;
duke@435 2084 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2085
iveresov@2595 2086 if (entry != NULL) {
iveresov@2595 2087 *entry = __ pc();
iveresov@2595 2088 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2089 BLOCK_COMMENT("Entry:");
iveresov@2595 2090 }
duke@435 2091
duke@435 2092 generate_disjoint_int_copy_core(aligned);
duke@435 2093
duke@435 2094 // O3, O4 are used as temp registers
duke@435 2095 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 2096 __ retl();
duke@435 2097 __ delayed()->mov(G0, O0); // return 0
duke@435 2098 return start;
duke@435 2099 }
duke@435 2100
duke@435 2101 //
duke@435 2102 // Generate core code for conjoint int copy (and oop copy on 32-bit).
duke@435 2103 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 2104 // to be heapword aligned.
duke@435 2105 //
duke@435 2106 // Arguments:
duke@435 2107 // from: O0
duke@435 2108 // to: O1
duke@435 2109 // count: O2 treated as signed
duke@435 2110 //
duke@435 2111 void generate_conjoint_int_copy_core(bool aligned) {
duke@435 2112 // Do reverse copy.
duke@435 2113
duke@435 2114 Label L_skip_alignment, L_aligned_copy;
duke@435 2115 Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 2116
duke@435 2117 const Register from = O0; // source array address
duke@435 2118 const Register to = O1; // destination array address
duke@435 2119 const Register count = O2; // elements count
duke@435 2120 const Register end_from = from; // source array end address
duke@435 2121 const Register end_to = to; // destination array end address
duke@435 2122 // O3, O4, O5, G3 are used as temp registers
duke@435 2123
duke@435 2124 const Register byte_count = O3; // bytes count to copy
duke@435 2125
duke@435 2126 __ sllx(count, LogBytesPerInt, byte_count);
duke@435 2127 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 2128
duke@435 2129 __ cmp(count, 5); // for short arrays, just do single element copy
duke@435 2130 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 2131 __ delayed()->add(from, byte_count, end_from);
duke@435 2132
duke@435 2133 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 2134 __ andcc(end_to, 7, G0);
duke@435 2135 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 2136 __ delayed()->nop();
duke@435 2137 __ dec(count);
duke@435 2138 __ dec(end_from, 4);
duke@435 2139 __ dec(end_to, 4);
duke@435 2140 __ ld(end_from, 0, O4);
duke@435 2141 __ st(O4, end_to, 0);
duke@435 2142 __ BIND(L_skip_alignment);
duke@435 2143
duke@435 2144 // Check if 'end_from' and 'end_to' has the same alignment.
duke@435 2145 __ andcc(end_from, 7, G0);
duke@435 2146 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 2147 __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
duke@435 2148
duke@435 2149 // copy with shift 4 elements (16 bytes) at a time
duke@435 2150 //
duke@435 2151 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 2152 // to form 2 aligned 8-bytes chunks to store.
duke@435 2153 //
duke@435 2154 __ ldx(end_from, -4, O3);
kvn@1800 2155 __ align(OptoLoopAlignment);
duke@435 2156 __ BIND(L_copy_16_bytes);
duke@435 2157 __ ldx(end_from, -12, O4);
duke@435 2158 __ deccc(count, 4);
duke@435 2159 __ ldx(end_from, -20, O5);
duke@435 2160 __ dec(end_to, 16);
duke@435 2161 __ dec(end_from, 16);
duke@435 2162 __ srlx(O3, 32, O3);
duke@435 2163 __ sllx(O4, 32, G3);
duke@435 2164 __ bset(G3, O3);
duke@435 2165 __ stx(O3, end_to, 8);
duke@435 2166 __ srlx(O4, 32, O4);
duke@435 2167 __ sllx(O5, 32, G3);
duke@435 2168 __ bset(O4, G3);
duke@435 2169 __ stx(G3, end_to, 0);
duke@435 2170 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2171 __ delayed()->mov(O5, O3);
duke@435 2172
duke@435 2173 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 2174 __ delayed()->inc(count, 4);
duke@435 2175
duke@435 2176 // copy 4 elements (16 bytes) at a time
kvn@1800 2177 __ align(OptoLoopAlignment);
duke@435 2178 __ BIND(L_aligned_copy);
duke@435 2179 __ dec(end_from, 16);
duke@435 2180 __ ldx(end_from, 8, O3);
duke@435 2181 __ ldx(end_from, 0, O4);
duke@435 2182 __ dec(end_to, 16);
duke@435 2183 __ deccc(count, 4);
duke@435 2184 __ stx(O3, end_to, 8);
duke@435 2185 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 2186 __ delayed()->stx(O4, end_to, 0);
duke@435 2187 __ inc(count, 4);
duke@435 2188
duke@435 2189 // copy 1 element (4 bytes) at a time
duke@435 2190 __ BIND(L_copy_4_bytes);
kvn@3037 2191 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
duke@435 2192 __ BIND(L_copy_4_bytes_loop);
duke@435 2193 __ dec(end_from, 4);
duke@435 2194 __ dec(end_to, 4);
duke@435 2195 __ ld(end_from, 0, O4);
duke@435 2196 __ deccc(count);
duke@435 2197 __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 2198 __ delayed()->st(O4, end_to, 0);
duke@435 2199 __ BIND(L_exit);
duke@435 2200 }
duke@435 2201
duke@435 2202 //
duke@435 2203 // Generate stub for conjoint int copy. If "aligned" is true, the
duke@435 2204 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2205 //
duke@435 2206 // Arguments for generated stub:
duke@435 2207 // from: O0
duke@435 2208 // to: O1
duke@435 2209 // count: O2 treated as signed
duke@435 2210 //
iveresov@2595 2211 address generate_conjoint_int_copy(bool aligned, address nooverlap_target,
iveresov@2595 2212 address *entry, const char *name) {
duke@435 2213 __ align(CodeEntryAlignment);
duke@435 2214 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2215 address start = __ pc();
duke@435 2216
duke@435 2217 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2218
iveresov@2595 2219 if (entry != NULL) {
iveresov@2595 2220 *entry = __ pc();
iveresov@2595 2221 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2222 BLOCK_COMMENT("Entry:");
iveresov@2595 2223 }
duke@435 2224
duke@435 2225 array_overlap_test(nooverlap_target, 2);
duke@435 2226
duke@435 2227 generate_conjoint_int_copy_core(aligned);
duke@435 2228
duke@435 2229 // O3, O4 are used as temp registers
duke@435 2230 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 2231 __ retl();
duke@435 2232 __ delayed()->mov(G0, O0); // return 0
duke@435 2233 return start;
duke@435 2234 }
duke@435 2235
duke@435 2236 //
kvn@3103 2237 // Helper methods for generate_disjoint_long_copy_core()
kvn@3103 2238 //
kvn@3103 2239 void copy_64_bytes_loop(Register from, Register to, Register count, int count_dec,
kvn@3103 2240 Label& L_loop, bool use_prefetch, bool use_bis) {
kvn@3103 2241 __ align(OptoLoopAlignment);
kvn@3103 2242 __ BIND(L_loop);
kvn@3103 2243 for (int off = 0; off < 64; off += 16) {
kvn@3103 2244 if (use_prefetch && (off & 31) == 0) {
kvn@3103 2245 if (ArraycopySrcPrefetchDistance > 0) {
kvn@3157 2246 __ prefetch(from, ArraycopySrcPrefetchDistance+off, Assembler::severalReads);
kvn@3103 2247 }
kvn@3103 2248 if (ArraycopyDstPrefetchDistance > 0) {
kvn@3157 2249 __ prefetch(to, ArraycopyDstPrefetchDistance+off, Assembler::severalWritesAndPossiblyReads);
kvn@3103 2250 }
kvn@3103 2251 }
kvn@3103 2252 __ ldx(from, off+0, O4);
kvn@3103 2253 __ ldx(from, off+8, O5);
kvn@3103 2254 if (use_bis) {
kvn@3103 2255 __ stxa(O4, to, off+0);
kvn@3103 2256 __ stxa(O5, to, off+8);
kvn@3103 2257 } else {
kvn@3103 2258 __ stx(O4, to, off+0);
kvn@3103 2259 __ stx(O5, to, off+8);
kvn@3103 2260 }
kvn@3103 2261 }
kvn@3103 2262 __ deccc(count, 8);
kvn@3103 2263 __ inc(from, 64);
kvn@3103 2264 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
kvn@3103 2265 __ delayed()->inc(to, 64);
kvn@3103 2266 }
kvn@3103 2267
kvn@3103 2268 //
duke@435 2269 // Generate core code for disjoint long copy (and oop copy on 64-bit).
duke@435 2270 // "aligned" is ignored, because we must make the stronger
duke@435 2271 // assumption that both addresses are always 64-bit aligned.
duke@435 2272 //
duke@435 2273 // Arguments:
duke@435 2274 // from: O0
duke@435 2275 // to: O1
duke@435 2276 // count: O2 treated as signed
duke@435 2277 //
kvn@1799 2278 // count -= 2;
kvn@1799 2279 // if ( count >= 0 ) { // >= 2 elements
kvn@1799 2280 // if ( count > 6) { // >= 8 elements
kvn@1799 2281 // count -= 6; // original count - 8
kvn@1799 2282 // do {
kvn@1799 2283 // copy_8_elements;
kvn@1799 2284 // count -= 8;
kvn@1799 2285 // } while ( count >= 0 );
kvn@1799 2286 // count += 6;
kvn@1799 2287 // }
kvn@1799 2288 // if ( count >= 0 ) { // >= 2 elements
kvn@1799 2289 // do {
kvn@1799 2290 // copy_2_elements;
kvn@1799 2291 // } while ( (count=count-2) >= 0 );
kvn@1799 2292 // }
kvn@1799 2293 // }
kvn@1799 2294 // count += 2;
kvn@1799 2295 // if ( count != 0 ) { // 1 element left
kvn@1799 2296 // copy_1_element;
kvn@1799 2297 // }
kvn@1799 2298 //
duke@435 2299 void generate_disjoint_long_copy_core(bool aligned) {
duke@435 2300 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2301 const Register from = O0; // source array address
duke@435 2302 const Register to = O1; // destination array address
duke@435 2303 const Register count = O2; // elements count
duke@435 2304 const Register offset0 = O4; // element offset
duke@435 2305 const Register offset8 = O5; // next element offset
duke@435 2306
kvn@3103 2307 __ deccc(count, 2);
kvn@3103 2308 __ mov(G0, offset0); // offset from start of arrays (0)
kvn@3103 2309 __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
kvn@3103 2310 __ delayed()->add(offset0, 8, offset8);
kvn@1799 2311
kvn@1799 2312 // Copy by 64 bytes chunks
kvn@3103 2313
kvn@1799 2314 const Register from64 = O3; // source address
kvn@1799 2315 const Register to64 = G3; // destination address
kvn@3103 2316 __ subcc(count, 6, O3);
kvn@3103 2317 __ brx(Assembler::negative, false, Assembler::pt, L_copy_16_bytes );
kvn@3103 2318 __ delayed()->mov(to, to64);
kvn@3103 2319 // Now we can use O4(offset0), O5(offset8) as temps
kvn@3103 2320 __ mov(O3, count);
kvn@3103 2321 // count >= 0 (original count - 8)
kvn@3103 2322 __ mov(from, from64);
kvn@3103 2323
kvn@3103 2324 disjoint_copy_core(from64, to64, count, 3, 64, copy_64_bytes_loop);
kvn@1799 2325
kvn@1799 2326 // Restore O4(offset0), O5(offset8)
kvn@1799 2327 __ sub(from64, from, offset0);
kvn@3103 2328 __ inccc(count, 6); // restore count
kvn@1799 2329 __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
kvn@1799 2330 __ delayed()->add(offset0, 8, offset8);
kvn@1799 2331
kvn@1799 2332 // Copy by 16 bytes chunks
kvn@1800 2333 __ align(OptoLoopAlignment);
duke@435 2334 __ BIND(L_copy_16_bytes);
duke@435 2335 __ ldx(from, offset0, O3);
duke@435 2336 __ ldx(from, offset8, G3);
duke@435 2337 __ deccc(count, 2);
duke@435 2338 __ stx(O3, to, offset0);
duke@435 2339 __ inc(offset0, 16);
duke@435 2340 __ stx(G3, to, offset8);
duke@435 2341 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2342 __ delayed()->inc(offset8, 16);
duke@435 2343
kvn@1799 2344 // Copy last 8 bytes
duke@435 2345 __ BIND(L_copy_8_bytes);
duke@435 2346 __ inccc(count, 2);
duke@435 2347 __ brx(Assembler::zero, true, Assembler::pn, L_exit );
duke@435 2348 __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
duke@435 2349 __ ldx(from, offset0, O3);
duke@435 2350 __ stx(O3, to, offset0);
duke@435 2351 __ BIND(L_exit);
duke@435 2352 }
duke@435 2353
duke@435 2354 //
duke@435 2355 // Generate stub for disjoint long copy.
duke@435 2356 // "aligned" is ignored, because we must make the stronger
duke@435 2357 // assumption that both addresses are always 64-bit aligned.
duke@435 2358 //
duke@435 2359 // Arguments for generated stub:
duke@435 2360 // from: O0
duke@435 2361 // to: O1
duke@435 2362 // count: O2 treated as signed
duke@435 2363 //
iveresov@2595 2364 address generate_disjoint_long_copy(bool aligned, address *entry, const char *name) {
duke@435 2365 __ align(CodeEntryAlignment);
duke@435 2366 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2367 address start = __ pc();
duke@435 2368
duke@435 2369 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2370
iveresov@2595 2371 if (entry != NULL) {
iveresov@2595 2372 *entry = __ pc();
iveresov@2595 2373 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2374 BLOCK_COMMENT("Entry:");
iveresov@2595 2375 }
duke@435 2376
duke@435 2377 generate_disjoint_long_copy_core(aligned);
duke@435 2378
duke@435 2379 // O3, O4 are used as temp registers
duke@435 2380 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2381 __ retl();
duke@435 2382 __ delayed()->mov(G0, O0); // return 0
duke@435 2383 return start;
duke@435 2384 }
duke@435 2385
duke@435 2386 //
duke@435 2387 // Generate core code for conjoint long copy (and oop copy on 64-bit).
duke@435 2388 // "aligned" is ignored, because we must make the stronger
duke@435 2389 // assumption that both addresses are always 64-bit aligned.
duke@435 2390 //
duke@435 2391 // Arguments:
duke@435 2392 // from: O0
duke@435 2393 // to: O1
duke@435 2394 // count: O2 treated as signed
duke@435 2395 //
duke@435 2396 void generate_conjoint_long_copy_core(bool aligned) {
duke@435 2397 // Do reverse copy.
duke@435 2398 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2399 const Register from = O0; // source array address
duke@435 2400 const Register to = O1; // destination array address
duke@435 2401 const Register count = O2; // elements count
duke@435 2402 const Register offset8 = O4; // element offset
duke@435 2403 const Register offset0 = O5; // previous element offset
duke@435 2404
duke@435 2405 __ subcc(count, 1, count);
duke@435 2406 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
duke@435 2407 __ delayed()->sllx(count, LogBytesPerLong, offset8);
duke@435 2408 __ sub(offset8, 8, offset0);
kvn@1800 2409 __ align(OptoLoopAlignment);
duke@435 2410 __ BIND(L_copy_16_bytes);
duke@435 2411 __ ldx(from, offset8, O2);
duke@435 2412 __ ldx(from, offset0, O3);
duke@435 2413 __ stx(O2, to, offset8);
duke@435 2414 __ deccc(offset8, 16); // use offset8 as counter
duke@435 2415 __ stx(O3, to, offset0);
duke@435 2416 __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
duke@435 2417 __ delayed()->dec(offset0, 16);
duke@435 2418
duke@435 2419 __ BIND(L_copy_8_bytes);
duke@435 2420 __ brx(Assembler::negative, false, Assembler::pn, L_exit );
duke@435 2421 __ delayed()->nop();
duke@435 2422 __ ldx(from, 0, O3);
duke@435 2423 __ stx(O3, to, 0);
duke@435 2424 __ BIND(L_exit);
duke@435 2425 }
duke@435 2426
duke@435 2427 // Generate stub for conjoint long copy.
duke@435 2428 // "aligned" is ignored, because we must make the stronger
duke@435 2429 // assumption that both addresses are always 64-bit aligned.
duke@435 2430 //
duke@435 2431 // Arguments for generated stub:
duke@435 2432 // from: O0
duke@435 2433 // to: O1
duke@435 2434 // count: O2 treated as signed
duke@435 2435 //
iveresov@2595 2436 address generate_conjoint_long_copy(bool aligned, address nooverlap_target,
iveresov@2595 2437 address *entry, const char *name) {
duke@435 2438 __ align(CodeEntryAlignment);
duke@435 2439 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2440 address start = __ pc();
duke@435 2441
iveresov@2606 2442 assert(aligned, "Should always be aligned");
duke@435 2443
duke@435 2444 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2445
iveresov@2595 2446 if (entry != NULL) {
iveresov@2595 2447 *entry = __ pc();
iveresov@2595 2448 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2449 BLOCK_COMMENT("Entry:");
iveresov@2595 2450 }
duke@435 2451
duke@435 2452 array_overlap_test(nooverlap_target, 3);
duke@435 2453
duke@435 2454 generate_conjoint_long_copy_core(aligned);
duke@435 2455
duke@435 2456 // O3, O4 are used as temp registers
duke@435 2457 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2458 __ retl();
duke@435 2459 __ delayed()->mov(G0, O0); // return 0
duke@435 2460 return start;
duke@435 2461 }
duke@435 2462
duke@435 2463 // Generate stub for disjoint oop copy. If "aligned" is true, the
duke@435 2464 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2465 //
duke@435 2466 // Arguments for generated stub:
duke@435 2467 // from: O0
duke@435 2468 // to: O1
duke@435 2469 // count: O2 treated as signed
duke@435 2470 //
iveresov@2606 2471 address generate_disjoint_oop_copy(bool aligned, address *entry, const char *name,
iveresov@2606 2472 bool dest_uninitialized = false) {
duke@435 2473
duke@435 2474 const Register from = O0; // source array address
duke@435 2475 const Register to = O1; // destination array address
duke@435 2476 const Register count = O2; // elements count
duke@435 2477
duke@435 2478 __ align(CodeEntryAlignment);
duke@435 2479 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2480 address start = __ pc();
duke@435 2481
duke@435 2482 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2483
iveresov@2595 2484 if (entry != NULL) {
iveresov@2595 2485 *entry = __ pc();
iveresov@2595 2486 // caller can pass a 64-bit byte count here
iveresov@2595 2487 BLOCK_COMMENT("Entry:");
iveresov@2595 2488 }
duke@435 2489
duke@435 2490 // save arguments for barrier generation
duke@435 2491 __ mov(to, G1);
duke@435 2492 __ mov(count, G5);
iveresov@2606 2493 gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
duke@435 2494 #ifdef _LP64
coleenp@548 2495 assert_clean_int(count, O3); // Make sure 'count' is clean int.
coleenp@548 2496 if (UseCompressedOops) {
coleenp@548 2497 generate_disjoint_int_copy_core(aligned);
coleenp@548 2498 } else {
coleenp@548 2499 generate_disjoint_long_copy_core(aligned);
coleenp@548 2500 }
duke@435 2501 #else
duke@435 2502 generate_disjoint_int_copy_core(aligned);
duke@435 2503 #endif
duke@435 2504 // O0 is used as temp register
duke@435 2505 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2506
duke@435 2507 // O3, O4 are used as temp registers
duke@435 2508 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2509 __ retl();
duke@435 2510 __ delayed()->mov(G0, O0); // return 0
duke@435 2511 return start;
duke@435 2512 }
duke@435 2513
duke@435 2514 // Generate stub for conjoint oop copy. If "aligned" is true, the
duke@435 2515 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2516 //
duke@435 2517 // Arguments for generated stub:
duke@435 2518 // from: O0
duke@435 2519 // to: O1
duke@435 2520 // count: O2 treated as signed
duke@435 2521 //
iveresov@2595 2522 address generate_conjoint_oop_copy(bool aligned, address nooverlap_target,
iveresov@2606 2523 address *entry, const char *name,
iveresov@2606 2524 bool dest_uninitialized = false) {
duke@435 2525
duke@435 2526 const Register from = O0; // source array address
duke@435 2527 const Register to = O1; // destination array address
duke@435 2528 const Register count = O2; // elements count
duke@435 2529
duke@435 2530 __ align(CodeEntryAlignment);
duke@435 2531 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2532 address start = __ pc();
duke@435 2533
duke@435 2534 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2535
iveresov@2595 2536 if (entry != NULL) {
iveresov@2595 2537 *entry = __ pc();
iveresov@2595 2538 // caller can pass a 64-bit byte count here
iveresov@2595 2539 BLOCK_COMMENT("Entry:");
iveresov@2595 2540 }
iveresov@2595 2541
iveresov@2595 2542 array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
duke@435 2543
duke@435 2544 // save arguments for barrier generation
duke@435 2545 __ mov(to, G1);
duke@435 2546 __ mov(count, G5);
iveresov@2606 2547 gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
duke@435 2548
duke@435 2549 #ifdef _LP64
coleenp@548 2550 if (UseCompressedOops) {
coleenp@548 2551 generate_conjoint_int_copy_core(aligned);
coleenp@548 2552 } else {
coleenp@548 2553 generate_conjoint_long_copy_core(aligned);
coleenp@548 2554 }
duke@435 2555 #else
duke@435 2556 generate_conjoint_int_copy_core(aligned);
duke@435 2557 #endif
duke@435 2558
duke@435 2559 // O0 is used as temp register
duke@435 2560 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2561
duke@435 2562 // O3, O4 are used as temp registers
duke@435 2563 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2564 __ retl();
duke@435 2565 __ delayed()->mov(G0, O0); // return 0
duke@435 2566 return start;
duke@435 2567 }
duke@435 2568
duke@435 2569
duke@435 2570 // Helper for generating a dynamic type check.
duke@435 2571 // Smashes only the given temp registers.
duke@435 2572 void generate_type_check(Register sub_klass,
duke@435 2573 Register super_check_offset,
duke@435 2574 Register super_klass,
duke@435 2575 Register temp,
jrose@1079 2576 Label& L_success) {
duke@435 2577 assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
duke@435 2578
duke@435 2579 BLOCK_COMMENT("type_check:");
duke@435 2580
jrose@1079 2581 Label L_miss, L_pop_to_miss;
duke@435 2582
duke@435 2583 assert_clean_int(super_check_offset, temp);
duke@435 2584
jrose@1079 2585 __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
jrose@1079 2586 &L_success, &L_miss, NULL,
jrose@1079 2587 super_check_offset);
jrose@1079 2588
jrose@1079 2589 BLOCK_COMMENT("type_check_slow_path:");
duke@435 2590 __ save_frame(0);
jrose@1079 2591 __ check_klass_subtype_slow_path(sub_klass->after_save(),
jrose@1079 2592 super_klass->after_save(),
jrose@1079 2593 L0, L1, L2, L4,
jrose@1079 2594 NULL, &L_pop_to_miss);
kvn@3037 2595 __ ba(L_success);
jrose@1079 2596 __ delayed()->restore();
jrose@1079 2597
jrose@1079 2598 __ bind(L_pop_to_miss);
duke@435 2599 __ restore();
duke@435 2600
duke@435 2601 // Fall through on failure!
duke@435 2602 __ BIND(L_miss);
duke@435 2603 }
duke@435 2604
duke@435 2605
duke@435 2606 // Generate stub for checked oop copy.
duke@435 2607 //
duke@435 2608 // Arguments for generated stub:
duke@435 2609 // from: O0
duke@435 2610 // to: O1
duke@435 2611 // count: O2 treated as signed
duke@435 2612 // ckoff: O3 (super_check_offset)
duke@435 2613 // ckval: O4 (super_klass)
duke@435 2614 // ret: O0 zero for success; (-1^K) where K is partial transfer count
duke@435 2615 //
iveresov@2606 2616 address generate_checkcast_copy(const char *name, address *entry, bool dest_uninitialized = false) {
duke@435 2617
duke@435 2618 const Register O0_from = O0; // source array address
duke@435 2619 const Register O1_to = O1; // destination array address
duke@435 2620 const Register O2_count = O2; // elements count
duke@435 2621 const Register O3_ckoff = O3; // super_check_offset
duke@435 2622 const Register O4_ckval = O4; // super_klass
duke@435 2623
duke@435 2624 const Register O5_offset = O5; // loop var, with stride wordSize
duke@435 2625 const Register G1_remain = G1; // loop var, with stride -1
duke@435 2626 const Register G3_oop = G3; // actual oop copied
duke@435 2627 const Register G4_klass = G4; // oop._klass
duke@435 2628 const Register G5_super = G5; // oop._klass._primary_supers[ckval]
duke@435 2629
duke@435 2630 __ align(CodeEntryAlignment);
duke@435 2631 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2632 address start = __ pc();
duke@435 2633
duke@435 2634 #ifdef ASSERT
jrose@1079 2635 // We sometimes save a frame (see generate_type_check below).
duke@435 2636 // If this will cause trouble, let's fail now instead of later.
duke@435 2637 __ save_frame(0);
duke@435 2638 __ restore();
duke@435 2639 #endif
duke@435 2640
never@2199 2641 assert_clean_int(O2_count, G1); // Make sure 'count' is clean int.
never@2199 2642
duke@435 2643 #ifdef ASSERT
duke@435 2644 // caller guarantees that the arrays really are different
duke@435 2645 // otherwise, we would have to make conjoint checks
duke@435 2646 { Label L;
duke@435 2647 __ mov(O3, G1); // spill: overlap test smashes O3
duke@435 2648 __ mov(O4, G4); // spill: overlap test smashes O4
coleenp@548 2649 array_overlap_test(L, LogBytesPerHeapOop);
duke@435 2650 __ stop("checkcast_copy within a single array");
duke@435 2651 __ bind(L);
duke@435 2652 __ mov(G1, O3);
duke@435 2653 __ mov(G4, O4);
duke@435 2654 }
duke@435 2655 #endif //ASSERT
duke@435 2656
iveresov@2595 2657 if (entry != NULL) {
iveresov@2595 2658 *entry = __ pc();
iveresov@2595 2659 // caller can pass a 64-bit byte count here (from generic stub)
iveresov@2595 2660 BLOCK_COMMENT("Entry:");
iveresov@2595 2661 }
iveresov@2606 2662 gen_write_ref_array_pre_barrier(O1_to, O2_count, dest_uninitialized);
duke@435 2663
duke@435 2664 Label load_element, store_element, do_card_marks, fail, done;
duke@435 2665 __ addcc(O2_count, 0, G1_remain); // initialize loop index, and test it
duke@435 2666 __ brx(Assembler::notZero, false, Assembler::pt, load_element);
duke@435 2667 __ delayed()->mov(G0, O5_offset); // offset from start of arrays
duke@435 2668
duke@435 2669 // Empty array: Nothing to do.
duke@435 2670 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2671 __ retl();
duke@435 2672 __ delayed()->set(0, O0); // return 0 on (trivial) success
duke@435 2673
duke@435 2674 // ======== begin loop ========
duke@435 2675 // (Loop is rotated; its entry is load_element.)
duke@435 2676 // Loop variables:
duke@435 2677 // (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
duke@435 2678 // (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
duke@435 2679 // G3, G4, G5 --- current oop, oop.klass, oop.klass.super
kvn@1800 2680 __ align(OptoLoopAlignment);
duke@435 2681
jrose@1079 2682 __ BIND(store_element);
jrose@1079 2683 __ deccc(G1_remain); // decrement the count
coleenp@548 2684 __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
coleenp@548 2685 __ inc(O5_offset, heapOopSize); // step to next offset
duke@435 2686 __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
duke@435 2687 __ delayed()->set(0, O0); // return -1 on success
duke@435 2688
duke@435 2689 // ======== loop entry is here ========
jrose@1079 2690 __ BIND(load_element);
coleenp@548 2691 __ load_heap_oop(O0_from, O5_offset, G3_oop); // load the oop
kvn@3037 2692 __ br_null_short(G3_oop, Assembler::pt, store_element);
duke@435 2693
coleenp@548 2694 __ load_klass(G3_oop, G4_klass); // query the object klass
duke@435 2695
duke@435 2696 generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
duke@435 2697 // branch to this on success:
jrose@1079 2698 store_element);
duke@435 2699 // ======== end loop ========
duke@435 2700
duke@435 2701 // It was a real error; we must depend on the caller to finish the job.
duke@435 2702 // Register G1 has number of *remaining* oops, O2 number of *total* oops.
duke@435 2703 // Emit GC store barriers for the oops we have copied (O2 minus G1),
duke@435 2704 // and report their number to the caller.
jrose@1079 2705 __ BIND(fail);
duke@435 2706 __ subcc(O2_count, G1_remain, O2_count);
duke@435 2707 __ brx(Assembler::zero, false, Assembler::pt, done);
duke@435 2708 __ delayed()->not1(O2_count, O0); // report (-1^K) to caller
duke@435 2709
jrose@1079 2710 __ BIND(do_card_marks);
duke@435 2711 gen_write_ref_array_post_barrier(O1_to, O2_count, O3); // store check on O1[0..O2]
duke@435 2712
jrose@1079 2713 __ BIND(done);
duke@435 2714 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2715 __ retl();
duke@435 2716 __ delayed()->nop(); // return value in 00
duke@435 2717
duke@435 2718 return start;
duke@435 2719 }
duke@435 2720
duke@435 2721
duke@435 2722 // Generate 'unsafe' array copy stub
duke@435 2723 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2724 // size_t argument instead of an element count.
duke@435 2725 //
duke@435 2726 // Arguments for generated stub:
duke@435 2727 // from: O0
duke@435 2728 // to: O1
duke@435 2729 // count: O2 byte count, treated as ssize_t, can be zero
duke@435 2730 //
duke@435 2731 // Examines the alignment of the operands and dispatches
duke@435 2732 // to a long, int, short, or byte copy loop.
duke@435 2733 //
iveresov@2595 2734 address generate_unsafe_copy(const char* name,
iveresov@2595 2735 address byte_copy_entry,
iveresov@2595 2736 address short_copy_entry,
iveresov@2595 2737 address int_copy_entry,
iveresov@2595 2738 address long_copy_entry) {
duke@435 2739
duke@435 2740 const Register O0_from = O0; // source array address
duke@435 2741 const Register O1_to = O1; // destination array address
duke@435 2742 const Register O2_count = O2; // elements count
duke@435 2743
duke@435 2744 const Register G1_bits = G1; // test copy of low bits
duke@435 2745
duke@435 2746 __ align(CodeEntryAlignment);
duke@435 2747 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2748 address start = __ pc();
duke@435 2749
duke@435 2750 // bump this on entry, not on exit:
duke@435 2751 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
duke@435 2752
duke@435 2753 __ or3(O0_from, O1_to, G1_bits);
duke@435 2754 __ or3(O2_count, G1_bits, G1_bits);
duke@435 2755
duke@435 2756 __ btst(BytesPerLong-1, G1_bits);
duke@435 2757 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2758 long_copy_entry, relocInfo::runtime_call_type);
duke@435 2759 // scale the count on the way out:
duke@435 2760 __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
duke@435 2761
duke@435 2762 __ btst(BytesPerInt-1, G1_bits);
duke@435 2763 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2764 int_copy_entry, relocInfo::runtime_call_type);
duke@435 2765 // scale the count on the way out:
duke@435 2766 __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
duke@435 2767
duke@435 2768 __ btst(BytesPerShort-1, G1_bits);
duke@435 2769 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2770 short_copy_entry, relocInfo::runtime_call_type);
duke@435 2771 // scale the count on the way out:
duke@435 2772 __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
duke@435 2773
duke@435 2774 __ br(Assembler::always, false, Assembler::pt,
duke@435 2775 byte_copy_entry, relocInfo::runtime_call_type);
duke@435 2776 __ delayed()->nop();
duke@435 2777
duke@435 2778 return start;
duke@435 2779 }
duke@435 2780
duke@435 2781
duke@435 2782 // Perform range checks on the proposed arraycopy.
duke@435 2783 // Kills the two temps, but nothing else.
duke@435 2784 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2785 void arraycopy_range_checks(Register src, // source array oop (O0)
duke@435 2786 Register src_pos, // source position (O1)
duke@435 2787 Register dst, // destination array oo (O2)
duke@435 2788 Register dst_pos, // destination position (O3)
duke@435 2789 Register length, // length of copy (O4)
duke@435 2790 Register temp1, Register temp2,
duke@435 2791 Label& L_failed) {
duke@435 2792 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2793
duke@435 2794 // if (src_pos + length > arrayOop(src)->length() ) FAIL;
duke@435 2795
duke@435 2796 const Register array_length = temp1; // scratch
duke@435 2797 const Register end_pos = temp2; // scratch
duke@435 2798
duke@435 2799 // Note: This next instruction may be in the delay slot of a branch:
duke@435 2800 __ add(length, src_pos, end_pos); // src_pos + length
duke@435 2801 __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2802 __ cmp(end_pos, array_length);
duke@435 2803 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2804
duke@435 2805 // if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
duke@435 2806 __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
duke@435 2807 __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2808 __ cmp(end_pos, array_length);
duke@435 2809 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2810
duke@435 2811 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2812 // Move with sign extension can be used since they are positive.
duke@435 2813 __ delayed()->signx(src_pos, src_pos);
duke@435 2814 __ signx(dst_pos, dst_pos);
duke@435 2815
duke@435 2816 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2817 }
duke@435 2818
duke@435 2819
duke@435 2820 //
duke@435 2821 // Generate generic array copy stubs
duke@435 2822 //
duke@435 2823 // Input:
duke@435 2824 // O0 - src oop
duke@435 2825 // O1 - src_pos
duke@435 2826 // O2 - dst oop
duke@435 2827 // O3 - dst_pos
duke@435 2828 // O4 - element count
duke@435 2829 //
duke@435 2830 // Output:
duke@435 2831 // O0 == 0 - success
duke@435 2832 // O0 == -1 - need to call System.arraycopy
duke@435 2833 //
iveresov@2595 2834 address generate_generic_copy(const char *name,
iveresov@2595 2835 address entry_jbyte_arraycopy,
iveresov@2595 2836 address entry_jshort_arraycopy,
iveresov@2595 2837 address entry_jint_arraycopy,
iveresov@2595 2838 address entry_oop_arraycopy,
iveresov@2595 2839 address entry_jlong_arraycopy,
iveresov@2595 2840 address entry_checkcast_arraycopy) {
duke@435 2841 Label L_failed, L_objArray;
duke@435 2842
duke@435 2843 // Input registers
duke@435 2844 const Register src = O0; // source array oop
duke@435 2845 const Register src_pos = O1; // source position
duke@435 2846 const Register dst = O2; // destination array oop
duke@435 2847 const Register dst_pos = O3; // destination position
duke@435 2848 const Register length = O4; // elements count
duke@435 2849
duke@435 2850 // registers used as temp
duke@435 2851 const Register G3_src_klass = G3; // source array klass
duke@435 2852 const Register G4_dst_klass = G4; // destination array klass
duke@435 2853 const Register G5_lh = G5; // layout handler
duke@435 2854 const Register O5_temp = O5;
duke@435 2855
duke@435 2856 __ align(CodeEntryAlignment);
duke@435 2857 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2858 address start = __ pc();
duke@435 2859
duke@435 2860 // bump this on entry, not on exit:
duke@435 2861 inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
duke@435 2862
duke@435 2863 // In principle, the int arguments could be dirty.
duke@435 2864 //assert_clean_int(src_pos, G1);
duke@435 2865 //assert_clean_int(dst_pos, G1);
duke@435 2866 //assert_clean_int(length, G1);
duke@435 2867
duke@435 2868 //-----------------------------------------------------------------------
duke@435 2869 // Assembler stubs will be used for this call to arraycopy
duke@435 2870 // if the following conditions are met:
duke@435 2871 //
duke@435 2872 // (1) src and dst must not be null.
duke@435 2873 // (2) src_pos must not be negative.
duke@435 2874 // (3) dst_pos must not be negative.
duke@435 2875 // (4) length must not be negative.
duke@435 2876 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2877 // (6) src and dst should be arrays.
duke@435 2878 // (7) src_pos + length must not exceed length of src.
duke@435 2879 // (8) dst_pos + length must not exceed length of dst.
duke@435 2880 BLOCK_COMMENT("arraycopy initial argument checks");
duke@435 2881
duke@435 2882 // if (src == NULL) return -1;
duke@435 2883 __ br_null(src, false, Assembler::pn, L_failed);
duke@435 2884
duke@435 2885 // if (src_pos < 0) return -1;
duke@435 2886 __ delayed()->tst(src_pos);
duke@435 2887 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2888 __ delayed()->nop();
duke@435 2889
duke@435 2890 // if (dst == NULL) return -1;
duke@435 2891 __ br_null(dst, false, Assembler::pn, L_failed);
duke@435 2892
duke@435 2893 // if (dst_pos < 0) return -1;
duke@435 2894 __ delayed()->tst(dst_pos);
duke@435 2895 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2896
duke@435 2897 // if (length < 0) return -1;
duke@435 2898 __ delayed()->tst(length);
duke@435 2899 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2900
duke@435 2901 BLOCK_COMMENT("arraycopy argument klass checks");
duke@435 2902 // get src->klass()
coleenp@4037 2903 if (UseCompressedKlassPointers) {
coleenp@548 2904 __ delayed()->nop(); // ??? not good
coleenp@548 2905 __ load_klass(src, G3_src_klass);
coleenp@548 2906 } else {
coleenp@548 2907 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
coleenp@548 2908 }
duke@435 2909
duke@435 2910 #ifdef ASSERT
duke@435 2911 // assert(src->klass() != NULL);
duke@435 2912 BLOCK_COMMENT("assert klasses not null");
duke@435 2913 { Label L_a, L_b;
kvn@3037 2914 __ br_notnull_short(G3_src_klass, Assembler::pt, L_b); // it is broken if klass is NULL
duke@435 2915 __ bind(L_a);
duke@435 2916 __ stop("broken null klass");
duke@435 2917 __ bind(L_b);
coleenp@548 2918 __ load_klass(dst, G4_dst_klass);
duke@435 2919 __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
duke@435 2920 __ delayed()->mov(G0, G4_dst_klass); // scribble the temp
duke@435 2921 BLOCK_COMMENT("assert done");
duke@435 2922 }
duke@435 2923 #endif
duke@435 2924
duke@435 2925 // Load layout helper
duke@435 2926 //
duke@435 2927 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2928 // 32 30 24 16 8 2 0
duke@435 2929 //
duke@435 2930 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2931 //
duke@435 2932
stefank@3391 2933 int lh_offset = in_bytes(Klass::layout_helper_offset());
duke@435 2934
duke@435 2935 // Load 32-bits signed value. Use br() instruction with it to check icc.
duke@435 2936 __ lduw(G3_src_klass, lh_offset, G5_lh);
duke@435 2937
coleenp@4037 2938 if (UseCompressedKlassPointers) {
coleenp@548 2939 __ load_klass(dst, G4_dst_klass);
coleenp@548 2940 }
duke@435 2941 // Handle objArrays completely differently...
duke@435 2942 juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 2943 __ set(objArray_lh, O5_temp);
duke@435 2944 __ cmp(G5_lh, O5_temp);
duke@435 2945 __ br(Assembler::equal, false, Assembler::pt, L_objArray);
coleenp@4037 2946 if (UseCompressedKlassPointers) {
coleenp@548 2947 __ delayed()->nop();
coleenp@548 2948 } else {
coleenp@548 2949 __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
coleenp@548 2950 }
duke@435 2951
duke@435 2952 // if (src->klass() != dst->klass()) return -1;
kvn@3037 2953 __ cmp_and_brx_short(G3_src_klass, G4_dst_klass, Assembler::notEqual, Assembler::pn, L_failed);
duke@435 2954
duke@435 2955 // if (!src->is_Array()) return -1;
duke@435 2956 __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
duke@435 2957 __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
duke@435 2958
duke@435 2959 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2960 #ifdef ASSERT
duke@435 2961 __ delayed()->nop();
duke@435 2962 { Label L;
duke@435 2963 jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
duke@435 2964 __ set(lh_prim_tag_in_place, O5_temp);
duke@435 2965 __ cmp(G5_lh, O5_temp);
duke@435 2966 __ br(Assembler::greaterEqual, false, Assembler::pt, L);
duke@435 2967 __ delayed()->nop();
duke@435 2968 __ stop("must be a primitive array");
duke@435 2969 __ bind(L);
duke@435 2970 }
duke@435 2971 #else
duke@435 2972 __ delayed(); // match next insn to prev branch
duke@435 2973 #endif
duke@435 2974
duke@435 2975 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 2976 O5_temp, G4_dst_klass, L_failed);
duke@435 2977
coleenp@4142 2978 // TypeArrayKlass
duke@435 2979 //
duke@435 2980 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2981 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2982 //
duke@435 2983
duke@435 2984 const Register G4_offset = G4_dst_klass; // array offset
duke@435 2985 const Register G3_elsize = G3_src_klass; // log2 element size
duke@435 2986
duke@435 2987 __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
duke@435 2988 __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
duke@435 2989 __ add(src, G4_offset, src); // src array offset
duke@435 2990 __ add(dst, G4_offset, dst); // dst array offset
duke@435 2991 __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
duke@435 2992
duke@435 2993 // next registers should be set before the jump to corresponding stub
duke@435 2994 const Register from = O0; // source array address
duke@435 2995 const Register to = O1; // destination array address
duke@435 2996 const Register count = O2; // elements count
duke@435 2997
duke@435 2998 // 'from', 'to', 'count' registers should be set in this order
duke@435 2999 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 3000
duke@435 3001 BLOCK_COMMENT("scale indexes to element size");
duke@435 3002 __ sll_ptr(src_pos, G3_elsize, src_pos);
duke@435 3003 __ sll_ptr(dst_pos, G3_elsize, dst_pos);
duke@435 3004 __ add(src, src_pos, from); // src_addr
duke@435 3005 __ add(dst, dst_pos, to); // dst_addr
duke@435 3006
duke@435 3007 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 3008 __ cmp(G3_elsize, 0);
iveresov@2595 3009 __ br(Assembler::equal, true, Assembler::pt, entry_jbyte_arraycopy);
duke@435 3010 __ delayed()->signx(length, count); // length
duke@435 3011
duke@435 3012 __ cmp(G3_elsize, LogBytesPerShort);
iveresov@2595 3013 __ br(Assembler::equal, true, Assembler::pt, entry_jshort_arraycopy);
duke@435 3014 __ delayed()->signx(length, count); // length
duke@435 3015
duke@435 3016 __ cmp(G3_elsize, LogBytesPerInt);
iveresov@2595 3017 __ br(Assembler::equal, true, Assembler::pt, entry_jint_arraycopy);
duke@435 3018 __ delayed()->signx(length, count); // length
duke@435 3019 #ifdef ASSERT
duke@435 3020 { Label L;
kvn@3037 3021 __ cmp_and_br_short(G3_elsize, LogBytesPerLong, Assembler::equal, Assembler::pt, L);
duke@435 3022 __ stop("must be long copy, but elsize is wrong");
duke@435 3023 __ bind(L);
duke@435 3024 }
duke@435 3025 #endif
iveresov@2595 3026 __ br(Assembler::always, false, Assembler::pt, entry_jlong_arraycopy);
duke@435 3027 __ delayed()->signx(length, count); // length
duke@435 3028
coleenp@4142 3029 // ObjArrayKlass
duke@435 3030 __ BIND(L_objArray);
duke@435 3031 // live at this point: G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
duke@435 3032
duke@435 3033 Label L_plain_copy, L_checkcast_copy;
duke@435 3034 // test array classes for subtyping
duke@435 3035 __ cmp(G3_src_klass, G4_dst_klass); // usual case is exact equality
duke@435 3036 __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
duke@435 3037 __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
duke@435 3038
duke@435 3039 // Identically typed arrays can be copied without element-wise checks.
duke@435 3040 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 3041 O5_temp, G5_lh, L_failed);
duke@435 3042
duke@435 3043 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 3044 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 3045 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 3046 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 3047 __ add(src, src_pos, from); // src_addr
duke@435 3048 __ add(dst, dst_pos, to); // dst_addr
duke@435 3049 __ BIND(L_plain_copy);
iveresov@2595 3050 __ br(Assembler::always, false, Assembler::pt, entry_oop_arraycopy);
duke@435 3051 __ delayed()->signx(length, count); // length
duke@435 3052
duke@435 3053 __ BIND(L_checkcast_copy);
duke@435 3054 // live at this point: G3_src_klass, G4_dst_klass
duke@435 3055 {
duke@435 3056 // Before looking at dst.length, make sure dst is also an objArray.
duke@435 3057 // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
duke@435 3058 __ cmp(G5_lh, O5_temp);
duke@435 3059 __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
duke@435 3060
duke@435 3061 // It is safe to examine both src.length and dst.length.
duke@435 3062 __ delayed(); // match next insn to prev branch
duke@435 3063 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 3064 O5_temp, G5_lh, L_failed);
duke@435 3065
duke@435 3066 // Marshal the base address arguments now, freeing registers.
duke@435 3067 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 3068 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 3069 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 3070 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 3071 __ add(src, src_pos, from); // src_addr
duke@435 3072 __ add(dst, dst_pos, to); // dst_addr
duke@435 3073 __ signx(length, count); // length (reloaded)
duke@435 3074
duke@435 3075 Register sco_temp = O3; // this register is free now
duke@435 3076 assert_different_registers(from, to, count, sco_temp,
duke@435 3077 G4_dst_klass, G3_src_klass);
duke@435 3078
duke@435 3079 // Generate the type check.
stefank@3391 3080 int sco_offset = in_bytes(Klass::super_check_offset_offset());
duke@435 3081 __ lduw(G4_dst_klass, sco_offset, sco_temp);
duke@435 3082 generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
duke@435 3083 O5_temp, L_plain_copy);
duke@435 3084
coleenp@4142 3085 // Fetch destination element klass from the ObjArrayKlass header.
coleenp@4142 3086 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
duke@435 3087
duke@435 3088 // the checkcast_copy loop needs two extra arguments:
duke@435 3089 __ ld_ptr(G4_dst_klass, ek_offset, O4); // dest elem klass
duke@435 3090 // lduw(O4, sco_offset, O3); // sco of elem klass
duke@435 3091
iveresov@2595 3092 __ br(Assembler::always, false, Assembler::pt, entry_checkcast_arraycopy);
duke@435 3093 __ delayed()->lduw(O4, sco_offset, O3);
duke@435 3094 }
duke@435 3095
duke@435 3096 __ BIND(L_failed);
duke@435 3097 __ retl();
duke@435 3098 __ delayed()->sub(G0, 1, O0); // return -1
duke@435 3099 return start;
duke@435 3100 }
duke@435 3101
kvn@3092 3102 //
kvn@3092 3103 // Generate stub for heap zeroing.
kvn@3092 3104 // "to" address is aligned to jlong (8 bytes).
kvn@3092 3105 //
kvn@3092 3106 // Arguments for generated stub:
kvn@3092 3107 // to: O0
kvn@3092 3108 // count: O1 treated as signed (count of HeapWord)
kvn@3092 3109 // count could be 0
kvn@3092 3110 //
kvn@3092 3111 address generate_zero_aligned_words(const char* name) {
kvn@3092 3112 __ align(CodeEntryAlignment);
kvn@3092 3113 StubCodeMark mark(this, "StubRoutines", name);
kvn@3092 3114 address start = __ pc();
kvn@3092 3115
kvn@3092 3116 const Register to = O0; // source array address
kvn@3092 3117 const Register count = O1; // HeapWords count
kvn@3092 3118 const Register temp = O2; // scratch
kvn@3092 3119
kvn@3092 3120 Label Ldone;
kvn@3092 3121 __ sllx(count, LogHeapWordSize, count); // to bytes count
kvn@3092 3122 // Use BIS for zeroing
kvn@3092 3123 __ bis_zeroing(to, count, temp, Ldone);
kvn@3092 3124 __ bind(Ldone);
kvn@3092 3125 __ retl();
kvn@3092 3126 __ delayed()->nop();
kvn@3092 3127 return start;
kvn@3092 3128 }
kvn@3092 3129
duke@435 3130 void generate_arraycopy_stubs() {
iveresov@2595 3131 address entry;
iveresov@2595 3132 address entry_jbyte_arraycopy;
iveresov@2595 3133 address entry_jshort_arraycopy;
iveresov@2595 3134 address entry_jint_arraycopy;
iveresov@2595 3135 address entry_oop_arraycopy;
iveresov@2595 3136 address entry_jlong_arraycopy;
iveresov@2595 3137 address entry_checkcast_arraycopy;
iveresov@2595 3138
iveresov@2606 3139 //*** jbyte
iveresov@2606 3140 // Always need aligned and unaligned versions
iveresov@2606 3141 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
iveresov@2606 3142 "jbyte_disjoint_arraycopy");
iveresov@2606 3143 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry,
iveresov@2606 3144 &entry_jbyte_arraycopy,
iveresov@2606 3145 "jbyte_arraycopy");
iveresov@2606 3146 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, &entry,
iveresov@2606 3147 "arrayof_jbyte_disjoint_arraycopy");
iveresov@2606 3148 StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, entry, NULL,
iveresov@2606 3149 "arrayof_jbyte_arraycopy");
iveresov@2606 3150
iveresov@2606 3151 //*** jshort
iveresov@2606 3152 // Always need aligned and unaligned versions
iveresov@2606 3153 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
iveresov@2606 3154 "jshort_disjoint_arraycopy");
iveresov@2606 3155 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry,
iveresov@2606 3156 &entry_jshort_arraycopy,
iveresov@2606 3157 "jshort_arraycopy");
iveresov@2595 3158 StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, &entry,
iveresov@2595 3159 "arrayof_jshort_disjoint_arraycopy");
iveresov@2595 3160 StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, entry, NULL,
iveresov@2595 3161 "arrayof_jshort_arraycopy");
iveresov@2595 3162
iveresov@2606 3163 //*** jint
iveresov@2606 3164 // Aligned versions
iveresov@2606 3165 StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, &entry,
iveresov@2606 3166 "arrayof_jint_disjoint_arraycopy");
iveresov@2606 3167 StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, entry, &entry_jint_arraycopy,
iveresov@2606 3168 "arrayof_jint_arraycopy");
duke@435 3169 #ifdef _LP64
iveresov@2606 3170 // In 64 bit we need both aligned and unaligned versions of jint arraycopy.
iveresov@2606 3171 // entry_jint_arraycopy always points to the unaligned version (notice that we overwrite it).
iveresov@2606 3172 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, &entry,
iveresov@2606 3173 "jint_disjoint_arraycopy");
iveresov@2606 3174 StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, entry,
iveresov@2606 3175 &entry_jint_arraycopy,
iveresov@2606 3176 "jint_arraycopy");
iveresov@2606 3177 #else
iveresov@2606 3178 // In 32 bit jints are always HeapWordSize aligned, so always use the aligned version
iveresov@2606 3179 // (in fact in 32bit we always have a pre-loop part even in the aligned version,
iveresov@2606 3180 // because it uses 64-bit loads/stores, so the aligned flag is actually ignored).
iveresov@2606 3181 StubRoutines::_jint_disjoint_arraycopy = StubRoutines::_arrayof_jint_disjoint_arraycopy;
iveresov@2606 3182 StubRoutines::_jint_arraycopy = StubRoutines::_arrayof_jint_arraycopy;
duke@435 3183 #endif
iveresov@2595 3184
iveresov@2606 3185
iveresov@2606 3186 //*** jlong
iveresov@2606 3187 // It is always aligned
iveresov@2606 3188 StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, &entry,
iveresov@2606 3189 "arrayof_jlong_disjoint_arraycopy");
iveresov@2606 3190 StubRoutines::_arrayof_jlong_arraycopy = generate_conjoint_long_copy(true, entry, &entry_jlong_arraycopy,
iveresov@2606 3191 "arrayof_jlong_arraycopy");
iveresov@2606 3192 StubRoutines::_jlong_disjoint_arraycopy = StubRoutines::_arrayof_jlong_disjoint_arraycopy;
iveresov@2606 3193 StubRoutines::_jlong_arraycopy = StubRoutines::_arrayof_jlong_arraycopy;
iveresov@2606 3194
iveresov@2606 3195
iveresov@2606 3196 //*** oops
iveresov@2606 3197 // Aligned versions
iveresov@2606 3198 StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, &entry,
iveresov@2606 3199 "arrayof_oop_disjoint_arraycopy");
iveresov@2606 3200 StubRoutines::_arrayof_oop_arraycopy = generate_conjoint_oop_copy(true, entry, &entry_oop_arraycopy,
iveresov@2606 3201 "arrayof_oop_arraycopy");
iveresov@2606 3202 // Aligned versions without pre-barriers
iveresov@2606 3203 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, &entry,
iveresov@2606 3204 "arrayof_oop_disjoint_arraycopy_uninit",
iveresov@2606 3205 /*dest_uninitialized*/true);
iveresov@2606 3206 StubRoutines::_arrayof_oop_arraycopy_uninit = generate_conjoint_oop_copy(true, entry, NULL,
iveresov@2606 3207 "arrayof_oop_arraycopy_uninit",
iveresov@2606 3208 /*dest_uninitialized*/true);
iveresov@2606 3209 #ifdef _LP64
iveresov@2606 3210 if (UseCompressedOops) {
iveresov@2606 3211 // With compressed oops we need unaligned versions, notice that we overwrite entry_oop_arraycopy.
iveresov@2606 3212 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, &entry,
iveresov@2606 3213 "oop_disjoint_arraycopy");
iveresov@2606 3214 StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, entry, &entry_oop_arraycopy,
iveresov@2606 3215 "oop_arraycopy");
iveresov@2606 3216 // Unaligned versions without pre-barriers
iveresov@2606 3217 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(false, &entry,
iveresov@2606 3218 "oop_disjoint_arraycopy_uninit",
iveresov@2606 3219 /*dest_uninitialized*/true);
iveresov@2606 3220 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_oop_copy(false, entry, NULL,
iveresov@2606 3221 "oop_arraycopy_uninit",
iveresov@2606 3222 /*dest_uninitialized*/true);
iveresov@2606 3223 } else
iveresov@2606 3224 #endif
iveresov@2606 3225 {
iveresov@2606 3226 // oop arraycopy is always aligned on 32bit and 64bit without compressed oops
iveresov@2606 3227 StubRoutines::_oop_disjoint_arraycopy = StubRoutines::_arrayof_oop_disjoint_arraycopy;
iveresov@2606 3228 StubRoutines::_oop_arraycopy = StubRoutines::_arrayof_oop_arraycopy;
iveresov@2606 3229 StubRoutines::_oop_disjoint_arraycopy_uninit = StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit;
iveresov@2606 3230 StubRoutines::_oop_arraycopy_uninit = StubRoutines::_arrayof_oop_arraycopy_uninit;
iveresov@2606 3231 }
iveresov@2606 3232
iveresov@2606 3233 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
iveresov@2606 3234 StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
iveresov@2606 3235 /*dest_uninitialized*/true);
iveresov@2606 3236
iveresov@2595 3237 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
iveresov@2595 3238 entry_jbyte_arraycopy,
iveresov@2595 3239 entry_jshort_arraycopy,
iveresov@2595 3240 entry_jint_arraycopy,
iveresov@2595 3241 entry_jlong_arraycopy);
iveresov@2595 3242 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
iveresov@2595 3243 entry_jbyte_arraycopy,
iveresov@2595 3244 entry_jshort_arraycopy,
iveresov@2595 3245 entry_jint_arraycopy,
iveresov@2595 3246 entry_oop_arraycopy,
iveresov@2595 3247 entry_jlong_arraycopy,
iveresov@2595 3248 entry_checkcast_arraycopy);
never@2118 3249
never@2118 3250 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 3251 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 3252 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 3253 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 3254 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 3255 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
kvn@3092 3256
kvn@3092 3257 if (UseBlockZeroing) {
kvn@3092 3258 StubRoutines::_zero_aligned_words = generate_zero_aligned_words("zero_aligned_words");
kvn@3092 3259 }
duke@435 3260 }
duke@435 3261
duke@435 3262 void generate_initial() {
duke@435 3263 // Generates all stubs and initializes the entry points
duke@435 3264
duke@435 3265 //------------------------------------------------------------------------------------------------------------------------
duke@435 3266 // entry points that exist in all platforms
duke@435 3267 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
duke@435 3268 // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
duke@435 3269 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 3270
duke@435 3271 StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 3272 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 3273
duke@435 3274 //------------------------------------------------------------------------------------------------------------------------
duke@435 3275 // entry points that are platform specific
duke@435 3276 StubRoutines::Sparc::_test_stop_entry = generate_test_stop();
duke@435 3277
duke@435 3278 StubRoutines::Sparc::_stop_subroutine_entry = generate_stop_subroutine();
duke@435 3279 StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
duke@435 3280
duke@435 3281 #if !defined(COMPILER2) && !defined(_LP64)
duke@435 3282 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 3283 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 3284 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 3285 StubRoutines::_atomic_xchg_ptr_entry = StubRoutines::_atomic_xchg_entry;
duke@435 3286 StubRoutines::_atomic_cmpxchg_ptr_entry = StubRoutines::_atomic_cmpxchg_entry;
duke@435 3287 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 3288 StubRoutines::_atomic_add_ptr_entry = StubRoutines::_atomic_add_entry;
duke@435 3289 #endif // COMPILER2 !=> _LP64
never@2978 3290
bdelsart@3372 3291 // Build this early so it's available for the interpreter.
bdelsart@3372 3292 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
duke@435 3293 }
duke@435 3294
duke@435 3295
duke@435 3296 void generate_all() {
duke@435 3297 // Generates all stubs and initializes the entry points
duke@435 3298
kvn@1077 3299 // Generate partial_subtype_check first here since its code depends on
kvn@1077 3300 // UseZeroBaseCompressedOops which is defined after heap initialization.
kvn@1077 3301 StubRoutines::Sparc::_partial_subtype_check = generate_partial_subtype_check();
duke@435 3302 // These entry points require SharedInfo::stack0 to be set up in non-core builds
never@3136 3303 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
never@3136 3304 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
never@3136 3305 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
duke@435 3306
duke@435 3307 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 3308 generate_handler_for_unsafe_access();
duke@435 3309
duke@435 3310 // support for verify_oop (must happen after universe_init)
duke@435 3311 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop_subroutine();
duke@435 3312
duke@435 3313 // arraycopy stubs used by compilers
duke@435 3314 generate_arraycopy_stubs();
never@1609 3315
never@1609 3316 // Don't initialize the platform math functions since sparc
never@1609 3317 // doesn't have intrinsics for these operations.
duke@435 3318 }
duke@435 3319
duke@435 3320
duke@435 3321 public:
duke@435 3322 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 3323 // replace the standard masm with a special one:
duke@435 3324 _masm = new MacroAssembler(code);
duke@435 3325
duke@435 3326 _stub_count = !all ? 0x100 : 0x200;
duke@435 3327 if (all) {
duke@435 3328 generate_all();
duke@435 3329 } else {
duke@435 3330 generate_initial();
duke@435 3331 }
duke@435 3332
duke@435 3333 // make sure this stub is available for all local calls
duke@435 3334 if (_atomic_add_stub.is_unbound()) {
duke@435 3335 // generate a second time, if necessary
duke@435 3336 (void) generate_atomic_add();
duke@435 3337 }
duke@435 3338 }
duke@435 3339
duke@435 3340
duke@435 3341 private:
duke@435 3342 int _stub_count;
duke@435 3343 void stub_prolog(StubCodeDesc* cdesc) {
duke@435 3344 # ifdef ASSERT
duke@435 3345 // put extra information in the stub code, to make it more readable
duke@435 3346 #ifdef _LP64
duke@435 3347 // Write the high part of the address
duke@435 3348 // [RGV] Check if there is a dependency on the size of this prolog
duke@435 3349 __ emit_data((intptr_t)cdesc >> 32, relocInfo::none);
duke@435 3350 #endif
duke@435 3351 __ emit_data((intptr_t)cdesc, relocInfo::none);
duke@435 3352 __ emit_data(++_stub_count, relocInfo::none);
duke@435 3353 # endif
duke@435 3354 align(true);
duke@435 3355 }
duke@435 3356
duke@435 3357 void align(bool at_header = false) {
duke@435 3358 // %%%%% move this constant somewhere else
duke@435 3359 // UltraSPARC cache line size is 8 instructions:
duke@435 3360 const unsigned int icache_line_size = 32;
duke@435 3361 const unsigned int icache_half_line_size = 16;
duke@435 3362
duke@435 3363 if (at_header) {
duke@435 3364 while ((intptr_t)(__ pc()) % icache_line_size != 0) {
duke@435 3365 __ emit_data(0, relocInfo::none);
duke@435 3366 }
duke@435 3367 } else {
duke@435 3368 while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
duke@435 3369 __ nop();
duke@435 3370 }
duke@435 3371 }
duke@435 3372 }
duke@435 3373
duke@435 3374 }; // end class declaration
duke@435 3375
duke@435 3376 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3377 StubGenerator g(code, all);
duke@435 3378 }

mercurial