src/cpu/sparc/vm/stubGenerator_sparc.cpp

Thu, 21 Jul 2011 11:25:07 -0700

author
kvn
date
Thu, 21 Jul 2011 11:25:07 -0700
changeset 3037
3d42f82cd811
parent 2978
d83ac25d0304
child 3092
baf763f388e6
permissions
-rw-r--r--

7063628: Use cbcond on T4
Summary: Add new short branch instruction to Hotspot sparc assembler.
Reviewed-by: never, twisti, jrose

duke@435 1 /*
iveresov@2595 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_sparc.inline.hpp"
stefank@2314 28 #include "interpreter/interpreter.hpp"
stefank@2314 29 #include "nativeInst_sparc.hpp"
stefank@2314 30 #include "oops/instanceOop.hpp"
stefank@2314 31 #include "oops/methodOop.hpp"
stefank@2314 32 #include "oops/objArrayKlass.hpp"
stefank@2314 33 #include "oops/oop.inline.hpp"
stefank@2314 34 #include "prims/methodHandles.hpp"
stefank@2314 35 #include "runtime/frame.inline.hpp"
stefank@2314 36 #include "runtime/handles.inline.hpp"
stefank@2314 37 #include "runtime/sharedRuntime.hpp"
stefank@2314 38 #include "runtime/stubCodeGenerator.hpp"
stefank@2314 39 #include "runtime/stubRoutines.hpp"
stefank@2314 40 #include "utilities/top.hpp"
stefank@2314 41 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 42 # include "thread_linux.inline.hpp"
stefank@2314 43 #endif
stefank@2314 44 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 45 # include "thread_solaris.inline.hpp"
stefank@2314 46 #endif
stefank@2314 47 #ifdef COMPILER2
stefank@2314 48 #include "opto/runtime.hpp"
stefank@2314 49 #endif
duke@435 50
duke@435 51 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 52 // For a more detailed description of the stub routine structure
duke@435 53 // see the comment in stubRoutines.hpp.
duke@435 54
duke@435 55 #define __ _masm->
duke@435 56
duke@435 57 #ifdef PRODUCT
duke@435 58 #define BLOCK_COMMENT(str) /* nothing */
duke@435 59 #else
duke@435 60 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 61 #endif
duke@435 62
duke@435 63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 64
duke@435 65 // Note: The register L7 is used as L7_thread_cache, and may not be used
duke@435 66 // any other way within this module.
duke@435 67
duke@435 68
duke@435 69 static const Register& Lstub_temp = L2;
duke@435 70
duke@435 71 // -------------------------------------------------------------------------------------------------------------------------
duke@435 72 // Stub Code definitions
duke@435 73
duke@435 74 static address handle_unsafe_access() {
duke@435 75 JavaThread* thread = JavaThread::current();
duke@435 76 address pc = thread->saved_exception_pc();
duke@435 77 address npc = thread->saved_exception_npc();
duke@435 78 // pc is the instruction which we must emulate
duke@435 79 // doing a no-op is fine: return garbage from the load
duke@435 80
duke@435 81 // request an async exception
duke@435 82 thread->set_pending_unsafe_access_error();
duke@435 83
duke@435 84 // return address of next instruction to execute
duke@435 85 return npc;
duke@435 86 }
duke@435 87
duke@435 88 class StubGenerator: public StubCodeGenerator {
duke@435 89 private:
duke@435 90
duke@435 91 #ifdef PRODUCT
duke@435 92 #define inc_counter_np(a,b,c) (0)
duke@435 93 #else
duke@435 94 #define inc_counter_np(counter, t1, t2) \
duke@435 95 BLOCK_COMMENT("inc_counter " #counter); \
twisti@1162 96 __ inc_counter(&counter, t1, t2);
duke@435 97 #endif
duke@435 98
duke@435 99 //----------------------------------------------------------------------------------------------------
duke@435 100 // Call stubs are used to call Java from C
duke@435 101
duke@435 102 address generate_call_stub(address& return_pc) {
duke@435 103 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 104 address start = __ pc();
duke@435 105
duke@435 106 // Incoming arguments:
duke@435 107 //
duke@435 108 // o0 : call wrapper address
duke@435 109 // o1 : result (address)
duke@435 110 // o2 : result type
duke@435 111 // o3 : method
duke@435 112 // o4 : (interpreter) entry point
duke@435 113 // o5 : parameters (address)
duke@435 114 // [sp + 0x5c]: parameter size (in words)
duke@435 115 // [sp + 0x60]: thread
duke@435 116 //
duke@435 117 // +---------------+ <--- sp + 0
duke@435 118 // | |
duke@435 119 // . reg save area .
duke@435 120 // | |
duke@435 121 // +---------------+ <--- sp + 0x40
duke@435 122 // | |
duke@435 123 // . extra 7 slots .
duke@435 124 // | |
duke@435 125 // +---------------+ <--- sp + 0x5c
duke@435 126 // | param. size |
duke@435 127 // +---------------+ <--- sp + 0x60
duke@435 128 // | thread |
duke@435 129 // +---------------+
duke@435 130 // | |
duke@435 131
duke@435 132 // note: if the link argument position changes, adjust
duke@435 133 // the code in frame::entry_frame_call_wrapper()
duke@435 134
duke@435 135 const Argument link = Argument(0, false); // used only for GC
duke@435 136 const Argument result = Argument(1, false);
duke@435 137 const Argument result_type = Argument(2, false);
duke@435 138 const Argument method = Argument(3, false);
duke@435 139 const Argument entry_point = Argument(4, false);
duke@435 140 const Argument parameters = Argument(5, false);
duke@435 141 const Argument parameter_size = Argument(6, false);
duke@435 142 const Argument thread = Argument(7, false);
duke@435 143
duke@435 144 // setup thread register
duke@435 145 __ ld_ptr(thread.as_address(), G2_thread);
coleenp@548 146 __ reinit_heapbase();
duke@435 147
duke@435 148 #ifdef ASSERT
duke@435 149 // make sure we have no pending exceptions
duke@435 150 { const Register t = G3_scratch;
duke@435 151 Label L;
duke@435 152 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
kvn@3037 153 __ br_null_short(t, Assembler::pt, L);
duke@435 154 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 155 __ bind(L);
duke@435 156 }
duke@435 157 #endif
duke@435 158
duke@435 159 // create activation frame & allocate space for parameters
duke@435 160 { const Register t = G3_scratch;
duke@435 161 __ ld_ptr(parameter_size.as_address(), t); // get parameter size (in words)
duke@435 162 __ add(t, frame::memory_parameter_word_sp_offset, t); // add space for save area (in words)
duke@435 163 __ round_to(t, WordsPerLong); // make sure it is multiple of 2 (in words)
twisti@1861 164 __ sll(t, Interpreter::logStackElementSize, t); // compute number of bytes
duke@435 165 __ neg(t); // negate so it can be used with save
duke@435 166 __ save(SP, t, SP); // setup new frame
duke@435 167 }
duke@435 168
duke@435 169 // +---------------+ <--- sp + 0
duke@435 170 // | |
duke@435 171 // . reg save area .
duke@435 172 // | |
duke@435 173 // +---------------+ <--- sp + 0x40
duke@435 174 // | |
duke@435 175 // . extra 7 slots .
duke@435 176 // | |
duke@435 177 // +---------------+ <--- sp + 0x5c
duke@435 178 // | empty slot | (only if parameter size is even)
duke@435 179 // +---------------+
duke@435 180 // | |
duke@435 181 // . parameters .
duke@435 182 // | |
duke@435 183 // +---------------+ <--- fp + 0
duke@435 184 // | |
duke@435 185 // . reg save area .
duke@435 186 // | |
duke@435 187 // +---------------+ <--- fp + 0x40
duke@435 188 // | |
duke@435 189 // . extra 7 slots .
duke@435 190 // | |
duke@435 191 // +---------------+ <--- fp + 0x5c
duke@435 192 // | param. size |
duke@435 193 // +---------------+ <--- fp + 0x60
duke@435 194 // | thread |
duke@435 195 // +---------------+
duke@435 196 // | |
duke@435 197
duke@435 198 // pass parameters if any
duke@435 199 BLOCK_COMMENT("pass parameters if any");
duke@435 200 { const Register src = parameters.as_in().as_register();
duke@435 201 const Register dst = Lentry_args;
duke@435 202 const Register tmp = G3_scratch;
duke@435 203 const Register cnt = G4_scratch;
duke@435 204
duke@435 205 // test if any parameters & setup of Lentry_args
duke@435 206 Label exit;
duke@435 207 __ ld_ptr(parameter_size.as_in().as_address(), cnt); // parameter counter
duke@435 208 __ add( FP, STACK_BIAS, dst );
kvn@3037 209 __ cmp_zero_and_br(Assembler::zero, cnt, exit);
duke@435 210 __ delayed()->sub(dst, BytesPerWord, dst); // setup Lentry_args
duke@435 211
duke@435 212 // copy parameters if any
duke@435 213 Label loop;
duke@435 214 __ BIND(loop);
duke@435 215 // Store parameter value
duke@435 216 __ ld_ptr(src, 0, tmp);
duke@435 217 __ add(src, BytesPerWord, src);
twisti@1861 218 __ st_ptr(tmp, dst, 0);
duke@435 219 __ deccc(cnt);
duke@435 220 __ br(Assembler::greater, false, Assembler::pt, loop);
twisti@1861 221 __ delayed()->sub(dst, Interpreter::stackElementSize, dst);
duke@435 222
duke@435 223 // done
duke@435 224 __ BIND(exit);
duke@435 225 }
duke@435 226
duke@435 227 // setup parameters, method & call Java function
duke@435 228 #ifdef ASSERT
duke@435 229 // layout_activation_impl checks it's notion of saved SP against
duke@435 230 // this register, so if this changes update it as well.
duke@435 231 const Register saved_SP = Lscratch;
duke@435 232 __ mov(SP, saved_SP); // keep track of SP before call
duke@435 233 #endif
duke@435 234
duke@435 235 // setup parameters
duke@435 236 const Register t = G3_scratch;
duke@435 237 __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
twisti@1861 238 __ sll(t, Interpreter::logStackElementSize, t); // compute number of bytes
duke@435 239 __ sub(FP, t, Gargs); // setup parameter pointer
duke@435 240 #ifdef _LP64
duke@435 241 __ add( Gargs, STACK_BIAS, Gargs ); // Account for LP64 stack bias
duke@435 242 #endif
duke@435 243 __ mov(SP, O5_savedSP);
duke@435 244
duke@435 245
duke@435 246 // do the call
duke@435 247 //
duke@435 248 // the following register must be setup:
duke@435 249 //
duke@435 250 // G2_thread
duke@435 251 // G5_method
duke@435 252 // Gargs
duke@435 253 BLOCK_COMMENT("call Java function");
duke@435 254 __ jmpl(entry_point.as_in().as_register(), G0, O7);
duke@435 255 __ delayed()->mov(method.as_in().as_register(), G5_method); // setup method
duke@435 256
duke@435 257 BLOCK_COMMENT("call_stub_return_address:");
duke@435 258 return_pc = __ pc();
duke@435 259
duke@435 260 // The callee, if it wasn't interpreted, can return with SP changed so
duke@435 261 // we can no longer assert of change of SP.
duke@435 262
duke@435 263 // store result depending on type
duke@435 264 // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
duke@435 265 // is treated as T_INT)
duke@435 266 { const Register addr = result .as_in().as_register();
duke@435 267 const Register type = result_type.as_in().as_register();
duke@435 268 Label is_long, is_float, is_double, is_object, exit;
duke@435 269 __ cmp(type, T_OBJECT); __ br(Assembler::equal, false, Assembler::pn, is_object);
duke@435 270 __ delayed()->cmp(type, T_FLOAT); __ br(Assembler::equal, false, Assembler::pn, is_float);
duke@435 271 __ delayed()->cmp(type, T_DOUBLE); __ br(Assembler::equal, false, Assembler::pn, is_double);
duke@435 272 __ delayed()->cmp(type, T_LONG); __ br(Assembler::equal, false, Assembler::pn, is_long);
duke@435 273 __ delayed()->nop();
duke@435 274
duke@435 275 // store int result
duke@435 276 __ st(O0, addr, G0);
duke@435 277
duke@435 278 __ BIND(exit);
duke@435 279 __ ret();
duke@435 280 __ delayed()->restore();
duke@435 281
duke@435 282 __ BIND(is_object);
kvn@3037 283 __ ba(exit);
duke@435 284 __ delayed()->st_ptr(O0, addr, G0);
duke@435 285
duke@435 286 __ BIND(is_float);
kvn@3037 287 __ ba(exit);
duke@435 288 __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
duke@435 289
duke@435 290 __ BIND(is_double);
kvn@3037 291 __ ba(exit);
duke@435 292 __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
duke@435 293
duke@435 294 __ BIND(is_long);
duke@435 295 #ifdef _LP64
kvn@3037 296 __ ba(exit);
duke@435 297 __ delayed()->st_long(O0, addr, G0); // store entire long
duke@435 298 #else
duke@435 299 #if defined(COMPILER2)
duke@435 300 // All return values are where we want them, except for Longs. C2 returns
duke@435 301 // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
duke@435 302 // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
duke@435 303 // build we simply always use G1.
duke@435 304 // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
duke@435 305 // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
duke@435 306 // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
duke@435 307
kvn@3037 308 __ ba(exit);
duke@435 309 __ delayed()->stx(G1, addr, G0); // store entire long
duke@435 310 #else
duke@435 311 __ st(O1, addr, BytesPerInt);
kvn@3037 312 __ ba(exit);
duke@435 313 __ delayed()->st(O0, addr, G0);
duke@435 314 #endif /* COMPILER2 */
duke@435 315 #endif /* _LP64 */
duke@435 316 }
duke@435 317 return start;
duke@435 318 }
duke@435 319
duke@435 320
duke@435 321 //----------------------------------------------------------------------------------------------------
duke@435 322 // Return point for a Java call if there's an exception thrown in Java code.
duke@435 323 // The exception is caught and transformed into a pending exception stored in
duke@435 324 // JavaThread that can be tested from within the VM.
duke@435 325 //
duke@435 326 // Oexception: exception oop
duke@435 327
duke@435 328 address generate_catch_exception() {
duke@435 329 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 330
duke@435 331 address start = __ pc();
duke@435 332 // verify that thread corresponds
duke@435 333 __ verify_thread();
duke@435 334
duke@435 335 const Register& temp_reg = Gtemp;
twisti@1162 336 Address pending_exception_addr (G2_thread, Thread::pending_exception_offset());
twisti@1162 337 Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset ());
twisti@1162 338 Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset ());
duke@435 339
duke@435 340 // set pending exception
duke@435 341 __ verify_oop(Oexception);
duke@435 342 __ st_ptr(Oexception, pending_exception_addr);
duke@435 343 __ set((intptr_t)__FILE__, temp_reg);
duke@435 344 __ st_ptr(temp_reg, exception_file_offset_addr);
duke@435 345 __ set((intptr_t)__LINE__, temp_reg);
duke@435 346 __ st(temp_reg, exception_line_offset_addr);
duke@435 347
duke@435 348 // complete return to VM
duke@435 349 assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
duke@435 350
twisti@1162 351 AddressLiteral stub_ret(StubRoutines::_call_stub_return_address);
twisti@1162 352 __ jump_to(stub_ret, temp_reg);
duke@435 353 __ delayed()->nop();
duke@435 354
duke@435 355 return start;
duke@435 356 }
duke@435 357
duke@435 358
duke@435 359 //----------------------------------------------------------------------------------------------------
duke@435 360 // Continuation point for runtime calls returning with a pending exception
duke@435 361 // The pending exception check happened in the runtime or native call stub
duke@435 362 // The pending exception in Thread is converted into a Java-level exception
duke@435 363 //
duke@435 364 // Contract with Java-level exception handler: O0 = exception
duke@435 365 // O1 = throwing pc
duke@435 366
duke@435 367 address generate_forward_exception() {
duke@435 368 StubCodeMark mark(this, "StubRoutines", "forward_exception");
duke@435 369 address start = __ pc();
duke@435 370
duke@435 371 // Upon entry, O7 has the return address returning into Java
duke@435 372 // (interpreted or compiled) code; i.e. the return address
duke@435 373 // becomes the throwing pc.
duke@435 374
duke@435 375 const Register& handler_reg = Gtemp;
duke@435 376
twisti@1162 377 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 378
duke@435 379 #ifdef ASSERT
duke@435 380 // make sure that this code is only executed if there is a pending exception
duke@435 381 { Label L;
duke@435 382 __ ld_ptr(exception_addr, Gtemp);
kvn@3037 383 __ br_notnull_short(Gtemp, Assembler::pt, L);
duke@435 384 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 385 __ bind(L);
duke@435 386 }
duke@435 387 #endif
duke@435 388
duke@435 389 // compute exception handler into handler_reg
duke@435 390 __ get_thread();
duke@435 391 __ ld_ptr(exception_addr, Oexception);
duke@435 392 __ verify_oop(Oexception);
duke@435 393 __ save_frame(0); // compensates for compiler weakness
duke@435 394 __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
duke@435 395 BLOCK_COMMENT("call exception_handler_for_return_address");
twisti@1730 396 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Lscratch);
duke@435 397 __ mov(O0, handler_reg);
duke@435 398 __ restore(); // compensates for compiler weakness
duke@435 399
duke@435 400 __ ld_ptr(exception_addr, Oexception);
duke@435 401 __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
duke@435 402
duke@435 403 #ifdef ASSERT
duke@435 404 // make sure exception is set
duke@435 405 { Label L;
kvn@3037 406 __ br_notnull_short(Oexception, Assembler::pt, L);
duke@435 407 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 408 __ bind(L);
duke@435 409 }
duke@435 410 #endif
duke@435 411 // jump to exception handler
duke@435 412 __ jmp(handler_reg, 0);
duke@435 413 // clear pending exception
duke@435 414 __ delayed()->st_ptr(G0, exception_addr);
duke@435 415
duke@435 416 return start;
duke@435 417 }
duke@435 418
duke@435 419
duke@435 420 //------------------------------------------------------------------------------------------------------------------------
duke@435 421 // Continuation point for throwing of implicit exceptions that are not handled in
duke@435 422 // the current activation. Fabricates an exception oop and initiates normal
duke@435 423 // exception dispatching in this frame. Only callee-saved registers are preserved
duke@435 424 // (through the normal register window / RegisterMap handling).
duke@435 425 // If the compiler needs all registers to be preserved between the fault
duke@435 426 // point and the exception handler then it must assume responsibility for that in
duke@435 427 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 428 // continuation_for_implicit_division_by_zero_exception. All other implicit
duke@435 429 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
duke@435 430 // either at call sites or otherwise assume that stack unwinding will be initiated,
duke@435 431 // so caller saved registers were assumed volatile in the compiler.
duke@435 432
duke@435 433 // Note that we generate only this stub into a RuntimeStub, because it needs to be
duke@435 434 // properly traversed and ignored during GC, so we change the meaning of the "__"
duke@435 435 // macro within this method.
duke@435 436 #undef __
duke@435 437 #define __ masm->
duke@435 438
never@2978 439 address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc,
never@2978 440 Register arg1 = noreg, Register arg2 = noreg) {
duke@435 441 #ifdef ASSERT
duke@435 442 int insts_size = VerifyThread ? 1 * K : 600;
duke@435 443 #else
duke@435 444 int insts_size = VerifyThread ? 1 * K : 256;
duke@435 445 #endif /* ASSERT */
duke@435 446 int locs_size = 32;
duke@435 447
duke@435 448 CodeBuffer code(name, insts_size, locs_size);
duke@435 449 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 450
duke@435 451 __ verify_thread();
duke@435 452
duke@435 453 // This is an inlined and slightly modified version of call_VM
duke@435 454 // which has the ability to fetch the return PC out of thread-local storage
duke@435 455 __ assert_not_delayed();
duke@435 456
duke@435 457 // Note that we always push a frame because on the SPARC
duke@435 458 // architecture, for all of our implicit exception kinds at call
duke@435 459 // sites, the implicit exception is taken before the callee frame
duke@435 460 // is pushed.
duke@435 461 __ save_frame(0);
duke@435 462
duke@435 463 int frame_complete = __ offset();
duke@435 464
duke@435 465 if (restore_saved_exception_pc) {
twisti@1162 466 __ ld_ptr(G2_thread, JavaThread::saved_exception_pc_offset(), I7);
duke@435 467 __ sub(I7, frame::pc_return_offset, I7);
duke@435 468 }
duke@435 469
duke@435 470 // Note that we always have a runtime stub frame on the top of stack by this point
duke@435 471 Register last_java_sp = SP;
duke@435 472 // 64-bit last_java_sp is biased!
duke@435 473 __ set_last_Java_frame(last_java_sp, G0);
duke@435 474 if (VerifyThread) __ mov(G2_thread, O0); // about to be smashed; pass early
duke@435 475 __ save_thread(noreg);
never@2978 476 if (arg1 != noreg) {
never@2978 477 assert(arg2 != O1, "clobbered");
never@2978 478 __ mov(arg1, O1);
never@2978 479 }
never@2978 480 if (arg2 != noreg) {
never@2978 481 __ mov(arg2, O2);
never@2978 482 }
duke@435 483 // do the call
duke@435 484 BLOCK_COMMENT("call runtime_entry");
duke@435 485 __ call(runtime_entry, relocInfo::runtime_call_type);
duke@435 486 if (!VerifyThread)
duke@435 487 __ delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 488 else
duke@435 489 __ delayed()->nop(); // (thread already passed)
duke@435 490 __ restore_thread(noreg);
duke@435 491 __ reset_last_Java_frame();
duke@435 492
duke@435 493 // check for pending exceptions. use Gtemp as scratch register.
duke@435 494 #ifdef ASSERT
duke@435 495 Label L;
duke@435 496
twisti@1162 497 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 498 Register scratch_reg = Gtemp;
duke@435 499 __ ld_ptr(exception_addr, scratch_reg);
kvn@3037 500 __ br_notnull_short(scratch_reg, Assembler::pt, L);
duke@435 501 __ should_not_reach_here();
duke@435 502 __ bind(L);
duke@435 503 #endif // ASSERT
duke@435 504 BLOCK_COMMENT("call forward_exception_entry");
duke@435 505 __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 506 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 507 __ delayed()->restore();
duke@435 508
duke@435 509 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
duke@435 510 return stub->entry_point();
duke@435 511 }
duke@435 512
duke@435 513 #undef __
duke@435 514 #define __ _masm->
duke@435 515
duke@435 516
duke@435 517 // Generate a routine that sets all the registers so we
duke@435 518 // can tell if the stop routine prints them correctly.
duke@435 519 address generate_test_stop() {
duke@435 520 StubCodeMark mark(this, "StubRoutines", "test_stop");
duke@435 521 address start = __ pc();
duke@435 522
duke@435 523 int i;
duke@435 524
duke@435 525 __ save_frame(0);
duke@435 526
duke@435 527 static jfloat zero = 0.0, one = 1.0;
duke@435 528
duke@435 529 // put addr in L0, then load through L0 to F0
duke@435 530 __ set((intptr_t)&zero, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F0);
duke@435 531 __ set((intptr_t)&one, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
duke@435 532
duke@435 533 // use add to put 2..18 in F2..F18
duke@435 534 for ( i = 2; i <= 18; ++i ) {
duke@435 535 __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1), as_FloatRegister(i));
duke@435 536 }
duke@435 537
duke@435 538 // Now put double 2 in F16, double 18 in F18
duke@435 539 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
duke@435 540 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
duke@435 541
duke@435 542 // use add to put 20..32 in F20..F32
duke@435 543 for (i = 20; i < 32; i += 2) {
duke@435 544 __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2), as_FloatRegister(i));
duke@435 545 }
duke@435 546
duke@435 547 // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
duke@435 548 for ( i = 0; i < 8; ++i ) {
duke@435 549 if (i < 6) {
duke@435 550 __ set( i, as_iRegister(i));
duke@435 551 __ set(16 + i, as_oRegister(i));
duke@435 552 __ set(24 + i, as_gRegister(i));
duke@435 553 }
duke@435 554 __ set( 8 + i, as_lRegister(i));
duke@435 555 }
duke@435 556
duke@435 557 __ stop("testing stop");
duke@435 558
duke@435 559
duke@435 560 __ ret();
duke@435 561 __ delayed()->restore();
duke@435 562
duke@435 563 return start;
duke@435 564 }
duke@435 565
duke@435 566
duke@435 567 address generate_stop_subroutine() {
duke@435 568 StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
duke@435 569 address start = __ pc();
duke@435 570
duke@435 571 __ stop_subroutine();
duke@435 572
duke@435 573 return start;
duke@435 574 }
duke@435 575
duke@435 576 address generate_flush_callers_register_windows() {
duke@435 577 StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
duke@435 578 address start = __ pc();
duke@435 579
duke@435 580 __ flush_windows();
duke@435 581 __ retl(false);
duke@435 582 __ delayed()->add( FP, STACK_BIAS, O0 );
duke@435 583 // The returned value must be a stack pointer whose register save area
duke@435 584 // is flushed, and will stay flushed while the caller executes.
duke@435 585
duke@435 586 return start;
duke@435 587 }
duke@435 588
duke@435 589 // Helper functions for v8 atomic operations.
duke@435 590 //
duke@435 591 void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
duke@435 592 if (mark_oop_reg == noreg) {
duke@435 593 address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
duke@435 594 __ set((intptr_t)lock_ptr, lock_ptr_reg);
duke@435 595 } else {
duke@435 596 assert(scratch_reg != noreg, "just checking");
duke@435 597 address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
duke@435 598 __ set((intptr_t)lock_ptr, lock_ptr_reg);
duke@435 599 __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
duke@435 600 __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
duke@435 601 }
duke@435 602 }
duke@435 603
duke@435 604 void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
duke@435 605
duke@435 606 get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
duke@435 607 __ set(StubRoutines::Sparc::locked, lock_reg);
duke@435 608 // Initialize yield counter
duke@435 609 __ mov(G0,yield_reg);
duke@435 610
duke@435 611 __ BIND(retry);
kvn@3037 612 __ cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dontyield);
duke@435 613
duke@435 614 // This code can only be called from inside the VM, this
duke@435 615 // stub is only invoked from Atomic::add(). We do not
duke@435 616 // want to use call_VM, because _last_java_sp and such
duke@435 617 // must already be set.
duke@435 618 //
duke@435 619 // Save the regs and make space for a C call
duke@435 620 __ save(SP, -96, SP);
duke@435 621 __ save_all_globals_into_locals();
duke@435 622 BLOCK_COMMENT("call os::naked_sleep");
duke@435 623 __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
duke@435 624 __ delayed()->nop();
duke@435 625 __ restore_globals_from_locals();
duke@435 626 __ restore();
duke@435 627 // reset the counter
duke@435 628 __ mov(G0,yield_reg);
duke@435 629
duke@435 630 __ BIND(dontyield);
duke@435 631
duke@435 632 // try to get lock
duke@435 633 __ swap(lock_ptr_reg, 0, lock_reg);
duke@435 634
duke@435 635 // did we get the lock?
duke@435 636 __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
duke@435 637 __ br(Assembler::notEqual, true, Assembler::pn, retry);
duke@435 638 __ delayed()->add(yield_reg,1,yield_reg);
duke@435 639
duke@435 640 // yes, got lock. do the operation here.
duke@435 641 }
duke@435 642
duke@435 643 void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
duke@435 644 __ st(lock_reg, lock_ptr_reg, 0); // unlock
duke@435 645 }
duke@435 646
duke@435 647 // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
duke@435 648 //
duke@435 649 // Arguments :
duke@435 650 //
duke@435 651 // exchange_value: O0
duke@435 652 // dest: O1
duke@435 653 //
duke@435 654 // Results:
duke@435 655 //
duke@435 656 // O0: the value previously stored in dest
duke@435 657 //
duke@435 658 address generate_atomic_xchg() {
duke@435 659 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 660 address start = __ pc();
duke@435 661
duke@435 662 if (UseCASForSwap) {
duke@435 663 // Use CAS instead of swap, just in case the MP hardware
duke@435 664 // prefers to work with just one kind of synch. instruction.
duke@435 665 Label retry;
duke@435 666 __ BIND(retry);
duke@435 667 __ mov(O0, O3); // scratch copy of exchange value
duke@435 668 __ ld(O1, 0, O2); // observe the previous value
duke@435 669 // try to replace O2 with O3
duke@435 670 __ cas_under_lock(O1, O2, O3,
duke@435 671 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
kvn@3037 672 __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
duke@435 673
duke@435 674 __ retl(false);
duke@435 675 __ delayed()->mov(O2, O0); // report previous value to caller
duke@435 676
duke@435 677 } else {
duke@435 678 if (VM_Version::v9_instructions_work()) {
duke@435 679 __ retl(false);
duke@435 680 __ delayed()->swap(O1, 0, O0);
duke@435 681 } else {
duke@435 682 const Register& lock_reg = O2;
duke@435 683 const Register& lock_ptr_reg = O3;
duke@435 684 const Register& yield_reg = O4;
duke@435 685
duke@435 686 Label retry;
duke@435 687 Label dontyield;
duke@435 688
duke@435 689 generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 690 // got the lock, do the swap
duke@435 691 __ swap(O1, 0, O0);
duke@435 692
duke@435 693 generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 694 __ retl(false);
duke@435 695 __ delayed()->nop();
duke@435 696 }
duke@435 697 }
duke@435 698
duke@435 699 return start;
duke@435 700 }
duke@435 701
duke@435 702
duke@435 703 // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
duke@435 704 //
duke@435 705 // Arguments :
duke@435 706 //
duke@435 707 // exchange_value: O0
duke@435 708 // dest: O1
duke@435 709 // compare_value: O2
duke@435 710 //
duke@435 711 // Results:
duke@435 712 //
duke@435 713 // O0: the value previously stored in dest
duke@435 714 //
duke@435 715 // Overwrites (v8): O3,O4,O5
duke@435 716 //
duke@435 717 address generate_atomic_cmpxchg() {
duke@435 718 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 719 address start = __ pc();
duke@435 720
duke@435 721 // cmpxchg(dest, compare_value, exchange_value)
duke@435 722 __ cas_under_lock(O1, O2, O0,
duke@435 723 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
duke@435 724 __ retl(false);
duke@435 725 __ delayed()->nop();
duke@435 726
duke@435 727 return start;
duke@435 728 }
duke@435 729
duke@435 730 // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
duke@435 731 //
duke@435 732 // Arguments :
duke@435 733 //
duke@435 734 // exchange_value: O1:O0
duke@435 735 // dest: O2
duke@435 736 // compare_value: O4:O3
duke@435 737 //
duke@435 738 // Results:
duke@435 739 //
duke@435 740 // O1:O0: the value previously stored in dest
duke@435 741 //
duke@435 742 // This only works on V9, on V8 we don't generate any
duke@435 743 // code and just return NULL.
duke@435 744 //
duke@435 745 // Overwrites: G1,G2,G3
duke@435 746 //
duke@435 747 address generate_atomic_cmpxchg_long() {
duke@435 748 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 749 address start = __ pc();
duke@435 750
duke@435 751 if (!VM_Version::supports_cx8())
duke@435 752 return NULL;;
duke@435 753 __ sllx(O0, 32, O0);
duke@435 754 __ srl(O1, 0, O1);
duke@435 755 __ or3(O0,O1,O0); // O0 holds 64-bit value from compare_value
duke@435 756 __ sllx(O3, 32, O3);
duke@435 757 __ srl(O4, 0, O4);
duke@435 758 __ or3(O3,O4,O3); // O3 holds 64-bit value from exchange_value
duke@435 759 __ casx(O2, O3, O0);
duke@435 760 __ srl(O0, 0, O1); // unpacked return value in O1:O0
duke@435 761 __ retl(false);
duke@435 762 __ delayed()->srlx(O0, 32, O0);
duke@435 763
duke@435 764 return start;
duke@435 765 }
duke@435 766
duke@435 767
duke@435 768 // Support for jint Atomic::add(jint add_value, volatile jint* dest).
duke@435 769 //
duke@435 770 // Arguments :
duke@435 771 //
duke@435 772 // add_value: O0 (e.g., +1 or -1)
duke@435 773 // dest: O1
duke@435 774 //
duke@435 775 // Results:
duke@435 776 //
duke@435 777 // O0: the new value stored in dest
duke@435 778 //
duke@435 779 // Overwrites (v9): O3
duke@435 780 // Overwrites (v8): O3,O4,O5
duke@435 781 //
duke@435 782 address generate_atomic_add() {
duke@435 783 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 784 address start = __ pc();
duke@435 785 __ BIND(_atomic_add_stub);
duke@435 786
duke@435 787 if (VM_Version::v9_instructions_work()) {
duke@435 788 Label(retry);
duke@435 789 __ BIND(retry);
duke@435 790
duke@435 791 __ lduw(O1, 0, O2);
kvn@3037 792 __ add(O0, O2, O3);
kvn@3037 793 __ cas(O1, O2, O3);
kvn@3037 794 __ cmp_and_br_short(O2, O3, Assembler::notEqual, Assembler::pn, retry);
duke@435 795 __ retl(false);
duke@435 796 __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
duke@435 797 } else {
duke@435 798 const Register& lock_reg = O2;
duke@435 799 const Register& lock_ptr_reg = O3;
duke@435 800 const Register& value_reg = O4;
duke@435 801 const Register& yield_reg = O5;
duke@435 802
duke@435 803 Label(retry);
duke@435 804 Label(dontyield);
duke@435 805
duke@435 806 generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 807 // got lock, do the increment
duke@435 808 __ ld(O1, 0, value_reg);
duke@435 809 __ add(O0, value_reg, value_reg);
duke@435 810 __ st(value_reg, O1, 0);
duke@435 811
duke@435 812 // %%% only for RMO and PSO
duke@435 813 __ membar(Assembler::StoreStore);
duke@435 814
duke@435 815 generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 816
duke@435 817 __ retl(false);
duke@435 818 __ delayed()->mov(value_reg, O0);
duke@435 819 }
duke@435 820
duke@435 821 return start;
duke@435 822 }
duke@435 823 Label _atomic_add_stub; // called from other stubs
duke@435 824
duke@435 825
duke@435 826 //------------------------------------------------------------------------------------------------------------------------
duke@435 827 // The following routine generates a subroutine to throw an asynchronous
duke@435 828 // UnknownError when an unsafe access gets a fault that could not be
duke@435 829 // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
duke@435 830 //
duke@435 831 // Arguments :
duke@435 832 //
duke@435 833 // trapping PC: O7
duke@435 834 //
duke@435 835 // Results:
duke@435 836 // posts an asynchronous exception, skips the trapping instruction
duke@435 837 //
duke@435 838
duke@435 839 address generate_handler_for_unsafe_access() {
duke@435 840 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 841 address start = __ pc();
duke@435 842
duke@435 843 const int preserve_register_words = (64 * 2);
twisti@1162 844 Address preserve_addr(FP, (-preserve_register_words * wordSize) + STACK_BIAS);
duke@435 845
duke@435 846 Register Lthread = L7_thread_cache;
duke@435 847 int i;
duke@435 848
duke@435 849 __ save_frame(0);
duke@435 850 __ mov(G1, L1);
duke@435 851 __ mov(G2, L2);
duke@435 852 __ mov(G3, L3);
duke@435 853 __ mov(G4, L4);
duke@435 854 __ mov(G5, L5);
duke@435 855 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 856 __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
duke@435 857 }
duke@435 858
duke@435 859 address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
duke@435 860 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 861 __ call(entry_point, relocInfo::runtime_call_type);
duke@435 862 __ delayed()->nop();
duke@435 863
duke@435 864 __ mov(L1, G1);
duke@435 865 __ mov(L2, G2);
duke@435 866 __ mov(L3, G3);
duke@435 867 __ mov(L4, G4);
duke@435 868 __ mov(L5, G5);
duke@435 869 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 870 __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
duke@435 871 }
duke@435 872
duke@435 873 __ verify_thread();
duke@435 874
duke@435 875 __ jmp(O0, 0);
duke@435 876 __ delayed()->restore();
duke@435 877
duke@435 878 return start;
duke@435 879 }
duke@435 880
duke@435 881
duke@435 882 // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
duke@435 883 // Arguments :
duke@435 884 //
duke@435 885 // ret : O0, returned
duke@435 886 // icc/xcc: set as O0 (depending on wordSize)
duke@435 887 // sub : O1, argument, not changed
duke@435 888 // super: O2, argument, not changed
duke@435 889 // raddr: O7, blown by call
duke@435 890 address generate_partial_subtype_check() {
coleenp@548 891 __ align(CodeEntryAlignment);
duke@435 892 StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
duke@435 893 address start = __ pc();
jrose@1079 894 Label miss;
duke@435 895
duke@435 896 #if defined(COMPILER2) && !defined(_LP64)
duke@435 897 // Do not use a 'save' because it blows the 64-bit O registers.
coleenp@548 898 __ add(SP,-4*wordSize,SP); // Make space for 4 temps (stack must be 2 words aligned)
duke@435 899 __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
duke@435 900 __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
duke@435 901 __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
duke@435 902 __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
duke@435 903 Register Rret = O0;
duke@435 904 Register Rsub = O1;
duke@435 905 Register Rsuper = O2;
duke@435 906 #else
duke@435 907 __ save_frame(0);
duke@435 908 Register Rret = I0;
duke@435 909 Register Rsub = I1;
duke@435 910 Register Rsuper = I2;
duke@435 911 #endif
duke@435 912
duke@435 913 Register L0_ary_len = L0;
duke@435 914 Register L1_ary_ptr = L1;
duke@435 915 Register L2_super = L2;
duke@435 916 Register L3_index = L3;
duke@435 917
jrose@1079 918 __ check_klass_subtype_slow_path(Rsub, Rsuper,
jrose@1079 919 L0, L1, L2, L3,
jrose@1079 920 NULL, &miss);
jrose@1079 921
jrose@1079 922 // Match falls through here.
jrose@1079 923 __ addcc(G0,0,Rret); // set Z flags, Z result
duke@435 924
duke@435 925 #if defined(COMPILER2) && !defined(_LP64)
duke@435 926 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 927 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 928 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 929 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 930 __ retl(); // Result in Rret is zero; flags set to Z
duke@435 931 __ delayed()->add(SP,4*wordSize,SP);
duke@435 932 #else
duke@435 933 __ ret(); // Result in Rret is zero; flags set to Z
duke@435 934 __ delayed()->restore();
duke@435 935 #endif
duke@435 936
duke@435 937 __ BIND(miss);
duke@435 938 __ addcc(G0,1,Rret); // set NZ flags, NZ result
duke@435 939
duke@435 940 #if defined(COMPILER2) && !defined(_LP64)
duke@435 941 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 942 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 943 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 944 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 945 __ retl(); // Result in Rret is != 0; flags set to NZ
duke@435 946 __ delayed()->add(SP,4*wordSize,SP);
duke@435 947 #else
duke@435 948 __ ret(); // Result in Rret is != 0; flags set to NZ
duke@435 949 __ delayed()->restore();
duke@435 950 #endif
duke@435 951
duke@435 952 return start;
duke@435 953 }
duke@435 954
duke@435 955
duke@435 956 // Called from MacroAssembler::verify_oop
duke@435 957 //
duke@435 958 address generate_verify_oop_subroutine() {
duke@435 959 StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
duke@435 960
duke@435 961 address start = __ pc();
duke@435 962
duke@435 963 __ verify_oop_subroutine();
duke@435 964
duke@435 965 return start;
duke@435 966 }
duke@435 967
duke@435 968
duke@435 969 //
duke@435 970 // Verify that a register contains clean 32-bits positive value
duke@435 971 // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
duke@435 972 //
duke@435 973 // Input:
duke@435 974 // Rint - 32-bits value
duke@435 975 // Rtmp - scratch
duke@435 976 //
duke@435 977 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 978 #if defined(ASSERT) && defined(_LP64)
duke@435 979 __ signx(Rint, Rtmp);
duke@435 980 __ cmp(Rint, Rtmp);
duke@435 981 __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
duke@435 982 #endif
duke@435 983 }
duke@435 984
duke@435 985 //
duke@435 986 // Generate overlap test for array copy stubs
duke@435 987 //
duke@435 988 // Input:
duke@435 989 // O0 - array1
duke@435 990 // O1 - array2
duke@435 991 // O2 - element count
duke@435 992 //
duke@435 993 // Kills temps: O3, O4
duke@435 994 //
duke@435 995 void array_overlap_test(address no_overlap_target, int log2_elem_size) {
duke@435 996 assert(no_overlap_target != NULL, "must be generated");
duke@435 997 array_overlap_test(no_overlap_target, NULL, log2_elem_size);
duke@435 998 }
duke@435 999 void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
duke@435 1000 array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
duke@435 1001 }
duke@435 1002 void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
duke@435 1003 const Register from = O0;
duke@435 1004 const Register to = O1;
duke@435 1005 const Register count = O2;
duke@435 1006 const Register to_from = O3; // to - from
duke@435 1007 const Register byte_count = O4; // count << log2_elem_size
duke@435 1008
duke@435 1009 __ subcc(to, from, to_from);
duke@435 1010 __ sll_ptr(count, log2_elem_size, byte_count);
duke@435 1011 if (NOLp == NULL)
duke@435 1012 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
duke@435 1013 else
duke@435 1014 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
duke@435 1015 __ delayed()->cmp(to_from, byte_count);
duke@435 1016 if (NOLp == NULL)
tonyp@2010 1017 __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, no_overlap_target);
duke@435 1018 else
tonyp@2010 1019 __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, (*NOLp));
duke@435 1020 __ delayed()->nop();
duke@435 1021 }
duke@435 1022
duke@435 1023 //
duke@435 1024 // Generate pre-write barrier for array.
duke@435 1025 //
duke@435 1026 // Input:
duke@435 1027 // addr - register containing starting address
duke@435 1028 // count - register containing element count
duke@435 1029 // tmp - scratch register
duke@435 1030 //
duke@435 1031 // The input registers are overwritten.
duke@435 1032 //
iveresov@2606 1033 void gen_write_ref_array_pre_barrier(Register addr, Register count, bool dest_uninitialized) {
duke@435 1034 BarrierSet* bs = Universe::heap()->barrier_set();
iveresov@2606 1035 switch (bs->kind()) {
iveresov@2606 1036 case BarrierSet::G1SATBCT:
iveresov@2606 1037 case BarrierSet::G1SATBCTLogging:
iveresov@2606 1038 // With G1, don't generate the call if we statically know that the target in uninitialized
iveresov@2606 1039 if (!dest_uninitialized) {
iveresov@2606 1040 __ save_frame(0);
iveresov@2606 1041 // Save the necessary global regs... will be used after.
iveresov@2606 1042 if (addr->is_global()) {
iveresov@2606 1043 __ mov(addr, L0);
iveresov@2606 1044 }
iveresov@2606 1045 if (count->is_global()) {
iveresov@2606 1046 __ mov(count, L1);
iveresov@2606 1047 }
iveresov@2606 1048 __ mov(addr->after_save(), O0);
iveresov@2606 1049 // Get the count into O1
iveresov@2606 1050 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
iveresov@2606 1051 __ delayed()->mov(count->after_save(), O1);
iveresov@2606 1052 if (addr->is_global()) {
iveresov@2606 1053 __ mov(L0, addr);
iveresov@2606 1054 }
iveresov@2606 1055 if (count->is_global()) {
iveresov@2606 1056 __ mov(L1, count);
iveresov@2606 1057 }
iveresov@2606 1058 __ restore();
iveresov@2606 1059 }
iveresov@2606 1060 break;
iveresov@2606 1061 case BarrierSet::CardTableModRef:
iveresov@2606 1062 case BarrierSet::CardTableExtension:
iveresov@2606 1063 case BarrierSet::ModRef:
iveresov@2606 1064 break;
iveresov@2606 1065 default:
iveresov@2606 1066 ShouldNotReachHere();
duke@435 1067 }
duke@435 1068 }
duke@435 1069 //
duke@435 1070 // Generate post-write barrier for array.
duke@435 1071 //
duke@435 1072 // Input:
duke@435 1073 // addr - register containing starting address
duke@435 1074 // count - register containing element count
duke@435 1075 // tmp - scratch register
duke@435 1076 //
duke@435 1077 // The input registers are overwritten.
duke@435 1078 //
duke@435 1079 void gen_write_ref_array_post_barrier(Register addr, Register count,
iveresov@2606 1080 Register tmp) {
duke@435 1081 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1082
duke@435 1083 switch (bs->kind()) {
duke@435 1084 case BarrierSet::G1SATBCT:
duke@435 1085 case BarrierSet::G1SATBCTLogging:
duke@435 1086 {
duke@435 1087 // Get some new fresh output registers.
duke@435 1088 __ save_frame(0);
ysr@777 1089 __ mov(addr->after_save(), O0);
duke@435 1090 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
ysr@777 1091 __ delayed()->mov(count->after_save(), O1);
duke@435 1092 __ restore();
duke@435 1093 }
duke@435 1094 break;
duke@435 1095 case BarrierSet::CardTableModRef:
duke@435 1096 case BarrierSet::CardTableExtension:
duke@435 1097 {
duke@435 1098 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1099 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1100 assert_different_registers(addr, count, tmp);
duke@435 1101
duke@435 1102 Label L_loop;
duke@435 1103
coleenp@548 1104 __ sll_ptr(count, LogBytesPerHeapOop, count);
coleenp@548 1105 __ sub(count, BytesPerHeapOop, count);
duke@435 1106 __ add(count, addr, count);
duke@435 1107 // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
duke@435 1108 __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
duke@435 1109 __ srl_ptr(count, CardTableModRefBS::card_shift, count);
duke@435 1110 __ sub(count, addr, count);
twisti@1162 1111 AddressLiteral rs(ct->byte_map_base);
twisti@1162 1112 __ set(rs, tmp);
duke@435 1113 __ BIND(L_loop);
twisti@1162 1114 __ stb(G0, tmp, addr);
duke@435 1115 __ subcc(count, 1, count);
duke@435 1116 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1117 __ delayed()->add(addr, 1, addr);
twisti@1162 1118 }
duke@435 1119 break;
duke@435 1120 case BarrierSet::ModRef:
duke@435 1121 break;
twisti@1162 1122 default:
duke@435 1123 ShouldNotReachHere();
duke@435 1124 }
duke@435 1125 }
duke@435 1126
duke@435 1127
duke@435 1128 // Copy big chunks forward with shift
duke@435 1129 //
duke@435 1130 // Inputs:
duke@435 1131 // from - source arrays
duke@435 1132 // to - destination array aligned to 8-bytes
duke@435 1133 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1134 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1135 // L_copy_bytes - copy exit label
duke@435 1136 //
duke@435 1137 void copy_16_bytes_forward_with_shift(Register from, Register to,
duke@435 1138 Register count, int count_dec, Label& L_copy_bytes) {
duke@435 1139 Label L_loop, L_aligned_copy, L_copy_last_bytes;
duke@435 1140
duke@435 1141 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
duke@435 1142 __ andcc(from, 7, G1); // misaligned bytes
duke@435 1143 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1144 __ delayed()->nop();
duke@435 1145
duke@435 1146 const Register left_shift = G1; // left shift bit counter
duke@435 1147 const Register right_shift = G5; // right shift bit counter
duke@435 1148
duke@435 1149 __ sll(G1, LogBitsPerByte, left_shift);
duke@435 1150 __ mov(64, right_shift);
duke@435 1151 __ sub(right_shift, left_shift, right_shift);
duke@435 1152
duke@435 1153 //
duke@435 1154 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1155 // to form 2 aligned 8-bytes chunks to store.
duke@435 1156 //
duke@435 1157 __ deccc(count, count_dec); // Pre-decrement 'count'
duke@435 1158 __ andn(from, 7, from); // Align address
duke@435 1159 __ ldx(from, 0, O3);
duke@435 1160 __ inc(from, 8);
kvn@1800 1161 __ align(OptoLoopAlignment);
duke@435 1162 __ BIND(L_loop);
duke@435 1163 __ ldx(from, 0, O4);
duke@435 1164 __ deccc(count, count_dec); // Can we do next iteration after this one?
duke@435 1165 __ ldx(from, 8, G4);
duke@435 1166 __ inc(to, 16);
duke@435 1167 __ inc(from, 16);
duke@435 1168 __ sllx(O3, left_shift, O3);
duke@435 1169 __ srlx(O4, right_shift, G3);
duke@435 1170 __ bset(G3, O3);
duke@435 1171 __ stx(O3, to, -16);
duke@435 1172 __ sllx(O4, left_shift, O4);
duke@435 1173 __ srlx(G4, right_shift, G3);
duke@435 1174 __ bset(G3, O4);
duke@435 1175 __ stx(O4, to, -8);
duke@435 1176 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1177 __ delayed()->mov(G4, O3);
duke@435 1178
duke@435 1179 __ inccc(count, count_dec>>1 ); // + 8 bytes
duke@435 1180 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
duke@435 1181 __ delayed()->inc(count, count_dec>>1); // restore 'count'
duke@435 1182
duke@435 1183 // copy 8 bytes, part of them already loaded in O3
duke@435 1184 __ ldx(from, 0, O4);
duke@435 1185 __ inc(to, 8);
duke@435 1186 __ inc(from, 8);
duke@435 1187 __ sllx(O3, left_shift, O3);
duke@435 1188 __ srlx(O4, right_shift, G3);
duke@435 1189 __ bset(O3, G3);
duke@435 1190 __ stx(G3, to, -8);
duke@435 1191
duke@435 1192 __ BIND(L_copy_last_bytes);
duke@435 1193 __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
duke@435 1194 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
duke@435 1195 __ delayed()->sub(from, right_shift, from); // restore address
duke@435 1196
duke@435 1197 __ BIND(L_aligned_copy);
duke@435 1198 }
duke@435 1199
duke@435 1200 // Copy big chunks backward with shift
duke@435 1201 //
duke@435 1202 // Inputs:
duke@435 1203 // end_from - source arrays end address
duke@435 1204 // end_to - destination array end address aligned to 8-bytes
duke@435 1205 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1206 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1207 // L_aligned_copy - aligned copy exit label
duke@435 1208 // L_copy_bytes - copy exit label
duke@435 1209 //
duke@435 1210 void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
duke@435 1211 Register count, int count_dec,
duke@435 1212 Label& L_aligned_copy, Label& L_copy_bytes) {
duke@435 1213 Label L_loop, L_copy_last_bytes;
duke@435 1214
duke@435 1215 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
duke@435 1216 __ andcc(end_from, 7, G1); // misaligned bytes
duke@435 1217 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1218 __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
duke@435 1219
duke@435 1220 const Register left_shift = G1; // left shift bit counter
duke@435 1221 const Register right_shift = G5; // right shift bit counter
duke@435 1222
duke@435 1223 __ sll(G1, LogBitsPerByte, left_shift);
duke@435 1224 __ mov(64, right_shift);
duke@435 1225 __ sub(right_shift, left_shift, right_shift);
duke@435 1226
duke@435 1227 //
duke@435 1228 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1229 // to form 2 aligned 8-bytes chunks to store.
duke@435 1230 //
duke@435 1231 __ andn(end_from, 7, end_from); // Align address
duke@435 1232 __ ldx(end_from, 0, O3);
kvn@1800 1233 __ align(OptoLoopAlignment);
duke@435 1234 __ BIND(L_loop);
duke@435 1235 __ ldx(end_from, -8, O4);
duke@435 1236 __ deccc(count, count_dec); // Can we do next iteration after this one?
duke@435 1237 __ ldx(end_from, -16, G4);
duke@435 1238 __ dec(end_to, 16);
duke@435 1239 __ dec(end_from, 16);
duke@435 1240 __ srlx(O3, right_shift, O3);
duke@435 1241 __ sllx(O4, left_shift, G3);
duke@435 1242 __ bset(G3, O3);
duke@435 1243 __ stx(O3, end_to, 8);
duke@435 1244 __ srlx(O4, right_shift, O4);
duke@435 1245 __ sllx(G4, left_shift, G3);
duke@435 1246 __ bset(G3, O4);
duke@435 1247 __ stx(O4, end_to, 0);
duke@435 1248 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1249 __ delayed()->mov(G4, O3);
duke@435 1250
duke@435 1251 __ inccc(count, count_dec>>1 ); // + 8 bytes
duke@435 1252 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
duke@435 1253 __ delayed()->inc(count, count_dec>>1); // restore 'count'
duke@435 1254
duke@435 1255 // copy 8 bytes, part of them already loaded in O3
duke@435 1256 __ ldx(end_from, -8, O4);
duke@435 1257 __ dec(end_to, 8);
duke@435 1258 __ dec(end_from, 8);
duke@435 1259 __ srlx(O3, right_shift, O3);
duke@435 1260 __ sllx(O4, left_shift, G3);
duke@435 1261 __ bset(O3, G3);
duke@435 1262 __ stx(G3, end_to, 0);
duke@435 1263
duke@435 1264 __ BIND(L_copy_last_bytes);
duke@435 1265 __ srl(left_shift, LogBitsPerByte, left_shift); // misaligned bytes
duke@435 1266 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
duke@435 1267 __ delayed()->add(end_from, left_shift, end_from); // restore address
duke@435 1268 }
duke@435 1269
duke@435 1270 //
duke@435 1271 // Generate stub for disjoint byte copy. If "aligned" is true, the
duke@435 1272 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1273 //
duke@435 1274 // Arguments for generated stub:
duke@435 1275 // from: O0
duke@435 1276 // to: O1
duke@435 1277 // count: O2 treated as signed
duke@435 1278 //
iveresov@2595 1279 address generate_disjoint_byte_copy(bool aligned, address *entry, const char *name) {
duke@435 1280 __ align(CodeEntryAlignment);
duke@435 1281 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1282 address start = __ pc();
duke@435 1283
duke@435 1284 Label L_skip_alignment, L_align;
duke@435 1285 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1286
duke@435 1287 const Register from = O0; // source array address
duke@435 1288 const Register to = O1; // destination array address
duke@435 1289 const Register count = O2; // elements count
duke@435 1290 const Register offset = O5; // offset from start of arrays
duke@435 1291 // O3, O4, G3, G4 are used as temp registers
duke@435 1292
duke@435 1293 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1294
iveresov@2595 1295 if (entry != NULL) {
iveresov@2595 1296 *entry = __ pc();
iveresov@2595 1297 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1298 BLOCK_COMMENT("Entry:");
iveresov@2595 1299 }
duke@435 1300
duke@435 1301 // for short arrays, just do single element copy
duke@435 1302 __ cmp(count, 23); // 16 + 7
duke@435 1303 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1304 __ delayed()->mov(G0, offset);
duke@435 1305
duke@435 1306 if (aligned) {
duke@435 1307 // 'aligned' == true when it is known statically during compilation
duke@435 1308 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1309 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1310 //
duke@435 1311 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1312 // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
duke@435 1313 //
duke@435 1314 #ifndef _LP64
duke@435 1315 // copy a 4-bytes word if necessary to align 'to' to 8 bytes
duke@435 1316 __ andcc(to, 7, G0);
duke@435 1317 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
duke@435 1318 __ delayed()->ld(from, 0, O3);
duke@435 1319 __ inc(from, 4);
duke@435 1320 __ inc(to, 4);
duke@435 1321 __ dec(count, 4);
duke@435 1322 __ st(O3, to, -4);
duke@435 1323 __ BIND(L_skip_alignment);
duke@435 1324 #endif
duke@435 1325 } else {
duke@435 1326 // copy bytes to align 'to' on 8 byte boundary
duke@435 1327 __ andcc(to, 7, G1); // misaligned bytes
duke@435 1328 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1329 __ delayed()->neg(G1);
duke@435 1330 __ inc(G1, 8); // bytes need to copy to next 8-bytes alignment
duke@435 1331 __ sub(count, G1, count);
duke@435 1332 __ BIND(L_align);
duke@435 1333 __ ldub(from, 0, O3);
duke@435 1334 __ deccc(G1);
duke@435 1335 __ inc(from);
duke@435 1336 __ stb(O3, to, 0);
duke@435 1337 __ br(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1338 __ delayed()->inc(to);
duke@435 1339 __ BIND(L_skip_alignment);
duke@435 1340 }
duke@435 1341 #ifdef _LP64
duke@435 1342 if (!aligned)
duke@435 1343 #endif
duke@435 1344 {
duke@435 1345 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1346 // the same alignment mod 8, otherwise fall through to the next
duke@435 1347 // code for aligned copy.
duke@435 1348 // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
duke@435 1349 // Also jump over aligned copy after the copy with shift completed.
duke@435 1350
duke@435 1351 copy_16_bytes_forward_with_shift(from, to, count, 16, L_copy_byte);
duke@435 1352 }
duke@435 1353
duke@435 1354 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1355 __ and3(count, 7, G4); // Save count
duke@435 1356 __ srl(count, 3, count);
duke@435 1357 generate_disjoint_long_copy_core(aligned);
duke@435 1358 __ mov(G4, count); // Restore count
duke@435 1359
duke@435 1360 // copy tailing bytes
duke@435 1361 __ BIND(L_copy_byte);
kvn@3037 1362 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
kvn@1800 1363 __ align(OptoLoopAlignment);
duke@435 1364 __ BIND(L_copy_byte_loop);
duke@435 1365 __ ldub(from, offset, O3);
duke@435 1366 __ deccc(count);
duke@435 1367 __ stb(O3, to, offset);
duke@435 1368 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
duke@435 1369 __ delayed()->inc(offset);
duke@435 1370
duke@435 1371 __ BIND(L_exit);
duke@435 1372 // O3, O4 are used as temp registers
duke@435 1373 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1374 __ retl();
duke@435 1375 __ delayed()->mov(G0, O0); // return 0
duke@435 1376 return start;
duke@435 1377 }
duke@435 1378
duke@435 1379 //
duke@435 1380 // Generate stub for conjoint byte copy. If "aligned" is true, the
duke@435 1381 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1382 //
duke@435 1383 // Arguments for generated stub:
duke@435 1384 // from: O0
duke@435 1385 // to: O1
duke@435 1386 // count: O2 treated as signed
duke@435 1387 //
iveresov@2595 1388 address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
iveresov@2595 1389 address *entry, const char *name) {
duke@435 1390 // Do reverse copy.
duke@435 1391
duke@435 1392 __ align(CodeEntryAlignment);
duke@435 1393 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1394 address start = __ pc();
duke@435 1395
duke@435 1396 Label L_skip_alignment, L_align, L_aligned_copy;
duke@435 1397 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1398
duke@435 1399 const Register from = O0; // source array address
duke@435 1400 const Register to = O1; // destination array address
duke@435 1401 const Register count = O2; // elements count
duke@435 1402 const Register end_from = from; // source array end address
duke@435 1403 const Register end_to = to; // destination array end address
duke@435 1404
duke@435 1405 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1406
iveresov@2595 1407 if (entry != NULL) {
iveresov@2595 1408 *entry = __ pc();
iveresov@2595 1409 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1410 BLOCK_COMMENT("Entry:");
iveresov@2595 1411 }
duke@435 1412
duke@435 1413 array_overlap_test(nooverlap_target, 0);
duke@435 1414
duke@435 1415 __ add(to, count, end_to); // offset after last copied element
duke@435 1416
duke@435 1417 // for short arrays, just do single element copy
duke@435 1418 __ cmp(count, 23); // 16 + 7
duke@435 1419 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1420 __ delayed()->add(from, count, end_from);
duke@435 1421
duke@435 1422 {
duke@435 1423 // Align end of arrays since they could be not aligned even
duke@435 1424 // when arrays itself are aligned.
duke@435 1425
duke@435 1426 // copy bytes to align 'end_to' on 8 byte boundary
duke@435 1427 __ andcc(end_to, 7, G1); // misaligned bytes
duke@435 1428 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1429 __ delayed()->nop();
duke@435 1430 __ sub(count, G1, count);
duke@435 1431 __ BIND(L_align);
duke@435 1432 __ dec(end_from);
duke@435 1433 __ dec(end_to);
duke@435 1434 __ ldub(end_from, 0, O3);
duke@435 1435 __ deccc(G1);
duke@435 1436 __ brx(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1437 __ delayed()->stb(O3, end_to, 0);
duke@435 1438 __ BIND(L_skip_alignment);
duke@435 1439 }
duke@435 1440 #ifdef _LP64
duke@435 1441 if (aligned) {
duke@435 1442 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1443 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1444 // in unaligned case.
duke@435 1445 __ dec(count, 16);
duke@435 1446 } else
duke@435 1447 #endif
duke@435 1448 {
duke@435 1449 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1450 // the same alignment mod 8, otherwise jump to the next
duke@435 1451 // code for aligned copy (and substracting 16 from 'count' before jump).
duke@435 1452 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1453 // Also jump over aligned copy after the copy with shift completed.
duke@435 1454
duke@435 1455 copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
duke@435 1456 L_aligned_copy, L_copy_byte);
duke@435 1457 }
duke@435 1458 // copy 4 elements (16 bytes) at a time
kvn@1800 1459 __ align(OptoLoopAlignment);
duke@435 1460 __ BIND(L_aligned_copy);
duke@435 1461 __ dec(end_from, 16);
duke@435 1462 __ ldx(end_from, 8, O3);
duke@435 1463 __ ldx(end_from, 0, O4);
duke@435 1464 __ dec(end_to, 16);
duke@435 1465 __ deccc(count, 16);
duke@435 1466 __ stx(O3, end_to, 8);
duke@435 1467 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1468 __ delayed()->stx(O4, end_to, 0);
duke@435 1469 __ inc(count, 16);
duke@435 1470
duke@435 1471 // copy 1 element (2 bytes) at a time
duke@435 1472 __ BIND(L_copy_byte);
kvn@3037 1473 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
kvn@1800 1474 __ align(OptoLoopAlignment);
duke@435 1475 __ BIND(L_copy_byte_loop);
duke@435 1476 __ dec(end_from);
duke@435 1477 __ dec(end_to);
duke@435 1478 __ ldub(end_from, 0, O4);
duke@435 1479 __ deccc(count);
duke@435 1480 __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
duke@435 1481 __ delayed()->stb(O4, end_to, 0);
duke@435 1482
duke@435 1483 __ BIND(L_exit);
duke@435 1484 // O3, O4 are used as temp registers
duke@435 1485 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1486 __ retl();
duke@435 1487 __ delayed()->mov(G0, O0); // return 0
duke@435 1488 return start;
duke@435 1489 }
duke@435 1490
duke@435 1491 //
duke@435 1492 // Generate stub for disjoint short copy. If "aligned" is true, the
duke@435 1493 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1494 //
duke@435 1495 // Arguments for generated stub:
duke@435 1496 // from: O0
duke@435 1497 // to: O1
duke@435 1498 // count: O2 treated as signed
duke@435 1499 //
iveresov@2595 1500 address generate_disjoint_short_copy(bool aligned, address *entry, const char * name) {
duke@435 1501 __ align(CodeEntryAlignment);
duke@435 1502 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1503 address start = __ pc();
duke@435 1504
duke@435 1505 Label L_skip_alignment, L_skip_alignment2;
duke@435 1506 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1507
duke@435 1508 const Register from = O0; // source array address
duke@435 1509 const Register to = O1; // destination array address
duke@435 1510 const Register count = O2; // elements count
duke@435 1511 const Register offset = O5; // offset from start of arrays
duke@435 1512 // O3, O4, G3, G4 are used as temp registers
duke@435 1513
duke@435 1514 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1515
iveresov@2595 1516 if (entry != NULL) {
iveresov@2595 1517 *entry = __ pc();
iveresov@2595 1518 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1519 BLOCK_COMMENT("Entry:");
iveresov@2595 1520 }
duke@435 1521
duke@435 1522 // for short arrays, just do single element copy
duke@435 1523 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1524 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1525 __ delayed()->mov(G0, offset);
duke@435 1526
duke@435 1527 if (aligned) {
duke@435 1528 // 'aligned' == true when it is known statically during compilation
duke@435 1529 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1530 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1531 //
duke@435 1532 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1533 // and 8 bytes - in 64-bits VM.
duke@435 1534 //
duke@435 1535 #ifndef _LP64
duke@435 1536 // copy a 2-elements word if necessary to align 'to' to 8 bytes
duke@435 1537 __ andcc(to, 7, G0);
duke@435 1538 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1539 __ delayed()->ld(from, 0, O3);
duke@435 1540 __ inc(from, 4);
duke@435 1541 __ inc(to, 4);
duke@435 1542 __ dec(count, 2);
duke@435 1543 __ st(O3, to, -4);
duke@435 1544 __ BIND(L_skip_alignment);
duke@435 1545 #endif
duke@435 1546 } else {
duke@435 1547 // copy 1 element if necessary to align 'to' on an 4 bytes
duke@435 1548 __ andcc(to, 3, G0);
duke@435 1549 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1550 __ delayed()->lduh(from, 0, O3);
duke@435 1551 __ inc(from, 2);
duke@435 1552 __ inc(to, 2);
duke@435 1553 __ dec(count);
duke@435 1554 __ sth(O3, to, -2);
duke@435 1555 __ BIND(L_skip_alignment);
duke@435 1556
duke@435 1557 // copy 2 elements to align 'to' on an 8 byte boundary
duke@435 1558 __ andcc(to, 7, G0);
duke@435 1559 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1560 __ delayed()->lduh(from, 0, O3);
duke@435 1561 __ dec(count, 2);
duke@435 1562 __ lduh(from, 2, O4);
duke@435 1563 __ inc(from, 4);
duke@435 1564 __ inc(to, 4);
duke@435 1565 __ sth(O3, to, -4);
duke@435 1566 __ sth(O4, to, -2);
duke@435 1567 __ BIND(L_skip_alignment2);
duke@435 1568 }
duke@435 1569 #ifdef _LP64
duke@435 1570 if (!aligned)
duke@435 1571 #endif
duke@435 1572 {
duke@435 1573 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1574 // the same alignment mod 8, otherwise fall through to the next
duke@435 1575 // code for aligned copy.
duke@435 1576 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1577 // Also jump over aligned copy after the copy with shift completed.
duke@435 1578
duke@435 1579 copy_16_bytes_forward_with_shift(from, to, count, 8, L_copy_2_bytes);
duke@435 1580 }
duke@435 1581
duke@435 1582 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1583 __ and3(count, 3, G4); // Save
duke@435 1584 __ srl(count, 2, count);
duke@435 1585 generate_disjoint_long_copy_core(aligned);
duke@435 1586 __ mov(G4, count); // restore
duke@435 1587
duke@435 1588 // copy 1 element at a time
duke@435 1589 __ BIND(L_copy_2_bytes);
kvn@3037 1590 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
kvn@1800 1591 __ align(OptoLoopAlignment);
duke@435 1592 __ BIND(L_copy_2_bytes_loop);
duke@435 1593 __ lduh(from, offset, O3);
duke@435 1594 __ deccc(count);
duke@435 1595 __ sth(O3, to, offset);
duke@435 1596 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1597 __ delayed()->inc(offset, 2);
duke@435 1598
duke@435 1599 __ BIND(L_exit);
duke@435 1600 // O3, O4 are used as temp registers
duke@435 1601 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1602 __ retl();
duke@435 1603 __ delayed()->mov(G0, O0); // return 0
duke@435 1604 return start;
duke@435 1605 }
duke@435 1606
duke@435 1607 //
never@2118 1608 // Generate stub for disjoint short fill. If "aligned" is true, the
never@2118 1609 // "to" address is assumed to be heapword aligned.
never@2118 1610 //
never@2118 1611 // Arguments for generated stub:
never@2118 1612 // to: O0
never@2118 1613 // value: O1
never@2118 1614 // count: O2 treated as signed
never@2118 1615 //
never@2118 1616 address generate_fill(BasicType t, bool aligned, const char* name) {
never@2118 1617 __ align(CodeEntryAlignment);
never@2118 1618 StubCodeMark mark(this, "StubRoutines", name);
never@2118 1619 address start = __ pc();
never@2118 1620
never@2118 1621 const Register to = O0; // source array address
never@2118 1622 const Register value = O1; // fill value
never@2118 1623 const Register count = O2; // elements count
never@2118 1624 // O3 is used as a temp register
never@2118 1625
never@2118 1626 assert_clean_int(count, O3); // Make sure 'count' is clean int.
never@2118 1627
never@2118 1628 Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
never@2149 1629 Label L_fill_2_bytes, L_fill_elements, L_fill_32_bytes;
never@2118 1630
never@2118 1631 int shift = -1;
never@2118 1632 switch (t) {
never@2118 1633 case T_BYTE:
never@2118 1634 shift = 2;
never@2118 1635 break;
never@2118 1636 case T_SHORT:
never@2118 1637 shift = 1;
never@2118 1638 break;
never@2118 1639 case T_INT:
never@2118 1640 shift = 0;
never@2118 1641 break;
never@2118 1642 default: ShouldNotReachHere();
never@2118 1643 }
never@2118 1644
never@2118 1645 BLOCK_COMMENT("Entry:");
never@2118 1646
never@2118 1647 if (t == T_BYTE) {
never@2118 1648 // Zero extend value
never@2118 1649 __ and3(value, 0xff, value);
never@2118 1650 __ sllx(value, 8, O3);
never@2118 1651 __ or3(value, O3, value);
never@2118 1652 }
never@2118 1653 if (t == T_SHORT) {
never@2118 1654 // Zero extend value
never@2149 1655 __ sllx(value, 48, value);
never@2149 1656 __ srlx(value, 48, value);
never@2118 1657 }
never@2118 1658 if (t == T_BYTE || t == T_SHORT) {
never@2118 1659 __ sllx(value, 16, O3);
never@2118 1660 __ or3(value, O3, value);
never@2118 1661 }
never@2118 1662
never@2118 1663 __ cmp(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
never@2149 1664 __ brx(Assembler::lessUnsigned, false, Assembler::pn, L_fill_elements); // use unsigned cmp
never@2149 1665 __ delayed()->andcc(count, 1, G0);
never@2118 1666
never@2118 1667 if (!aligned && (t == T_BYTE || t == T_SHORT)) {
never@2118 1668 // align source address at 4 bytes address boundary
never@2118 1669 if (t == T_BYTE) {
never@2118 1670 // One byte misalignment happens only for byte arrays
never@2118 1671 __ andcc(to, 1, G0);
never@2118 1672 __ br(Assembler::zero, false, Assembler::pt, L_skip_align1);
never@2118 1673 __ delayed()->nop();
never@2118 1674 __ stb(value, to, 0);
never@2118 1675 __ inc(to, 1);
never@2118 1676 __ dec(count, 1);
never@2118 1677 __ BIND(L_skip_align1);
never@2118 1678 }
never@2118 1679 // Two bytes misalignment happens only for byte and short (char) arrays
never@2118 1680 __ andcc(to, 2, G0);
never@2118 1681 __ br(Assembler::zero, false, Assembler::pt, L_skip_align2);
never@2118 1682 __ delayed()->nop();
never@2118 1683 __ sth(value, to, 0);
never@2118 1684 __ inc(to, 2);
never@2118 1685 __ dec(count, 1 << (shift - 1));
never@2118 1686 __ BIND(L_skip_align2);
never@2118 1687 }
never@2118 1688 #ifdef _LP64
never@2118 1689 if (!aligned) {
never@2118 1690 #endif
never@2118 1691 // align to 8 bytes, we know we are 4 byte aligned to start
never@2118 1692 __ andcc(to, 7, G0);
never@2118 1693 __ br(Assembler::zero, false, Assembler::pt, L_fill_32_bytes);
never@2118 1694 __ delayed()->nop();
never@2118 1695 __ stw(value, to, 0);
never@2118 1696 __ inc(to, 4);
never@2118 1697 __ dec(count, 1 << shift);
never@2118 1698 __ BIND(L_fill_32_bytes);
never@2118 1699 #ifdef _LP64
never@2118 1700 }
never@2118 1701 #endif
never@2118 1702
never@2118 1703 if (t == T_INT) {
never@2118 1704 // Zero extend value
never@2118 1705 __ srl(value, 0, value);
never@2118 1706 }
never@2118 1707 if (t == T_BYTE || t == T_SHORT || t == T_INT) {
never@2118 1708 __ sllx(value, 32, O3);
never@2118 1709 __ or3(value, O3, value);
never@2118 1710 }
never@2118 1711
never@2137 1712 Label L_check_fill_8_bytes;
never@2137 1713 // Fill 32-byte chunks
never@2137 1714 __ subcc(count, 8 << shift, count);
never@2137 1715 __ brx(Assembler::less, false, Assembler::pt, L_check_fill_8_bytes);
never@2137 1716 __ delayed()->nop();
never@2137 1717
never@2149 1718 Label L_fill_32_bytes_loop, L_fill_4_bytes;
never@2118 1719 __ align(16);
never@2118 1720 __ BIND(L_fill_32_bytes_loop);
never@2118 1721
never@2118 1722 __ stx(value, to, 0);
never@2118 1723 __ stx(value, to, 8);
never@2118 1724 __ stx(value, to, 16);
never@2118 1725 __ stx(value, to, 24);
never@2118 1726
never@2118 1727 __ subcc(count, 8 << shift, count);
never@2118 1728 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_fill_32_bytes_loop);
never@2118 1729 __ delayed()->add(to, 32, to);
never@2118 1730
never@2118 1731 __ BIND(L_check_fill_8_bytes);
never@2118 1732 __ addcc(count, 8 << shift, count);
never@2118 1733 __ brx(Assembler::zero, false, Assembler::pn, L_exit);
never@2118 1734 __ delayed()->subcc(count, 1 << (shift + 1), count);
never@2118 1735 __ brx(Assembler::less, false, Assembler::pn, L_fill_4_bytes);
never@2118 1736 __ delayed()->andcc(count, 1<<shift, G0);
never@2118 1737
never@2118 1738 //
never@2118 1739 // length is too short, just fill 8 bytes at a time
never@2118 1740 //
never@2118 1741 Label L_fill_8_bytes_loop;
never@2118 1742 __ BIND(L_fill_8_bytes_loop);
never@2118 1743 __ stx(value, to, 0);
never@2118 1744 __ subcc(count, 1 << (shift + 1), count);
never@2118 1745 __ brx(Assembler::greaterEqual, false, Assembler::pn, L_fill_8_bytes_loop);
never@2118 1746 __ delayed()->add(to, 8, to);
never@2118 1747
never@2118 1748 // fill trailing 4 bytes
never@2118 1749 __ andcc(count, 1<<shift, G0); // in delay slot of branches
never@2149 1750 if (t == T_INT) {
never@2149 1751 __ BIND(L_fill_elements);
never@2149 1752 }
never@2118 1753 __ BIND(L_fill_4_bytes);
never@2118 1754 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2_bytes);
never@2118 1755 if (t == T_BYTE || t == T_SHORT) {
never@2118 1756 __ delayed()->andcc(count, 1<<(shift-1), G0);
never@2118 1757 } else {
never@2118 1758 __ delayed()->nop();
never@2118 1759 }
never@2118 1760 __ stw(value, to, 0);
never@2118 1761 if (t == T_BYTE || t == T_SHORT) {
never@2118 1762 __ inc(to, 4);
never@2118 1763 // fill trailing 2 bytes
never@2118 1764 __ andcc(count, 1<<(shift-1), G0); // in delay slot of branches
never@2118 1765 __ BIND(L_fill_2_bytes);
never@2118 1766 __ brx(Assembler::zero, false, Assembler::pt, L_fill_byte);
never@2118 1767 __ delayed()->andcc(count, 1, count);
never@2118 1768 __ sth(value, to, 0);
never@2118 1769 if (t == T_BYTE) {
never@2118 1770 __ inc(to, 2);
never@2118 1771 // fill trailing byte
never@2118 1772 __ andcc(count, 1, count); // in delay slot of branches
never@2118 1773 __ BIND(L_fill_byte);
never@2118 1774 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2118 1775 __ delayed()->nop();
never@2118 1776 __ stb(value, to, 0);
never@2118 1777 } else {
never@2118 1778 __ BIND(L_fill_byte);
never@2118 1779 }
never@2118 1780 } else {
never@2118 1781 __ BIND(L_fill_2_bytes);
never@2118 1782 }
never@2118 1783 __ BIND(L_exit);
never@2118 1784 __ retl();
never@2149 1785 __ delayed()->nop();
never@2149 1786
never@2149 1787 // Handle copies less than 8 bytes. Int is handled elsewhere.
never@2149 1788 if (t == T_BYTE) {
never@2149 1789 __ BIND(L_fill_elements);
never@2149 1790 Label L_fill_2, L_fill_4;
never@2149 1791 // in delay slot __ andcc(count, 1, G0);
never@2149 1792 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
never@2149 1793 __ delayed()->andcc(count, 2, G0);
never@2149 1794 __ stb(value, to, 0);
never@2149 1795 __ inc(to, 1);
never@2149 1796 __ BIND(L_fill_2);
never@2149 1797 __ brx(Assembler::zero, false, Assembler::pt, L_fill_4);
never@2149 1798 __ delayed()->andcc(count, 4, G0);
never@2149 1799 __ stb(value, to, 0);
never@2149 1800 __ stb(value, to, 1);
never@2149 1801 __ inc(to, 2);
never@2149 1802 __ BIND(L_fill_4);
never@2149 1803 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2149 1804 __ delayed()->nop();
never@2149 1805 __ stb(value, to, 0);
never@2149 1806 __ stb(value, to, 1);
never@2149 1807 __ stb(value, to, 2);
never@2149 1808 __ retl();
never@2149 1809 __ delayed()->stb(value, to, 3);
never@2149 1810 }
never@2149 1811
never@2149 1812 if (t == T_SHORT) {
never@2149 1813 Label L_fill_2;
never@2149 1814 __ BIND(L_fill_elements);
never@2149 1815 // in delay slot __ andcc(count, 1, G0);
never@2149 1816 __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
never@2149 1817 __ delayed()->andcc(count, 2, G0);
never@2149 1818 __ sth(value, to, 0);
never@2149 1819 __ inc(to, 2);
never@2149 1820 __ BIND(L_fill_2);
never@2149 1821 __ brx(Assembler::zero, false, Assembler::pt, L_exit);
never@2149 1822 __ delayed()->nop();
never@2149 1823 __ sth(value, to, 0);
never@2149 1824 __ retl();
never@2149 1825 __ delayed()->sth(value, to, 2);
never@2149 1826 }
never@2118 1827 return start;
never@2118 1828 }
never@2118 1829
never@2118 1830 //
duke@435 1831 // Generate stub for conjoint short copy. If "aligned" is true, the
duke@435 1832 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1833 //
duke@435 1834 // Arguments for generated stub:
duke@435 1835 // from: O0
duke@435 1836 // to: O1
duke@435 1837 // count: O2 treated as signed
duke@435 1838 //
iveresov@2595 1839 address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
iveresov@2595 1840 address *entry, const char *name) {
duke@435 1841 // Do reverse copy.
duke@435 1842
duke@435 1843 __ align(CodeEntryAlignment);
duke@435 1844 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1845 address start = __ pc();
duke@435 1846
duke@435 1847 Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
duke@435 1848 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1849
duke@435 1850 const Register from = O0; // source array address
duke@435 1851 const Register to = O1; // destination array address
duke@435 1852 const Register count = O2; // elements count
duke@435 1853 const Register end_from = from; // source array end address
duke@435 1854 const Register end_to = to; // destination array end address
duke@435 1855
duke@435 1856 const Register byte_count = O3; // bytes count to copy
duke@435 1857
duke@435 1858 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1859
iveresov@2595 1860 if (entry != NULL) {
iveresov@2595 1861 *entry = __ pc();
iveresov@2595 1862 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 1863 BLOCK_COMMENT("Entry:");
iveresov@2595 1864 }
duke@435 1865
duke@435 1866 array_overlap_test(nooverlap_target, 1);
duke@435 1867
duke@435 1868 __ sllx(count, LogBytesPerShort, byte_count);
duke@435 1869 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 1870
duke@435 1871 // for short arrays, just do single element copy
duke@435 1872 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1873 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1874 __ delayed()->add(from, byte_count, end_from);
duke@435 1875
duke@435 1876 {
duke@435 1877 // Align end of arrays since they could be not aligned even
duke@435 1878 // when arrays itself are aligned.
duke@435 1879
duke@435 1880 // copy 1 element if necessary to align 'end_to' on an 4 bytes
duke@435 1881 __ andcc(end_to, 3, G0);
duke@435 1882 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1883 __ delayed()->lduh(end_from, -2, O3);
duke@435 1884 __ dec(end_from, 2);
duke@435 1885 __ dec(end_to, 2);
duke@435 1886 __ dec(count);
duke@435 1887 __ sth(O3, end_to, 0);
duke@435 1888 __ BIND(L_skip_alignment);
duke@435 1889
duke@435 1890 // copy 2 elements to align 'end_to' on an 8 byte boundary
duke@435 1891 __ andcc(end_to, 7, G0);
duke@435 1892 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1893 __ delayed()->lduh(end_from, -2, O3);
duke@435 1894 __ dec(count, 2);
duke@435 1895 __ lduh(end_from, -4, O4);
duke@435 1896 __ dec(end_from, 4);
duke@435 1897 __ dec(end_to, 4);
duke@435 1898 __ sth(O3, end_to, 2);
duke@435 1899 __ sth(O4, end_to, 0);
duke@435 1900 __ BIND(L_skip_alignment2);
duke@435 1901 }
duke@435 1902 #ifdef _LP64
duke@435 1903 if (aligned) {
duke@435 1904 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1905 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1906 // in unaligned case.
duke@435 1907 __ dec(count, 8);
duke@435 1908 } else
duke@435 1909 #endif
duke@435 1910 {
duke@435 1911 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1912 // the same alignment mod 8, otherwise jump to the next
duke@435 1913 // code for aligned copy (and substracting 8 from 'count' before jump).
duke@435 1914 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1915 // Also jump over aligned copy after the copy with shift completed.
duke@435 1916
duke@435 1917 copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
duke@435 1918 L_aligned_copy, L_copy_2_bytes);
duke@435 1919 }
duke@435 1920 // copy 4 elements (16 bytes) at a time
kvn@1800 1921 __ align(OptoLoopAlignment);
duke@435 1922 __ BIND(L_aligned_copy);
duke@435 1923 __ dec(end_from, 16);
duke@435 1924 __ ldx(end_from, 8, O3);
duke@435 1925 __ ldx(end_from, 0, O4);
duke@435 1926 __ dec(end_to, 16);
duke@435 1927 __ deccc(count, 8);
duke@435 1928 __ stx(O3, end_to, 8);
duke@435 1929 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1930 __ delayed()->stx(O4, end_to, 0);
duke@435 1931 __ inc(count, 8);
duke@435 1932
duke@435 1933 // copy 1 element (2 bytes) at a time
duke@435 1934 __ BIND(L_copy_2_bytes);
kvn@3037 1935 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
duke@435 1936 __ BIND(L_copy_2_bytes_loop);
duke@435 1937 __ dec(end_from, 2);
duke@435 1938 __ dec(end_to, 2);
duke@435 1939 __ lduh(end_from, 0, O4);
duke@435 1940 __ deccc(count);
duke@435 1941 __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1942 __ delayed()->sth(O4, end_to, 0);
duke@435 1943
duke@435 1944 __ BIND(L_exit);
duke@435 1945 // O3, O4 are used as temp registers
duke@435 1946 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1947 __ retl();
duke@435 1948 __ delayed()->mov(G0, O0); // return 0
duke@435 1949 return start;
duke@435 1950 }
duke@435 1951
duke@435 1952 //
duke@435 1953 // Generate core code for disjoint int copy (and oop copy on 32-bit).
duke@435 1954 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 1955 // to be heapword aligned.
duke@435 1956 //
duke@435 1957 // Arguments:
duke@435 1958 // from: O0
duke@435 1959 // to: O1
duke@435 1960 // count: O2 treated as signed
duke@435 1961 //
duke@435 1962 void generate_disjoint_int_copy_core(bool aligned) {
duke@435 1963
duke@435 1964 Label L_skip_alignment, L_aligned_copy;
duke@435 1965 Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 1966
duke@435 1967 const Register from = O0; // source array address
duke@435 1968 const Register to = O1; // destination array address
duke@435 1969 const Register count = O2; // elements count
duke@435 1970 const Register offset = O5; // offset from start of arrays
duke@435 1971 // O3, O4, G3, G4 are used as temp registers
duke@435 1972
duke@435 1973 // 'aligned' == true when it is known statically during compilation
duke@435 1974 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1975 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1976 //
duke@435 1977 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1978 // and 8 bytes - in 64-bits VM.
duke@435 1979 //
duke@435 1980 #ifdef _LP64
duke@435 1981 if (!aligned)
duke@435 1982 #endif
duke@435 1983 {
duke@435 1984 // The next check could be put under 'ifndef' since the code in
duke@435 1985 // generate_disjoint_long_copy_core() has own checks and set 'offset'.
duke@435 1986
duke@435 1987 // for short arrays, just do single element copy
duke@435 1988 __ cmp(count, 5); // 4 + 1 (20 bytes)
duke@435 1989 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 1990 __ delayed()->mov(G0, offset);
duke@435 1991
duke@435 1992 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 1993 __ andcc(to, 7, G0);
duke@435 1994 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1995 __ delayed()->ld(from, 0, O3);
duke@435 1996 __ inc(from, 4);
duke@435 1997 __ inc(to, 4);
duke@435 1998 __ dec(count);
duke@435 1999 __ st(O3, to, -4);
duke@435 2000 __ BIND(L_skip_alignment);
duke@435 2001
duke@435 2002 // if arrays have same alignment mod 8, do 4 elements copy
duke@435 2003 __ andcc(from, 7, G0);
duke@435 2004 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 2005 __ delayed()->ld(from, 0, O3);
duke@435 2006
duke@435 2007 //
duke@435 2008 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 2009 // to form 2 aligned 8-bytes chunks to store.
duke@435 2010 //
duke@435 2011 // copy_16_bytes_forward_with_shift() is not used here since this
duke@435 2012 // code is more optimal.
duke@435 2013
duke@435 2014 // copy with shift 4 elements (16 bytes) at a time
duke@435 2015 __ dec(count, 4); // The cmp at the beginning guaranty count >= 4
duke@435 2016
kvn@1800 2017 __ align(OptoLoopAlignment);
duke@435 2018 __ BIND(L_copy_16_bytes);
duke@435 2019 __ ldx(from, 4, O4);
duke@435 2020 __ deccc(count, 4); // Can we do next iteration after this one?
duke@435 2021 __ ldx(from, 12, G4);
duke@435 2022 __ inc(to, 16);
duke@435 2023 __ inc(from, 16);
duke@435 2024 __ sllx(O3, 32, O3);
duke@435 2025 __ srlx(O4, 32, G3);
duke@435 2026 __ bset(G3, O3);
duke@435 2027 __ stx(O3, to, -16);
duke@435 2028 __ sllx(O4, 32, O4);
duke@435 2029 __ srlx(G4, 32, G3);
duke@435 2030 __ bset(G3, O4);
duke@435 2031 __ stx(O4, to, -8);
duke@435 2032 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2033 __ delayed()->mov(G4, O3);
duke@435 2034
duke@435 2035 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 2036 __ delayed()->inc(count, 4); // restore 'count'
duke@435 2037
duke@435 2038 __ BIND(L_aligned_copy);
duke@435 2039 }
duke@435 2040 // copy 4 elements (16 bytes) at a time
duke@435 2041 __ and3(count, 1, G4); // Save
duke@435 2042 __ srl(count, 1, count);
duke@435 2043 generate_disjoint_long_copy_core(aligned);
duke@435 2044 __ mov(G4, count); // Restore
duke@435 2045
duke@435 2046 // copy 1 element at a time
duke@435 2047 __ BIND(L_copy_4_bytes);
kvn@3037 2048 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
duke@435 2049 __ BIND(L_copy_4_bytes_loop);
duke@435 2050 __ ld(from, offset, O3);
duke@435 2051 __ deccc(count);
duke@435 2052 __ st(O3, to, offset);
duke@435 2053 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 2054 __ delayed()->inc(offset, 4);
duke@435 2055 __ BIND(L_exit);
duke@435 2056 }
duke@435 2057
duke@435 2058 //
duke@435 2059 // Generate stub for disjoint int copy. If "aligned" is true, the
duke@435 2060 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2061 //
duke@435 2062 // Arguments for generated stub:
duke@435 2063 // from: O0
duke@435 2064 // to: O1
duke@435 2065 // count: O2 treated as signed
duke@435 2066 //
iveresov@2595 2067 address generate_disjoint_int_copy(bool aligned, address *entry, const char *name) {
duke@435 2068 __ align(CodeEntryAlignment);
duke@435 2069 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2070 address start = __ pc();
duke@435 2071
duke@435 2072 const Register count = O2;
duke@435 2073 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2074
iveresov@2595 2075 if (entry != NULL) {
iveresov@2595 2076 *entry = __ pc();
iveresov@2595 2077 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2078 BLOCK_COMMENT("Entry:");
iveresov@2595 2079 }
duke@435 2080
duke@435 2081 generate_disjoint_int_copy_core(aligned);
duke@435 2082
duke@435 2083 // O3, O4 are used as temp registers
duke@435 2084 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 2085 __ retl();
duke@435 2086 __ delayed()->mov(G0, O0); // return 0
duke@435 2087 return start;
duke@435 2088 }
duke@435 2089
duke@435 2090 //
duke@435 2091 // Generate core code for conjoint int copy (and oop copy on 32-bit).
duke@435 2092 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 2093 // to be heapword aligned.
duke@435 2094 //
duke@435 2095 // Arguments:
duke@435 2096 // from: O0
duke@435 2097 // to: O1
duke@435 2098 // count: O2 treated as signed
duke@435 2099 //
duke@435 2100 void generate_conjoint_int_copy_core(bool aligned) {
duke@435 2101 // Do reverse copy.
duke@435 2102
duke@435 2103 Label L_skip_alignment, L_aligned_copy;
duke@435 2104 Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 2105
duke@435 2106 const Register from = O0; // source array address
duke@435 2107 const Register to = O1; // destination array address
duke@435 2108 const Register count = O2; // elements count
duke@435 2109 const Register end_from = from; // source array end address
duke@435 2110 const Register end_to = to; // destination array end address
duke@435 2111 // O3, O4, O5, G3 are used as temp registers
duke@435 2112
duke@435 2113 const Register byte_count = O3; // bytes count to copy
duke@435 2114
duke@435 2115 __ sllx(count, LogBytesPerInt, byte_count);
duke@435 2116 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 2117
duke@435 2118 __ cmp(count, 5); // for short arrays, just do single element copy
duke@435 2119 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 2120 __ delayed()->add(from, byte_count, end_from);
duke@435 2121
duke@435 2122 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 2123 __ andcc(end_to, 7, G0);
duke@435 2124 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 2125 __ delayed()->nop();
duke@435 2126 __ dec(count);
duke@435 2127 __ dec(end_from, 4);
duke@435 2128 __ dec(end_to, 4);
duke@435 2129 __ ld(end_from, 0, O4);
duke@435 2130 __ st(O4, end_to, 0);
duke@435 2131 __ BIND(L_skip_alignment);
duke@435 2132
duke@435 2133 // Check if 'end_from' and 'end_to' has the same alignment.
duke@435 2134 __ andcc(end_from, 7, G0);
duke@435 2135 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 2136 __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
duke@435 2137
duke@435 2138 // copy with shift 4 elements (16 bytes) at a time
duke@435 2139 //
duke@435 2140 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 2141 // to form 2 aligned 8-bytes chunks to store.
duke@435 2142 //
duke@435 2143 __ ldx(end_from, -4, O3);
kvn@1800 2144 __ align(OptoLoopAlignment);
duke@435 2145 __ BIND(L_copy_16_bytes);
duke@435 2146 __ ldx(end_from, -12, O4);
duke@435 2147 __ deccc(count, 4);
duke@435 2148 __ ldx(end_from, -20, O5);
duke@435 2149 __ dec(end_to, 16);
duke@435 2150 __ dec(end_from, 16);
duke@435 2151 __ srlx(O3, 32, O3);
duke@435 2152 __ sllx(O4, 32, G3);
duke@435 2153 __ bset(G3, O3);
duke@435 2154 __ stx(O3, end_to, 8);
duke@435 2155 __ srlx(O4, 32, O4);
duke@435 2156 __ sllx(O5, 32, G3);
duke@435 2157 __ bset(O4, G3);
duke@435 2158 __ stx(G3, end_to, 0);
duke@435 2159 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2160 __ delayed()->mov(O5, O3);
duke@435 2161
duke@435 2162 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 2163 __ delayed()->inc(count, 4);
duke@435 2164
duke@435 2165 // copy 4 elements (16 bytes) at a time
kvn@1800 2166 __ align(OptoLoopAlignment);
duke@435 2167 __ BIND(L_aligned_copy);
duke@435 2168 __ dec(end_from, 16);
duke@435 2169 __ ldx(end_from, 8, O3);
duke@435 2170 __ ldx(end_from, 0, O4);
duke@435 2171 __ dec(end_to, 16);
duke@435 2172 __ deccc(count, 4);
duke@435 2173 __ stx(O3, end_to, 8);
duke@435 2174 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 2175 __ delayed()->stx(O4, end_to, 0);
duke@435 2176 __ inc(count, 4);
duke@435 2177
duke@435 2178 // copy 1 element (4 bytes) at a time
duke@435 2179 __ BIND(L_copy_4_bytes);
kvn@3037 2180 __ cmp_and_br_short(count, 0, Assembler::equal, Assembler::pt, L_exit);
duke@435 2181 __ BIND(L_copy_4_bytes_loop);
duke@435 2182 __ dec(end_from, 4);
duke@435 2183 __ dec(end_to, 4);
duke@435 2184 __ ld(end_from, 0, O4);
duke@435 2185 __ deccc(count);
duke@435 2186 __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 2187 __ delayed()->st(O4, end_to, 0);
duke@435 2188 __ BIND(L_exit);
duke@435 2189 }
duke@435 2190
duke@435 2191 //
duke@435 2192 // Generate stub for conjoint int copy. If "aligned" is true, the
duke@435 2193 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2194 //
duke@435 2195 // Arguments for generated stub:
duke@435 2196 // from: O0
duke@435 2197 // to: O1
duke@435 2198 // count: O2 treated as signed
duke@435 2199 //
iveresov@2595 2200 address generate_conjoint_int_copy(bool aligned, address nooverlap_target,
iveresov@2595 2201 address *entry, const char *name) {
duke@435 2202 __ align(CodeEntryAlignment);
duke@435 2203 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2204 address start = __ pc();
duke@435 2205
duke@435 2206 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2207
iveresov@2595 2208 if (entry != NULL) {
iveresov@2595 2209 *entry = __ pc();
iveresov@2595 2210 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2211 BLOCK_COMMENT("Entry:");
iveresov@2595 2212 }
duke@435 2213
duke@435 2214 array_overlap_test(nooverlap_target, 2);
duke@435 2215
duke@435 2216 generate_conjoint_int_copy_core(aligned);
duke@435 2217
duke@435 2218 // O3, O4 are used as temp registers
duke@435 2219 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 2220 __ retl();
duke@435 2221 __ delayed()->mov(G0, O0); // return 0
duke@435 2222 return start;
duke@435 2223 }
duke@435 2224
duke@435 2225 //
duke@435 2226 // Generate core code for disjoint long copy (and oop copy on 64-bit).
duke@435 2227 // "aligned" is ignored, because we must make the stronger
duke@435 2228 // assumption that both addresses are always 64-bit aligned.
duke@435 2229 //
duke@435 2230 // Arguments:
duke@435 2231 // from: O0
duke@435 2232 // to: O1
duke@435 2233 // count: O2 treated as signed
duke@435 2234 //
kvn@1799 2235 // count -= 2;
kvn@1799 2236 // if ( count >= 0 ) { // >= 2 elements
kvn@1799 2237 // if ( count > 6) { // >= 8 elements
kvn@1799 2238 // count -= 6; // original count - 8
kvn@1799 2239 // do {
kvn@1799 2240 // copy_8_elements;
kvn@1799 2241 // count -= 8;
kvn@1799 2242 // } while ( count >= 0 );
kvn@1799 2243 // count += 6;
kvn@1799 2244 // }
kvn@1799 2245 // if ( count >= 0 ) { // >= 2 elements
kvn@1799 2246 // do {
kvn@1799 2247 // copy_2_elements;
kvn@1799 2248 // } while ( (count=count-2) >= 0 );
kvn@1799 2249 // }
kvn@1799 2250 // }
kvn@1799 2251 // count += 2;
kvn@1799 2252 // if ( count != 0 ) { // 1 element left
kvn@1799 2253 // copy_1_element;
kvn@1799 2254 // }
kvn@1799 2255 //
duke@435 2256 void generate_disjoint_long_copy_core(bool aligned) {
duke@435 2257 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2258 const Register from = O0; // source array address
duke@435 2259 const Register to = O1; // destination array address
duke@435 2260 const Register count = O2; // elements count
duke@435 2261 const Register offset0 = O4; // element offset
duke@435 2262 const Register offset8 = O5; // next element offset
duke@435 2263
duke@435 2264 __ deccc(count, 2);
duke@435 2265 __ mov(G0, offset0); // offset from start of arrays (0)
duke@435 2266 __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
duke@435 2267 __ delayed()->add(offset0, 8, offset8);
kvn@1799 2268
kvn@1799 2269 // Copy by 64 bytes chunks
kvn@1799 2270 Label L_copy_64_bytes;
kvn@1799 2271 const Register from64 = O3; // source address
kvn@1799 2272 const Register to64 = G3; // destination address
kvn@1799 2273 __ subcc(count, 6, O3);
kvn@1799 2274 __ brx(Assembler::negative, false, Assembler::pt, L_copy_16_bytes );
kvn@1799 2275 __ delayed()->mov(to, to64);
kvn@1799 2276 // Now we can use O4(offset0), O5(offset8) as temps
kvn@1799 2277 __ mov(O3, count);
kvn@1799 2278 __ mov(from, from64);
kvn@1799 2279
kvn@1800 2280 __ align(OptoLoopAlignment);
kvn@1799 2281 __ BIND(L_copy_64_bytes);
kvn@1799 2282 for( int off = 0; off < 64; off += 16 ) {
kvn@1799 2283 __ ldx(from64, off+0, O4);
kvn@1799 2284 __ ldx(from64, off+8, O5);
kvn@1799 2285 __ stx(O4, to64, off+0);
kvn@1799 2286 __ stx(O5, to64, off+8);
kvn@1799 2287 }
kvn@1799 2288 __ deccc(count, 8);
kvn@1799 2289 __ inc(from64, 64);
kvn@1799 2290 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_64_bytes);
kvn@1799 2291 __ delayed()->inc(to64, 64);
kvn@1799 2292
kvn@1799 2293 // Restore O4(offset0), O5(offset8)
kvn@1799 2294 __ sub(from64, from, offset0);
kvn@1799 2295 __ inccc(count, 6);
kvn@1799 2296 __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
kvn@1799 2297 __ delayed()->add(offset0, 8, offset8);
kvn@1799 2298
kvn@1799 2299 // Copy by 16 bytes chunks
kvn@1800 2300 __ align(OptoLoopAlignment);
duke@435 2301 __ BIND(L_copy_16_bytes);
duke@435 2302 __ ldx(from, offset0, O3);
duke@435 2303 __ ldx(from, offset8, G3);
duke@435 2304 __ deccc(count, 2);
duke@435 2305 __ stx(O3, to, offset0);
duke@435 2306 __ inc(offset0, 16);
duke@435 2307 __ stx(G3, to, offset8);
duke@435 2308 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2309 __ delayed()->inc(offset8, 16);
duke@435 2310
kvn@1799 2311 // Copy last 8 bytes
duke@435 2312 __ BIND(L_copy_8_bytes);
duke@435 2313 __ inccc(count, 2);
duke@435 2314 __ brx(Assembler::zero, true, Assembler::pn, L_exit );
duke@435 2315 __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
duke@435 2316 __ ldx(from, offset0, O3);
duke@435 2317 __ stx(O3, to, offset0);
duke@435 2318 __ BIND(L_exit);
duke@435 2319 }
duke@435 2320
duke@435 2321 //
duke@435 2322 // Generate stub for disjoint long copy.
duke@435 2323 // "aligned" is ignored, because we must make the stronger
duke@435 2324 // assumption that both addresses are always 64-bit aligned.
duke@435 2325 //
duke@435 2326 // Arguments for generated stub:
duke@435 2327 // from: O0
duke@435 2328 // to: O1
duke@435 2329 // count: O2 treated as signed
duke@435 2330 //
iveresov@2595 2331 address generate_disjoint_long_copy(bool aligned, address *entry, const char *name) {
duke@435 2332 __ align(CodeEntryAlignment);
duke@435 2333 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2334 address start = __ pc();
duke@435 2335
duke@435 2336 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2337
iveresov@2595 2338 if (entry != NULL) {
iveresov@2595 2339 *entry = __ pc();
iveresov@2595 2340 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2341 BLOCK_COMMENT("Entry:");
iveresov@2595 2342 }
duke@435 2343
duke@435 2344 generate_disjoint_long_copy_core(aligned);
duke@435 2345
duke@435 2346 // O3, O4 are used as temp registers
duke@435 2347 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2348 __ retl();
duke@435 2349 __ delayed()->mov(G0, O0); // return 0
duke@435 2350 return start;
duke@435 2351 }
duke@435 2352
duke@435 2353 //
duke@435 2354 // Generate core code for conjoint long copy (and oop copy on 64-bit).
duke@435 2355 // "aligned" is ignored, because we must make the stronger
duke@435 2356 // assumption that both addresses are always 64-bit aligned.
duke@435 2357 //
duke@435 2358 // Arguments:
duke@435 2359 // from: O0
duke@435 2360 // to: O1
duke@435 2361 // count: O2 treated as signed
duke@435 2362 //
duke@435 2363 void generate_conjoint_long_copy_core(bool aligned) {
duke@435 2364 // Do reverse copy.
duke@435 2365 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2366 const Register from = O0; // source array address
duke@435 2367 const Register to = O1; // destination array address
duke@435 2368 const Register count = O2; // elements count
duke@435 2369 const Register offset8 = O4; // element offset
duke@435 2370 const Register offset0 = O5; // previous element offset
duke@435 2371
duke@435 2372 __ subcc(count, 1, count);
duke@435 2373 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
duke@435 2374 __ delayed()->sllx(count, LogBytesPerLong, offset8);
duke@435 2375 __ sub(offset8, 8, offset0);
kvn@1800 2376 __ align(OptoLoopAlignment);
duke@435 2377 __ BIND(L_copy_16_bytes);
duke@435 2378 __ ldx(from, offset8, O2);
duke@435 2379 __ ldx(from, offset0, O3);
duke@435 2380 __ stx(O2, to, offset8);
duke@435 2381 __ deccc(offset8, 16); // use offset8 as counter
duke@435 2382 __ stx(O3, to, offset0);
duke@435 2383 __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
duke@435 2384 __ delayed()->dec(offset0, 16);
duke@435 2385
duke@435 2386 __ BIND(L_copy_8_bytes);
duke@435 2387 __ brx(Assembler::negative, false, Assembler::pn, L_exit );
duke@435 2388 __ delayed()->nop();
duke@435 2389 __ ldx(from, 0, O3);
duke@435 2390 __ stx(O3, to, 0);
duke@435 2391 __ BIND(L_exit);
duke@435 2392 }
duke@435 2393
duke@435 2394 // Generate stub for conjoint long copy.
duke@435 2395 // "aligned" is ignored, because we must make the stronger
duke@435 2396 // assumption that both addresses are always 64-bit aligned.
duke@435 2397 //
duke@435 2398 // Arguments for generated stub:
duke@435 2399 // from: O0
duke@435 2400 // to: O1
duke@435 2401 // count: O2 treated as signed
duke@435 2402 //
iveresov@2595 2403 address generate_conjoint_long_copy(bool aligned, address nooverlap_target,
iveresov@2595 2404 address *entry, const char *name) {
duke@435 2405 __ align(CodeEntryAlignment);
duke@435 2406 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2407 address start = __ pc();
duke@435 2408
iveresov@2606 2409 assert(aligned, "Should always be aligned");
duke@435 2410
duke@435 2411 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2412
iveresov@2595 2413 if (entry != NULL) {
iveresov@2595 2414 *entry = __ pc();
iveresov@2595 2415 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
iveresov@2595 2416 BLOCK_COMMENT("Entry:");
iveresov@2595 2417 }
duke@435 2418
duke@435 2419 array_overlap_test(nooverlap_target, 3);
duke@435 2420
duke@435 2421 generate_conjoint_long_copy_core(aligned);
duke@435 2422
duke@435 2423 // O3, O4 are used as temp registers
duke@435 2424 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2425 __ retl();
duke@435 2426 __ delayed()->mov(G0, O0); // return 0
duke@435 2427 return start;
duke@435 2428 }
duke@435 2429
duke@435 2430 // Generate stub for disjoint oop copy. If "aligned" is true, the
duke@435 2431 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2432 //
duke@435 2433 // Arguments for generated stub:
duke@435 2434 // from: O0
duke@435 2435 // to: O1
duke@435 2436 // count: O2 treated as signed
duke@435 2437 //
iveresov@2606 2438 address generate_disjoint_oop_copy(bool aligned, address *entry, const char *name,
iveresov@2606 2439 bool dest_uninitialized = false) {
duke@435 2440
duke@435 2441 const Register from = O0; // source array address
duke@435 2442 const Register to = O1; // destination array address
duke@435 2443 const Register count = O2; // elements count
duke@435 2444
duke@435 2445 __ align(CodeEntryAlignment);
duke@435 2446 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2447 address start = __ pc();
duke@435 2448
duke@435 2449 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2450
iveresov@2595 2451 if (entry != NULL) {
iveresov@2595 2452 *entry = __ pc();
iveresov@2595 2453 // caller can pass a 64-bit byte count here
iveresov@2595 2454 BLOCK_COMMENT("Entry:");
iveresov@2595 2455 }
duke@435 2456
duke@435 2457 // save arguments for barrier generation
duke@435 2458 __ mov(to, G1);
duke@435 2459 __ mov(count, G5);
iveresov@2606 2460 gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
duke@435 2461 #ifdef _LP64
coleenp@548 2462 assert_clean_int(count, O3); // Make sure 'count' is clean int.
coleenp@548 2463 if (UseCompressedOops) {
coleenp@548 2464 generate_disjoint_int_copy_core(aligned);
coleenp@548 2465 } else {
coleenp@548 2466 generate_disjoint_long_copy_core(aligned);
coleenp@548 2467 }
duke@435 2468 #else
duke@435 2469 generate_disjoint_int_copy_core(aligned);
duke@435 2470 #endif
duke@435 2471 // O0 is used as temp register
duke@435 2472 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2473
duke@435 2474 // O3, O4 are used as temp registers
duke@435 2475 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2476 __ retl();
duke@435 2477 __ delayed()->mov(G0, O0); // return 0
duke@435 2478 return start;
duke@435 2479 }
duke@435 2480
duke@435 2481 // Generate stub for conjoint oop copy. If "aligned" is true, the
duke@435 2482 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2483 //
duke@435 2484 // Arguments for generated stub:
duke@435 2485 // from: O0
duke@435 2486 // to: O1
duke@435 2487 // count: O2 treated as signed
duke@435 2488 //
iveresov@2595 2489 address generate_conjoint_oop_copy(bool aligned, address nooverlap_target,
iveresov@2606 2490 address *entry, const char *name,
iveresov@2606 2491 bool dest_uninitialized = false) {
duke@435 2492
duke@435 2493 const Register from = O0; // source array address
duke@435 2494 const Register to = O1; // destination array address
duke@435 2495 const Register count = O2; // elements count
duke@435 2496
duke@435 2497 __ align(CodeEntryAlignment);
duke@435 2498 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2499 address start = __ pc();
duke@435 2500
duke@435 2501 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2502
iveresov@2595 2503 if (entry != NULL) {
iveresov@2595 2504 *entry = __ pc();
iveresov@2595 2505 // caller can pass a 64-bit byte count here
iveresov@2595 2506 BLOCK_COMMENT("Entry:");
iveresov@2595 2507 }
iveresov@2595 2508
iveresov@2595 2509 array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
duke@435 2510
duke@435 2511 // save arguments for barrier generation
duke@435 2512 __ mov(to, G1);
duke@435 2513 __ mov(count, G5);
iveresov@2606 2514 gen_write_ref_array_pre_barrier(G1, G5, dest_uninitialized);
duke@435 2515
duke@435 2516 #ifdef _LP64
coleenp@548 2517 if (UseCompressedOops) {
coleenp@548 2518 generate_conjoint_int_copy_core(aligned);
coleenp@548 2519 } else {
coleenp@548 2520 generate_conjoint_long_copy_core(aligned);
coleenp@548 2521 }
duke@435 2522 #else
duke@435 2523 generate_conjoint_int_copy_core(aligned);
duke@435 2524 #endif
duke@435 2525
duke@435 2526 // O0 is used as temp register
duke@435 2527 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2528
duke@435 2529 // O3, O4 are used as temp registers
duke@435 2530 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2531 __ retl();
duke@435 2532 __ delayed()->mov(G0, O0); // return 0
duke@435 2533 return start;
duke@435 2534 }
duke@435 2535
duke@435 2536
duke@435 2537 // Helper for generating a dynamic type check.
duke@435 2538 // Smashes only the given temp registers.
duke@435 2539 void generate_type_check(Register sub_klass,
duke@435 2540 Register super_check_offset,
duke@435 2541 Register super_klass,
duke@435 2542 Register temp,
jrose@1079 2543 Label& L_success) {
duke@435 2544 assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
duke@435 2545
duke@435 2546 BLOCK_COMMENT("type_check:");
duke@435 2547
jrose@1079 2548 Label L_miss, L_pop_to_miss;
duke@435 2549
duke@435 2550 assert_clean_int(super_check_offset, temp);
duke@435 2551
jrose@1079 2552 __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
jrose@1079 2553 &L_success, &L_miss, NULL,
jrose@1079 2554 super_check_offset);
jrose@1079 2555
jrose@1079 2556 BLOCK_COMMENT("type_check_slow_path:");
duke@435 2557 __ save_frame(0);
jrose@1079 2558 __ check_klass_subtype_slow_path(sub_klass->after_save(),
jrose@1079 2559 super_klass->after_save(),
jrose@1079 2560 L0, L1, L2, L4,
jrose@1079 2561 NULL, &L_pop_to_miss);
kvn@3037 2562 __ ba(L_success);
jrose@1079 2563 __ delayed()->restore();
jrose@1079 2564
jrose@1079 2565 __ bind(L_pop_to_miss);
duke@435 2566 __ restore();
duke@435 2567
duke@435 2568 // Fall through on failure!
duke@435 2569 __ BIND(L_miss);
duke@435 2570 }
duke@435 2571
duke@435 2572
duke@435 2573 // Generate stub for checked oop copy.
duke@435 2574 //
duke@435 2575 // Arguments for generated stub:
duke@435 2576 // from: O0
duke@435 2577 // to: O1
duke@435 2578 // count: O2 treated as signed
duke@435 2579 // ckoff: O3 (super_check_offset)
duke@435 2580 // ckval: O4 (super_klass)
duke@435 2581 // ret: O0 zero for success; (-1^K) where K is partial transfer count
duke@435 2582 //
iveresov@2606 2583 address generate_checkcast_copy(const char *name, address *entry, bool dest_uninitialized = false) {
duke@435 2584
duke@435 2585 const Register O0_from = O0; // source array address
duke@435 2586 const Register O1_to = O1; // destination array address
duke@435 2587 const Register O2_count = O2; // elements count
duke@435 2588 const Register O3_ckoff = O3; // super_check_offset
duke@435 2589 const Register O4_ckval = O4; // super_klass
duke@435 2590
duke@435 2591 const Register O5_offset = O5; // loop var, with stride wordSize
duke@435 2592 const Register G1_remain = G1; // loop var, with stride -1
duke@435 2593 const Register G3_oop = G3; // actual oop copied
duke@435 2594 const Register G4_klass = G4; // oop._klass
duke@435 2595 const Register G5_super = G5; // oop._klass._primary_supers[ckval]
duke@435 2596
duke@435 2597 __ align(CodeEntryAlignment);
duke@435 2598 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2599 address start = __ pc();
duke@435 2600
duke@435 2601 #ifdef ASSERT
jrose@1079 2602 // We sometimes save a frame (see generate_type_check below).
duke@435 2603 // If this will cause trouble, let's fail now instead of later.
duke@435 2604 __ save_frame(0);
duke@435 2605 __ restore();
duke@435 2606 #endif
duke@435 2607
never@2199 2608 assert_clean_int(O2_count, G1); // Make sure 'count' is clean int.
never@2199 2609
duke@435 2610 #ifdef ASSERT
duke@435 2611 // caller guarantees that the arrays really are different
duke@435 2612 // otherwise, we would have to make conjoint checks
duke@435 2613 { Label L;
duke@435 2614 __ mov(O3, G1); // spill: overlap test smashes O3
duke@435 2615 __ mov(O4, G4); // spill: overlap test smashes O4
coleenp@548 2616 array_overlap_test(L, LogBytesPerHeapOop);
duke@435 2617 __ stop("checkcast_copy within a single array");
duke@435 2618 __ bind(L);
duke@435 2619 __ mov(G1, O3);
duke@435 2620 __ mov(G4, O4);
duke@435 2621 }
duke@435 2622 #endif //ASSERT
duke@435 2623
iveresov@2595 2624 if (entry != NULL) {
iveresov@2595 2625 *entry = __ pc();
iveresov@2595 2626 // caller can pass a 64-bit byte count here (from generic stub)
iveresov@2595 2627 BLOCK_COMMENT("Entry:");
iveresov@2595 2628 }
iveresov@2606 2629 gen_write_ref_array_pre_barrier(O1_to, O2_count, dest_uninitialized);
duke@435 2630
duke@435 2631 Label load_element, store_element, do_card_marks, fail, done;
duke@435 2632 __ addcc(O2_count, 0, G1_remain); // initialize loop index, and test it
duke@435 2633 __ brx(Assembler::notZero, false, Assembler::pt, load_element);
duke@435 2634 __ delayed()->mov(G0, O5_offset); // offset from start of arrays
duke@435 2635
duke@435 2636 // Empty array: Nothing to do.
duke@435 2637 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2638 __ retl();
duke@435 2639 __ delayed()->set(0, O0); // return 0 on (trivial) success
duke@435 2640
duke@435 2641 // ======== begin loop ========
duke@435 2642 // (Loop is rotated; its entry is load_element.)
duke@435 2643 // Loop variables:
duke@435 2644 // (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
duke@435 2645 // (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
duke@435 2646 // G3, G4, G5 --- current oop, oop.klass, oop.klass.super
kvn@1800 2647 __ align(OptoLoopAlignment);
duke@435 2648
jrose@1079 2649 __ BIND(store_element);
jrose@1079 2650 __ deccc(G1_remain); // decrement the count
coleenp@548 2651 __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
coleenp@548 2652 __ inc(O5_offset, heapOopSize); // step to next offset
duke@435 2653 __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
duke@435 2654 __ delayed()->set(0, O0); // return -1 on success
duke@435 2655
duke@435 2656 // ======== loop entry is here ========
jrose@1079 2657 __ BIND(load_element);
coleenp@548 2658 __ load_heap_oop(O0_from, O5_offset, G3_oop); // load the oop
kvn@3037 2659 __ br_null_short(G3_oop, Assembler::pt, store_element);
duke@435 2660
coleenp@548 2661 __ load_klass(G3_oop, G4_klass); // query the object klass
duke@435 2662
duke@435 2663 generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
duke@435 2664 // branch to this on success:
jrose@1079 2665 store_element);
duke@435 2666 // ======== end loop ========
duke@435 2667
duke@435 2668 // It was a real error; we must depend on the caller to finish the job.
duke@435 2669 // Register G1 has number of *remaining* oops, O2 number of *total* oops.
duke@435 2670 // Emit GC store barriers for the oops we have copied (O2 minus G1),
duke@435 2671 // and report their number to the caller.
jrose@1079 2672 __ BIND(fail);
duke@435 2673 __ subcc(O2_count, G1_remain, O2_count);
duke@435 2674 __ brx(Assembler::zero, false, Assembler::pt, done);
duke@435 2675 __ delayed()->not1(O2_count, O0); // report (-1^K) to caller
duke@435 2676
jrose@1079 2677 __ BIND(do_card_marks);
duke@435 2678 gen_write_ref_array_post_barrier(O1_to, O2_count, O3); // store check on O1[0..O2]
duke@435 2679
jrose@1079 2680 __ BIND(done);
duke@435 2681 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2682 __ retl();
duke@435 2683 __ delayed()->nop(); // return value in 00
duke@435 2684
duke@435 2685 return start;
duke@435 2686 }
duke@435 2687
duke@435 2688
duke@435 2689 // Generate 'unsafe' array copy stub
duke@435 2690 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2691 // size_t argument instead of an element count.
duke@435 2692 //
duke@435 2693 // Arguments for generated stub:
duke@435 2694 // from: O0
duke@435 2695 // to: O1
duke@435 2696 // count: O2 byte count, treated as ssize_t, can be zero
duke@435 2697 //
duke@435 2698 // Examines the alignment of the operands and dispatches
duke@435 2699 // to a long, int, short, or byte copy loop.
duke@435 2700 //
iveresov@2595 2701 address generate_unsafe_copy(const char* name,
iveresov@2595 2702 address byte_copy_entry,
iveresov@2595 2703 address short_copy_entry,
iveresov@2595 2704 address int_copy_entry,
iveresov@2595 2705 address long_copy_entry) {
duke@435 2706
duke@435 2707 const Register O0_from = O0; // source array address
duke@435 2708 const Register O1_to = O1; // destination array address
duke@435 2709 const Register O2_count = O2; // elements count
duke@435 2710
duke@435 2711 const Register G1_bits = G1; // test copy of low bits
duke@435 2712
duke@435 2713 __ align(CodeEntryAlignment);
duke@435 2714 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2715 address start = __ pc();
duke@435 2716
duke@435 2717 // bump this on entry, not on exit:
duke@435 2718 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
duke@435 2719
duke@435 2720 __ or3(O0_from, O1_to, G1_bits);
duke@435 2721 __ or3(O2_count, G1_bits, G1_bits);
duke@435 2722
duke@435 2723 __ btst(BytesPerLong-1, G1_bits);
duke@435 2724 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2725 long_copy_entry, relocInfo::runtime_call_type);
duke@435 2726 // scale the count on the way out:
duke@435 2727 __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
duke@435 2728
duke@435 2729 __ btst(BytesPerInt-1, G1_bits);
duke@435 2730 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2731 int_copy_entry, relocInfo::runtime_call_type);
duke@435 2732 // scale the count on the way out:
duke@435 2733 __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
duke@435 2734
duke@435 2735 __ btst(BytesPerShort-1, G1_bits);
duke@435 2736 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2737 short_copy_entry, relocInfo::runtime_call_type);
duke@435 2738 // scale the count on the way out:
duke@435 2739 __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
duke@435 2740
duke@435 2741 __ br(Assembler::always, false, Assembler::pt,
duke@435 2742 byte_copy_entry, relocInfo::runtime_call_type);
duke@435 2743 __ delayed()->nop();
duke@435 2744
duke@435 2745 return start;
duke@435 2746 }
duke@435 2747
duke@435 2748
duke@435 2749 // Perform range checks on the proposed arraycopy.
duke@435 2750 // Kills the two temps, but nothing else.
duke@435 2751 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2752 void arraycopy_range_checks(Register src, // source array oop (O0)
duke@435 2753 Register src_pos, // source position (O1)
duke@435 2754 Register dst, // destination array oo (O2)
duke@435 2755 Register dst_pos, // destination position (O3)
duke@435 2756 Register length, // length of copy (O4)
duke@435 2757 Register temp1, Register temp2,
duke@435 2758 Label& L_failed) {
duke@435 2759 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2760
duke@435 2761 // if (src_pos + length > arrayOop(src)->length() ) FAIL;
duke@435 2762
duke@435 2763 const Register array_length = temp1; // scratch
duke@435 2764 const Register end_pos = temp2; // scratch
duke@435 2765
duke@435 2766 // Note: This next instruction may be in the delay slot of a branch:
duke@435 2767 __ add(length, src_pos, end_pos); // src_pos + length
duke@435 2768 __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2769 __ cmp(end_pos, array_length);
duke@435 2770 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2771
duke@435 2772 // if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
duke@435 2773 __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
duke@435 2774 __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2775 __ cmp(end_pos, array_length);
duke@435 2776 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2777
duke@435 2778 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2779 // Move with sign extension can be used since they are positive.
duke@435 2780 __ delayed()->signx(src_pos, src_pos);
duke@435 2781 __ signx(dst_pos, dst_pos);
duke@435 2782
duke@435 2783 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2784 }
duke@435 2785
duke@435 2786
duke@435 2787 //
duke@435 2788 // Generate generic array copy stubs
duke@435 2789 //
duke@435 2790 // Input:
duke@435 2791 // O0 - src oop
duke@435 2792 // O1 - src_pos
duke@435 2793 // O2 - dst oop
duke@435 2794 // O3 - dst_pos
duke@435 2795 // O4 - element count
duke@435 2796 //
duke@435 2797 // Output:
duke@435 2798 // O0 == 0 - success
duke@435 2799 // O0 == -1 - need to call System.arraycopy
duke@435 2800 //
iveresov@2595 2801 address generate_generic_copy(const char *name,
iveresov@2595 2802 address entry_jbyte_arraycopy,
iveresov@2595 2803 address entry_jshort_arraycopy,
iveresov@2595 2804 address entry_jint_arraycopy,
iveresov@2595 2805 address entry_oop_arraycopy,
iveresov@2595 2806 address entry_jlong_arraycopy,
iveresov@2595 2807 address entry_checkcast_arraycopy) {
duke@435 2808 Label L_failed, L_objArray;
duke@435 2809
duke@435 2810 // Input registers
duke@435 2811 const Register src = O0; // source array oop
duke@435 2812 const Register src_pos = O1; // source position
duke@435 2813 const Register dst = O2; // destination array oop
duke@435 2814 const Register dst_pos = O3; // destination position
duke@435 2815 const Register length = O4; // elements count
duke@435 2816
duke@435 2817 // registers used as temp
duke@435 2818 const Register G3_src_klass = G3; // source array klass
duke@435 2819 const Register G4_dst_klass = G4; // destination array klass
duke@435 2820 const Register G5_lh = G5; // layout handler
duke@435 2821 const Register O5_temp = O5;
duke@435 2822
duke@435 2823 __ align(CodeEntryAlignment);
duke@435 2824 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2825 address start = __ pc();
duke@435 2826
duke@435 2827 // bump this on entry, not on exit:
duke@435 2828 inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
duke@435 2829
duke@435 2830 // In principle, the int arguments could be dirty.
duke@435 2831 //assert_clean_int(src_pos, G1);
duke@435 2832 //assert_clean_int(dst_pos, G1);
duke@435 2833 //assert_clean_int(length, G1);
duke@435 2834
duke@435 2835 //-----------------------------------------------------------------------
duke@435 2836 // Assembler stubs will be used for this call to arraycopy
duke@435 2837 // if the following conditions are met:
duke@435 2838 //
duke@435 2839 // (1) src and dst must not be null.
duke@435 2840 // (2) src_pos must not be negative.
duke@435 2841 // (3) dst_pos must not be negative.
duke@435 2842 // (4) length must not be negative.
duke@435 2843 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2844 // (6) src and dst should be arrays.
duke@435 2845 // (7) src_pos + length must not exceed length of src.
duke@435 2846 // (8) dst_pos + length must not exceed length of dst.
duke@435 2847 BLOCK_COMMENT("arraycopy initial argument checks");
duke@435 2848
duke@435 2849 // if (src == NULL) return -1;
duke@435 2850 __ br_null(src, false, Assembler::pn, L_failed);
duke@435 2851
duke@435 2852 // if (src_pos < 0) return -1;
duke@435 2853 __ delayed()->tst(src_pos);
duke@435 2854 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2855 __ delayed()->nop();
duke@435 2856
duke@435 2857 // if (dst == NULL) return -1;
duke@435 2858 __ br_null(dst, false, Assembler::pn, L_failed);
duke@435 2859
duke@435 2860 // if (dst_pos < 0) return -1;
duke@435 2861 __ delayed()->tst(dst_pos);
duke@435 2862 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2863
duke@435 2864 // if (length < 0) return -1;
duke@435 2865 __ delayed()->tst(length);
duke@435 2866 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2867
duke@435 2868 BLOCK_COMMENT("arraycopy argument klass checks");
duke@435 2869 // get src->klass()
coleenp@548 2870 if (UseCompressedOops) {
coleenp@548 2871 __ delayed()->nop(); // ??? not good
coleenp@548 2872 __ load_klass(src, G3_src_klass);
coleenp@548 2873 } else {
coleenp@548 2874 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
coleenp@548 2875 }
duke@435 2876
duke@435 2877 #ifdef ASSERT
duke@435 2878 // assert(src->klass() != NULL);
duke@435 2879 BLOCK_COMMENT("assert klasses not null");
duke@435 2880 { Label L_a, L_b;
kvn@3037 2881 __ br_notnull_short(G3_src_klass, Assembler::pt, L_b); // it is broken if klass is NULL
duke@435 2882 __ bind(L_a);
duke@435 2883 __ stop("broken null klass");
duke@435 2884 __ bind(L_b);
coleenp@548 2885 __ load_klass(dst, G4_dst_klass);
duke@435 2886 __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
duke@435 2887 __ delayed()->mov(G0, G4_dst_klass); // scribble the temp
duke@435 2888 BLOCK_COMMENT("assert done");
duke@435 2889 }
duke@435 2890 #endif
duke@435 2891
duke@435 2892 // Load layout helper
duke@435 2893 //
duke@435 2894 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2895 // 32 30 24 16 8 2 0
duke@435 2896 //
duke@435 2897 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2898 //
duke@435 2899
duke@435 2900 int lh_offset = klassOopDesc::header_size() * HeapWordSize +
duke@435 2901 Klass::layout_helper_offset_in_bytes();
duke@435 2902
duke@435 2903 // Load 32-bits signed value. Use br() instruction with it to check icc.
duke@435 2904 __ lduw(G3_src_klass, lh_offset, G5_lh);
duke@435 2905
coleenp@548 2906 if (UseCompressedOops) {
coleenp@548 2907 __ load_klass(dst, G4_dst_klass);
coleenp@548 2908 }
duke@435 2909 // Handle objArrays completely differently...
duke@435 2910 juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 2911 __ set(objArray_lh, O5_temp);
duke@435 2912 __ cmp(G5_lh, O5_temp);
duke@435 2913 __ br(Assembler::equal, false, Assembler::pt, L_objArray);
coleenp@548 2914 if (UseCompressedOops) {
coleenp@548 2915 __ delayed()->nop();
coleenp@548 2916 } else {
coleenp@548 2917 __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
coleenp@548 2918 }
duke@435 2919
duke@435 2920 // if (src->klass() != dst->klass()) return -1;
kvn@3037 2921 __ cmp_and_brx_short(G3_src_klass, G4_dst_klass, Assembler::notEqual, Assembler::pn, L_failed);
duke@435 2922
duke@435 2923 // if (!src->is_Array()) return -1;
duke@435 2924 __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
duke@435 2925 __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
duke@435 2926
duke@435 2927 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2928 #ifdef ASSERT
duke@435 2929 __ delayed()->nop();
duke@435 2930 { Label L;
duke@435 2931 jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
duke@435 2932 __ set(lh_prim_tag_in_place, O5_temp);
duke@435 2933 __ cmp(G5_lh, O5_temp);
duke@435 2934 __ br(Assembler::greaterEqual, false, Assembler::pt, L);
duke@435 2935 __ delayed()->nop();
duke@435 2936 __ stop("must be a primitive array");
duke@435 2937 __ bind(L);
duke@435 2938 }
duke@435 2939 #else
duke@435 2940 __ delayed(); // match next insn to prev branch
duke@435 2941 #endif
duke@435 2942
duke@435 2943 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 2944 O5_temp, G4_dst_klass, L_failed);
duke@435 2945
duke@435 2946 // typeArrayKlass
duke@435 2947 //
duke@435 2948 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2949 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2950 //
duke@435 2951
duke@435 2952 const Register G4_offset = G4_dst_klass; // array offset
duke@435 2953 const Register G3_elsize = G3_src_klass; // log2 element size
duke@435 2954
duke@435 2955 __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
duke@435 2956 __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
duke@435 2957 __ add(src, G4_offset, src); // src array offset
duke@435 2958 __ add(dst, G4_offset, dst); // dst array offset
duke@435 2959 __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
duke@435 2960
duke@435 2961 // next registers should be set before the jump to corresponding stub
duke@435 2962 const Register from = O0; // source array address
duke@435 2963 const Register to = O1; // destination array address
duke@435 2964 const Register count = O2; // elements count
duke@435 2965
duke@435 2966 // 'from', 'to', 'count' registers should be set in this order
duke@435 2967 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2968
duke@435 2969 BLOCK_COMMENT("scale indexes to element size");
duke@435 2970 __ sll_ptr(src_pos, G3_elsize, src_pos);
duke@435 2971 __ sll_ptr(dst_pos, G3_elsize, dst_pos);
duke@435 2972 __ add(src, src_pos, from); // src_addr
duke@435 2973 __ add(dst, dst_pos, to); // dst_addr
duke@435 2974
duke@435 2975 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2976 __ cmp(G3_elsize, 0);
iveresov@2595 2977 __ br(Assembler::equal, true, Assembler::pt, entry_jbyte_arraycopy);
duke@435 2978 __ delayed()->signx(length, count); // length
duke@435 2979
duke@435 2980 __ cmp(G3_elsize, LogBytesPerShort);
iveresov@2595 2981 __ br(Assembler::equal, true, Assembler::pt, entry_jshort_arraycopy);
duke@435 2982 __ delayed()->signx(length, count); // length
duke@435 2983
duke@435 2984 __ cmp(G3_elsize, LogBytesPerInt);
iveresov@2595 2985 __ br(Assembler::equal, true, Assembler::pt, entry_jint_arraycopy);
duke@435 2986 __ delayed()->signx(length, count); // length
duke@435 2987 #ifdef ASSERT
duke@435 2988 { Label L;
kvn@3037 2989 __ cmp_and_br_short(G3_elsize, LogBytesPerLong, Assembler::equal, Assembler::pt, L);
duke@435 2990 __ stop("must be long copy, but elsize is wrong");
duke@435 2991 __ bind(L);
duke@435 2992 }
duke@435 2993 #endif
iveresov@2595 2994 __ br(Assembler::always, false, Assembler::pt, entry_jlong_arraycopy);
duke@435 2995 __ delayed()->signx(length, count); // length
duke@435 2996
duke@435 2997 // objArrayKlass
duke@435 2998 __ BIND(L_objArray);
duke@435 2999 // live at this point: G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
duke@435 3000
duke@435 3001 Label L_plain_copy, L_checkcast_copy;
duke@435 3002 // test array classes for subtyping
duke@435 3003 __ cmp(G3_src_klass, G4_dst_klass); // usual case is exact equality
duke@435 3004 __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
duke@435 3005 __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
duke@435 3006
duke@435 3007 // Identically typed arrays can be copied without element-wise checks.
duke@435 3008 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 3009 O5_temp, G5_lh, L_failed);
duke@435 3010
duke@435 3011 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 3012 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 3013 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 3014 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 3015 __ add(src, src_pos, from); // src_addr
duke@435 3016 __ add(dst, dst_pos, to); // dst_addr
duke@435 3017 __ BIND(L_plain_copy);
iveresov@2595 3018 __ br(Assembler::always, false, Assembler::pt, entry_oop_arraycopy);
duke@435 3019 __ delayed()->signx(length, count); // length
duke@435 3020
duke@435 3021 __ BIND(L_checkcast_copy);
duke@435 3022 // live at this point: G3_src_klass, G4_dst_klass
duke@435 3023 {
duke@435 3024 // Before looking at dst.length, make sure dst is also an objArray.
duke@435 3025 // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
duke@435 3026 __ cmp(G5_lh, O5_temp);
duke@435 3027 __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
duke@435 3028
duke@435 3029 // It is safe to examine both src.length and dst.length.
duke@435 3030 __ delayed(); // match next insn to prev branch
duke@435 3031 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 3032 O5_temp, G5_lh, L_failed);
duke@435 3033
duke@435 3034 // Marshal the base address arguments now, freeing registers.
duke@435 3035 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 3036 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 3037 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 3038 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 3039 __ add(src, src_pos, from); // src_addr
duke@435 3040 __ add(dst, dst_pos, to); // dst_addr
duke@435 3041 __ signx(length, count); // length (reloaded)
duke@435 3042
duke@435 3043 Register sco_temp = O3; // this register is free now
duke@435 3044 assert_different_registers(from, to, count, sco_temp,
duke@435 3045 G4_dst_klass, G3_src_klass);
duke@435 3046
duke@435 3047 // Generate the type check.
duke@435 3048 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 3049 Klass::super_check_offset_offset_in_bytes());
duke@435 3050 __ lduw(G4_dst_klass, sco_offset, sco_temp);
duke@435 3051 generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
duke@435 3052 O5_temp, L_plain_copy);
duke@435 3053
duke@435 3054 // Fetch destination element klass from the objArrayKlass header.
duke@435 3055 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 3056 objArrayKlass::element_klass_offset_in_bytes());
duke@435 3057
duke@435 3058 // the checkcast_copy loop needs two extra arguments:
duke@435 3059 __ ld_ptr(G4_dst_klass, ek_offset, O4); // dest elem klass
duke@435 3060 // lduw(O4, sco_offset, O3); // sco of elem klass
duke@435 3061
iveresov@2595 3062 __ br(Assembler::always, false, Assembler::pt, entry_checkcast_arraycopy);
duke@435 3063 __ delayed()->lduw(O4, sco_offset, O3);
duke@435 3064 }
duke@435 3065
duke@435 3066 __ BIND(L_failed);
duke@435 3067 __ retl();
duke@435 3068 __ delayed()->sub(G0, 1, O0); // return -1
duke@435 3069 return start;
duke@435 3070 }
duke@435 3071
duke@435 3072 void generate_arraycopy_stubs() {
iveresov@2595 3073 address entry;
iveresov@2595 3074 address entry_jbyte_arraycopy;
iveresov@2595 3075 address entry_jshort_arraycopy;
iveresov@2595 3076 address entry_jint_arraycopy;
iveresov@2595 3077 address entry_oop_arraycopy;
iveresov@2595 3078 address entry_jlong_arraycopy;
iveresov@2595 3079 address entry_checkcast_arraycopy;
iveresov@2595 3080
iveresov@2606 3081 //*** jbyte
iveresov@2606 3082 // Always need aligned and unaligned versions
iveresov@2606 3083 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
iveresov@2606 3084 "jbyte_disjoint_arraycopy");
iveresov@2606 3085 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry,
iveresov@2606 3086 &entry_jbyte_arraycopy,
iveresov@2606 3087 "jbyte_arraycopy");
iveresov@2606 3088 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, &entry,
iveresov@2606 3089 "arrayof_jbyte_disjoint_arraycopy");
iveresov@2606 3090 StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, entry, NULL,
iveresov@2606 3091 "arrayof_jbyte_arraycopy");
iveresov@2606 3092
iveresov@2606 3093 //*** jshort
iveresov@2606 3094 // Always need aligned and unaligned versions
iveresov@2606 3095 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
iveresov@2606 3096 "jshort_disjoint_arraycopy");
iveresov@2606 3097 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry,
iveresov@2606 3098 &entry_jshort_arraycopy,
iveresov@2606 3099 "jshort_arraycopy");
iveresov@2595 3100 StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, &entry,
iveresov@2595 3101 "arrayof_jshort_disjoint_arraycopy");
iveresov@2595 3102 StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, entry, NULL,
iveresov@2595 3103 "arrayof_jshort_arraycopy");
iveresov@2595 3104
iveresov@2606 3105 //*** jint
iveresov@2606 3106 // Aligned versions
iveresov@2606 3107 StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, &entry,
iveresov@2606 3108 "arrayof_jint_disjoint_arraycopy");
iveresov@2606 3109 StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, entry, &entry_jint_arraycopy,
iveresov@2606 3110 "arrayof_jint_arraycopy");
duke@435 3111 #ifdef _LP64
iveresov@2606 3112 // In 64 bit we need both aligned and unaligned versions of jint arraycopy.
iveresov@2606 3113 // entry_jint_arraycopy always points to the unaligned version (notice that we overwrite it).
iveresov@2606 3114 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, &entry,
iveresov@2606 3115 "jint_disjoint_arraycopy");
iveresov@2606 3116 StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, entry,
iveresov@2606 3117 &entry_jint_arraycopy,
iveresov@2606 3118 "jint_arraycopy");
iveresov@2606 3119 #else
iveresov@2606 3120 // In 32 bit jints are always HeapWordSize aligned, so always use the aligned version
iveresov@2606 3121 // (in fact in 32bit we always have a pre-loop part even in the aligned version,
iveresov@2606 3122 // because it uses 64-bit loads/stores, so the aligned flag is actually ignored).
iveresov@2606 3123 StubRoutines::_jint_disjoint_arraycopy = StubRoutines::_arrayof_jint_disjoint_arraycopy;
iveresov@2606 3124 StubRoutines::_jint_arraycopy = StubRoutines::_arrayof_jint_arraycopy;
duke@435 3125 #endif
iveresov@2595 3126
iveresov@2606 3127
iveresov@2606 3128 //*** jlong
iveresov@2606 3129 // It is always aligned
iveresov@2606 3130 StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, &entry,
iveresov@2606 3131 "arrayof_jlong_disjoint_arraycopy");
iveresov@2606 3132 StubRoutines::_arrayof_jlong_arraycopy = generate_conjoint_long_copy(true, entry, &entry_jlong_arraycopy,
iveresov@2606 3133 "arrayof_jlong_arraycopy");
iveresov@2606 3134 StubRoutines::_jlong_disjoint_arraycopy = StubRoutines::_arrayof_jlong_disjoint_arraycopy;
iveresov@2606 3135 StubRoutines::_jlong_arraycopy = StubRoutines::_arrayof_jlong_arraycopy;
iveresov@2606 3136
iveresov@2606 3137
iveresov@2606 3138 //*** oops
iveresov@2606 3139 // Aligned versions
iveresov@2606 3140 StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, &entry,
iveresov@2606 3141 "arrayof_oop_disjoint_arraycopy");
iveresov@2606 3142 StubRoutines::_arrayof_oop_arraycopy = generate_conjoint_oop_copy(true, entry, &entry_oop_arraycopy,
iveresov@2606 3143 "arrayof_oop_arraycopy");
iveresov@2606 3144 // Aligned versions without pre-barriers
iveresov@2606 3145 StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(true, &entry,
iveresov@2606 3146 "arrayof_oop_disjoint_arraycopy_uninit",
iveresov@2606 3147 /*dest_uninitialized*/true);
iveresov@2606 3148 StubRoutines::_arrayof_oop_arraycopy_uninit = generate_conjoint_oop_copy(true, entry, NULL,
iveresov@2606 3149 "arrayof_oop_arraycopy_uninit",
iveresov@2606 3150 /*dest_uninitialized*/true);
iveresov@2606 3151 #ifdef _LP64
iveresov@2606 3152 if (UseCompressedOops) {
iveresov@2606 3153 // With compressed oops we need unaligned versions, notice that we overwrite entry_oop_arraycopy.
iveresov@2606 3154 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, &entry,
iveresov@2606 3155 "oop_disjoint_arraycopy");
iveresov@2606 3156 StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, entry, &entry_oop_arraycopy,
iveresov@2606 3157 "oop_arraycopy");
iveresov@2606 3158 // Unaligned versions without pre-barriers
iveresov@2606 3159 StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_oop_copy(false, &entry,
iveresov@2606 3160 "oop_disjoint_arraycopy_uninit",
iveresov@2606 3161 /*dest_uninitialized*/true);
iveresov@2606 3162 StubRoutines::_oop_arraycopy_uninit = generate_conjoint_oop_copy(false, entry, NULL,
iveresov@2606 3163 "oop_arraycopy_uninit",
iveresov@2606 3164 /*dest_uninitialized*/true);
iveresov@2606 3165 } else
iveresov@2606 3166 #endif
iveresov@2606 3167 {
iveresov@2606 3168 // oop arraycopy is always aligned on 32bit and 64bit without compressed oops
iveresov@2606 3169 StubRoutines::_oop_disjoint_arraycopy = StubRoutines::_arrayof_oop_disjoint_arraycopy;
iveresov@2606 3170 StubRoutines::_oop_arraycopy = StubRoutines::_arrayof_oop_arraycopy;
iveresov@2606 3171 StubRoutines::_oop_disjoint_arraycopy_uninit = StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit;
iveresov@2606 3172 StubRoutines::_oop_arraycopy_uninit = StubRoutines::_arrayof_oop_arraycopy_uninit;
iveresov@2606 3173 }
iveresov@2606 3174
iveresov@2606 3175 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
iveresov@2606 3176 StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
iveresov@2606 3177 /*dest_uninitialized*/true);
iveresov@2606 3178
iveresov@2595 3179 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
iveresov@2595 3180 entry_jbyte_arraycopy,
iveresov@2595 3181 entry_jshort_arraycopy,
iveresov@2595 3182 entry_jint_arraycopy,
iveresov@2595 3183 entry_jlong_arraycopy);
iveresov@2595 3184 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
iveresov@2595 3185 entry_jbyte_arraycopy,
iveresov@2595 3186 entry_jshort_arraycopy,
iveresov@2595 3187 entry_jint_arraycopy,
iveresov@2595 3188 entry_oop_arraycopy,
iveresov@2595 3189 entry_jlong_arraycopy,
iveresov@2595 3190 entry_checkcast_arraycopy);
never@2118 3191
never@2118 3192 StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
never@2118 3193 StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
never@2118 3194 StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
never@2118 3195 StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
never@2118 3196 StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
never@2118 3197 StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
duke@435 3198 }
duke@435 3199
duke@435 3200 void generate_initial() {
duke@435 3201 // Generates all stubs and initializes the entry points
duke@435 3202
duke@435 3203 //------------------------------------------------------------------------------------------------------------------------
duke@435 3204 // entry points that exist in all platforms
duke@435 3205 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
duke@435 3206 // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
duke@435 3207 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 3208
duke@435 3209 StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 3210 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 3211
duke@435 3212 //------------------------------------------------------------------------------------------------------------------------
duke@435 3213 // entry points that are platform specific
duke@435 3214 StubRoutines::Sparc::_test_stop_entry = generate_test_stop();
duke@435 3215
duke@435 3216 StubRoutines::Sparc::_stop_subroutine_entry = generate_stop_subroutine();
duke@435 3217 StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
duke@435 3218
duke@435 3219 #if !defined(COMPILER2) && !defined(_LP64)
duke@435 3220 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 3221 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 3222 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 3223 StubRoutines::_atomic_xchg_ptr_entry = StubRoutines::_atomic_xchg_entry;
duke@435 3224 StubRoutines::_atomic_cmpxchg_ptr_entry = StubRoutines::_atomic_cmpxchg_entry;
duke@435 3225 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 3226 StubRoutines::_atomic_add_ptr_entry = StubRoutines::_atomic_add_entry;
duke@435 3227 #endif // COMPILER2 !=> _LP64
never@2978 3228
never@2978 3229 // Build this early so it's available for the interpreter. The
never@2978 3230 // stub expects the required and actual type to already be in O1
never@2978 3231 // and O2 respectively.
never@2978 3232 StubRoutines::_throw_WrongMethodTypeException_entry =
never@2978 3233 generate_throw_exception("WrongMethodTypeException throw_exception",
never@2978 3234 CAST_FROM_FN_PTR(address, SharedRuntime::throw_WrongMethodTypeException),
never@2978 3235 false, G5_method_type, G3_method_handle);
duke@435 3236 }
duke@435 3237
duke@435 3238
duke@435 3239 void generate_all() {
duke@435 3240 // Generates all stubs and initializes the entry points
duke@435 3241
kvn@1077 3242 // Generate partial_subtype_check first here since its code depends on
kvn@1077 3243 // UseZeroBaseCompressedOops which is defined after heap initialization.
kvn@1077 3244 StubRoutines::Sparc::_partial_subtype_check = generate_partial_subtype_check();
duke@435 3245 // These entry points require SharedInfo::stack0 to be set up in non-core builds
duke@435 3246 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false);
dcubed@451 3247 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError), false);
duke@435 3248 StubRoutines::_throw_ArithmeticException_entry = generate_throw_exception("ArithmeticException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException), true);
duke@435 3249 StubRoutines::_throw_NullPointerException_entry = generate_throw_exception("NullPointerException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
duke@435 3250 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
duke@435 3251 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
duke@435 3252
duke@435 3253 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 3254 generate_handler_for_unsafe_access();
duke@435 3255
duke@435 3256 // support for verify_oop (must happen after universe_init)
duke@435 3257 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop_subroutine();
duke@435 3258
duke@435 3259 // arraycopy stubs used by compilers
duke@435 3260 generate_arraycopy_stubs();
never@1609 3261
never@1609 3262 // Don't initialize the platform math functions since sparc
never@1609 3263 // doesn't have intrinsics for these operations.
duke@435 3264 }
duke@435 3265
duke@435 3266
duke@435 3267 public:
duke@435 3268 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 3269 // replace the standard masm with a special one:
duke@435 3270 _masm = new MacroAssembler(code);
duke@435 3271
duke@435 3272 _stub_count = !all ? 0x100 : 0x200;
duke@435 3273 if (all) {
duke@435 3274 generate_all();
duke@435 3275 } else {
duke@435 3276 generate_initial();
duke@435 3277 }
duke@435 3278
duke@435 3279 // make sure this stub is available for all local calls
duke@435 3280 if (_atomic_add_stub.is_unbound()) {
duke@435 3281 // generate a second time, if necessary
duke@435 3282 (void) generate_atomic_add();
duke@435 3283 }
duke@435 3284 }
duke@435 3285
duke@435 3286
duke@435 3287 private:
duke@435 3288 int _stub_count;
duke@435 3289 void stub_prolog(StubCodeDesc* cdesc) {
duke@435 3290 # ifdef ASSERT
duke@435 3291 // put extra information in the stub code, to make it more readable
duke@435 3292 #ifdef _LP64
duke@435 3293 // Write the high part of the address
duke@435 3294 // [RGV] Check if there is a dependency on the size of this prolog
duke@435 3295 __ emit_data((intptr_t)cdesc >> 32, relocInfo::none);
duke@435 3296 #endif
duke@435 3297 __ emit_data((intptr_t)cdesc, relocInfo::none);
duke@435 3298 __ emit_data(++_stub_count, relocInfo::none);
duke@435 3299 # endif
duke@435 3300 align(true);
duke@435 3301 }
duke@435 3302
duke@435 3303 void align(bool at_header = false) {
duke@435 3304 // %%%%% move this constant somewhere else
duke@435 3305 // UltraSPARC cache line size is 8 instructions:
duke@435 3306 const unsigned int icache_line_size = 32;
duke@435 3307 const unsigned int icache_half_line_size = 16;
duke@435 3308
duke@435 3309 if (at_header) {
duke@435 3310 while ((intptr_t)(__ pc()) % icache_line_size != 0) {
duke@435 3311 __ emit_data(0, relocInfo::none);
duke@435 3312 }
duke@435 3313 } else {
duke@435 3314 while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
duke@435 3315 __ nop();
duke@435 3316 }
duke@435 3317 }
duke@435 3318 }
duke@435 3319
duke@435 3320 }; // end class declaration
duke@435 3321
duke@435 3322 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 3323 StubGenerator g(code, all);
duke@435 3324 }

mercurial