src/cpu/sparc/vm/stubGenerator_sparc.cpp

Tue, 09 Mar 2010 20:16:19 +0100

author
twisti
date
Tue, 09 Mar 2010 20:16:19 +0100
changeset 1730
3cf667df43ef
parent 1609
ddb7834449d0
child 1799
0dc88ad3244e
permissions
-rw-r--r--

6919934: JSR 292 needs to support x86 C1
Summary: This implements JSR 292 support for C1 x86.
Reviewed-by: never, jrose, kvn

duke@435 1 /*
never@1609 2 * Copyright 1997-2010 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_stubGenerator_sparc.cpp.incl"
duke@435 27
duke@435 28 // Declaration and definition of StubGenerator (no .hpp file).
duke@435 29 // For a more detailed description of the stub routine structure
duke@435 30 // see the comment in stubRoutines.hpp.
duke@435 31
duke@435 32 #define __ _masm->
duke@435 33
duke@435 34 #ifdef PRODUCT
duke@435 35 #define BLOCK_COMMENT(str) /* nothing */
duke@435 36 #else
duke@435 37 #define BLOCK_COMMENT(str) __ block_comment(str)
duke@435 38 #endif
duke@435 39
duke@435 40 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
duke@435 41
duke@435 42 // Note: The register L7 is used as L7_thread_cache, and may not be used
duke@435 43 // any other way within this module.
duke@435 44
duke@435 45
duke@435 46 static const Register& Lstub_temp = L2;
duke@435 47
duke@435 48 // -------------------------------------------------------------------------------------------------------------------------
duke@435 49 // Stub Code definitions
duke@435 50
duke@435 51 static address handle_unsafe_access() {
duke@435 52 JavaThread* thread = JavaThread::current();
duke@435 53 address pc = thread->saved_exception_pc();
duke@435 54 address npc = thread->saved_exception_npc();
duke@435 55 // pc is the instruction which we must emulate
duke@435 56 // doing a no-op is fine: return garbage from the load
duke@435 57
duke@435 58 // request an async exception
duke@435 59 thread->set_pending_unsafe_access_error();
duke@435 60
duke@435 61 // return address of next instruction to execute
duke@435 62 return npc;
duke@435 63 }
duke@435 64
duke@435 65 class StubGenerator: public StubCodeGenerator {
duke@435 66 private:
duke@435 67
duke@435 68 #ifdef PRODUCT
duke@435 69 #define inc_counter_np(a,b,c) (0)
duke@435 70 #else
duke@435 71 #define inc_counter_np(counter, t1, t2) \
duke@435 72 BLOCK_COMMENT("inc_counter " #counter); \
twisti@1162 73 __ inc_counter(&counter, t1, t2);
duke@435 74 #endif
duke@435 75
duke@435 76 //----------------------------------------------------------------------------------------------------
duke@435 77 // Call stubs are used to call Java from C
duke@435 78
duke@435 79 address generate_call_stub(address& return_pc) {
duke@435 80 StubCodeMark mark(this, "StubRoutines", "call_stub");
duke@435 81 address start = __ pc();
duke@435 82
duke@435 83 // Incoming arguments:
duke@435 84 //
duke@435 85 // o0 : call wrapper address
duke@435 86 // o1 : result (address)
duke@435 87 // o2 : result type
duke@435 88 // o3 : method
duke@435 89 // o4 : (interpreter) entry point
duke@435 90 // o5 : parameters (address)
duke@435 91 // [sp + 0x5c]: parameter size (in words)
duke@435 92 // [sp + 0x60]: thread
duke@435 93 //
duke@435 94 // +---------------+ <--- sp + 0
duke@435 95 // | |
duke@435 96 // . reg save area .
duke@435 97 // | |
duke@435 98 // +---------------+ <--- sp + 0x40
duke@435 99 // | |
duke@435 100 // . extra 7 slots .
duke@435 101 // | |
duke@435 102 // +---------------+ <--- sp + 0x5c
duke@435 103 // | param. size |
duke@435 104 // +---------------+ <--- sp + 0x60
duke@435 105 // | thread |
duke@435 106 // +---------------+
duke@435 107 // | |
duke@435 108
duke@435 109 // note: if the link argument position changes, adjust
duke@435 110 // the code in frame::entry_frame_call_wrapper()
duke@435 111
duke@435 112 const Argument link = Argument(0, false); // used only for GC
duke@435 113 const Argument result = Argument(1, false);
duke@435 114 const Argument result_type = Argument(2, false);
duke@435 115 const Argument method = Argument(3, false);
duke@435 116 const Argument entry_point = Argument(4, false);
duke@435 117 const Argument parameters = Argument(5, false);
duke@435 118 const Argument parameter_size = Argument(6, false);
duke@435 119 const Argument thread = Argument(7, false);
duke@435 120
duke@435 121 // setup thread register
duke@435 122 __ ld_ptr(thread.as_address(), G2_thread);
coleenp@548 123 __ reinit_heapbase();
duke@435 124
duke@435 125 #ifdef ASSERT
duke@435 126 // make sure we have no pending exceptions
duke@435 127 { const Register t = G3_scratch;
duke@435 128 Label L;
duke@435 129 __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
duke@435 130 __ br_null(t, false, Assembler::pt, L);
duke@435 131 __ delayed()->nop();
duke@435 132 __ stop("StubRoutines::call_stub: entered with pending exception");
duke@435 133 __ bind(L);
duke@435 134 }
duke@435 135 #endif
duke@435 136
duke@435 137 // create activation frame & allocate space for parameters
duke@435 138 { const Register t = G3_scratch;
duke@435 139 __ ld_ptr(parameter_size.as_address(), t); // get parameter size (in words)
duke@435 140 __ add(t, frame::memory_parameter_word_sp_offset, t); // add space for save area (in words)
duke@435 141 __ round_to(t, WordsPerLong); // make sure it is multiple of 2 (in words)
duke@435 142 __ sll(t, Interpreter::logStackElementSize(), t); // compute number of bytes
duke@435 143 __ neg(t); // negate so it can be used with save
duke@435 144 __ save(SP, t, SP); // setup new frame
duke@435 145 }
duke@435 146
duke@435 147 // +---------------+ <--- sp + 0
duke@435 148 // | |
duke@435 149 // . reg save area .
duke@435 150 // | |
duke@435 151 // +---------------+ <--- sp + 0x40
duke@435 152 // | |
duke@435 153 // . extra 7 slots .
duke@435 154 // | |
duke@435 155 // +---------------+ <--- sp + 0x5c
duke@435 156 // | empty slot | (only if parameter size is even)
duke@435 157 // +---------------+
duke@435 158 // | |
duke@435 159 // . parameters .
duke@435 160 // | |
duke@435 161 // +---------------+ <--- fp + 0
duke@435 162 // | |
duke@435 163 // . reg save area .
duke@435 164 // | |
duke@435 165 // +---------------+ <--- fp + 0x40
duke@435 166 // | |
duke@435 167 // . extra 7 slots .
duke@435 168 // | |
duke@435 169 // +---------------+ <--- fp + 0x5c
duke@435 170 // | param. size |
duke@435 171 // +---------------+ <--- fp + 0x60
duke@435 172 // | thread |
duke@435 173 // +---------------+
duke@435 174 // | |
duke@435 175
duke@435 176 // pass parameters if any
duke@435 177 BLOCK_COMMENT("pass parameters if any");
duke@435 178 { const Register src = parameters.as_in().as_register();
duke@435 179 const Register dst = Lentry_args;
duke@435 180 const Register tmp = G3_scratch;
duke@435 181 const Register cnt = G4_scratch;
duke@435 182
duke@435 183 // test if any parameters & setup of Lentry_args
duke@435 184 Label exit;
duke@435 185 __ ld_ptr(parameter_size.as_in().as_address(), cnt); // parameter counter
duke@435 186 __ add( FP, STACK_BIAS, dst );
duke@435 187 __ tst(cnt);
duke@435 188 __ br(Assembler::zero, false, Assembler::pn, exit);
duke@435 189 __ delayed()->sub(dst, BytesPerWord, dst); // setup Lentry_args
duke@435 190
duke@435 191 // copy parameters if any
duke@435 192 Label loop;
duke@435 193 __ BIND(loop);
duke@435 194 // Store tag first.
duke@435 195 if (TaggedStackInterpreter) {
duke@435 196 __ ld_ptr(src, 0, tmp);
duke@435 197 __ add(src, BytesPerWord, src); // get next
duke@435 198 __ st_ptr(tmp, dst, Interpreter::tag_offset_in_bytes());
duke@435 199 }
duke@435 200 // Store parameter value
duke@435 201 __ ld_ptr(src, 0, tmp);
duke@435 202 __ add(src, BytesPerWord, src);
duke@435 203 __ st_ptr(tmp, dst, Interpreter::value_offset_in_bytes());
duke@435 204 __ deccc(cnt);
duke@435 205 __ br(Assembler::greater, false, Assembler::pt, loop);
duke@435 206 __ delayed()->sub(dst, Interpreter::stackElementSize(), dst);
duke@435 207
duke@435 208 // done
duke@435 209 __ BIND(exit);
duke@435 210 }
duke@435 211
duke@435 212 // setup parameters, method & call Java function
duke@435 213 #ifdef ASSERT
duke@435 214 // layout_activation_impl checks it's notion of saved SP against
duke@435 215 // this register, so if this changes update it as well.
duke@435 216 const Register saved_SP = Lscratch;
duke@435 217 __ mov(SP, saved_SP); // keep track of SP before call
duke@435 218 #endif
duke@435 219
duke@435 220 // setup parameters
duke@435 221 const Register t = G3_scratch;
duke@435 222 __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
duke@435 223 __ sll(t, Interpreter::logStackElementSize(), t); // compute number of bytes
duke@435 224 __ sub(FP, t, Gargs); // setup parameter pointer
duke@435 225 #ifdef _LP64
duke@435 226 __ add( Gargs, STACK_BIAS, Gargs ); // Account for LP64 stack bias
duke@435 227 #endif
duke@435 228 __ mov(SP, O5_savedSP);
duke@435 229
duke@435 230
duke@435 231 // do the call
duke@435 232 //
duke@435 233 // the following register must be setup:
duke@435 234 //
duke@435 235 // G2_thread
duke@435 236 // G5_method
duke@435 237 // Gargs
duke@435 238 BLOCK_COMMENT("call Java function");
duke@435 239 __ jmpl(entry_point.as_in().as_register(), G0, O7);
duke@435 240 __ delayed()->mov(method.as_in().as_register(), G5_method); // setup method
duke@435 241
duke@435 242 BLOCK_COMMENT("call_stub_return_address:");
duke@435 243 return_pc = __ pc();
duke@435 244
duke@435 245 // The callee, if it wasn't interpreted, can return with SP changed so
duke@435 246 // we can no longer assert of change of SP.
duke@435 247
duke@435 248 // store result depending on type
duke@435 249 // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
duke@435 250 // is treated as T_INT)
duke@435 251 { const Register addr = result .as_in().as_register();
duke@435 252 const Register type = result_type.as_in().as_register();
duke@435 253 Label is_long, is_float, is_double, is_object, exit;
duke@435 254 __ cmp(type, T_OBJECT); __ br(Assembler::equal, false, Assembler::pn, is_object);
duke@435 255 __ delayed()->cmp(type, T_FLOAT); __ br(Assembler::equal, false, Assembler::pn, is_float);
duke@435 256 __ delayed()->cmp(type, T_DOUBLE); __ br(Assembler::equal, false, Assembler::pn, is_double);
duke@435 257 __ delayed()->cmp(type, T_LONG); __ br(Assembler::equal, false, Assembler::pn, is_long);
duke@435 258 __ delayed()->nop();
duke@435 259
duke@435 260 // store int result
duke@435 261 __ st(O0, addr, G0);
duke@435 262
duke@435 263 __ BIND(exit);
duke@435 264 __ ret();
duke@435 265 __ delayed()->restore();
duke@435 266
duke@435 267 __ BIND(is_object);
duke@435 268 __ ba(false, exit);
duke@435 269 __ delayed()->st_ptr(O0, addr, G0);
duke@435 270
duke@435 271 __ BIND(is_float);
duke@435 272 __ ba(false, exit);
duke@435 273 __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
duke@435 274
duke@435 275 __ BIND(is_double);
duke@435 276 __ ba(false, exit);
duke@435 277 __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
duke@435 278
duke@435 279 __ BIND(is_long);
duke@435 280 #ifdef _LP64
duke@435 281 __ ba(false, exit);
duke@435 282 __ delayed()->st_long(O0, addr, G0); // store entire long
duke@435 283 #else
duke@435 284 #if defined(COMPILER2)
duke@435 285 // All return values are where we want them, except for Longs. C2 returns
duke@435 286 // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
duke@435 287 // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
duke@435 288 // build we simply always use G1.
duke@435 289 // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
duke@435 290 // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
duke@435 291 // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
duke@435 292
duke@435 293 __ ba(false, exit);
duke@435 294 __ delayed()->stx(G1, addr, G0); // store entire long
duke@435 295 #else
duke@435 296 __ st(O1, addr, BytesPerInt);
duke@435 297 __ ba(false, exit);
duke@435 298 __ delayed()->st(O0, addr, G0);
duke@435 299 #endif /* COMPILER2 */
duke@435 300 #endif /* _LP64 */
duke@435 301 }
duke@435 302 return start;
duke@435 303 }
duke@435 304
duke@435 305
duke@435 306 //----------------------------------------------------------------------------------------------------
duke@435 307 // Return point for a Java call if there's an exception thrown in Java code.
duke@435 308 // The exception is caught and transformed into a pending exception stored in
duke@435 309 // JavaThread that can be tested from within the VM.
duke@435 310 //
duke@435 311 // Oexception: exception oop
duke@435 312
duke@435 313 address generate_catch_exception() {
duke@435 314 StubCodeMark mark(this, "StubRoutines", "catch_exception");
duke@435 315
duke@435 316 address start = __ pc();
duke@435 317 // verify that thread corresponds
duke@435 318 __ verify_thread();
duke@435 319
duke@435 320 const Register& temp_reg = Gtemp;
twisti@1162 321 Address pending_exception_addr (G2_thread, Thread::pending_exception_offset());
twisti@1162 322 Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset ());
twisti@1162 323 Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset ());
duke@435 324
duke@435 325 // set pending exception
duke@435 326 __ verify_oop(Oexception);
duke@435 327 __ st_ptr(Oexception, pending_exception_addr);
duke@435 328 __ set((intptr_t)__FILE__, temp_reg);
duke@435 329 __ st_ptr(temp_reg, exception_file_offset_addr);
duke@435 330 __ set((intptr_t)__LINE__, temp_reg);
duke@435 331 __ st(temp_reg, exception_line_offset_addr);
duke@435 332
duke@435 333 // complete return to VM
duke@435 334 assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
duke@435 335
twisti@1162 336 AddressLiteral stub_ret(StubRoutines::_call_stub_return_address);
twisti@1162 337 __ jump_to(stub_ret, temp_reg);
duke@435 338 __ delayed()->nop();
duke@435 339
duke@435 340 return start;
duke@435 341 }
duke@435 342
duke@435 343
duke@435 344 //----------------------------------------------------------------------------------------------------
duke@435 345 // Continuation point for runtime calls returning with a pending exception
duke@435 346 // The pending exception check happened in the runtime or native call stub
duke@435 347 // The pending exception in Thread is converted into a Java-level exception
duke@435 348 //
duke@435 349 // Contract with Java-level exception handler: O0 = exception
duke@435 350 // O1 = throwing pc
duke@435 351
duke@435 352 address generate_forward_exception() {
duke@435 353 StubCodeMark mark(this, "StubRoutines", "forward_exception");
duke@435 354 address start = __ pc();
duke@435 355
duke@435 356 // Upon entry, O7 has the return address returning into Java
duke@435 357 // (interpreted or compiled) code; i.e. the return address
duke@435 358 // becomes the throwing pc.
duke@435 359
duke@435 360 const Register& handler_reg = Gtemp;
duke@435 361
twisti@1162 362 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 363
duke@435 364 #ifdef ASSERT
duke@435 365 // make sure that this code is only executed if there is a pending exception
duke@435 366 { Label L;
duke@435 367 __ ld_ptr(exception_addr, Gtemp);
duke@435 368 __ br_notnull(Gtemp, false, Assembler::pt, L);
duke@435 369 __ delayed()->nop();
duke@435 370 __ stop("StubRoutines::forward exception: no pending exception (1)");
duke@435 371 __ bind(L);
duke@435 372 }
duke@435 373 #endif
duke@435 374
duke@435 375 // compute exception handler into handler_reg
duke@435 376 __ get_thread();
duke@435 377 __ ld_ptr(exception_addr, Oexception);
duke@435 378 __ verify_oop(Oexception);
duke@435 379 __ save_frame(0); // compensates for compiler weakness
duke@435 380 __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
duke@435 381 BLOCK_COMMENT("call exception_handler_for_return_address");
twisti@1730 382 __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Lscratch);
duke@435 383 __ mov(O0, handler_reg);
duke@435 384 __ restore(); // compensates for compiler weakness
duke@435 385
duke@435 386 __ ld_ptr(exception_addr, Oexception);
duke@435 387 __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
duke@435 388
duke@435 389 #ifdef ASSERT
duke@435 390 // make sure exception is set
duke@435 391 { Label L;
duke@435 392 __ br_notnull(Oexception, false, Assembler::pt, L);
duke@435 393 __ delayed()->nop();
duke@435 394 __ stop("StubRoutines::forward exception: no pending exception (2)");
duke@435 395 __ bind(L);
duke@435 396 }
duke@435 397 #endif
duke@435 398 // jump to exception handler
duke@435 399 __ jmp(handler_reg, 0);
duke@435 400 // clear pending exception
duke@435 401 __ delayed()->st_ptr(G0, exception_addr);
duke@435 402
duke@435 403 return start;
duke@435 404 }
duke@435 405
duke@435 406
duke@435 407 //------------------------------------------------------------------------------------------------------------------------
duke@435 408 // Continuation point for throwing of implicit exceptions that are not handled in
duke@435 409 // the current activation. Fabricates an exception oop and initiates normal
duke@435 410 // exception dispatching in this frame. Only callee-saved registers are preserved
duke@435 411 // (through the normal register window / RegisterMap handling).
duke@435 412 // If the compiler needs all registers to be preserved between the fault
duke@435 413 // point and the exception handler then it must assume responsibility for that in
duke@435 414 // AbstractCompiler::continuation_for_implicit_null_exception or
duke@435 415 // continuation_for_implicit_division_by_zero_exception. All other implicit
duke@435 416 // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
duke@435 417 // either at call sites or otherwise assume that stack unwinding will be initiated,
duke@435 418 // so caller saved registers were assumed volatile in the compiler.
duke@435 419
duke@435 420 // Note that we generate only this stub into a RuntimeStub, because it needs to be
duke@435 421 // properly traversed and ignored during GC, so we change the meaning of the "__"
duke@435 422 // macro within this method.
duke@435 423 #undef __
duke@435 424 #define __ masm->
duke@435 425
duke@435 426 address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc) {
duke@435 427 #ifdef ASSERT
duke@435 428 int insts_size = VerifyThread ? 1 * K : 600;
duke@435 429 #else
duke@435 430 int insts_size = VerifyThread ? 1 * K : 256;
duke@435 431 #endif /* ASSERT */
duke@435 432 int locs_size = 32;
duke@435 433
duke@435 434 CodeBuffer code(name, insts_size, locs_size);
duke@435 435 MacroAssembler* masm = new MacroAssembler(&code);
duke@435 436
duke@435 437 __ verify_thread();
duke@435 438
duke@435 439 // This is an inlined and slightly modified version of call_VM
duke@435 440 // which has the ability to fetch the return PC out of thread-local storage
duke@435 441 __ assert_not_delayed();
duke@435 442
duke@435 443 // Note that we always push a frame because on the SPARC
duke@435 444 // architecture, for all of our implicit exception kinds at call
duke@435 445 // sites, the implicit exception is taken before the callee frame
duke@435 446 // is pushed.
duke@435 447 __ save_frame(0);
duke@435 448
duke@435 449 int frame_complete = __ offset();
duke@435 450
duke@435 451 if (restore_saved_exception_pc) {
twisti@1162 452 __ ld_ptr(G2_thread, JavaThread::saved_exception_pc_offset(), I7);
duke@435 453 __ sub(I7, frame::pc_return_offset, I7);
duke@435 454 }
duke@435 455
duke@435 456 // Note that we always have a runtime stub frame on the top of stack by this point
duke@435 457 Register last_java_sp = SP;
duke@435 458 // 64-bit last_java_sp is biased!
duke@435 459 __ set_last_Java_frame(last_java_sp, G0);
duke@435 460 if (VerifyThread) __ mov(G2_thread, O0); // about to be smashed; pass early
duke@435 461 __ save_thread(noreg);
duke@435 462 // do the call
duke@435 463 BLOCK_COMMENT("call runtime_entry");
duke@435 464 __ call(runtime_entry, relocInfo::runtime_call_type);
duke@435 465 if (!VerifyThread)
duke@435 466 __ delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 467 else
duke@435 468 __ delayed()->nop(); // (thread already passed)
duke@435 469 __ restore_thread(noreg);
duke@435 470 __ reset_last_Java_frame();
duke@435 471
duke@435 472 // check for pending exceptions. use Gtemp as scratch register.
duke@435 473 #ifdef ASSERT
duke@435 474 Label L;
duke@435 475
twisti@1162 476 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 477 Register scratch_reg = Gtemp;
duke@435 478 __ ld_ptr(exception_addr, scratch_reg);
duke@435 479 __ br_notnull(scratch_reg, false, Assembler::pt, L);
duke@435 480 __ delayed()->nop();
duke@435 481 __ should_not_reach_here();
duke@435 482 __ bind(L);
duke@435 483 #endif // ASSERT
duke@435 484 BLOCK_COMMENT("call forward_exception_entry");
duke@435 485 __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 486 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 487 __ delayed()->restore();
duke@435 488
duke@435 489 RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
duke@435 490 return stub->entry_point();
duke@435 491 }
duke@435 492
duke@435 493 #undef __
duke@435 494 #define __ _masm->
duke@435 495
duke@435 496
duke@435 497 // Generate a routine that sets all the registers so we
duke@435 498 // can tell if the stop routine prints them correctly.
duke@435 499 address generate_test_stop() {
duke@435 500 StubCodeMark mark(this, "StubRoutines", "test_stop");
duke@435 501 address start = __ pc();
duke@435 502
duke@435 503 int i;
duke@435 504
duke@435 505 __ save_frame(0);
duke@435 506
duke@435 507 static jfloat zero = 0.0, one = 1.0;
duke@435 508
duke@435 509 // put addr in L0, then load through L0 to F0
duke@435 510 __ set((intptr_t)&zero, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F0);
duke@435 511 __ set((intptr_t)&one, L0); __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
duke@435 512
duke@435 513 // use add to put 2..18 in F2..F18
duke@435 514 for ( i = 2; i <= 18; ++i ) {
duke@435 515 __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1), as_FloatRegister(i));
duke@435 516 }
duke@435 517
duke@435 518 // Now put double 2 in F16, double 18 in F18
duke@435 519 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
duke@435 520 __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
duke@435 521
duke@435 522 // use add to put 20..32 in F20..F32
duke@435 523 for (i = 20; i < 32; i += 2) {
duke@435 524 __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2), as_FloatRegister(i));
duke@435 525 }
duke@435 526
duke@435 527 // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
duke@435 528 for ( i = 0; i < 8; ++i ) {
duke@435 529 if (i < 6) {
duke@435 530 __ set( i, as_iRegister(i));
duke@435 531 __ set(16 + i, as_oRegister(i));
duke@435 532 __ set(24 + i, as_gRegister(i));
duke@435 533 }
duke@435 534 __ set( 8 + i, as_lRegister(i));
duke@435 535 }
duke@435 536
duke@435 537 __ stop("testing stop");
duke@435 538
duke@435 539
duke@435 540 __ ret();
duke@435 541 __ delayed()->restore();
duke@435 542
duke@435 543 return start;
duke@435 544 }
duke@435 545
duke@435 546
duke@435 547 address generate_stop_subroutine() {
duke@435 548 StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
duke@435 549 address start = __ pc();
duke@435 550
duke@435 551 __ stop_subroutine();
duke@435 552
duke@435 553 return start;
duke@435 554 }
duke@435 555
duke@435 556 address generate_flush_callers_register_windows() {
duke@435 557 StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
duke@435 558 address start = __ pc();
duke@435 559
duke@435 560 __ flush_windows();
duke@435 561 __ retl(false);
duke@435 562 __ delayed()->add( FP, STACK_BIAS, O0 );
duke@435 563 // The returned value must be a stack pointer whose register save area
duke@435 564 // is flushed, and will stay flushed while the caller executes.
duke@435 565
duke@435 566 return start;
duke@435 567 }
duke@435 568
duke@435 569 // Helper functions for v8 atomic operations.
duke@435 570 //
duke@435 571 void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
duke@435 572 if (mark_oop_reg == noreg) {
duke@435 573 address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
duke@435 574 __ set((intptr_t)lock_ptr, lock_ptr_reg);
duke@435 575 } else {
duke@435 576 assert(scratch_reg != noreg, "just checking");
duke@435 577 address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
duke@435 578 __ set((intptr_t)lock_ptr, lock_ptr_reg);
duke@435 579 __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
duke@435 580 __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
duke@435 581 }
duke@435 582 }
duke@435 583
duke@435 584 void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
duke@435 585
duke@435 586 get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
duke@435 587 __ set(StubRoutines::Sparc::locked, lock_reg);
duke@435 588 // Initialize yield counter
duke@435 589 __ mov(G0,yield_reg);
duke@435 590
duke@435 591 __ BIND(retry);
duke@435 592 __ cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
duke@435 593 __ br(Assembler::less, false, Assembler::pt, dontyield);
duke@435 594 __ delayed()->nop();
duke@435 595
duke@435 596 // This code can only be called from inside the VM, this
duke@435 597 // stub is only invoked from Atomic::add(). We do not
duke@435 598 // want to use call_VM, because _last_java_sp and such
duke@435 599 // must already be set.
duke@435 600 //
duke@435 601 // Save the regs and make space for a C call
duke@435 602 __ save(SP, -96, SP);
duke@435 603 __ save_all_globals_into_locals();
duke@435 604 BLOCK_COMMENT("call os::naked_sleep");
duke@435 605 __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
duke@435 606 __ delayed()->nop();
duke@435 607 __ restore_globals_from_locals();
duke@435 608 __ restore();
duke@435 609 // reset the counter
duke@435 610 __ mov(G0,yield_reg);
duke@435 611
duke@435 612 __ BIND(dontyield);
duke@435 613
duke@435 614 // try to get lock
duke@435 615 __ swap(lock_ptr_reg, 0, lock_reg);
duke@435 616
duke@435 617 // did we get the lock?
duke@435 618 __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
duke@435 619 __ br(Assembler::notEqual, true, Assembler::pn, retry);
duke@435 620 __ delayed()->add(yield_reg,1,yield_reg);
duke@435 621
duke@435 622 // yes, got lock. do the operation here.
duke@435 623 }
duke@435 624
duke@435 625 void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
duke@435 626 __ st(lock_reg, lock_ptr_reg, 0); // unlock
duke@435 627 }
duke@435 628
duke@435 629 // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
duke@435 630 //
duke@435 631 // Arguments :
duke@435 632 //
duke@435 633 // exchange_value: O0
duke@435 634 // dest: O1
duke@435 635 //
duke@435 636 // Results:
duke@435 637 //
duke@435 638 // O0: the value previously stored in dest
duke@435 639 //
duke@435 640 address generate_atomic_xchg() {
duke@435 641 StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
duke@435 642 address start = __ pc();
duke@435 643
duke@435 644 if (UseCASForSwap) {
duke@435 645 // Use CAS instead of swap, just in case the MP hardware
duke@435 646 // prefers to work with just one kind of synch. instruction.
duke@435 647 Label retry;
duke@435 648 __ BIND(retry);
duke@435 649 __ mov(O0, O3); // scratch copy of exchange value
duke@435 650 __ ld(O1, 0, O2); // observe the previous value
duke@435 651 // try to replace O2 with O3
duke@435 652 __ cas_under_lock(O1, O2, O3,
duke@435 653 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
duke@435 654 __ cmp(O2, O3);
duke@435 655 __ br(Assembler::notEqual, false, Assembler::pn, retry);
duke@435 656 __ delayed()->nop();
duke@435 657
duke@435 658 __ retl(false);
duke@435 659 __ delayed()->mov(O2, O0); // report previous value to caller
duke@435 660
duke@435 661 } else {
duke@435 662 if (VM_Version::v9_instructions_work()) {
duke@435 663 __ retl(false);
duke@435 664 __ delayed()->swap(O1, 0, O0);
duke@435 665 } else {
duke@435 666 const Register& lock_reg = O2;
duke@435 667 const Register& lock_ptr_reg = O3;
duke@435 668 const Register& yield_reg = O4;
duke@435 669
duke@435 670 Label retry;
duke@435 671 Label dontyield;
duke@435 672
duke@435 673 generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 674 // got the lock, do the swap
duke@435 675 __ swap(O1, 0, O0);
duke@435 676
duke@435 677 generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 678 __ retl(false);
duke@435 679 __ delayed()->nop();
duke@435 680 }
duke@435 681 }
duke@435 682
duke@435 683 return start;
duke@435 684 }
duke@435 685
duke@435 686
duke@435 687 // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
duke@435 688 //
duke@435 689 // Arguments :
duke@435 690 //
duke@435 691 // exchange_value: O0
duke@435 692 // dest: O1
duke@435 693 // compare_value: O2
duke@435 694 //
duke@435 695 // Results:
duke@435 696 //
duke@435 697 // O0: the value previously stored in dest
duke@435 698 //
duke@435 699 // Overwrites (v8): O3,O4,O5
duke@435 700 //
duke@435 701 address generate_atomic_cmpxchg() {
duke@435 702 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
duke@435 703 address start = __ pc();
duke@435 704
duke@435 705 // cmpxchg(dest, compare_value, exchange_value)
duke@435 706 __ cas_under_lock(O1, O2, O0,
duke@435 707 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
duke@435 708 __ retl(false);
duke@435 709 __ delayed()->nop();
duke@435 710
duke@435 711 return start;
duke@435 712 }
duke@435 713
duke@435 714 // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
duke@435 715 //
duke@435 716 // Arguments :
duke@435 717 //
duke@435 718 // exchange_value: O1:O0
duke@435 719 // dest: O2
duke@435 720 // compare_value: O4:O3
duke@435 721 //
duke@435 722 // Results:
duke@435 723 //
duke@435 724 // O1:O0: the value previously stored in dest
duke@435 725 //
duke@435 726 // This only works on V9, on V8 we don't generate any
duke@435 727 // code and just return NULL.
duke@435 728 //
duke@435 729 // Overwrites: G1,G2,G3
duke@435 730 //
duke@435 731 address generate_atomic_cmpxchg_long() {
duke@435 732 StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
duke@435 733 address start = __ pc();
duke@435 734
duke@435 735 if (!VM_Version::supports_cx8())
duke@435 736 return NULL;;
duke@435 737 __ sllx(O0, 32, O0);
duke@435 738 __ srl(O1, 0, O1);
duke@435 739 __ or3(O0,O1,O0); // O0 holds 64-bit value from compare_value
duke@435 740 __ sllx(O3, 32, O3);
duke@435 741 __ srl(O4, 0, O4);
duke@435 742 __ or3(O3,O4,O3); // O3 holds 64-bit value from exchange_value
duke@435 743 __ casx(O2, O3, O0);
duke@435 744 __ srl(O0, 0, O1); // unpacked return value in O1:O0
duke@435 745 __ retl(false);
duke@435 746 __ delayed()->srlx(O0, 32, O0);
duke@435 747
duke@435 748 return start;
duke@435 749 }
duke@435 750
duke@435 751
duke@435 752 // Support for jint Atomic::add(jint add_value, volatile jint* dest).
duke@435 753 //
duke@435 754 // Arguments :
duke@435 755 //
duke@435 756 // add_value: O0 (e.g., +1 or -1)
duke@435 757 // dest: O1
duke@435 758 //
duke@435 759 // Results:
duke@435 760 //
duke@435 761 // O0: the new value stored in dest
duke@435 762 //
duke@435 763 // Overwrites (v9): O3
duke@435 764 // Overwrites (v8): O3,O4,O5
duke@435 765 //
duke@435 766 address generate_atomic_add() {
duke@435 767 StubCodeMark mark(this, "StubRoutines", "atomic_add");
duke@435 768 address start = __ pc();
duke@435 769 __ BIND(_atomic_add_stub);
duke@435 770
duke@435 771 if (VM_Version::v9_instructions_work()) {
duke@435 772 Label(retry);
duke@435 773 __ BIND(retry);
duke@435 774
duke@435 775 __ lduw(O1, 0, O2);
duke@435 776 __ add(O0, O2, O3);
duke@435 777 __ cas(O1, O2, O3);
duke@435 778 __ cmp( O2, O3);
duke@435 779 __ br(Assembler::notEqual, false, Assembler::pn, retry);
duke@435 780 __ delayed()->nop();
duke@435 781 __ retl(false);
duke@435 782 __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
duke@435 783 } else {
duke@435 784 const Register& lock_reg = O2;
duke@435 785 const Register& lock_ptr_reg = O3;
duke@435 786 const Register& value_reg = O4;
duke@435 787 const Register& yield_reg = O5;
duke@435 788
duke@435 789 Label(retry);
duke@435 790 Label(dontyield);
duke@435 791
duke@435 792 generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 793 // got lock, do the increment
duke@435 794 __ ld(O1, 0, value_reg);
duke@435 795 __ add(O0, value_reg, value_reg);
duke@435 796 __ st(value_reg, O1, 0);
duke@435 797
duke@435 798 // %%% only for RMO and PSO
duke@435 799 __ membar(Assembler::StoreStore);
duke@435 800
duke@435 801 generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
duke@435 802
duke@435 803 __ retl(false);
duke@435 804 __ delayed()->mov(value_reg, O0);
duke@435 805 }
duke@435 806
duke@435 807 return start;
duke@435 808 }
duke@435 809 Label _atomic_add_stub; // called from other stubs
duke@435 810
duke@435 811
duke@435 812 //------------------------------------------------------------------------------------------------------------------------
duke@435 813 // The following routine generates a subroutine to throw an asynchronous
duke@435 814 // UnknownError when an unsafe access gets a fault that could not be
duke@435 815 // reasonably prevented by the programmer. (Example: SIGBUS/OBJERR.)
duke@435 816 //
duke@435 817 // Arguments :
duke@435 818 //
duke@435 819 // trapping PC: O7
duke@435 820 //
duke@435 821 // Results:
duke@435 822 // posts an asynchronous exception, skips the trapping instruction
duke@435 823 //
duke@435 824
duke@435 825 address generate_handler_for_unsafe_access() {
duke@435 826 StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
duke@435 827 address start = __ pc();
duke@435 828
duke@435 829 const int preserve_register_words = (64 * 2);
twisti@1162 830 Address preserve_addr(FP, (-preserve_register_words * wordSize) + STACK_BIAS);
duke@435 831
duke@435 832 Register Lthread = L7_thread_cache;
duke@435 833 int i;
duke@435 834
duke@435 835 __ save_frame(0);
duke@435 836 __ mov(G1, L1);
duke@435 837 __ mov(G2, L2);
duke@435 838 __ mov(G3, L3);
duke@435 839 __ mov(G4, L4);
duke@435 840 __ mov(G5, L5);
duke@435 841 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 842 __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
duke@435 843 }
duke@435 844
duke@435 845 address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
duke@435 846 BLOCK_COMMENT("call handle_unsafe_access");
duke@435 847 __ call(entry_point, relocInfo::runtime_call_type);
duke@435 848 __ delayed()->nop();
duke@435 849
duke@435 850 __ mov(L1, G1);
duke@435 851 __ mov(L2, G2);
duke@435 852 __ mov(L3, G3);
duke@435 853 __ mov(L4, G4);
duke@435 854 __ mov(L5, G5);
duke@435 855 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 856 __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
duke@435 857 }
duke@435 858
duke@435 859 __ verify_thread();
duke@435 860
duke@435 861 __ jmp(O0, 0);
duke@435 862 __ delayed()->restore();
duke@435 863
duke@435 864 return start;
duke@435 865 }
duke@435 866
duke@435 867
duke@435 868 // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
duke@435 869 // Arguments :
duke@435 870 //
duke@435 871 // ret : O0, returned
duke@435 872 // icc/xcc: set as O0 (depending on wordSize)
duke@435 873 // sub : O1, argument, not changed
duke@435 874 // super: O2, argument, not changed
duke@435 875 // raddr: O7, blown by call
duke@435 876 address generate_partial_subtype_check() {
coleenp@548 877 __ align(CodeEntryAlignment);
duke@435 878 StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
duke@435 879 address start = __ pc();
jrose@1079 880 Label miss;
duke@435 881
duke@435 882 #if defined(COMPILER2) && !defined(_LP64)
duke@435 883 // Do not use a 'save' because it blows the 64-bit O registers.
coleenp@548 884 __ add(SP,-4*wordSize,SP); // Make space for 4 temps (stack must be 2 words aligned)
duke@435 885 __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
duke@435 886 __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
duke@435 887 __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
duke@435 888 __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
duke@435 889 Register Rret = O0;
duke@435 890 Register Rsub = O1;
duke@435 891 Register Rsuper = O2;
duke@435 892 #else
duke@435 893 __ save_frame(0);
duke@435 894 Register Rret = I0;
duke@435 895 Register Rsub = I1;
duke@435 896 Register Rsuper = I2;
duke@435 897 #endif
duke@435 898
duke@435 899 Register L0_ary_len = L0;
duke@435 900 Register L1_ary_ptr = L1;
duke@435 901 Register L2_super = L2;
duke@435 902 Register L3_index = L3;
duke@435 903
jrose@1079 904 __ check_klass_subtype_slow_path(Rsub, Rsuper,
jrose@1079 905 L0, L1, L2, L3,
jrose@1079 906 NULL, &miss);
jrose@1079 907
jrose@1079 908 // Match falls through here.
jrose@1079 909 __ addcc(G0,0,Rret); // set Z flags, Z result
duke@435 910
duke@435 911 #if defined(COMPILER2) && !defined(_LP64)
duke@435 912 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 913 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 914 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 915 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 916 __ retl(); // Result in Rret is zero; flags set to Z
duke@435 917 __ delayed()->add(SP,4*wordSize,SP);
duke@435 918 #else
duke@435 919 __ ret(); // Result in Rret is zero; flags set to Z
duke@435 920 __ delayed()->restore();
duke@435 921 #endif
duke@435 922
duke@435 923 __ BIND(miss);
duke@435 924 __ addcc(G0,1,Rret); // set NZ flags, NZ result
duke@435 925
duke@435 926 #if defined(COMPILER2) && !defined(_LP64)
duke@435 927 __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
duke@435 928 __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
duke@435 929 __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
duke@435 930 __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
duke@435 931 __ retl(); // Result in Rret is != 0; flags set to NZ
duke@435 932 __ delayed()->add(SP,4*wordSize,SP);
duke@435 933 #else
duke@435 934 __ ret(); // Result in Rret is != 0; flags set to NZ
duke@435 935 __ delayed()->restore();
duke@435 936 #endif
duke@435 937
duke@435 938 return start;
duke@435 939 }
duke@435 940
duke@435 941
duke@435 942 // Called from MacroAssembler::verify_oop
duke@435 943 //
duke@435 944 address generate_verify_oop_subroutine() {
duke@435 945 StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
duke@435 946
duke@435 947 address start = __ pc();
duke@435 948
duke@435 949 __ verify_oop_subroutine();
duke@435 950
duke@435 951 return start;
duke@435 952 }
duke@435 953
duke@435 954 static address disjoint_byte_copy_entry;
duke@435 955 static address disjoint_short_copy_entry;
duke@435 956 static address disjoint_int_copy_entry;
duke@435 957 static address disjoint_long_copy_entry;
duke@435 958 static address disjoint_oop_copy_entry;
duke@435 959
duke@435 960 static address byte_copy_entry;
duke@435 961 static address short_copy_entry;
duke@435 962 static address int_copy_entry;
duke@435 963 static address long_copy_entry;
duke@435 964 static address oop_copy_entry;
duke@435 965
duke@435 966 static address checkcast_copy_entry;
duke@435 967
duke@435 968 //
duke@435 969 // Verify that a register contains clean 32-bits positive value
duke@435 970 // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
duke@435 971 //
duke@435 972 // Input:
duke@435 973 // Rint - 32-bits value
duke@435 974 // Rtmp - scratch
duke@435 975 //
duke@435 976 void assert_clean_int(Register Rint, Register Rtmp) {
duke@435 977 #if defined(ASSERT) && defined(_LP64)
duke@435 978 __ signx(Rint, Rtmp);
duke@435 979 __ cmp(Rint, Rtmp);
duke@435 980 __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
duke@435 981 #endif
duke@435 982 }
duke@435 983
duke@435 984 //
duke@435 985 // Generate overlap test for array copy stubs
duke@435 986 //
duke@435 987 // Input:
duke@435 988 // O0 - array1
duke@435 989 // O1 - array2
duke@435 990 // O2 - element count
duke@435 991 //
duke@435 992 // Kills temps: O3, O4
duke@435 993 //
duke@435 994 void array_overlap_test(address no_overlap_target, int log2_elem_size) {
duke@435 995 assert(no_overlap_target != NULL, "must be generated");
duke@435 996 array_overlap_test(no_overlap_target, NULL, log2_elem_size);
duke@435 997 }
duke@435 998 void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
duke@435 999 array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
duke@435 1000 }
duke@435 1001 void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
duke@435 1002 const Register from = O0;
duke@435 1003 const Register to = O1;
duke@435 1004 const Register count = O2;
duke@435 1005 const Register to_from = O3; // to - from
duke@435 1006 const Register byte_count = O4; // count << log2_elem_size
duke@435 1007
duke@435 1008 __ subcc(to, from, to_from);
duke@435 1009 __ sll_ptr(count, log2_elem_size, byte_count);
duke@435 1010 if (NOLp == NULL)
duke@435 1011 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
duke@435 1012 else
duke@435 1013 __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
duke@435 1014 __ delayed()->cmp(to_from, byte_count);
duke@435 1015 if (NOLp == NULL)
duke@435 1016 __ brx(Assembler::greaterEqual, false, Assembler::pt, no_overlap_target);
duke@435 1017 else
duke@435 1018 __ brx(Assembler::greaterEqual, false, Assembler::pt, (*NOLp));
duke@435 1019 __ delayed()->nop();
duke@435 1020 }
duke@435 1021
duke@435 1022 //
duke@435 1023 // Generate pre-write barrier for array.
duke@435 1024 //
duke@435 1025 // Input:
duke@435 1026 // addr - register containing starting address
duke@435 1027 // count - register containing element count
duke@435 1028 // tmp - scratch register
duke@435 1029 //
duke@435 1030 // The input registers are overwritten.
duke@435 1031 //
duke@435 1032 void gen_write_ref_array_pre_barrier(Register addr, Register count) {
duke@435 1033 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1034 if (bs->has_write_ref_pre_barrier()) {
duke@435 1035 assert(bs->has_write_ref_array_pre_opt(),
duke@435 1036 "Else unsupported barrier set.");
duke@435 1037
duke@435 1038 __ save_frame(0);
duke@435 1039 // Save the necessary global regs... will be used after.
ysr@777 1040 if (addr->is_global()) {
ysr@777 1041 __ mov(addr, L0);
ysr@777 1042 }
ysr@777 1043 if (count->is_global()) {
ysr@777 1044 __ mov(count, L1);
ysr@777 1045 }
ysr@777 1046 __ mov(addr->after_save(), O0);
duke@435 1047 // Get the count into O1
duke@435 1048 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
ysr@777 1049 __ delayed()->mov(count->after_save(), O1);
ysr@777 1050 if (addr->is_global()) {
ysr@777 1051 __ mov(L0, addr);
ysr@777 1052 }
ysr@777 1053 if (count->is_global()) {
ysr@777 1054 __ mov(L1, count);
ysr@777 1055 }
duke@435 1056 __ restore();
duke@435 1057 }
duke@435 1058 }
duke@435 1059 //
duke@435 1060 // Generate post-write barrier for array.
duke@435 1061 //
duke@435 1062 // Input:
duke@435 1063 // addr - register containing starting address
duke@435 1064 // count - register containing element count
duke@435 1065 // tmp - scratch register
duke@435 1066 //
duke@435 1067 // The input registers are overwritten.
duke@435 1068 //
duke@435 1069 void gen_write_ref_array_post_barrier(Register addr, Register count,
duke@435 1070 Register tmp) {
duke@435 1071 BarrierSet* bs = Universe::heap()->barrier_set();
duke@435 1072
duke@435 1073 switch (bs->kind()) {
duke@435 1074 case BarrierSet::G1SATBCT:
duke@435 1075 case BarrierSet::G1SATBCTLogging:
duke@435 1076 {
duke@435 1077 // Get some new fresh output registers.
duke@435 1078 __ save_frame(0);
ysr@777 1079 __ mov(addr->after_save(), O0);
duke@435 1080 __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
ysr@777 1081 __ delayed()->mov(count->after_save(), O1);
duke@435 1082 __ restore();
duke@435 1083 }
duke@435 1084 break;
duke@435 1085 case BarrierSet::CardTableModRef:
duke@435 1086 case BarrierSet::CardTableExtension:
duke@435 1087 {
duke@435 1088 CardTableModRefBS* ct = (CardTableModRefBS*)bs;
duke@435 1089 assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
duke@435 1090 assert_different_registers(addr, count, tmp);
duke@435 1091
duke@435 1092 Label L_loop;
duke@435 1093
coleenp@548 1094 __ sll_ptr(count, LogBytesPerHeapOop, count);
coleenp@548 1095 __ sub(count, BytesPerHeapOop, count);
duke@435 1096 __ add(count, addr, count);
duke@435 1097 // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
duke@435 1098 __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
duke@435 1099 __ srl_ptr(count, CardTableModRefBS::card_shift, count);
duke@435 1100 __ sub(count, addr, count);
twisti@1162 1101 AddressLiteral rs(ct->byte_map_base);
twisti@1162 1102 __ set(rs, tmp);
duke@435 1103 __ BIND(L_loop);
twisti@1162 1104 __ stb(G0, tmp, addr);
duke@435 1105 __ subcc(count, 1, count);
duke@435 1106 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1107 __ delayed()->add(addr, 1, addr);
twisti@1162 1108 }
duke@435 1109 break;
duke@435 1110 case BarrierSet::ModRef:
duke@435 1111 break;
twisti@1162 1112 default:
duke@435 1113 ShouldNotReachHere();
duke@435 1114 }
duke@435 1115 }
duke@435 1116
duke@435 1117
duke@435 1118 // Copy big chunks forward with shift
duke@435 1119 //
duke@435 1120 // Inputs:
duke@435 1121 // from - source arrays
duke@435 1122 // to - destination array aligned to 8-bytes
duke@435 1123 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1124 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1125 // L_copy_bytes - copy exit label
duke@435 1126 //
duke@435 1127 void copy_16_bytes_forward_with_shift(Register from, Register to,
duke@435 1128 Register count, int count_dec, Label& L_copy_bytes) {
duke@435 1129 Label L_loop, L_aligned_copy, L_copy_last_bytes;
duke@435 1130
duke@435 1131 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
duke@435 1132 __ andcc(from, 7, G1); // misaligned bytes
duke@435 1133 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1134 __ delayed()->nop();
duke@435 1135
duke@435 1136 const Register left_shift = G1; // left shift bit counter
duke@435 1137 const Register right_shift = G5; // right shift bit counter
duke@435 1138
duke@435 1139 __ sll(G1, LogBitsPerByte, left_shift);
duke@435 1140 __ mov(64, right_shift);
duke@435 1141 __ sub(right_shift, left_shift, right_shift);
duke@435 1142
duke@435 1143 //
duke@435 1144 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1145 // to form 2 aligned 8-bytes chunks to store.
duke@435 1146 //
duke@435 1147 __ deccc(count, count_dec); // Pre-decrement 'count'
duke@435 1148 __ andn(from, 7, from); // Align address
duke@435 1149 __ ldx(from, 0, O3);
duke@435 1150 __ inc(from, 8);
duke@435 1151 __ align(16);
duke@435 1152 __ BIND(L_loop);
duke@435 1153 __ ldx(from, 0, O4);
duke@435 1154 __ deccc(count, count_dec); // Can we do next iteration after this one?
duke@435 1155 __ ldx(from, 8, G4);
duke@435 1156 __ inc(to, 16);
duke@435 1157 __ inc(from, 16);
duke@435 1158 __ sllx(O3, left_shift, O3);
duke@435 1159 __ srlx(O4, right_shift, G3);
duke@435 1160 __ bset(G3, O3);
duke@435 1161 __ stx(O3, to, -16);
duke@435 1162 __ sllx(O4, left_shift, O4);
duke@435 1163 __ srlx(G4, right_shift, G3);
duke@435 1164 __ bset(G3, O4);
duke@435 1165 __ stx(O4, to, -8);
duke@435 1166 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1167 __ delayed()->mov(G4, O3);
duke@435 1168
duke@435 1169 __ inccc(count, count_dec>>1 ); // + 8 bytes
duke@435 1170 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
duke@435 1171 __ delayed()->inc(count, count_dec>>1); // restore 'count'
duke@435 1172
duke@435 1173 // copy 8 bytes, part of them already loaded in O3
duke@435 1174 __ ldx(from, 0, O4);
duke@435 1175 __ inc(to, 8);
duke@435 1176 __ inc(from, 8);
duke@435 1177 __ sllx(O3, left_shift, O3);
duke@435 1178 __ srlx(O4, right_shift, G3);
duke@435 1179 __ bset(O3, G3);
duke@435 1180 __ stx(G3, to, -8);
duke@435 1181
duke@435 1182 __ BIND(L_copy_last_bytes);
duke@435 1183 __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
duke@435 1184 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
duke@435 1185 __ delayed()->sub(from, right_shift, from); // restore address
duke@435 1186
duke@435 1187 __ BIND(L_aligned_copy);
duke@435 1188 }
duke@435 1189
duke@435 1190 // Copy big chunks backward with shift
duke@435 1191 //
duke@435 1192 // Inputs:
duke@435 1193 // end_from - source arrays end address
duke@435 1194 // end_to - destination array end address aligned to 8-bytes
duke@435 1195 // count - elements count to copy >= the count equivalent to 16 bytes
duke@435 1196 // count_dec - elements count's decrement equivalent to 16 bytes
duke@435 1197 // L_aligned_copy - aligned copy exit label
duke@435 1198 // L_copy_bytes - copy exit label
duke@435 1199 //
duke@435 1200 void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
duke@435 1201 Register count, int count_dec,
duke@435 1202 Label& L_aligned_copy, Label& L_copy_bytes) {
duke@435 1203 Label L_loop, L_copy_last_bytes;
duke@435 1204
duke@435 1205 // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
duke@435 1206 __ andcc(end_from, 7, G1); // misaligned bytes
duke@435 1207 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1208 __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
duke@435 1209
duke@435 1210 const Register left_shift = G1; // left shift bit counter
duke@435 1211 const Register right_shift = G5; // right shift bit counter
duke@435 1212
duke@435 1213 __ sll(G1, LogBitsPerByte, left_shift);
duke@435 1214 __ mov(64, right_shift);
duke@435 1215 __ sub(right_shift, left_shift, right_shift);
duke@435 1216
duke@435 1217 //
duke@435 1218 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1219 // to form 2 aligned 8-bytes chunks to store.
duke@435 1220 //
duke@435 1221 __ andn(end_from, 7, end_from); // Align address
duke@435 1222 __ ldx(end_from, 0, O3);
duke@435 1223 __ align(16);
duke@435 1224 __ BIND(L_loop);
duke@435 1225 __ ldx(end_from, -8, O4);
duke@435 1226 __ deccc(count, count_dec); // Can we do next iteration after this one?
duke@435 1227 __ ldx(end_from, -16, G4);
duke@435 1228 __ dec(end_to, 16);
duke@435 1229 __ dec(end_from, 16);
duke@435 1230 __ srlx(O3, right_shift, O3);
duke@435 1231 __ sllx(O4, left_shift, G3);
duke@435 1232 __ bset(G3, O3);
duke@435 1233 __ stx(O3, end_to, 8);
duke@435 1234 __ srlx(O4, right_shift, O4);
duke@435 1235 __ sllx(G4, left_shift, G3);
duke@435 1236 __ bset(G3, O4);
duke@435 1237 __ stx(O4, end_to, 0);
duke@435 1238 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
duke@435 1239 __ delayed()->mov(G4, O3);
duke@435 1240
duke@435 1241 __ inccc(count, count_dec>>1 ); // + 8 bytes
duke@435 1242 __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
duke@435 1243 __ delayed()->inc(count, count_dec>>1); // restore 'count'
duke@435 1244
duke@435 1245 // copy 8 bytes, part of them already loaded in O3
duke@435 1246 __ ldx(end_from, -8, O4);
duke@435 1247 __ dec(end_to, 8);
duke@435 1248 __ dec(end_from, 8);
duke@435 1249 __ srlx(O3, right_shift, O3);
duke@435 1250 __ sllx(O4, left_shift, G3);
duke@435 1251 __ bset(O3, G3);
duke@435 1252 __ stx(G3, end_to, 0);
duke@435 1253
duke@435 1254 __ BIND(L_copy_last_bytes);
duke@435 1255 __ srl(left_shift, LogBitsPerByte, left_shift); // misaligned bytes
duke@435 1256 __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
duke@435 1257 __ delayed()->add(end_from, left_shift, end_from); // restore address
duke@435 1258 }
duke@435 1259
duke@435 1260 //
duke@435 1261 // Generate stub for disjoint byte copy. If "aligned" is true, the
duke@435 1262 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1263 //
duke@435 1264 // Arguments for generated stub:
duke@435 1265 // from: O0
duke@435 1266 // to: O1
duke@435 1267 // count: O2 treated as signed
duke@435 1268 //
duke@435 1269 address generate_disjoint_byte_copy(bool aligned, const char * name) {
duke@435 1270 __ align(CodeEntryAlignment);
duke@435 1271 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1272 address start = __ pc();
duke@435 1273
duke@435 1274 Label L_skip_alignment, L_align;
duke@435 1275 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1276
duke@435 1277 const Register from = O0; // source array address
duke@435 1278 const Register to = O1; // destination array address
duke@435 1279 const Register count = O2; // elements count
duke@435 1280 const Register offset = O5; // offset from start of arrays
duke@435 1281 // O3, O4, G3, G4 are used as temp registers
duke@435 1282
duke@435 1283 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1284
duke@435 1285 if (!aligned) disjoint_byte_copy_entry = __ pc();
duke@435 1286 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1287 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1288
duke@435 1289 // for short arrays, just do single element copy
duke@435 1290 __ cmp(count, 23); // 16 + 7
duke@435 1291 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1292 __ delayed()->mov(G0, offset);
duke@435 1293
duke@435 1294 if (aligned) {
duke@435 1295 // 'aligned' == true when it is known statically during compilation
duke@435 1296 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1297 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1298 //
duke@435 1299 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1300 // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
duke@435 1301 //
duke@435 1302 #ifndef _LP64
duke@435 1303 // copy a 4-bytes word if necessary to align 'to' to 8 bytes
duke@435 1304 __ andcc(to, 7, G0);
duke@435 1305 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
duke@435 1306 __ delayed()->ld(from, 0, O3);
duke@435 1307 __ inc(from, 4);
duke@435 1308 __ inc(to, 4);
duke@435 1309 __ dec(count, 4);
duke@435 1310 __ st(O3, to, -4);
duke@435 1311 __ BIND(L_skip_alignment);
duke@435 1312 #endif
duke@435 1313 } else {
duke@435 1314 // copy bytes to align 'to' on 8 byte boundary
duke@435 1315 __ andcc(to, 7, G1); // misaligned bytes
duke@435 1316 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1317 __ delayed()->neg(G1);
duke@435 1318 __ inc(G1, 8); // bytes need to copy to next 8-bytes alignment
duke@435 1319 __ sub(count, G1, count);
duke@435 1320 __ BIND(L_align);
duke@435 1321 __ ldub(from, 0, O3);
duke@435 1322 __ deccc(G1);
duke@435 1323 __ inc(from);
duke@435 1324 __ stb(O3, to, 0);
duke@435 1325 __ br(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1326 __ delayed()->inc(to);
duke@435 1327 __ BIND(L_skip_alignment);
duke@435 1328 }
duke@435 1329 #ifdef _LP64
duke@435 1330 if (!aligned)
duke@435 1331 #endif
duke@435 1332 {
duke@435 1333 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1334 // the same alignment mod 8, otherwise fall through to the next
duke@435 1335 // code for aligned copy.
duke@435 1336 // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
duke@435 1337 // Also jump over aligned copy after the copy with shift completed.
duke@435 1338
duke@435 1339 copy_16_bytes_forward_with_shift(from, to, count, 16, L_copy_byte);
duke@435 1340 }
duke@435 1341
duke@435 1342 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1343 __ and3(count, 7, G4); // Save count
duke@435 1344 __ srl(count, 3, count);
duke@435 1345 generate_disjoint_long_copy_core(aligned);
duke@435 1346 __ mov(G4, count); // Restore count
duke@435 1347
duke@435 1348 // copy tailing bytes
duke@435 1349 __ BIND(L_copy_byte);
duke@435 1350 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1351 __ delayed()->nop();
duke@435 1352 __ align(16);
duke@435 1353 __ BIND(L_copy_byte_loop);
duke@435 1354 __ ldub(from, offset, O3);
duke@435 1355 __ deccc(count);
duke@435 1356 __ stb(O3, to, offset);
duke@435 1357 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
duke@435 1358 __ delayed()->inc(offset);
duke@435 1359
duke@435 1360 __ BIND(L_exit);
duke@435 1361 // O3, O4 are used as temp registers
duke@435 1362 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1363 __ retl();
duke@435 1364 __ delayed()->mov(G0, O0); // return 0
duke@435 1365 return start;
duke@435 1366 }
duke@435 1367
duke@435 1368 //
duke@435 1369 // Generate stub for conjoint byte copy. If "aligned" is true, the
duke@435 1370 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1371 //
duke@435 1372 // Arguments for generated stub:
duke@435 1373 // from: O0
duke@435 1374 // to: O1
duke@435 1375 // count: O2 treated as signed
duke@435 1376 //
duke@435 1377 address generate_conjoint_byte_copy(bool aligned, const char * name) {
duke@435 1378 // Do reverse copy.
duke@435 1379
duke@435 1380 __ align(CodeEntryAlignment);
duke@435 1381 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1382 address start = __ pc();
duke@435 1383 address nooverlap_target = aligned ?
duke@435 1384 StubRoutines::arrayof_jbyte_disjoint_arraycopy() :
duke@435 1385 disjoint_byte_copy_entry;
duke@435 1386
duke@435 1387 Label L_skip_alignment, L_align, L_aligned_copy;
duke@435 1388 Label L_copy_byte, L_copy_byte_loop, L_exit;
duke@435 1389
duke@435 1390 const Register from = O0; // source array address
duke@435 1391 const Register to = O1; // destination array address
duke@435 1392 const Register count = O2; // elements count
duke@435 1393 const Register end_from = from; // source array end address
duke@435 1394 const Register end_to = to; // destination array end address
duke@435 1395
duke@435 1396 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1397
duke@435 1398 if (!aligned) byte_copy_entry = __ pc();
duke@435 1399 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1400 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1401
duke@435 1402 array_overlap_test(nooverlap_target, 0);
duke@435 1403
duke@435 1404 __ add(to, count, end_to); // offset after last copied element
duke@435 1405
duke@435 1406 // for short arrays, just do single element copy
duke@435 1407 __ cmp(count, 23); // 16 + 7
duke@435 1408 __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
duke@435 1409 __ delayed()->add(from, count, end_from);
duke@435 1410
duke@435 1411 {
duke@435 1412 // Align end of arrays since they could be not aligned even
duke@435 1413 // when arrays itself are aligned.
duke@435 1414
duke@435 1415 // copy bytes to align 'end_to' on 8 byte boundary
duke@435 1416 __ andcc(end_to, 7, G1); // misaligned bytes
duke@435 1417 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1418 __ delayed()->nop();
duke@435 1419 __ sub(count, G1, count);
duke@435 1420 __ BIND(L_align);
duke@435 1421 __ dec(end_from);
duke@435 1422 __ dec(end_to);
duke@435 1423 __ ldub(end_from, 0, O3);
duke@435 1424 __ deccc(G1);
duke@435 1425 __ brx(Assembler::notZero, false, Assembler::pt, L_align);
duke@435 1426 __ delayed()->stb(O3, end_to, 0);
duke@435 1427 __ BIND(L_skip_alignment);
duke@435 1428 }
duke@435 1429 #ifdef _LP64
duke@435 1430 if (aligned) {
duke@435 1431 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1432 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1433 // in unaligned case.
duke@435 1434 __ dec(count, 16);
duke@435 1435 } else
duke@435 1436 #endif
duke@435 1437 {
duke@435 1438 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1439 // the same alignment mod 8, otherwise jump to the next
duke@435 1440 // code for aligned copy (and substracting 16 from 'count' before jump).
duke@435 1441 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1442 // Also jump over aligned copy after the copy with shift completed.
duke@435 1443
duke@435 1444 copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
duke@435 1445 L_aligned_copy, L_copy_byte);
duke@435 1446 }
duke@435 1447 // copy 4 elements (16 bytes) at a time
duke@435 1448 __ align(16);
duke@435 1449 __ BIND(L_aligned_copy);
duke@435 1450 __ dec(end_from, 16);
duke@435 1451 __ ldx(end_from, 8, O3);
duke@435 1452 __ ldx(end_from, 0, O4);
duke@435 1453 __ dec(end_to, 16);
duke@435 1454 __ deccc(count, 16);
duke@435 1455 __ stx(O3, end_to, 8);
duke@435 1456 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1457 __ delayed()->stx(O4, end_to, 0);
duke@435 1458 __ inc(count, 16);
duke@435 1459
duke@435 1460 // copy 1 element (2 bytes) at a time
duke@435 1461 __ BIND(L_copy_byte);
duke@435 1462 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1463 __ delayed()->nop();
duke@435 1464 __ align(16);
duke@435 1465 __ BIND(L_copy_byte_loop);
duke@435 1466 __ dec(end_from);
duke@435 1467 __ dec(end_to);
duke@435 1468 __ ldub(end_from, 0, O4);
duke@435 1469 __ deccc(count);
duke@435 1470 __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
duke@435 1471 __ delayed()->stb(O4, end_to, 0);
duke@435 1472
duke@435 1473 __ BIND(L_exit);
duke@435 1474 // O3, O4 are used as temp registers
duke@435 1475 inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
duke@435 1476 __ retl();
duke@435 1477 __ delayed()->mov(G0, O0); // return 0
duke@435 1478 return start;
duke@435 1479 }
duke@435 1480
duke@435 1481 //
duke@435 1482 // Generate stub for disjoint short copy. If "aligned" is true, the
duke@435 1483 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1484 //
duke@435 1485 // Arguments for generated stub:
duke@435 1486 // from: O0
duke@435 1487 // to: O1
duke@435 1488 // count: O2 treated as signed
duke@435 1489 //
duke@435 1490 address generate_disjoint_short_copy(bool aligned, const char * name) {
duke@435 1491 __ align(CodeEntryAlignment);
duke@435 1492 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1493 address start = __ pc();
duke@435 1494
duke@435 1495 Label L_skip_alignment, L_skip_alignment2;
duke@435 1496 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1497
duke@435 1498 const Register from = O0; // source array address
duke@435 1499 const Register to = O1; // destination array address
duke@435 1500 const Register count = O2; // elements count
duke@435 1501 const Register offset = O5; // offset from start of arrays
duke@435 1502 // O3, O4, G3, G4 are used as temp registers
duke@435 1503
duke@435 1504 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1505
duke@435 1506 if (!aligned) disjoint_short_copy_entry = __ pc();
duke@435 1507 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1508 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1509
duke@435 1510 // for short arrays, just do single element copy
duke@435 1511 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1512 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1513 __ delayed()->mov(G0, offset);
duke@435 1514
duke@435 1515 if (aligned) {
duke@435 1516 // 'aligned' == true when it is known statically during compilation
duke@435 1517 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1518 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1519 //
duke@435 1520 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1521 // and 8 bytes - in 64-bits VM.
duke@435 1522 //
duke@435 1523 #ifndef _LP64
duke@435 1524 // copy a 2-elements word if necessary to align 'to' to 8 bytes
duke@435 1525 __ andcc(to, 7, G0);
duke@435 1526 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1527 __ delayed()->ld(from, 0, O3);
duke@435 1528 __ inc(from, 4);
duke@435 1529 __ inc(to, 4);
duke@435 1530 __ dec(count, 2);
duke@435 1531 __ st(O3, to, -4);
duke@435 1532 __ BIND(L_skip_alignment);
duke@435 1533 #endif
duke@435 1534 } else {
duke@435 1535 // copy 1 element if necessary to align 'to' on an 4 bytes
duke@435 1536 __ andcc(to, 3, G0);
duke@435 1537 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1538 __ delayed()->lduh(from, 0, O3);
duke@435 1539 __ inc(from, 2);
duke@435 1540 __ inc(to, 2);
duke@435 1541 __ dec(count);
duke@435 1542 __ sth(O3, to, -2);
duke@435 1543 __ BIND(L_skip_alignment);
duke@435 1544
duke@435 1545 // copy 2 elements to align 'to' on an 8 byte boundary
duke@435 1546 __ andcc(to, 7, G0);
duke@435 1547 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1548 __ delayed()->lduh(from, 0, O3);
duke@435 1549 __ dec(count, 2);
duke@435 1550 __ lduh(from, 2, O4);
duke@435 1551 __ inc(from, 4);
duke@435 1552 __ inc(to, 4);
duke@435 1553 __ sth(O3, to, -4);
duke@435 1554 __ sth(O4, to, -2);
duke@435 1555 __ BIND(L_skip_alignment2);
duke@435 1556 }
duke@435 1557 #ifdef _LP64
duke@435 1558 if (!aligned)
duke@435 1559 #endif
duke@435 1560 {
duke@435 1561 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1562 // the same alignment mod 8, otherwise fall through to the next
duke@435 1563 // code for aligned copy.
duke@435 1564 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1565 // Also jump over aligned copy after the copy with shift completed.
duke@435 1566
duke@435 1567 copy_16_bytes_forward_with_shift(from, to, count, 8, L_copy_2_bytes);
duke@435 1568 }
duke@435 1569
duke@435 1570 // Both array are 8 bytes aligned, copy 16 bytes at a time
duke@435 1571 __ and3(count, 3, G4); // Save
duke@435 1572 __ srl(count, 2, count);
duke@435 1573 generate_disjoint_long_copy_core(aligned);
duke@435 1574 __ mov(G4, count); // restore
duke@435 1575
duke@435 1576 // copy 1 element at a time
duke@435 1577 __ BIND(L_copy_2_bytes);
duke@435 1578 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1579 __ delayed()->nop();
duke@435 1580 __ align(16);
duke@435 1581 __ BIND(L_copy_2_bytes_loop);
duke@435 1582 __ lduh(from, offset, O3);
duke@435 1583 __ deccc(count);
duke@435 1584 __ sth(O3, to, offset);
duke@435 1585 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1586 __ delayed()->inc(offset, 2);
duke@435 1587
duke@435 1588 __ BIND(L_exit);
duke@435 1589 // O3, O4 are used as temp registers
duke@435 1590 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1591 __ retl();
duke@435 1592 __ delayed()->mov(G0, O0); // return 0
duke@435 1593 return start;
duke@435 1594 }
duke@435 1595
duke@435 1596 //
duke@435 1597 // Generate stub for conjoint short copy. If "aligned" is true, the
duke@435 1598 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1599 //
duke@435 1600 // Arguments for generated stub:
duke@435 1601 // from: O0
duke@435 1602 // to: O1
duke@435 1603 // count: O2 treated as signed
duke@435 1604 //
duke@435 1605 address generate_conjoint_short_copy(bool aligned, const char * name) {
duke@435 1606 // Do reverse copy.
duke@435 1607
duke@435 1608 __ align(CodeEntryAlignment);
duke@435 1609 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1610 address start = __ pc();
duke@435 1611 address nooverlap_target = aligned ?
duke@435 1612 StubRoutines::arrayof_jshort_disjoint_arraycopy() :
duke@435 1613 disjoint_short_copy_entry;
duke@435 1614
duke@435 1615 Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
duke@435 1616 Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
duke@435 1617
duke@435 1618 const Register from = O0; // source array address
duke@435 1619 const Register to = O1; // destination array address
duke@435 1620 const Register count = O2; // elements count
duke@435 1621 const Register end_from = from; // source array end address
duke@435 1622 const Register end_to = to; // destination array end address
duke@435 1623
duke@435 1624 const Register byte_count = O3; // bytes count to copy
duke@435 1625
duke@435 1626 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1627
duke@435 1628 if (!aligned) short_copy_entry = __ pc();
duke@435 1629 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1630 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1631
duke@435 1632 array_overlap_test(nooverlap_target, 1);
duke@435 1633
duke@435 1634 __ sllx(count, LogBytesPerShort, byte_count);
duke@435 1635 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 1636
duke@435 1637 // for short arrays, just do single element copy
duke@435 1638 __ cmp(count, 11); // 8 + 3 (22 bytes)
duke@435 1639 __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
duke@435 1640 __ delayed()->add(from, byte_count, end_from);
duke@435 1641
duke@435 1642 {
duke@435 1643 // Align end of arrays since they could be not aligned even
duke@435 1644 // when arrays itself are aligned.
duke@435 1645
duke@435 1646 // copy 1 element if necessary to align 'end_to' on an 4 bytes
duke@435 1647 __ andcc(end_to, 3, G0);
duke@435 1648 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1649 __ delayed()->lduh(end_from, -2, O3);
duke@435 1650 __ dec(end_from, 2);
duke@435 1651 __ dec(end_to, 2);
duke@435 1652 __ dec(count);
duke@435 1653 __ sth(O3, end_to, 0);
duke@435 1654 __ BIND(L_skip_alignment);
duke@435 1655
duke@435 1656 // copy 2 elements to align 'end_to' on an 8 byte boundary
duke@435 1657 __ andcc(end_to, 7, G0);
duke@435 1658 __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
duke@435 1659 __ delayed()->lduh(end_from, -2, O3);
duke@435 1660 __ dec(count, 2);
duke@435 1661 __ lduh(end_from, -4, O4);
duke@435 1662 __ dec(end_from, 4);
duke@435 1663 __ dec(end_to, 4);
duke@435 1664 __ sth(O3, end_to, 2);
duke@435 1665 __ sth(O4, end_to, 0);
duke@435 1666 __ BIND(L_skip_alignment2);
duke@435 1667 }
duke@435 1668 #ifdef _LP64
duke@435 1669 if (aligned) {
duke@435 1670 // Both arrays are aligned to 8-bytes in 64-bits VM.
duke@435 1671 // The 'count' is decremented in copy_16_bytes_backward_with_shift()
duke@435 1672 // in unaligned case.
duke@435 1673 __ dec(count, 8);
duke@435 1674 } else
duke@435 1675 #endif
duke@435 1676 {
duke@435 1677 // Copy with shift 16 bytes per iteration if arrays do not have
duke@435 1678 // the same alignment mod 8, otherwise jump to the next
duke@435 1679 // code for aligned copy (and substracting 8 from 'count' before jump).
duke@435 1680 // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
duke@435 1681 // Also jump over aligned copy after the copy with shift completed.
duke@435 1682
duke@435 1683 copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
duke@435 1684 L_aligned_copy, L_copy_2_bytes);
duke@435 1685 }
duke@435 1686 // copy 4 elements (16 bytes) at a time
duke@435 1687 __ align(16);
duke@435 1688 __ BIND(L_aligned_copy);
duke@435 1689 __ dec(end_from, 16);
duke@435 1690 __ ldx(end_from, 8, O3);
duke@435 1691 __ ldx(end_from, 0, O4);
duke@435 1692 __ dec(end_to, 16);
duke@435 1693 __ deccc(count, 8);
duke@435 1694 __ stx(O3, end_to, 8);
duke@435 1695 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1696 __ delayed()->stx(O4, end_to, 0);
duke@435 1697 __ inc(count, 8);
duke@435 1698
duke@435 1699 // copy 1 element (2 bytes) at a time
duke@435 1700 __ BIND(L_copy_2_bytes);
duke@435 1701 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1702 __ delayed()->nop();
duke@435 1703 __ BIND(L_copy_2_bytes_loop);
duke@435 1704 __ dec(end_from, 2);
duke@435 1705 __ dec(end_to, 2);
duke@435 1706 __ lduh(end_from, 0, O4);
duke@435 1707 __ deccc(count);
duke@435 1708 __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
duke@435 1709 __ delayed()->sth(O4, end_to, 0);
duke@435 1710
duke@435 1711 __ BIND(L_exit);
duke@435 1712 // O3, O4 are used as temp registers
duke@435 1713 inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
duke@435 1714 __ retl();
duke@435 1715 __ delayed()->mov(G0, O0); // return 0
duke@435 1716 return start;
duke@435 1717 }
duke@435 1718
duke@435 1719 //
duke@435 1720 // Generate core code for disjoint int copy (and oop copy on 32-bit).
duke@435 1721 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 1722 // to be heapword aligned.
duke@435 1723 //
duke@435 1724 // Arguments:
duke@435 1725 // from: O0
duke@435 1726 // to: O1
duke@435 1727 // count: O2 treated as signed
duke@435 1728 //
duke@435 1729 void generate_disjoint_int_copy_core(bool aligned) {
duke@435 1730
duke@435 1731 Label L_skip_alignment, L_aligned_copy;
duke@435 1732 Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 1733
duke@435 1734 const Register from = O0; // source array address
duke@435 1735 const Register to = O1; // destination array address
duke@435 1736 const Register count = O2; // elements count
duke@435 1737 const Register offset = O5; // offset from start of arrays
duke@435 1738 // O3, O4, G3, G4 are used as temp registers
duke@435 1739
duke@435 1740 // 'aligned' == true when it is known statically during compilation
duke@435 1741 // of this arraycopy call site that both 'from' and 'to' addresses
duke@435 1742 // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
duke@435 1743 //
duke@435 1744 // Aligned arrays have 4 bytes alignment in 32-bits VM
duke@435 1745 // and 8 bytes - in 64-bits VM.
duke@435 1746 //
duke@435 1747 #ifdef _LP64
duke@435 1748 if (!aligned)
duke@435 1749 #endif
duke@435 1750 {
duke@435 1751 // The next check could be put under 'ifndef' since the code in
duke@435 1752 // generate_disjoint_long_copy_core() has own checks and set 'offset'.
duke@435 1753
duke@435 1754 // for short arrays, just do single element copy
duke@435 1755 __ cmp(count, 5); // 4 + 1 (20 bytes)
duke@435 1756 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 1757 __ delayed()->mov(G0, offset);
duke@435 1758
duke@435 1759 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 1760 __ andcc(to, 7, G0);
duke@435 1761 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1762 __ delayed()->ld(from, 0, O3);
duke@435 1763 __ inc(from, 4);
duke@435 1764 __ inc(to, 4);
duke@435 1765 __ dec(count);
duke@435 1766 __ st(O3, to, -4);
duke@435 1767 __ BIND(L_skip_alignment);
duke@435 1768
duke@435 1769 // if arrays have same alignment mod 8, do 4 elements copy
duke@435 1770 __ andcc(from, 7, G0);
duke@435 1771 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1772 __ delayed()->ld(from, 0, O3);
duke@435 1773
duke@435 1774 //
duke@435 1775 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1776 // to form 2 aligned 8-bytes chunks to store.
duke@435 1777 //
duke@435 1778 // copy_16_bytes_forward_with_shift() is not used here since this
duke@435 1779 // code is more optimal.
duke@435 1780
duke@435 1781 // copy with shift 4 elements (16 bytes) at a time
duke@435 1782 __ dec(count, 4); // The cmp at the beginning guaranty count >= 4
duke@435 1783
duke@435 1784 __ align(16);
duke@435 1785 __ BIND(L_copy_16_bytes);
duke@435 1786 __ ldx(from, 4, O4);
duke@435 1787 __ deccc(count, 4); // Can we do next iteration after this one?
duke@435 1788 __ ldx(from, 12, G4);
duke@435 1789 __ inc(to, 16);
duke@435 1790 __ inc(from, 16);
duke@435 1791 __ sllx(O3, 32, O3);
duke@435 1792 __ srlx(O4, 32, G3);
duke@435 1793 __ bset(G3, O3);
duke@435 1794 __ stx(O3, to, -16);
duke@435 1795 __ sllx(O4, 32, O4);
duke@435 1796 __ srlx(G4, 32, G3);
duke@435 1797 __ bset(G3, O4);
duke@435 1798 __ stx(O4, to, -8);
duke@435 1799 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 1800 __ delayed()->mov(G4, O3);
duke@435 1801
duke@435 1802 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 1803 __ delayed()->inc(count, 4); // restore 'count'
duke@435 1804
duke@435 1805 __ BIND(L_aligned_copy);
duke@435 1806 }
duke@435 1807 // copy 4 elements (16 bytes) at a time
duke@435 1808 __ and3(count, 1, G4); // Save
duke@435 1809 __ srl(count, 1, count);
duke@435 1810 generate_disjoint_long_copy_core(aligned);
duke@435 1811 __ mov(G4, count); // Restore
duke@435 1812
duke@435 1813 // copy 1 element at a time
duke@435 1814 __ BIND(L_copy_4_bytes);
duke@435 1815 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1816 __ delayed()->nop();
duke@435 1817 __ BIND(L_copy_4_bytes_loop);
duke@435 1818 __ ld(from, offset, O3);
duke@435 1819 __ deccc(count);
duke@435 1820 __ st(O3, to, offset);
duke@435 1821 __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 1822 __ delayed()->inc(offset, 4);
duke@435 1823 __ BIND(L_exit);
duke@435 1824 }
duke@435 1825
duke@435 1826 //
duke@435 1827 // Generate stub for disjoint int copy. If "aligned" is true, the
duke@435 1828 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1829 //
duke@435 1830 // Arguments for generated stub:
duke@435 1831 // from: O0
duke@435 1832 // to: O1
duke@435 1833 // count: O2 treated as signed
duke@435 1834 //
duke@435 1835 address generate_disjoint_int_copy(bool aligned, const char * name) {
duke@435 1836 __ align(CodeEntryAlignment);
duke@435 1837 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1838 address start = __ pc();
duke@435 1839
duke@435 1840 const Register count = O2;
duke@435 1841 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 1842
duke@435 1843 if (!aligned) disjoint_int_copy_entry = __ pc();
duke@435 1844 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1845 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1846
duke@435 1847 generate_disjoint_int_copy_core(aligned);
duke@435 1848
duke@435 1849 // O3, O4 are used as temp registers
duke@435 1850 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 1851 __ retl();
duke@435 1852 __ delayed()->mov(G0, O0); // return 0
duke@435 1853 return start;
duke@435 1854 }
duke@435 1855
duke@435 1856 //
duke@435 1857 // Generate core code for conjoint int copy (and oop copy on 32-bit).
duke@435 1858 // If "aligned" is true, the "from" and "to" addresses are assumed
duke@435 1859 // to be heapword aligned.
duke@435 1860 //
duke@435 1861 // Arguments:
duke@435 1862 // from: O0
duke@435 1863 // to: O1
duke@435 1864 // count: O2 treated as signed
duke@435 1865 //
duke@435 1866 void generate_conjoint_int_copy_core(bool aligned) {
duke@435 1867 // Do reverse copy.
duke@435 1868
duke@435 1869 Label L_skip_alignment, L_aligned_copy;
duke@435 1870 Label L_copy_16_bytes, L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
duke@435 1871
duke@435 1872 const Register from = O0; // source array address
duke@435 1873 const Register to = O1; // destination array address
duke@435 1874 const Register count = O2; // elements count
duke@435 1875 const Register end_from = from; // source array end address
duke@435 1876 const Register end_to = to; // destination array end address
duke@435 1877 // O3, O4, O5, G3 are used as temp registers
duke@435 1878
duke@435 1879 const Register byte_count = O3; // bytes count to copy
duke@435 1880
duke@435 1881 __ sllx(count, LogBytesPerInt, byte_count);
duke@435 1882 __ add(to, byte_count, end_to); // offset after last copied element
duke@435 1883
duke@435 1884 __ cmp(count, 5); // for short arrays, just do single element copy
duke@435 1885 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
duke@435 1886 __ delayed()->add(from, byte_count, end_from);
duke@435 1887
duke@435 1888 // copy 1 element to align 'to' on an 8 byte boundary
duke@435 1889 __ andcc(end_to, 7, G0);
duke@435 1890 __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
duke@435 1891 __ delayed()->nop();
duke@435 1892 __ dec(count);
duke@435 1893 __ dec(end_from, 4);
duke@435 1894 __ dec(end_to, 4);
duke@435 1895 __ ld(end_from, 0, O4);
duke@435 1896 __ st(O4, end_to, 0);
duke@435 1897 __ BIND(L_skip_alignment);
duke@435 1898
duke@435 1899 // Check if 'end_from' and 'end_to' has the same alignment.
duke@435 1900 __ andcc(end_from, 7, G0);
duke@435 1901 __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
duke@435 1902 __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
duke@435 1903
duke@435 1904 // copy with shift 4 elements (16 bytes) at a time
duke@435 1905 //
duke@435 1906 // Load 2 aligned 8-bytes chunks and use one from previous iteration
duke@435 1907 // to form 2 aligned 8-bytes chunks to store.
duke@435 1908 //
duke@435 1909 __ ldx(end_from, -4, O3);
duke@435 1910 __ align(16);
duke@435 1911 __ BIND(L_copy_16_bytes);
duke@435 1912 __ ldx(end_from, -12, O4);
duke@435 1913 __ deccc(count, 4);
duke@435 1914 __ ldx(end_from, -20, O5);
duke@435 1915 __ dec(end_to, 16);
duke@435 1916 __ dec(end_from, 16);
duke@435 1917 __ srlx(O3, 32, O3);
duke@435 1918 __ sllx(O4, 32, G3);
duke@435 1919 __ bset(G3, O3);
duke@435 1920 __ stx(O3, end_to, 8);
duke@435 1921 __ srlx(O4, 32, O4);
duke@435 1922 __ sllx(O5, 32, G3);
duke@435 1923 __ bset(O4, G3);
duke@435 1924 __ stx(G3, end_to, 0);
duke@435 1925 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 1926 __ delayed()->mov(O5, O3);
duke@435 1927
duke@435 1928 __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
duke@435 1929 __ delayed()->inc(count, 4);
duke@435 1930
duke@435 1931 // copy 4 elements (16 bytes) at a time
duke@435 1932 __ align(16);
duke@435 1933 __ BIND(L_aligned_copy);
duke@435 1934 __ dec(end_from, 16);
duke@435 1935 __ ldx(end_from, 8, O3);
duke@435 1936 __ ldx(end_from, 0, O4);
duke@435 1937 __ dec(end_to, 16);
duke@435 1938 __ deccc(count, 4);
duke@435 1939 __ stx(O3, end_to, 8);
duke@435 1940 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
duke@435 1941 __ delayed()->stx(O4, end_to, 0);
duke@435 1942 __ inc(count, 4);
duke@435 1943
duke@435 1944 // copy 1 element (4 bytes) at a time
duke@435 1945 __ BIND(L_copy_4_bytes);
duke@435 1946 __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
duke@435 1947 __ delayed()->nop();
duke@435 1948 __ BIND(L_copy_4_bytes_loop);
duke@435 1949 __ dec(end_from, 4);
duke@435 1950 __ dec(end_to, 4);
duke@435 1951 __ ld(end_from, 0, O4);
duke@435 1952 __ deccc(count);
duke@435 1953 __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
duke@435 1954 __ delayed()->st(O4, end_to, 0);
duke@435 1955 __ BIND(L_exit);
duke@435 1956 }
duke@435 1957
duke@435 1958 //
duke@435 1959 // Generate stub for conjoint int copy. If "aligned" is true, the
duke@435 1960 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 1961 //
duke@435 1962 // Arguments for generated stub:
duke@435 1963 // from: O0
duke@435 1964 // to: O1
duke@435 1965 // count: O2 treated as signed
duke@435 1966 //
duke@435 1967 address generate_conjoint_int_copy(bool aligned, const char * name) {
duke@435 1968 __ align(CodeEntryAlignment);
duke@435 1969 StubCodeMark mark(this, "StubRoutines", name);
duke@435 1970 address start = __ pc();
duke@435 1971
duke@435 1972 address nooverlap_target = aligned ?
duke@435 1973 StubRoutines::arrayof_jint_disjoint_arraycopy() :
duke@435 1974 disjoint_int_copy_entry;
duke@435 1975
duke@435 1976 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 1977
duke@435 1978 if (!aligned) int_copy_entry = __ pc();
duke@435 1979 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 1980 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 1981
duke@435 1982 array_overlap_test(nooverlap_target, 2);
duke@435 1983
duke@435 1984 generate_conjoint_int_copy_core(aligned);
duke@435 1985
duke@435 1986 // O3, O4 are used as temp registers
duke@435 1987 inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
duke@435 1988 __ retl();
duke@435 1989 __ delayed()->mov(G0, O0); // return 0
duke@435 1990 return start;
duke@435 1991 }
duke@435 1992
duke@435 1993 //
duke@435 1994 // Generate core code for disjoint long copy (and oop copy on 64-bit).
duke@435 1995 // "aligned" is ignored, because we must make the stronger
duke@435 1996 // assumption that both addresses are always 64-bit aligned.
duke@435 1997 //
duke@435 1998 // Arguments:
duke@435 1999 // from: O0
duke@435 2000 // to: O1
duke@435 2001 // count: O2 treated as signed
duke@435 2002 //
duke@435 2003 void generate_disjoint_long_copy_core(bool aligned) {
duke@435 2004 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2005 const Register from = O0; // source array address
duke@435 2006 const Register to = O1; // destination array address
duke@435 2007 const Register count = O2; // elements count
duke@435 2008 const Register offset0 = O4; // element offset
duke@435 2009 const Register offset8 = O5; // next element offset
duke@435 2010
duke@435 2011 __ deccc(count, 2);
duke@435 2012 __ mov(G0, offset0); // offset from start of arrays (0)
duke@435 2013 __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
duke@435 2014 __ delayed()->add(offset0, 8, offset8);
duke@435 2015 __ align(16);
duke@435 2016 __ BIND(L_copy_16_bytes);
duke@435 2017 __ ldx(from, offset0, O3);
duke@435 2018 __ ldx(from, offset8, G3);
duke@435 2019 __ deccc(count, 2);
duke@435 2020 __ stx(O3, to, offset0);
duke@435 2021 __ inc(offset0, 16);
duke@435 2022 __ stx(G3, to, offset8);
duke@435 2023 __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
duke@435 2024 __ delayed()->inc(offset8, 16);
duke@435 2025
duke@435 2026 __ BIND(L_copy_8_bytes);
duke@435 2027 __ inccc(count, 2);
duke@435 2028 __ brx(Assembler::zero, true, Assembler::pn, L_exit );
duke@435 2029 __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
duke@435 2030 __ ldx(from, offset0, O3);
duke@435 2031 __ stx(O3, to, offset0);
duke@435 2032 __ BIND(L_exit);
duke@435 2033 }
duke@435 2034
duke@435 2035 //
duke@435 2036 // Generate stub for disjoint long copy.
duke@435 2037 // "aligned" is ignored, because we must make the stronger
duke@435 2038 // assumption that both addresses are always 64-bit aligned.
duke@435 2039 //
duke@435 2040 // Arguments for generated stub:
duke@435 2041 // from: O0
duke@435 2042 // to: O1
duke@435 2043 // count: O2 treated as signed
duke@435 2044 //
duke@435 2045 address generate_disjoint_long_copy(bool aligned, const char * name) {
duke@435 2046 __ align(CodeEntryAlignment);
duke@435 2047 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2048 address start = __ pc();
duke@435 2049
duke@435 2050 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2051
duke@435 2052 if (!aligned) disjoint_long_copy_entry = __ pc();
duke@435 2053 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2054 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2055
duke@435 2056 generate_disjoint_long_copy_core(aligned);
duke@435 2057
duke@435 2058 // O3, O4 are used as temp registers
duke@435 2059 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2060 __ retl();
duke@435 2061 __ delayed()->mov(G0, O0); // return 0
duke@435 2062 return start;
duke@435 2063 }
duke@435 2064
duke@435 2065 //
duke@435 2066 // Generate core code for conjoint long copy (and oop copy on 64-bit).
duke@435 2067 // "aligned" is ignored, because we must make the stronger
duke@435 2068 // assumption that both addresses are always 64-bit aligned.
duke@435 2069 //
duke@435 2070 // Arguments:
duke@435 2071 // from: O0
duke@435 2072 // to: O1
duke@435 2073 // count: O2 treated as signed
duke@435 2074 //
duke@435 2075 void generate_conjoint_long_copy_core(bool aligned) {
duke@435 2076 // Do reverse copy.
duke@435 2077 Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
duke@435 2078 const Register from = O0; // source array address
duke@435 2079 const Register to = O1; // destination array address
duke@435 2080 const Register count = O2; // elements count
duke@435 2081 const Register offset8 = O4; // element offset
duke@435 2082 const Register offset0 = O5; // previous element offset
duke@435 2083
duke@435 2084 __ subcc(count, 1, count);
duke@435 2085 __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
duke@435 2086 __ delayed()->sllx(count, LogBytesPerLong, offset8);
duke@435 2087 __ sub(offset8, 8, offset0);
duke@435 2088 __ align(16);
duke@435 2089 __ BIND(L_copy_16_bytes);
duke@435 2090 __ ldx(from, offset8, O2);
duke@435 2091 __ ldx(from, offset0, O3);
duke@435 2092 __ stx(O2, to, offset8);
duke@435 2093 __ deccc(offset8, 16); // use offset8 as counter
duke@435 2094 __ stx(O3, to, offset0);
duke@435 2095 __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
duke@435 2096 __ delayed()->dec(offset0, 16);
duke@435 2097
duke@435 2098 __ BIND(L_copy_8_bytes);
duke@435 2099 __ brx(Assembler::negative, false, Assembler::pn, L_exit );
duke@435 2100 __ delayed()->nop();
duke@435 2101 __ ldx(from, 0, O3);
duke@435 2102 __ stx(O3, to, 0);
duke@435 2103 __ BIND(L_exit);
duke@435 2104 }
duke@435 2105
duke@435 2106 // Generate stub for conjoint long copy.
duke@435 2107 // "aligned" is ignored, because we must make the stronger
duke@435 2108 // assumption that both addresses are always 64-bit aligned.
duke@435 2109 //
duke@435 2110 // Arguments for generated stub:
duke@435 2111 // from: O0
duke@435 2112 // to: O1
duke@435 2113 // count: O2 treated as signed
duke@435 2114 //
duke@435 2115 address generate_conjoint_long_copy(bool aligned, const char * name) {
duke@435 2116 __ align(CodeEntryAlignment);
duke@435 2117 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2118 address start = __ pc();
duke@435 2119
duke@435 2120 assert(!aligned, "usage");
duke@435 2121 address nooverlap_target = disjoint_long_copy_entry;
duke@435 2122
duke@435 2123 assert_clean_int(O2, O3); // Make sure 'count' is clean int.
duke@435 2124
duke@435 2125 if (!aligned) long_copy_entry = __ pc();
duke@435 2126 // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
duke@435 2127 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2128
duke@435 2129 array_overlap_test(nooverlap_target, 3);
duke@435 2130
duke@435 2131 generate_conjoint_long_copy_core(aligned);
duke@435 2132
duke@435 2133 // O3, O4 are used as temp registers
duke@435 2134 inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
duke@435 2135 __ retl();
duke@435 2136 __ delayed()->mov(G0, O0); // return 0
duke@435 2137 return start;
duke@435 2138 }
duke@435 2139
duke@435 2140 // Generate stub for disjoint oop copy. If "aligned" is true, the
duke@435 2141 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2142 //
duke@435 2143 // Arguments for generated stub:
duke@435 2144 // from: O0
duke@435 2145 // to: O1
duke@435 2146 // count: O2 treated as signed
duke@435 2147 //
duke@435 2148 address generate_disjoint_oop_copy(bool aligned, const char * name) {
duke@435 2149
duke@435 2150 const Register from = O0; // source array address
duke@435 2151 const Register to = O1; // destination array address
duke@435 2152 const Register count = O2; // elements count
duke@435 2153
duke@435 2154 __ align(CodeEntryAlignment);
duke@435 2155 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2156 address start = __ pc();
duke@435 2157
duke@435 2158 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2159
duke@435 2160 if (!aligned) disjoint_oop_copy_entry = __ pc();
duke@435 2161 // caller can pass a 64-bit byte count here
duke@435 2162 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2163
duke@435 2164 // save arguments for barrier generation
duke@435 2165 __ mov(to, G1);
duke@435 2166 __ mov(count, G5);
duke@435 2167 gen_write_ref_array_pre_barrier(G1, G5);
duke@435 2168 #ifdef _LP64
coleenp@548 2169 assert_clean_int(count, O3); // Make sure 'count' is clean int.
coleenp@548 2170 if (UseCompressedOops) {
coleenp@548 2171 generate_disjoint_int_copy_core(aligned);
coleenp@548 2172 } else {
coleenp@548 2173 generate_disjoint_long_copy_core(aligned);
coleenp@548 2174 }
duke@435 2175 #else
duke@435 2176 generate_disjoint_int_copy_core(aligned);
duke@435 2177 #endif
duke@435 2178 // O0 is used as temp register
duke@435 2179 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2180
duke@435 2181 // O3, O4 are used as temp registers
duke@435 2182 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2183 __ retl();
duke@435 2184 __ delayed()->mov(G0, O0); // return 0
duke@435 2185 return start;
duke@435 2186 }
duke@435 2187
duke@435 2188 // Generate stub for conjoint oop copy. If "aligned" is true, the
duke@435 2189 // "from" and "to" addresses are assumed to be heapword aligned.
duke@435 2190 //
duke@435 2191 // Arguments for generated stub:
duke@435 2192 // from: O0
duke@435 2193 // to: O1
duke@435 2194 // count: O2 treated as signed
duke@435 2195 //
duke@435 2196 address generate_conjoint_oop_copy(bool aligned, const char * name) {
duke@435 2197
duke@435 2198 const Register from = O0; // source array address
duke@435 2199 const Register to = O1; // destination array address
duke@435 2200 const Register count = O2; // elements count
duke@435 2201
duke@435 2202 __ align(CodeEntryAlignment);
duke@435 2203 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2204 address start = __ pc();
duke@435 2205
duke@435 2206 assert_clean_int(count, O3); // Make sure 'count' is clean int.
duke@435 2207
duke@435 2208 if (!aligned) oop_copy_entry = __ pc();
duke@435 2209 // caller can pass a 64-bit byte count here
duke@435 2210 if (!aligned) BLOCK_COMMENT("Entry:");
duke@435 2211
duke@435 2212 // save arguments for barrier generation
duke@435 2213 __ mov(to, G1);
duke@435 2214 __ mov(count, G5);
duke@435 2215
duke@435 2216 gen_write_ref_array_pre_barrier(G1, G5);
duke@435 2217
duke@435 2218 address nooverlap_target = aligned ?
duke@435 2219 StubRoutines::arrayof_oop_disjoint_arraycopy() :
duke@435 2220 disjoint_oop_copy_entry;
duke@435 2221
coleenp@548 2222 array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
duke@435 2223
duke@435 2224 #ifdef _LP64
coleenp@548 2225 if (UseCompressedOops) {
coleenp@548 2226 generate_conjoint_int_copy_core(aligned);
coleenp@548 2227 } else {
coleenp@548 2228 generate_conjoint_long_copy_core(aligned);
coleenp@548 2229 }
duke@435 2230 #else
duke@435 2231 generate_conjoint_int_copy_core(aligned);
duke@435 2232 #endif
duke@435 2233
duke@435 2234 // O0 is used as temp register
duke@435 2235 gen_write_ref_array_post_barrier(G1, G5, O0);
duke@435 2236
duke@435 2237 // O3, O4 are used as temp registers
duke@435 2238 inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
duke@435 2239 __ retl();
duke@435 2240 __ delayed()->mov(G0, O0); // return 0
duke@435 2241 return start;
duke@435 2242 }
duke@435 2243
duke@435 2244
duke@435 2245 // Helper for generating a dynamic type check.
duke@435 2246 // Smashes only the given temp registers.
duke@435 2247 void generate_type_check(Register sub_klass,
duke@435 2248 Register super_check_offset,
duke@435 2249 Register super_klass,
duke@435 2250 Register temp,
jrose@1079 2251 Label& L_success) {
duke@435 2252 assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
duke@435 2253
duke@435 2254 BLOCK_COMMENT("type_check:");
duke@435 2255
jrose@1079 2256 Label L_miss, L_pop_to_miss;
duke@435 2257
duke@435 2258 assert_clean_int(super_check_offset, temp);
duke@435 2259
jrose@1079 2260 __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
jrose@1079 2261 &L_success, &L_miss, NULL,
jrose@1079 2262 super_check_offset);
jrose@1079 2263
jrose@1079 2264 BLOCK_COMMENT("type_check_slow_path:");
duke@435 2265 __ save_frame(0);
jrose@1079 2266 __ check_klass_subtype_slow_path(sub_klass->after_save(),
jrose@1079 2267 super_klass->after_save(),
jrose@1079 2268 L0, L1, L2, L4,
jrose@1079 2269 NULL, &L_pop_to_miss);
jrose@1079 2270 __ ba(false, L_success);
jrose@1079 2271 __ delayed()->restore();
jrose@1079 2272
jrose@1079 2273 __ bind(L_pop_to_miss);
duke@435 2274 __ restore();
duke@435 2275
duke@435 2276 // Fall through on failure!
duke@435 2277 __ BIND(L_miss);
duke@435 2278 }
duke@435 2279
duke@435 2280
duke@435 2281 // Generate stub for checked oop copy.
duke@435 2282 //
duke@435 2283 // Arguments for generated stub:
duke@435 2284 // from: O0
duke@435 2285 // to: O1
duke@435 2286 // count: O2 treated as signed
duke@435 2287 // ckoff: O3 (super_check_offset)
duke@435 2288 // ckval: O4 (super_klass)
duke@435 2289 // ret: O0 zero for success; (-1^K) where K is partial transfer count
duke@435 2290 //
duke@435 2291 address generate_checkcast_copy(const char* name) {
duke@435 2292
duke@435 2293 const Register O0_from = O0; // source array address
duke@435 2294 const Register O1_to = O1; // destination array address
duke@435 2295 const Register O2_count = O2; // elements count
duke@435 2296 const Register O3_ckoff = O3; // super_check_offset
duke@435 2297 const Register O4_ckval = O4; // super_klass
duke@435 2298
duke@435 2299 const Register O5_offset = O5; // loop var, with stride wordSize
duke@435 2300 const Register G1_remain = G1; // loop var, with stride -1
duke@435 2301 const Register G3_oop = G3; // actual oop copied
duke@435 2302 const Register G4_klass = G4; // oop._klass
duke@435 2303 const Register G5_super = G5; // oop._klass._primary_supers[ckval]
duke@435 2304
duke@435 2305 __ align(CodeEntryAlignment);
duke@435 2306 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2307 address start = __ pc();
duke@435 2308
ysr@777 2309 gen_write_ref_array_pre_barrier(O1, O2);
duke@435 2310
duke@435 2311 #ifdef ASSERT
jrose@1079 2312 // We sometimes save a frame (see generate_type_check below).
duke@435 2313 // If this will cause trouble, let's fail now instead of later.
duke@435 2314 __ save_frame(0);
duke@435 2315 __ restore();
duke@435 2316 #endif
duke@435 2317
duke@435 2318 #ifdef ASSERT
duke@435 2319 // caller guarantees that the arrays really are different
duke@435 2320 // otherwise, we would have to make conjoint checks
duke@435 2321 { Label L;
duke@435 2322 __ mov(O3, G1); // spill: overlap test smashes O3
duke@435 2323 __ mov(O4, G4); // spill: overlap test smashes O4
coleenp@548 2324 array_overlap_test(L, LogBytesPerHeapOop);
duke@435 2325 __ stop("checkcast_copy within a single array");
duke@435 2326 __ bind(L);
duke@435 2327 __ mov(G1, O3);
duke@435 2328 __ mov(G4, O4);
duke@435 2329 }
duke@435 2330 #endif //ASSERT
duke@435 2331
duke@435 2332 assert_clean_int(O2_count, G1); // Make sure 'count' is clean int.
duke@435 2333
duke@435 2334 checkcast_copy_entry = __ pc();
duke@435 2335 // caller can pass a 64-bit byte count here (from generic stub)
duke@435 2336 BLOCK_COMMENT("Entry:");
duke@435 2337
duke@435 2338 Label load_element, store_element, do_card_marks, fail, done;
duke@435 2339 __ addcc(O2_count, 0, G1_remain); // initialize loop index, and test it
duke@435 2340 __ brx(Assembler::notZero, false, Assembler::pt, load_element);
duke@435 2341 __ delayed()->mov(G0, O5_offset); // offset from start of arrays
duke@435 2342
duke@435 2343 // Empty array: Nothing to do.
duke@435 2344 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2345 __ retl();
duke@435 2346 __ delayed()->set(0, O0); // return 0 on (trivial) success
duke@435 2347
duke@435 2348 // ======== begin loop ========
duke@435 2349 // (Loop is rotated; its entry is load_element.)
duke@435 2350 // Loop variables:
duke@435 2351 // (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
duke@435 2352 // (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
duke@435 2353 // G3, G4, G5 --- current oop, oop.klass, oop.klass.super
duke@435 2354 __ align(16);
duke@435 2355
jrose@1079 2356 __ BIND(store_element);
jrose@1079 2357 __ deccc(G1_remain); // decrement the count
coleenp@548 2358 __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
coleenp@548 2359 __ inc(O5_offset, heapOopSize); // step to next offset
duke@435 2360 __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
duke@435 2361 __ delayed()->set(0, O0); // return -1 on success
duke@435 2362
duke@435 2363 // ======== loop entry is here ========
jrose@1079 2364 __ BIND(load_element);
coleenp@548 2365 __ load_heap_oop(O0_from, O5_offset, G3_oop); // load the oop
duke@435 2366 __ br_null(G3_oop, true, Assembler::pt, store_element);
jrose@1079 2367 __ delayed()->nop();
duke@435 2368
coleenp@548 2369 __ load_klass(G3_oop, G4_klass); // query the object klass
duke@435 2370
duke@435 2371 generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
duke@435 2372 // branch to this on success:
jrose@1079 2373 store_element);
duke@435 2374 // ======== end loop ========
duke@435 2375
duke@435 2376 // It was a real error; we must depend on the caller to finish the job.
duke@435 2377 // Register G1 has number of *remaining* oops, O2 number of *total* oops.
duke@435 2378 // Emit GC store barriers for the oops we have copied (O2 minus G1),
duke@435 2379 // and report their number to the caller.
jrose@1079 2380 __ BIND(fail);
duke@435 2381 __ subcc(O2_count, G1_remain, O2_count);
duke@435 2382 __ brx(Assembler::zero, false, Assembler::pt, done);
duke@435 2383 __ delayed()->not1(O2_count, O0); // report (-1^K) to caller
duke@435 2384
jrose@1079 2385 __ BIND(do_card_marks);
duke@435 2386 gen_write_ref_array_post_barrier(O1_to, O2_count, O3); // store check on O1[0..O2]
duke@435 2387
jrose@1079 2388 __ BIND(done);
duke@435 2389 inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
duke@435 2390 __ retl();
duke@435 2391 __ delayed()->nop(); // return value in 00
duke@435 2392
duke@435 2393 return start;
duke@435 2394 }
duke@435 2395
duke@435 2396
duke@435 2397 // Generate 'unsafe' array copy stub
duke@435 2398 // Though just as safe as the other stubs, it takes an unscaled
duke@435 2399 // size_t argument instead of an element count.
duke@435 2400 //
duke@435 2401 // Arguments for generated stub:
duke@435 2402 // from: O0
duke@435 2403 // to: O1
duke@435 2404 // count: O2 byte count, treated as ssize_t, can be zero
duke@435 2405 //
duke@435 2406 // Examines the alignment of the operands and dispatches
duke@435 2407 // to a long, int, short, or byte copy loop.
duke@435 2408 //
duke@435 2409 address generate_unsafe_copy(const char* name) {
duke@435 2410
duke@435 2411 const Register O0_from = O0; // source array address
duke@435 2412 const Register O1_to = O1; // destination array address
duke@435 2413 const Register O2_count = O2; // elements count
duke@435 2414
duke@435 2415 const Register G1_bits = G1; // test copy of low bits
duke@435 2416
duke@435 2417 __ align(CodeEntryAlignment);
duke@435 2418 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2419 address start = __ pc();
duke@435 2420
duke@435 2421 // bump this on entry, not on exit:
duke@435 2422 inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
duke@435 2423
duke@435 2424 __ or3(O0_from, O1_to, G1_bits);
duke@435 2425 __ or3(O2_count, G1_bits, G1_bits);
duke@435 2426
duke@435 2427 __ btst(BytesPerLong-1, G1_bits);
duke@435 2428 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2429 long_copy_entry, relocInfo::runtime_call_type);
duke@435 2430 // scale the count on the way out:
duke@435 2431 __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
duke@435 2432
duke@435 2433 __ btst(BytesPerInt-1, G1_bits);
duke@435 2434 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2435 int_copy_entry, relocInfo::runtime_call_type);
duke@435 2436 // scale the count on the way out:
duke@435 2437 __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
duke@435 2438
duke@435 2439 __ btst(BytesPerShort-1, G1_bits);
duke@435 2440 __ br(Assembler::zero, true, Assembler::pt,
duke@435 2441 short_copy_entry, relocInfo::runtime_call_type);
duke@435 2442 // scale the count on the way out:
duke@435 2443 __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
duke@435 2444
duke@435 2445 __ br(Assembler::always, false, Assembler::pt,
duke@435 2446 byte_copy_entry, relocInfo::runtime_call_type);
duke@435 2447 __ delayed()->nop();
duke@435 2448
duke@435 2449 return start;
duke@435 2450 }
duke@435 2451
duke@435 2452
duke@435 2453 // Perform range checks on the proposed arraycopy.
duke@435 2454 // Kills the two temps, but nothing else.
duke@435 2455 // Also, clean the sign bits of src_pos and dst_pos.
duke@435 2456 void arraycopy_range_checks(Register src, // source array oop (O0)
duke@435 2457 Register src_pos, // source position (O1)
duke@435 2458 Register dst, // destination array oo (O2)
duke@435 2459 Register dst_pos, // destination position (O3)
duke@435 2460 Register length, // length of copy (O4)
duke@435 2461 Register temp1, Register temp2,
duke@435 2462 Label& L_failed) {
duke@435 2463 BLOCK_COMMENT("arraycopy_range_checks:");
duke@435 2464
duke@435 2465 // if (src_pos + length > arrayOop(src)->length() ) FAIL;
duke@435 2466
duke@435 2467 const Register array_length = temp1; // scratch
duke@435 2468 const Register end_pos = temp2; // scratch
duke@435 2469
duke@435 2470 // Note: This next instruction may be in the delay slot of a branch:
duke@435 2471 __ add(length, src_pos, end_pos); // src_pos + length
duke@435 2472 __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2473 __ cmp(end_pos, array_length);
duke@435 2474 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2475
duke@435 2476 // if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
duke@435 2477 __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
duke@435 2478 __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
duke@435 2479 __ cmp(end_pos, array_length);
duke@435 2480 __ br(Assembler::greater, false, Assembler::pn, L_failed);
duke@435 2481
duke@435 2482 // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
duke@435 2483 // Move with sign extension can be used since they are positive.
duke@435 2484 __ delayed()->signx(src_pos, src_pos);
duke@435 2485 __ signx(dst_pos, dst_pos);
duke@435 2486
duke@435 2487 BLOCK_COMMENT("arraycopy_range_checks done");
duke@435 2488 }
duke@435 2489
duke@435 2490
duke@435 2491 //
duke@435 2492 // Generate generic array copy stubs
duke@435 2493 //
duke@435 2494 // Input:
duke@435 2495 // O0 - src oop
duke@435 2496 // O1 - src_pos
duke@435 2497 // O2 - dst oop
duke@435 2498 // O3 - dst_pos
duke@435 2499 // O4 - element count
duke@435 2500 //
duke@435 2501 // Output:
duke@435 2502 // O0 == 0 - success
duke@435 2503 // O0 == -1 - need to call System.arraycopy
duke@435 2504 //
duke@435 2505 address generate_generic_copy(const char *name) {
duke@435 2506
duke@435 2507 Label L_failed, L_objArray;
duke@435 2508
duke@435 2509 // Input registers
duke@435 2510 const Register src = O0; // source array oop
duke@435 2511 const Register src_pos = O1; // source position
duke@435 2512 const Register dst = O2; // destination array oop
duke@435 2513 const Register dst_pos = O3; // destination position
duke@435 2514 const Register length = O4; // elements count
duke@435 2515
duke@435 2516 // registers used as temp
duke@435 2517 const Register G3_src_klass = G3; // source array klass
duke@435 2518 const Register G4_dst_klass = G4; // destination array klass
duke@435 2519 const Register G5_lh = G5; // layout handler
duke@435 2520 const Register O5_temp = O5;
duke@435 2521
duke@435 2522 __ align(CodeEntryAlignment);
duke@435 2523 StubCodeMark mark(this, "StubRoutines", name);
duke@435 2524 address start = __ pc();
duke@435 2525
duke@435 2526 // bump this on entry, not on exit:
duke@435 2527 inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
duke@435 2528
duke@435 2529 // In principle, the int arguments could be dirty.
duke@435 2530 //assert_clean_int(src_pos, G1);
duke@435 2531 //assert_clean_int(dst_pos, G1);
duke@435 2532 //assert_clean_int(length, G1);
duke@435 2533
duke@435 2534 //-----------------------------------------------------------------------
duke@435 2535 // Assembler stubs will be used for this call to arraycopy
duke@435 2536 // if the following conditions are met:
duke@435 2537 //
duke@435 2538 // (1) src and dst must not be null.
duke@435 2539 // (2) src_pos must not be negative.
duke@435 2540 // (3) dst_pos must not be negative.
duke@435 2541 // (4) length must not be negative.
duke@435 2542 // (5) src klass and dst klass should be the same and not NULL.
duke@435 2543 // (6) src and dst should be arrays.
duke@435 2544 // (7) src_pos + length must not exceed length of src.
duke@435 2545 // (8) dst_pos + length must not exceed length of dst.
duke@435 2546 BLOCK_COMMENT("arraycopy initial argument checks");
duke@435 2547
duke@435 2548 // if (src == NULL) return -1;
duke@435 2549 __ br_null(src, false, Assembler::pn, L_failed);
duke@435 2550
duke@435 2551 // if (src_pos < 0) return -1;
duke@435 2552 __ delayed()->tst(src_pos);
duke@435 2553 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2554 __ delayed()->nop();
duke@435 2555
duke@435 2556 // if (dst == NULL) return -1;
duke@435 2557 __ br_null(dst, false, Assembler::pn, L_failed);
duke@435 2558
duke@435 2559 // if (dst_pos < 0) return -1;
duke@435 2560 __ delayed()->tst(dst_pos);
duke@435 2561 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2562
duke@435 2563 // if (length < 0) return -1;
duke@435 2564 __ delayed()->tst(length);
duke@435 2565 __ br(Assembler::negative, false, Assembler::pn, L_failed);
duke@435 2566
duke@435 2567 BLOCK_COMMENT("arraycopy argument klass checks");
duke@435 2568 // get src->klass()
coleenp@548 2569 if (UseCompressedOops) {
coleenp@548 2570 __ delayed()->nop(); // ??? not good
coleenp@548 2571 __ load_klass(src, G3_src_klass);
coleenp@548 2572 } else {
coleenp@548 2573 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
coleenp@548 2574 }
duke@435 2575
duke@435 2576 #ifdef ASSERT
duke@435 2577 // assert(src->klass() != NULL);
duke@435 2578 BLOCK_COMMENT("assert klasses not null");
duke@435 2579 { Label L_a, L_b;
duke@435 2580 __ br_notnull(G3_src_klass, false, Assembler::pt, L_b); // it is broken if klass is NULL
coleenp@548 2581 __ delayed()->nop();
duke@435 2582 __ bind(L_a);
duke@435 2583 __ stop("broken null klass");
duke@435 2584 __ bind(L_b);
coleenp@548 2585 __ load_klass(dst, G4_dst_klass);
duke@435 2586 __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
duke@435 2587 __ delayed()->mov(G0, G4_dst_klass); // scribble the temp
duke@435 2588 BLOCK_COMMENT("assert done");
duke@435 2589 }
duke@435 2590 #endif
duke@435 2591
duke@435 2592 // Load layout helper
duke@435 2593 //
duke@435 2594 // |array_tag| | header_size | element_type | |log2_element_size|
duke@435 2595 // 32 30 24 16 8 2 0
duke@435 2596 //
duke@435 2597 // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
duke@435 2598 //
duke@435 2599
duke@435 2600 int lh_offset = klassOopDesc::header_size() * HeapWordSize +
duke@435 2601 Klass::layout_helper_offset_in_bytes();
duke@435 2602
duke@435 2603 // Load 32-bits signed value. Use br() instruction with it to check icc.
duke@435 2604 __ lduw(G3_src_klass, lh_offset, G5_lh);
duke@435 2605
coleenp@548 2606 if (UseCompressedOops) {
coleenp@548 2607 __ load_klass(dst, G4_dst_klass);
coleenp@548 2608 }
duke@435 2609 // Handle objArrays completely differently...
duke@435 2610 juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
duke@435 2611 __ set(objArray_lh, O5_temp);
duke@435 2612 __ cmp(G5_lh, O5_temp);
duke@435 2613 __ br(Assembler::equal, false, Assembler::pt, L_objArray);
coleenp@548 2614 if (UseCompressedOops) {
coleenp@548 2615 __ delayed()->nop();
coleenp@548 2616 } else {
coleenp@548 2617 __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
coleenp@548 2618 }
duke@435 2619
duke@435 2620 // if (src->klass() != dst->klass()) return -1;
duke@435 2621 __ cmp(G3_src_klass, G4_dst_klass);
duke@435 2622 __ brx(Assembler::notEqual, false, Assembler::pn, L_failed);
duke@435 2623 __ delayed()->nop();
duke@435 2624
duke@435 2625 // if (!src->is_Array()) return -1;
duke@435 2626 __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
duke@435 2627 __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
duke@435 2628
duke@435 2629 // At this point, it is known to be a typeArray (array_tag 0x3).
duke@435 2630 #ifdef ASSERT
duke@435 2631 __ delayed()->nop();
duke@435 2632 { Label L;
duke@435 2633 jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
duke@435 2634 __ set(lh_prim_tag_in_place, O5_temp);
duke@435 2635 __ cmp(G5_lh, O5_temp);
duke@435 2636 __ br(Assembler::greaterEqual, false, Assembler::pt, L);
duke@435 2637 __ delayed()->nop();
duke@435 2638 __ stop("must be a primitive array");
duke@435 2639 __ bind(L);
duke@435 2640 }
duke@435 2641 #else
duke@435 2642 __ delayed(); // match next insn to prev branch
duke@435 2643 #endif
duke@435 2644
duke@435 2645 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 2646 O5_temp, G4_dst_klass, L_failed);
duke@435 2647
duke@435 2648 // typeArrayKlass
duke@435 2649 //
duke@435 2650 // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
duke@435 2651 // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
duke@435 2652 //
duke@435 2653
duke@435 2654 const Register G4_offset = G4_dst_klass; // array offset
duke@435 2655 const Register G3_elsize = G3_src_klass; // log2 element size
duke@435 2656
duke@435 2657 __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
duke@435 2658 __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
duke@435 2659 __ add(src, G4_offset, src); // src array offset
duke@435 2660 __ add(dst, G4_offset, dst); // dst array offset
duke@435 2661 __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
duke@435 2662
duke@435 2663 // next registers should be set before the jump to corresponding stub
duke@435 2664 const Register from = O0; // source array address
duke@435 2665 const Register to = O1; // destination array address
duke@435 2666 const Register count = O2; // elements count
duke@435 2667
duke@435 2668 // 'from', 'to', 'count' registers should be set in this order
duke@435 2669 // since they are the same as 'src', 'src_pos', 'dst'.
duke@435 2670
duke@435 2671 BLOCK_COMMENT("scale indexes to element size");
duke@435 2672 __ sll_ptr(src_pos, G3_elsize, src_pos);
duke@435 2673 __ sll_ptr(dst_pos, G3_elsize, dst_pos);
duke@435 2674 __ add(src, src_pos, from); // src_addr
duke@435 2675 __ add(dst, dst_pos, to); // dst_addr
duke@435 2676
duke@435 2677 BLOCK_COMMENT("choose copy loop based on element size");
duke@435 2678 __ cmp(G3_elsize, 0);
duke@435 2679 __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jbyte_arraycopy);
duke@435 2680 __ delayed()->signx(length, count); // length
duke@435 2681
duke@435 2682 __ cmp(G3_elsize, LogBytesPerShort);
duke@435 2683 __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jshort_arraycopy);
duke@435 2684 __ delayed()->signx(length, count); // length
duke@435 2685
duke@435 2686 __ cmp(G3_elsize, LogBytesPerInt);
duke@435 2687 __ br(Assembler::equal,true,Assembler::pt,StubRoutines::_jint_arraycopy);
duke@435 2688 __ delayed()->signx(length, count); // length
duke@435 2689 #ifdef ASSERT
duke@435 2690 { Label L;
duke@435 2691 __ cmp(G3_elsize, LogBytesPerLong);
duke@435 2692 __ br(Assembler::equal, false, Assembler::pt, L);
duke@435 2693 __ delayed()->nop();
duke@435 2694 __ stop("must be long copy, but elsize is wrong");
duke@435 2695 __ bind(L);
duke@435 2696 }
duke@435 2697 #endif
duke@435 2698 __ br(Assembler::always,false,Assembler::pt,StubRoutines::_jlong_arraycopy);
duke@435 2699 __ delayed()->signx(length, count); // length
duke@435 2700
duke@435 2701 // objArrayKlass
duke@435 2702 __ BIND(L_objArray);
duke@435 2703 // live at this point: G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
duke@435 2704
duke@435 2705 Label L_plain_copy, L_checkcast_copy;
duke@435 2706 // test array classes for subtyping
duke@435 2707 __ cmp(G3_src_klass, G4_dst_klass); // usual case is exact equality
duke@435 2708 __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
duke@435 2709 __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
duke@435 2710
duke@435 2711 // Identically typed arrays can be copied without element-wise checks.
duke@435 2712 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 2713 O5_temp, G5_lh, L_failed);
duke@435 2714
duke@435 2715 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 2716 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 2717 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 2718 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 2719 __ add(src, src_pos, from); // src_addr
duke@435 2720 __ add(dst, dst_pos, to); // dst_addr
duke@435 2721 __ BIND(L_plain_copy);
duke@435 2722 __ br(Assembler::always, false, Assembler::pt,StubRoutines::_oop_arraycopy);
duke@435 2723 __ delayed()->signx(length, count); // length
duke@435 2724
duke@435 2725 __ BIND(L_checkcast_copy);
duke@435 2726 // live at this point: G3_src_klass, G4_dst_klass
duke@435 2727 {
duke@435 2728 // Before looking at dst.length, make sure dst is also an objArray.
duke@435 2729 // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
duke@435 2730 __ cmp(G5_lh, O5_temp);
duke@435 2731 __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
duke@435 2732
duke@435 2733 // It is safe to examine both src.length and dst.length.
duke@435 2734 __ delayed(); // match next insn to prev branch
duke@435 2735 arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
duke@435 2736 O5_temp, G5_lh, L_failed);
duke@435 2737
duke@435 2738 // Marshal the base address arguments now, freeing registers.
duke@435 2739 __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
duke@435 2740 __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
coleenp@548 2741 __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
coleenp@548 2742 __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
duke@435 2743 __ add(src, src_pos, from); // src_addr
duke@435 2744 __ add(dst, dst_pos, to); // dst_addr
duke@435 2745 __ signx(length, count); // length (reloaded)
duke@435 2746
duke@435 2747 Register sco_temp = O3; // this register is free now
duke@435 2748 assert_different_registers(from, to, count, sco_temp,
duke@435 2749 G4_dst_klass, G3_src_klass);
duke@435 2750
duke@435 2751 // Generate the type check.
duke@435 2752 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2753 Klass::super_check_offset_offset_in_bytes());
duke@435 2754 __ lduw(G4_dst_klass, sco_offset, sco_temp);
duke@435 2755 generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
duke@435 2756 O5_temp, L_plain_copy);
duke@435 2757
duke@435 2758 // Fetch destination element klass from the objArrayKlass header.
duke@435 2759 int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
duke@435 2760 objArrayKlass::element_klass_offset_in_bytes());
duke@435 2761
duke@435 2762 // the checkcast_copy loop needs two extra arguments:
duke@435 2763 __ ld_ptr(G4_dst_klass, ek_offset, O4); // dest elem klass
duke@435 2764 // lduw(O4, sco_offset, O3); // sco of elem klass
duke@435 2765
duke@435 2766 __ br(Assembler::always, false, Assembler::pt, checkcast_copy_entry);
duke@435 2767 __ delayed()->lduw(O4, sco_offset, O3);
duke@435 2768 }
duke@435 2769
duke@435 2770 __ BIND(L_failed);
duke@435 2771 __ retl();
duke@435 2772 __ delayed()->sub(G0, 1, O0); // return -1
duke@435 2773 return start;
duke@435 2774 }
duke@435 2775
duke@435 2776 void generate_arraycopy_stubs() {
duke@435 2777
duke@435 2778 // Note: the disjoint stubs must be generated first, some of
duke@435 2779 // the conjoint stubs use them.
duke@435 2780 StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, "jbyte_disjoint_arraycopy");
duke@435 2781 StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, "jshort_disjoint_arraycopy");
duke@435 2782 StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, "jint_disjoint_arraycopy");
duke@435 2783 StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_copy(false, "jlong_disjoint_arraycopy");
duke@435 2784 StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_oop_copy(false, "oop_disjoint_arraycopy");
duke@435 2785 StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, "arrayof_jbyte_disjoint_arraycopy");
duke@435 2786 StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, "arrayof_jshort_disjoint_arraycopy");
duke@435 2787 StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, "arrayof_jint_disjoint_arraycopy");
duke@435 2788 StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, "arrayof_jlong_disjoint_arraycopy");
duke@435 2789 StubRoutines::_arrayof_oop_disjoint_arraycopy = generate_disjoint_oop_copy(true, "arrayof_oop_disjoint_arraycopy");
duke@435 2790
duke@435 2791 StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, "jbyte_arraycopy");
duke@435 2792 StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, "jshort_arraycopy");
duke@435 2793 StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, "jint_arraycopy");
duke@435 2794 StubRoutines::_jlong_arraycopy = generate_conjoint_long_copy(false, "jlong_arraycopy");
duke@435 2795 StubRoutines::_oop_arraycopy = generate_conjoint_oop_copy(false, "oop_arraycopy");
duke@435 2796 StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, "arrayof_jbyte_arraycopy");
duke@435 2797 StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, "arrayof_jshort_arraycopy");
duke@435 2798 #ifdef _LP64
duke@435 2799 // since sizeof(jint) < sizeof(HeapWord), there's a different flavor:
duke@435 2800 StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, "arrayof_jint_arraycopy");
duke@435 2801 #else
duke@435 2802 StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
duke@435 2803 #endif
duke@435 2804 StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
duke@435 2805 StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
duke@435 2806
duke@435 2807 StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy");
duke@435 2808 StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy");
duke@435 2809 StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy");
duke@435 2810 }
duke@435 2811
duke@435 2812 void generate_initial() {
duke@435 2813 // Generates all stubs and initializes the entry points
duke@435 2814
duke@435 2815 //------------------------------------------------------------------------------------------------------------------------
duke@435 2816 // entry points that exist in all platforms
duke@435 2817 // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
duke@435 2818 // the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
duke@435 2819 StubRoutines::_forward_exception_entry = generate_forward_exception();
duke@435 2820
duke@435 2821 StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address);
duke@435 2822 StubRoutines::_catch_exception_entry = generate_catch_exception();
duke@435 2823
duke@435 2824 //------------------------------------------------------------------------------------------------------------------------
duke@435 2825 // entry points that are platform specific
duke@435 2826 StubRoutines::Sparc::_test_stop_entry = generate_test_stop();
duke@435 2827
duke@435 2828 StubRoutines::Sparc::_stop_subroutine_entry = generate_stop_subroutine();
duke@435 2829 StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
duke@435 2830
duke@435 2831 #if !defined(COMPILER2) && !defined(_LP64)
duke@435 2832 StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
duke@435 2833 StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg();
duke@435 2834 StubRoutines::_atomic_add_entry = generate_atomic_add();
duke@435 2835 StubRoutines::_atomic_xchg_ptr_entry = StubRoutines::_atomic_xchg_entry;
duke@435 2836 StubRoutines::_atomic_cmpxchg_ptr_entry = StubRoutines::_atomic_cmpxchg_entry;
duke@435 2837 StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
duke@435 2838 StubRoutines::_atomic_add_ptr_entry = StubRoutines::_atomic_add_entry;
duke@435 2839 #endif // COMPILER2 !=> _LP64
duke@435 2840 }
duke@435 2841
duke@435 2842
duke@435 2843 void generate_all() {
duke@435 2844 // Generates all stubs and initializes the entry points
duke@435 2845
kvn@1077 2846 // Generate partial_subtype_check first here since its code depends on
kvn@1077 2847 // UseZeroBaseCompressedOops which is defined after heap initialization.
kvn@1077 2848 StubRoutines::Sparc::_partial_subtype_check = generate_partial_subtype_check();
duke@435 2849 // These entry points require SharedInfo::stack0 to be set up in non-core builds
duke@435 2850 StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError), false);
dcubed@451 2851 StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError), false);
duke@435 2852 StubRoutines::_throw_ArithmeticException_entry = generate_throw_exception("ArithmeticException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException), true);
duke@435 2853 StubRoutines::_throw_NullPointerException_entry = generate_throw_exception("NullPointerException throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
duke@435 2854 StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
duke@435 2855 StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError), false);
duke@435 2856
duke@435 2857 StubRoutines::_handler_for_unsafe_access_entry =
duke@435 2858 generate_handler_for_unsafe_access();
duke@435 2859
duke@435 2860 // support for verify_oop (must happen after universe_init)
duke@435 2861 StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop_subroutine();
duke@435 2862
duke@435 2863 // arraycopy stubs used by compilers
duke@435 2864 generate_arraycopy_stubs();
never@1609 2865
never@1609 2866 // Don't initialize the platform math functions since sparc
never@1609 2867 // doesn't have intrinsics for these operations.
duke@435 2868 }
duke@435 2869
duke@435 2870
duke@435 2871 public:
duke@435 2872 StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
duke@435 2873 // replace the standard masm with a special one:
duke@435 2874 _masm = new MacroAssembler(code);
duke@435 2875
duke@435 2876 _stub_count = !all ? 0x100 : 0x200;
duke@435 2877 if (all) {
duke@435 2878 generate_all();
duke@435 2879 } else {
duke@435 2880 generate_initial();
duke@435 2881 }
duke@435 2882
duke@435 2883 // make sure this stub is available for all local calls
duke@435 2884 if (_atomic_add_stub.is_unbound()) {
duke@435 2885 // generate a second time, if necessary
duke@435 2886 (void) generate_atomic_add();
duke@435 2887 }
duke@435 2888 }
duke@435 2889
duke@435 2890
duke@435 2891 private:
duke@435 2892 int _stub_count;
duke@435 2893 void stub_prolog(StubCodeDesc* cdesc) {
duke@435 2894 # ifdef ASSERT
duke@435 2895 // put extra information in the stub code, to make it more readable
duke@435 2896 #ifdef _LP64
duke@435 2897 // Write the high part of the address
duke@435 2898 // [RGV] Check if there is a dependency on the size of this prolog
duke@435 2899 __ emit_data((intptr_t)cdesc >> 32, relocInfo::none);
duke@435 2900 #endif
duke@435 2901 __ emit_data((intptr_t)cdesc, relocInfo::none);
duke@435 2902 __ emit_data(++_stub_count, relocInfo::none);
duke@435 2903 # endif
duke@435 2904 align(true);
duke@435 2905 }
duke@435 2906
duke@435 2907 void align(bool at_header = false) {
duke@435 2908 // %%%%% move this constant somewhere else
duke@435 2909 // UltraSPARC cache line size is 8 instructions:
duke@435 2910 const unsigned int icache_line_size = 32;
duke@435 2911 const unsigned int icache_half_line_size = 16;
duke@435 2912
duke@435 2913 if (at_header) {
duke@435 2914 while ((intptr_t)(__ pc()) % icache_line_size != 0) {
duke@435 2915 __ emit_data(0, relocInfo::none);
duke@435 2916 }
duke@435 2917 } else {
duke@435 2918 while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
duke@435 2919 __ nop();
duke@435 2920 }
duke@435 2921 }
duke@435 2922 }
duke@435 2923
duke@435 2924 }; // end class declaration
duke@435 2925
duke@435 2926
duke@435 2927 address StubGenerator::disjoint_byte_copy_entry = NULL;
duke@435 2928 address StubGenerator::disjoint_short_copy_entry = NULL;
duke@435 2929 address StubGenerator::disjoint_int_copy_entry = NULL;
duke@435 2930 address StubGenerator::disjoint_long_copy_entry = NULL;
duke@435 2931 address StubGenerator::disjoint_oop_copy_entry = NULL;
duke@435 2932
duke@435 2933 address StubGenerator::byte_copy_entry = NULL;
duke@435 2934 address StubGenerator::short_copy_entry = NULL;
duke@435 2935 address StubGenerator::int_copy_entry = NULL;
duke@435 2936 address StubGenerator::long_copy_entry = NULL;
duke@435 2937 address StubGenerator::oop_copy_entry = NULL;
duke@435 2938
duke@435 2939 address StubGenerator::checkcast_copy_entry = NULL;
duke@435 2940
duke@435 2941 void StubGenerator_generate(CodeBuffer* code, bool all) {
duke@435 2942 StubGenerator g(code, all);
duke@435 2943 }

mercurial