src/cpu/sparc/vm/stubGenerator_sparc.cpp

Tue, 22 Feb 2011 15:25:02 -0800

author
iveresov
date
Tue, 22 Feb 2011 15:25:02 -0800
changeset 2595
d89a22843c62
parent 2314
f95d63e2154a
child 2606
0ac769a57c64
permissions
-rw-r--r--

7020521: arraycopy stubs place prebarriers incorrectly
Summary: Rearranged the pre-barrier placement in arraycopy stubs so that they are properly called in case of chained calls. Also refactored the code a little bit so that it looks uniform across the platforms and is more readable.
Reviewed-by: never, kvn

duke@435 1 /*
iveresov@2595 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_sparc.inline.hpp"
stefank@2314 28 #include "interpreter/interpreter.hpp"
stefank@2314 29 #include "nativeInst_sparc.hpp"
stefank@2314 30 #include "oops/instanceOop.hpp"
stefank@2314 31 #include "oops/methodOop.hpp"
stefank@2314 32 #include "oops/objArrayKlass.hpp"
stefank@2314 33 #include "oops/oop.inline.hpp"
stefank@2314 34 #include "prims/methodHandles.hpp"
stefank@2314 35 #include "runtime/frame.inline.hpp"
stefank@2314 36 #include "runtime/handles.inline.hpp"
stefank@2314 37 #include "runtime/sharedRuntime.hpp"
stefank@2314 38 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 39 #include "runtime/stubRoutines.hpp"
stefank@2314 40 #include "utilities/top.hpp"
stefank@2314 41 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 42 # include "thread_linux.inline.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 45 # include "thread_solaris.inline.hpp"
stefank@2314 46 #endif
stefank@2314 47 #ifdef COMPILER2
stefank@2314 48 #include "opto/runtime.hpp"
stefank@2314 49 #endif
duke@435 50
duke@435 51 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 52 // For a more detailed description of the stub routine structure
duke@435 53 // see the comment in stubRoutines.hpp.
duke@435 54
duke@435 55 #define __ _masm->
duke@435 56
duke@435 57 #ifdef PRODUCT
duke@435 58 #define BLOCK_COMMENT(str) /* nothing */
duke@435 59 #else
duke@435 60 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 61 #endif
duke@435 62
duke@435 63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 64
duke@435 65 // Note: The register L7 is used as L7_thread_cache, and may not be used
duke@435 66 // any other way within this module.
duke@435 67
duke@435 68
duke@435 69 static const Register& Lstub_temp = L2;
duke@435 70
duke@435 71 // -------------------------------------------------------------------------------------------------------------------------
duke@435 72 // Stub Code definitions
duke@435 73
duke@435 74 static address handle_unsafe_access() {
duke@435 75 JavaThread* thread = JavaThread::current();
duke@435 76 address pc = thread->saved_exception_pc();
duke@435 77 address npc = thread->saved_exception_npc();
duke@435 78 // pc is the instruction which we must emulate
duke@435 79 // doing a no-op is fine: return garbage from the load
duke@435 80
duke@435 81 // request an async exception
duke@435 82 thread->set_pending_unsafe_access_error();
duke@435 83
duke@435 84 // return address of next instruction to execute
duke@435 85 return npc;
duke@435 86 }
duke@435 87
duke@435 88 class StubGenerator: public StubCodeGenerator {
duke@435 89 private:
duke@435 90
duke@435 91 #ifdef PRODUCT
duke@435 92 #define inc_counter_np(a,b,c) (0)
duke@435 93 #else
duke@435 94 #define inc_counter_np(counter, t1, t2) \
duke@435 95 BLOCK_COMMENT("inc_counter " #counter); \
twisti@1162 96 __ inc_counter(&counter, t1, t2);
duke@435 97 #endif
duke@435 98
duke@435 99 //----------------------------------------------------------------------------------------------------
duke@435 100 // Call stubs are used to call Java from C
duke@435 101
duke@435 102 address generate_call_stub(address& return_pc) {
duke@435 103 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 104 address start = __ pc();
duke@435 105
duke@435 106 // Incoming arguments:
duke@435 107 //
duke@435 108 // o0 : call wrapper address
duke@435 109 // o1 : result (address)
duke@435 110 // o2 : result type
duke@435 111 // o3 : method
duke@435 112 // o4 : (interpreter) entry point
duke@435 113 // o5 : parameters (address)
duke@435 114 // [sp + 0x5c]: parameter size (in words)
duke@435 115 // [sp + 0x60]: thread
duke@435 116 //
duke@435 117 // +---------------+ <--- sp + 0
duke@435 118 // | |
duke@435 119 // . reg save area .
duke@435 120 // | |
duke@435 121 // +---------------+ <--- sp + 0x40
duke@435 122 // | |
duke@435 123 // . extra 7 slots .
duke@435 124 // | |
duke@435 125 // +---------------+ <--- sp + 0x5c
duke@435 126 // | param. size |
duke@435 127 // +---------------+ <--- sp + 0x60
duke@435 128 // | thread |
duke@435 129 // +---------------+
duke@435 130 // | |
duke@435 131
duke@435 132 // note: if the link argument position changes, adjust
duke@435 133 // the code in frame::entry_frame_call_wrapper()
duke@435 134
duke@435 135 const Argument link = Argument(0, false); // used only for GC
duke@435 136 const Argument result = Argument(1, false);
duke@435 137 const Argument result_type = Argument(2, false);
duke@435 138 const Argument method = Argument(3, false);
duke@435 139 const Argument entry_point = Argument(4, false);
duke@435 140 const Argument parameters = Argument(5, false);
duke@435 141 const Argument parameter_size = Argument(6, false);
duke@435 142 const Argument thread = Argument(7, false);
duke@435 143
duke@435 144 // setup thread register
duke@435 145 __ ld_ptr(thread.as_address(), G2_thread);
coleenp@548 146 __ reinit_heapbase();
duke@435 147
duke@435 148 #ifdef ASSERT
duke@435 149 // make sure we have no pending exceptions
duke@435 150 { const Register t = G3_scratch;
duke@435 151 Label L;
duke@435 152 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
duke@435 153 __ br_null(t, false, Assembler::pt, L);
duke@435 154 __ delayed()->nop();
duke@435 155 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 156 __ bind(L);
duke@435 157 }
duke@435 158 #endif
duke@435 159
duke@435 160 // create activation frame & allocate space for parameters
duke@435 161 { const Register t = G3_scratch;
duke@435 162 __ ld_ptr(parameter_size.as_address(), t); // get parameter size (in words)
duke@435 163 __ add(t, frame::memory_parameter_word_sp_offset, t); // add space for save area (in words)
duke@435 164 __ round_to(t, WordsPerLong); // make sure it is multiple of 2 (in words)
twisti@1861 165 __ sll(t, Interpreter::logStackElementSize, t); // compute number of bytes
duke@435 166 __ neg(t); // negate so it can be used with save
duke@435 167 __ save(SP, t, SP); // setup new frame
duke@435 168 }
duke@435 169
duke@435 170 // +---------------+ <--- sp + 0
duke@435 171 // | |
duke@435 172 // . reg save area .
duke@435 173 // | |
duke@435 174 // +---------------+ <--- sp + 0x40
duke@435 175 // | |
duke@435 176 // . extra 7 slots .
duke@435 177 // | |
duke@435 178 // +---------------+ <--- sp + 0x5c
duke@435 179 // | empty slot | (only if parameter size is even)
duke@435 180 // +---------------+
duke@435 181 // | |
duke@435 182 // . parameters .
duke@435 183 // | |
duke@435 184 // +---------------+ <--- fp + 0
duke@435 185 // | |
duke@435 186 // . reg save area .
duke@435 187 // | |
duke@435 188 // +---------------+ <--- fp + 0x40
duke@435 189 // | |
duke@435 190 // . extra 7 slots .
duke@435 191 // | |
duke@435 192 // +---------------+ <--- fp + 0x5c
duke@435 193 // | param. size |
duke@435 194 // +---------------+ <--- fp + 0x60
duke@435 195 // | thread |
duke@435 196 // +---------------+
duke@435 197 // | |
duke@435 198
duke@435 199 // pass parameters if any
duke@435 200 BLOCK_COMMENT("pass parameters if any");
duke@435 201 { const Register src = parameters.as_in().as_register();
duke@435 202 const Register dst = Lentry_args;
duke@435 203 const Register tmp = G3_scratch;
duke@435 204 const Register cnt = G4_scratch;
duke@435 205
duke@435 206 // test if any parameters & setup of Lentry_args
duke@435 207 Label exit;
duke@435 208 __ ld_ptr(parameter_size.as_in().as_address(), cnt); // parameter counter
duke@435 209 __ add( FP, STACK_BIAS, dst );
duke@435 210 __ tst(cnt);
duke@435 211 __ br(Assembler::zero, false, Assembler::pn, exit);
duke@435 212 __ delayed()->sub(dst, BytesPerWord, dst); // setup Lentry_args
duke@435 213
duke@435 214 // copy parameters if any
duke@435 215 Label loop;
duke@435 216 __ BIND(loop);
duke@435 217 // Store parameter value
duke@435 218 __ ld_ptr(src, 0, tmp);
duke@435 219 __ add(src, BytesPerWord, src);
twisti@1861 220 __ st_ptr(tmp, dst, 0);
duke@435 221 __ deccc(cnt);
duke@435 222 __ br(Assembler::greater, false, Assembler::pt, loop);
twisti@1861 223 __ delayed()->sub(dst, Interpreter::stackElementSize, dst);
duke@435 224
duke@435 225 // done
duke@435 226 __ BIND(exit);
duke@435 227 }
duke@435 228
duke@435 229 // setup parameters, method & call Java function
duke@435 230 #ifdef ASSERT
duke@435 231 // layout_activation_impl checks it's notion of saved SP against
duke@435 232 // this register, so if this changes update it as well.
duke@435 233 const Register saved_SP = Lscratch;
duke@435 234 __ mov(SP, saved_SP); // keep track of SP before call
duke@435 235 #endif
duke@435 236
duke@435 237 // setup parameters
duke@435 238 const Register t = G3_scratch;
duke@435 239 __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
twisti@1861 240 __ sll(t, Interpreter::logStackElementSize, t); // compute number of bytes
duke@435 241 __ sub(FP, t, Gargs); // setup parameter pointer
duke@435 242 #ifdef _LP64
duke@435 243 __ add( Gargs, STACK_BIAS, Gargs ); // Account for LP64 stack bias
duke@435 244 #endif
duke@435 245 __ mov(SP, O5_savedSP);
duke@435 246
duke@435 247
duke@435 248 // do the call
duke@435 249 //
duke@435 250 // the following register must be setup:
duke@435 251 //
duke@435 252 // G2_thread
duke@435 253 // G5_method
duke@435 254 // Gargs
duke@435 255 BLOCK_COMMENT("call Java function");
duke@435 256 __ jmpl(entry_point.as_in().as_register(), G0, O7);
duke@435 257 __ delayed()->mov(method.as_in().as_register(), G5_method); // setup method
duke@435 258
duke@435 259 BLOCK_COMMENT("call_stub_return_address:");
duke@435 260 return_pc = __ pc();
duke@435 261
duke@435 262 // The callee, if it wasn't interpreted, can return with SP changed so
duke@435 263 // we can no longer assert of change of SP.
duke@435 264
duke@435 265 // store result depending on type
duke@435 266 // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
duke@435 267 // is treated as T_INT)
duke@435 268 { const Register addr = result .as_in().as_register();
duke@435 269 const Register type = result_type.as_in().as_register();
duke@435 270 Label is_long, is_float, is_double, is_object, exit;
duke@435 271 __ cmp(type, T_OBJECT); __ br(Assembler::equal, false, Assembler::pn, is_object);
duke@435 272 __ delayed()->cmp(type, T_FLOAT); __ br(Assembler::equal, false, Assembler::pn, is_float);
duke@435 273 __ delayed()->cmp(type, T_DOUBLE); __ br(Assembler::equal, false, Assembler::pn, is_double);
duke@435 274 __ delayed()->cmp(type, T_LONG); __ br(Assembler::equal, false, Assembler::pn, is_long);
duke@435 275 __ delayed()->nop();
duke@435 276
duke@435 277 // store int result
duke@435 278 __ st(O0, addr, G0);
duke@435 279
duke@435 280 __ BIND(exit);
duke@435 281 __ ret();
duke@435 282 __ delayed()->restore();
duke@435 283
duke@435 284 __ BIND(is_object);
duke@435 285 __ ba(false, exit);
duke@435 286 __ delayed()->st_ptr(O0, addr, G0);
duke@435 287
duke@435 288 __ BIND(is_float);
duke@435 289 __ ba(false, exit);
duke@435 290 __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
duke@435 291
duke@435 292 __ BIND(is_double);
duke@435 293 __ ba(false, exit);
duke@435 294 __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
duke@435 295
duke@435 296 __ BIND(is_long);
duke@435 297 #ifdef _LP64
duke@435 298 __ ba(false, exit);
duke@435 299 __ delayed()->st_long(O0, addr, G0); // store entire long
duke@435 300 #else
duke@435 301 #if defined(COMPILER2)
duke@435 302 // All return values are where we want them, except for Longs. C2 returns
duke@435 303 // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
duke@435 304 // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
duke@435 305 // build we simply always use G1.
duke@435 306 // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
duke@435 307 // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
duke@435 308 // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
duke@435 309
duke@435 310 __ ba(false, exit);
duke@435 311 __ delayed()->stx(G1, addr, G0); // store entire long
duke@435 312 #else
duke@435 313 __ st(O1, addr, BytesPerInt);
duke@435 314 __ ba(false, exit);
duke@435 315 __ delayed()->st(O0, addr, G0);
duke@435 316 #endif /* COMPILER2 */
duke@435 317 #endif /* _LP64 */
duke@435 318 }
duke@435 319 return start;
duke@435 320 }
duke@435 321
duke@435 322
duke@435 323 //----------------------------------------------------------------------------------------------------
duke@435 324 // Return point for a Java call if there's an exception thrown in Java code.
duke@435 325 // The exception is caught and transformed into a pending exception stored in
duke@435 326 // JavaThread that can be tested from within the VM.
duke@435 327 //
duke@435 328 // Oexception: exception oop
duke@435 329
duke@435 330 address generate_catch_exception() {
duke@435 331 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 332
duke@435 333 address start = __ pc();
duke@435 334 // verify that thread corresponds
duke@435 335 __ verify_thread();
duke@435 336
duke@435 337 const Register& temp_reg = Gtemp;
twisti@1162 338 Address pending_exception_addr (G2_thread, Thread::pending_exception_offset());
twisti@1162 339 Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset ());
twisti@1162 340 Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset ());
duke@435 341
duke@435 342 // set pending exception
duke@435 343 __ verify_oop(Oexception);
duke@435 344 __ st_ptr(Oexception, pending_exception_addr);
duke@435 345 __ set((intptr_t)__FILE__, temp_reg);
duke@435 346 __ st_ptr(temp_reg, exception_file_offset_addr);
duke@435 347 __ set((intptr_t)__LINE__, temp_reg);
duke@435 348 __ st(temp_reg, exception_line_offset_addr);
duke@435 349
duke@435 350 // complete return to VM
duke@435 351 assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
duke@435 352
twisti@1162 353 AddressLiteral stub_ret(StubRoutines::_call_stub_return_address);
twisti@1162 354 __ jump_to(stub_ret, temp_reg);
duke@435 355 __ delayed()->nop();
duke@435 356
duke@435 357 return start;
duke@435 358 }
duke@435 359
duke@435 360
duke@435 361 //----------------------------------------------------------------------------------------------------
duke@435 362 // Continuation point for runtime calls returning with a pending exception
duke@435 363 // The pending exception check happened in the runtime or native call stub
duke@435 364 // The pending exception in Thread is converted into a Java-level exception
duke@435 365 //
duke@435 366 // Contract with Java-level exception handler: O0 = exception
duke@435 367 // O1 = throwing pc
duke@435 368
duke@435 369 address generate_forward_exception() {
duke@435 370 StubCodeMark mark(this, "StubRoutines", "forward_exception");
duke@435 371 address start = __ pc();
duke@435 372
duke@435 373 // Upon entry, O7 has the return address returning into Java
duke@435 374 // (interpreted or compiled) code; i.e. the return address
duke@435 375 // becomes the throwing pc.
duke@435 376
duke@435 377 const Register& handler_reg = Gtemp;
duke@435 378
twisti@1162 379 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 380
duke@435 381 #ifdef ASSERT
duke@435 382 // make sure that this code is only executed if there is a pending exception
duke@435 383 { Label L;
duke@435 384 __ ld_ptr(exception_addr, Gtemp);
duke@435 385 __ br_notnull(Gtemp, false, Assembler::pt, L);
duke@435 386 __ delayed()->nop();
duke@435 387 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 388 __ bind(L);
duke@435 389 }
duke@435 390 #endif
duke@435 391
duke@435 392 // compute exception handler into handler_reg
duke@435 393 __ get_thread();
duke@435 394 __ ld_ptr(exception_addr, Oexception);
duke@435 395 __ verify_oop(Oexception);
duke@435 396 __ save_frame(0); // compensates for compiler weakness
duke@435 397 __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
duke@435 398 BLOCK_COMMENT("call exception_handler_for_return_address");
twisti@1730 399 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Lscratch);
duke@435 400 __ mov(O0, handler_reg);
duke@435 401 __ restore(); // compensates for compiler weakness
duke@435 402
duke@435 403 __ ld_ptr(exception_addr, Oexception);
duke@435 404 __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
duke@435 405
duke@435 406 #ifdef ASSERT
duke@435 407 // make sure exception is set
duke@435 408 { Label L;
duke@435 409 __ br_notnull(Oexception, false, Assembler::pt, L);
duke@435 410 __ delayed()->nop();
duke@435 411 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 412 __ bind(L);
duke@435 413 }
duke@435 414 #endif
duke@435 415 // jump to exception handler
duke@435 416 __ jmp(handler_reg, 0);
duke@435 417 // clear pending exception
duke@435 418 __ delayed()->st_ptr(G0, exception_addr);
duke@435 419
duke@435 420 return start;
duke@435 421 }
duke@435 422
duke@435 423
duke@435 424 //------------------------------------------------------------------------------------------------------------------------
duke@435 425 // Continuation point for throwing of implicit exceptions that are not handled in
duke@435 426 // the current activation. Fabricates an exception oop and initiates normal
duke@435 427 // exception dispatching in this frame. Only callee-saved registers are preserved
duke@435 428 // (through the normal register window / RegisterMap handling).
duke@435 429 // If the compiler needs all registers to be preserved between the fault
duke@435 430 // point and the exception handler then it must assume responsibility for that in
duke@435 431 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 432 // continuation_for_implicit_division_by_zero_exception. All other implicit
duke@435 433 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
duke@435 434 // either at call sites or otherwise assume that stack unwinding will be initiated,
duke@435 435 // so caller saved registers were assumed volatile in the compiler.
duke@435 436
duke@435 437 // Note that we generate only this stub into a RuntimeStub, because it needs to be
duke@435 438 // properly traversed and ignored during GC, so we change the meaning of the "__"
duke@435 439 // macro within this method.
duke@435 440 #undef __
duke@435 441 #define __ masm->
duke@435 442
duke@435 443 address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc) {
duke@435 444 #ifdef ASSERT
duke@435 445 int insts_size = VerifyThread ? 1 * K : 600;
duke@435 446 #else
duke@435 447 int insts_size = VerifyThread ? 1 * K : 256;
duke@435 448 #endif /* ASSERT */
duke@435 449 int locs_size = 32;
duke@435 450
duke@435 451 CodeBuffer code(name, insts_size, locs_size);
duke@435 452 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 453
duke@435 454 __ verify_thread();
duke@435 455
duke@435 456 // This is an inlined and slightly modified version of call_VM
duke@435 457 // which has the ability to fetch the return PC out of thread-local storage
duke@435 458 __ assert_not_delayed();
duke@435 459
duke@435 460 // Note that we always push a frame because on the SPARC
duke@435 461 // architecture, for all of our implicit exception kinds at call
duke@435 462 // sites, the implicit exception is taken before the callee frame
duke@435 463 // is pushed.
duke@435 464 __ save_frame(0);
duke@435 465
duke@435 466 int frame_complete = __ offset();
duke@435 467
duke@435 468 if (restore_saved_exception_pc) {
twisti@1162 469 __ ld_ptr(G2_thread, JavaThread::saved_exception_pc_offset(), I7);
duke@435 470 __ sub(I7, frame::pc_return_offset, I7);
duke@435 471 }
duke@435 472
duke@435 473 // Note that we always have a runtime stub frame on the top of stack by this point
duke@435 474 Register last_java_sp = SP;
duke@435 475 // 64-bit last_java_sp is biased!
duke@435 476 __ set_last_Java_frame(last_java_sp, G0);
duke@435 477 if (VerifyThread) __ mov(G2_thread, O0); // about to be smashed; pass early
duke@435 478 __ save_thread(noreg);
duke@435 479 // do the call
duke@435 480 BLOCK_COMMENT("call runtime_entry");
duke@435 481 __ call(runtime_entry, relocInfo::runtime_call_type);
duke@435 482 if (!VerifyThread)
duke@435 483 __ delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 484 else
duke@435 485 __ delayed()->nop(); // (thread already passed)
duke@435 486 __ restore_thread(noreg);
duke@435 487 __ reset_last_Java_frame();
duke@435 488
duke@435 489 // check for pending exceptions. use Gtemp as scratch register.
duke@435 490 #ifdef ASSERT
duke@435 491 Label L;
duke@435 492
twisti@1162 493 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 494 Register scratch_reg = Gtemp;
duke@435 495 __ ld_ptr(exception_addr, scratch_reg);
duke@435 496 __ br_notnull(scratch_reg, false, Assembler::pt, L);
duke@435 497 __ delayed()->nop();
duke@435 498 __ should_not_reach_here();
duke@435 499 __ bind(L);
duke@435 500 #endif // ASSERT
duke@435 501 BLOCK_COMMENT("call forward_exception_entry");
duke@435 502 __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 503 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 504 __ delayed()->restore();
duke@435 505
duke@435 506 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
duke@435 507 return stub->entry_point();
duke@435 508 }
duke@435 509
duke@435 510 #undef __
duke@435 511 #define __ _masm->
duke@435 512
duke@435 513
duke@435 514 // Generate a routine that sets all the registers so we
duke@435 515 // can tell if the stop routine prints them correctly.
duke@435 516 address generate_test_stop() {
duke@435 517 StubCodeMark mark(this, "StubRoutines", "test_stop");
duke@435 518 address start = __ pc();
duke@435 519
duke@435 520 int i;
duke@435 521
duke@435 522 __ save_frame(0);
duke@435 523
duke@435 524 static jfloat zero = 0.0, one = 1.0;
duke@435 525
duke@435 526 // put addr in L0, then load through L0 to F0
duke@435 527 __ set((intptr_t)&zero, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F0);
duke@435 528 __ set((intptr_t)&one, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
duke@435 529
duke@435 530 // use add to put 2..18 in F2..F18
duke@435 531 for ( i = 2; i <= 18; ++i ) {
duke@435 532 __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1), as_FloatRegister(i));
duke@435 533 }
duke@435 534
duke@435 535 // Now put double 2 in F16, double 18 in F18
duke@435 536 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
duke@435 537 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
duke@435 538
duke@435 539 // use add to put 20..32 in F20..F32
duke@435 540 for (i = 20; i < 32; i += 2) {
duke@435 541 __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2), as_FloatRegister(i));
duke@435 542 }
duke@435 543
duke@435 544 // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
duke@435 545 for ( i = 0; i < 8; ++i ) {
duke@435 546 if (i < 6) {
duke@435 547 __ set( i, as_iRegister(i));
duke@435 548 __ set(16 + i, as_oRegister(i));
duke@435 549 __ set(24 + i, as_gRegister(i));
duke@435 550 }
duke@435 551 __ set( 8 + i, as_lRegister(i));
duke@435 552 }
duke@435 553
duke@435 554 __ stop("testing stop");
duke@435 555
duke@435 556
duke@435 557 __ ret();
duke@435 558 __ delayed()->restore();
duke@435 559
duke@435 560 return start;
duke@435 561 }
duke@435 562
duke@435 563
duke@435 564 address generate_stop_subroutine() {
duke@435 565 StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
duke@435 566 address start = __ pc();
duke@435 567
duke@435 568 __ stop_subroutine();
duke@435 569
duke@435 570 return start;
duke@435 571 }
duke@435 572
duke@435 573 address generate_flush_callers_register_windows() {
duke@435 574 StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
duke@435 575 address start = __ pc();
duke@435 576
duke@435 577 __ flush_windows();
duke@435 578 __ retl(false);
duke@435 579 __ delayed()->add( FP, STACK_BIAS, O0 );
duke@435 580 // The returned value must be a stack pointer whose register save area
duke@435 581 // is flushed, and will stay flushed while the caller executes.
duke@435 582
duke@435 583 return start;
duke@435 584 }
duke@435 585
duke@435 586 // Helper functions for v8 atomic operations.
duke@435 587 //
duke@435 588 void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
duke@435 589 if (mark_oop_reg == noreg) {
duke@435 590 address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
duke@435 591 __ set((intptr_t)lock_ptr, lock_ptr_reg);
duke@435 592 } else {
duke@435 593 assert(scratch_reg != noreg, "just checking");
duke@435 594 address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
duke@435 595 __ set((intptr_t)lock_ptr, lock_ptr_reg);
duke@435 596 __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
duke@435 597 __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
duke@435 598 }
duke@435 599 }
duke@435 600
duke@435 601 void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
duke@435 602
duke@435 603 get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
duke@435 604 __ set(StubRoutines::Sparc::locked, lock_reg);
duke@435 605 // Initialize yield counter
duke@435 606 __ mov(G0,yield_reg);
duke@435 607
duke@435 608 __ BIND(retry);
duke@435 609 __ cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
duke@435 610 __ br(Assembler::less, false, Assembler::pt, dontyield);
duke@435 611 __ delayed()->nop();
duke@435 612
duke@435 613 // This code can only be called from inside the VM, this
duke@435 614 // stub is only invoked from Atomic::add(). We do not
duke@435 615 // want to use call_VM, because _last_java_sp and such
duke@435 616 // must already be set.
duke@435 617 //
duke@435 618 // Save the regs and make space for a C call
duke@435 619 __ save(SP, -96, SP);
duke@435 620 __ save_all_globals_into_locals();
duke@435 621 BLOCK_COMMENT("call os::naked_sleep");
duke@435 622 __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
duke@435 623 __ delayed()->nop();
duke@435 624 __ restore_globals_from_locals();
duke@435 625 __ restore();
duke@435 626 // reset the counter
duke@435 627 __ mov(G0,yield_reg);
duke@435 628
duke@435 629 __ BIND(dontyield);
duke@435 630
duke@435 631 // try to get lock
duke@435 632 __ swap(lock_ptr_reg, 0, lock_reg);
duke@435 633
duke@435 634 // did we get the lock?
duke@435 635 __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
duke@435 636 __ br(Assembler::notEqual, true, Assembler::pn, retry);
duke@435 637 __ delayed()->add(yield_reg,1,yield_reg);
duke@435 638
duke@435 639 // yes, got lock. do the operation here.
duke@435 640 }
duke@435 641
duke@435 642 void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
duke@435 643 __ st(lock_reg, lock_ptr_reg, 0); // unlock
duke@435 644 }
duke@435 645
duke@435 646 // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
duke@435 647 //
duke@435 648 // Arguments :
duke@435 649 //
duke@435 650 // exchange_value: O0
duke@435 651 // dest: O1
duke@435 652 //
duke@435 653 // Results:
duke@435 654 //
duke@435 655 // O0: the value previously stored in dest
duke@435 656 //
duke@435 657 address generate_atomic_xchg() {
duke@435 658 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 659 address start = __ pc();
duke@435 660
duke@435 661 if (UseCASForSwap) {
duke@435 662 // Use CAS instead of swap, just in case the MP hardware
duke@435 663 // prefers to work with just one kind of synch. instruction.
duke@435 664 Label retry;
duke@435 665 __ BIND(retry);
duke@435 666 __ mov(O0, O3); // scratch copy of exchange value
duke@435 667 __ ld(O1, 0, O2); // observe the previous value
duke@435 668 // try to replace O2 with O3
duke@435 669 __ cas_under_lock(O1, O2, O3,
duke@435 670 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
duke@435 671 __ cmp(O2, O3);
duke@435 672 __ br(Assembler::notEqual, false, Assembler::pn, retry);
duke@435 673 __ delayed()->nop();
duke@435 674
duke@435 675 __ retl(false);
duke@435 676 __ delayed()->mov(O2, O0); // report previous value to caller
duke@435 677
duke@435 678 } else {
duke@435 679 if (VM_Version::v9_instructions_work()) {
duke@435 680 __ retl(false);
duke@435 681 __ delayed()->swap(O1, 0, O0);
duke@435 682 } else {
duke@435 683 const Register& lock_reg = O2;
duke@435 684 const Register& lock_ptr_reg = O3;
duke@435 685 const Register& yield_reg = O4;
duke@435 686
duke@435 687 Label retry;
duke@435 688 Label dontyield;
duke@435 689
duke@435 690 generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 691 // got the lock, do the swap
duke@435 692 __ swap(O1, 0, O0);
duke@435 693
duke@435 694 generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 695 __ retl(false);
duke@435 696 __ delayed()->nop();
duke@435 697 }
duke@435 698 }
duke@435 699
duke@435 700 return start;
duke@435 701 }
duke@435 702
duke@435 703
duke@435 704 // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
duke@435 705 //
duke@435 706 // Arguments :
duke@435 707 //
duke@435 708 // exchange_value: O0
duke@435 709 // dest: O1
duke@435 710 // compare_value: O2
duke@435 711 //
duke@435 712 // Results:
duke@435 713 //
duke@435 714 // O0: the value previously stored in dest
duke@435 715 //
duke@435 716 // Overwrites (v8): O3,O4,O5
duke@435 717 //
duke@435 718 address generate_atomic_cmpxchg() {
duke@435 719 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 720 address start = __ pc();
duke@435 721
duke@435 722 // cmpxchg(dest, compare_value, exchange_value)
duke@435 723 __ cas_under_lock(O1, O2, O0,
duke@435 724 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
duke@435 725 __ retl(false);
duke@435 726 __ delayed()->nop();
duke@435 727
duke@435 728 return start;
duke@435 729 }
duke@435 730
duke@435 731 // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
duke@435 732 //
duke@435 733 // Arguments :
duke@435 734 //
duke@435 735 // exchange_value: O1:O0
duke@435 736 // dest: O2
duke@435 737 // compare_value: O4:O3
duke@435 738 //
duke@435 739 // Results:
duke@435 740 //
duke@435 741 // O1:O0: the value previously stored in dest
duke@435 742 //
duke@435 743 // This only works on V9, on V8 we don't generate any
duke@435 744 // code and just return NULL.
duke@435 745 //
duke@435 746 // Overwrites: G1,G2,G3
duke@435 747 //
duke@435 748 address generate_atomic_cmpxchg_long() {
duke@435 749 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 750 address start = __ pc();
duke@435 751
duke@435 752 if (!VM_Version::supports_cx8())
duke@435 753 return NULL;;
duke@435 754 __ sllx(O0, 32, O0);
duke@435 755 __ srl(O1, 0, O1);
duke@435 756 __ or3(O0,O1,O0); // O0 holds 64-bit value from compare_value
duke@435 757 __ sllx(O3, 32, O3);
duke@435 758 __ srl(O4, 0, O4);
duke@435 759 __ or3(O3,O4,O3); // O3 holds 64-bit value from exchange_value
duke@435 760 __ casx(O2, O3, O0);
duke@435 761 __ srl(O0, 0, O1); // unpacked return value in O1:O0
duke@435 762 __ retl(false);
duke@435 763 __ delayed()->srlx(O0, 32, O0);
duke@435 764
duke@435 765 return start;
duke@435 766 }
duke@435 767
duke@435 768
duke@435 769 // Support for jint Atomic::add(jint add_value, volatile jint* dest).
duke@435 770 //
duke@435 771 // Arguments :
duke@435 772 //
duke@435 773 // add_value: O0 (e.g., +1 or -1)
duke@435 774 // dest: O1
duke@435 775 //
duke@435 776 // Results:
duke@435 777 //
duke@435 778 // O0: the new value stored in dest
duke@435 779 //
duke@435 780 // Overwrites (v9): O3
duke@435 781 // Overwrites (v8): O3,O4,O5
duke@435 782 //
duke@435 783 address generate_atomic_add() {
duke@435 784 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 785 address start = __ pc();
duke@435 786 __ BIND(_atomic_add_stub);
duke@435 787
duke@435 788 if (VM_Version::v9_instructions_work()) {
duke@435 789 Label(retry);
duke@435 790 __ BIND(retry);
duke@435 791
duke@435 792 __ lduw(O1, 0, O2);
duke@435 793 __ add(O0, O2, O3);
duke@435 794 __ cas(O1, O2, O3);
duke@435 795 __ cmp( O2, O3);
duke@435 796 __ br(Assembler::notEqual, false, Assembler::pn, retry);
duke@435 797 __ delayed()->nop();
duke@435 798 __ retl(false);
duke@435 799 __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
duke@435 800 } else {
duke@435 801 const Register& lock_reg = O2;
duke@435 802 const Register& lock_ptr_reg = O3;
duke@435 803 const Register& value_reg = O4;
duke@435 804 const Register& yield_reg = O5;
duke@435 805
duke@435 806 Label(retry);
duke@435 807 Label(dontyield);
duke@435 808
duke@435 809 generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 810 // got lock, do the increment
duke@435 811 __ ld(O1, 0, value_reg);
duke@435 812 __ add(O0, value_reg, value_reg);
duke@435 813 __ st(value_reg, O1, 0);
duke@435 814
duke@435 815 // %%% only for RMO and PSO
duke@435 816 __ membar(Assembler::StoreStore);
duke@435 817
duke@435 818 generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 819
duke@435 820 __ retl(false);
duke@435 821 __ delayed()->mov(value_reg, O0);
duke@435 822 }
duke@435 823
duke@435 824 return start;
duke@435 825 }
duke@435 826 Label _atomic_add_stub; // called from other stubs
duke@435 827
duke@435 828
duke@435 829 //------------------------------------------------------------------------------------------------------------------------
duke@435 830 // The following routine generates a subroutine to throw an asynchronous
duke@435 831 // UnknownError when an unsafe access gets a fault that could not be
duke@435 832 // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
duke@435 833 //
duke@435 834 // Arguments :
duke@435 835 //
duke@435 836 // trapping PC: O7
duke@435 837 //
duke@435 838 // Results:
duke@435 839 // posts an asynchronous exception, skips the trapping instruction
duke@435 840 //
duke@435 841
duke@435 842 address generate_handler_for_unsafe_access() {
duke@435 843 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 844 address start = __ pc();
duke@435 845
duke@435 846 const int preserve_register_words = (64 * 2);
twisti@1162 847 Address preserve_addr(FP, (-preserve_register_words * wordSize) + STACK_BIAS);
duke@435 848
duke@435 849 Register Lthread = L7_thread_cache;
duke@435 850 int i;
duke@435 851
duke@435 852 __ save_frame(0);
duke@435 853 __ mov(G1, L1);
duke@435 854 __ mov(G2, L2);
duke@435 855 __ mov(G3, L3);
duke@435 856 __ mov(G4, L4);
duke@435 857 __ mov(G5, L5);
duke@435 858 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 859 __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
duke@435 860 }
duke@435 861
duke@435 862 address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
duke@435 863 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 864 __ call(entry_point, relocInfo::runtime_call_type);
duke@435 865 __ delayed()->nop();
duke@435 866
duke@435 867 __ mov(L1, G1);
duke@435 868 __ mov(L2, G2);
duke@435 869 __ mov(L3, G3);
duke@435 870 __ mov(L4, G4);
duke@435 871 __ mov(L5, G5);
duke@435 872 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 873 __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
duke@435 874 }
duke@435 875
duke@435 876 __ verify_thread();
duke@435 877
duke@435 878 __ jmp(O0, 0);
duke@435 879 __ delayed()->restore();
duke@435 880
duke@435 881 return start;
duke@435 882 }
duke@435 883
duke@435 884
duke@435 885 // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
duke@435 886 // Arguments :
duke@435 887 //
duke@435 888 // ret : O0, returned
duke@435 889 // icc/xcc: set as O0 (depending on wordSize)
duke@435 890 // sub : O1, argument, not changed
duke@435 891 // super: O2, argument, not changed
duke@435 892 // raddr: O7, blown by call
duke@435 893 address generate_partial_subtype_check() {
coleenp@548 894 __ align(CodeEntryAlignment);
duke@435 895 StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
duke@435 896 address start = __ pc();
jrose@1079 897 Label miss;
duke@435 898
duke@435 899 #if defined(COMPILER2) && !defined(_LP64)
duke@435 900 // Do not use a 'save' because it blows the 64-bit O registers.
coleenp@548 901 __ add(SP,-4*wordSize,SP); // Make space for 4 temps (stack must be 2 words aligned)
duke@435 902 __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
duke@435 903 __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
duke@435 904 __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
duke@435 905 __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
duke@435 906 Register Rret = O0;
duke@435 907 Register Rsub = O1;
duke@435 908 Register Rsuper = O2;
duke@435 909 #else
duke@435 910 __ save_frame(0);
duke@435 911 Register Rret = I0;
duke@435 912 Register Rsub = I1;
duke@435 913 Register Rsuper = I2;
duke@435 914 #endif
duke@435 915
duke@435 916 Register L0_ary_len = L0;
duke@435 917 Register L1_ary_ptr = L1;
duke@435 918 Register L2_super = L2;
duke@435 919 Register L3_index = L3;
duke@435 920
jrose@1079 921 __ check_klass_subtype_slow_path(Rsub, Rsuper,
jrose@1079 922 L0, L1, L2, L3,
jrose@1079 923 NULL, &miss);
jrose@1079 924
jrose@1079 925 // Match falls through here.
jrose@1079 926 __ addcc(G0,0,Rret); // set Z flags, Z result
duke@435 927
duke@435 928 #if defined(COMPILER2) && !defined(_LP64)
duke@435 929 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 930 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 931 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 932 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 933 __ retl(); // Result in Rret is zero; flags set to Z
duke@435 934 __ delayed()->add(SP,4*wordSize,SP);
duke@435 935 #else
duke@435 936 __ ret(); // Result in Rret is zero; flags set to Z
duke@435 937 __ delayed()->restore();
duke@435 938 #endif
duke@435 939
duke@435 940 __ BIND(miss);
duke@435 941 __ addcc(G0,1,Rret); // set NZ flags, NZ result
duke@435 942
duke@435 943 #if defined(COMPILER2) && !defined(_LP64)
duke@435 944 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 945 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 946 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 947 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 948 __ retl(); // Result in Rret is != 0; flags set to NZ
duke@435 949 __ delayed()->add(SP,4*wordSize,SP);
duke@435 950 #else
duke@435 951 __ ret(); // Result in Rret is != 0; flags set to NZ
duke@435 952 __ delayed()->restore();
duke@435 953 #endif
duke@435 954
duke@435 955 return start;
duke@435 956 }
duke@435 957
duke@435 958
duke@435 959 // Called from MacroAssembler::verify_oop
duke@435 960 //
duke@435 961 address generate_verify_oop_subroutine() {
duke@435 962 StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
duke@435 963
duke@435 964 address start = __ pc();
duke@435 965
duke@435 966 __ verify_oop_subroutine();
duke@435 967
duke@435 968 return start;
duke@435 969 }
duke@435 970
duke@435 971
duke@435 972 //
duke@435 973 // Verify that a register contains clean 32-bits positive value
duke@435 974 // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
duke@435 975 //
duke@435 976 // Input:
duke@435 977 // Rint - 32-bits value
duke@435 978 // Rtmp - scratch
duke@435 979 //
duke@435 980 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 981 #if defined(ASSERT) && defined(_LP64)
duke@435 982 __ signx(Rint, Rtmp);
duke@435 983 __ cmp(Rint, Rtmp);
duke@435 984 __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
duke@435 985 #endif
duke@435 986 }
duke@435 987
duke@435 988 //
duke@435 989 // Generate overlap test for array copy stubs
duke@435 990 //
duke@435 991 // Input:
duke@435 992 // O0 - array1
duke@435 993 // O1 - array2
duke@435 994 // O2 - element count
duke@435 995 //
duke@435 996 // Kills temps: O3, O4
duke@435 997 //
duke@435 998 void array_overlap_test(address no_overlap_target, int log2_elem_size) {
duke@435 999 assert(no_overlap_target != NULL, "must be generated");
duke@435 1000 array_overlap_test(no_overlap_target, NULL, log2_elem_size);
duke@435 1001 }
duke@435 1002 void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
duke@435 1003 array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
duke@435 1004 }
duke@435 1005 void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
duke@435 1006 const Register from = O0;
duke@435 1007 const Register to = O1;
duke@435 1008 const Register count = O2;
duke@435 1009 const Register to_from = O3; // to - from
duke@435 1010 const Register byte_count = O4; // count << log2_elem_size
duke@435 1011
duke@435 1012 __ subcc(to, from, to_from);
duke@435 1013 __ sll_ptr(count, log2_elem_size, byte_count);
duke@435 1014 if (NOLp == NULL)
duke@435 1015 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
duke@435 1016 else
duke@435 1017 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
duke@435 1018 __ delayed()->cmp(to_from, byte_count);
duke@435 1019 if (NOLp == NULL)
tonyp@2010 1020 __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, no_overlap_target);
duke@435 1021 else
tonyp@2010 1022 __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, (*NOLp));
duke@435 1023 __ delayed()->nop();
duke@435 1024 }
duke@435 1025
duke@435 1026 //
duke@435 1027 // Generate pre-write barrier for array.
duke@435 1028 //
duke@435 1029 // Input:
duke@435 1030 // addr - register containing starting address
duke@435 1031 // count - register containing element count
duke@435 1032 // tmp - scratch register
duke@435 1033 //
duke@435 1034 // The input registers are overwritten.
duke@435 1035 //
duke@435 1036 void gen_write_ref_array_pre_barrier(Register addr, Register count) {
duke@435 1037 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1038 if (bs->has_write_ref_pre_barrier()) {
duke@435 1039 assert(bs->has_write_ref_array_pre_opt(),
duke@435 1040 "Else unsupported barrier set.");
duke@435 1041
duke@435 1042 __ save_frame(0);
duke@435 1043 // Save the necessary global regs... will be used after.
ysr@777 1044 if (addr->is_global()) {
ysr@777 1045 __ mov(addr, L0);
ysr@777 1046 }
ysr@777 1047 if (count->is_global()) {
ysr@777 1048 __ mov(count, L1);
ysr@777 1049 }
ysr@777 1050 __ mov(addr->after_save(), O0);
duke@435 1051 // Get the count into O1
duke@435 1052 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
ysr@777 1053 __ delayed()->mov(count->after_save(), O1);
ysr@777 1054 if (addr->is_global()) {
ysr@777 1055 __ mov(L0, addr);
ysr@777 1056 }
ysr@777 1057 if (count->is_global()) {
ysr@777 1058 __ mov(L1, count);
ysr@777 1059 }
duke@435 1060 __ restore();
duke@435 1061 }
duke@435 1062 }
duke@435 1063 //
duke@435 1064 // Generate post-write barrier for array.
duke@435 1065 //
duke@435 1066 // Input:
duke@435 1067 // addr - register containing starting address
duke@435 1068 // count - register containing element count
duke@435 1069 // tmp - scratch register
duke@435 1070 //
duke@435 1071 // The input registers are overwritten.
duke@435 1072 //
duke@435 1073 void gen_write_ref_array_post_barrier(Register addr, Register count,
duke@435 1074 Register tmp) {
duke@435 1075 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1076
duke@435 1077 switch (bs->kind()) {
duke@435 1078 case BarrierSet::G1SATBCT:
duke@435 1079 case BarrierSet::G1SATBCTLogging:
duke@435 1080 {
duke@435 1081 // Get some new fresh output registers.
duke@435 1082 __ save_frame(0);
ysr@777 1083 __ mov(addr->after_save(), O0);
duke@435 1084 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
ysr@777 1085 __ delayed()->mov(count->after_save(), O1);
duke@435 1086 __ restore();
duke@435 1087 }
duke@435 1088 break;
duke@435 1089 case BarrierSet::CardTableModRef:
duke@435 1090 case BarrierSet::CardTableExtension:
duke@435 1091 {
duke@435 1092 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1093 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1094 assert_different_registers(addr, count, tmp);
duke@435 1095
duke@435 1096 Label L_loop;
duke@435 1097
coleenp@548 1098 __ sll_ptr(count, LogBytesPerHeapOop, count);
coleenp@548 1099 __ sub(count, BytesPerHeapOop, count);
duke@435 1100 __ add(count, addr, count);
duke@435 1101 // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
duke@435 1102 __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
duke@435 1103 __ srl_ptr(count, CardTableModRefBS::card_shift, count);
duke@435 1104 __ sub(count, addr, count);
twisti@1162 1105 AddressLiteral rs(ct->byte_map_base);
twisti@1162 1106 __ set(rs, tmp);
duke@435 1107 __ BIND(L_loop);
twisti@1162 1108 __ stb(G0, tmp, addr);
duke@435 1109 __ subcc(count, 1, count);
duke@435 1110 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1111 __ delayed()->add(addr, 1, addr);
twisti@1162 1112 }
duke@435 1113 break;
duke@435 1114 case BarrierSet::ModRef:
duke@435 1115 break;
twisti@1162 1116 default:
duke@435 1117 ShouldNotReachHere();
duke@435 1118 }
duke@435 1119 }
duke@435 1120
duke@435 1121
duke@435 1122 // Copy big chunks forward with shift
duke@435 1123 //
duke@435 1124 // Inputs:
duke@435 1125 // from - source arrays
duke@435 1126 // to - destination array aligned to 8-bytes
duke@435 1127 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1128 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1129 // L_copy_bytes - copy exit label
duke@435 1130 //
duke@435 1131 void copy_16_bytes_forward_with_shift(Register from, Register to,
duke@435 1132 Register count, int count_dec, Label& L_copy_bytes) {
duke@435 1133 Label L_loop, L_aligned_copy, L_copy_last_bytes;
duke@435 1134
duke@435 1135 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
duke@435 1136 __ andcc(from, 7, G1); // misaligned bytes
duke@435 1137 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1138 __ delayed()->nop();
duke@435 1139
duke@435 1140 const Register left_shift = G1; // left shift bit counter
duke@435 1141 const Register right_shift = G5; // right shift bit counter
duke@435 1142
duke@435 1143 __ sll(G1, LogBitsPerByte, left_shift);
duke@435 1144 __ mov(64, right_shift);
duke@435 1145 __ sub(right_shift, left_shift, right_shift);
duke@435 1146
duke@435 1147 //
duke@435 1148 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1149 // to form 2 aligned 8-bytes chunks to store.
duke@435 1150 //
duke@435 1151 __ deccc(count, count_dec); // Pre-decrement 'count'
duke@435 1152 __ andn(from, 7, from); // Align address
duke@435 1153 __ ldx(from, 0, O3);
duke@435 1154 __ inc(from, 8);
kvn@1800 1155 __ align(OptoLoopAlignment);
duke@435 1156 __ BIND(L_loop);
duke@435 1157 __ ldx(from, 0, O4);
duke@435 1158 __ deccc(count, count_dec); // Can we do next iteration after this one?
duke@435 1159 __ ldx(from, 8, G4);
duke@435 1160 __ inc(to, 16);
duke@435 1161 __ inc(from, 16);
duke@435 1162 __ sllx(O3, left_shift, O3);
duke@435 1163 __ srlx(O4, right_shift, G3);
duke@435 1164 __ bset(G3, O3);
duke@435 1165 __ stx(O3, to, -16);
duke@435 1166 __ sllx(O4, left_shift, O4);
duke@435 1167 __ srlx(G4, right_shift, G3);
duke@435 1168 __ bset(G3, O4);
duke@435 1169 __ stx(O4, to, -8);
duke@435 1170 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1171 __ delayed()->mov(G4, O3);
duke@435 1172
duke@435 1173 __ inccc(count, count_dec>>1 ); // + 8 bytes
duke@435 1174 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
duke@435 1175 __ delayed()->inc(count, count_dec>>1); // restore 'count'
duke@435 1176
duke@435 1177 // copy 8 bytes, part of them already loaded in O3
duke@435 1178 __ ldx(from, 0, O4);
duke@435 1179 __ inc(to, 8);
duke@435 1180 __ inc(from, 8);
duke@435 1181 __ sllx(O3, left_shift, O3);
duke@435 1182 __ srlx(O4, right_shift, G3);
duke@435 1183 __ bset(O3, G3);
duke@435 1184 __ stx(G3, to, -8);
duke@435 1185
duke@435 1186 __ BIND(L_copy_last_bytes);
duke@435 1187 __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
duke@435 1188 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
duke@435 1189 __ delayed()->sub(from, right_shift, from); // restore address
duke@435 1190
duke@435 1191 __ BIND(L_aligned_copy);
duke@435 1192 }
duke@435 1193
duke@435 1194 // Copy big chunks backward with shift
duke@435 1195 //
duke@435 1196 // Inputs:
duke@435 1197 // end_from - source arrays end address
duke@435 1198 // end_to - destination array end address aligned to 8-bytes
duke@435 1199 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1200 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1201 // L_aligned_copy - aligned copy exit label
duke@435 1202 // L_copy_bytes - copy exit label
duke@435 1203 //
duke@435 1204 void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
duke@435 1205 Register count, int count_dec,
duke@435 1206 Label& L_aligned_copy, Label& L_copy_bytes) {
duke@435 1207 Label L_loop, L_copy_last_bytes;
duke@435 1208
duke@435 1209 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
duke@435 1210 __ andcc(end_from, 7, G1); // misaligned bytes
duke@435 1211 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1212 __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
duke@435 1213
duke@435 1214 const Register left_shift = G1; // left shift bit counter
duke@435 1215 const Register right_shift = G5; // right shift bit counter
duke@435 1216
duke@435 1217 __ sll(G1, LogBitsPerByte, left_shift);
duke@435 1218 __ mov(64, right_shift);
duke@435 1219 __ sub(right_shift, left_shift, right_shift);
duke@435 1220
duke@435 1221 //
duke@435 1222 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1223 // to form 2 aligned 8-bytes chunks to store.
duke@435 1224 //
duke@435 1225 __ andn(end_from, 7, end_from); // Align address
duke@435 1226 __ ldx(end_from, 0, O3);
kvn@1800 1227 __ align(OptoLoopAlignment);
duke@435 1228 __ BIND(L_loop);
duke@435 1229 __ ldx(end_from, -8, O4);
duke@435 1230 __ deccc(count, count_dec); // Can we do next iteration after this one?
duke@435 1231 __ ldx(end_from, -16, G4);
duke@435 1232 __ dec(end_to, 16);
duke@435 1233 __ dec(end_from, 16);
duke@435 1234 __ srlx(O3, right_shift, O3);
duke@435 1235 __ sllx(O4, left_shift, G3);
duke@435 1236 __ bset(G3, O3);
duke@435 1237 __ stx(O3, end_to, 8);
duke@435 1238 __ srlx(O4, right_shift, O4);
duke@435 1239 __ sllx(G4, left_shift, G3);
duke@435 1240 __ bset(G3, O4);
duke@435 1241 __ stx(O4, end_to, 0);
duke@435 1242 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1243 __ delayed()->mov(G4, O3);
duke@435 1244
duke@435 1245 __ inccc(count, count_dec>>1 ); // + 8 bytes
duke@435 1246 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
duke@435 1247 __ delayed()->inc(count, count_dec>>1); // restore 'count'
duke@435 1248
duke@435 1249 // copy 8 bytes, part of them already loaded in O3
duke@435 1250 __ ldx(end_from, -8, O4);
duke@435 1251 __ dec(end_to, 8);
duke@435 1252 __ dec(end_from, 8);
duke@435 1253 __ srlx(O3, right_shift, O3);
duke@435 1254 __ sllx(O4, left_shift, G3);
duke@435 1255 __ bset(O3, G3);
duke@435 1256 __ stx(G3, end_to, 0);
duke@435 1257
duke@435 1258 __ BIND(L_copy_last_bytes);
duke@435 1259 __ srl(left_shift, LogBitsPerByte, left_shift); // misaligned bytes
duke@435 1260 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
duke@435 1261 __ delayed()->add(end_from, left_shift, end_from); // restore address
duke@435 1262 }
duke@435 1263
duke@435 1264 //
duke@435 1265 // Generate stub for disjoint byte copy. If "aligned" is true, the
duke@435 1266 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1267 //
duke@435 1268 // Arguments for generated stub:
duke@435 1269 // from: O0
duke@435 1270 // to: O1
duke@435 1271 // count: O2 treated as signed
duke@435 1272 //
iveresov@2595 1273 address generate_disjoint_byte_copy(bool aligned, address *entry, const char *name) {
duke@435 1274 __ align(CodeEntryAlignment);
duke@435 1275 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1276 address start = __ pc();
duke@435 1277
duke@435 1278 Label L_skip_alignment, L_align;
duke@435 1279 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1280
duke@435 1281 const Register from = O0; // source array address
duke@435 1282 const Register to = O1; // destination array address
duke@435 1283 const Register count = O2; // elements count
duke@435 1284 const Register offset = O5; // offset from start of arrays
duke@435 1285 // O3, O4, G3, G4 are used as temp registers
duke@435 1286
duke@435 1287 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1288
iveresov@2595 1289 if (entry != NULL) {
iveresov@2595 1290 *entry = __ pc();
iveresov@2595 1291 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1292 BLOCK_COMMENT("Entry:");
iveresov@2595 1293 }
duke@435 1294
duke@435 1295 // for short arrays, just do single element copy
duke@435 1296 __ cmp(count, 23); // 16 + 7
duke@435 1297 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1298 __ delayed()->mov(G0, offset);
duke@435 1299
duke@435 1300 if (aligned) {
duke@435 1301 // 'aligned' == true when it is known statically during compilation
duke@435 1302 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1303 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1304 //
duke@435 1305 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1306 // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
duke@435 1307 //
duke@435 1308 #ifndef _LP64
duke@435 1309 // copy a 4-bytes word if necessary to align 'to' to 8 bytes
duke@435 1310 __ andcc(to, 7, G0);
duke@435 1311 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
duke@435 1312 __ delayed()->ld(from, 0, O3);
duke@435 1313 __ inc(from, 4);
duke@435 1314 __ inc(to, 4);
duke@435 1315 __ dec(count, 4);
duke@435 1316 __ st(O3, to, -4);
duke@435 1317 __ BIND(L_skip_alignment);
duke@435 1318 #endif
duke@435 1319 } else {
duke@435 1320 // copy bytes to align 'to' on 8 byte boundary
duke@435 1321 __ andcc(to, 7, G1); // misaligned bytes
duke@435 1322 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1323 __ delayed()->neg(G1);
duke@435 1324 __ inc(G1, 8); // bytes need to copy to next 8-bytes alignment
duke@435 1325 __ sub(count, G1, count);
duke@435 1326 __ BIND(L_align);
duke@435 1327 __ ldub(from, 0, O3);
duke@435 1328 __ deccc(G1);
duke@435 1329 __ inc(from);
duke@435 1330 __ stb(O3, to, 0);
duke@435 1331 __ br(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1332 __ delayed()->inc(to);
duke@435 1333 __ BIND(L_skip_alignment);
duke@435 1334 }
duke@435 1335 #ifdef _LP64
duke@435 1336 if (!aligned)
duke@435 1337 #endif
duke@435 1338 {
duke@435 1339 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1340 // the same alignment mod 8, otherwise fall through to the next
duke@435 1341 // code for aligned copy.
duke@435 1342 // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
duke@435 1343 // Also jump over aligned copy after the copy with shift completed.
duke@435 1344
duke@435 1345 copy_16_bytes_forward_with_shift(from, to, count, 16, L_copy_byte);
duke@435 1346 }
duke@435 1347
duke@435 1348 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1349 __ and3(count, 7, G4); // Save count
duke@435 1350 __ srl(count, 3, count);
duke@435 1351 generate_disjoint_long_copy_core(aligned);
duke@435 1352 __ mov(G4, count); // Restore count
duke@435 1353
duke@435 1354 // copy tailing bytes
duke@435 1355 __ BIND(L_copy_byte);
duke@435 1356 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1357 __ delayed()->nop();
kvn@1800 1358 __ align(OptoLoopAlignment);
duke@435 1359 __ BIND(L_copy_byte_loop);
duke@435 1360 __ ldub(from, offset, O3);
duke@435 1361 __ deccc(count);
duke@435 1362 __ stb(O3, to, offset);
duke@435 1363 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
duke@435 1364 __ delayed()->inc(offset);
duke@435 1365
duke@435 1366 __ BIND(L_exit);
duke@435 1367 // O3, O4 are used as temp registers
duke@435 1368 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1369 __ retl();
duke@435 1370 __ delayed()->mov(G0, O0); // return 0
duke@435 1371 return start;
duke@435 1372 }
duke@435 1373
duke@435 1374 //
duke@435 1375 // Generate stub for conjoint byte copy. If "aligned" is true, the
duke@435 1376 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1377 //
duke@435 1378 // Arguments for generated stub:
duke@435 1379 // from: O0
duke@435 1380 // to: O1
duke@435 1381 // count: O2 treated as signed
duke@435 1382 //
iveresov@2595 1383 address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
iveresov@2595 1384 address *entry, const char *name) {
duke@435 1385 // Do reverse copy.
duke@435 1386
duke@435 1387 __ align(CodeEntryAlignment);
duke@435 1388 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1389 address start = __ pc();
duke@435 1390
duke@435 1391 Label L_skip_alignment, L_align, L_aligned_copy;
duke@435 1392 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1393
duke@435 1394 const Register from = O0; // source array address
duke@435 1395 const Register to = O1; // destination array address
duke@435 1396 const Register count = O2; // elements count
duke@435 1397 const Register end_from = from; // source array end address
duke@435 1398 const Register end_to = to; // destination array end address
duke@435 1399
duke@435 1400 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1401
iveresov@2595 1402 if (entry != NULL) {
iveresov@2595 1403 *entry = __ pc();
iveresov@2595 1404 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1405 BLOCK_COMMENT("Entry:");
iveresov@2595 1406 }
duke@435 1407
duke@435 1408 array_overlap_test(nooverlap_target, 0);
duke@435 1409
duke@435 1410 __ add(to, count, end_to); // offset after last copied element
duke@435 1411
duke@435 1412 // for short arrays, just do single element copy
duke@435 1413 __ cmp(count, 23); // 16 + 7
duke@435 1414 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1415 __ delayed()->add(from, count, end_from);
duke@435 1416
duke@435 1417 {
duke@435 1418 // Align end of arrays since they could be not aligned even
duke@435 1419 // when arrays itself are aligned.
duke@435 1420
duke@435 1421 // copy bytes to align 'end_to' on 8 byte boundary
duke@435 1422 __ andcc(end_to, 7, G1); // misaligned bytes
duke@435 1423 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1424 __ delayed()->nop();
duke@435 1425 __ sub(count, G1, count);
duke@435 1426 __ BIND(L_align);
duke@435 1427 __ dec(end_from);
duke@435 1428 __ dec(end_to);
duke@435 1429 __ ldub(end_from, 0, O3);
duke@435 1430 __ deccc(G1);
duke@435 1431 __ brx(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1432 __ delayed()->stb(O3, end_to, 0);
duke@435 1433 __ BIND(L_skip_alignment);
duke@435 1434 }
duke@435 1435 #ifdef _LP64
duke@435 1436 if (aligned) {
duke@435 1437 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1438 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1439 // in unaligned case.
duke@435 1440 __ dec(count, 16);
duke@435 1441 } else
duke@435 1442 #endif
duke@435 1443 {
duke@435 1444 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1445 // the same alignment mod 8, otherwise jump to the next
duke@435 1446 // code for aligned copy (and substracting 16 from 'count' before jump).
duke@435 1447 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1448 // Also jump over aligned copy after the copy with shift completed.
duke@435 1449
duke@435 1450 copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
duke@435 1451 L_aligned_copy, L_copy_byte);
duke@435 1452 }
duke@435 1453 // copy 4 elements (16 bytes) at a time
kvn@1800 1454 __ align(OptoLoopAlignment);
duke@435 1455 __ BIND(L_aligned_copy);
duke@435 1456 __ dec(end_from, 16);
duke@435 1457 __ ldx(end_from, 8, O3);
duke@435 1458 __ ldx(end_from, 0, O4);
duke@435 1459 __ dec(end_to, 16);
duke@435 1460 __ deccc(count, 16);
duke@435 1461 __ stx(O3, end_to, 8);
duke@435 1462 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1463 __ delayed()->stx(O4, end_to, 0);
duke@435 1464 __ inc(count, 16);
duke@435 1465
duke@435 1466 // copy 1 element (2 bytes) at a time
duke@435 1467 __ BIND(L_copy_byte);
duke@435 1468 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1469 __ delayed()->nop();
kvn@1800 1470 __ align(OptoLoopAlignment);
duke@435 1471 __ BIND(L_copy_byte_loop);
duke@435 1472 __ dec(end_from);
duke@435 1473 __ dec(end_to);
duke@435 1474 __ ldub(end_from, 0, O4);
duke@435 1475 __ deccc(count);
duke@435 1476 __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
duke@435 1477 __ delayed()->stb(O4, end_to, 0);
duke@435 1478
duke@435 1479 __ BIND(L_exit);
duke@435 1480 // O3, O4 are used as temp registers
duke@435 1481 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1482 __ retl();
duke@435 1483 __ delayed()->mov(G0, O0); // return 0
duke@435 1484 return start;
duke@435 1485 }
duke@435 1486
duke@435 1487 //
duke@435 1488 // Generate stub for disjoint short copy. If "aligned" is true, the
duke@435 1489 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1490 //
duke@435 1491 // Arguments for generated stub:
duke@435 1492 // from: O0
duke@435 1493 // to: O1
duke@435 1494 // count: O2 treated as signed
duke@435 1495 //
iveresov@2595 1496 address generate_disjoint_short_copy(bool aligned, address *entry, const char * name) {
duke@435 1497 __ align(CodeEntryAlignment);
duke@435 1498 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1499 address start = __ pc();
duke@435 1500
duke@435 1501 Label L_skip_alignment, L_skip_alignment2;
duke@435 1502 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1503
duke@435 1504 const Register from = O0; // source array address
duke@435 1505 const Register to = O1; // destination array address
duke@435 1506 const Register count = O2; // elements count
duke@435 1507 const Register offset = O5; // offset from start of arrays
duke@435 1508 // O3, O4, G3, G4 are used as temp registers
duke@435 1509
duke@435 1510 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1511
iveresov@2595 1512 if (entry != NULL) {
iveresov@2595 1513 *entry = __ pc();
iveresov@2595 1514 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1515 BLOCK_COMMENT("Entry:");
iveresov@2595 1516 }
duke@435 1517
duke@435 1518 // for short arrays, just do single element copy
duke@435 1519 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1520 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1521 __ delayed()->mov(G0, offset);
duke@435 1522
duke@435 1523 if (aligned) {
duke@435 1524 // 'aligned' == true when it is known statically during compilation
duke@435 1525 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1526 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1527 //
duke@435 1528 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1529 // and 8 bytes - in 64-bits VM.
duke@435 1530 //
duke@435 1531 #ifndef _LP64
duke@435 1532 // copy a 2-elements word if necessary to align 'to' to 8 bytes
duke@435 1533 __ andcc(to, 7, G0);
duke@435 1534 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1535 __ delayed()->ld(from, 0, O3);
duke@435 1536 __ inc(from, 4);
duke@435 1537 __ inc(to, 4);
duke@435 1538 __ dec(count, 2);
duke@435 1539 __ st(O3, to, -4);
duke@435 1540 __ BIND(L_skip_alignment);
duke@435 1541 #endif
duke@435 1542 } else {
duke@435 1543 // copy 1 element if necessary to align 'to' on an 4 bytes
duke@435 1544 __ andcc(to, 3, G0);
duke@435 1545 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1546 __ delayed()->lduh(from, 0, O3);
duke@435 1547 __ inc(from, 2);
duke@435 1548 __ inc(to, 2);
duke@435 1549 __ dec(count);
duke@435 1550 __ sth(O3, to, -2);
duke@435 1551 __ BIND(L_skip_alignment);
duke@435 1552
duke@435 1553 // copy 2 elements to align 'to' on an 8 byte boundary
duke@435 1554 __ andcc(to, 7, G0);
duke@435 1555 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1556 __ delayed()->lduh(from, 0, O3);
duke@435 1557 __ dec(count, 2);
duke@435 1558 __ lduh(from, 2, O4);
duke@435 1559 __ inc(from, 4);
duke@435 1560 __ inc(to, 4);
duke@435 1561 __ sth(O3, to, -4);
duke@435 1562 __ sth(O4, to, -2);
duke@435 1563 __ BIND(L_skip_alignment2);
duke@435 1564 }
duke@435 1565 #ifdef _LP64
duke@435 1566 if (!aligned)
duke@435 1567 #endif
duke@435 1568 {
duke@435 1569 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1570 // the same alignment mod 8, otherwise fall through to the next
duke@435 1571 // code for aligned copy.
duke@435 1572 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1573 // Also jump over aligned copy after the copy with shift completed.
duke@435 1574
duke@435 1575 copy_16_bytes_forward_with_shift(from, to, count, 8, L_copy_2_bytes);
duke@435 1576 }
duke@435 1577
duke@435 1578 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1579 __ and3(count, 3, G4); // Save
duke@435 1580 __ srl(count, 2, count);
duke@435 1581 generate_disjoint_long_copy_core(aligned);
duke@435 1582 __ mov(G4, count); // restore
duke@435 1583
duke@435 1584 // copy 1 element at a time
duke@435 1585 __ BIND(L_copy_2_bytes);
duke@435 1586 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1587 __ delayed()->nop();
kvn@1800 1588 __ align(OptoLoopAlignment);
duke@435 1589 __ BIND(L_copy_2_bytes_loop);
duke@435 1590 __ lduh(from, offset, O3);
duke@435 1591 __ deccc(count);
duke@435 1592 __ sth(O3, to, offset);
duke@435 1593 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1594 __ delayed()->inc(offset, 2);
duke@435 1595
duke@435 1596 __ BIND(L_exit);
duke@435 1597 // O3, O4 are used as temp registers
duke@435 1598 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1599 __ retl();
duke@435 1600 __ delayed()->mov(G0, O0); // return 0
duke@435 1601 return start;
duke@435 1602 }
duke@435 1603
duke@435 1604 //
never@2118 1605 // Generate stub for disjoint short fill. If "aligned" is true, the
never@2118 1606 // "to" address is assumed to be heapword aligned.
never@2118 1607 //
never@2118 1608 // Arguments for generated stub:
never@2118 1609 // to: O0
never@2118 1610 // value: O1
never@2118 1611 // count: O2 treated as signed
never@2118 1612 //
never@2118 1613 address generate_fill(BasicType t, bool aligned, const char* name) {
never@2118 1614 __ align(CodeEntryAlignment);
never@2118 1615 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1616 address start = __ pc();
never@2118 1617
never@2118 1618 const Register to = O0; // source array address
never@2118 1619 const Register value = O1; // fill value
never@2118 1620 const Register count = O2; // elements count
never@2118 1621 // O3 is used as a temp register
never@2118 1622
never@2118 1623 assert_clean_int(count, O3); // Make sure 'count' is clean int.
never@2118 1624
never@2118 1625 Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
never@2149 1626 Label L_fill_2_bytes, L_fill_elements, L_fill_32_bytes;
never@2118 1627
never@2118 1628 int shift = -1;
never@2118 1629 switch (t) {
never@2118 1630 case T_BYTE:
never@2118 1631 shift = 2;
never@2118 1632 break;
never@2118 1633 case T_SHORT:
never@2118 1634 shift = 1;
never@2118 1635 break;
never@2118 1636 case T_INT:
never@2118 1637 shift = 0;
never@2118 1638 break;
never@2118 1639 default: ShouldNotReachHere();
never@2118 1640 }
never@2118 1641
never@2118 1642 BLOCK_COMMENT("Entry:");
never@2118 1643
never@2118 1644 if (t == T_BYTE) {
never@2118 1645 // Zero extend value
never@2118 1646 __ and3(value, 0xff, value);
never@2118 1647 __ sllx(value, 8, O3);
never@2118 1648 __ or3(value, O3, value);
never@2118 1649 }
never@2118 1650 if (t == T_SHORT) {
never@2118 1651 // Zero extend value
never@2149 1652 __ sllx(value, 48, value);
never@2149 1653 __ srlx(value, 48, value);
never@2118 1654 }
never@2118 1655 if (t == T_BYTE || t == T_SHORT) {
never@2118 1656 __ sllx(value, 16, O3);
never@2118 1657 __ or3(value, O3, value);
never@2118 1658 }
never@2118 1659
never@2118 1660 __ cmp(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
never@2149 1661 __ brx(Assembler::lessUnsigned, false, Assembler::pn, L_fill_elements); // use unsigned cmp
never@2149 1662 __ delayed()->andcc(count, 1, G0);
never@2118 1663
never@2118 1664 if (!aligned && (t == T_BYTE || t == T_SHORT)) {
never@2118 1665 // align source address at 4 bytes address boundary
never@2118 1666 if (t == T_BYTE) {
never@2118 1667 // One byte misalignment happens only for byte arrays
never@2118 1668 __ andcc(to, 1, G0);
never@2118 1669 __ br(Assembler::zero, false, Assembler::pt, L_skip_align1);
never@2118 1670 __ delayed()->nop();
never@2118 1671 __ stb(value, to, 0);
never@2118 1672 __ inc(to, 1);
never@2118 1673 __ dec(count, 1);
never@2118 1674 __ BIND(L_skip_align1);
never@2118 1675 }
never@2118 1676 // Two bytes misalignment happens only for byte and short (char) arrays
never@2118 1677 __ andcc(to, 2, G0);
never@2118 1678 __ br(Assembler::zero, false, Assembler::pt, L_skip_align2);
never@2118 1679 __ delayed()->nop();
never@2118 1680 __ sth(value, to, 0);
never@2118 1681 __ inc(to, 2);
never@2118 1682 __ dec(count, 1 << (shift - 1));
never@2118 1683 __ BIND(L_skip_align2);
never@2118 1684 }
never@2118 1685 #ifdef _LP64
never@2118 1686 if (!aligned) {
never@2118 1687 #endif
never@2118 1688 // align to 8 bytes, we know we are 4 byte aligned to start
never@2118 1689 __ andcc(to, 7, G0);
never@2118 1690 __ br(Assembler::zero, false, Assembler::pt, L_fill_32_bytes);
never@2118 1691 __ delayed()->nop();
never@2118 1692 __ stw(value, to, 0);
never@2118 1693 __ inc(to, 4);
never@2118 1694 __ dec(count, 1 << shift);
never@2118 1695 __ BIND(L_fill_32_bytes);
never@2118 1696 #ifdef _LP64
never@2118 1697 }
never@2118 1698 #endif
never@2118 1699
never@2118 1700 if (t == T_INT) {
never@2118 1701 // Zero extend value
never@2118 1702 __ srl(value, 0, value);
never@2118 1703 }
never@2118 1704 if (t == T_BYTE || t == T_SHORT || t == T_INT) {
never@2118 1705 __ sllx(value, 32, O3);
never@2118 1706 __ or3(value, O3, value);
never@2118 1707 }
never@2118 1708
never@2137 1709 Label L_check_fill_8_bytes;
never@2137 1710 // Fill 32-byte chunks
never@2137 1711 __ subcc(count, 8 << shift, count);
never@2137 1712 __ brx(Assembler::less, false, Assembler::pt, L_check_fill_8_bytes);
never@2137 1713 __ delayed()->nop();
never@2137 1714
never@2149 1715 Label L_fill_32_bytes_loop, L_fill_4_bytes;
never@2118 1716 __ align(16);
never@2118 1717 __ BIND(L_fill_32_bytes_loop);
never@2118 1718
never@2118 1719 __ stx(value, to, 0);
never@2118 1720 __ stx(value, to, 8);
never@2118 1721 __ stx(value, to, 16);
never@2118 1722 __ stx(value, to, 24);
never@2118 1723
never@2118 1724 __ subcc(count, 8 << shift, count);
never@2118 1725 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_fill_32_bytes_loop);
never@2118 1726 __ delayed()->add(to, 32, to);
never@2118 1727
never@2118 1728 __ BIND(L_check_fill_8_bytes);
never@2118 1729 __ addcc(count, 8 << shift, count);
never@2118 1730 __ brx(Assembler::zero, false, Assembler::pn, L_exit);
never@2118 1731 __ delayed()->subcc(count, 1 << (shift + 1), count);
never@2118 1732 __ brx(Assembler::less, false, Assembler::pn, L_fill_4_bytes);
never@2118 1733 __ delayed()->andcc(count, 1<<shift, G0);
never@2118 1734
never@2118 1735 //
never@2118 1736 // length is too short, just fill 8 bytes at a time
never@2118 1737 //
never@2118 1738 Label L_fill_8_bytes_loop;
never@2118 1739 __ BIND(L_fill_8_bytes_loop);
never@2118 1740 __ stx(value, to, 0);
never@2118 1741 __ subcc(count, 1 << (shift + 1), count);
never@2118 1742 __ brx(Assembler::greaterEqual, false, Assembler::pn, L_fill_8_bytes_loop);
never@2118 1743 __ delayed()->add(to, 8, to);
never@2118 1744
never@2118 1745 // fill trailing 4 bytes
never@2118 1746 __ andcc(count, 1<<shift, G0); // in delay slot of branches
never@2149 1747 if (t == T_INT) {
never@2149 1748 __ BIND(L_fill_elements);
never@2149 1749 }
never@2118 1750 __ BIND(L_fill_4_bytes);
never@2118 1751 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2_bytes);
never@2118 1752 if (t == T_BYTE || t == T_SHORT) {
never@2118 1753 __ delayed()->andcc(count, 1<<(shift-1), G0);
never@2118 1754 } else {
never@2118 1755 __ delayed()->nop();
never@2118 1756 }
never@2118 1757 __ stw(value, to, 0);
never@2118 1758 if (t == T_BYTE || t == T_SHORT) {
never@2118 1759 __ inc(to, 4);
never@2118 1760 // fill trailing 2 bytes
never@2118 1761 __ andcc(count, 1<<(shift-1), G0); // in delay slot of branches
never@2118 1762 __ BIND(L_fill_2_bytes);
never@2118 1763 __ brx(Assembler::zero, false, Assembler::pt, L_fill_byte);
never@2118 1764 __ delayed()->andcc(count, 1, count);
never@2118 1765 __ sth(value, to, 0);
never@2118 1766 if (t == T_BYTE) {
never@2118 1767 __ inc(to, 2);
never@2118 1768 // fill trailing byte
never@2118 1769 __ andcc(count, 1, count); // in delay slot of branches
never@2118 1770 __ BIND(L_fill_byte);
never@2118 1771 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2118 1772 __ delayed()->nop();
never@2118 1773 __ stb(value, to, 0);
never@2118 1774 } else {
never@2118 1775 __ BIND(L_fill_byte);
never@2118 1776 }
never@2118 1777 } else {
never@2118 1778 __ BIND(L_fill_2_bytes);
never@2118 1779 }
never@2118 1780 __ BIND(L_exit);
never@2118 1781 __ retl();
never@2149 1782 __ delayed()->nop();
never@2149 1783
never@2149 1784 // Handle copies less than 8 bytes. Int is handled elsewhere.
never@2149 1785 if (t == T_BYTE) {
never@2149 1786 __ BIND(L_fill_elements);
never@2149 1787 Label L_fill_2, L_fill_4;
never@2149 1788 // in delay slot __ andcc(count, 1, G0);
never@2149 1789 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
never@2149 1790 __ delayed()->andcc(count, 2, G0);
never@2149 1791 __ stb(value, to, 0);
never@2149 1792 __ inc(to, 1);
never@2149 1793 __ BIND(L_fill_2);
never@2149 1794 __ brx(Assembler::zero, false, Assembler::pt, L_fill_4);
never@2149 1795 __ delayed()->andcc(count, 4, G0);
never@2149 1796 __ stb(value, to, 0);
never@2149 1797 __ stb(value, to, 1);
never@2149 1798 __ inc(to, 2);
never@2149 1799 __ BIND(L_fill_4);
never@2149 1800 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2149 1801 __ delayed()->nop();
never@2149 1802 __ stb(value, to, 0);
never@2149 1803 __ stb(value, to, 1);
never@2149 1804 __ stb(value, to, 2);
never@2149 1805 __ retl();
never@2149 1806 __ delayed()->stb(value, to, 3);
never@2149 1807 }
never@2149 1808
never@2149 1809 if (t == T_SHORT) {
never@2149 1810 Label L_fill_2;
never@2149 1811 __ BIND(L_fill_elements);
never@2149 1812 // in delay slot __ andcc(count, 1, G0);
never@2149 1813 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
never@2149 1814 __ delayed()->andcc(count, 2, G0);
never@2149 1815 __ sth(value, to, 0);
never@2149 1816 __ inc(to, 2);
never@2149 1817 __ BIND(L_fill_2);
never@2149 1818 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2149 1819 __ delayed()->nop();
never@2149 1820 __ sth(value, to, 0);
never@2149 1821 __ retl();
never@2149 1822 __ delayed()->sth(value, to, 2);
never@2149 1823 }
never@2118 1824 return start;
never@2118 1825 }
never@2118 1826
never@2118 1827 //
duke@435 1828 // Generate stub for conjoint short copy. If "aligned" is true, the
duke@435 1829 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1830 //
duke@435 1831 // Arguments for generated stub:
duke@435 1832 // from: O0
duke@435 1833 // to: O1
duke@435 1834 // count: O2 treated as signed
duke@435 1835 //
iveresov@2595 1836 address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
iveresov@2595 1837 address *entry, const char *name) {
duke@435 1838 // Do reverse copy.
duke@435 1839
duke@435 1840 __ align(CodeEntryAlignment);
duke@435 1841 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1842 address start = __ pc();
duke@435 1843
duke@435 1844 Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
duke@435 1845 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1846
duke@435 1847 const Register from = O0; // source array address
duke@435 1848 const Register to = O1; // destination array address
duke@435 1849 const Register count = O2; // elements count
duke@435 1850 const Register end_from = from; // source array end address
duke@435 1851 const Register end_to = to; // destination array end address
duke@435 1852
duke@435 1853 const Register byte_count = O3; // bytes count to copy
duke@435 1854
duke@435 1855 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1856
iveresov@2595 1857 if (entry != NULL) {
iveresov@2595 1858 *entry = __ pc();
iveresov@2595 1859 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1860 BLOCK_COMMENT("Entry:");
iveresov@2595 1861 }
duke@435 1862
duke@435 1863 array_overlap_test(nooverlap_target, 1);
duke@435 1864
duke@435 1865 __ sllx(count, LogBytesPerShort, byte_count);
duke@435 1866 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 1867
duke@435 1868 // for short arrays, just do single element copy
duke@435 1869 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1870 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1871 __ delayed()->add(from, byte_count, end_from);
duke@435 1872
duke@435 1873 {
duke@435 1874 // Align end of arrays since they could be not aligned even
duke@435 1875 // when arrays itself are aligned.
duke@435 1876
duke@435 1877 // copy 1 element if necessary to align 'end_to' on an 4 bytes
duke@435 1878 __ andcc(end_to, 3, G0);
duke@435 1879 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1880 __ delayed()->lduh(end_from, -2, O3);
duke@435 1881 __ dec(end_from, 2);
duke@435 1882 __ dec(end_to, 2);
duke@435 1883 __ dec(count);
duke@435 1884 __ sth(O3, end_to, 0);
duke@435 1885 __ BIND(L_skip_alignment);
duke@435 1886
duke@435 1887 // copy 2 elements to align 'end_to' on an 8 byte boundary
duke@435 1888 __ andcc(end_to, 7, G0);
duke@435 1889 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1890 __ delayed()->lduh(end_from, -2, O3);
duke@435 1891 __ dec(count, 2);
duke@435 1892 __ lduh(end_from, -4, O4);
duke@435 1893 __ dec(end_from, 4);
duke@435 1894 __ dec(end_to, 4);
duke@435 1895 __ sth(O3, end_to, 2);
duke@435 1896 __ sth(O4, end_to, 0);
duke@435 1897 __ BIND(L_skip_alignment2);
duke@435 1898 }
duke@435 1899 #ifdef _LP64
duke@435 1900 if (aligned) {
duke@435 1901 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1902 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1903 // in unaligned case.
duke@435 1904 __ dec(count, 8);
duke@435 1905 } else
duke@435 1906 #endif
duke@435 1907 {
duke@435 1908 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1909 // the same alignment mod 8, otherwise jump to the next
duke@435 1910 // code for aligned copy (and substracting 8 from 'count' before jump).
duke@435 1911 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1912 // Also jump over aligned copy after the copy with shift completed.
duke@435 1913
duke@435 1914 copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
duke@435 1915 L_aligned_copy, L_copy_2_bytes);
duke@435 1916 }
duke@435 1917 // copy 4 elements (16 bytes) at a time
kvn@1800 1918 __ align(OptoLoopAlignment);
duke@435 1919 __ BIND(L_aligned_copy);
duke@435 1920 __ dec(end_from, 16);
duke@435 1921 __ ldx(end_from, 8, O3);
duke@435 1922 __ ldx(end_from, 0, O4);
duke@435 1923 __ dec(end_to, 16);
duke@435 1924 __ deccc(count, 8);
duke@435 1925 __ stx(O3, end_to, 8);
duke@435 1926 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1927 __ delayed()->stx(O4, end_to, 0);
duke@435 1928 __ inc(count, 8);
duke@435 1929
duke@435 1930 // copy 1 element (2 bytes) at a time
duke@435 1931 __ BIND(L_copy_2_bytes);
duke@435 1932 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1933 __ delayed()->nop();
duke@435 1934 __ BIND(L_copy_2_bytes_loop);
duke@435 1935 __ dec(end_from, 2);
duke@435 1936 __ dec(end_to, 2);
duke@435 1937 __ lduh(end_from, 0, O4);
duke@435 1938 __ deccc(count);
duke@435 1939 __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1940 __ delayed()->sth(O4, end_to, 0);
duke@435 1941
duke@435 1942 __ BIND(L_exit);
duke@435 1943 // O3, O4 are used as temp registers
duke@435 1944 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1945 __ retl();
duke@435 1946 __ delayed()->mov(G0, O0); // return 0
duke@435 1947 return start;
duke@435 1948 }
duke@435 1949
duke@435 1950 //
duke@435 1951 // Generate core code for disjoint int copy (and oop copy on 32-bit).
duke@435 1952 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 1953 // to be heapword aligned.
duke@435 1954 //
duke@435 1955 // Arguments:
duke@435 1956 // from: O0
duke@435 1957 // to: O1
duke@435 1958 // count: O2 treated as signed
duke@435 1959 //
duke@435 1960 void generate_disjoint_int_copy_core(bool aligned) {
duke@435 1961
duke@435 1962 Label L_skip_alignment, L_aligned_copy;
duke@435 1963 Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 1964
duke@435 1965 const Register from = O0; // source array address
duke@435 1966 const Register to = O1; // destination array address
duke@435 1967 const Register count = O2; // elements count
duke@435 1968 const Register offset = O5; // offset from start of arrays
duke@435 1969 // O3, O4, G3, G4 are used as temp registers
duke@435 1970
duke@435 1971 // 'aligned' == true when it is known statically during compilation
duke@435 1972 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1973 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1974 //
duke@435 1975 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1976 // and 8 bytes - in 64-bits VM.
duke@435 1977 //
duke@435 1978 #ifdef _LP64
duke@435 1979 if (!aligned)
duke@435 1980 #endif
duke@435 1981 {
duke@435 1982 // The next check could be put under 'ifndef' since the code in
duke@435 1983 // generate_disjoint_long_copy_core() has own checks and set 'offset'.
duke@435 1984
duke@435 1985 // for short arrays, just do single element copy
duke@435 1986 __ cmp(count, 5); // 4 + 1 (20 bytes)
duke@435 1987 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 1988 __ delayed()->mov(G0, offset);
duke@435 1989
duke@435 1990 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 1991 __ andcc(to, 7, G0);
duke@435 1992 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1993 __ delayed()->ld(from, 0, O3);
duke@435 1994 __ inc(from, 4);
duke@435 1995 __ inc(to, 4);
duke@435 1996 __ dec(count);
duke@435 1997 __ st(O3, to, -4);
duke@435 1998 __ BIND(L_skip_alignment);
duke@435 1999
duke@435 2000 // if arrays have same alignment mod 8, do 4 elements copy
duke@435 2001 __ andcc(from, 7, G0);
duke@435 2002 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 2003 __ delayed()->ld(from, 0, O3);
duke@435 2004
duke@435 2005 //
duke@435 2006 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 2007 // to form 2 aligned 8-bytes chunks to store.
duke@435 2008 //
duke@435 2009 // copy_16_bytes_forward_with_shift() is not used here since this
duke@435 2010 // code is more optimal.
duke@435 2011
duke@435 2012 // copy with shift 4 elements (16 bytes) at a time
duke@435 2013 __ dec(count, 4); // The cmp at the beginning guaranty count >= 4
duke@435 2014
kvn@1800 2015 __ align(OptoLoopAlignment);
duke@435 2016 __ BIND(L_copy_16_bytes);
duke@435 2017 __ ldx(from, 4, O4);
duke@435 2018 __ deccc(count, 4); // Can we do next iteration after this one?
duke@435 2019 __ ldx(from, 12, G4);
duke@435 2020 __ inc(to, 16);
duke@435 2021 __ inc(from, 16);
duke@435 2022 __ sllx(O3, 32, O3);
duke@435 2023 __ srlx(O4, 32, G3);
duke@435 2024 __ bset(G3, O3);
duke@435 2025 __ stx(O3, to, -16);
duke@435 2026 __ sllx(O4, 32, O4);
duke@435 2027 __ srlx(G4, 32, G3);
duke@435 2028 __ bset(G3, O4);
duke@435 2029 __ stx(O4, to, -8);
duke@435 2030 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2031 __ delayed()->mov(G4, O3);
duke@435 2032
duke@435 2033 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 2034 __ delayed()->inc(count, 4); // restore 'count'
duke@435 2035
duke@435 2036 __ BIND(L_aligned_copy);
duke@435 2037 }
duke@435 2038 // copy 4 elements (16 bytes) at a time
duke@435 2039 __ and3(count, 1, G4); // Save
duke@435 2040 __ srl(count, 1, count);
duke@435 2041 generate_disjoint_long_copy_core(aligned);
duke@435 2042 __ mov(G4, count); // Restore
duke@435 2043
duke@435 2044 // copy 1 element at a time
duke@435 2045 __ BIND(L_copy_4_bytes);
duke@435 2046 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 2047 __ delayed()->nop();
duke@435 2048 __ BIND(L_copy_4_bytes_loop);
duke@435 2049 __ ld(from, offset, O3);
duke@435 2050 __ deccc(count);
duke@435 2051 __ st(O3, to, offset);
duke@435 2052 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 2053 __ delayed()->inc(offset, 4);
duke@435 2054 __ BIND(L_exit);
duke@435 2055 }
duke@435 2056
duke@435 2057 //
duke@435 2058 // Generate stub for disjoint int copy. If "aligned" is true, the
duke@435 2059 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2060 //
duke@435 2061 // Arguments for generated stub:
duke@435 2062 // from: O0
duke@435 2063 // to: O1
duke@435 2064 // count: O2 treated as signed
duke@435 2065 //
iveresov@2595 2066 address generate_disjoint_int_copy(bool aligned, address *entry, const char *name) {
duke@435 2067 __ align(CodeEntryAlignment);
duke@435 2068 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2069 address start = __ pc();
duke@435 2070
duke@435 2071 const Register count = O2;
duke@435 2072 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2073
iveresov@2595 2074 if (entry != NULL) {
iveresov@2595 2075 *entry = __ pc();
iveresov@2595 2076 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2077 BLOCK_COMMENT("Entry:");
iveresov@2595 2078 }
duke@435 2079
duke@435 2080 generate_disjoint_int_copy_core(aligned);
duke@435 2081
duke@435 2082 // O3, O4 are used as temp registers
duke@435 2083 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 2084 __ retl();
duke@435 2085 __ delayed()->mov(G0, O0); // return 0
duke@435 2086 return start;
duke@435 2087 }
duke@435 2088
duke@435 2089 //
duke@435 2090 // Generate core code for conjoint int copy (and oop copy on 32-bit).
duke@435 2091 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 2092 // to be heapword aligned.
duke@435 2093 //
duke@435 2094 // Arguments:
duke@435 2095 // from: O0
duke@435 2096 // to: O1
duke@435 2097 // count: O2 treated as signed
duke@435 2098 //
duke@435 2099 void generate_conjoint_int_copy_core(bool aligned) {
duke@435 2100 // Do reverse copy.
duke@435 2101
duke@435 2102 Label L_skip_alignment, L_aligned_copy;
duke@435 2103 Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 2104
duke@435 2105 const Register from = O0; // source array address
duke@435 2106 const Register to = O1; // destination array address
duke@435 2107 const Register count = O2; // elements count
duke@435 2108 const Register end_from = from; // source array end address
duke@435 2109 const Register end_to = to; // destination array end address
duke@435 2110 // O3, O4, O5, G3 are used as temp registers
duke@435 2111
duke@435 2112 const Register byte_count = O3; // bytes count to copy
duke@435 2113
duke@435 2114 __ sllx(count, LogBytesPerInt, byte_count);
duke@435 2115 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 2116
duke@435 2117 __ cmp(count, 5); // for short arrays, just do single element copy
duke@435 2118 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 2119 __ delayed()->add(from, byte_count, end_from);
duke@435 2120
duke@435 2121 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 2122 __ andcc(end_to, 7, G0);
duke@435 2123 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 2124 __ delayed()->nop();
duke@435 2125 __ dec(count);
duke@435 2126 __ dec(end_from, 4);
duke@435 2127 __ dec(end_to, 4);
duke@435 2128 __ ld(end_from, 0, O4);
duke@435 2129 __ st(O4, end_to, 0);
duke@435 2130 __ BIND(L_skip_alignment);
duke@435 2131
duke@435 2132 // Check if 'end_from' and 'end_to' has the same alignment.
duke@435 2133 __ andcc(end_from, 7, G0);
duke@435 2134 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 2135 __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
duke@435 2136
duke@435 2137 // copy with shift 4 elements (16 bytes) at a time
duke@435 2138 //
duke@435 2139 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 2140 // to form 2 aligned 8-bytes chunks to store.
duke@435 2141 //
duke@435 2142 __ ldx(end_from, -4, O3);
kvn@1800 2143 __ align(OptoLoopAlignment);
duke@435 2144 __ BIND(L_copy_16_bytes);
duke@435 2145 __ ldx(end_from, -12, O4);
duke@435 2146 __ deccc(count, 4);
duke@435 2147 __ ldx(end_from, -20, O5);
duke@435 2148 __ dec(end_to, 16);
duke@435 2149 __ dec(end_from, 16);
duke@435 2150 __ srlx(O3, 32, O3);
duke@435 2151 __ sllx(O4, 32, G3);
duke@435 2152 __ bset(G3, O3);
duke@435 2153 __ stx(O3, end_to, 8);
duke@435 2154 __ srlx(O4, 32, O4);
duke@435 2155 __ sllx(O5, 32, G3);
duke@435 2156 __ bset(O4, G3);
duke@435 2157 __ stx(G3, end_to, 0);
duke@435 2158 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2159 __ delayed()->mov(O5, O3);
duke@435 2160
duke@435 2161 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 2162 __ delayed()->inc(count, 4);
duke@435 2163
duke@435 2164 // copy 4 elements (16 bytes) at a time
kvn@1800 2165 __ align(OptoLoopAlignment);
duke@435 2166 __ BIND(L_aligned_copy);
duke@435 2167 __ dec(end_from, 16);
duke@435 2168 __ ldx(end_from, 8, O3);
duke@435 2169 __ ldx(end_from, 0, O4);
duke@435 2170 __ dec(end_to, 16);
duke@435 2171 __ deccc(count, 4);
duke@435 2172 __ stx(O3, end_to, 8);
duke@435 2173 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 2174 __ delayed()->stx(O4, end_to, 0);
duke@435 2175 __ inc(count, 4);
duke@435 2176
duke@435 2177 // copy 1 element (4 bytes) at a time
duke@435 2178 __ BIND(L_copy_4_bytes);
duke@435 2179 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 2180 __ delayed()->nop();
duke@435 2181 __ BIND(L_copy_4_bytes_loop);
duke@435 2182 __ dec(end_from, 4);
duke@435 2183 __ dec(end_to, 4);
duke@435 2184 __ ld(end_from, 0, O4);
duke@435 2185 __ deccc(count);
duke@435 2186 __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 2187 __ delayed()->st(O4, end_to, 0);
duke@435 2188 __ BIND(L_exit);
duke@435 2189 }
duke@435 2190
duke@435 2191 //
duke@435 2192 // Generate stub for conjoint int copy. If "aligned" is true, the
duke@435 2193 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2194 //
duke@435 2195 // Arguments for generated stub:
duke@435 2196 // from: O0
duke@435 2197 // to: O1
duke@435 2198 // count: O2 treated as signed
duke@435 2199 //
iveresov@2595 2200 address generate_conjoint_int_copy(bool aligned, address nooverlap_target,
iveresov@2595 2201 address *entry, const char *name) {
duke@435 2202 __ align(CodeEntryAlignment);
duke@435 2203 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2204 address start = __ pc();
duke@435 2205
duke@435 2206 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2207
iveresov@2595 2208 if (entry != NULL) {
iveresov@2595 2209 *entry = __ pc();
iveresov@2595 2210 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2211 BLOCK_COMMENT("Entry:");
iveresov@2595 2212 }
duke@435 2213
duke@435 2214 array_overlap_test(nooverlap_target, 2);
duke@435 2215
duke@435 2216 generate_conjoint_int_copy_core(aligned);
duke@435 2217
duke@435 2218 // O3, O4 are used as temp registers
duke@435 2219 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 2220 __ retl();
duke@435 2221 __ delayed()->mov(G0, O0); // return 0
duke@435 2222 return start;
duke@435 2223 }
duke@435 2224
duke@435 2225 //
duke@435 2226 // Generate core code for disjoint long copy (and oop copy on 64-bit).
duke@435 2227 // "aligned" is ignored, because we must make the stronger
duke@435 2228 // assumption that both addresses are always 64-bit aligned.
duke@435 2229 //
duke@435 2230 // Arguments:
duke@435 2231 // from: O0
duke@435 2232 // to: O1
duke@435 2233 // count: O2 treated as signed
duke@435 2234 //
kvn@1799 2235 // count -= 2;
kvn@1799 2236 // if ( count >= 0 ) { // >= 2 elements
kvn@1799 2237 // if ( count > 6) { // >= 8 elements
kvn@1799 2238 // count -= 6; // original count - 8
kvn@1799 2239 // do {
kvn@1799 2240 // copy_8_elements;
kvn@1799 2241 // count -= 8;
kvn@1799 2242 // } while ( count >= 0 );
kvn@1799 2243 // count += 6;
kvn@1799 2244 // }
kvn@1799 2245 // if ( count >= 0 ) { // >= 2 elements
kvn@1799 2246 // do {
kvn@1799 2247 // copy_2_elements;
kvn@1799 2248 // } while ( (count=count-2) >= 0 );
kvn@1799 2249 // }
kvn@1799 2250 // }
kvn@1799 2251 // count += 2;
kvn@1799 2252 // if ( count != 0 ) { // 1 element left
kvn@1799 2253 // copy_1_element;
kvn@1799 2254 // }
kvn@1799 2255 //
duke@435 2256 void generate_disjoint_long_copy_core(bool aligned) {
duke@435 2257 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2258 const Register from = O0; // source array address
duke@435 2259 const Register to = O1; // destination array address
duke@435 2260 const Register count = O2; // elements count
duke@435 2261 const Register offset0 = O4; // element offset
duke@435 2262 const Register offset8 = O5; // next element offset
duke@435 2263
duke@435 2264 __ deccc(count, 2);
duke@435 2265 __ mov(G0, offset0); // offset from start of arrays (0)
duke@435 2266 __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
duke@435 2267 __ delayed()->add(offset0, 8, offset8);
kvn@1799 2268
kvn@1799 2269 // Copy by 64 bytes chunks
kvn@1799 2270 Label L_copy_64_bytes;
kvn@1799 2271 const Register from64 = O3; // source address
kvn@1799 2272 const Register to64 = G3; // destination address
kvn@1799 2273 __ subcc(count, 6, O3);
kvn@1799 2274 __ brx(Assembler::negative, false, Assembler::pt, L_copy_16_bytes );
kvn@1799 2275 __ delayed()->mov(to, to64);
kvn@1799 2276 // Now we can use O4(offset0), O5(offset8) as temps
kvn@1799 2277 __ mov(O3, count);
kvn@1799 2278 __ mov(from, from64);
kvn@1799 2279
kvn@1800 2280 __ align(OptoLoopAlignment);
kvn@1799 2281 __ BIND(L_copy_64_bytes);
kvn@1799 2282 for( int off = 0; off < 64; off += 16 ) {
kvn@1799 2283 __ ldx(from64, off+0, O4);
kvn@1799 2284 __ ldx(from64, off+8, O5);
kvn@1799 2285 __ stx(O4, to64, off+0);
kvn@1799 2286 __ stx(O5, to64, off+8);
kvn@1799 2287 }
kvn@1799 2288 __ deccc(count, 8);
kvn@1799 2289 __ inc(from64, 64);
kvn@1799 2290 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_64_bytes);
kvn@1799 2291 __ delayed()->inc(to64, 64);
kvn@1799 2292
kvn@1799 2293 // Restore O4(offset0), O5(offset8)
kvn@1799 2294 __ sub(from64, from, offset0);
kvn@1799 2295 __ inccc(count, 6);
kvn@1799 2296 __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
kvn@1799 2297 __ delayed()->add(offset0, 8, offset8);
kvn@1799 2298
kvn@1799 2299 // Copy by 16 bytes chunks
kvn@1800 2300 __ align(OptoLoopAlignment);
duke@435 2301 __ BIND(L_copy_16_bytes);
duke@435 2302 __ ldx(from, offset0, O3);
duke@435 2303 __ ldx(from, offset8, G3);
duke@435 2304 __ deccc(count, 2);
duke@435 2305 __ stx(O3, to, offset0);
duke@435 2306 __ inc(offset0, 16);
duke@435 2307 __ stx(G3, to, offset8);
duke@435 2308 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2309 __ delayed()->inc(offset8, 16);
duke@435 2310
kvn@1799 2311 // Copy last 8 bytes
duke@435 2312 __ BIND(L_copy_8_bytes);
duke@435 2313 __ inccc(count, 2);
duke@435 2314 __ brx(Assembler::zero, true, Assembler::pn, L_exit );
duke@435 2315 __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
duke@435 2316 __ ldx(from, offset0, O3);
duke@435 2317 __ stx(O3, to, offset0);
duke@435 2318 __ BIND(L_exit);
duke@435 2319 }
duke@435 2320
duke@435 2321 //
duke@435 2322 // Generate stub for disjoint long copy.
duke@435 2323 // "aligned" is ignored, because we must make the stronger
duke@435 2324 // assumption that both addresses are always 64-bit aligned.
duke@435 2325 //
duke@435 2326 // Arguments for generated stub:
duke@435 2327 // from: O0
duke@435 2328 // to: O1
duke@435 2329 // count: O2 treated as signed
duke@435 2330 //
iveresov@2595 2331 address generate_disjoint_long_copy(bool aligned, address *entry, const char *name) {
duke@435 2332 __ align(CodeEntryAlignment);
duke@435 2333 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2334 address start = __ pc();
duke@435 2335
duke@435 2336 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2337
iveresov@2595 2338 if (entry != NULL) {
iveresov@2595 2339 *entry = __ pc();
iveresov@2595 2340 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2341 BLOCK_COMMENT("Entry:");
iveresov@2595 2342 }
duke@435 2343
duke@435 2344 generate_disjoint_long_copy_core(aligned);
duke@435 2345
duke@435 2346 // O3, O4 are used as temp registers
duke@435 2347 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2348 __ retl();
duke@435 2349 __ delayed()->mov(G0, O0); // return 0
duke@435 2350 return start;
duke@435 2351 }
duke@435 2352
duke@435 2353 //
duke@435 2354 // Generate core code for conjoint long copy (and oop copy on 64-bit).
duke@435 2355 // "aligned" is ignored, because we must make the stronger
duke@435 2356 // assumption that both addresses are always 64-bit aligned.
duke@435 2357 //
duke@435 2358 // Arguments:
duke@435 2359 // from: O0
duke@435 2360 // to: O1
duke@435 2361 // count: O2 treated as signed
duke@435 2362 //
duke@435 2363 void generate_conjoint_long_copy_core(bool aligned) {
duke@435 2364 // Do reverse copy.
duke@435 2365 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2366 const Register from = O0; // source array address
duke@435 2367 const Register to = O1; // destination array address
duke@435 2368 const Register count = O2; // elements count
duke@435 2369 const Register offset8 = O4; // element offset
duke@435 2370 const Register offset0 = O5; // previous element offset
duke@435 2371
duke@435 2372 __ subcc(count, 1, count);
duke@435 2373 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
duke@435 2374 __ delayed()->sllx(count, LogBytesPerLong, offset8);
duke@435 2375 __ sub(offset8, 8, offset0);
kvn@1800 2376 __ align(OptoLoopAlignment);
duke@435 2377 __ BIND(L_copy_16_bytes);
duke@435 2378 __ ldx(from, offset8, O2);
duke@435 2379 __ ldx(from, offset0, O3);
duke@435 2380 __ stx(O2, to, offset8);
duke@435 2381 __ deccc(offset8, 16); // use offset8 as counter
duke@435 2382 __ stx(O3, to, offset0);
duke@435 2383 __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
duke@435 2384 __ delayed()->dec(offset0, 16);
duke@435 2385
duke@435 2386 __ BIND(L_copy_8_bytes);
duke@435 2387 __ brx(Assembler::negative, false, Assembler::pn, L_exit );
duke@435 2388 __ delayed()->nop();
duke@435 2389 __ ldx(from, 0, O3);
duke@435 2390 __ stx(O3, to, 0);
duke@435 2391 __ BIND(L_exit);
duke@435 2392 }
duke@435 2393
duke@435 2394 // Generate stub for conjoint long copy.
duke@435 2395 // "aligned" is ignored, because we must make the stronger
duke@435 2396 // assumption that both addresses are always 64-bit aligned.
duke@435 2397 //
duke@435 2398 // Arguments for generated stub:
duke@435 2399 // from: O0
duke@435 2400 // to: O1
duke@435 2401 // count: O2 treated as signed
duke@435 2402 //
iveresov@2595 2403 address generate_conjoint_long_copy(bool aligned, address nooverlap_target,
iveresov@2595 2404 address *entry, const char *name) {
duke@435 2405 __ align(CodeEntryAlignment);
duke@435 2406 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2407 address start = __ pc();
duke@435 2408
duke@435 2409 assert(!aligned, "usage");
duke@435 2410
duke@435 2411 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2412
iveresov@2595 2413 if (entry != NULL) {
iveresov@2595 2414 *entry = __ pc();
iveresov@2595 2415 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2416 BLOCK_COMMENT("Entry:");
iveresov@2595 2417 }
duke@435 2418
duke@435 2419 array_overlap_test(nooverlap_target, 3);
duke@435 2420
duke@435 2421 generate_conjoint_long_copy_core(aligned);
duke@435 2422
duke@435 2423 // O3, O4 are used as temp registers
duke@435 2424 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2425 __ retl();
duke@435 2426 __ delayed()->mov(G0, O0); // return 0
duke@435 2427 return start;
duke@435 2428 }
duke@435 2429
duke@435 2430 // Generate stub for disjoint oop copy. If "aligned" is true, the
duke@435 2431 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2432 //
duke@435 2433 // Arguments for generated stub:
duke@435 2434 // from: O0
duke@435 2435 // to: O1
duke@435 2436 // count: O2 treated as signed
duke@435 2437 //
iveresov@2595 2438 address generate_disjoint_oop_copy(bool aligned, address *entry, const char *name) {
duke@435 2439
duke@435 2440 const Register from = O0; // source array address
duke@435 2441 const Register to = O1; // destination array address
duke@435 2442 const Register count = O2; // elements count
duke@435 2443
duke@435 2444 __ align(CodeEntryAlignment);
duke@435 2445 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2446 address start = __ pc();
duke@435 2447
duke@435 2448 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2449
iveresov@2595 2450 if (entry != NULL) {
iveresov@2595 2451 *entry = __ pc();
iveresov@2595 2452 // caller can pass a 64-bit byte count here
iveresov@2595 2453 BLOCK_COMMENT("Entry:");
iveresov@2595 2454 }
duke@435 2455
duke@435 2456 // save arguments for barrier generation
duke@435 2457 __ mov(to, G1);
duke@435 2458 __ mov(count, G5);
duke@435 2459 gen_write_ref_array_pre_barrier(G1, G5);
duke@435 2460 #ifdef _LP64
coleenp@548 2461 assert_clean_int(count, O3); // Make sure 'count' is clean int.
coleenp@548 2462 if (UseCompressedOops) {
coleenp@548 2463 generate_disjoint_int_copy_core(aligned);
coleenp@548 2464 } else {
coleenp@548 2465 generate_disjoint_long_copy_core(aligned);
coleenp@548 2466 }
duke@435 2467 #else
duke@435 2468 generate_disjoint_int_copy_core(aligned);
duke@435 2469 #endif
duke@435 2470 // O0 is used as temp register
duke@435 2471 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2472
duke@435 2473 // O3, O4 are used as temp registers
duke@435 2474 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2475 __ retl();
duke@435 2476 __ delayed()->mov(G0, O0); // return 0
duke@435 2477 return start;
duke@435 2478 }
duke@435 2479
duke@435 2480 // Generate stub for conjoint oop copy. If "aligned" is true, the
duke@435 2481 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2482 //
duke@435 2483 // Arguments for generated stub:
duke@435 2484 // from: O0
duke@435 2485 // to: O1
duke@435 2486 // count: O2 treated as signed
duke@435 2487 //
iveresov@2595 2488 address generate_conjoint_oop_copy(bool aligned, address nooverlap_target,
iveresov@2595 2489 address *entry, const char *name) {
duke@435 2490
duke@435 2491 const Register from = O0; // source array address
duke@435 2492 const Register to = O1; // destination array address
duke@435 2493 const Register count = O2; // elements count
duke@435 2494
duke@435 2495 __ align(CodeEntryAlignment);
duke@435 2496 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2497 address start = __ pc();
duke@435 2498
duke@435 2499 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2500
iveresov@2595 2501 if (entry != NULL) {
iveresov@2595 2502 *entry = __ pc();
iveresov@2595 2503 // caller can pass a 64-bit byte count here
iveresov@2595 2504 BLOCK_COMMENT("Entry:");
iveresov@2595 2505 }
iveresov@2595 2506
iveresov@2595 2507 array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
duke@435 2508
duke@435 2509 // save arguments for barrier generation
duke@435 2510 __ mov(to, G1);
duke@435 2511 __ mov(count, G5);
duke@435 2512 gen_write_ref_array_pre_barrier(G1, G5);
duke@435 2513
duke@435 2514 #ifdef _LP64
coleenp@548 2515 if (UseCompressedOops) {
coleenp@548 2516 generate_conjoint_int_copy_core(aligned);
coleenp@548 2517 } else {
coleenp@548 2518 generate_conjoint_long_copy_core(aligned);
coleenp@548 2519 }
duke@435 2520 #else
duke@435 2521 generate_conjoint_int_copy_core(aligned);
duke@435 2522 #endif
duke@435 2523
duke@435 2524 // O0 is used as temp register
duke@435 2525 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2526
duke@435 2527 // O3, O4 are used as temp registers
duke@435 2528 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2529 __ retl();
duke@435 2530 __ delayed()->mov(G0, O0); // return 0
duke@435 2531 return start;
duke@435 2532 }
duke@435 2533
duke@435 2534
duke@435 2535 // Helper for generating a dynamic type check.
duke@435 2536 // Smashes only the given temp registers.
duke@435 2537 void generate_type_check(Register sub_klass,
duke@435 2538 Register super_check_offset,
duke@435 2539 Register super_klass,
duke@435 2540 Register temp,
jrose@1079 2541 Label& L_success) {
duke@435 2542 assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
duke@435 2543
duke@435 2544 BLOCK_COMMENT("type_check:");
duke@435 2545
jrose@1079 2546 Label L_miss, L_pop_to_miss;
duke@435 2547
duke@435 2548 assert_clean_int(super_check_offset, temp);
duke@435 2549
jrose@1079 2550 __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
jrose@1079 2551 &L_success, &L_miss, NULL,
jrose@1079 2552 super_check_offset);
jrose@1079 2553
jrose@1079 2554 BLOCK_COMMENT("type_check_slow_path:");
duke@435 2555 __ save_frame(0);
jrose@1079 2556 __ check_klass_subtype_slow_path(sub_klass->after_save(),
jrose@1079 2557 super_klass->after_save(),
jrose@1079 2558 L0, L1, L2, L4,
jrose@1079 2559 NULL, &L_pop_to_miss);
jrose@1079 2560 __ ba(false, L_success);
jrose@1079 2561 __ delayed()->restore();
jrose@1079 2562
jrose@1079 2563 __ bind(L_pop_to_miss);
duke@435 2564 __ restore();
duke@435 2565
duke@435 2566 // Fall through on failure!
duke@435 2567 __ BIND(L_miss);
duke@435 2568 }
duke@435 2569
duke@435 2570
duke@435 2571 // Generate stub for checked oop copy.
duke@435 2572 //
duke@435 2573 // Arguments for generated stub:
duke@435 2574 // from: O0
duke@435 2575 // to: O1
duke@435 2576 // count: O2 treated as signed
duke@435 2577 // ckoff: O3 (super_check_offset)
duke@435 2578 // ckval: O4 (super_klass)
duke@435 2579 // ret: O0 zero for success; (-1^K) where K is partial transfer count
duke@435 2580 //
iveresov@2595 2581 address generate_checkcast_copy(const char *name, address *entry) {
duke@435 2582
duke@435 2583 const Register O0_from = O0; // source array address
duke@435 2584 const Register O1_to = O1; // destination array address
duke@435 2585 const Register O2_count = O2; // elements count
duke@435 2586 const Register O3_ckoff = O3; // super_check_offset
duke@435 2587 const Register O4_ckval = O4; // super_klass
duke@435 2588
duke@435 2589 const Register O5_offset = O5; // loop var, with stride wordSize
duke@435 2590 const Register G1_remain = G1; // loop var, with stride -1
duke@435 2591 const Register G3_oop = G3; // actual oop copied
duke@435 2592 const Register G4_klass = G4; // oop._klass
duke@435 2593 const Register G5_super = G5; // oop._klass._primary_supers[ckval]
duke@435 2594
duke@435 2595 __ align(CodeEntryAlignment);
duke@435 2596 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2597 address start = __ pc();
duke@435 2598
duke@435 2599 #ifdef ASSERT
jrose@1079 2600 // We sometimes save a frame (see generate_type_check below).
duke@435 2601 // If this will cause trouble, let's fail now instead of later.
duke@435 2602 __ save_frame(0);
duke@435 2603 __ restore();
duke@435 2604 #endif
duke@435 2605
never@2199 2606 assert_clean_int(O2_count, G1); // Make sure 'count' is clean int.
never@2199 2607
duke@435 2608 #ifdef ASSERT
duke@435 2609 // caller guarantees that the arrays really are different
duke@435 2610 // otherwise, we would have to make conjoint checks
duke@435 2611 { Label L;
duke@435 2612 __ mov(O3, G1); // spill: overlap test smashes O3
duke@435 2613 __ mov(O4, G4); // spill: overlap test smashes O4
coleenp@548 2614 array_overlap_test(L, LogBytesPerHeapOop);
duke@435 2615 __ stop("checkcast_copy within a single array");
duke@435 2616 __ bind(L);
duke@435 2617 __ mov(G1, O3);
duke@435 2618 __ mov(G4, O4);
duke@435 2619 }
duke@435 2620 #endif //ASSERT
duke@435 2621
iveresov@2595 2622 if (entry != NULL) {
iveresov@2595 2623 *entry = __ pc();
iveresov@2595 2624 // caller can pass a 64-bit byte count here (from generic stub)
iveresov@2595 2625 BLOCK_COMMENT("Entry:");
iveresov@2595 2626 }
iveresov@2595 2627
iveresov@2595 2628 gen_write_ref_array_pre_barrier(O1_to, O2_count);
duke@435 2629
duke@435 2630 Label load_element, store_element, do_card_marks, fail, done;
duke@435 2631 __ addcc(O2_count, 0, G1_remain); // initialize loop index, and test it
duke@435 2632 __ brx(Assembler::notZero, false, Assembler::pt, load_element);
duke@435 2633 __ delayed()->mov(G0, O5_offset); // offset from start of arrays
duke@435 2634
duke@435 2635 // Empty array: Nothing to do.
duke@435 2636 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2637 __ retl();
duke@435 2638 __ delayed()->set(0, O0); // return 0 on (trivial) success
duke@435 2639
duke@435 2640 // ======== begin loop ========
duke@435 2641 // (Loop is rotated; its entry is load_element.)
duke@435 2642 // Loop variables:
duke@435 2643 // (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
duke@435 2644 // (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
duke@435 2645 // G3, G4, G5 --- current oop, oop.klass, oop.klass.super
kvn@1800 2646 __ align(OptoLoopAlignment);
duke@435 2647
jrose@1079 2648 __ BIND(store_element);
jrose@1079 2649 __ deccc(G1_remain); // decrement the count
coleenp@548 2650 __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
coleenp@548 2651 __ inc(O5_offset, heapOopSize); // step to next offset
duke@435 2652 __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
duke@435 2653 __ delayed()->set(0, O0); // return -1 on success
duke@435 2654
duke@435 2655 // ======== loop entry is here ========
jrose@1079 2656 __ BIND(load_element);
coleenp@548 2657 __ load_heap_oop(O0_from, O5_offset, G3_oop); // load the oop
duke@435 2658 __ br_null(G3_oop, true, Assembler::pt, store_element);
jrose@1079 2659 __ delayed()->nop();
duke@435 2660
coleenp@548 2661 __ load_klass(G3_oop, G4_klass); // query the object klass
duke@435 2662
duke@435 2663 generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
duke@435 2664 // branch to this on success:
jrose@1079 2665 store_element);
duke@435 2666 // ======== end loop ========
duke@435 2667
duke@435 2668 // It was a real error; we must depend on the caller to finish the job.
duke@435 2669 // Register G1 has number of *remaining* oops, O2 number of *total* oops.
duke@435 2670 // Emit GC store barriers for the oops we have copied (O2 minus G1),
duke@435 2671 // and report their number to the caller.
jrose@1079 2672 __ BIND(fail);
duke@435 2673 __ subcc(O2_count, G1_remain, O2_count);
duke@435 2674 __ brx(Assembler::zero, false, Assembler::pt, done);
duke@435 2675 __ delayed()->not1(O2_count, O0); // report (-1^K) to caller
duke@435 2676
jrose@1079 2677 __ BIND(do_card_marks);
duke@435 2678 gen_write_ref_array_post_barrier(O1_to, O2_count, O3); // store check on O1[0..O2]
duke@435 2679
jrose@1079 2680 __ BIND(done);
duke@435 2681 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2682 __ retl();
duke@435 2683 __ delayed()->nop(); // return value in 00
duke@435 2684
duke@435 2685 return start;
duke@435 2686 }
duke@435 2687
duke@435 2688
duke@435 2689 // Generate 'unsafe' array copy stub
duke@435 2690 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2691 // size_t argument instead of an element count.
duke@435 2692 //
duke@435 2693 // Arguments for generated stub:
duke@435 2694 // from: O0
duke@435 2695 // to: O1
duke@435 2696 // count: O2 byte count, treated as ssize_t, can be zero
duke@435 2697 //
duke@435 2698 // Examines the alignment of the operands and dispatches
duke@435 2699 // to a long, int, short, or byte copy loop.
duke@435 2700 //
iveresov@2595 2701 address generate_unsafe_copy(const char* name,
iveresov@2595 2702 address byte_copy_entry,
iveresov@2595 2703 address short_copy_entry,
iveresov@2595 2704 address int_copy_entry,
iveresov@2595 2705 address long_copy_entry) {
duke@435 2706
duke@435 2707 const Register O0_from = O0; // source array address
duke@435 2708 const Register O1_to = O1; // destination array address
duke@435 2709 const Register O2_count = O2; // elements count
duke@435 2710
duke@435 2711 const Register G1_bits = G1; // test copy of low bits
duke@435 2712
duke@435 2713 __ align(CodeEntryAlignment);
duke@435 2714 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2715 address start = __ pc();
duke@435 2716
duke@435 2717 // bump this on entry, not on exit:
duke@435 2718 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
duke@435 2719
duke@435 2720 __ or3(O0_from, O1_to, G1_bits);
duke@435 2721 __ or3(O2_count, G1_bits, G1_bits);
duke@435 2722
duke@435 2723 __ btst(BytesPerLong-1, G1_bits);
duke@435 2724 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2725 long_copy_entry, relocInfo::runtime_call_type);
duke@435 2726 // scale the count on the way out:
duke@435 2727 __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
duke@435 2728
duke@435 2729 __ btst(BytesPerInt-1, G1_bits);
duke@435 2730 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2731 int_copy_entry, relocInfo::runtime_call_type);
duke@435 2732 // scale the count on the way out:
duke@435 2733 __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
duke@435 2734
duke@435 2735 __ btst(BytesPerShort-1, G1_bits);
duke@435 2736 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2737 short_copy_entry, relocInfo::runtime_call_type);
duke@435 2738 // scale the count on the way out:
duke@435 2739 __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
duke@435 2740
duke@435 2741 __ br(Assembler::always, false, Assembler::pt,
duke@435 2742 byte_copy_entry, relocInfo::runtime_call_type);
duke@435 2743 __ delayed()->nop();
duke@435 2744
duke@435 2745 return start;
duke@435 2746 }
duke@435 2747
duke@435 2748
duke@435 2749 // Perform range checks on the proposed arraycopy.
duke@435 2750 // Kills the two temps, but nothing else.
duke@435 2751 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2752 void arraycopy_range_checks(Register src, // source array oop (O0)
duke@435 2753 Register src_pos, // source position (O1)
duke@435 2754 Register dst, // destination array oo (O2)
duke@435 2755 Register dst_pos, // destination position (O3)
duke@435 2756 Register length, // length of copy (O4)
duke@435 2757 Register temp1, Register temp2,
duke@435 2758 Label& L_failed) {
duke@435 2759 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2760
duke@435 2761 // if (src_pos + length > arrayOop(src)->length() ) FAIL;
duke@435 2762
duke@435 2763 const Register array_length = temp1; // scratch
duke@435 2764 const Register end_pos = temp2; // scratch
duke@435 2765
duke@435 2766 // Note: This next instruction may be in the delay slot of a branch:
duke@435 2767 __ add(length, src_pos, end_pos); // src_pos + length
duke@435 2768 __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2769 __ cmp(end_pos, array_length);
duke@435 2770 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2771
duke@435 2772 // if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
duke@435 2773 __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
duke@435 2774 __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2775 __ cmp(end_pos, array_length);
duke@435 2776 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2777
duke@435 2778 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2779 // Move with sign extension can be used since they are positive.
duke@435 2780 __ delayed()->signx(src_pos, src_pos);
duke@435 2781 __ signx(dst_pos, dst_pos);
duke@435 2782
duke@435 2783 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2784 }
duke@435 2785
duke@435 2786
duke@435 2787 //
duke@435 2788 // Generate generic array copy stubs
duke@435 2789 //
duke@435 2790 // Input:
duke@435 2791 // O0 - src oop
duke@435 2792 // O1 - src_pos
duke@435 2793 // O2 - dst oop
duke@435 2794 // O3 - dst_pos
duke@435 2795 // O4 - element count
duke@435 2796 //
duke@435 2797 // Output:
duke@435 2798 // O0 == 0 - success
duke@435 2799 // O0 == -1 - need to call System.arraycopy
duke@435 2800 //
iveresov@2595 2801 address generate_generic_copy(const char *name,
iveresov@2595 2802 address entry_jbyte_arraycopy,
iveresov@2595 2803 address entry_jshort_arraycopy,
iveresov@2595 2804 address entry_jint_arraycopy,
iveresov@2595 2805 address entry_oop_arraycopy,
iveresov@2595 2806 address entry_jlong_arraycopy,
iveresov@2595 2807 address entry_checkcast_arraycopy) {
duke@435 2808 Label L_failed, L_objArray;
duke@435 2809
duke@435 2810 // Input registers
duke@435 2811 const Register src = O0; // source array oop
duke@435 2812 const Register src_pos = O1; // source position
duke@435 2813 const Register dst = O2; // destination array oop
duke@435 2814 const Register dst_pos = O3; // destination position
duke@435 2815 const Register length = O4; // elements count
duke@435 2816
duke@435 2817 // registers used as temp
duke@435 2818 const Register G3_src_klass = G3; // source array klass
duke@435 2819 const Register G4_dst_klass = G4; // destination array klass
duke@435 2820 const Register G5_lh = G5; // layout handler
duke@435 2821 const Register O5_temp = O5;
duke@435 2822
duke@435 2823 __ align(CodeEntryAlignment);
duke@435 2824 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2825 address start = __ pc();
duke@435 2826
duke@435 2827 // bump this on entry, not on exit:
duke@435 2828 inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
duke@435 2829
duke@435 2830 // In principle, the int arguments could be dirty.
duke@435 2831 //assert_clean_int(src_pos, G1);
duke@435 2832 //assert_clean_int(dst_pos, G1);
duke@435 2833 //assert_clean_int(length, G1);
duke@435 2834
duke@435 2835 //-----------------------------------------------------------------------
duke@435 2836 // Assembler stubs will be used for this call to arraycopy
duke@435 2837 // if the following conditions are met:
duke@435 2838 //
duke@435 2839 // (1) src and dst must not be null.
duke@435 2840 // (2) src_pos must not be negative.
duke@435 2841 // (3) dst_pos must not be negative.
duke@435 2842 // (4) length must not be negative.
duke@435 2843 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2844 // (6) src and dst should be arrays.
duke@435 2845 // (7) src_pos + length must not exceed length of src.
duke@435 2846 // (8) dst_pos + length must not exceed length of dst.
duke@435 2847 BLOCK_COMMENT("arraycopy initial argument checks");
duke@435 2848
duke@435 2849 // if (src == NULL) return -1;
duke@435 2850 __ br_null(src, false, Assembler::pn, L_failed);
duke@435 2851
duke@435 2852 // if (src_pos < 0) return -1;
duke@435 2853 __ delayed()->tst(src_pos);
duke@435 2854 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2855 __ delayed()->nop();
duke@435 2856
duke@435 2857 // if (dst == NULL) return -1;
duke@435 2858 __ br_null(dst, false, Assembler::pn, L_failed);
duke@435 2859
duke@435 2860 // if (dst_pos < 0) return -1;
duke@435 2861 __ delayed()->tst(dst_pos);
duke@435 2862 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2863
duke@435 2864 // if (length < 0) return -1;
duke@435 2865 __ delayed()->tst(length);
duke@435 2866 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2867
duke@435 2868 BLOCK_COMMENT("arraycopy argument klass checks");
duke@435 2869 // get src->klass()
coleenp@548 2870 if (UseCompressedOops) {
coleenp@548 2871 __ delayed()->nop(); // ??? not good
coleenp@548 2872 __ load_klass(src, G3_src_klass);
coleenp@548 2873 } else {
coleenp@548 2874 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
coleenp@548 2875 }
duke@435 2876
duke@435 2877 #ifdef ASSERT
duke@435 2878 // assert(src->klass() != NULL);
duke@435 2879 BLOCK_COMMENT("assert klasses not null");
duke@435 2880 { Label L_a, L_b;
duke@435 2881 __ br_notnull(G3_src_klass, false, Assembler::pt, L_b); // it is broken if klass is NULL
coleenp@548 2882 __ delayed()->nop();
duke@435 2883 __ bind(L_a);
duke@435 2884 __ stop("broken null klass");
duke@435 2885 __ bind(L_b);
coleenp@548 2886 __ load_klass(dst, G4_dst_klass);
duke@435 2887 __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
duke@435 2888 __ delayed()->mov(G0, G4_dst_klass); // scribble the temp
duke@435 2889 BLOCK_COMMENT("assert done");
duke@435 2890 }
duke@435 2891 #endif
duke@435 2892
duke@435 2893 // Load layout helper
duke@435 2894 //
duke@435 2895 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2896 // 32 30 24 16 8 2 0
duke@435 2897 //
duke@435 2898 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2899 //
duke@435 2900
duke@435 2901 int lh_offset = klassOopDesc::header_size() * HeapWordSize +
duke@435 2902 Klass::layout_helper_offset_in_bytes();
duke@435 2903
duke@435 2904 // Load 32-bits signed value. Use br() instruction with it to check icc.
duke@435 2905 __ lduw(G3_src_klass, lh_offset, G5_lh);
duke@435 2906
coleenp@548 2907 if (UseCompressedOops) {
coleenp@548 2908 __ load_klass(dst, G4_dst_klass);
coleenp@548 2909 }
duke@435 2910 // Handle objArrays completely differently...
duke@435 2911 juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 2912 __ set(objArray_lh, O5_temp);
duke@435 2913 __ cmp(G5_lh, O5_temp);
duke@435 2914 __ br(Assembler::equal, false, Assembler::pt, L_objArray);
coleenp@548 2915 if (UseCompressedOops) {
coleenp@548 2916 __ delayed()->nop();
coleenp@548 2917 } else {
coleenp@548 2918 __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
coleenp@548 2919 }
duke@435 2920
duke@435 2921 // if (src->klass() != dst->klass()) return -1;
duke@435 2922 __ cmp(G3_src_klass, G4_dst_klass);
duke@435 2923 __ brx(Assembler::notEqual, false, Assembler::pn, L_failed);
duke@435 2924 __ delayed()->nop();
duke@435 2925
duke@435 2926 // if (!src->is_Array()) return -1;
duke@435 2927 __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
duke@435 2928 __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
duke@435 2929
duke@435 2930 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2931 #ifdef ASSERT
duke@435 2932 __ delayed()->nop();
duke@435 2933 { Label L;
duke@435 2934 jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
duke@435 2935 __ set(lh_prim_tag_in_place, O5_temp);
duke@435 2936 __ cmp(G5_lh, O5_temp);
duke@435 2937 __ br(Assembler::greaterEqual, false, Assembler::pt, L);
duke@435 2938 __ delayed()->nop();
duke@435 2939 __ stop("must be a primitive array");
duke@435 2940 __ bind(L);
duke@435 2941 }
duke@435 2942 #else
duke@435 2943 __ delayed(); // match next insn to prev branch
duke@435 2944 #endif
duke@435 2945
duke@435 2946 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 2947 O5_temp, G4_dst_klass, L_failed);
duke@435 2948
duke@435 2949 // typeArrayKlass
duke@435 2950 //
duke@435 2951 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2952 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2953 //
duke@435 2954
duke@435 2955 const Register G4_offset = G4_dst_klass; // array offset
duke@435 2956 const Register G3_elsize = G3_src_klass; // log2 element size
duke@435 2957
duke@435 2958 __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
duke@435 2959 __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
duke@435 2960 __ add(src, G4_offset, src); // src array offset
duke@435 2961 __ add(dst, G4_offset, dst); // dst array offset
duke@435 2962 __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
duke@435 2963
duke@435 2964 // next registers should be set before the jump to corresponding stub
duke@435 2965 const Register from = O0; // source array address
duke@435 2966 const Register to = O1; // destination array address
duke@435 2967 const Register count = O2; // elements count
duke@435 2968
duke@435 2969 // 'from', 'to', 'count' registers should be set in this order
duke@435 2970 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2971
duke@435 2972 BLOCK_COMMENT("scale indexes to element size");
duke@435 2973 __ sll_ptr(src_pos, G3_elsize, src_pos);
duke@435 2974 __ sll_ptr(dst_pos, G3_elsize, dst_pos);
duke@435 2975 __ add(src, src_pos, from); // src_addr
duke@435 2976 __ add(dst, dst_pos, to); // dst_addr
duke@435 2977
duke@435 2978 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2979 __ cmp(G3_elsize, 0);
iveresov@2595 2980 __ br(Assembler::equal, true, Assembler::pt, entry_jbyte_arraycopy);
duke@435 2981 __ delayed()->signx(length, count); // length
duke@435 2982
duke@435 2983 __ cmp(G3_elsize, LogBytesPerShort);
iveresov@2595 2984 __ br(Assembler::equal, true, Assembler::pt, entry_jshort_arraycopy);
duke@435 2985 __ delayed()->signx(length, count); // length
duke@435 2986
duke@435 2987 __ cmp(G3_elsize, LogBytesPerInt);
iveresov@2595 2988 __ br(Assembler::equal, true, Assembler::pt, entry_jint_arraycopy);
duke@435 2989 __ delayed()->signx(length, count); // length
duke@435 2990 #ifdef ASSERT
duke@435 2991 { Label L;
duke@435 2992 __ cmp(G3_elsize, LogBytesPerLong);
duke@435 2993 __ br(Assembler::equal, false, Assembler::pt, L);
duke@435 2994 __ delayed()->nop();
duke@435 2995 __ stop("must be long copy, but elsize is wrong");
duke@435 2996 __ bind(L);
duke@435 2997 }
duke@435 2998 #endif
iveresov@2595 2999 __ br(Assembler::always, false, Assembler::pt, entry_jlong_arraycopy);
duke@435 3000 __ delayed()->signx(length, count); // length
duke@435 3001
duke@435 3002 // objArrayKlass
duke@435 3003 __ BIND(L_objArray);
duke@435 3004 // live at this point: G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
duke@435 3005
duke@435 3006 Label L_plain_copy, L_checkcast_copy;
duke@435 3007 // test array classes for subtyping
duke@435 3008 __ cmp(G3_src_klass, G4_dst_klass); // usual case is exact equality
duke@435 3009 __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
duke@435 3010 __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
duke@435 3011
duke@435 3012 // Identically typed arrays can be copied without element-wise checks.
duke@435 3013 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 3014 O5_temp, G5_lh, L_failed);
duke@435 3015
duke@435 3016 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 3017 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 3018 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 3019 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 3020 __ add(src, src_pos, from); // src_addr
duke@435 3021 __ add(dst, dst_pos, to); // dst_addr
duke@435 3022 __ BIND(L_plain_copy);
iveresov@2595 3023 __ br(Assembler::always, false, Assembler::pt, entry_oop_arraycopy);
duke@435 3024 __ delayed()->signx(length, count); // length
duke@435 3025
duke@435 3026 __ BIND(L_checkcast_copy);
duke@435 3027 // live at this point: G3_src_klass, G4_dst_klass
duke@435 3028 {
duke@435 3029 // Before looking at dst.length, make sure dst is also an objArray.
duke@435 3030 // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
duke@435 3031 __ cmp(G5_lh, O5_temp);
duke@435 3032 __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
duke@435 3033
duke@435 3034 // It is safe to examine both src.length and dst.length.
duke@435 3035 __ delayed(); // match next insn to prev branch
duke@435 3036 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 3037 O5_temp, G5_lh, L_failed);
duke@435 3038
duke@435 3039 // Marshal the base address arguments now, freeing registers.
duke@435 3040 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 3041 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 3042 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 3043 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 3044 __ add(src, src_pos, from); // src_addr
duke@435 3045 __ add(dst, dst_pos, to); // dst_addr
duke@435 3046 __ signx(length, count); // length (reloaded)
duke@435 3047
duke@435 3048 Register sco_temp = O3; // this register is free now
duke@435 3049 assert_different_registers(from, to, count, sco_temp,
duke@435 3050 G4_dst_klass, G3_src_klass);
duke@435 3051
duke@435 3052 // Generate the type check.
duke@435 3053 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 3054 Klass::super_check_offset_offset_in_bytes());
duke@435 3055 __ lduw(G4_dst_klass, sco_offset, sco_temp);
duke@435 3056 generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
duke@435 3057 O5_temp, L_plain_copy);
duke@435 3058
duke@435 3059 // Fetch destination element klass from the objArrayKlass header.
duke@435 3060 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 3061 objArrayKlass::element_klass_offset_in_bytes());
duke@435 3062
duke@435 3063 // the checkcast_copy loop needs two extra arguments:
duke@435 3064 __ ld_ptr(G4_dst_klass, ek_offset, O4); // dest elem klass
duke@435 3065 // lduw(O4, sco_offset, O3); // sco of elem klass
duke@435 3066
iveresov@2595 3067 __ br(Assembler::always, false, Assembler::pt, entry_checkcast_arraycopy);
duke@435 3068 __ delayed()->lduw(O4, sco_offset, O3);
duke@435 3069 }
duke@435 3070
duke@435 3071 __ BIND(L_failed);
duke@435 3072 __ retl();
duke@435 3073 __ delayed()->sub(G0, 1, O0); // return -1
duke@435 3074 return start;
duke@435 3075 }
duke@435 3076
duke@435 3077 void generate_arraycopy_stubs() {
iveresov@2595 3078 address entry;
iveresov@2595 3079 address entry_jbyte_arraycopy;
iveresov@2595 3080 address entry_jshort_arraycopy;
iveresov@2595 3081 address entry_jint_arraycopy;
iveresov@2595 3082 address entry_oop_arraycopy;
iveresov@2595 3083 address entry_jlong_arraycopy;
iveresov@2595 3084 address entry_checkcast_arraycopy;
iveresov@2595 3085
iveresov@2595 3086 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
iveresov@2595 3087 "jbyte_disjoint_arraycopy");
iveresov@2595 3088 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy,
iveresov@2595 3089 "jbyte_arraycopy");
iveresov@2595 3090 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
iveresov@2595 3091 "jshort_disjoint_arraycopy");
iveresov@2595 3092 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy,
iveresov@2595 3093 "jshort_arraycopy");
iveresov@2595 3094 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, &entry,
iveresov@2595 3095 "jint_disjoint_arraycopy");
iveresov@2595 3096 StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, entry, &entry_jint_arraycopy,
iveresov@2595 3097 "jint_arraycopy");
iveresov@2595 3098 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_copy(false, &entry,
iveresov@2595 3099 "jlong_disjoint_arraycopy");
iveresov@2595 3100 StubRoutines::_jlong_arraycopy = generate_conjoint_long_copy(false, entry, &entry_jlong_arraycopy,
iveresov@2595 3101 "jlong_arraycopy");
iveresov@2595 3102 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, &entry,
iveresov@2595 3103 "oop_disjoint_arraycopy");
iveresov@2595 3104 StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, entry, &entry_oop_arraycopy,
iveresov@2595 3105 "oop_arraycopy");
iveresov@2595 3106
iveresov@2595 3107
iveresov@2595 3108 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, &entry,
iveresov@2595 3109 "arrayof_jbyte_disjoint_arraycopy");
iveresov@2595 3110 StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, entry, NULL,
iveresov@2595 3111 "arrayof_jbyte_arraycopy");
iveresov@2595 3112
iveresov@2595 3113 StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, &entry,
iveresov@2595 3114 "arrayof_jshort_disjoint_arraycopy");
iveresov@2595 3115 StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, entry, NULL,
iveresov@2595 3116 "arrayof_jshort_arraycopy");
iveresov@2595 3117
iveresov@2595 3118 StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, &entry,
iveresov@2595 3119 "arrayof_jint_disjoint_arraycopy");
duke@435 3120 #ifdef _LP64
duke@435 3121 // since sizeof(jint) < sizeof(HeapWord), there's a different flavor:
iveresov@2595 3122 StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, entry, NULL, "arrayof_jint_arraycopy");
duke@435 3123 #else
duke@435 3124 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 3125 #endif
iveresov@2595 3126
iveresov@2595 3127 StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, NULL,
iveresov@2595 3128 "arrayof_jlong_disjoint_arraycopy");
iveresov@2595 3129 StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, NULL,
iveresov@2595 3130 "arrayof_oop_disjoint_arraycopy");
iveresov@2595 3131
duke@435 3132 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 3133 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
duke@435 3134
iveresov@2595 3135 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
iveresov@2595 3136 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
iveresov@2595 3137 entry_jbyte_arraycopy,
iveresov@2595 3138 entry_jshort_arraycopy,
iveresov@2595 3139 entry_jint_arraycopy,
iveresov@2595 3140 entry_jlong_arraycopy);
iveresov@2595 3141 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
iveresov@2595 3142 entry_jbyte_arraycopy,
iveresov@2595 3143 entry_jshort_arraycopy,
iveresov@2595 3144 entry_jint_arraycopy,
iveresov@2595 3145 entry_oop_arraycopy,
iveresov@2595 3146 entry_jlong_arraycopy,
iveresov@2595 3147 entry_checkcast_arraycopy);
never@2118 3148
never@2118 3149 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 3150 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 3151 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 3152 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 3153 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 3154 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
duke@435 3155 }
duke@435 3156
duke@435 3157 void generate_initial() {
duke@435 3158 // Generates all stubs and initializes the entry points
duke@435 3159
duke@435 3160 //------------------------------------------------------------------------------------------------------------------------
duke@435 3161 // entry points that exist in all platforms
duke@435 3162 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
duke@435 3163 // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
duke@435 3164 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 3165
duke@435 3166 StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 3167 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 3168
duke@435 3169 //------------------------------------------------------------------------------------------------------------------------
duke@435 3170 // entry points that are platform specific
duke@435 3171 StubRoutines::Sparc::_test_stop_entry = generate_test_stop();
duke@435 3172
duke@435 3173 StubRoutines::Sparc::_stop_subroutine_entry = generate_stop_subroutine();
duke@435 3174 StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
duke@435 3175
duke@435 3176 #if !defined(COMPILER2) && !defined(_LP64)
duke@435 3177 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 3178 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 3179 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 3180 StubRoutines::_atomic_xchg_ptr_entry = StubRoutines::_atomic_xchg_entry;
duke@435 3181 StubRoutines::_atomic_cmpxchg_ptr_entry = StubRoutines::_atomic_cmpxchg_entry;
duke@435 3182 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 3183 StubRoutines::_atomic_add_ptr_entry = StubRoutines::_atomic_add_entry;
duke@435 3184 #endif // COMPILER2 !=> _LP64
duke@435 3185 }
duke@435 3186
duke@435 3187
duke@435 3188 void generate_all() {
duke@435 3189 // Generates all stubs and initializes the entry points
duke@435 3190
kvn@1077 3191 // Generate partial_subtype_check first here since its code depends on
kvn@1077 3192 // UseZeroBaseCompressedOops which is defined after heap initialization.
kvn@1077 3193 StubRoutines::Sparc::_partial_subtype_check = generate_partial_subtype_check();
duke@435 3194 // These entry points require SharedInfo::stack0 to be set up in non-core builds
duke@435 3195 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false);
dcubed@451 3196 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError), false);
duke@435 3197 StubRoutines::_throw_ArithmeticException_entry = generate_throw_exception("ArithmeticException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException), true);
duke@435 3198 StubRoutines::_throw_NullPointerException_entry = generate_throw_exception("NullPointerException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
duke@435 3199 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
duke@435 3200 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
duke@435 3201
duke@435 3202 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 3203 generate_handler_for_unsafe_access();
duke@435 3204
duke@435 3205 // support for verify_oop (must happen after universe_init)
duke@435 3206 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop_subroutine();
duke@435 3207
duke@435 3208 // arraycopy stubs used by compilers
duke@435 3209 generate_arraycopy_stubs();
never@1609 3210
never@1609 3211 // Don't initialize the platform math functions since sparc
never@1609 3212 // doesn't have intrinsics for these operations.
duke@435 3213 }
duke@435 3214
duke@435 3215
duke@435 3216 public:
duke@435 3217 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 3218 // replace the standard masm with a special one:
duke@435 3219 _masm = new MacroAssembler(code);
duke@435 3220
duke@435 3221 _stub_count = !all ? 0x100 : 0x200;
duke@435 3222 if (all) {
duke@435 3223 generate_all();
duke@435 3224 } else {
duke@435 3225 generate_initial();
duke@435 3226 }
duke@435 3227
duke@435 3228 // make sure this stub is available for all local calls
duke@435 3229 if (_atomic_add_stub.is_unbound()) {
duke@435 3230 // generate a second time, if necessary
duke@435 3231 (void) generate_atomic_add();
duke@435 3232 }
duke@435 3233 }
duke@435 3234
duke@435 3235
duke@435 3236 private:
duke@435 3237 int _stub_count;
duke@435 3238 void stub_prolog(StubCodeDesc* cdesc) {
duke@435 3239 # ifdef ASSERT
duke@435 3240 // put extra information in the stub code, to make it more readable
duke@435 3241 #ifdef _LP64
duke@435 3242 // Write the high part of the address
duke@435 3243 // [RGV] Check if there is a dependency on the size of this prolog
duke@435 3244 __ emit_data((intptr_t)cdesc >> 32, relocInfo::none);
duke@435 3245 #endif
duke@435 3246 __ emit_data((intptr_t)cdesc, relocInfo::none);
duke@435 3247 __ emit_data(++_stub_count, relocInfo::none);
duke@435 3248 # endif
duke@435 3249 align(true);
duke@435 3250 }
duke@435 3251
duke@435 3252 void align(bool at_header = false) {
duke@435 3253 // %%%%% move this constant somewhere else
duke@435 3254 // UltraSPARC cache line size is 8 instructions:
duke@435 3255 const unsigned int icache_line_size = 32;
duke@435 3256 const unsigned int icache_half_line_size = 16;
duke@435 3257
duke@435 3258 if (at_header) {
duke@435 3259 while ((intptr_t)(__ pc()) % icache_line_size != 0) {
duke@435 3260 __ emit_data(0, relocInfo::none);
duke@435 3261 }
duke@435 3262 } else {
duke@435 3263 while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
duke@435 3264 __ nop();
duke@435 3265 }
duke@435 3266 }
duke@435 3267 }
duke@435 3268
duke@435 3269 }; // end class declaration
duke@435 3270
duke@435 3271 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3272 StubGenerator g(code, all);
duke@435 3273 }

mercurial