src/cpu/sparc/vm/stubGenerator_sparc.cpp

Tue, 20 Dec 2011 12:33:05 +0100

author
bdelsart
date
Tue, 20 Dec 2011 12:33:05 +0100
changeset 3372
dca455dea3a7
parent 3157
a92cdbac8b9e
child 3400
22cee0ee8927
permissions
-rw-r--r--

7116216: StackOverflow GC crash
Summary: GC crash for explicit stack overflow checks after a C2I transition.
Reviewed-by: coleenp, never
Contributed-by: yang02.wang@sap.com, bertrand.delsart@oracle.com

duke@435 1 /*
iveresov@2595 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_sparc.inline.hpp"
stefank@2314 28 #include "interpreter/interpreter.hpp"
stefank@2314 29 #include "nativeInst_sparc.hpp"
stefank@2314 30 #include "oops/instanceOop.hpp"
stefank@2314 31 #include "oops/methodOop.hpp"
stefank@2314 32 #include "oops/objArrayKlass.hpp"
stefank@2314 33 #include "oops/oop.inline.hpp"
stefank@2314 34 #include "prims/methodHandles.hpp"
stefank@2314 35 #include "runtime/frame.inline.hpp"
stefank@2314 36 #include "runtime/handles.inline.hpp"
stefank@2314 37 #include "runtime/sharedRuntime.hpp"
stefank@2314 38 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 39 #include "runtime/stubRoutines.hpp"
stefank@2314 40 #include "utilities/top.hpp"
stefank@2314 41 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 42 # include "thread_linux.inline.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 45 # include "thread_solaris.inline.hpp"
stefank@2314 46 #endif
stefank@2314 47 #ifdef COMPILER2
stefank@2314 48 #include "opto/runtime.hpp"
stefank@2314 49 #endif
duke@435 50
duke@435 51 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 52 // For a more detailed description of the stub routine structure
duke@435 53 // see the comment in stubRoutines.hpp.
duke@435 54
duke@435 55 #define __ _masm->
duke@435 56
duke@435 57 #ifdef PRODUCT
duke@435 58 #define BLOCK_COMMENT(str) /* nothing */
duke@435 59 #else
duke@435 60 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 61 #endif
duke@435 62
duke@435 63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 64
duke@435 65 // Note: The register L7 is used as L7_thread_cache, and may not be used
duke@435 66 // any other way within this module.
duke@435 67
duke@435 68
duke@435 69 static const Register& Lstub_temp = L2;
duke@435 70
duke@435 71 // -------------------------------------------------------------------------------------------------------------------------
duke@435 72 // Stub Code definitions
duke@435 73
duke@435 74 static address handle_unsafe_access() {
duke@435 75 JavaThread* thread = JavaThread::current();
duke@435 76 address pc = thread->saved_exception_pc();
duke@435 77 address npc = thread->saved_exception_npc();
duke@435 78 // pc is the instruction which we must emulate
duke@435 79 // doing a no-op is fine: return garbage from the load
duke@435 80
duke@435 81 // request an async exception
duke@435 82 thread->set_pending_unsafe_access_error();
duke@435 83
duke@435 84 // return address of next instruction to execute
duke@435 85 return npc;
duke@435 86 }
duke@435 87
duke@435 88 class StubGenerator: public StubCodeGenerator {
duke@435 89 private:
duke@435 90
duke@435 91 #ifdef PRODUCT
duke@435 92 #define inc_counter_np(a,b,c) (0)
duke@435 93 #else
duke@435 94 #define inc_counter_np(counter, t1, t2) \
duke@435 95 BLOCK_COMMENT("inc_counter " #counter); \
twisti@1162 96 __ inc_counter(&counter, t1, t2);
duke@435 97 #endif
duke@435 98
duke@435 99 //----------------------------------------------------------------------------------------------------
duke@435 100 // Call stubs are used to call Java from C
duke@435 101
duke@435 102 address generate_call_stub(address& return_pc) {
duke@435 103 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 104 address start = __ pc();
duke@435 105
duke@435 106 // Incoming arguments:
duke@435 107 //
duke@435 108 // o0 : call wrapper address
duke@435 109 // o1 : result (address)
duke@435 110 // o2 : result type
duke@435 111 // o3 : method
duke@435 112 // o4 : (interpreter) entry point
duke@435 113 // o5 : parameters (address)
duke@435 114 // [sp + 0x5c]: parameter size (in words)
duke@435 115 // [sp + 0x60]: thread
duke@435 116 //
duke@435 117 // +---------------+ <--- sp + 0
duke@435 118 // | |
duke@435 119 // . reg save area .
duke@435 120 // | |
duke@435 121 // +---------------+ <--- sp + 0x40
duke@435 122 // | |
duke@435 123 // . extra 7 slots .
duke@435 124 // | |
duke@435 125 // +---------------+ <--- sp + 0x5c
duke@435 126 // | param. size |
duke@435 127 // +---------------+ <--- sp + 0x60
duke@435 128 // | thread |
duke@435 129 // +---------------+
duke@435 130 // | |
duke@435 131
duke@435 132 // note: if the link argument position changes, adjust
duke@435 133 // the code in frame::entry_frame_call_wrapper()
duke@435 134
duke@435 135 const Argument link = Argument(0, false); // used only for GC
duke@435 136 const Argument result = Argument(1, false);
duke@435 137 const Argument result_type = Argument(2, false);
duke@435 138 const Argument method = Argument(3, false);
duke@435 139 const Argument entry_point = Argument(4, false);
duke@435 140 const Argument parameters = Argument(5, false);
duke@435 141 const Argument parameter_size = Argument(6, false);
duke@435 142 const Argument thread = Argument(7, false);
duke@435 143
duke@435 144 // setup thread register
duke@435 145 __ ld_ptr(thread.as_address(), G2_thread);
coleenp@548 146 __ reinit_heapbase();
duke@435 147
duke@435 148 #ifdef ASSERT
duke@435 149 // make sure we have no pending exceptions
duke@435 150 { const Register t = G3_scratch;
duke@435 151 Label L;
duke@435 152 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
kvn@3037 153 __ br_null_short(t, Assembler::pt, L);
duke@435 154 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 155 __ bind(L);
duke@435 156 }
duke@435 157 #endif
duke@435 158
duke@435 159 // create activation frame & allocate space for parameters
duke@435 160 { const Register t = G3_scratch;
duke@435 161 __ ld_ptr(parameter_size.as_address(), t); // get parameter size (in words)
duke@435 162 __ add(t, frame::memory_parameter_word_sp_offset, t); // add space for save area (in words)
duke@435 163 __ round_to(t, WordsPerLong); // make sure it is multiple of 2 (in words)
twisti@1861 164 __ sll(t, Interpreter::logStackElementSize, t); // compute number of bytes
duke@435 165 __ neg(t); // negate so it can be used with save
duke@435 166 __ save(SP, t, SP); // setup new frame
duke@435 167 }
duke@435 168
duke@435 169 // +---------------+ <--- sp + 0
duke@435 170 // | |
duke@435 171 // . reg save area .
duke@435 172 // | |
duke@435 173 // +---------------+ <--- sp + 0x40
duke@435 174 // | |
duke@435 175 // . extra 7 slots .
duke@435 176 // | |
duke@435 177 // +---------------+ <--- sp + 0x5c
duke@435 178 // | empty slot | (only if parameter size is even)
duke@435 179 // +---------------+
duke@435 180 // | |
duke@435 181 // . parameters .
duke@435 182 // | |
duke@435 183 // +---------------+ <--- fp + 0
duke@435 184 // | |
duke@435 185 // . reg save area .
duke@435 186 // | |
duke@435 187 // +---------------+ <--- fp + 0x40
duke@435 188 // | |
duke@435 189 // . extra 7 slots .
duke@435 190 // | |
duke@435 191 // +---------------+ <--- fp + 0x5c
duke@435 192 // | param. size |
duke@435 193 // +---------------+ <--- fp + 0x60
duke@435 194 // | thread |
duke@435 195 // +---------------+
duke@435 196 // | |
duke@435 197
duke@435 198 // pass parameters if any
duke@435 199 BLOCK_COMMENT("pass parameters if any");
duke@435 200 { const Register src = parameters.as_in().as_register();
duke@435 201 const Register dst = Lentry_args;
duke@435 202 const Register tmp = G3_scratch;
duke@435 203 const Register cnt = G4_scratch;
duke@435 204
duke@435 205 // test if any parameters & setup of Lentry_args
duke@435 206 Label exit;
duke@435 207 __ ld_ptr(parameter_size.as_in().as_address(), cnt); // parameter counter
duke@435 208 __ add( FP, STACK_BIAS, dst );
kvn@3037 209 __ cmp_zero_and_br(Assembler::zero, cnt, exit);
duke@435 210 __ delayed()->sub(dst, BytesPerWord, dst); // setup Lentry_args
duke@435 211
duke@435 212 // copy parameters if any
duke@435 213 Label loop;
duke@435 214 __ BIND(loop);
duke@435 215 // Store parameter value
duke@435 216 __ ld_ptr(src, 0, tmp);
duke@435 217 __ add(src, BytesPerWord, src);
twisti@1861 218 __ st_ptr(tmp, dst, 0);
duke@435 219 __ deccc(cnt);
duke@435 220 __ br(Assembler::greater, false, Assembler::pt, loop);
twisti@1861 221 __ delayed()->sub(dst, Interpreter::stackElementSize, dst);
duke@435 222
duke@435 223 // done
duke@435 224 __ BIND(exit);
duke@435 225 }
duke@435 226
duke@435 227 // setup parameters, method & call Java function
duke@435 228 #ifdef ASSERT
duke@435 229 // layout_activation_impl checks it's notion of saved SP against
duke@435 230 // this register, so if this changes update it as well.
duke@435 231 const Register saved_SP = Lscratch;
duke@435 232 __ mov(SP, saved_SP); // keep track of SP before call
duke@435 233 #endif
duke@435 234
duke@435 235 // setup parameters
duke@435 236 const Register t = G3_scratch;
duke@435 237 __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
twisti@1861 238 __ sll(t, Interpreter::logStackElementSize, t); // compute number of bytes
duke@435 239 __ sub(FP, t, Gargs); // setup parameter pointer
duke@435 240 #ifdef _LP64
duke@435 241 __ add( Gargs, STACK_BIAS, Gargs ); // Account for LP64 stack bias
duke@435 242 #endif
duke@435 243 __ mov(SP, O5_savedSP);
duke@435 244
duke@435 245
duke@435 246 // do the call
duke@435 247 //
duke@435 248 // the following register must be setup:
duke@435 249 //
duke@435 250 // G2_thread
duke@435 251 // G5_method
duke@435 252 // Gargs
duke@435 253 BLOCK_COMMENT("call Java function");
duke@435 254 __ jmpl(entry_point.as_in().as_register(), G0, O7);
duke@435 255 __ delayed()->mov(method.as_in().as_register(), G5_method); // setup method
duke@435 256
duke@435 257 BLOCK_COMMENT("call_stub_return_address:");
duke@435 258 return_pc = __ pc();
duke@435 259
duke@435 260 // The callee, if it wasn't interpreted, can return with SP changed so
duke@435 261 // we can no longer assert of change of SP.
duke@435 262
duke@435 263 // store result depending on type
duke@435 264 // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
duke@435 265 // is treated as T_INT)
duke@435 266 { const Register addr = result .as_in().as_register();
duke@435 267 const Register type = result_type.as_in().as_register();
duke@435 268 Label is_long, is_float, is_double, is_object, exit;
duke@435 269 __ cmp(type, T_OBJECT); __ br(Assembler::equal, false, Assembler::pn, is_object);
duke@435 270 __ delayed()->cmp(type, T_FLOAT); __ br(Assembler::equal, false, Assembler::pn, is_float);
duke@435 271 __ delayed()->cmp(type, T_DOUBLE); __ br(Assembler::equal, false, Assembler::pn, is_double);
duke@435 272 __ delayed()->cmp(type, T_LONG); __ br(Assembler::equal, false, Assembler::pn, is_long);
duke@435 273 __ delayed()->nop();
duke@435 274
duke@435 275 // store int result
duke@435 276 __ st(O0, addr, G0);
duke@435 277
duke@435 278 __ BIND(exit);
duke@435 279 __ ret();
duke@435 280 __ delayed()->restore();
duke@435 281
duke@435 282 __ BIND(is_object);
kvn@3037 283 __ ba(exit);
duke@435 284 __ delayed()->st_ptr(O0, addr, G0);
duke@435 285
duke@435 286 __ BIND(is_float);
kvn@3037 287 __ ba(exit);
duke@435 288 __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
duke@435 289
duke@435 290 __ BIND(is_double);
kvn@3037 291 __ ba(exit);
duke@435 292 __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
duke@435 293
duke@435 294 __ BIND(is_long);
duke@435 295 #ifdef _LP64
kvn@3037 296 __ ba(exit);
duke@435 297 __ delayed()->st_long(O0, addr, G0); // store entire long
duke@435 298 #else
duke@435 299 #if defined(COMPILER2)
duke@435 300 // All return values are where we want them, except for Longs. C2 returns
duke@435 301 // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
duke@435 302 // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
duke@435 303 // build we simply always use G1.
duke@435 304 // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
duke@435 305 // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
duke@435 306 // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
duke@435 307
kvn@3037 308 __ ba(exit);
duke@435 309 __ delayed()->stx(G1, addr, G0); // store entire long
duke@435 310 #else
duke@435 311 __ st(O1, addr, BytesPerInt);
kvn@3037 312 __ ba(exit);
duke@435 313 __ delayed()->st(O0, addr, G0);
duke@435 314 #endif /* COMPILER2 */
duke@435 315 #endif /* _LP64 */
duke@435 316 }
duke@435 317 return start;
duke@435 318 }
duke@435 319
duke@435 320
duke@435 321 //----------------------------------------------------------------------------------------------------
duke@435 322 // Return point for a Java call if there's an exception thrown in Java code.
duke@435 323 // The exception is caught and transformed into a pending exception stored in
duke@435 324 // JavaThread that can be tested from within the VM.
duke@435 325 //
duke@435 326 // Oexception: exception oop
duke@435 327
duke@435 328 address generate_catch_exception() {
duke@435 329 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 330
duke@435 331 address start = __ pc();
duke@435 332 // verify that thread corresponds
duke@435 333 __ verify_thread();
duke@435 334
duke@435 335 const Register& temp_reg = Gtemp;
twisti@1162 336 Address pending_exception_addr (G2_thread, Thread::pending_exception_offset());
twisti@1162 337 Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset ());
twisti@1162 338 Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset ());
duke@435 339
duke@435 340 // set pending exception
duke@435 341 __ verify_oop(Oexception);
duke@435 342 __ st_ptr(Oexception, pending_exception_addr);
duke@435 343 __ set((intptr_t)__FILE__, temp_reg);
duke@435 344 __ st_ptr(temp_reg, exception_file_offset_addr);
duke@435 345 __ set((intptr_t)__LINE__, temp_reg);
duke@435 346 __ st(temp_reg, exception_line_offset_addr);
duke@435 347
duke@435 348 // complete return to VM
duke@435 349 assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
duke@435 350
twisti@1162 351 AddressLiteral stub_ret(StubRoutines::_call_stub_return_address);
twisti@1162 352 __ jump_to(stub_ret, temp_reg);
duke@435 353 __ delayed()->nop();
duke@435 354
duke@435 355 return start;
duke@435 356 }
duke@435 357
duke@435 358
duke@435 359 //----------------------------------------------------------------------------------------------------
duke@435 360 // Continuation point for runtime calls returning with a pending exception
duke@435 361 // The pending exception check happened in the runtime or native call stub
duke@435 362 // The pending exception in Thread is converted into a Java-level exception
duke@435 363 //
duke@435 364 // Contract with Java-level exception handler: O0 = exception
duke@435 365 // O1 = throwing pc
duke@435 366
duke@435 367 address generate_forward_exception() {
duke@435 368 StubCodeMark mark(this, "StubRoutines", "forward_exception");
duke@435 369 address start = __ pc();
duke@435 370
duke@435 371 // Upon entry, O7 has the return address returning into Java
duke@435 372 // (interpreted or compiled) code; i.e. the return address
duke@435 373 // becomes the throwing pc.
duke@435 374
duke@435 375 const Register& handler_reg = Gtemp;
duke@435 376
twisti@1162 377 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 378
duke@435 379 #ifdef ASSERT
duke@435 380 // make sure that this code is only executed if there is a pending exception
duke@435 381 { Label L;
duke@435 382 __ ld_ptr(exception_addr, Gtemp);
kvn@3037 383 __ br_notnull_short(Gtemp, Assembler::pt, L);
duke@435 384 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 385 __ bind(L);
duke@435 386 }
duke@435 387 #endif
duke@435 388
duke@435 389 // compute exception handler into handler_reg
duke@435 390 __ get_thread();
duke@435 391 __ ld_ptr(exception_addr, Oexception);
duke@435 392 __ verify_oop(Oexception);
duke@435 393 __ save_frame(0); // compensates for compiler weakness
duke@435 394 __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
duke@435 395 BLOCK_COMMENT("call exception_handler_for_return_address");
twisti@1730 396 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Lscratch);
duke@435 397 __ mov(O0, handler_reg);
duke@435 398 __ restore(); // compensates for compiler weakness
duke@435 399
duke@435 400 __ ld_ptr(exception_addr, Oexception);
duke@435 401 __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
duke@435 402
duke@435 403 #ifdef ASSERT
duke@435 404 // make sure exception is set
duke@435 405 { Label L;
kvn@3037 406 __ br_notnull_short(Oexception, Assembler::pt, L);
duke@435 407 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 408 __ bind(L);
duke@435 409 }
duke@435 410 #endif
duke@435 411 // jump to exception handler
duke@435 412 __ jmp(handler_reg, 0);
duke@435 413 // clear pending exception
duke@435 414 __ delayed()->st_ptr(G0, exception_addr);
duke@435 415
duke@435 416 return start;
duke@435 417 }
duke@435 418
duke@435 419
duke@435 420 //------------------------------------------------------------------------------------------------------------------------
duke@435 421 // Continuation point for throwing of implicit exceptions that are not handled in
duke@435 422 // the current activation. Fabricates an exception oop and initiates normal
duke@435 423 // exception dispatching in this frame. Only callee-saved registers are preserved
duke@435 424 // (through the normal register window / RegisterMap handling).
duke@435 425 // If the compiler needs all registers to be preserved between the fault
duke@435 426 // point and the exception handler then it must assume responsibility for that in
duke@435 427 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 428 // continuation_for_implicit_division_by_zero_exception. All other implicit
duke@435 429 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
duke@435 430 // either at call sites or otherwise assume that stack unwinding will be initiated,
duke@435 431 // so caller saved registers were assumed volatile in the compiler.
duke@435 432
duke@435 433 // Note that we generate only this stub into a RuntimeStub, because it needs to be
duke@435 434 // properly traversed and ignored during GC, so we change the meaning of the "__"
duke@435 435 // macro within this method.
duke@435 436 #undef __
duke@435 437 #define __ masm->
duke@435 438
never@3136 439 address generate_throw_exception(const char* name, address runtime_entry,
never@2978 440 Register arg1 = noreg, Register arg2 = noreg) {
duke@435 441 #ifdef ASSERT
duke@435 442 int insts_size = VerifyThread ? 1 * K : 600;
duke@435 443 #else
duke@435 444 int insts_size = VerifyThread ? 1 * K : 256;
duke@435 445 #endif /* ASSERT */
duke@435 446 int locs_size = 32;
duke@435 447
duke@435 448 CodeBuffer code(name, insts_size, locs_size);
duke@435 449 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 450
duke@435 451 __ verify_thread();
duke@435 452
duke@435 453 // This is an inlined and slightly modified version of call_VM
duke@435 454 // which has the ability to fetch the return PC out of thread-local storage
duke@435 455 __ assert_not_delayed();
duke@435 456
duke@435 457 // Note that we always push a frame because on the SPARC
duke@435 458 // architecture, for all of our implicit exception kinds at call
duke@435 459 // sites, the implicit exception is taken before the callee frame
duke@435 460 // is pushed.
duke@435 461 __ save_frame(0);
duke@435 462
duke@435 463 int frame_complete = __ offset();
duke@435 464
duke@435 465 // Note that we always have a runtime stub frame on the top of stack by this point
duke@435 466 Register last_java_sp = SP;
duke@435 467 // 64-bit last_java_sp is biased!
duke@435 468 __ set_last_Java_frame(last_java_sp, G0);
duke@435 469 if (VerifyThread) __ mov(G2_thread, O0); // about to be smashed; pass early
duke@435 470 __ save_thread(noreg);
never@2978 471 if (arg1 != noreg) {
never@2978 472 assert(arg2 != O1, "clobbered");
never@2978 473 __ mov(arg1, O1);
never@2978 474 }
never@2978 475 if (arg2 != noreg) {
never@2978 476 __ mov(arg2, O2);
never@2978 477 }
duke@435 478 // do the call
duke@435 479 BLOCK_COMMENT("call runtime_entry");
duke@435 480 __ call(runtime_entry, relocInfo::runtime_call_type);
duke@435 481 if (!VerifyThread)
duke@435 482 __ delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 483 else
duke@435 484 __ delayed()->nop(); // (thread already passed)
duke@435 485 __ restore_thread(noreg);
duke@435 486 __ reset_last_Java_frame();
duke@435 487
duke@435 488 // check for pending exceptions. use Gtemp as scratch register.
duke@435 489 #ifdef ASSERT
duke@435 490 Label L;
duke@435 491
twisti@1162 492 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 493 Register scratch_reg = Gtemp;
duke@435 494 __ ld_ptr(exception_addr, scratch_reg);
kvn@3037 495 __ br_notnull_short(scratch_reg, Assembler::pt, L);
duke@435 496 __ should_not_reach_here();
duke@435 497 __ bind(L);
duke@435 498 #endif // ASSERT
duke@435 499 BLOCK_COMMENT("call forward_exception_entry");
duke@435 500 __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 501 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 502 __ delayed()->restore();
duke@435 503
duke@435 504 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
duke@435 505 return stub->entry_point();
duke@435 506 }
duke@435 507
duke@435 508 #undef __
duke@435 509 #define __ _masm->
duke@435 510
duke@435 511
duke@435 512 // Generate a routine that sets all the registers so we
duke@435 513 // can tell if the stop routine prints them correctly.
duke@435 514 address generate_test_stop() {
duke@435 515 StubCodeMark mark(this, "StubRoutines", "test_stop");
duke@435 516 address start = __ pc();
duke@435 517
duke@435 518 int i;
duke@435 519
duke@435 520 __ save_frame(0);
duke@435 521
duke@435 522 static jfloat zero = 0.0, one = 1.0;
duke@435 523
duke@435 524 // put addr in L0, then load through L0 to F0
duke@435 525 __ set((intptr_t)&zero, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F0);
duke@435 526 __ set((intptr_t)&one, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
duke@435 527
duke@435 528 // use add to put 2..18 in F2..F18
duke@435 529 for ( i = 2; i <= 18; ++i ) {
duke@435 530 __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1), as_FloatRegister(i));
duke@435 531 }
duke@435 532
duke@435 533 // Now put double 2 in F16, double 18 in F18
duke@435 534 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
duke@435 535 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
duke@435 536
duke@435 537 // use add to put 20..32 in F20..F32
duke@435 538 for (i = 20; i < 32; i += 2) {
duke@435 539 __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2), as_FloatRegister(i));
duke@435 540 }
duke@435 541
duke@435 542 // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
duke@435 543 for ( i = 0; i < 8; ++i ) {
duke@435 544 if (i < 6) {
duke@435 545 __ set( i, as_iRegister(i));
duke@435 546 __ set(16 + i, as_oRegister(i));
duke@435 547 __ set(24 + i, as_gRegister(i));
duke@435 548 }
duke@435 549 __ set( 8 + i, as_lRegister(i));
duke@435 550 }
duke@435 551
duke@435 552 __ stop("testing stop");
duke@435 553
duke@435 554
duke@435 555 __ ret();
duke@435 556 __ delayed()->restore();
duke@435 557
duke@435 558 return start;
duke@435 559 }
duke@435 560
duke@435 561
duke@435 562 address generate_stop_subroutine() {
duke@435 563 StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
duke@435 564 address start = __ pc();
duke@435 565
duke@435 566 __ stop_subroutine();
duke@435 567
duke@435 568 return start;
duke@435 569 }
duke@435 570
duke@435 571 address generate_flush_callers_register_windows() {
duke@435 572 StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
duke@435 573 address start = __ pc();
duke@435 574
duke@435 575 __ flush_windows();
duke@435 576 __ retl(false);
duke@435 577 __ delayed()->add( FP, STACK_BIAS, O0 );
duke@435 578 // The returned value must be a stack pointer whose register save area
duke@435 579 // is flushed, and will stay flushed while the caller executes.
duke@435 580
duke@435 581 return start;
duke@435 582 }
duke@435 583
duke@435 584 // Helper functions for v8 atomic operations.
duke@435 585 //
duke@435 586 void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
duke@435 587 if (mark_oop_reg == noreg) {
duke@435 588 address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
duke@435 589 __ set((intptr_t)lock_ptr, lock_ptr_reg);
duke@435 590 } else {
duke@435 591 assert(scratch_reg != noreg, "just checking");
duke@435 592 address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
duke@435 593 __ set((intptr_t)lock_ptr, lock_ptr_reg);
duke@435 594 __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
duke@435 595 __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
duke@435 596 }
duke@435 597 }
duke@435 598
duke@435 599 void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
duke@435 600
duke@435 601 get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
duke@435 602 __ set(StubRoutines::Sparc::locked, lock_reg);
duke@435 603 // Initialize yield counter
duke@435 604 __ mov(G0,yield_reg);
duke@435 605
duke@435 606 __ BIND(retry);
kvn@3037 607 __ cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dontyield);
duke@435 608
duke@435 609 // This code can only be called from inside the VM, this
duke@435 610 // stub is only invoked from Atomic::add(). We do not
duke@435 611 // want to use call_VM, because _last_java_sp and such
duke@435 612 // must already be set.
duke@435 613 //
duke@435 614 // Save the regs and make space for a C call
duke@435 615 __ save(SP, -96, SP);
duke@435 616 __ save_all_globals_into_locals();
duke@435 617 BLOCK_COMMENT("call os::naked_sleep");
duke@435 618 __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
duke@435 619 __ delayed()->nop();
duke@435 620 __ restore_globals_from_locals();
duke@435 621 __ restore();
duke@435 622 // reset the counter
duke@435 623 __ mov(G0,yield_reg);
duke@435 624
duke@435 625 __ BIND(dontyield);
duke@435 626
duke@435 627 // try to get lock
duke@435 628 __ swap(lock_ptr_reg, 0, lock_reg);
duke@435 629
duke@435 630 // did we get the lock?
duke@435 631 __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
duke@435 632 __ br(Assembler::notEqual, true, Assembler::pn, retry);
duke@435 633 __ delayed()->add(yield_reg,1,yield_reg);
duke@435 634
duke@435 635 // yes, got lock. do the operation here.
duke@435 636 }
duke@435 637
duke@435 638 void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
duke@435 639 __ st(lock_reg, lock_ptr_reg, 0); // unlock
duke@435 640 }
duke@435 641
duke@435 642 // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
duke@435 643 //
duke@435 644 // Arguments :
duke@435 645 //
duke@435 646 // exchange_value: O0
duke@435 647 // dest: O1
duke@435 648 //
duke@435 649 // Results:
duke@435 650 //
duke@435 651 // O0: the value previously stored in dest
duke@435 652 //
duke@435 653 address generate_atomic_xchg() {
duke@435 654 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 655 address start = __ pc();
duke@435 656
duke@435 657 if (UseCASForSwap) {
duke@435 658 // Use CAS instead of swap, just in case the MP hardware
duke@435 659 // prefers to work with just one kind of synch. instruction.
duke@435 660 Label retry;
duke@435 661 __ BIND(retry);
duke@435 662 __ mov(O0, O3); // scratch copy of exchange value
duke@435 663 __ ld(O1, 0, O2); // observe the previous value
duke@435 664 // try to replace O2 with O3
duke@435 665 __ cas_under_lock(O1, O2, O3,
duke@435 666 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
kvn@3037 667 __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
duke@435 668
duke@435 669 __ retl(false);
duke@435 670 __ delayed()->mov(O2, O0); // report previous value to caller
duke@435 671
duke@435 672 } else {
duke@435 673 if (VM_Version::v9_instructions_work()) {
duke@435 674 __ retl(false);
duke@435 675 __ delayed()->swap(O1, 0, O0);
duke@435 676 } else {
duke@435 677 const Register& lock_reg = O2;
duke@435 678 const Register& lock_ptr_reg = O3;
duke@435 679 const Register& yield_reg = O4;
duke@435 680
duke@435 681 Label retry;
duke@435 682 Label dontyield;
duke@435 683
duke@435 684 generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 685 // got the lock, do the swap
duke@435 686 __ swap(O1, 0, O0);
duke@435 687
duke@435 688 generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 689 __ retl(false);
duke@435 690 __ delayed()->nop();
duke@435 691 }
duke@435 692 }
duke@435 693
duke@435 694 return start;
duke@435 695 }
duke@435 696
duke@435 697
duke@435 698 // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
duke@435 699 //
duke@435 700 // Arguments :
duke@435 701 //
duke@435 702 // exchange_value: O0
duke@435 703 // dest: O1
duke@435 704 // compare_value: O2
duke@435 705 //
duke@435 706 // Results:
duke@435 707 //
duke@435 708 // O0: the value previously stored in dest
duke@435 709 //
duke@435 710 // Overwrites (v8): O3,O4,O5
duke@435 711 //
duke@435 712 address generate_atomic_cmpxchg() {
duke@435 713 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 714 address start = __ pc();
duke@435 715
duke@435 716 // cmpxchg(dest, compare_value, exchange_value)
duke@435 717 __ cas_under_lock(O1, O2, O0,
duke@435 718 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
duke@435 719 __ retl(false);
duke@435 720 __ delayed()->nop();
duke@435 721
duke@435 722 return start;
duke@435 723 }
duke@435 724
duke@435 725 // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
duke@435 726 //
duke@435 727 // Arguments :
duke@435 728 //
duke@435 729 // exchange_value: O1:O0
duke@435 730 // dest: O2
duke@435 731 // compare_value: O4:O3
duke@435 732 //
duke@435 733 // Results:
duke@435 734 //
duke@435 735 // O1:O0: the value previously stored in dest
duke@435 736 //
duke@435 737 // This only works on V9, on V8 we don't generate any
duke@435 738 // code and just return NULL.
duke@435 739 //
duke@435 740 // Overwrites: G1,G2,G3
duke@435 741 //
duke@435 742 address generate_atomic_cmpxchg_long() {
duke@435 743 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 744 address start = __ pc();
duke@435 745
duke@435 746 if (!VM_Version::supports_cx8())
duke@435 747 return NULL;;
duke@435 748 __ sllx(O0, 32, O0);
duke@435 749 __ srl(O1, 0, O1);
duke@435 750 __ or3(O0,O1,O0); // O0 holds 64-bit value from compare_value
duke@435 751 __ sllx(O3, 32, O3);
duke@435 752 __ srl(O4, 0, O4);
duke@435 753 __ or3(O3,O4,O3); // O3 holds 64-bit value from exchange_value
duke@435 754 __ casx(O2, O3, O0);
duke@435 755 __ srl(O0, 0, O1); // unpacked return value in O1:O0
duke@435 756 __ retl(false);
duke@435 757 __ delayed()->srlx(O0, 32, O0);
duke@435 758
duke@435 759 return start;
duke@435 760 }
duke@435 761
duke@435 762
duke@435 763 // Support for jint Atomic::add(jint add_value, volatile jint* dest).
duke@435 764 //
duke@435 765 // Arguments :
duke@435 766 //
duke@435 767 // add_value: O0 (e.g., +1 or -1)
duke@435 768 // dest: O1
duke@435 769 //
duke@435 770 // Results:
duke@435 771 //
duke@435 772 // O0: the new value stored in dest
duke@435 773 //
duke@435 774 // Overwrites (v9): O3
duke@435 775 // Overwrites (v8): O3,O4,O5
duke@435 776 //
duke@435 777 address generate_atomic_add() {
duke@435 778 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 779 address start = __ pc();
duke@435 780 __ BIND(_atomic_add_stub);
duke@435 781
duke@435 782 if (VM_Version::v9_instructions_work()) {
duke@435 783 Label(retry);
duke@435 784 __ BIND(retry);
duke@435 785
duke@435 786 __ lduw(O1, 0, O2);
kvn@3037 787 __ add(O0, O2, O3);
kvn@3037 788 __ cas(O1, O2, O3);
kvn@3037 789 __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
duke@435 790 __ retl(false);
duke@435 791 __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
duke@435 792 } else {
duke@435 793 const Register& lock_reg = O2;
duke@435 794 const Register& lock_ptr_reg = O3;
duke@435 795 const Register& value_reg = O4;
duke@435 796 const Register& yield_reg = O5;
duke@435 797
duke@435 798 Label(retry);
duke@435 799 Label(dontyield);
duke@435 800
duke@435 801 generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 802 // got lock, do the increment
duke@435 803 __ ld(O1, 0, value_reg);
duke@435 804 __ add(O0, value_reg, value_reg);
duke@435 805 __ st(value_reg, O1, 0);
duke@435 806
duke@435 807 // %%% only for RMO and PSO
duke@435 808 __ membar(Assembler::StoreStore);
duke@435 809
duke@435 810 generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 811
duke@435 812 __ retl(false);
duke@435 813 __ delayed()->mov(value_reg, O0);
duke@435 814 }
duke@435 815
duke@435 816 return start;
duke@435 817 }
duke@435 818 Label _atomic_add_stub; // called from other stubs
duke@435 819
duke@435 820
duke@435 821 //------------------------------------------------------------------------------------------------------------------------
duke@435 822 // The following routine generates a subroutine to throw an asynchronous
duke@435 823 // UnknownError when an unsafe access gets a fault that could not be
duke@435 824 // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
duke@435 825 //
duke@435 826 // Arguments :
duke@435 827 //
duke@435 828 // trapping PC: O7
duke@435 829 //
duke@435 830 // Results:
duke@435 831 // posts an asynchronous exception, skips the trapping instruction
duke@435 832 //
duke@435 833
duke@435 834 address generate_handler_for_unsafe_access() {
duke@435 835 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 836 address start = __ pc();
duke@435 837
duke@435 838 const int preserve_register_words = (64 * 2);
twisti@1162 839 Address preserve_addr(FP, (-preserve_register_words * wordSize) + STACK_BIAS);
duke@435 840
duke@435 841 Register Lthread = L7_thread_cache;
duke@435 842 int i;
duke@435 843
duke@435 844 __ save_frame(0);
duke@435 845 __ mov(G1, L1);
duke@435 846 __ mov(G2, L2);
duke@435 847 __ mov(G3, L3);
duke@435 848 __ mov(G4, L4);
duke@435 849 __ mov(G5, L5);
duke@435 850 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 851 __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
duke@435 852 }
duke@435 853
duke@435 854 address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
duke@435 855 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 856 __ call(entry_point, relocInfo::runtime_call_type);
duke@435 857 __ delayed()->nop();
duke@435 858
duke@435 859 __ mov(L1, G1);
duke@435 860 __ mov(L2, G2);
duke@435 861 __ mov(L3, G3);
duke@435 862 __ mov(L4, G4);
duke@435 863 __ mov(L5, G5);
duke@435 864 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 865 __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
duke@435 866 }
duke@435 867
duke@435 868 __ verify_thread();
duke@435 869
duke@435 870 __ jmp(O0, 0);
duke@435 871 __ delayed()->restore();
duke@435 872
duke@435 873 return start;
duke@435 874 }
duke@435 875
duke@435 876
duke@435 877 // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
duke@435 878 // Arguments :
duke@435 879 //
duke@435 880 // ret : O0, returned
duke@435 881 // icc/xcc: set as O0 (depending on wordSize)
duke@435 882 // sub : O1, argument, not changed
duke@435 883 // super: O2, argument, not changed
duke@435 884 // raddr: O7, blown by call
duke@435 885 address generate_partial_subtype_check() {
coleenp@548 886 __ align(CodeEntryAlignment);
duke@435 887 StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
duke@435 888 address start = __ pc();
jrose@1079 889 Label miss;
duke@435 890
duke@435 891 #if defined(COMPILER2) && !defined(_LP64)
duke@435 892 // Do not use a 'save' because it blows the 64-bit O registers.
coleenp@548 893 __ add(SP,-4*wordSize,SP); // Make space for 4 temps (stack must be 2 words aligned)
duke@435 894 __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
duke@435 895 __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
duke@435 896 __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
duke@435 897 __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
duke@435 898 Register Rret = O0;
duke@435 899 Register Rsub = O1;
duke@435 900 Register Rsuper = O2;
duke@435 901 #else
duke@435 902 __ save_frame(0);
duke@435 903 Register Rret = I0;
duke@435 904 Register Rsub = I1;
duke@435 905 Register Rsuper = I2;
duke@435 906 #endif
duke@435 907
duke@435 908 Register L0_ary_len = L0;
duke@435 909 Register L1_ary_ptr = L1;
duke@435 910 Register L2_super = L2;
duke@435 911 Register L3_index = L3;
duke@435 912
jrose@1079 913 __ check_klass_subtype_slow_path(Rsub, Rsuper,
jrose@1079 914 L0, L1, L2, L3,
jrose@1079 915 NULL, &miss);
jrose@1079 916
jrose@1079 917 // Match falls through here.
jrose@1079 918 __ addcc(G0,0,Rret); // set Z flags, Z result
duke@435 919
duke@435 920 #if defined(COMPILER2) && !defined(_LP64)
duke@435 921 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 922 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 923 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 924 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 925 __ retl(); // Result in Rret is zero; flags set to Z
duke@435 926 __ delayed()->add(SP,4*wordSize,SP);
duke@435 927 #else
duke@435 928 __ ret(); // Result in Rret is zero; flags set to Z
duke@435 929 __ delayed()->restore();
duke@435 930 #endif
duke@435 931
duke@435 932 __ BIND(miss);
duke@435 933 __ addcc(G0,1,Rret); // set NZ flags, NZ result
duke@435 934
duke@435 935 #if defined(COMPILER2) && !defined(_LP64)
duke@435 936 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 937 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 938 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 939 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 940 __ retl(); // Result in Rret is != 0; flags set to NZ
duke@435 941 __ delayed()->add(SP,4*wordSize,SP);
duke@435 942 #else
duke@435 943 __ ret(); // Result in Rret is != 0; flags set to NZ
duke@435 944 __ delayed()->restore();
duke@435 945 #endif
duke@435 946
duke@435 947 return start;
duke@435 948 }
duke@435 949
duke@435 950
duke@435 951 // Called from MacroAssembler::verify_oop
duke@435 952 //
duke@435 953 address generate_verify_oop_subroutine() {
duke@435 954 StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
duke@435 955
duke@435 956 address start = __ pc();
duke@435 957
duke@435 958 __ verify_oop_subroutine();
duke@435 959
duke@435 960 return start;
duke@435 961 }
duke@435 962
duke@435 963
duke@435 964 //
duke@435 965 // Verify that a register contains clean 32-bits positive value
duke@435 966 // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
duke@435 967 //
duke@435 968 // Input:
duke@435 969 // Rint - 32-bits value
duke@435 970 // Rtmp - scratch
duke@435 971 //
duke@435 972 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 973 #if defined(ASSERT) && defined(_LP64)
duke@435 974 __ signx(Rint, Rtmp);
duke@435 975 __ cmp(Rint, Rtmp);
duke@435 976 __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
duke@435 977 #endif
duke@435 978 }
duke@435 979
duke@435 980 //
duke@435 981 // Generate overlap test for array copy stubs
duke@435 982 //
duke@435 983 // Input:
duke@435 984 // O0 - array1
duke@435 985 // O1 - array2
duke@435 986 // O2 - element count
duke@435 987 //
duke@435 988 // Kills temps: O3, O4
duke@435 989 //
duke@435 990 void array_overlap_test(address no_overlap_target, int log2_elem_size) {
duke@435 991 assert(no_overlap_target != NULL, "must be generated");
duke@435 992 array_overlap_test(no_overlap_target, NULL, log2_elem_size);
duke@435 993 }
duke@435 994 void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
duke@435 995 array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
duke@435 996 }
duke@435 997 void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
duke@435 998 const Register from = O0;
duke@435 999 const Register to = O1;
duke@435 1000 const Register count = O2;
duke@435 1001 const Register to_from = O3; // to - from
duke@435 1002 const Register byte_count = O4; // count << log2_elem_size
duke@435 1003
duke@435 1004 __ subcc(to, from, to_from);
duke@435 1005 __ sll_ptr(count, log2_elem_size, byte_count);
duke@435 1006 if (NOLp == NULL)
duke@435 1007 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
duke@435 1008 else
duke@435 1009 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
duke@435 1010 __ delayed()->cmp(to_from, byte_count);
duke@435 1011 if (NOLp == NULL)
tonyp@2010 1012 __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, no_overlap_target);
duke@435 1013 else
tonyp@2010 1014 __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, (*NOLp));
duke@435 1015 __ delayed()->nop();
duke@435 1016 }
duke@435 1017
duke@435 1018 //
duke@435 1019 // Generate pre-write barrier for array.
duke@435 1020 //
duke@435 1021 // Input:
duke@435 1022 // addr - register containing starting address
duke@435 1023 // count - register containing element count
duke@435 1024 // tmp - scratch register
duke@435 1025 //
duke@435 1026 // The input registers are overwritten.
duke@435 1027 //
iveresov@2606 1028 void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
duke@435 1029 BarrierSet* bs = Universe::heap()->barrier_set();
iveresov@2606 1030 switch (bs->kind()) {
iveresov@2606 1031 case BarrierSet::G1SATBCT:
iveresov@2606 1032 case BarrierSet::G1SATBCTLogging:
iveresov@2606 1033 // With G1, don't generate the call if we statically know that the target in uninitialized
iveresov@2606 1034 if (!dest_uninitialized) {
iveresov@2606 1035 __ save_frame(0);
iveresov@2606 1036 // Save the necessary global regs... will be used after.
iveresov@2606 1037 if (addr->is_global()) {
iveresov@2606 1038 __ mov(addr, L0);
iveresov@2606 1039 }
iveresov@2606 1040 if (count->is_global()) {
iveresov@2606 1041 __ mov(count, L1);
iveresov@2606 1042 }
iveresov@2606 1043 __ mov(addr->after_save(), O0);
iveresov@2606 1044 // Get the count into O1
iveresov@2606 1045 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
iveresov@2606 1046 __ delayed()->mov(count->after_save(), O1);
iveresov@2606 1047 if (addr->is_global()) {
iveresov@2606 1048 __ mov(L0, addr);
iveresov@2606 1049 }
iveresov@2606 1050 if (count->is_global()) {
iveresov@2606 1051 __ mov(L1, count);
iveresov@2606 1052 }
iveresov@2606 1053 __ restore();
iveresov@2606 1054 }
iveresov@2606 1055 break;
iveresov@2606 1056 case BarrierSet::CardTableModRef:
iveresov@2606 1057 case BarrierSet::CardTableExtension:
iveresov@2606 1058 case BarrierSet::ModRef:
iveresov@2606 1059 break;
iveresov@2606 1060 default:
iveresov@2606 1061 ShouldNotReachHere();
duke@435 1062 }
duke@435 1063 }
duke@435 1064 //
duke@435 1065 // Generate post-write barrier for array.
duke@435 1066 //
duke@435 1067 // Input:
duke@435 1068 // addr - register containing starting address
duke@435 1069 // count - register containing element count
duke@435 1070 // tmp - scratch register
duke@435 1071 //
duke@435 1072 // The input registers are overwritten.
duke@435 1073 //
duke@435 1074 void gen_write_ref_array_post_barrier(Register addr, Register count,
iveresov@2606 1075 Register tmp) {
duke@435 1076 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1077
duke@435 1078 switch (bs->kind()) {
duke@435 1079 case BarrierSet::G1SATBCT:
duke@435 1080 case BarrierSet::G1SATBCTLogging:
duke@435 1081 {
duke@435 1082 // Get some new fresh output registers.
duke@435 1083 __ save_frame(0);
ysr@777 1084 __ mov(addr->after_save(), O0);
duke@435 1085 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
ysr@777 1086 __ delayed()->mov(count->after_save(), O1);
duke@435 1087 __ restore();
duke@435 1088 }
duke@435 1089 break;
duke@435 1090 case BarrierSet::CardTableModRef:
duke@435 1091 case BarrierSet::CardTableExtension:
duke@435 1092 {
duke@435 1093 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1094 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1095 assert_different_registers(addr, count, tmp);
duke@435 1096
duke@435 1097 Label L_loop;
duke@435 1098
coleenp@548 1099 __ sll_ptr(count, LogBytesPerHeapOop, count);
coleenp@548 1100 __ sub(count, BytesPerHeapOop, count);
duke@435 1101 __ add(count, addr, count);
duke@435 1102 // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
duke@435 1103 __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
duke@435 1104 __ srl_ptr(count, CardTableModRefBS::card_shift, count);
duke@435 1105 __ sub(count, addr, count);
twisti@1162 1106 AddressLiteral rs(ct->byte_map_base);
twisti@1162 1107 __ set(rs, tmp);
duke@435 1108 __ BIND(L_loop);
twisti@1162 1109 __ stb(G0, tmp, addr);
duke@435 1110 __ subcc(count, 1, count);
duke@435 1111 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1112 __ delayed()->add(addr, 1, addr);
twisti@1162 1113 }
duke@435 1114 break;
duke@435 1115 case BarrierSet::ModRef:
duke@435 1116 break;
twisti@1162 1117 default:
duke@435 1118 ShouldNotReachHere();
duke@435 1119 }
duke@435 1120 }
duke@435 1121
kvn@3103 1122 //
kvn@3103 1123 // Generate main code for disjoint arraycopy
kvn@3103 1124 //
kvn@3103 1125 typedef void (StubGenerator::*CopyLoopFunc)(Register from, Register to, Register count, int count_dec,
kvn@3103 1126 Label& L_loop, bool use_prefetch, bool use_bis);
kvn@3103 1127
kvn@3103 1128 void disjoint_copy_core(Register from, Register to, Register count, int log2_elem_size,
kvn@3103 1129 int iter_size, CopyLoopFunc copy_loop_func) {
kvn@3103 1130 Label L_copy;
kvn@3103 1131
kvn@3103 1132 assert(log2_elem_size <= 3, "the following code should be changed");
kvn@3103 1133 int count_dec = 16>>log2_elem_size;
kvn@3103 1134
kvn@3103 1135 int prefetch_dist = MAX2(ArraycopySrcPrefetchDistance, ArraycopyDstPrefetchDistance);
kvn@3103 1136 assert(prefetch_dist < 4096, "invalid value");
kvn@3103 1137 prefetch_dist = (prefetch_dist + (iter_size-1)) & (-iter_size); // round up to one iteration copy size
kvn@3103 1138 int prefetch_count = (prefetch_dist >> log2_elem_size); // elements count
kvn@3103 1139
kvn@3103 1140 if (UseBlockCopy) {
kvn@3103 1141 Label L_block_copy, L_block_copy_prefetch, L_skip_block_copy;
kvn@3103 1142
kvn@3103 1143 // 64 bytes tail + bytes copied in one loop iteration
kvn@3103 1144 int tail_size = 64 + iter_size;
kvn@3103 1145 int block_copy_count = (MAX2(tail_size, (int)BlockCopyLowLimit)) >> log2_elem_size;
kvn@3103 1146 // Use BIS copy only for big arrays since it requires membar.
kvn@3103 1147 __ set(block_copy_count, O4);
kvn@3103 1148 __ cmp_and_br_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_skip_block_copy);
kvn@3103 1149 // This code is for disjoint source and destination:
kvn@3103 1150 // to <= from || to >= from+count
kvn@3103 1151 // but BIS will stomp over 'from' if (to > from-tail_size && to <= from)
kvn@3103 1152 __ sub(from, to, O4);
kvn@3103 1153 __ srax(O4, 4, O4); // divide by 16 since following short branch have only 5 bits for imm.
kvn@3103 1154 __ cmp_and_br_short(O4, (tail_size>>4), Assembler::lessEqualUnsigned, Assembler::pn, L_skip_block_copy);
kvn@3103 1155
kvn@3103 1156 __ wrasi(G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
kvn@3103 1157 // BIS should not be used to copy tail (64 bytes+iter_size)
kvn@3103 1158 // to avoid zeroing of following values.
kvn@3103 1159 __ sub(count, (tail_size>>log2_elem_size), count); // count is still positive >= 0
kvn@3103 1160
kvn@3103 1161 if (prefetch_count > 0) { // rounded up to one iteration count
kvn@3103 1162 // Do prefetching only if copy size is bigger
kvn@3103 1163 // than prefetch distance.
kvn@3103 1164 __ set(prefetch_count, O4);
kvn@3103 1165 __ cmp_and_brx_short(count, O4, Assembler::less, Assembler::pt, L_block_copy);
kvn@3103 1166 __ sub(count, prefetch_count, count);
kvn@3103 1167
kvn@3103 1168 (this->*copy_loop_func)(from, to, count, count_dec, L_block_copy_prefetch, true, true);
kvn@3103 1169 __ add(count, prefetch_count, count); // restore count
kvn@3103 1170
kvn@3103 1171 } // prefetch_count > 0
kvn@3103 1172
kvn@3103 1173 (this->*copy_loop_func)(from, to, count, count_dec, L_block_copy, false, true);
kvn@3103 1174 __ add(count, (tail_size>>log2_elem_size), count); // restore count
kvn@3103 1175
kvn@3103 1176 __ wrasi(G0, Assembler::ASI_PRIMARY_NOFAULT);
kvn@3103 1177 // BIS needs membar.
kvn@3103 1178 __ membar(Assembler::StoreLoad);
kvn@3103 1179 // Copy tail
kvn@3103 1180 __ ba_short(L_copy);
kvn@3103 1181
kvn@3103 1182 __ BIND(L_skip_block_copy);
kvn@3103 1183 } // UseBlockCopy
kvn@3103 1184
kvn@3103 1185 if (prefetch_count > 0) { // rounded up to one iteration count
kvn@3103 1186 // Do prefetching only if copy size is bigger
kvn@3103 1187 // than prefetch distance.
kvn@3103 1188 __ set(prefetch_count, O4);
kvn@3103 1189 __ cmp_and_brx_short(count, O4, Assembler::lessUnsigned, Assembler::pt, L_copy);
kvn@3103 1190 __ sub(count, prefetch_count, count);
kvn@3103 1191
kvn@3103 1192 Label L_copy_prefetch;
kvn@3103 1193 (this->*copy_loop_func)(from, to, count, count_dec, L_copy_prefetch, true, false);
kvn@3103 1194 __ add(count, prefetch_count, count); // restore count
kvn@3103 1195
kvn@3103 1196 } // prefetch_count > 0
kvn@3103 1197
kvn@3103 1198 (this->*copy_loop_func)(from, to, count, count_dec, L_copy, false, false);
kvn@3103 1199 }
kvn@3103 1200
kvn@3103 1201
kvn@3103 1202
kvn@3103 1203 //
kvn@3103 1204 // Helper methods for copy_16_bytes_forward_with_shift()
kvn@3103 1205 //
kvn@3103 1206 void copy_16_bytes_shift_loop(Register from, Register to, Register count, int count_dec,
kvn@3103 1207 Label& L_loop, bool use_prefetch, bool use_bis) {
kvn@3103 1208
kvn@3103 1209 const Register left_shift = G1; // left shift bit counter
kvn@3103 1210 const Register right_shift = G5; // right shift bit counter
kvn@3103 1211
kvn@3103 1212 __ align(OptoLoopAlignment);
kvn@3103 1213 __ BIND(L_loop);
kvn@3103 1214 if (use_prefetch) {
kvn@3103 1215 if (ArraycopySrcPrefetchDistance > 0) {
kvn@3103 1216 __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
kvn@3103 1217 }
kvn@3103 1218 if (ArraycopyDstPrefetchDistance > 0) {
kvn@3103 1219 __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
kvn@3103 1220 }
kvn@3103 1221 }
kvn@3103 1222 __ ldx(from, 0, O4);
kvn@3103 1223 __ ldx(from, 8, G4);
kvn@3103 1224 __ inc(to, 16);
kvn@3103 1225 __ inc(from, 16);
kvn@3103 1226 __ deccc(count, count_dec); // Can we do next iteration after this one?
kvn@3103 1227 __ srlx(O4, right_shift, G3);
kvn@3103 1228 __ bset(G3, O3);
kvn@3103 1229 __ sllx(O4, left_shift, O4);
kvn@3103 1230 __ srlx(G4, right_shift, G3);
kvn@3103 1231 __ bset(G3, O4);
kvn@3103 1232 if (use_bis) {
kvn@3103 1233 __ stxa(O3, to, -16);
kvn@3103 1234 __ stxa(O4, to, -8);
kvn@3103 1235 } else {
kvn@3103 1236 __ stx(O3, to, -16);
kvn@3103 1237 __ stx(O4, to, -8);
kvn@3103 1238 }
kvn@3103 1239 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
kvn@3103 1240 __ delayed()->sllx(G4, left_shift, O3);
kvn@3103 1241 }
duke@435 1242
duke@435 1243 // Copy big chunks forward with shift
duke@435 1244 //
duke@435 1245 // Inputs:
duke@435 1246 // from - source arrays
duke@435 1247 // to - destination array aligned to 8-bytes
duke@435 1248 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1249 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1250 // L_copy_bytes - copy exit label
duke@435 1251 //
duke@435 1252 void copy_16_bytes_forward_with_shift(Register from, Register to,
kvn@3103 1253 Register count, int log2_elem_size, Label& L_copy_bytes) {
kvn@3103 1254 Label L_aligned_copy, L_copy_last_bytes;
kvn@3103 1255 assert(log2_elem_size <= 3, "the following code should be changed");
kvn@3103 1256 int count_dec = 16>>log2_elem_size;
duke@435 1257
duke@435 1258 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
kvn@3103 1259 __ andcc(from, 7, G1); // misaligned bytes
kvn@3103 1260 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
kvn@3103 1261 __ delayed()->nop();
duke@435 1262
duke@435 1263 const Register left_shift = G1; // left shift bit counter
duke@435 1264 const Register right_shift = G5; // right shift bit counter
duke@435 1265
kvn@3103 1266 __ sll(G1, LogBitsPerByte, left_shift);
kvn@3103 1267 __ mov(64, right_shift);
kvn@3103 1268 __ sub(right_shift, left_shift, right_shift);
duke@435 1269
duke@435 1270 //
duke@435 1271 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1272 // to form 2 aligned 8-bytes chunks to store.
duke@435 1273 //
kvn@3103 1274 __ dec(count, count_dec); // Pre-decrement 'count'
kvn@3103 1275 __ andn(from, 7, from); // Align address
kvn@3103 1276 __ ldx(from, 0, O3);
kvn@3103 1277 __ inc(from, 8);
kvn@3103 1278 __ sllx(O3, left_shift, O3);
kvn@3103 1279
kvn@3103 1280 disjoint_copy_core(from, to, count, log2_elem_size, 16, copy_16_bytes_shift_loop);
kvn@3103 1281
kvn@3103 1282 __ inccc(count, count_dec>>1 ); // + 8 bytes
kvn@3103 1283 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
kvn@3103 1284 __ delayed()->inc(count, count_dec>>1); // restore 'count'
kvn@3103 1285
kvn@3103 1286 // copy 8 bytes, part of them already loaded in O3
kvn@3103 1287 __ ldx(from, 0, O4);
kvn@3103 1288 __ inc(to, 8);
kvn@3103 1289 __ inc(from, 8);
kvn@3103 1290 __ srlx(O4, right_shift, G3);
kvn@3103 1291 __ bset(O3, G3);
kvn@3103 1292 __ stx(G3, to, -8);
duke@435 1293
duke@435 1294 __ BIND(L_copy_last_bytes);
kvn@3103 1295 __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
kvn@3103 1296 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
kvn@3103 1297 __ delayed()->sub(from, right_shift, from); // restore address
duke@435 1298
duke@435 1299 __ BIND(L_aligned_copy);
duke@435 1300 }
duke@435 1301
duke@435 1302 // Copy big chunks backward with shift
duke@435 1303 //
duke@435 1304 // Inputs:
duke@435 1305 // end_from - source arrays end address
duke@435 1306 // end_to - destination array end address aligned to 8-bytes
duke@435 1307 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1308 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1309 // L_aligned_copy - aligned copy exit label
duke@435 1310 // L_copy_bytes - copy exit label
duke@435 1311 //
duke@435 1312 void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
duke@435 1313 Register count, int count_dec,
duke@435 1314 Label& L_aligned_copy, Label& L_copy_bytes) {
duke@435 1315 Label L_loop, L_copy_last_bytes;
duke@435 1316
duke@435 1317 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
duke@435 1318 __ andcc(end_from, 7, G1); // misaligned bytes
duke@435 1319 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1320 __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
duke@435 1321
duke@435 1322 const Register left_shift = G1; // left shift bit counter
duke@435 1323 const Register right_shift = G5; // right shift bit counter
duke@435 1324
duke@435 1325 __ sll(G1, LogBitsPerByte, left_shift);
duke@435 1326 __ mov(64, right_shift);
duke@435 1327 __ sub(right_shift, left_shift, right_shift);
duke@435 1328
duke@435 1329 //
duke@435 1330 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1331 // to form 2 aligned 8-bytes chunks to store.
duke@435 1332 //
duke@435 1333 __ andn(end_from, 7, end_from); // Align address
duke@435 1334 __ ldx(end_from, 0, O3);
kvn@1800 1335 __ align(OptoLoopAlignment);
duke@435 1336 __ BIND(L_loop);
duke@435 1337 __ ldx(end_from, -8, O4);
duke@435 1338 __ deccc(count, count_dec); // Can we do next iteration after this one?
duke@435 1339 __ ldx(end_from, -16, G4);
duke@435 1340 __ dec(end_to, 16);
duke@435 1341 __ dec(end_from, 16);
duke@435 1342 __ srlx(O3, right_shift, O3);
duke@435 1343 __ sllx(O4, left_shift, G3);
duke@435 1344 __ bset(G3, O3);
duke@435 1345 __ stx(O3, end_to, 8);
duke@435 1346 __ srlx(O4, right_shift, O4);
duke@435 1347 __ sllx(G4, left_shift, G3);
duke@435 1348 __ bset(G3, O4);
duke@435 1349 __ stx(O4, end_to, 0);
duke@435 1350 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1351 __ delayed()->mov(G4, O3);
duke@435 1352
duke@435 1353 __ inccc(count, count_dec>>1 ); // + 8 bytes
duke@435 1354 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
duke@435 1355 __ delayed()->inc(count, count_dec>>1); // restore 'count'
duke@435 1356
duke@435 1357 // copy 8 bytes, part of them already loaded in O3
duke@435 1358 __ ldx(end_from, -8, O4);
duke@435 1359 __ dec(end_to, 8);
duke@435 1360 __ dec(end_from, 8);
duke@435 1361 __ srlx(O3, right_shift, O3);
duke@435 1362 __ sllx(O4, left_shift, G3);
duke@435 1363 __ bset(O3, G3);
duke@435 1364 __ stx(G3, end_to, 0);
duke@435 1365
duke@435 1366 __ BIND(L_copy_last_bytes);
duke@435 1367 __ srl(left_shift, LogBitsPerByte, left_shift); // misaligned bytes
duke@435 1368 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
duke@435 1369 __ delayed()->add(end_from, left_shift, end_from); // restore address
duke@435 1370 }
duke@435 1371
duke@435 1372 //
duke@435 1373 // Generate stub for disjoint byte copy. If "aligned" is true, the
duke@435 1374 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1375 //
duke@435 1376 // Arguments for generated stub:
duke@435 1377 // from: O0
duke@435 1378 // to: O1
duke@435 1379 // count: O2 treated as signed
duke@435 1380 //
iveresov@2595 1381 address generate_disjoint_byte_copy(bool aligned, address *entry, const char *name) {
duke@435 1382 __ align(CodeEntryAlignment);
duke@435 1383 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1384 address start = __ pc();
duke@435 1385
duke@435 1386 Label L_skip_alignment, L_align;
duke@435 1387 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1388
duke@435 1389 const Register from = O0; // source array address
duke@435 1390 const Register to = O1; // destination array address
duke@435 1391 const Register count = O2; // elements count
duke@435 1392 const Register offset = O5; // offset from start of arrays
duke@435 1393 // O3, O4, G3, G4 are used as temp registers
duke@435 1394
duke@435 1395 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1396
iveresov@2595 1397 if (entry != NULL) {
iveresov@2595 1398 *entry = __ pc();
iveresov@2595 1399 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1400 BLOCK_COMMENT("Entry:");
iveresov@2595 1401 }
duke@435 1402
duke@435 1403 // for short arrays, just do single element copy
duke@435 1404 __ cmp(count, 23); // 16 + 7
duke@435 1405 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1406 __ delayed()->mov(G0, offset);
duke@435 1407
duke@435 1408 if (aligned) {
duke@435 1409 // 'aligned' == true when it is known statically during compilation
duke@435 1410 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1411 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1412 //
duke@435 1413 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1414 // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
duke@435 1415 //
duke@435 1416 #ifndef _LP64
duke@435 1417 // copy a 4-bytes word if necessary to align 'to' to 8 bytes
duke@435 1418 __ andcc(to, 7, G0);
duke@435 1419 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
duke@435 1420 __ delayed()->ld(from, 0, O3);
duke@435 1421 __ inc(from, 4);
duke@435 1422 __ inc(to, 4);
duke@435 1423 __ dec(count, 4);
duke@435 1424 __ st(O3, to, -4);
duke@435 1425 __ BIND(L_skip_alignment);
duke@435 1426 #endif
duke@435 1427 } else {
duke@435 1428 // copy bytes to align 'to' on 8 byte boundary
duke@435 1429 __ andcc(to, 7, G1); // misaligned bytes
duke@435 1430 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1431 __ delayed()->neg(G1);
duke@435 1432 __ inc(G1, 8); // bytes need to copy to next 8-bytes alignment
duke@435 1433 __ sub(count, G1, count);
duke@435 1434 __ BIND(L_align);
duke@435 1435 __ ldub(from, 0, O3);
duke@435 1436 __ deccc(G1);
duke@435 1437 __ inc(from);
duke@435 1438 __ stb(O3, to, 0);
duke@435 1439 __ br(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1440 __ delayed()->inc(to);
duke@435 1441 __ BIND(L_skip_alignment);
duke@435 1442 }
duke@435 1443 #ifdef _LP64
duke@435 1444 if (!aligned)
duke@435 1445 #endif
duke@435 1446 {
duke@435 1447 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1448 // the same alignment mod 8, otherwise fall through to the next
duke@435 1449 // code for aligned copy.
duke@435 1450 // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
duke@435 1451 // Also jump over aligned copy after the copy with shift completed.
duke@435 1452
kvn@3103 1453 copy_16_bytes_forward_with_shift(from, to, count, 0, L_copy_byte);
duke@435 1454 }
duke@435 1455
duke@435 1456 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1457 __ and3(count, 7, G4); // Save count
duke@435 1458 __ srl(count, 3, count);
duke@435 1459 generate_disjoint_long_copy_core(aligned);
duke@435 1460 __ mov(G4, count); // Restore count
duke@435 1461
duke@435 1462 // copy tailing bytes
duke@435 1463 __ BIND(L_copy_byte);
kvn@3037 1464 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
kvn@1800 1465 __ align(OptoLoopAlignment);
duke@435 1466 __ BIND(L_copy_byte_loop);
duke@435 1467 __ ldub(from, offset, O3);
duke@435 1468 __ deccc(count);
duke@435 1469 __ stb(O3, to, offset);
duke@435 1470 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
duke@435 1471 __ delayed()->inc(offset);
duke@435 1472
duke@435 1473 __ BIND(L_exit);
duke@435 1474 // O3, O4 are used as temp registers
duke@435 1475 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1476 __ retl();
duke@435 1477 __ delayed()->mov(G0, O0); // return 0
duke@435 1478 return start;
duke@435 1479 }
duke@435 1480
duke@435 1481 //
duke@435 1482 // Generate stub for conjoint byte copy. If "aligned" is true, the
duke@435 1483 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1484 //
duke@435 1485 // Arguments for generated stub:
duke@435 1486 // from: O0
duke@435 1487 // to: O1
duke@435 1488 // count: O2 treated as signed
duke@435 1489 //
iveresov@2595 1490 address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
iveresov@2595 1491 address *entry, const char *name) {
duke@435 1492 // Do reverse copy.
duke@435 1493
duke@435 1494 __ align(CodeEntryAlignment);
duke@435 1495 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1496 address start = __ pc();
duke@435 1497
duke@435 1498 Label L_skip_alignment, L_align, L_aligned_copy;
duke@435 1499 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1500
duke@435 1501 const Register from = O0; // source array address
duke@435 1502 const Register to = O1; // destination array address
duke@435 1503 const Register count = O2; // elements count
duke@435 1504 const Register end_from = from; // source array end address
duke@435 1505 const Register end_to = to; // destination array end address
duke@435 1506
duke@435 1507 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1508
iveresov@2595 1509 if (entry != NULL) {
iveresov@2595 1510 *entry = __ pc();
iveresov@2595 1511 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1512 BLOCK_COMMENT("Entry:");
iveresov@2595 1513 }
duke@435 1514
duke@435 1515 array_overlap_test(nooverlap_target, 0);
duke@435 1516
duke@435 1517 __ add(to, count, end_to); // offset after last copied element
duke@435 1518
duke@435 1519 // for short arrays, just do single element copy
duke@435 1520 __ cmp(count, 23); // 16 + 7
duke@435 1521 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1522 __ delayed()->add(from, count, end_from);
duke@435 1523
duke@435 1524 {
duke@435 1525 // Align end of arrays since they could be not aligned even
duke@435 1526 // when arrays itself are aligned.
duke@435 1527
duke@435 1528 // copy bytes to align 'end_to' on 8 byte boundary
duke@435 1529 __ andcc(end_to, 7, G1); // misaligned bytes
duke@435 1530 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1531 __ delayed()->nop();
duke@435 1532 __ sub(count, G1, count);
duke@435 1533 __ BIND(L_align);
duke@435 1534 __ dec(end_from);
duke@435 1535 __ dec(end_to);
duke@435 1536 __ ldub(end_from, 0, O3);
duke@435 1537 __ deccc(G1);
duke@435 1538 __ brx(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1539 __ delayed()->stb(O3, end_to, 0);
duke@435 1540 __ BIND(L_skip_alignment);
duke@435 1541 }
duke@435 1542 #ifdef _LP64
duke@435 1543 if (aligned) {
duke@435 1544 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1545 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1546 // in unaligned case.
duke@435 1547 __ dec(count, 16);
duke@435 1548 } else
duke@435 1549 #endif
duke@435 1550 {
duke@435 1551 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1552 // the same alignment mod 8, otherwise jump to the next
duke@435 1553 // code for aligned copy (and substracting 16 from 'count' before jump).
duke@435 1554 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1555 // Also jump over aligned copy after the copy with shift completed.
duke@435 1556
duke@435 1557 copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
duke@435 1558 L_aligned_copy, L_copy_byte);
duke@435 1559 }
duke@435 1560 // copy 4 elements (16 bytes) at a time
kvn@1800 1561 __ align(OptoLoopAlignment);
duke@435 1562 __ BIND(L_aligned_copy);
duke@435 1563 __ dec(end_from, 16);
duke@435 1564 __ ldx(end_from, 8, O3);
duke@435 1565 __ ldx(end_from, 0, O4);
duke@435 1566 __ dec(end_to, 16);
duke@435 1567 __ deccc(count, 16);
duke@435 1568 __ stx(O3, end_to, 8);
duke@435 1569 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1570 __ delayed()->stx(O4, end_to, 0);
duke@435 1571 __ inc(count, 16);
duke@435 1572
duke@435 1573 // copy 1 element (2 bytes) at a time
duke@435 1574 __ BIND(L_copy_byte);
kvn@3037 1575 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
kvn@1800 1576 __ align(OptoLoopAlignment);
duke@435 1577 __ BIND(L_copy_byte_loop);
duke@435 1578 __ dec(end_from);
duke@435 1579 __ dec(end_to);
duke@435 1580 __ ldub(end_from, 0, O4);
duke@435 1581 __ deccc(count);
duke@435 1582 __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
duke@435 1583 __ delayed()->stb(O4, end_to, 0);
duke@435 1584
duke@435 1585 __ BIND(L_exit);
duke@435 1586 // O3, O4 are used as temp registers
duke@435 1587 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1588 __ retl();
duke@435 1589 __ delayed()->mov(G0, O0); // return 0
duke@435 1590 return start;
duke@435 1591 }
duke@435 1592
duke@435 1593 //
duke@435 1594 // Generate stub for disjoint short copy. If "aligned" is true, the
duke@435 1595 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1596 //
duke@435 1597 // Arguments for generated stub:
duke@435 1598 // from: O0
duke@435 1599 // to: O1
duke@435 1600 // count: O2 treated as signed
duke@435 1601 //
iveresov@2595 1602 address generate_disjoint_short_copy(bool aligned, address *entry, const char * name) {
duke@435 1603 __ align(CodeEntryAlignment);
duke@435 1604 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1605 address start = __ pc();
duke@435 1606
duke@435 1607 Label L_skip_alignment, L_skip_alignment2;
duke@435 1608 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1609
duke@435 1610 const Register from = O0; // source array address
duke@435 1611 const Register to = O1; // destination array address
duke@435 1612 const Register count = O2; // elements count
duke@435 1613 const Register offset = O5; // offset from start of arrays
duke@435 1614 // O3, O4, G3, G4 are used as temp registers
duke@435 1615
duke@435 1616 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1617
iveresov@2595 1618 if (entry != NULL) {
iveresov@2595 1619 *entry = __ pc();
iveresov@2595 1620 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1621 BLOCK_COMMENT("Entry:");
iveresov@2595 1622 }
duke@435 1623
duke@435 1624 // for short arrays, just do single element copy
duke@435 1625 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1626 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1627 __ delayed()->mov(G0, offset);
duke@435 1628
duke@435 1629 if (aligned) {
duke@435 1630 // 'aligned' == true when it is known statically during compilation
duke@435 1631 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1632 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1633 //
duke@435 1634 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1635 // and 8 bytes - in 64-bits VM.
duke@435 1636 //
duke@435 1637 #ifndef _LP64
duke@435 1638 // copy a 2-elements word if necessary to align 'to' to 8 bytes
duke@435 1639 __ andcc(to, 7, G0);
duke@435 1640 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1641 __ delayed()->ld(from, 0, O3);
duke@435 1642 __ inc(from, 4);
duke@435 1643 __ inc(to, 4);
duke@435 1644 __ dec(count, 2);
duke@435 1645 __ st(O3, to, -4);
duke@435 1646 __ BIND(L_skip_alignment);
duke@435 1647 #endif
duke@435 1648 } else {
duke@435 1649 // copy 1 element if necessary to align 'to' on an 4 bytes
duke@435 1650 __ andcc(to, 3, G0);
duke@435 1651 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1652 __ delayed()->lduh(from, 0, O3);
duke@435 1653 __ inc(from, 2);
duke@435 1654 __ inc(to, 2);
duke@435 1655 __ dec(count);
duke@435 1656 __ sth(O3, to, -2);
duke@435 1657 __ BIND(L_skip_alignment);
duke@435 1658
duke@435 1659 // copy 2 elements to align 'to' on an 8 byte boundary
duke@435 1660 __ andcc(to, 7, G0);
duke@435 1661 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1662 __ delayed()->lduh(from, 0, O3);
duke@435 1663 __ dec(count, 2);
duke@435 1664 __ lduh(from, 2, O4);
duke@435 1665 __ inc(from, 4);
duke@435 1666 __ inc(to, 4);
duke@435 1667 __ sth(O3, to, -4);
duke@435 1668 __ sth(O4, to, -2);
duke@435 1669 __ BIND(L_skip_alignment2);
duke@435 1670 }
duke@435 1671 #ifdef _LP64
duke@435 1672 if (!aligned)
duke@435 1673 #endif
duke@435 1674 {
duke@435 1675 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1676 // the same alignment mod 8, otherwise fall through to the next
duke@435 1677 // code for aligned copy.
duke@435 1678 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1679 // Also jump over aligned copy after the copy with shift completed.
duke@435 1680
kvn@3103 1681 copy_16_bytes_forward_with_shift(from, to, count, 1, L_copy_2_bytes);
duke@435 1682 }
duke@435 1683
duke@435 1684 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1685 __ and3(count, 3, G4); // Save
duke@435 1686 __ srl(count, 2, count);
duke@435 1687 generate_disjoint_long_copy_core(aligned);
duke@435 1688 __ mov(G4, count); // restore
duke@435 1689
duke@435 1690 // copy 1 element at a time
duke@435 1691 __ BIND(L_copy_2_bytes);
kvn@3037 1692 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
kvn@1800 1693 __ align(OptoLoopAlignment);
duke@435 1694 __ BIND(L_copy_2_bytes_loop);
duke@435 1695 __ lduh(from, offset, O3);
duke@435 1696 __ deccc(count);
duke@435 1697 __ sth(O3, to, offset);
duke@435 1698 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1699 __ delayed()->inc(offset, 2);
duke@435 1700
duke@435 1701 __ BIND(L_exit);
duke@435 1702 // O3, O4 are used as temp registers
duke@435 1703 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1704 __ retl();
duke@435 1705 __ delayed()->mov(G0, O0); // return 0
duke@435 1706 return start;
duke@435 1707 }
duke@435 1708
duke@435 1709 //
never@2118 1710 // Generate stub for disjoint short fill. If "aligned" is true, the
never@2118 1711 // "to" address is assumed to be heapword aligned.
never@2118 1712 //
never@2118 1713 // Arguments for generated stub:
never@2118 1714 // to: O0
never@2118 1715 // value: O1
never@2118 1716 // count: O2 treated as signed
never@2118 1717 //
never@2118 1718 address generate_fill(BasicType t, bool aligned, const char* name) {
never@2118 1719 __ align(CodeEntryAlignment);
never@2118 1720 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1721 address start = __ pc();
never@2118 1722
never@2118 1723 const Register to = O0; // source array address
never@2118 1724 const Register value = O1; // fill value
never@2118 1725 const Register count = O2; // elements count
never@2118 1726 // O3 is used as a temp register
never@2118 1727
never@2118 1728 assert_clean_int(count, O3); // Make sure 'count' is clean int.
never@2118 1729
never@2118 1730 Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
never@2149 1731 Label L_fill_2_bytes, L_fill_elements, L_fill_32_bytes;
never@2118 1732
never@2118 1733 int shift = -1;
never@2118 1734 switch (t) {
never@2118 1735 case T_BYTE:
never@2118 1736 shift = 2;
never@2118 1737 break;
never@2118 1738 case T_SHORT:
never@2118 1739 shift = 1;
never@2118 1740 break;
never@2118 1741 case T_INT:
never@2118 1742 shift = 0;
never@2118 1743 break;
never@2118 1744 default: ShouldNotReachHere();
never@2118 1745 }
never@2118 1746
never@2118 1747 BLOCK_COMMENT("Entry:");
never@2118 1748
never@2118 1749 if (t == T_BYTE) {
never@2118 1750 // Zero extend value
never@2118 1751 __ and3(value, 0xff, value);
never@2118 1752 __ sllx(value, 8, O3);
never@2118 1753 __ or3(value, O3, value);
never@2118 1754 }
never@2118 1755 if (t == T_SHORT) {
never@2118 1756 // Zero extend value
never@2149 1757 __ sllx(value, 48, value);
never@2149 1758 __ srlx(value, 48, value);
never@2118 1759 }
never@2118 1760 if (t == T_BYTE || t == T_SHORT) {
never@2118 1761 __ sllx(value, 16, O3);
never@2118 1762 __ or3(value, O3, value);
never@2118 1763 }
never@2118 1764
never@2118 1765 __ cmp(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
never@2149 1766 __ brx(Assembler::lessUnsigned, false, Assembler::pn, L_fill_elements); // use unsigned cmp
never@2149 1767 __ delayed()->andcc(count, 1, G0);
never@2118 1768
never@2118 1769 if (!aligned && (t == T_BYTE || t == T_SHORT)) {
never@2118 1770 // align source address at 4 bytes address boundary
never@2118 1771 if (t == T_BYTE) {
never@2118 1772 // One byte misalignment happens only for byte arrays
never@2118 1773 __ andcc(to, 1, G0);
never@2118 1774 __ br(Assembler::zero, false, Assembler::pt, L_skip_align1);
never@2118 1775 __ delayed()->nop();
never@2118 1776 __ stb(value, to, 0);
never@2118 1777 __ inc(to, 1);
never@2118 1778 __ dec(count, 1);
never@2118 1779 __ BIND(L_skip_align1);
never@2118 1780 }
never@2118 1781 // Two bytes misalignment happens only for byte and short (char) arrays
never@2118 1782 __ andcc(to, 2, G0);
never@2118 1783 __ br(Assembler::zero, false, Assembler::pt, L_skip_align2);
never@2118 1784 __ delayed()->nop();
never@2118 1785 __ sth(value, to, 0);
never@2118 1786 __ inc(to, 2);
never@2118 1787 __ dec(count, 1 << (shift - 1));
never@2118 1788 __ BIND(L_skip_align2);
never@2118 1789 }
never@2118 1790 #ifdef _LP64
never@2118 1791 if (!aligned) {
never@2118 1792 #endif
never@2118 1793 // align to 8 bytes, we know we are 4 byte aligned to start
never@2118 1794 __ andcc(to, 7, G0);
never@2118 1795 __ br(Assembler::zero, false, Assembler::pt, L_fill_32_bytes);
never@2118 1796 __ delayed()->nop();
never@2118 1797 __ stw(value, to, 0);
never@2118 1798 __ inc(to, 4);
never@2118 1799 __ dec(count, 1 << shift);
never@2118 1800 __ BIND(L_fill_32_bytes);
never@2118 1801 #ifdef _LP64
never@2118 1802 }
never@2118 1803 #endif
never@2118 1804
never@2118 1805 if (t == T_INT) {
never@2118 1806 // Zero extend value
never@2118 1807 __ srl(value, 0, value);
never@2118 1808 }
never@2118 1809 if (t == T_BYTE || t == T_SHORT || t == T_INT) {
never@2118 1810 __ sllx(value, 32, O3);
never@2118 1811 __ or3(value, O3, value);
never@2118 1812 }
never@2118 1813
never@2137 1814 Label L_check_fill_8_bytes;
never@2137 1815 // Fill 32-byte chunks
never@2137 1816 __ subcc(count, 8 << shift, count);
never@2137 1817 __ brx(Assembler::less, false, Assembler::pt, L_check_fill_8_bytes);
never@2137 1818 __ delayed()->nop();
never@2137 1819
never@2149 1820 Label L_fill_32_bytes_loop, L_fill_4_bytes;
never@2118 1821 __ align(16);
never@2118 1822 __ BIND(L_fill_32_bytes_loop);
never@2118 1823
never@2118 1824 __ stx(value, to, 0);
never@2118 1825 __ stx(value, to, 8);
never@2118 1826 __ stx(value, to, 16);
never@2118 1827 __ stx(value, to, 24);
never@2118 1828
never@2118 1829 __ subcc(count, 8 << shift, count);
never@2118 1830 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_fill_32_bytes_loop);
never@2118 1831 __ delayed()->add(to, 32, to);
never@2118 1832
never@2118 1833 __ BIND(L_check_fill_8_bytes);
never@2118 1834 __ addcc(count, 8 << shift, count);
never@2118 1835 __ brx(Assembler::zero, false, Assembler::pn, L_exit);
never@2118 1836 __ delayed()->subcc(count, 1 << (shift + 1), count);
never@2118 1837 __ brx(Assembler::less, false, Assembler::pn, L_fill_4_bytes);
never@2118 1838 __ delayed()->andcc(count, 1<<shift, G0);
never@2118 1839
never@2118 1840 //
never@2118 1841 // length is too short, just fill 8 bytes at a time
never@2118 1842 //
never@2118 1843 Label L_fill_8_bytes_loop;
never@2118 1844 __ BIND(L_fill_8_bytes_loop);
never@2118 1845 __ stx(value, to, 0);
never@2118 1846 __ subcc(count, 1 << (shift + 1), count);
never@2118 1847 __ brx(Assembler::greaterEqual, false, Assembler::pn, L_fill_8_bytes_loop);
never@2118 1848 __ delayed()->add(to, 8, to);
never@2118 1849
never@2118 1850 // fill trailing 4 bytes
never@2118 1851 __ andcc(count, 1<<shift, G0); // in delay slot of branches
never@2149 1852 if (t == T_INT) {
never@2149 1853 __ BIND(L_fill_elements);
never@2149 1854 }
never@2118 1855 __ BIND(L_fill_4_bytes);
never@2118 1856 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2_bytes);
never@2118 1857 if (t == T_BYTE || t == T_SHORT) {
never@2118 1858 __ delayed()->andcc(count, 1<<(shift-1), G0);
never@2118 1859 } else {
never@2118 1860 __ delayed()->nop();
never@2118 1861 }
never@2118 1862 __ stw(value, to, 0);
never@2118 1863 if (t == T_BYTE || t == T_SHORT) {
never@2118 1864 __ inc(to, 4);
never@2118 1865 // fill trailing 2 bytes
never@2118 1866 __ andcc(count, 1<<(shift-1), G0); // in delay slot of branches
never@2118 1867 __ BIND(L_fill_2_bytes);
never@2118 1868 __ brx(Assembler::zero, false, Assembler::pt, L_fill_byte);
never@2118 1869 __ delayed()->andcc(count, 1, count);
never@2118 1870 __ sth(value, to, 0);
never@2118 1871 if (t == T_BYTE) {
never@2118 1872 __ inc(to, 2);
never@2118 1873 // fill trailing byte
never@2118 1874 __ andcc(count, 1, count); // in delay slot of branches
never@2118 1875 __ BIND(L_fill_byte);
never@2118 1876 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2118 1877 __ delayed()->nop();
never@2118 1878 __ stb(value, to, 0);
never@2118 1879 } else {
never@2118 1880 __ BIND(L_fill_byte);
never@2118 1881 }
never@2118 1882 } else {
never@2118 1883 __ BIND(L_fill_2_bytes);
never@2118 1884 }
never@2118 1885 __ BIND(L_exit);
never@2118 1886 __ retl();
never@2149 1887 __ delayed()->nop();
never@2149 1888
never@2149 1889 // Handle copies less than 8 bytes. Int is handled elsewhere.
never@2149 1890 if (t == T_BYTE) {
never@2149 1891 __ BIND(L_fill_elements);
never@2149 1892 Label L_fill_2, L_fill_4;
never@2149 1893 // in delay slot __ andcc(count, 1, G0);
never@2149 1894 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
never@2149 1895 __ delayed()->andcc(count, 2, G0);
never@2149 1896 __ stb(value, to, 0);
never@2149 1897 __ inc(to, 1);
never@2149 1898 __ BIND(L_fill_2);
never@2149 1899 __ brx(Assembler::zero, false, Assembler::pt, L_fill_4);
never@2149 1900 __ delayed()->andcc(count, 4, G0);
never@2149 1901 __ stb(value, to, 0);
never@2149 1902 __ stb(value, to, 1);
never@2149 1903 __ inc(to, 2);
never@2149 1904 __ BIND(L_fill_4);
never@2149 1905 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2149 1906 __ delayed()->nop();
never@2149 1907 __ stb(value, to, 0);
never@2149 1908 __ stb(value, to, 1);
never@2149 1909 __ stb(value, to, 2);
never@2149 1910 __ retl();
never@2149 1911 __ delayed()->stb(value, to, 3);
never@2149 1912 }
never@2149 1913
never@2149 1914 if (t == T_SHORT) {
never@2149 1915 Label L_fill_2;
never@2149 1916 __ BIND(L_fill_elements);
never@2149 1917 // in delay slot __ andcc(count, 1, G0);
never@2149 1918 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
never@2149 1919 __ delayed()->andcc(count, 2, G0);
never@2149 1920 __ sth(value, to, 0);
never@2149 1921 __ inc(to, 2);
never@2149 1922 __ BIND(L_fill_2);
never@2149 1923 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2149 1924 __ delayed()->nop();
never@2149 1925 __ sth(value, to, 0);
never@2149 1926 __ retl();
never@2149 1927 __ delayed()->sth(value, to, 2);
never@2149 1928 }
never@2118 1929 return start;
never@2118 1930 }
never@2118 1931
never@2118 1932 //
duke@435 1933 // Generate stub for conjoint short copy. If "aligned" is true, the
duke@435 1934 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1935 //
duke@435 1936 // Arguments for generated stub:
duke@435 1937 // from: O0
duke@435 1938 // to: O1
duke@435 1939 // count: O2 treated as signed
duke@435 1940 //
iveresov@2595 1941 address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
iveresov@2595 1942 address *entry, const char *name) {
duke@435 1943 // Do reverse copy.
duke@435 1944
duke@435 1945 __ align(CodeEntryAlignment);
duke@435 1946 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1947 address start = __ pc();
duke@435 1948
duke@435 1949 Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
duke@435 1950 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1951
duke@435 1952 const Register from = O0; // source array address
duke@435 1953 const Register to = O1; // destination array address
duke@435 1954 const Register count = O2; // elements count
duke@435 1955 const Register end_from = from; // source array end address
duke@435 1956 const Register end_to = to; // destination array end address
duke@435 1957
duke@435 1958 const Register byte_count = O3; // bytes count to copy
duke@435 1959
duke@435 1960 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1961
iveresov@2595 1962 if (entry != NULL) {
iveresov@2595 1963 *entry = __ pc();
iveresov@2595 1964 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1965 BLOCK_COMMENT("Entry:");
iveresov@2595 1966 }
duke@435 1967
duke@435 1968 array_overlap_test(nooverlap_target, 1);
duke@435 1969
duke@435 1970 __ sllx(count, LogBytesPerShort, byte_count);
duke@435 1971 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 1972
duke@435 1973 // for short arrays, just do single element copy
duke@435 1974 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1975 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1976 __ delayed()->add(from, byte_count, end_from);
duke@435 1977
duke@435 1978 {
duke@435 1979 // Align end of arrays since they could be not aligned even
duke@435 1980 // when arrays itself are aligned.
duke@435 1981
duke@435 1982 // copy 1 element if necessary to align 'end_to' on an 4 bytes
duke@435 1983 __ andcc(end_to, 3, G0);
duke@435 1984 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1985 __ delayed()->lduh(end_from, -2, O3);
duke@435 1986 __ dec(end_from, 2);
duke@435 1987 __ dec(end_to, 2);
duke@435 1988 __ dec(count);
duke@435 1989 __ sth(O3, end_to, 0);
duke@435 1990 __ BIND(L_skip_alignment);
duke@435 1991
duke@435 1992 // copy 2 elements to align 'end_to' on an 8 byte boundary
duke@435 1993 __ andcc(end_to, 7, G0);
duke@435 1994 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1995 __ delayed()->lduh(end_from, -2, O3);
duke@435 1996 __ dec(count, 2);
duke@435 1997 __ lduh(end_from, -4, O4);
duke@435 1998 __ dec(end_from, 4);
duke@435 1999 __ dec(end_to, 4);
duke@435 2000 __ sth(O3, end_to, 2);
duke@435 2001 __ sth(O4, end_to, 0);
duke@435 2002 __ BIND(L_skip_alignment2);
duke@435 2003 }
duke@435 2004 #ifdef _LP64
duke@435 2005 if (aligned) {
duke@435 2006 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 2007 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 2008 // in unaligned case.
duke@435 2009 __ dec(count, 8);
duke@435 2010 } else
duke@435 2011 #endif
duke@435 2012 {
duke@435 2013 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 2014 // the same alignment mod 8, otherwise jump to the next
duke@435 2015 // code for aligned copy (and substracting 8 from 'count' before jump).
duke@435 2016 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 2017 // Also jump over aligned copy after the copy with shift completed.
duke@435 2018
duke@435 2019 copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
duke@435 2020 L_aligned_copy, L_copy_2_bytes);
duke@435 2021 }
duke@435 2022 // copy 4 elements (16 bytes) at a time
kvn@1800 2023 __ align(OptoLoopAlignment);
duke@435 2024 __ BIND(L_aligned_copy);
duke@435 2025 __ dec(end_from, 16);
duke@435 2026 __ ldx(end_from, 8, O3);
duke@435 2027 __ ldx(end_from, 0, O4);
duke@435 2028 __ dec(end_to, 16);
duke@435 2029 __ deccc(count, 8);
duke@435 2030 __ stx(O3, end_to, 8);
duke@435 2031 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 2032 __ delayed()->stx(O4, end_to, 0);
duke@435 2033 __ inc(count, 8);
duke@435 2034
duke@435 2035 // copy 1 element (2 bytes) at a time
duke@435 2036 __ BIND(L_copy_2_bytes);
kvn@3037 2037 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
duke@435 2038 __ BIND(L_copy_2_bytes_loop);
duke@435 2039 __ dec(end_from, 2);
duke@435 2040 __ dec(end_to, 2);
duke@435 2041 __ lduh(end_from, 0, O4);
duke@435 2042 __ deccc(count);
duke@435 2043 __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 2044 __ delayed()->sth(O4, end_to, 0);
duke@435 2045
duke@435 2046 __ BIND(L_exit);
duke@435 2047 // O3, O4 are used as temp registers
duke@435 2048 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 2049 __ retl();
duke@435 2050 __ delayed()->mov(G0, O0); // return 0
duke@435 2051 return start;
duke@435 2052 }
duke@435 2053
duke@435 2054 //
kvn@3103 2055 // Helper methods for generate_disjoint_int_copy_core()
kvn@3103 2056 //
kvn@3103 2057 void copy_16_bytes_loop(Register from, Register to, Register count, int count_dec,
kvn@3103 2058 Label& L_loop, bool use_prefetch, bool use_bis) {
kvn@3103 2059
kvn@3103 2060 __ align(OptoLoopAlignment);
kvn@3103 2061 __ BIND(L_loop);
kvn@3103 2062 if (use_prefetch) {
kvn@3103 2063 if (ArraycopySrcPrefetchDistance > 0) {
kvn@3103 2064 __ prefetch(from, ArraycopySrcPrefetchDistance, Assembler::severalReads);
kvn@3103 2065 }
kvn@3103 2066 if (ArraycopyDstPrefetchDistance > 0) {
kvn@3103 2067 __ prefetch(to, ArraycopyDstPrefetchDistance, Assembler::severalWritesAndPossiblyReads);
kvn@3103 2068 }
kvn@3103 2069 }
kvn@3103 2070 __ ldx(from, 4, O4);
kvn@3103 2071 __ ldx(from, 12, G4);
kvn@3103 2072 __ inc(to, 16);
kvn@3103 2073 __ inc(from, 16);
kvn@3103 2074 __ deccc(count, 4); // Can we do next iteration after this one?
kvn@3103 2075
kvn@3103 2076 __ srlx(O4, 32, G3);
kvn@3103 2077 __ bset(G3, O3);
kvn@3103 2078 __ sllx(O4, 32, O4);
kvn@3103 2079 __ srlx(G4, 32, G3);
kvn@3103 2080 __ bset(G3, O4);
kvn@3103 2081 if (use_bis) {
kvn@3103 2082 __ stxa(O3, to, -16);
kvn@3103 2083 __ stxa(O4, to, -8);
kvn@3103 2084 } else {
kvn@3103 2085 __ stx(O3, to, -16);
kvn@3103 2086 __ stx(O4, to, -8);
kvn@3103 2087 }
kvn@3103 2088 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
kvn@3103 2089 __ delayed()->sllx(G4, 32, O3);
kvn@3103 2090
kvn@3103 2091 }
kvn@3103 2092
kvn@3103 2093 //
duke@435 2094 // Generate core code for disjoint int copy (and oop copy on 32-bit).
duke@435 2095 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 2096 // to be heapword aligned.
duke@435 2097 //
duke@435 2098 // Arguments:
duke@435 2099 // from: O0
duke@435 2100 // to: O1
duke@435 2101 // count: O2 treated as signed
duke@435 2102 //
duke@435 2103 void generate_disjoint_int_copy_core(bool aligned) {
duke@435 2104
duke@435 2105 Label L_skip_alignment, L_aligned_copy;
kvn@3103 2106 Label L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 2107
duke@435 2108 const Register from = O0; // source array address
duke@435 2109 const Register to = O1; // destination array address
duke@435 2110 const Register count = O2; // elements count
duke@435 2111 const Register offset = O5; // offset from start of arrays
duke@435 2112 // O3, O4, G3, G4 are used as temp registers
duke@435 2113
duke@435 2114 // 'aligned' == true when it is known statically during compilation
duke@435 2115 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 2116 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 2117 //
duke@435 2118 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 2119 // and 8 bytes - in 64-bits VM.
duke@435 2120 //
duke@435 2121 #ifdef _LP64
duke@435 2122 if (!aligned)
duke@435 2123 #endif
duke@435 2124 {
duke@435 2125 // The next check could be put under 'ifndef' since the code in
duke@435 2126 // generate_disjoint_long_copy_core() has own checks and set 'offset'.
duke@435 2127
duke@435 2128 // for short arrays, just do single element copy
duke@435 2129 __ cmp(count, 5); // 4 + 1 (20 bytes)
duke@435 2130 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 2131 __ delayed()->mov(G0, offset);
duke@435 2132
duke@435 2133 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 2134 __ andcc(to, 7, G0);
duke@435 2135 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 2136 __ delayed()->ld(from, 0, O3);
duke@435 2137 __ inc(from, 4);
duke@435 2138 __ inc(to, 4);
duke@435 2139 __ dec(count);
duke@435 2140 __ st(O3, to, -4);
duke@435 2141 __ BIND(L_skip_alignment);
duke@435 2142
duke@435 2143 // if arrays have same alignment mod 8, do 4 elements copy
duke@435 2144 __ andcc(from, 7, G0);
duke@435 2145 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 2146 __ delayed()->ld(from, 0, O3);
duke@435 2147
duke@435 2148 //
duke@435 2149 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 2150 // to form 2 aligned 8-bytes chunks to store.
duke@435 2151 //
duke@435 2152 // copy_16_bytes_forward_with_shift() is not used here since this
duke@435 2153 // code is more optimal.
duke@435 2154
duke@435 2155 // copy with shift 4 elements (16 bytes) at a time
duke@435 2156 __ dec(count, 4); // The cmp at the beginning guaranty count >= 4
kvn@3103 2157 __ sllx(O3, 32, O3);
kvn@3103 2158
kvn@3103 2159 disjoint_copy_core(from, to, count, 2, 16, copy_16_bytes_loop);
duke@435 2160
duke@435 2161 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 2162 __ delayed()->inc(count, 4); // restore 'count'
duke@435 2163
duke@435 2164 __ BIND(L_aligned_copy);
kvn@3103 2165 } // !aligned
kvn@3103 2166
duke@435 2167 // copy 4 elements (16 bytes) at a time
duke@435 2168 __ and3(count, 1, G4); // Save
duke@435 2169 __ srl(count, 1, count);
duke@435 2170 generate_disjoint_long_copy_core(aligned);
duke@435 2171 __ mov(G4, count); // Restore
duke@435 2172
duke@435 2173 // copy 1 element at a time
duke@435 2174 __ BIND(L_copy_4_bytes);
kvn@3037 2175 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
duke@435 2176 __ BIND(L_copy_4_bytes_loop);
duke@435 2177 __ ld(from, offset, O3);
duke@435 2178 __ deccc(count);
duke@435 2179 __ st(O3, to, offset);
duke@435 2180 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 2181 __ delayed()->inc(offset, 4);
duke@435 2182 __ BIND(L_exit);
duke@435 2183 }
duke@435 2184
duke@435 2185 //
duke@435 2186 // Generate stub for disjoint int copy. If "aligned" is true, the
duke@435 2187 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2188 //
duke@435 2189 // Arguments for generated stub:
duke@435 2190 // from: O0
duke@435 2191 // to: O1
duke@435 2192 // count: O2 treated as signed
duke@435 2193 //
iveresov@2595 2194 address generate_disjoint_int_copy(bool aligned, address *entry, const char *name) {
duke@435 2195 __ align(CodeEntryAlignment);
duke@435 2196 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2197 address start = __ pc();
duke@435 2198
duke@435 2199 const Register count = O2;
duke@435 2200 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2201
iveresov@2595 2202 if (entry != NULL) {
iveresov@2595 2203 *entry = __ pc();
iveresov@2595 2204 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2205 BLOCK_COMMENT("Entry:");
iveresov@2595 2206 }
duke@435 2207
duke@435 2208 generate_disjoint_int_copy_core(aligned);
duke@435 2209
duke@435 2210 // O3, O4 are used as temp registers
duke@435 2211 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 2212 __ retl();
duke@435 2213 __ delayed()->mov(G0, O0); // return 0
duke@435 2214 return start;
duke@435 2215 }
duke@435 2216
duke@435 2217 //
duke@435 2218 // Generate core code for conjoint int copy (and oop copy on 32-bit).
duke@435 2219 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 2220 // to be heapword aligned.
duke@435 2221 //
duke@435 2222 // Arguments:
duke@435 2223 // from: O0
duke@435 2224 // to: O1
duke@435 2225 // count: O2 treated as signed
duke@435 2226 //
duke@435 2227 void generate_conjoint_int_copy_core(bool aligned) {
duke@435 2228 // Do reverse copy.
duke@435 2229
duke@435 2230 Label L_skip_alignment, L_aligned_copy;
duke@435 2231 Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 2232
duke@435 2233 const Register from = O0; // source array address
duke@435 2234 const Register to = O1; // destination array address
duke@435 2235 const Register count = O2; // elements count
duke@435 2236 const Register end_from = from; // source array end address
duke@435 2237 const Register end_to = to; // destination array end address
duke@435 2238 // O3, O4, O5, G3 are used as temp registers
duke@435 2239
duke@435 2240 const Register byte_count = O3; // bytes count to copy
duke@435 2241
duke@435 2242 __ sllx(count, LogBytesPerInt, byte_count);
duke@435 2243 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 2244
duke@435 2245 __ cmp(count, 5); // for short arrays, just do single element copy
duke@435 2246 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 2247 __ delayed()->add(from, byte_count, end_from);
duke@435 2248
duke@435 2249 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 2250 __ andcc(end_to, 7, G0);
duke@435 2251 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 2252 __ delayed()->nop();
duke@435 2253 __ dec(count);
duke@435 2254 __ dec(end_from, 4);
duke@435 2255 __ dec(end_to, 4);
duke@435 2256 __ ld(end_from, 0, O4);
duke@435 2257 __ st(O4, end_to, 0);
duke@435 2258 __ BIND(L_skip_alignment);
duke@435 2259
duke@435 2260 // Check if 'end_from' and 'end_to' has the same alignment.
duke@435 2261 __ andcc(end_from, 7, G0);
duke@435 2262 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 2263 __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
duke@435 2264
duke@435 2265 // copy with shift 4 elements (16 bytes) at a time
duke@435 2266 //
duke@435 2267 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 2268 // to form 2 aligned 8-bytes chunks to store.
duke@435 2269 //
duke@435 2270 __ ldx(end_from, -4, O3);
kvn@1800 2271 __ align(OptoLoopAlignment);
duke@435 2272 __ BIND(L_copy_16_bytes);
duke@435 2273 __ ldx(end_from, -12, O4);
duke@435 2274 __ deccc(count, 4);
duke@435 2275 __ ldx(end_from, -20, O5);
duke@435 2276 __ dec(end_to, 16);
duke@435 2277 __ dec(end_from, 16);
duke@435 2278 __ srlx(O3, 32, O3);
duke@435 2279 __ sllx(O4, 32, G3);
duke@435 2280 __ bset(G3, O3);
duke@435 2281 __ stx(O3, end_to, 8);
duke@435 2282 __ srlx(O4, 32, O4);
duke@435 2283 __ sllx(O5, 32, G3);
duke@435 2284 __ bset(O4, G3);
duke@435 2285 __ stx(G3, end_to, 0);
duke@435 2286 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2287 __ delayed()->mov(O5, O3);
duke@435 2288
duke@435 2289 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 2290 __ delayed()->inc(count, 4);
duke@435 2291
duke@435 2292 // copy 4 elements (16 bytes) at a time
kvn@1800 2293 __ align(OptoLoopAlignment);
duke@435 2294 __ BIND(L_aligned_copy);
duke@435 2295 __ dec(end_from, 16);
duke@435 2296 __ ldx(end_from, 8, O3);
duke@435 2297 __ ldx(end_from, 0, O4);
duke@435 2298 __ dec(end_to, 16);
duke@435 2299 __ deccc(count, 4);
duke@435 2300 __ stx(O3, end_to, 8);
duke@435 2301 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 2302 __ delayed()->stx(O4, end_to, 0);
duke@435 2303 __ inc(count, 4);
duke@435 2304
duke@435 2305 // copy 1 element (4 bytes) at a time
duke@435 2306 __ BIND(L_copy_4_bytes);
kvn@3037 2307 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
duke@435 2308 __ BIND(L_copy_4_bytes_loop);
duke@435 2309 __ dec(end_from, 4);
duke@435 2310 __ dec(end_to, 4);
duke@435 2311 __ ld(end_from, 0, O4);
duke@435 2312 __ deccc(count);
duke@435 2313 __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 2314 __ delayed()->st(O4, end_to, 0);
duke@435 2315 __ BIND(L_exit);
duke@435 2316 }
duke@435 2317
duke@435 2318 //
duke@435 2319 // Generate stub for conjoint int copy. If "aligned" is true, the
duke@435 2320 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2321 //
duke@435 2322 // Arguments for generated stub:
duke@435 2323 // from: O0
duke@435 2324 // to: O1
duke@435 2325 // count: O2 treated as signed
duke@435 2326 //
iveresov@2595 2327 address generate_conjoint_int_copy(bool aligned, address nooverlap_target,
iveresov@2595 2328 address *entry, const char *name) {
duke@435 2329 __ align(CodeEntryAlignment);
duke@435 2330 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2331 address start = __ pc();
duke@435 2332
duke@435 2333 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2334
iveresov@2595 2335 if (entry != NULL) {
iveresov@2595 2336 *entry = __ pc();
iveresov@2595 2337 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2338 BLOCK_COMMENT("Entry:");
iveresov@2595 2339 }
duke@435 2340
duke@435 2341 array_overlap_test(nooverlap_target, 2);
duke@435 2342
duke@435 2343 generate_conjoint_int_copy_core(aligned);
duke@435 2344
duke@435 2345 // O3, O4 are used as temp registers
duke@435 2346 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 2347 __ retl();
duke@435 2348 __ delayed()->mov(G0, O0); // return 0
duke@435 2349 return start;
duke@435 2350 }
duke@435 2351
duke@435 2352 //
kvn@3103 2353 // Helper methods for generate_disjoint_long_copy_core()
kvn@3103 2354 //
kvn@3103 2355 void copy_64_bytes_loop(Register from, Register to, Register count, int count_dec,
kvn@3103 2356 Label& L_loop, bool use_prefetch, bool use_bis) {
kvn@3103 2357 __ align(OptoLoopAlignment);
kvn@3103 2358 __ BIND(L_loop);
kvn@3103 2359 for (int off = 0; off < 64; off += 16) {
kvn@3103 2360 if (use_prefetch && (off & 31) == 0) {
kvn@3103 2361 if (ArraycopySrcPrefetchDistance > 0) {
kvn@3157 2362 __ prefetch(from, ArraycopySrcPrefetchDistance+off, Assembler::severalReads);
kvn@3103 2363 }
kvn@3103 2364 if (ArraycopyDstPrefetchDistance > 0) {
kvn@3157 2365 __ prefetch(to, ArraycopyDstPrefetchDistance+off, Assembler::severalWritesAndPossiblyReads);
kvn@3103 2366 }
kvn@3103 2367 }
kvn@3103 2368 __ ldx(from, off+0, O4);
kvn@3103 2369 __ ldx(from, off+8, O5);
kvn@3103 2370 if (use_bis) {
kvn@3103 2371 __ stxa(O4, to, off+0);
kvn@3103 2372 __ stxa(O5, to, off+8);
kvn@3103 2373 } else {
kvn@3103 2374 __ stx(O4, to, off+0);
kvn@3103 2375 __ stx(O5, to, off+8);
kvn@3103 2376 }
kvn@3103 2377 }
kvn@3103 2378 __ deccc(count, 8);
kvn@3103 2379 __ inc(from, 64);
kvn@3103 2380 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
kvn@3103 2381 __ delayed()->inc(to, 64);
kvn@3103 2382 }
kvn@3103 2383
kvn@3103 2384 //
duke@435 2385 // Generate core code for disjoint long copy (and oop copy on 64-bit).
duke@435 2386 // "aligned" is ignored, because we must make the stronger
duke@435 2387 // assumption that both addresses are always 64-bit aligned.
duke@435 2388 //
duke@435 2389 // Arguments:
duke@435 2390 // from: O0
duke@435 2391 // to: O1
duke@435 2392 // count: O2 treated as signed
duke@435 2393 //
kvn@1799 2394 // count -= 2;
kvn@1799 2395 // if ( count >= 0 ) { // >= 2 elements
kvn@1799 2396 // if ( count > 6) { // >= 8 elements
kvn@1799 2397 // count -= 6; // original count - 8
kvn@1799 2398 // do {
kvn@1799 2399 // copy_8_elements;
kvn@1799 2400 // count -= 8;
kvn@1799 2401 // } while ( count >= 0 );
kvn@1799 2402 // count += 6;
kvn@1799 2403 // }
kvn@1799 2404 // if ( count >= 0 ) { // >= 2 elements
kvn@1799 2405 // do {
kvn@1799 2406 // copy_2_elements;
kvn@1799 2407 // } while ( (count=count-2) >= 0 );
kvn@1799 2408 // }
kvn@1799 2409 // }
kvn@1799 2410 // count += 2;
kvn@1799 2411 // if ( count != 0 ) { // 1 element left
kvn@1799 2412 // copy_1_element;
kvn@1799 2413 // }
kvn@1799 2414 //
duke@435 2415 void generate_disjoint_long_copy_core(bool aligned) {
duke@435 2416 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2417 const Register from = O0; // source array address
duke@435 2418 const Register to = O1; // destination array address
duke@435 2419 const Register count = O2; // elements count
duke@435 2420 const Register offset0 = O4; // element offset
duke@435 2421 const Register offset8 = O5; // next element offset
duke@435 2422
kvn@3103 2423 __ deccc(count, 2);
kvn@3103 2424 __ mov(G0, offset0); // offset from start of arrays (0)
kvn@3103 2425 __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
kvn@3103 2426 __ delayed()->add(offset0, 8, offset8);
kvn@1799 2427
kvn@1799 2428 // Copy by 64 bytes chunks
kvn@3103 2429
kvn@1799 2430 const Register from64 = O3; // source address
kvn@1799 2431 const Register to64 = G3; // destination address
kvn@3103 2432 __ subcc(count, 6, O3);
kvn@3103 2433 __ brx(Assembler::negative, false, Assembler::pt, L_copy_16_bytes );
kvn@3103 2434 __ delayed()->mov(to, to64);
kvn@3103 2435 // Now we can use O4(offset0), O5(offset8) as temps
kvn@3103 2436 __ mov(O3, count);
kvn@3103 2437 // count >= 0 (original count - 8)
kvn@3103 2438 __ mov(from, from64);
kvn@3103 2439
kvn@3103 2440 disjoint_copy_core(from64, to64, count, 3, 64, copy_64_bytes_loop);
kvn@1799 2441
kvn@1799 2442 // Restore O4(offset0), O5(offset8)
kvn@1799 2443 __ sub(from64, from, offset0);
kvn@3103 2444 __ inccc(count, 6); // restore count
kvn@1799 2445 __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
kvn@1799 2446 __ delayed()->add(offset0, 8, offset8);
kvn@1799 2447
kvn@1799 2448 // Copy by 16 bytes chunks
kvn@1800 2449 __ align(OptoLoopAlignment);
duke@435 2450 __ BIND(L_copy_16_bytes);
duke@435 2451 __ ldx(from, offset0, O3);
duke@435 2452 __ ldx(from, offset8, G3);
duke@435 2453 __ deccc(count, 2);
duke@435 2454 __ stx(O3, to, offset0);
duke@435 2455 __ inc(offset0, 16);
duke@435 2456 __ stx(G3, to, offset8);
duke@435 2457 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2458 __ delayed()->inc(offset8, 16);
duke@435 2459
kvn@1799 2460 // Copy last 8 bytes
duke@435 2461 __ BIND(L_copy_8_bytes);
duke@435 2462 __ inccc(count, 2);
duke@435 2463 __ brx(Assembler::zero, true, Assembler::pn, L_exit );
duke@435 2464 __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
duke@435 2465 __ ldx(from, offset0, O3);
duke@435 2466 __ stx(O3, to, offset0);
duke@435 2467 __ BIND(L_exit);
duke@435 2468 }
duke@435 2469
duke@435 2470 //
duke@435 2471 // Generate stub for disjoint long copy.
duke@435 2472 // "aligned" is ignored, because we must make the stronger
duke@435 2473 // assumption that both addresses are always 64-bit aligned.
duke@435 2474 //
duke@435 2475 // Arguments for generated stub:
duke@435 2476 // from: O0
duke@435 2477 // to: O1
duke@435 2478 // count: O2 treated as signed
duke@435 2479 //
iveresov@2595 2480 address generate_disjoint_long_copy(bool aligned, address *entry, const char *name) {
duke@435 2481 __ align(CodeEntryAlignment);
duke@435 2482 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2483 address start = __ pc();
duke@435 2484
duke@435 2485 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2486
iveresov@2595 2487 if (entry != NULL) {
iveresov@2595 2488 *entry = __ pc();
iveresov@2595 2489 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2490 BLOCK_COMMENT("Entry:");
iveresov@2595 2491 }
duke@435 2492
duke@435 2493 generate_disjoint_long_copy_core(aligned);
duke@435 2494
duke@435 2495 // O3, O4 are used as temp registers
duke@435 2496 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2497 __ retl();
duke@435 2498 __ delayed()->mov(G0, O0); // return 0
duke@435 2499 return start;
duke@435 2500 }
duke@435 2501
duke@435 2502 //
duke@435 2503 // Generate core code for conjoint long copy (and oop copy on 64-bit).
duke@435 2504 // "aligned" is ignored, because we must make the stronger
duke@435 2505 // assumption that both addresses are always 64-bit aligned.
duke@435 2506 //
duke@435 2507 // Arguments:
duke@435 2508 // from: O0
duke@435 2509 // to: O1
duke@435 2510 // count: O2 treated as signed
duke@435 2511 //
duke@435 2512 void generate_conjoint_long_copy_core(bool aligned) {
duke@435 2513 // Do reverse copy.
duke@435 2514 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2515 const Register from = O0; // source array address
duke@435 2516 const Register to = O1; // destination array address
duke@435 2517 const Register count = O2; // elements count
duke@435 2518 const Register offset8 = O4; // element offset
duke@435 2519 const Register offset0 = O5; // previous element offset
duke@435 2520
duke@435 2521 __ subcc(count, 1, count);
duke@435 2522 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
duke@435 2523 __ delayed()->sllx(count, LogBytesPerLong, offset8);
duke@435 2524 __ sub(offset8, 8, offset0);
kvn@1800 2525 __ align(OptoLoopAlignment);
duke@435 2526 __ BIND(L_copy_16_bytes);
duke@435 2527 __ ldx(from, offset8, O2);
duke@435 2528 __ ldx(from, offset0, O3);
duke@435 2529 __ stx(O2, to, offset8);
duke@435 2530 __ deccc(offset8, 16); // use offset8 as counter
duke@435 2531 __ stx(O3, to, offset0);
duke@435 2532 __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
duke@435 2533 __ delayed()->dec(offset0, 16);
duke@435 2534
duke@435 2535 __ BIND(L_copy_8_bytes);
duke@435 2536 __ brx(Assembler::negative, false, Assembler::pn, L_exit );
duke@435 2537 __ delayed()->nop();
duke@435 2538 __ ldx(from, 0, O3);
duke@435 2539 __ stx(O3, to, 0);
duke@435 2540 __ BIND(L_exit);
duke@435 2541 }
duke@435 2542
duke@435 2543 // Generate stub for conjoint long copy.
duke@435 2544 // "aligned" is ignored, because we must make the stronger
duke@435 2545 // assumption that both addresses are always 64-bit aligned.
duke@435 2546 //
duke@435 2547 // Arguments for generated stub:
duke@435 2548 // from: O0
duke@435 2549 // to: O1
duke@435 2550 // count: O2 treated as signed
duke@435 2551 //
iveresov@2595 2552 address generate_conjoint_long_copy(bool aligned, address nooverlap_target,
iveresov@2595 2553 address *entry, const char *name) {
duke@435 2554 __ align(CodeEntryAlignment);
duke@435 2555 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2556 address start = __ pc();
duke@435 2557
iveresov@2606 2558 assert(aligned, "Should always be aligned");
duke@435 2559
duke@435 2560 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2561
iveresov@2595 2562 if (entry != NULL) {
iveresov@2595 2563 *entry = __ pc();
iveresov@2595 2564 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2565 BLOCK_COMMENT("Entry:");
iveresov@2595 2566 }
duke@435 2567
duke@435 2568 array_overlap_test(nooverlap_target, 3);
duke@435 2569
duke@435 2570 generate_conjoint_long_copy_core(aligned);
duke@435 2571
duke@435 2572 // O3, O4 are used as temp registers
duke@435 2573 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2574 __ retl();
duke@435 2575 __ delayed()->mov(G0, O0); // return 0
duke@435 2576 return start;
duke@435 2577 }
duke@435 2578
duke@435 2579 // Generate stub for disjoint oop copy. If "aligned" is true, the
duke@435 2580 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2581 //
duke@435 2582 // Arguments for generated stub:
duke@435 2583 // from: O0
duke@435 2584 // to: O1
duke@435 2585 // count: O2 treated as signed
duke@435 2586 //
iveresov@2606 2587 address generate_disjoint_oop_copy(bool aligned, address *entry, const char *name,
iveresov@2606 2588 bool dest_uninitialized = false) {
duke@435 2589
duke@435 2590 const Register from = O0; // source array address
duke@435 2591 const Register to = O1; // destination array address
duke@435 2592 const Register count = O2; // elements count
duke@435 2593
duke@435 2594 __ align(CodeEntryAlignment);
duke@435 2595 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2596 address start = __ pc();
duke@435 2597
duke@435 2598 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2599
iveresov@2595 2600 if (entry != NULL) {
iveresov@2595 2601 *entry = __ pc();
iveresov@2595 2602 // caller can pass a 64-bit byte count here
iveresov@2595 2603 BLOCK_COMMENT("Entry:");
iveresov@2595 2604 }
duke@435 2605
duke@435 2606 // save arguments for barrier generation
duke@435 2607 __ mov(to, G1);
duke@435 2608 __ mov(count, G5);
iveresov@2606 2609 gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
duke@435 2610 #ifdef _LP64
coleenp@548 2611 assert_clean_int(count, O3); // Make sure 'count' is clean int.
coleenp@548 2612 if (UseCompressedOops) {
coleenp@548 2613 generate_disjoint_int_copy_core(aligned);
coleenp@548 2614 } else {
coleenp@548 2615 generate_disjoint_long_copy_core(aligned);
coleenp@548 2616 }
duke@435 2617 #else
duke@435 2618 generate_disjoint_int_copy_core(aligned);
duke@435 2619 #endif
duke@435 2620 // O0 is used as temp register
duke@435 2621 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2622
duke@435 2623 // O3, O4 are used as temp registers
duke@435 2624 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2625 __ retl();
duke@435 2626 __ delayed()->mov(G0, O0); // return 0
duke@435 2627 return start;
duke@435 2628 }
duke@435 2629
duke@435 2630 // Generate stub for conjoint oop copy. If "aligned" is true, the
duke@435 2631 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2632 //
duke@435 2633 // Arguments for generated stub:
duke@435 2634 // from: O0
duke@435 2635 // to: O1
duke@435 2636 // count: O2 treated as signed
duke@435 2637 //
iveresov@2595 2638 address generate_conjoint_oop_copy(bool aligned, address nooverlap_target,
iveresov@2606 2639 address *entry, const char *name,
iveresov@2606 2640 bool dest_uninitialized = false) {
duke@435 2641
duke@435 2642 const Register from = O0; // source array address
duke@435 2643 const Register to = O1; // destination array address
duke@435 2644 const Register count = O2; // elements count
duke@435 2645
duke@435 2646 __ align(CodeEntryAlignment);
duke@435 2647 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2648 address start = __ pc();
duke@435 2649
duke@435 2650 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2651
iveresov@2595 2652 if (entry != NULL) {
iveresov@2595 2653 *entry = __ pc();
iveresov@2595 2654 // caller can pass a 64-bit byte count here
iveresov@2595 2655 BLOCK_COMMENT("Entry:");
iveresov@2595 2656 }
iveresov@2595 2657
iveresov@2595 2658 array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
duke@435 2659
duke@435 2660 // save arguments for barrier generation
duke@435 2661 __ mov(to, G1);
duke@435 2662 __ mov(count, G5);
iveresov@2606 2663 gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
duke@435 2664
duke@435 2665 #ifdef _LP64
coleenp@548 2666 if (UseCompressedOops) {
coleenp@548 2667 generate_conjoint_int_copy_core(aligned);
coleenp@548 2668 } else {
coleenp@548 2669 generate_conjoint_long_copy_core(aligned);
coleenp@548 2670 }
duke@435 2671 #else
duke@435 2672 generate_conjoint_int_copy_core(aligned);
duke@435 2673 #endif
duke@435 2674
duke@435 2675 // O0 is used as temp register
duke@435 2676 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2677
duke@435 2678 // O3, O4 are used as temp registers
duke@435 2679 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2680 __ retl();
duke@435 2681 __ delayed()->mov(G0, O0); // return 0
duke@435 2682 return start;
duke@435 2683 }
duke@435 2684
duke@435 2685
duke@435 2686 // Helper for generating a dynamic type check.
duke@435 2687 // Smashes only the given temp registers.
duke@435 2688 void generate_type_check(Register sub_klass,
duke@435 2689 Register super_check_offset,
duke@435 2690 Register super_klass,
duke@435 2691 Register temp,
jrose@1079 2692 Label& L_success) {
duke@435 2693 assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
duke@435 2694
duke@435 2695 BLOCK_COMMENT("type_check:");
duke@435 2696
jrose@1079 2697 Label L_miss, L_pop_to_miss;
duke@435 2698
duke@435 2699 assert_clean_int(super_check_offset, temp);
duke@435 2700
jrose@1079 2701 __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
jrose@1079 2702 &L_success, &L_miss, NULL,
jrose@1079 2703 super_check_offset);
jrose@1079 2704
jrose@1079 2705 BLOCK_COMMENT("type_check_slow_path:");
duke@435 2706 __ save_frame(0);
jrose@1079 2707 __ check_klass_subtype_slow_path(sub_klass->after_save(),
jrose@1079 2708 super_klass->after_save(),
jrose@1079 2709 L0, L1, L2, L4,
jrose@1079 2710 NULL, &L_pop_to_miss);
kvn@3037 2711 __ ba(L_success);
jrose@1079 2712 __ delayed()->restore();
jrose@1079 2713
jrose@1079 2714 __ bind(L_pop_to_miss);
duke@435 2715 __ restore();
duke@435 2716
duke@435 2717 // Fall through on failure!
duke@435 2718 __ BIND(L_miss);
duke@435 2719 }
duke@435 2720
duke@435 2721
duke@435 2722 // Generate stub for checked oop copy.
duke@435 2723 //
duke@435 2724 // Arguments for generated stub:
duke@435 2725 // from: O0
duke@435 2726 // to: O1
duke@435 2727 // count: O2 treated as signed
duke@435 2728 // ckoff: O3 (super_check_offset)
duke@435 2729 // ckval: O4 (super_klass)
duke@435 2730 // ret: O0 zero for success; (-1^K) where K is partial transfer count
duke@435 2731 //
iveresov@2606 2732 address generate_checkcast_copy(const char *name, address *entry, bool dest_uninitialized = false) {
duke@435 2733
duke@435 2734 const Register O0_from = O0; // source array address
duke@435 2735 const Register O1_to = O1; // destination array address
duke@435 2736 const Register O2_count = O2; // elements count
duke@435 2737 const Register O3_ckoff = O3; // super_check_offset
duke@435 2738 const Register O4_ckval = O4; // super_klass
duke@435 2739
duke@435 2740 const Register O5_offset = O5; // loop var, with stride wordSize
duke@435 2741 const Register G1_remain = G1; // loop var, with stride -1
duke@435 2742 const Register G3_oop = G3; // actual oop copied
duke@435 2743 const Register G4_klass = G4; // oop._klass
duke@435 2744 const Register G5_super = G5; // oop._klass._primary_supers[ckval]
duke@435 2745
duke@435 2746 __ align(CodeEntryAlignment);
duke@435 2747 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2748 address start = __ pc();
duke@435 2749
duke@435 2750 #ifdef ASSERT
jrose@1079 2751 // We sometimes save a frame (see generate_type_check below).
duke@435 2752 // If this will cause trouble, let's fail now instead of later.
duke@435 2753 __ save_frame(0);
duke@435 2754 __ restore();
duke@435 2755 #endif
duke@435 2756
never@2199 2757 assert_clean_int(O2_count, G1); // Make sure 'count' is clean int.
never@2199 2758
duke@435 2759 #ifdef ASSERT
duke@435 2760 // caller guarantees that the arrays really are different
duke@435 2761 // otherwise, we would have to make conjoint checks
duke@435 2762 { Label L;
duke@435 2763 __ mov(O3, G1); // spill: overlap test smashes O3
duke@435 2764 __ mov(O4, G4); // spill: overlap test smashes O4
coleenp@548 2765 array_overlap_test(L, LogBytesPerHeapOop);
duke@435 2766 __ stop("checkcast_copy within a single array");
duke@435 2767 __ bind(L);
duke@435 2768 __ mov(G1, O3);
duke@435 2769 __ mov(G4, O4);
duke@435 2770 }
duke@435 2771 #endif //ASSERT
duke@435 2772
iveresov@2595 2773 if (entry != NULL) {
iveresov@2595 2774 *entry = __ pc();
iveresov@2595 2775 // caller can pass a 64-bit byte count here (from generic stub)
iveresov@2595 2776 BLOCK_COMMENT("Entry:");
iveresov@2595 2777 }
iveresov@2606 2778 gen_write_ref_array_pre_barrier(O1_to, O2_count, dest_uninitialized);
duke@435 2779
duke@435 2780 Label load_element, store_element, do_card_marks, fail, done;
duke@435 2781 __ addcc(O2_count, 0, G1_remain); // initialize loop index, and test it
duke@435 2782 __ brx(Assembler::notZero, false, Assembler::pt, load_element);
duke@435 2783 __ delayed()->mov(G0, O5_offset); // offset from start of arrays
duke@435 2784
duke@435 2785 // Empty array: Nothing to do.
duke@435 2786 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2787 __ retl();
duke@435 2788 __ delayed()->set(0, O0); // return 0 on (trivial) success
duke@435 2789
duke@435 2790 // ======== begin loop ========
duke@435 2791 // (Loop is rotated; its entry is load_element.)
duke@435 2792 // Loop variables:
duke@435 2793 // (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
duke@435 2794 // (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
duke@435 2795 // G3, G4, G5 --- current oop, oop.klass, oop.klass.super
kvn@1800 2796 __ align(OptoLoopAlignment);
duke@435 2797
jrose@1079 2798 __ BIND(store_element);
jrose@1079 2799 __ deccc(G1_remain); // decrement the count
coleenp@548 2800 __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
coleenp@548 2801 __ inc(O5_offset, heapOopSize); // step to next offset
duke@435 2802 __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
duke@435 2803 __ delayed()->set(0, O0); // return -1 on success
duke@435 2804
duke@435 2805 // ======== loop entry is here ========
jrose@1079 2806 __ BIND(load_element);
coleenp@548 2807 __ load_heap_oop(O0_from, O5_offset, G3_oop); // load the oop
kvn@3037 2808 __ br_null_short(G3_oop, Assembler::pt, store_element);
duke@435 2809
coleenp@548 2810 __ load_klass(G3_oop, G4_klass); // query the object klass
duke@435 2811
duke@435 2812 generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
duke@435 2813 // branch to this on success:
jrose@1079 2814 store_element);
duke@435 2815 // ======== end loop ========
duke@435 2816
duke@435 2817 // It was a real error; we must depend on the caller to finish the job.
duke@435 2818 // Register G1 has number of *remaining* oops, O2 number of *total* oops.
duke@435 2819 // Emit GC store barriers for the oops we have copied (O2 minus G1),
duke@435 2820 // and report their number to the caller.
jrose@1079 2821 __ BIND(fail);
duke@435 2822 __ subcc(O2_count, G1_remain, O2_count);
duke@435 2823 __ brx(Assembler::zero, false, Assembler::pt, done);
duke@435 2824 __ delayed()->not1(O2_count, O0); // report (-1^K) to caller
duke@435 2825
jrose@1079 2826 __ BIND(do_card_marks);
duke@435 2827 gen_write_ref_array_post_barrier(O1_to, O2_count, O3); // store check on O1[0..O2]
duke@435 2828
jrose@1079 2829 __ BIND(done);
duke@435 2830 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2831 __ retl();
duke@435 2832 __ delayed()->nop(); // return value in 00
duke@435 2833
duke@435 2834 return start;
duke@435 2835 }
duke@435 2836
duke@435 2837
duke@435 2838 // Generate 'unsafe' array copy stub
duke@435 2839 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2840 // size_t argument instead of an element count.
duke@435 2841 //
duke@435 2842 // Arguments for generated stub:
duke@435 2843 // from: O0
duke@435 2844 // to: O1
duke@435 2845 // count: O2 byte count, treated as ssize_t, can be zero
duke@435 2846 //
duke@435 2847 // Examines the alignment of the operands and dispatches
duke@435 2848 // to a long, int, short, or byte copy loop.
duke@435 2849 //
iveresov@2595 2850 address generate_unsafe_copy(const char* name,
iveresov@2595 2851 address byte_copy_entry,
iveresov@2595 2852 address short_copy_entry,
iveresov@2595 2853 address int_copy_entry,
iveresov@2595 2854 address long_copy_entry) {
duke@435 2855
duke@435 2856 const Register O0_from = O0; // source array address
duke@435 2857 const Register O1_to = O1; // destination array address
duke@435 2858 const Register O2_count = O2; // elements count
duke@435 2859
duke@435 2860 const Register G1_bits = G1; // test copy of low bits
duke@435 2861
duke@435 2862 __ align(CodeEntryAlignment);
duke@435 2863 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2864 address start = __ pc();
duke@435 2865
duke@435 2866 // bump this on entry, not on exit:
duke@435 2867 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
duke@435 2868
duke@435 2869 __ or3(O0_from, O1_to, G1_bits);
duke@435 2870 __ or3(O2_count, G1_bits, G1_bits);
duke@435 2871
duke@435 2872 __ btst(BytesPerLong-1, G1_bits);
duke@435 2873 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2874 long_copy_entry, relocInfo::runtime_call_type);
duke@435 2875 // scale the count on the way out:
duke@435 2876 __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
duke@435 2877
duke@435 2878 __ btst(BytesPerInt-1, G1_bits);
duke@435 2879 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2880 int_copy_entry, relocInfo::runtime_call_type);
duke@435 2881 // scale the count on the way out:
duke@435 2882 __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
duke@435 2883
duke@435 2884 __ btst(BytesPerShort-1, G1_bits);
duke@435 2885 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2886 short_copy_entry, relocInfo::runtime_call_type);
duke@435 2887 // scale the count on the way out:
duke@435 2888 __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
duke@435 2889
duke@435 2890 __ br(Assembler::always, false, Assembler::pt,
duke@435 2891 byte_copy_entry, relocInfo::runtime_call_type);
duke@435 2892 __ delayed()->nop();
duke@435 2893
duke@435 2894 return start;
duke@435 2895 }
duke@435 2896
duke@435 2897
duke@435 2898 // Perform range checks on the proposed arraycopy.
duke@435 2899 // Kills the two temps, but nothing else.
duke@435 2900 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2901 void arraycopy_range_checks(Register src, // source array oop (O0)
duke@435 2902 Register src_pos, // source position (O1)
duke@435 2903 Register dst, // destination array oo (O2)
duke@435 2904 Register dst_pos, // destination position (O3)
duke@435 2905 Register length, // length of copy (O4)
duke@435 2906 Register temp1, Register temp2,
duke@435 2907 Label& L_failed) {
duke@435 2908 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2909
duke@435 2910 // if (src_pos + length > arrayOop(src)->length() ) FAIL;
duke@435 2911
duke@435 2912 const Register array_length = temp1; // scratch
duke@435 2913 const Register end_pos = temp2; // scratch
duke@435 2914
duke@435 2915 // Note: This next instruction may be in the delay slot of a branch:
duke@435 2916 __ add(length, src_pos, end_pos); // src_pos + length
duke@435 2917 __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2918 __ cmp(end_pos, array_length);
duke@435 2919 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2920
duke@435 2921 // if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
duke@435 2922 __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
duke@435 2923 __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2924 __ cmp(end_pos, array_length);
duke@435 2925 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2926
duke@435 2927 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2928 // Move with sign extension can be used since they are positive.
duke@435 2929 __ delayed()->signx(src_pos, src_pos);
duke@435 2930 __ signx(dst_pos, dst_pos);
duke@435 2931
duke@435 2932 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2933 }
duke@435 2934
duke@435 2935
duke@435 2936 //
duke@435 2937 // Generate generic array copy stubs
duke@435 2938 //
duke@435 2939 // Input:
duke@435 2940 // O0 - src oop
duke@435 2941 // O1 - src_pos
duke@435 2942 // O2 - dst oop
duke@435 2943 // O3 - dst_pos
duke@435 2944 // O4 - element count
duke@435 2945 //
duke@435 2946 // Output:
duke@435 2947 // O0 == 0 - success
duke@435 2948 // O0 == -1 - need to call System.arraycopy
duke@435 2949 //
iveresov@2595 2950 address generate_generic_copy(const char *name,
iveresov@2595 2951 address entry_jbyte_arraycopy,
iveresov@2595 2952 address entry_jshort_arraycopy,
iveresov@2595 2953 address entry_jint_arraycopy,
iveresov@2595 2954 address entry_oop_arraycopy,
iveresov@2595 2955 address entry_jlong_arraycopy,
iveresov@2595 2956 address entry_checkcast_arraycopy) {
duke@435 2957 Label L_failed, L_objArray;
duke@435 2958
duke@435 2959 // Input registers
duke@435 2960 const Register src = O0; // source array oop
duke@435 2961 const Register src_pos = O1; // source position
duke@435 2962 const Register dst = O2; // destination array oop
duke@435 2963 const Register dst_pos = O3; // destination position
duke@435 2964 const Register length = O4; // elements count
duke@435 2965
duke@435 2966 // registers used as temp
duke@435 2967 const Register G3_src_klass = G3; // source array klass
duke@435 2968 const Register G4_dst_klass = G4; // destination array klass
duke@435 2969 const Register G5_lh = G5; // layout handler
duke@435 2970 const Register O5_temp = O5;
duke@435 2971
duke@435 2972 __ align(CodeEntryAlignment);
duke@435 2973 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2974 address start = __ pc();
duke@435 2975
duke@435 2976 // bump this on entry, not on exit:
duke@435 2977 inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
duke@435 2978
duke@435 2979 // In principle, the int arguments could be dirty.
duke@435 2980 //assert_clean_int(src_pos, G1);
duke@435 2981 //assert_clean_int(dst_pos, G1);
duke@435 2982 //assert_clean_int(length, G1);
duke@435 2983
duke@435 2984 //-----------------------------------------------------------------------
duke@435 2985 // Assembler stubs will be used for this call to arraycopy
duke@435 2986 // if the following conditions are met:
duke@435 2987 //
duke@435 2988 // (1) src and dst must not be null.
duke@435 2989 // (2) src_pos must not be negative.
duke@435 2990 // (3) dst_pos must not be negative.
duke@435 2991 // (4) length must not be negative.
duke@435 2992 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2993 // (6) src and dst should be arrays.
duke@435 2994 // (7) src_pos + length must not exceed length of src.
duke@435 2995 // (8) dst_pos + length must not exceed length of dst.
duke@435 2996 BLOCK_COMMENT("arraycopy initial argument checks");
duke@435 2997
duke@435 2998 // if (src == NULL) return -1;
duke@435 2999 __ br_null(src, false, Assembler::pn, L_failed);
duke@435 3000
duke@435 3001 // if (src_pos < 0) return -1;
duke@435 3002 __ delayed()->tst(src_pos);
duke@435 3003 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 3004 __ delayed()->nop();
duke@435 3005
duke@435 3006 // if (dst == NULL) return -1;
duke@435 3007 __ br_null(dst, false, Assembler::pn, L_failed);
duke@435 3008
duke@435 3009 // if (dst_pos < 0) return -1;
duke@435 3010 __ delayed()->tst(dst_pos);
duke@435 3011 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 3012
duke@435 3013 // if (length < 0) return -1;
duke@435 3014 __ delayed()->tst(length);
duke@435 3015 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 3016
duke@435 3017 BLOCK_COMMENT("arraycopy argument klass checks");
duke@435 3018 // get src->klass()
coleenp@548 3019 if (UseCompressedOops) {
coleenp@548 3020 __ delayed()->nop(); // ??? not good
coleenp@548 3021 __ load_klass(src, G3_src_klass);
coleenp@548 3022 } else {
coleenp@548 3023 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
coleenp@548 3024 }
duke@435 3025
duke@435 3026 #ifdef ASSERT
duke@435 3027 // assert(src->klass() != NULL);
duke@435 3028 BLOCK_COMMENT("assert klasses not null");
duke@435 3029 { Label L_a, L_b;
kvn@3037 3030 __ br_notnull_short(G3_src_klass, Assembler::pt, L_b); // it is broken if klass is NULL
duke@435 3031 __ bind(L_a);
duke@435 3032 __ stop("broken null klass");
duke@435 3033 __ bind(L_b);
coleenp@548 3034 __ load_klass(dst, G4_dst_klass);
duke@435 3035 __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
duke@435 3036 __ delayed()->mov(G0, G4_dst_klass); // scribble the temp
duke@435 3037 BLOCK_COMMENT("assert done");
duke@435 3038 }
duke@435 3039 #endif
duke@435 3040
duke@435 3041 // Load layout helper
duke@435 3042 //
duke@435 3043 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 3044 // 32 30 24 16 8 2 0
duke@435 3045 //
duke@435 3046 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 3047 //
duke@435 3048
duke@435 3049 int lh_offset = klassOopDesc::header_size() * HeapWordSize +
duke@435 3050 Klass::layout_helper_offset_in_bytes();
duke@435 3051
duke@435 3052 // Load 32-bits signed value. Use br() instruction with it to check icc.
duke@435 3053 __ lduw(G3_src_klass, lh_offset, G5_lh);
duke@435 3054
coleenp@548 3055 if (UseCompressedOops) {
coleenp@548 3056 __ load_klass(dst, G4_dst_klass);
coleenp@548 3057 }
duke@435 3058 // Handle objArrays completely differently...
duke@435 3059 juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 3060 __ set(objArray_lh, O5_temp);
duke@435 3061 __ cmp(G5_lh, O5_temp);
duke@435 3062 __ br(Assembler::equal, false, Assembler::pt, L_objArray);
coleenp@548 3063 if (UseCompressedOops) {
coleenp@548 3064 __ delayed()->nop();
coleenp@548 3065 } else {
coleenp@548 3066 __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
coleenp@548 3067 }
duke@435 3068
duke@435 3069 // if (src->klass() != dst->klass()) return -1;
kvn@3037 3070 __ cmp_and_brx_short(G3_src_klass, G4_dst_klass, Assembler::notEqual, Assembler::pn, L_failed);
duke@435 3071
duke@435 3072 // if (!src->is_Array()) return -1;
duke@435 3073 __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
duke@435 3074 __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
duke@435 3075
duke@435 3076 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 3077 #ifdef ASSERT
duke@435 3078 __ delayed()->nop();
duke@435 3079 { Label L;
duke@435 3080 jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
duke@435 3081 __ set(lh_prim_tag_in_place, O5_temp);
duke@435 3082 __ cmp(G5_lh, O5_temp);
duke@435 3083 __ br(Assembler::greaterEqual, false, Assembler::pt, L);
duke@435 3084 __ delayed()->nop();
duke@435 3085 __ stop("must be a primitive array");
duke@435 3086 __ bind(L);
duke@435 3087 }
duke@435 3088 #else
duke@435 3089 __ delayed(); // match next insn to prev branch
duke@435 3090 #endif
duke@435 3091
duke@435 3092 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 3093 O5_temp, G4_dst_klass, L_failed);
duke@435 3094
duke@435 3095 // typeArrayKlass
duke@435 3096 //
duke@435 3097 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 3098 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 3099 //
duke@435 3100
duke@435 3101 const Register G4_offset = G4_dst_klass; // array offset
duke@435 3102 const Register G3_elsize = G3_src_klass; // log2 element size
duke@435 3103
duke@435 3104 __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
duke@435 3105 __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
duke@435 3106 __ add(src, G4_offset, src); // src array offset
duke@435 3107 __ add(dst, G4_offset, dst); // dst array offset
duke@435 3108 __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
duke@435 3109
duke@435 3110 // next registers should be set before the jump to corresponding stub
duke@435 3111 const Register from = O0; // source array address
duke@435 3112 const Register to = O1; // destination array address
duke@435 3113 const Register count = O2; // elements count
duke@435 3114
duke@435 3115 // 'from', 'to', 'count' registers should be set in this order
duke@435 3116 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 3117
duke@435 3118 BLOCK_COMMENT("scale indexes to element size");
duke@435 3119 __ sll_ptr(src_pos, G3_elsize, src_pos);
duke@435 3120 __ sll_ptr(dst_pos, G3_elsize, dst_pos);
duke@435 3121 __ add(src, src_pos, from); // src_addr
duke@435 3122 __ add(dst, dst_pos, to); // dst_addr
duke@435 3123
duke@435 3124 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 3125 __ cmp(G3_elsize, 0);
iveresov@2595 3126 __ br(Assembler::equal, true, Assembler::pt, entry_jbyte_arraycopy);
duke@435 3127 __ delayed()->signx(length, count); // length
duke@435 3128
duke@435 3129 __ cmp(G3_elsize, LogBytesPerShort);
iveresov@2595 3130 __ br(Assembler::equal, true, Assembler::pt, entry_jshort_arraycopy);
duke@435 3131 __ delayed()->signx(length, count); // length
duke@435 3132
duke@435 3133 __ cmp(G3_elsize, LogBytesPerInt);
iveresov@2595 3134 __ br(Assembler::equal, true, Assembler::pt, entry_jint_arraycopy);
duke@435 3135 __ delayed()->signx(length, count); // length
duke@435 3136 #ifdef ASSERT
duke@435 3137 { Label L;
kvn@3037 3138 __ cmp_and_br_short(G3_elsize, LogBytesPerLong, Assembler::equal, Assembler::pt, L);
duke@435 3139 __ stop("must be long copy, but elsize is wrong");
duke@435 3140 __ bind(L);
duke@435 3141 }
duke@435 3142 #endif
iveresov@2595 3143 __ br(Assembler::always, false, Assembler::pt, entry_jlong_arraycopy);
duke@435 3144 __ delayed()->signx(length, count); // length
duke@435 3145
duke@435 3146 // objArrayKlass
duke@435 3147 __ BIND(L_objArray);
duke@435 3148 // live at this point: G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
duke@435 3149
duke@435 3150 Label L_plain_copy, L_checkcast_copy;
duke@435 3151 // test array classes for subtyping
duke@435 3152 __ cmp(G3_src_klass, G4_dst_klass); // usual case is exact equality
duke@435 3153 __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
duke@435 3154 __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
duke@435 3155
duke@435 3156 // Identically typed arrays can be copied without element-wise checks.
duke@435 3157 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 3158 O5_temp, G5_lh, L_failed);
duke@435 3159
duke@435 3160 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 3161 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 3162 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 3163 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 3164 __ add(src, src_pos, from); // src_addr
duke@435 3165 __ add(dst, dst_pos, to); // dst_addr
duke@435 3166 __ BIND(L_plain_copy);
iveresov@2595 3167 __ br(Assembler::always, false, Assembler::pt, entry_oop_arraycopy);
duke@435 3168 __ delayed()->signx(length, count); // length
duke@435 3169
duke@435 3170 __ BIND(L_checkcast_copy);
duke@435 3171 // live at this point: G3_src_klass, G4_dst_klass
duke@435 3172 {
duke@435 3173 // Before looking at dst.length, make sure dst is also an objArray.
duke@435 3174 // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
duke@435 3175 __ cmp(G5_lh, O5_temp);
duke@435 3176 __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
duke@435 3177
duke@435 3178 // It is safe to examine both src.length and dst.length.
duke@435 3179 __ delayed(); // match next insn to prev branch
duke@435 3180 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 3181 O5_temp, G5_lh, L_failed);
duke@435 3182
duke@435 3183 // Marshal the base address arguments now, freeing registers.
duke@435 3184 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 3185 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 3186 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 3187 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 3188 __ add(src, src_pos, from); // src_addr
duke@435 3189 __ add(dst, dst_pos, to); // dst_addr
duke@435 3190 __ signx(length, count); // length (reloaded)
duke@435 3191
duke@435 3192 Register sco_temp = O3; // this register is free now
duke@435 3193 assert_different_registers(from, to, count, sco_temp,
duke@435 3194 G4_dst_klass, G3_src_klass);
duke@435 3195
duke@435 3196 // Generate the type check.
duke@435 3197 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 3198 Klass::super_check_offset_offset_in_bytes());
duke@435 3199 __ lduw(G4_dst_klass, sco_offset, sco_temp);
duke@435 3200 generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
duke@435 3201 O5_temp, L_plain_copy);
duke@435 3202
duke@435 3203 // Fetch destination element klass from the objArrayKlass header.
duke@435 3204 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 3205 objArrayKlass::element_klass_offset_in_bytes());
duke@435 3206
duke@435 3207 // the checkcast_copy loop needs two extra arguments:
duke@435 3208 __ ld_ptr(G4_dst_klass, ek_offset, O4); // dest elem klass
duke@435 3209 // lduw(O4, sco_offset, O3); // sco of elem klass
duke@435 3210
iveresov@2595 3211 __ br(Assembler::always, false, Assembler::pt, entry_checkcast_arraycopy);
duke@435 3212 __ delayed()->lduw(O4, sco_offset, O3);
duke@435 3213 }
duke@435 3214
duke@435 3215 __ BIND(L_failed);
duke@435 3216 __ retl();
duke@435 3217 __ delayed()->sub(G0, 1, O0); // return -1
duke@435 3218 return start;
duke@435 3219 }
duke@435 3220
kvn@3092 3221 //
kvn@3092 3222 // Generate stub for heap zeroing.
kvn@3092 3223 // "to" address is aligned to jlong (8 bytes).
kvn@3092 3224 //
kvn@3092 3225 // Arguments for generated stub:
kvn@3092 3226 // to: O0
kvn@3092 3227 // count: O1 treated as signed (count of HeapWord)
kvn@3092 3228 // count could be 0
kvn@3092 3229 //
kvn@3092 3230 address generate_zero_aligned_words(const char* name) {
kvn@3092 3231 __ align(CodeEntryAlignment);
kvn@3092 3232 StubCodeMark mark(this, "StubRoutines", name);
kvn@3092 3233 address start = __ pc();
kvn@3092 3234
kvn@3092 3235 const Register to = O0; // source array address
kvn@3092 3236 const Register count = O1; // HeapWords count
kvn@3092 3237 const Register temp = O2; // scratch
kvn@3092 3238
kvn@3092 3239 Label Ldone;
kvn@3092 3240 __ sllx(count, LogHeapWordSize, count); // to bytes count
kvn@3092 3241 // Use BIS for zeroing
kvn@3092 3242 __ bis_zeroing(to, count, temp, Ldone);
kvn@3092 3243 __ bind(Ldone);
kvn@3092 3244 __ retl();
kvn@3092 3245 __ delayed()->nop();
kvn@3092 3246 return start;
kvn@3092 3247 }
kvn@3092 3248
duke@435 3249 void generate_arraycopy_stubs() {
iveresov@2595 3250 address entry;
iveresov@2595 3251 address entry_jbyte_arraycopy;
iveresov@2595 3252 address entry_jshort_arraycopy;
iveresov@2595 3253 address entry_jint_arraycopy;
iveresov@2595 3254 address entry_oop_arraycopy;
iveresov@2595 3255 address entry_jlong_arraycopy;
iveresov@2595 3256 address entry_checkcast_arraycopy;
iveresov@2595 3257
iveresov@2606 3258 //*** jbyte
iveresov@2606 3259 // Always need aligned and unaligned versions
iveresov@2606 3260 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
iveresov@2606 3261 "jbyte_disjoint_arraycopy");
iveresov@2606 3262 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry,
iveresov@2606 3263 &entry_jbyte_arraycopy,
iveresov@2606 3264 "jbyte_arraycopy");
iveresov@2606 3265 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, &entry,
iveresov@2606 3266 "arrayof_jbyte_disjoint_arraycopy");
iveresov@2606 3267 StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, entry, NULL,
iveresov@2606 3268 "arrayof_jbyte_arraycopy");
iveresov@2606 3269
iveresov@2606 3270 //*** jshort
iveresov@2606 3271 // Always need aligned and unaligned versions
iveresov@2606 3272 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
iveresov@2606 3273 "jshort_disjoint_arraycopy");
iveresov@2606 3274 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry,
iveresov@2606 3275 &entry_jshort_arraycopy,
iveresov@2606 3276 "jshort_arraycopy");
iveresov@2595 3277 StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, &entry,
iveresov@2595 3278 "arrayof_jshort_disjoint_arraycopy");
iveresov@2595 3279 StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, entry, NULL,
iveresov@2595 3280 "arrayof_jshort_arraycopy");
iveresov@2595 3281
iveresov@2606 3282 //*** jint
iveresov@2606 3283 // Aligned versions
iveresov@2606 3284 StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, &entry,
iveresov@2606 3285 "arrayof_jint_disjoint_arraycopy");
iveresov@2606 3286 StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, entry, &entry_jint_arraycopy,
iveresov@2606 3287 "arrayof_jint_arraycopy");
duke@435 3288 #ifdef _LP64
iveresov@2606 3289 // In 64 bit we need both aligned and unaligned versions of jint arraycopy.
iveresov@2606 3290 // entry_jint_arraycopy always points to the unaligned version (notice that we overwrite it).
iveresov@2606 3291 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, &entry,
iveresov@2606 3292 "jint_disjoint_arraycopy");
iveresov@2606 3293 StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, entry,
iveresov@2606 3294 &entry_jint_arraycopy,
iveresov@2606 3295 "jint_arraycopy");
iveresov@2606 3296 #else
iveresov@2606 3297 // In 32 bit jints are always HeapWordSize aligned, so always use the aligned version
iveresov@2606 3298 // (in fact in 32bit we always have a pre-loop part even in the aligned version,
iveresov@2606 3299 // because it uses 64-bit loads/stores, so the aligned flag is actually ignored).
iveresov@2606 3300 StubRoutines::_jint_disjoint_arraycopy = StubRoutines::_arrayof_jint_disjoint_arraycopy;
iveresov@2606 3301 StubRoutines::_jint_arraycopy = StubRoutines::_arrayof_jint_arraycopy;
duke@435 3302 #endif
iveresov@2595 3303
iveresov@2606 3304
iveresov@2606 3305 //*** jlong
iveresov@2606 3306 // It is always aligned
iveresov@2606 3307 StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, &entry,
iveresov@2606 3308 "arrayof_jlong_disjoint_arraycopy");
iveresov@2606 3309 StubRoutines::_arrayof_jlong_arraycopy = generate_conjoint_long_copy(true, entry, &entry_jlong_arraycopy,
iveresov@2606 3310 "arrayof_jlong_arraycopy");
iveresov@2606 3311 StubRoutines::_jlong_disjoint_arraycopy = StubRoutines::_arrayof_jlong_disjoint_arraycopy;
iveresov@2606 3312 StubRoutines::_jlong_arraycopy = StubRoutines::_arrayof_jlong_arraycopy;
iveresov@2606 3313
iveresov@2606 3314
iveresov@2606 3315 //*** oops
iveresov@2606 3316 // Aligned versions
iveresov@2606 3317 StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, &entry,
iveresov@2606 3318 "arrayof_oop_disjoint_arraycopy");
iveresov@2606 3319 StubRoutines::_arrayof_oop_arraycopy = generate_conjoint_oop_copy(true, entry, &entry_oop_arraycopy,
iveresov@2606 3320 "arrayof_oop_arraycopy");
iveresov@2606 3321 // Aligned versions without pre-barriers
iveresov@2606 3322 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, &entry,
iveresov@2606 3323 "arrayof_oop_disjoint_arraycopy_uninit",
iveresov@2606 3324 /*dest_uninitialized*/true);
iveresov@2606 3325 StubRoutines::_arrayof_oop_arraycopy_uninit = generate_conjoint_oop_copy(true, entry, NULL,
iveresov@2606 3326 "arrayof_oop_arraycopy_uninit",
iveresov@2606 3327 /*dest_uninitialized*/true);
iveresov@2606 3328 #ifdef _LP64
iveresov@2606 3329 if (UseCompressedOops) {
iveresov@2606 3330 // With compressed oops we need unaligned versions, notice that we overwrite entry_oop_arraycopy.
iveresov@2606 3331 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, &entry,
iveresov@2606 3332 "oop_disjoint_arraycopy");
iveresov@2606 3333 StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, entry, &entry_oop_arraycopy,
iveresov@2606 3334 "oop_arraycopy");
iveresov@2606 3335 // Unaligned versions without pre-barriers
iveresov@2606 3336 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(false, &entry,
iveresov@2606 3337 "oop_disjoint_arraycopy_uninit",
iveresov@2606 3338 /*dest_uninitialized*/true);
iveresov@2606 3339 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_oop_copy(false, entry, NULL,
iveresov@2606 3340 "oop_arraycopy_uninit",
iveresov@2606 3341 /*dest_uninitialized*/true);
iveresov@2606 3342 } else
iveresov@2606 3343 #endif
iveresov@2606 3344 {
iveresov@2606 3345 // oop arraycopy is always aligned on 32bit and 64bit without compressed oops
iveresov@2606 3346 StubRoutines::_oop_disjoint_arraycopy = StubRoutines::_arrayof_oop_disjoint_arraycopy;
iveresov@2606 3347 StubRoutines::_oop_arraycopy = StubRoutines::_arrayof_oop_arraycopy;
iveresov@2606 3348 StubRoutines::_oop_disjoint_arraycopy_uninit = StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit;
iveresov@2606 3349 StubRoutines::_oop_arraycopy_uninit = StubRoutines::_arrayof_oop_arraycopy_uninit;
iveresov@2606 3350 }
iveresov@2606 3351
iveresov@2606 3352 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
iveresov@2606 3353 StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
iveresov@2606 3354 /*dest_uninitialized*/true);
iveresov@2606 3355
iveresov@2595 3356 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
iveresov@2595 3357 entry_jbyte_arraycopy,
iveresov@2595 3358 entry_jshort_arraycopy,
iveresov@2595 3359 entry_jint_arraycopy,
iveresov@2595 3360 entry_jlong_arraycopy);
iveresov@2595 3361 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
iveresov@2595 3362 entry_jbyte_arraycopy,
iveresov@2595 3363 entry_jshort_arraycopy,
iveresov@2595 3364 entry_jint_arraycopy,
iveresov@2595 3365 entry_oop_arraycopy,
iveresov@2595 3366 entry_jlong_arraycopy,
iveresov@2595 3367 entry_checkcast_arraycopy);
never@2118 3368
never@2118 3369 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 3370 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 3371 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 3372 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 3373 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 3374 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
kvn@3092 3375
kvn@3092 3376 if (UseBlockZeroing) {
kvn@3092 3377 StubRoutines::_zero_aligned_words = generate_zero_aligned_words("zero_aligned_words");
kvn@3092 3378 }
duke@435 3379 }
duke@435 3380
duke@435 3381 void generate_initial() {
duke@435 3382 // Generates all stubs and initializes the entry points
duke@435 3383
duke@435 3384 //------------------------------------------------------------------------------------------------------------------------
duke@435 3385 // entry points that exist in all platforms
duke@435 3386 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
duke@435 3387 // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
duke@435 3388 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 3389
duke@435 3390 StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 3391 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 3392
duke@435 3393 //------------------------------------------------------------------------------------------------------------------------
duke@435 3394 // entry points that are platform specific
duke@435 3395 StubRoutines::Sparc::_test_stop_entry = generate_test_stop();
duke@435 3396
duke@435 3397 StubRoutines::Sparc::_stop_subroutine_entry = generate_stop_subroutine();
duke@435 3398 StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
duke@435 3399
duke@435 3400 #if !defined(COMPILER2) && !defined(_LP64)
duke@435 3401 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 3402 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 3403 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 3404 StubRoutines::_atomic_xchg_ptr_entry = StubRoutines::_atomic_xchg_entry;
duke@435 3405 StubRoutines::_atomic_cmpxchg_ptr_entry = StubRoutines::_atomic_cmpxchg_entry;
duke@435 3406 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 3407 StubRoutines::_atomic_add_ptr_entry = StubRoutines::_atomic_add_entry;
duke@435 3408 #endif // COMPILER2 !=> _LP64
never@2978 3409
never@2978 3410 // Build this early so it's available for the interpreter. The
never@2978 3411 // stub expects the required and actual type to already be in O1
never@2978 3412 // and O2 respectively.
never@2978 3413 StubRoutines::_throw_WrongMethodTypeException_entry =
never@2978 3414 generate_throw_exception("WrongMethodTypeException throw_exception",
never@2978 3415 CAST_FROM_FN_PTR(address, SharedRuntime::throw_WrongMethodTypeException),
never@3136 3416 G5_method_type, G3_method_handle);
bdelsart@3372 3417
bdelsart@3372 3418 // Build this early so it's available for the interpreter.
bdelsart@3372 3419 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
duke@435 3420 }
duke@435 3421
duke@435 3422
duke@435 3423 void generate_all() {
duke@435 3424 // Generates all stubs and initializes the entry points
duke@435 3425
kvn@1077 3426 // Generate partial_subtype_check first here since its code depends on
kvn@1077 3427 // UseZeroBaseCompressedOops which is defined after heap initialization.
kvn@1077 3428 StubRoutines::Sparc::_partial_subtype_check = generate_partial_subtype_check();
duke@435 3429 // These entry points require SharedInfo::stack0 to be set up in non-core builds
never@3136 3430 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
never@3136 3431 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
never@3136 3432 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
duke@435 3433
duke@435 3434 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 3435 generate_handler_for_unsafe_access();
duke@435 3436
duke@435 3437 // support for verify_oop (must happen after universe_init)
duke@435 3438 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop_subroutine();
duke@435 3439
duke@435 3440 // arraycopy stubs used by compilers
duke@435 3441 generate_arraycopy_stubs();
never@1609 3442
never@1609 3443 // Don't initialize the platform math functions since sparc
never@1609 3444 // doesn't have intrinsics for these operations.
duke@435 3445 }
duke@435 3446
duke@435 3447
duke@435 3448 public:
duke@435 3449 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 3450 // replace the standard masm with a special one:
duke@435 3451 _masm = new MacroAssembler(code);
duke@435 3452
duke@435 3453 _stub_count = !all ? 0x100 : 0x200;
duke@435 3454 if (all) {
duke@435 3455 generate_all();
duke@435 3456 } else {
duke@435 3457 generate_initial();
duke@435 3458 }
duke@435 3459
duke@435 3460 // make sure this stub is available for all local calls
duke@435 3461 if (_atomic_add_stub.is_unbound()) {
duke@435 3462 // generate a second time, if necessary
duke@435 3463 (void) generate_atomic_add();
duke@435 3464 }
duke@435 3465 }
duke@435 3466
duke@435 3467
duke@435 3468 private:
duke@435 3469 int _stub_count;
duke@435 3470 void stub_prolog(StubCodeDesc* cdesc) {
duke@435 3471 # ifdef ASSERT
duke@435 3472 // put extra information in the stub code, to make it more readable
duke@435 3473 #ifdef _LP64
duke@435 3474 // Write the high part of the address
duke@435 3475 // [RGV] Check if there is a dependency on the size of this prolog
duke@435 3476 __ emit_data((intptr_t)cdesc >> 32, relocInfo::none);
duke@435 3477 #endif
duke@435 3478 __ emit_data((intptr_t)cdesc, relocInfo::none);
duke@435 3479 __ emit_data(++_stub_count, relocInfo::none);
duke@435 3480 # endif
duke@435 3481 align(true);
duke@435 3482 }
duke@435 3483
duke@435 3484 void align(bool at_header = false) {
duke@435 3485 // %%%%% move this constant somewhere else
duke@435 3486 // UltraSPARC cache line size is 8 instructions:
duke@435 3487 const unsigned int icache_line_size = 32;
duke@435 3488 const unsigned int icache_half_line_size = 16;
duke@435 3489
duke@435 3490 if (at_header) {
duke@435 3491 while ((intptr_t)(__ pc()) % icache_line_size != 0) {
duke@435 3492 __ emit_data(0, relocInfo::none);
duke@435 3493 }
duke@435 3494 } else {
duke@435 3495 while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
duke@435 3496 __ nop();
duke@435 3497 }
duke@435 3498 }
duke@435 3499 }
duke@435 3500
duke@435 3501 }; // end class declaration
duke@435 3502
duke@435 3503 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3504 StubGenerator g(code, all);
duke@435 3505 }

mercurial