src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Tue, 09 Oct 2012 10:11:38 +0200

author
roland
date
Tue, 09 Oct 2012 10:11:38 +0200
changeset 4159
8e47bac5643a
parent 4106
7eca5de9e0b6
child 4162
94e9408dbf50
permissions
-rw-r--r--

7054512: Compress class pointers after perm gen removal
Summary: support of compress class pointers in the compilers.
Reviewed-by: kvn, twisti

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "c1/c1_Compilation.hpp"
    27 #include "c1/c1_LIRAssembler.hpp"
    28 #include "c1/c1_MacroAssembler.hpp"
    29 #include "c1/c1_Runtime1.hpp"
    30 #include "c1/c1_ValueStack.hpp"
    31 #include "ci/ciArrayKlass.hpp"
    32 #include "ci/ciInstance.hpp"
    33 #include "gc_interface/collectedHeap.hpp"
    34 #include "memory/barrierSet.hpp"
    35 #include "memory/cardTableModRefBS.hpp"
    36 #include "nativeInst_sparc.hpp"
    37 #include "oops/objArrayKlass.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    40 #define __ _masm->
    43 //------------------------------------------------------------
    46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
    47   if (opr->is_constant()) {
    48     LIR_Const* constant = opr->as_constant_ptr();
    49     switch (constant->type()) {
    50       case T_INT: {
    51         jint value = constant->as_jint();
    52         return Assembler::is_simm13(value);
    53       }
    55       default:
    56         return false;
    57     }
    58   }
    59   return false;
    60 }
    63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
    64   switch (op->code()) {
    65     case lir_null_check:
    66     return true;
    69     case lir_add:
    70     case lir_ushr:
    71     case lir_shr:
    72     case lir_shl:
    73       // integer shifts and adds are always one instruction
    74       return op->result_opr()->is_single_cpu();
    77     case lir_move: {
    78       LIR_Op1* op1 = op->as_Op1();
    79       LIR_Opr src = op1->in_opr();
    80       LIR_Opr dst = op1->result_opr();
    82       if (src == dst) {
    83         NEEDS_CLEANUP;
    84         // this works around a problem where moves with the same src and dst
    85         // end up in the delay slot and then the assembler swallows the mov
    86         // since it has no effect and then it complains because the delay slot
    87         // is empty.  returning false stops the optimizer from putting this in
    88         // the delay slot
    89         return false;
    90       }
    92       // don't put moves involving oops into the delay slot since the VerifyOops code
    93       // will make it much larger than a single instruction.
    94       if (VerifyOops) {
    95         return false;
    96       }
    98       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
    99           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
   100         return false;
   101       }
   103       if (UseCompressedOops) {
   104         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
   105         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
   106       }
   108       if (UseCompressedKlassPointers) {
   109         if (src->is_address() && !src->is_stack() && src->type() == T_ADDRESS &&
   110             src->as_address_ptr()->disp() == oopDesc::klass_offset_in_bytes()) return false;
   111       }
   113       if (dst->is_register()) {
   114         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
   115           return !PatchALot;
   116         } else if (src->is_single_stack()) {
   117           return true;
   118         }
   119       }
   121       if (src->is_register()) {
   122         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
   123           return !PatchALot;
   124         } else if (dst->is_single_stack()) {
   125           return true;
   126         }
   127       }
   129       if (dst->is_register() &&
   130           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
   131            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
   132         return true;
   133       }
   135       return false;
   136     }
   138     default:
   139       return false;
   140   }
   141   ShouldNotReachHere();
   142 }
   145 LIR_Opr LIR_Assembler::receiverOpr() {
   146   return FrameMap::O0_oop_opr;
   147 }
   150 LIR_Opr LIR_Assembler::osrBufferPointer() {
   151   return FrameMap::I0_opr;
   152 }
   155 int LIR_Assembler::initial_frame_size_in_bytes() {
   156   return in_bytes(frame_map()->framesize_in_bytes());
   157 }
   160 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
   161 // we fetch the class of the receiver (O0) and compare it with the cached class.
   162 // If they do not match we jump to slow case.
   163 int LIR_Assembler::check_icache() {
   164   int offset = __ offset();
   165   __ inline_cache_check(O0, G5_inline_cache_reg);
   166   return offset;
   167 }
   170 void LIR_Assembler::osr_entry() {
   171   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
   172   //
   173   //   1. Create a new compiled activation.
   174   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
   175   //      at the osr_bci; it is not initialized.
   176   //   3. Jump to the continuation address in compiled code to resume execution.
   178   // OSR entry point
   179   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   180   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   181   ValueStack* entry_state = osr_entry->end()->state();
   182   int number_of_locks = entry_state->locks_size();
   184   // Create a frame for the compiled activation.
   185   __ build_frame(initial_frame_size_in_bytes());
   187   // OSR buffer is
   188   //
   189   // locals[nlocals-1..0]
   190   // monitors[number_of_locks-1..0]
   191   //
   192   // locals is a direct copy of the interpreter frame so in the osr buffer
   193   // so first slot in the local array is the last local from the interpreter
   194   // and last slot is local[0] (receiver) from the interpreter
   195   //
   196   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   197   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   198   // in the interpreter frame (the method lock if a sync method)
   200   // Initialize monitors in the compiled activation.
   201   //   I0: pointer to osr buffer
   202   //
   203   // All other registers are dead at this point and the locals will be
   204   // copied into place by code emitted in the IR.
   206   Register OSR_buf = osrBufferPointer()->as_register();
   207   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   208     int monitor_offset = BytesPerWord * method()->max_locals() +
   209       (2 * BytesPerWord) * (number_of_locks - 1);
   210     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   211     // the OSR buffer using 2 word entries: first the lock and then
   212     // the oop.
   213     for (int i = 0; i < number_of_locks; i++) {
   214       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   215 #ifdef ASSERT
   216       // verify the interpreter's monitor has a non-null object
   217       {
   218         Label L;
   219         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   220         __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
   221         __ stop("locked object is NULL");
   222         __ bind(L);
   223       }
   224 #endif // ASSERT
   225       // Copy the lock field into the compiled activation.
   226       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
   227       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
   228       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
   229       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
   230     }
   231   }
   232 }
   235 // Optimized Library calls
   236 // This is the fast version of java.lang.String.compare; it has not
   237 // OSR-entry and therefore, we generate a slow version for OSR's
   238 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
   239   Register str0 = left->as_register();
   240   Register str1 = right->as_register();
   242   Label Ldone;
   244   Register result = dst->as_register();
   245   {
   246     // Get a pointer to the first character of string0 in tmp0
   247     //   and get string0.length() in str0
   248     // Get a pointer to the first character of string1 in tmp1
   249     //   and get string1.length() in str1
   250     // Also, get string0.length()-string1.length() in
   251     //   o7 and get the condition code set
   252     // Note: some instructions have been hoisted for better instruction scheduling
   254     Register tmp0 = L0;
   255     Register tmp1 = L1;
   256     Register tmp2 = L2;
   258     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
   259     if (java_lang_String::has_offset_field()) {
   260       int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   261       int  count_offset = java_lang_String:: count_offset_in_bytes();
   262       __ load_heap_oop(str0, value_offset, tmp0);
   263       __ ld(str0, offset_offset, tmp2);
   264       __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   265       __ ld(str0, count_offset, str0);
   266       __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   267     } else {
   268       __ load_heap_oop(str0, value_offset, tmp1);
   269       __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
   270       __ ld(tmp1, arrayOopDesc::length_offset_in_bytes(), str0);
   271     }
   273     // str1 may be null
   274     add_debug_info_for_null_check_here(info);
   276     if (java_lang_String::has_offset_field()) {
   277       int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
   278       int  count_offset = java_lang_String:: count_offset_in_bytes();
   279       __ load_heap_oop(str1, value_offset, tmp1);
   280       __ add(tmp0, tmp2, tmp0);
   282       __ ld(str1, offset_offset, tmp2);
   283       __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   284       __ ld(str1, count_offset, str1);
   285       __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
   286       __ add(tmp1, tmp2, tmp1);
   287     } else {
   288       __ load_heap_oop(str1, value_offset, tmp2);
   289       __ add(tmp2, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
   290       __ ld(tmp2, arrayOopDesc::length_offset_in_bytes(), str1);
   291     }
   292     __ subcc(str0, str1, O7);
   293   }
   295   {
   296     // Compute the minimum of the string lengths, scale it and store it in limit
   297     Register count0 = I0;
   298     Register count1 = I1;
   299     Register limit  = L3;
   301     Label Lskip;
   302     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
   303     __ br(Assembler::greater, true, Assembler::pt, Lskip);
   304     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
   305     __ bind(Lskip);
   307     // If either string is empty (or both of them) the result is the difference in lengths
   308     __ cmp(limit, 0);
   309     __ br(Assembler::equal, true, Assembler::pn, Ldone);
   310     __ delayed()->mov(O7, result);  // result is difference in lengths
   311   }
   313   {
   314     // Neither string is empty
   315     Label Lloop;
   317     Register base0 = L0;
   318     Register base1 = L1;
   319     Register chr0  = I0;
   320     Register chr1  = I1;
   321     Register limit = L3;
   323     // Shift base0 and base1 to the end of the arrays, negate limit
   324     __ add(base0, limit, base0);
   325     __ add(base1, limit, base1);
   326     __ neg(limit);  // limit = -min{string0.length(), string1.length()}
   328     __ lduh(base0, limit, chr0);
   329     __ bind(Lloop);
   330     __ lduh(base1, limit, chr1);
   331     __ subcc(chr0, chr1, chr0);
   332     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
   333     assert(chr0 == result, "result must be pre-placed");
   334     __ delayed()->inccc(limit, sizeof(jchar));
   335     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
   336     __ delayed()->lduh(base0, limit, chr0);
   337   }
   339   // If strings are equal up to min length, return the length difference.
   340   __ mov(O7, result);
   342   // Otherwise, return the difference between the first mismatched chars.
   343   __ bind(Ldone);
   344 }
   347 // --------------------------------------------------------------------------------------------
   349 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
   350   if (!GenerateSynchronizationCode) return;
   352   Register obj_reg = obj_opr->as_register();
   353   Register lock_reg = lock_opr->as_register();
   355   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
   356   Register reg = mon_addr.base();
   357   int offset = mon_addr.disp();
   358   // compute pointer to BasicLock
   359   if (mon_addr.is_simm13()) {
   360     __ add(reg, offset, lock_reg);
   361   }
   362   else {
   363     __ set(offset, lock_reg);
   364     __ add(reg, lock_reg, lock_reg);
   365   }
   366   // unlock object
   367   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
   368   // _slow_case_stubs->append(slow_case);
   369   // temporary fix: must be created after exceptionhandler, therefore as call stub
   370   _slow_case_stubs->append(slow_case);
   371   if (UseFastLocking) {
   372     // try inlined fast unlocking first, revert to slow locking if it fails
   373     // note: lock_reg points to the displaced header since the displaced header offset is 0!
   374     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
   375     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
   376   } else {
   377     // always do slow unlocking
   378     // note: the slow unlocking code could be inlined here, however if we use
   379     //       slow unlocking, speed doesn't matter anyway and this solution is
   380     //       simpler and requires less duplicated code - additionally, the
   381     //       slow unlocking code is the same in either case which simplifies
   382     //       debugging
   383     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
   384     __ delayed()->nop();
   385   }
   386   // done
   387   __ bind(*slow_case->continuation());
   388 }
   391 int LIR_Assembler::emit_exception_handler() {
   392   // if the last instruction is a call (typically to do a throw which
   393   // is coming at the end after block reordering) the return address
   394   // must still point into the code area in order to avoid assertion
   395   // failures when searching for the corresponding bci => add a nop
   396   // (was bug 5/14/1999 - gri)
   397   __ nop();
   399   // generate code for exception handler
   400   ciMethod* method = compilation()->method();
   402   address handler_base = __ start_a_stub(exception_handler_size);
   404   if (handler_base == NULL) {
   405     // not enough space left for the handler
   406     bailout("exception handler overflow");
   407     return -1;
   408   }
   410   int offset = code_offset();
   412   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
   413   __ delayed()->nop();
   414   __ should_not_reach_here();
   415   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
   416   __ end_a_stub();
   418   return offset;
   419 }
   422 // Emit the code to remove the frame from the stack in the exception
   423 // unwind path.
   424 int LIR_Assembler::emit_unwind_handler() {
   425 #ifndef PRODUCT
   426   if (CommentedAssembly) {
   427     _masm->block_comment("Unwind handler");
   428   }
   429 #endif
   431   int offset = code_offset();
   433   // Fetch the exception from TLS and clear out exception related thread state
   434   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
   435   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
   436   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
   438   __ bind(_unwind_handler_entry);
   439   __ verify_not_null_oop(O0);
   440   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   441     __ mov(O0, I0);  // Preserve the exception
   442   }
   444   // Preform needed unlocking
   445   MonitorExitStub* stub = NULL;
   446   if (method()->is_synchronized()) {
   447     monitor_address(0, FrameMap::I1_opr);
   448     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
   449     __ unlock_object(I3, I2, I1, *stub->entry());
   450     __ bind(*stub->continuation());
   451   }
   453   if (compilation()->env()->dtrace_method_probes()) {
   454     __ mov(G2_thread, O0);
   455     __ save_thread(I1); // need to preserve thread in G2 across
   456                         // runtime call
   457     metadata2reg(method()->constant_encoding(), O1);
   458     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
   459     __ delayed()->nop();
   460     __ restore_thread(I1);
   461   }
   463   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   464     __ mov(I0, O0);  // Restore the exception
   465   }
   467   // dispatch to the unwind logic
   468   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
   469   __ delayed()->nop();
   471   // Emit the slow path assembly
   472   if (stub != NULL) {
   473     stub->emit_code(this);
   474   }
   476   return offset;
   477 }
   480 int LIR_Assembler::emit_deopt_handler() {
   481   // if the last instruction is a call (typically to do a throw which
   482   // is coming at the end after block reordering) the return address
   483   // must still point into the code area in order to avoid assertion
   484   // failures when searching for the corresponding bci => add a nop
   485   // (was bug 5/14/1999 - gri)
   486   __ nop();
   488   // generate code for deopt handler
   489   ciMethod* method = compilation()->method();
   490   address handler_base = __ start_a_stub(deopt_handler_size);
   491   if (handler_base == NULL) {
   492     // not enough space left for the handler
   493     bailout("deopt handler overflow");
   494     return -1;
   495   }
   497   int offset = code_offset();
   498   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
   499   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
   500   __ delayed()->nop();
   501   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
   502   __ end_a_stub();
   504   return offset;
   505 }
   508 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
   509   if (o == NULL) {
   510     __ set(NULL_WORD, reg);
   511   } else {
   512     int oop_index = __ oop_recorder()->find_index(o);
   513     assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
   514     RelocationHolder rspec = oop_Relocation::spec(oop_index);
   515     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
   516   }
   517 }
   520 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
   521   // Allocate a new index in table to hold the object once it's been patched
   522   int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
   523   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_mirror_id, oop_index);
   525   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
   526   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
   527   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   528   // NULL will be dynamically patched later and the patched value may be large.  We must
   529   // therefore generate the sethi/add as a placeholders
   530   __ patchable_set(addrlit, reg);
   532   patching_epilog(patch, lir_patch_normal, reg, info);
   533 }
   536 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
   537   __ set_metadata_constant(o, reg);
   538 }
   540 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
   541   // Allocate a new index in table to hold the klass once it's been patched
   542   int index = __ oop_recorder()->allocate_metadata_index(NULL);
   543   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
   544   AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
   545   assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
   546   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
   547   // NULL will be dynamically patched later and the patched value may be large.  We must
   548   // therefore generate the sethi/add as a placeholders
   549   __ patchable_set(addrlit, reg);
   551   patching_epilog(patch, lir_patch_normal, reg, info);
   552 }
   554 void LIR_Assembler::emit_op3(LIR_Op3* op) {
   555   Register Rdividend = op->in_opr1()->as_register();
   556   Register Rdivisor  = noreg;
   557   Register Rscratch  = op->in_opr3()->as_register();
   558   Register Rresult   = op->result_opr()->as_register();
   559   int divisor = -1;
   561   if (op->in_opr2()->is_register()) {
   562     Rdivisor = op->in_opr2()->as_register();
   563   } else {
   564     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
   565     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   566   }
   568   assert(Rdividend != Rscratch, "");
   569   assert(Rdivisor  != Rscratch, "");
   570   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
   572   if (Rdivisor == noreg && is_power_of_2(divisor)) {
   573     // convert division by a power of two into some shifts and logical operations
   574     if (op->code() == lir_idiv) {
   575       if (divisor == 2) {
   576         __ srl(Rdividend, 31, Rscratch);
   577       } else {
   578         __ sra(Rdividend, 31, Rscratch);
   579         __ and3(Rscratch, divisor - 1, Rscratch);
   580       }
   581       __ add(Rdividend, Rscratch, Rscratch);
   582       __ sra(Rscratch, log2_intptr(divisor), Rresult);
   583       return;
   584     } else {
   585       if (divisor == 2) {
   586         __ srl(Rdividend, 31, Rscratch);
   587       } else {
   588         __ sra(Rdividend, 31, Rscratch);
   589         __ and3(Rscratch, divisor - 1,Rscratch);
   590       }
   591       __ add(Rdividend, Rscratch, Rscratch);
   592       __ andn(Rscratch, divisor - 1,Rscratch);
   593       __ sub(Rdividend, Rscratch, Rresult);
   594       return;
   595     }
   596   }
   598   __ sra(Rdividend, 31, Rscratch);
   599   __ wry(Rscratch);
   600   if (!VM_Version::v9_instructions_work()) {
   601     // v9 doesn't require these nops
   602     __ nop();
   603     __ nop();
   604     __ nop();
   605     __ nop();
   606   }
   608   add_debug_info_for_div0_here(op->info());
   610   if (Rdivisor != noreg) {
   611     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   612   } else {
   613     assert(Assembler::is_simm13(divisor), "can only handle simm13");
   614     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
   615   }
   617   Label skip;
   618   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
   619   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
   620   __ bind(skip);
   622   if (op->code() == lir_irem) {
   623     if (Rdivisor != noreg) {
   624       __ smul(Rscratch, Rdivisor, Rscratch);
   625     } else {
   626       __ smul(Rscratch, divisor, Rscratch);
   627     }
   628     __ sub(Rdividend, Rscratch, Rresult);
   629   }
   630 }
   633 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
   634 #ifdef ASSERT
   635   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
   636   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
   637   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
   638 #endif
   639   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
   641   if (op->cond() == lir_cond_always) {
   642     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
   643   } else if (op->code() == lir_cond_float_branch) {
   644     assert(op->ublock() != NULL, "must have unordered successor");
   645     bool is_unordered = (op->ublock() == op->block());
   646     Assembler::Condition acond;
   647     switch (op->cond()) {
   648       case lir_cond_equal:         acond = Assembler::f_equal;    break;
   649       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
   650       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
   651       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
   652       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
   653       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
   654       default :                         ShouldNotReachHere();
   655     };
   657     if (!VM_Version::v9_instructions_work()) {
   658       __ nop();
   659     }
   660     __ fb( acond, false, Assembler::pn, *(op->label()));
   661   } else {
   662     assert (op->code() == lir_branch, "just checking");
   664     Assembler::Condition acond;
   665     switch (op->cond()) {
   666       case lir_cond_equal:        acond = Assembler::equal;                break;
   667       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
   668       case lir_cond_less:         acond = Assembler::less;                 break;
   669       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
   670       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
   671       case lir_cond_greater:      acond = Assembler::greater;              break;
   672       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
   673       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
   674       default:                         ShouldNotReachHere();
   675     };
   677     // sparc has different condition codes for testing 32-bit
   678     // vs. 64-bit values.  We could always test xcc is we could
   679     // guarantee that 32-bit loads always sign extended but that isn't
   680     // true and since sign extension isn't free, it would impose a
   681     // slight cost.
   682 #ifdef _LP64
   683     if  (op->type() == T_INT) {
   684       __ br(acond, false, Assembler::pn, *(op->label()));
   685     } else
   686 #endif
   687       __ brx(acond, false, Assembler::pn, *(op->label()));
   688   }
   689   // The peephole pass fills the delay slot
   690 }
   693 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
   694   Bytecodes::Code code = op->bytecode();
   695   LIR_Opr dst = op->result_opr();
   697   switch(code) {
   698     case Bytecodes::_i2l: {
   699       Register rlo  = dst->as_register_lo();
   700       Register rhi  = dst->as_register_hi();
   701       Register rval = op->in_opr()->as_register();
   702 #ifdef _LP64
   703       __ sra(rval, 0, rlo);
   704 #else
   705       __ mov(rval, rlo);
   706       __ sra(rval, BitsPerInt-1, rhi);
   707 #endif
   708       break;
   709     }
   710     case Bytecodes::_i2d:
   711     case Bytecodes::_i2f: {
   712       bool is_double = (code == Bytecodes::_i2d);
   713       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   714       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   715       FloatRegister rsrc = op->in_opr()->as_float_reg();
   716       if (rsrc != rdst) {
   717         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
   718       }
   719       __ fitof(w, rdst, rdst);
   720       break;
   721     }
   722     case Bytecodes::_f2i:{
   723       FloatRegister rsrc = op->in_opr()->as_float_reg();
   724       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
   725       Label L;
   726       // result must be 0 if value is NaN; test by comparing value to itself
   727       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
   728       if (!VM_Version::v9_instructions_work()) {
   729         __ nop();
   730       }
   731       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
   732       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
   733       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
   734       // move integer result from float register to int register
   735       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
   736       __ bind (L);
   737       break;
   738     }
   739     case Bytecodes::_l2i: {
   740       Register rlo  = op->in_opr()->as_register_lo();
   741       Register rhi  = op->in_opr()->as_register_hi();
   742       Register rdst = dst->as_register();
   743 #ifdef _LP64
   744       __ sra(rlo, 0, rdst);
   745 #else
   746       __ mov(rlo, rdst);
   747 #endif
   748       break;
   749     }
   750     case Bytecodes::_d2f:
   751     case Bytecodes::_f2d: {
   752       bool is_double = (code == Bytecodes::_f2d);
   753       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
   754       LIR_Opr val = op->in_opr();
   755       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
   756       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
   757       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
   758       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
   759       __ ftof(vw, dw, rval, rdst);
   760       break;
   761     }
   762     case Bytecodes::_i2s:
   763     case Bytecodes::_i2b: {
   764       Register rval = op->in_opr()->as_register();
   765       Register rdst = dst->as_register();
   766       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
   767       __ sll (rval, shift, rdst);
   768       __ sra (rdst, shift, rdst);
   769       break;
   770     }
   771     case Bytecodes::_i2c: {
   772       Register rval = op->in_opr()->as_register();
   773       Register rdst = dst->as_register();
   774       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
   775       __ sll (rval, shift, rdst);
   776       __ srl (rdst, shift, rdst);
   777       break;
   778     }
   780     default: ShouldNotReachHere();
   781   }
   782 }
   785 void LIR_Assembler::align_call(LIR_Code) {
   786   // do nothing since all instructions are word aligned on sparc
   787 }
   790 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
   791   __ call(op->addr(), rtype);
   792   // The peephole pass fills the delay slot, add_call_info is done in
   793   // LIR_Assembler::emit_delay.
   794 }
   797 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
   798   __ ic_call(op->addr(), false);
   799   // The peephole pass fills the delay slot, add_call_info is done in
   800   // LIR_Assembler::emit_delay.
   801 }
   804 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
   805   add_debug_info_for_null_check_here(op->info());
   806   __ load_klass(O0, G3_scratch);
   807   if (Assembler::is_simm13(op->vtable_offset())) {
   808     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
   809   } else {
   810     // This will generate 2 instructions
   811     __ set(op->vtable_offset(), G5_method);
   812     // ld_ptr, set_hi, set
   813     __ ld_ptr(G3_scratch, G5_method, G5_method);
   814   }
   815   __ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
   816   __ callr(G3_scratch, G0);
   817   // the peephole pass fills the delay slot
   818 }
   820 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
   821   int store_offset;
   822   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   823     assert(!unaligned, "can't handle this");
   824     // for offsets larger than a simm13 we setup the offset in O7
   825     __ set(offset, O7);
   826     store_offset = store(from_reg, base, O7, type, wide);
   827   } else {
   828     if (type == T_ARRAY || type == T_OBJECT) {
   829       __ verify_oop(from_reg->as_register());
   830     }
   831     store_offset = code_offset();
   832     switch (type) {
   833       case T_BOOLEAN: // fall through
   834       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
   835       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
   836       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
   837       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
   838       case T_LONG  :
   839 #ifdef _LP64
   840         if (unaligned || PatchALot) {
   841           __ srax(from_reg->as_register_lo(), 32, O7);
   842           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   843           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
   844         } else {
   845           __ stx(from_reg->as_register_lo(), base, offset);
   846         }
   847 #else
   848         assert(Assembler::is_simm13(offset + 4), "must be");
   849         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
   850         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
   851 #endif
   852         break;
   853       case T_ADDRESS:
   854       case T_METADATA:
   855         __ st_ptr(from_reg->as_register(), base, offset);
   856         break;
   857       case T_ARRAY : // fall through
   858       case T_OBJECT:
   859         {
   860           if (UseCompressedOops && !wide) {
   861             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   862             store_offset = code_offset();
   863             __ stw(G3_scratch, base, offset);
   864           } else {
   865             __ st_ptr(from_reg->as_register(), base, offset);
   866           }
   867           break;
   868         }
   870       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
   871       case T_DOUBLE:
   872         {
   873           FloatRegister reg = from_reg->as_double_reg();
   874           // split unaligned stores
   875           if (unaligned || PatchALot) {
   876             assert(Assembler::is_simm13(offset + 4), "must be");
   877             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
   878             __ stf(FloatRegisterImpl::S, reg,              base, offset);
   879           } else {
   880             __ stf(FloatRegisterImpl::D, reg, base, offset);
   881           }
   882           break;
   883         }
   884       default      : ShouldNotReachHere();
   885     }
   886   }
   887   return store_offset;
   888 }
   891 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
   892   if (type == T_ARRAY || type == T_OBJECT) {
   893     __ verify_oop(from_reg->as_register());
   894   }
   895   int store_offset = code_offset();
   896   switch (type) {
   897     case T_BOOLEAN: // fall through
   898     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
   899     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
   900     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
   901     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
   902     case T_LONG  :
   903 #ifdef _LP64
   904       __ stx(from_reg->as_register_lo(), base, disp);
   905 #else
   906       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
   907       __ std(from_reg->as_register_hi(), base, disp);
   908 #endif
   909       break;
   910     case T_ADDRESS:
   911       __ st_ptr(from_reg->as_register(), base, disp);
   912       break;
   913     case T_ARRAY : // fall through
   914     case T_OBJECT:
   915       {
   916         if (UseCompressedOops && !wide) {
   917           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
   918           store_offset = code_offset();
   919           __ stw(G3_scratch, base, disp);
   920         } else {
   921           __ st_ptr(from_reg->as_register(), base, disp);
   922         }
   923         break;
   924       }
   925     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
   926     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
   927     default      : ShouldNotReachHere();
   928   }
   929   return store_offset;
   930 }
   933 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
   934   int load_offset;
   935   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
   936     assert(base != O7, "destroying register");
   937     assert(!unaligned, "can't handle this");
   938     // for offsets larger than a simm13 we setup the offset in O7
   939     __ set(offset, O7);
   940     load_offset = load(base, O7, to_reg, type, wide);
   941   } else {
   942     load_offset = code_offset();
   943     switch(type) {
   944       case T_BOOLEAN: // fall through
   945       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
   946       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
   947       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
   948       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
   949       case T_LONG  :
   950         if (!unaligned) {
   951 #ifdef _LP64
   952           __ ldx(base, offset, to_reg->as_register_lo());
   953 #else
   954           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
   955                  "must be sequential");
   956           __ ldd(base, offset, to_reg->as_register_hi());
   957 #endif
   958         } else {
   959 #ifdef _LP64
   960           assert(base != to_reg->as_register_lo(), "can't handle this");
   961           assert(O7 != to_reg->as_register_lo(), "can't handle this");
   962           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
   963           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
   964           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
   965           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
   966 #else
   967           if (base == to_reg->as_register_lo()) {
   968             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   969             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   970           } else {
   971             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
   972             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
   973           }
   974 #endif
   975         }
   976         break;
   977       case T_METADATA:  __ ld_ptr(base, offset, to_reg->as_register()); break;
   978       case T_ADDRESS:
   979         if (offset == oopDesc::klass_offset_in_bytes()) {
   980           __ lduw(base, offset, to_reg->as_register());
   981 #ifdef _LP64
   982           if (UseCompressedKlassPointers) {
   983             __ decode_klass_not_null(to_reg->as_register());
   984           }
   985 #endif
   986         } else {
   987           __ ld_ptr(base, offset, to_reg->as_register());
   988         }
   989         break;
   990       case T_ARRAY : // fall through
   991       case T_OBJECT:
   992         {
   993           if (UseCompressedOops && !wide) {
   994             __ lduw(base, offset, to_reg->as_register());
   995             __ decode_heap_oop(to_reg->as_register());
   996           } else {
   997             __ ld_ptr(base, offset, to_reg->as_register());
   998           }
   999           break;
  1001       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
  1002       case T_DOUBLE:
  1004           FloatRegister reg = to_reg->as_double_reg();
  1005           // split unaligned loads
  1006           if (unaligned || PatchALot) {
  1007             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
  1008             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
  1009           } else {
  1010             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
  1012           break;
  1014       default      : ShouldNotReachHere();
  1016     if (type == T_ARRAY || type == T_OBJECT) {
  1017       __ verify_oop(to_reg->as_register());
  1020   return load_offset;
  1024 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
  1025   int load_offset = code_offset();
  1026   switch(type) {
  1027     case T_BOOLEAN: // fall through
  1028     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
  1029     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
  1030     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
  1031     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
  1032     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
  1033     case T_ARRAY : // fall through
  1034     case T_OBJECT:
  1036           if (UseCompressedOops && !wide) {
  1037             __ lduw(base, disp, to_reg->as_register());
  1038             __ decode_heap_oop(to_reg->as_register());
  1039           } else {
  1040             __ ld_ptr(base, disp, to_reg->as_register());
  1042           break;
  1044     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
  1045     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
  1046     case T_LONG  :
  1047 #ifdef _LP64
  1048       __ ldx(base, disp, to_reg->as_register_lo());
  1049 #else
  1050       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
  1051              "must be sequential");
  1052       __ ldd(base, disp, to_reg->as_register_hi());
  1053 #endif
  1054       break;
  1055     default      : ShouldNotReachHere();
  1057   if (type == T_ARRAY || type == T_OBJECT) {
  1058     __ verify_oop(to_reg->as_register());
  1060   return load_offset;
  1063 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
  1064   LIR_Const* c = src->as_constant_ptr();
  1065   switch (c->type()) {
  1066     case T_INT:
  1067     case T_FLOAT: {
  1068       Register src_reg = O7;
  1069       int value = c->as_jint_bits();
  1070       if (value == 0) {
  1071         src_reg = G0;
  1072       } else {
  1073         __ set(value, O7);
  1075       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1076       __ stw(src_reg, addr.base(), addr.disp());
  1077       break;
  1079     case T_ADDRESS: {
  1080       Register src_reg = O7;
  1081       int value = c->as_jint_bits();
  1082       if (value == 0) {
  1083         src_reg = G0;
  1084       } else {
  1085         __ set(value, O7);
  1087       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1088       __ st_ptr(src_reg, addr.base(), addr.disp());
  1089       break;
  1091     case T_OBJECT: {
  1092       Register src_reg = O7;
  1093       jobject2reg(c->as_jobject(), src_reg);
  1094       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1095       __ st_ptr(src_reg, addr.base(), addr.disp());
  1096       break;
  1098     case T_LONG:
  1099     case T_DOUBLE: {
  1100       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1102       Register tmp = O7;
  1103       int value_lo = c->as_jint_lo_bits();
  1104       if (value_lo == 0) {
  1105         tmp = G0;
  1106       } else {
  1107         __ set(value_lo, O7);
  1109       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
  1110       int value_hi = c->as_jint_hi_bits();
  1111       if (value_hi == 0) {
  1112         tmp = G0;
  1113       } else {
  1114         __ set(value_hi, O7);
  1116       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
  1117       break;
  1119     default:
  1120       Unimplemented();
  1125 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
  1126   LIR_Const* c = src->as_constant_ptr();
  1127   LIR_Address* addr     = dest->as_address_ptr();
  1128   Register base = addr->base()->as_pointer_register();
  1129   int offset = -1;
  1131   switch (c->type()) {
  1132     case T_INT:
  1133     case T_FLOAT:
  1134     case T_ADDRESS: {
  1135       LIR_Opr tmp = FrameMap::O7_opr;
  1136       int value = c->as_jint_bits();
  1137       if (value == 0) {
  1138         tmp = FrameMap::G0_opr;
  1139       } else if (Assembler::is_simm13(value)) {
  1140         __ set(value, O7);
  1142       if (addr->index()->is_valid()) {
  1143         assert(addr->disp() == 0, "must be zero");
  1144         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1145       } else {
  1146         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1147         offset = store(tmp, base, addr->disp(), type, wide, false);
  1149       break;
  1151     case T_LONG:
  1152     case T_DOUBLE: {
  1153       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
  1154       assert(Assembler::is_simm13(addr->disp()) &&
  1155              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
  1157       LIR_Opr tmp = FrameMap::O7_opr;
  1158       int value_lo = c->as_jint_lo_bits();
  1159       if (value_lo == 0) {
  1160         tmp = FrameMap::G0_opr;
  1161       } else {
  1162         __ set(value_lo, O7);
  1164       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
  1165       int value_hi = c->as_jint_hi_bits();
  1166       if (value_hi == 0) {
  1167         tmp = FrameMap::G0_opr;
  1168       } else {
  1169         __ set(value_hi, O7);
  1171       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
  1172       break;
  1174     case T_OBJECT: {
  1175       jobject obj = c->as_jobject();
  1176       LIR_Opr tmp;
  1177       if (obj == NULL) {
  1178         tmp = FrameMap::G0_opr;
  1179       } else {
  1180         tmp = FrameMap::O7_opr;
  1181         jobject2reg(c->as_jobject(), O7);
  1183       // handle either reg+reg or reg+disp address
  1184       if (addr->index()->is_valid()) {
  1185         assert(addr->disp() == 0, "must be zero");
  1186         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
  1187       } else {
  1188         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
  1189         offset = store(tmp, base, addr->disp(), type, wide, false);
  1192       break;
  1194     default:
  1195       Unimplemented();
  1197   if (info != NULL) {
  1198     assert(offset != -1, "offset should've been set");
  1199     add_debug_info_for_null_check(offset, info);
  1204 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
  1205   LIR_Const* c = src->as_constant_ptr();
  1206   LIR_Opr to_reg = dest;
  1208   switch (c->type()) {
  1209     case T_INT:
  1210     case T_ADDRESS:
  1212         jint con = c->as_jint();
  1213         if (to_reg->is_single_cpu()) {
  1214           assert(patch_code == lir_patch_none, "no patching handled here");
  1215           __ set(con, to_reg->as_register());
  1216         } else {
  1217           ShouldNotReachHere();
  1218           assert(to_reg->is_single_fpu(), "wrong register kind");
  1220           __ set(con, O7);
  1221           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
  1222           __ st(O7, temp_slot);
  1223           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
  1226       break;
  1228     case T_LONG:
  1230         jlong con = c->as_jlong();
  1232         if (to_reg->is_double_cpu()) {
  1233 #ifdef _LP64
  1234           __ set(con,  to_reg->as_register_lo());
  1235 #else
  1236           __ set(low(con),  to_reg->as_register_lo());
  1237           __ set(high(con), to_reg->as_register_hi());
  1238 #endif
  1239 #ifdef _LP64
  1240         } else if (to_reg->is_single_cpu()) {
  1241           __ set(con, to_reg->as_register());
  1242 #endif
  1243         } else {
  1244           ShouldNotReachHere();
  1245           assert(to_reg->is_double_fpu(), "wrong register kind");
  1246           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
  1247           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
  1248           __ set(low(con),  O7);
  1249           __ st(O7, temp_slot_lo);
  1250           __ set(high(con), O7);
  1251           __ st(O7, temp_slot_hi);
  1252           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
  1255       break;
  1257     case T_OBJECT:
  1259         if (patch_code == lir_patch_none) {
  1260           jobject2reg(c->as_jobject(), to_reg->as_register());
  1261         } else {
  1262           jobject2reg_with_patching(to_reg->as_register(), info);
  1265       break;
  1267     case T_METADATA:
  1269         if (patch_code == lir_patch_none) {
  1270           metadata2reg(c->as_metadata(), to_reg->as_register());
  1271         } else {
  1272           klass2reg_with_patching(to_reg->as_register(), info);
  1275       break;
  1277     case T_FLOAT:
  1279         address const_addr = __ float_constant(c->as_jfloat());
  1280         if (const_addr == NULL) {
  1281           bailout("const section overflow");
  1282           break;
  1284         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1285         AddressLiteral const_addrlit(const_addr, rspec);
  1286         if (to_reg->is_single_fpu()) {
  1287           __ patchable_sethi(const_addrlit, O7);
  1288           __ relocate(rspec);
  1289           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
  1291         } else {
  1292           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
  1294           __ set(const_addrlit, O7);
  1295           __ ld(O7, 0, to_reg->as_register());
  1298       break;
  1300     case T_DOUBLE:
  1302         address const_addr = __ double_constant(c->as_jdouble());
  1303         if (const_addr == NULL) {
  1304           bailout("const section overflow");
  1305           break;
  1307         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
  1309         if (to_reg->is_double_fpu()) {
  1310           AddressLiteral const_addrlit(const_addr, rspec);
  1311           __ patchable_sethi(const_addrlit, O7);
  1312           __ relocate(rspec);
  1313           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
  1314         } else {
  1315           assert(to_reg->is_double_cpu(), "Must be a long register.");
  1316 #ifdef _LP64
  1317           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
  1318 #else
  1319           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
  1320           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
  1321 #endif
  1325       break;
  1327     default:
  1328       ShouldNotReachHere();
  1332 Address LIR_Assembler::as_Address(LIR_Address* addr) {
  1333   Register reg = addr->base()->as_register();
  1334   LIR_Opr index = addr->index();
  1335   if (index->is_illegal()) {
  1336     return Address(reg, addr->disp());
  1337   } else {
  1338     assert (addr->disp() == 0, "unsupported address mode");
  1339     return Address(reg, index->as_pointer_register());
  1344 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1345   switch (type) {
  1346     case T_INT:
  1347     case T_FLOAT: {
  1348       Register tmp = O7;
  1349       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1350       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1351       __ lduw(from.base(), from.disp(), tmp);
  1352       __ stw(tmp, to.base(), to.disp());
  1353       break;
  1355     case T_OBJECT: {
  1356       Register tmp = O7;
  1357       Address from = frame_map()->address_for_slot(src->single_stack_ix());
  1358       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
  1359       __ ld_ptr(from.base(), from.disp(), tmp);
  1360       __ st_ptr(tmp, to.base(), to.disp());
  1361       break;
  1363     case T_LONG:
  1364     case T_DOUBLE: {
  1365       Register tmp = O7;
  1366       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
  1367       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
  1368       __ lduw(from.base(), from.disp(), tmp);
  1369       __ stw(tmp, to.base(), to.disp());
  1370       __ lduw(from.base(), from.disp() + 4, tmp);
  1371       __ stw(tmp, to.base(), to.disp() + 4);
  1372       break;
  1375     default:
  1376       ShouldNotReachHere();
  1381 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
  1382   Address base = as_Address(addr);
  1383   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
  1387 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
  1388   Address base = as_Address(addr);
  1389   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
  1393 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
  1394                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
  1396   assert(type != T_METADATA, "load of metadata ptr not supported");
  1397   LIR_Address* addr = src_opr->as_address_ptr();
  1398   LIR_Opr to_reg = dest;
  1400   Register src = addr->base()->as_pointer_register();
  1401   Register disp_reg = noreg;
  1402   int disp_value = addr->disp();
  1403   bool needs_patching = (patch_code != lir_patch_none);
  1405   if (addr->base()->type() == T_OBJECT) {
  1406     __ verify_oop(src);
  1409   PatchingStub* patch = NULL;
  1410   if (needs_patching) {
  1411     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1412     assert(!to_reg->is_double_cpu() ||
  1413            patch_code == lir_patch_none ||
  1414            patch_code == lir_patch_normal, "patching doesn't match register");
  1417   if (addr->index()->is_illegal()) {
  1418     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1419       if (needs_patching) {
  1420         __ patchable_set(0, O7);
  1421       } else {
  1422         __ set(disp_value, O7);
  1424       disp_reg = O7;
  1426   } else if (unaligned || PatchALot) {
  1427     __ add(src, addr->index()->as_register(), O7);
  1428     src = O7;
  1429   } else {
  1430     disp_reg = addr->index()->as_pointer_register();
  1431     assert(disp_value == 0, "can't handle 3 operand addresses");
  1434   // remember the offset of the load.  The patching_epilog must be done
  1435   // before the call to add_debug_info, otherwise the PcDescs don't get
  1436   // entered in increasing order.
  1437   int offset = code_offset();
  1439   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1440   if (disp_reg == noreg) {
  1441     offset = load(src, disp_value, to_reg, type, wide, unaligned);
  1442   } else {
  1443     assert(!unaligned, "can't handle this");
  1444     offset = load(src, disp_reg, to_reg, type, wide);
  1447   if (patch != NULL) {
  1448     patching_epilog(patch, patch_code, src, info);
  1450   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1454 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1455   LIR_Address* addr = src->as_address_ptr();
  1456   Address from_addr = as_Address(addr);
  1458   if (VM_Version::has_v9()) {
  1459     __ prefetch(from_addr, Assembler::severalReads);
  1464 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1465   LIR_Address* addr = src->as_address_ptr();
  1466   Address from_addr = as_Address(addr);
  1468   if (VM_Version::has_v9()) {
  1469     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
  1474 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1475   Address addr;
  1476   if (src->is_single_word()) {
  1477     addr = frame_map()->address_for_slot(src->single_stack_ix());
  1478   } else if (src->is_double_word())  {
  1479     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
  1482   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1483   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
  1487 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
  1488   Address addr;
  1489   if (dest->is_single_word()) {
  1490     addr = frame_map()->address_for_slot(dest->single_stack_ix());
  1491   } else if (dest->is_double_word())  {
  1492     addr = frame_map()->address_for_slot(dest->double_stack_ix());
  1494   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
  1495   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
  1499 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
  1500   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
  1501     if (from_reg->is_double_fpu()) {
  1502       // double to double moves
  1503       assert(to_reg->is_double_fpu(), "should match");
  1504       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
  1505     } else {
  1506       // float to float moves
  1507       assert(to_reg->is_single_fpu(), "should match");
  1508       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
  1510   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
  1511     if (from_reg->is_double_cpu()) {
  1512 #ifdef _LP64
  1513       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
  1514 #else
  1515       assert(to_reg->is_double_cpu() &&
  1516              from_reg->as_register_hi() != to_reg->as_register_lo() &&
  1517              from_reg->as_register_lo() != to_reg->as_register_hi(),
  1518              "should both be long and not overlap");
  1519       // long to long moves
  1520       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
  1521       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
  1522 #endif
  1523 #ifdef _LP64
  1524     } else if (to_reg->is_double_cpu()) {
  1525       // int to int moves
  1526       __ mov(from_reg->as_register(), to_reg->as_register_lo());
  1527 #endif
  1528     } else {
  1529       // int to int moves
  1530       __ mov(from_reg->as_register(), to_reg->as_register());
  1532   } else {
  1533     ShouldNotReachHere();
  1535   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
  1536     __ verify_oop(to_reg->as_register());
  1541 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
  1542                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
  1543                             bool wide, bool unaligned) {
  1544   assert(type != T_METADATA, "store of metadata ptr not supported");
  1545   LIR_Address* addr = dest->as_address_ptr();
  1547   Register src = addr->base()->as_pointer_register();
  1548   Register disp_reg = noreg;
  1549   int disp_value = addr->disp();
  1550   bool needs_patching = (patch_code != lir_patch_none);
  1552   if (addr->base()->is_oop_register()) {
  1553     __ verify_oop(src);
  1556   PatchingStub* patch = NULL;
  1557   if (needs_patching) {
  1558     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1559     assert(!from_reg->is_double_cpu() ||
  1560            patch_code == lir_patch_none ||
  1561            patch_code == lir_patch_normal, "patching doesn't match register");
  1564   if (addr->index()->is_illegal()) {
  1565     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
  1566       if (needs_patching) {
  1567         __ patchable_set(0, O7);
  1568       } else {
  1569         __ set(disp_value, O7);
  1571       disp_reg = O7;
  1573   } else if (unaligned || PatchALot) {
  1574     __ add(src, addr->index()->as_register(), O7);
  1575     src = O7;
  1576   } else {
  1577     disp_reg = addr->index()->as_pointer_register();
  1578     assert(disp_value == 0, "can't handle 3 operand addresses");
  1581   // remember the offset of the store.  The patching_epilog must be done
  1582   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
  1583   // entered in increasing order.
  1584   int offset;
  1586   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
  1587   if (disp_reg == noreg) {
  1588     offset = store(from_reg, src, disp_value, type, wide, unaligned);
  1589   } else {
  1590     assert(!unaligned, "can't handle this");
  1591     offset = store(from_reg, src, disp_reg, type, wide);
  1594   if (patch != NULL) {
  1595     patching_epilog(patch, patch_code, src, info);
  1598   if (info != NULL) add_debug_info_for_null_check(offset, info);
  1602 void LIR_Assembler::return_op(LIR_Opr result) {
  1603   // the poll may need a register so just pick one that isn't the return register
  1604 #if defined(TIERED) && !defined(_LP64)
  1605   if (result->type_field() == LIR_OprDesc::long_type) {
  1606     // Must move the result to G1
  1607     // Must leave proper result in O0,O1 and G1 (TIERED only)
  1608     __ sllx(I0, 32, G1);          // Shift bits into high G1
  1609     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
  1610     __ or3 (I1, G1, G1);          // OR 64 bits into G1
  1611 #ifdef ASSERT
  1612     // mangle it so any problems will show up
  1613     __ set(0xdeadbeef, I0);
  1614     __ set(0xdeadbeef, I1);
  1615 #endif
  1617 #endif // TIERED
  1618   __ set((intptr_t)os::get_polling_page(), L0);
  1619   __ relocate(relocInfo::poll_return_type);
  1620   __ ld_ptr(L0, 0, G0);
  1621   __ ret();
  1622   __ delayed()->restore();
  1626 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
  1627   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
  1628   if (info != NULL) {
  1629     add_debug_info_for_branch(info);
  1630   } else {
  1631     __ relocate(relocInfo::poll_type);
  1634   int offset = __ offset();
  1635   __ ld_ptr(tmp->as_register(), 0, G0);
  1637   return offset;
  1641 void LIR_Assembler::emit_static_call_stub() {
  1642   address call_pc = __ pc();
  1643   address stub = __ start_a_stub(call_stub_size);
  1644   if (stub == NULL) {
  1645     bailout("static call stub overflow");
  1646     return;
  1649   int start = __ offset();
  1650   __ relocate(static_stub_Relocation::spec(call_pc));
  1652   __ set_metadata(NULL, G5);
  1653   // must be set to -1 at code generation time
  1654   AddressLiteral addrlit(-1);
  1655   __ jump_to(addrlit, G3);
  1656   __ delayed()->nop();
  1658   assert(__ offset() - start <= call_stub_size, "stub too big");
  1659   __ end_a_stub();
  1663 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  1664   if (opr1->is_single_fpu()) {
  1665     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
  1666   } else if (opr1->is_double_fpu()) {
  1667     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
  1668   } else if (opr1->is_single_cpu()) {
  1669     if (opr2->is_constant()) {
  1670       switch (opr2->as_constant_ptr()->type()) {
  1671         case T_INT:
  1672           { jint con = opr2->as_constant_ptr()->as_jint();
  1673             if (Assembler::is_simm13(con)) {
  1674               __ cmp(opr1->as_register(), con);
  1675             } else {
  1676               __ set(con, O7);
  1677               __ cmp(opr1->as_register(), O7);
  1680           break;
  1682         case T_OBJECT:
  1683           // there are only equal/notequal comparisions on objects
  1684           { jobject con = opr2->as_constant_ptr()->as_jobject();
  1685             if (con == NULL) {
  1686               __ cmp(opr1->as_register(), 0);
  1687             } else {
  1688               jobject2reg(con, O7);
  1689               __ cmp(opr1->as_register(), O7);
  1692           break;
  1694         default:
  1695           ShouldNotReachHere();
  1696           break;
  1698     } else {
  1699       if (opr2->is_address()) {
  1700         LIR_Address * addr = opr2->as_address_ptr();
  1701         BasicType type = addr->type();
  1702         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1703         else                    __ ld(as_Address(addr), O7);
  1704         __ cmp(opr1->as_register(), O7);
  1705       } else {
  1706         __ cmp(opr1->as_register(), opr2->as_register());
  1709   } else if (opr1->is_double_cpu()) {
  1710     Register xlo = opr1->as_register_lo();
  1711     Register xhi = opr1->as_register_hi();
  1712     if (opr2->is_constant() && opr2->as_jlong() == 0) {
  1713       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
  1714 #ifdef _LP64
  1715       __ orcc(xhi, G0, G0);
  1716 #else
  1717       __ orcc(xhi, xlo, G0);
  1718 #endif
  1719     } else if (opr2->is_register()) {
  1720       Register ylo = opr2->as_register_lo();
  1721       Register yhi = opr2->as_register_hi();
  1722 #ifdef _LP64
  1723       __ cmp(xlo, ylo);
  1724 #else
  1725       __ subcc(xlo, ylo, xlo);
  1726       __ subccc(xhi, yhi, xhi);
  1727       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  1728         __ orcc(xhi, xlo, G0);
  1730 #endif
  1731     } else {
  1732       ShouldNotReachHere();
  1734   } else if (opr1->is_address()) {
  1735     LIR_Address * addr = opr1->as_address_ptr();
  1736     BasicType type = addr->type();
  1737     assert (opr2->is_constant(), "Checking");
  1738     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
  1739     else                    __ ld(as_Address(addr), O7);
  1740     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
  1741   } else {
  1742     ShouldNotReachHere();
  1747 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
  1748   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  1749     bool is_unordered_less = (code == lir_ucmp_fd2i);
  1750     if (left->is_single_fpu()) {
  1751       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
  1752     } else if (left->is_double_fpu()) {
  1753       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
  1754     } else {
  1755       ShouldNotReachHere();
  1757   } else if (code == lir_cmp_l2i) {
  1758 #ifdef _LP64
  1759     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
  1760 #else
  1761     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
  1762             right->as_register_hi(), right->as_register_lo(),
  1763             dst->as_register());
  1764 #endif
  1765   } else {
  1766     ShouldNotReachHere();
  1771 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  1772   Assembler::Condition acond;
  1773   switch (condition) {
  1774     case lir_cond_equal:        acond = Assembler::equal;        break;
  1775     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
  1776     case lir_cond_less:         acond = Assembler::less;         break;
  1777     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
  1778     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
  1779     case lir_cond_greater:      acond = Assembler::greater;      break;
  1780     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
  1781     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
  1782     default:                         ShouldNotReachHere();
  1783   };
  1785   if (opr1->is_constant() && opr1->type() == T_INT) {
  1786     Register dest = result->as_register();
  1787     // load up first part of constant before branch
  1788     // and do the rest in the delay slot.
  1789     if (!Assembler::is_simm13(opr1->as_jint())) {
  1790       __ sethi(opr1->as_jint(), dest);
  1792   } else if (opr1->is_constant()) {
  1793     const2reg(opr1, result, lir_patch_none, NULL);
  1794   } else if (opr1->is_register()) {
  1795     reg2reg(opr1, result);
  1796   } else if (opr1->is_stack()) {
  1797     stack2reg(opr1, result, result->type());
  1798   } else {
  1799     ShouldNotReachHere();
  1801   Label skip;
  1802 #ifdef _LP64
  1803     if  (type == T_INT) {
  1804       __ br(acond, false, Assembler::pt, skip);
  1805     } else
  1806 #endif
  1807       __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
  1808   if (opr1->is_constant() && opr1->type() == T_INT) {
  1809     Register dest = result->as_register();
  1810     if (Assembler::is_simm13(opr1->as_jint())) {
  1811       __ delayed()->or3(G0, opr1->as_jint(), dest);
  1812     } else {
  1813       // the sethi has been done above, so just put in the low 10 bits
  1814       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
  1816   } else {
  1817     // can't do anything useful in the delay slot
  1818     __ delayed()->nop();
  1820   if (opr2->is_constant()) {
  1821     const2reg(opr2, result, lir_patch_none, NULL);
  1822   } else if (opr2->is_register()) {
  1823     reg2reg(opr2, result);
  1824   } else if (opr2->is_stack()) {
  1825     stack2reg(opr2, result, result->type());
  1826   } else {
  1827     ShouldNotReachHere();
  1829   __ bind(skip);
  1833 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  1834   assert(info == NULL, "unused on this code path");
  1835   assert(left->is_register(), "wrong items state");
  1836   assert(dest->is_register(), "wrong items state");
  1838   if (right->is_register()) {
  1839     if (dest->is_float_kind()) {
  1841       FloatRegister lreg, rreg, res;
  1842       FloatRegisterImpl::Width w;
  1843       if (right->is_single_fpu()) {
  1844         w = FloatRegisterImpl::S;
  1845         lreg = left->as_float_reg();
  1846         rreg = right->as_float_reg();
  1847         res  = dest->as_float_reg();
  1848       } else {
  1849         w = FloatRegisterImpl::D;
  1850         lreg = left->as_double_reg();
  1851         rreg = right->as_double_reg();
  1852         res  = dest->as_double_reg();
  1855       switch (code) {
  1856         case lir_add: __ fadd(w, lreg, rreg, res); break;
  1857         case lir_sub: __ fsub(w, lreg, rreg, res); break;
  1858         case lir_mul: // fall through
  1859         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
  1860         case lir_div: // fall through
  1861         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
  1862         default: ShouldNotReachHere();
  1865     } else if (dest->is_double_cpu()) {
  1866 #ifdef _LP64
  1867       Register dst_lo = dest->as_register_lo();
  1868       Register op1_lo = left->as_pointer_register();
  1869       Register op2_lo = right->as_pointer_register();
  1871       switch (code) {
  1872         case lir_add:
  1873           __ add(op1_lo, op2_lo, dst_lo);
  1874           break;
  1876         case lir_sub:
  1877           __ sub(op1_lo, op2_lo, dst_lo);
  1878           break;
  1880         default: ShouldNotReachHere();
  1882 #else
  1883       Register op1_lo = left->as_register_lo();
  1884       Register op1_hi = left->as_register_hi();
  1885       Register op2_lo = right->as_register_lo();
  1886       Register op2_hi = right->as_register_hi();
  1887       Register dst_lo = dest->as_register_lo();
  1888       Register dst_hi = dest->as_register_hi();
  1890       switch (code) {
  1891         case lir_add:
  1892           __ addcc(op1_lo, op2_lo, dst_lo);
  1893           __ addc (op1_hi, op2_hi, dst_hi);
  1894           break;
  1896         case lir_sub:
  1897           __ subcc(op1_lo, op2_lo, dst_lo);
  1898           __ subc (op1_hi, op2_hi, dst_hi);
  1899           break;
  1901         default: ShouldNotReachHere();
  1903 #endif
  1904     } else {
  1905       assert (right->is_single_cpu(), "Just Checking");
  1907       Register lreg = left->as_register();
  1908       Register res  = dest->as_register();
  1909       Register rreg = right->as_register();
  1910       switch (code) {
  1911         case lir_add:  __ add  (lreg, rreg, res); break;
  1912         case lir_sub:  __ sub  (lreg, rreg, res); break;
  1913         case lir_mul:  __ mult (lreg, rreg, res); break;
  1914         default: ShouldNotReachHere();
  1917   } else {
  1918     assert (right->is_constant(), "must be constant");
  1920     if (dest->is_single_cpu()) {
  1921       Register lreg = left->as_register();
  1922       Register res  = dest->as_register();
  1923       int    simm13 = right->as_constant_ptr()->as_jint();
  1925       switch (code) {
  1926         case lir_add:  __ add  (lreg, simm13, res); break;
  1927         case lir_sub:  __ sub  (lreg, simm13, res); break;
  1928         case lir_mul:  __ mult (lreg, simm13, res); break;
  1929         default: ShouldNotReachHere();
  1931     } else {
  1932       Register lreg = left->as_pointer_register();
  1933       Register res  = dest->as_register_lo();
  1934       long con = right->as_constant_ptr()->as_jlong();
  1935       assert(Assembler::is_simm13(con), "must be simm13");
  1937       switch (code) {
  1938         case lir_add:  __ add  (lreg, (int)con, res); break;
  1939         case lir_sub:  __ sub  (lreg, (int)con, res); break;
  1940         case lir_mul:  __ mult (lreg, (int)con, res); break;
  1941         default: ShouldNotReachHere();
  1948 void LIR_Assembler::fpop() {
  1949   // do nothing
  1953 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
  1954   switch (code) {
  1955     case lir_sin:
  1956     case lir_tan:
  1957     case lir_cos: {
  1958       assert(thread->is_valid(), "preserve the thread object for performance reasons");
  1959       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
  1960       break;
  1962     case lir_sqrt: {
  1963       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
  1964       FloatRegister src_reg = value->as_double_reg();
  1965       FloatRegister dst_reg = dest->as_double_reg();
  1966       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
  1967       break;
  1969     case lir_abs: {
  1970       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
  1971       FloatRegister src_reg = value->as_double_reg();
  1972       FloatRegister dst_reg = dest->as_double_reg();
  1973       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
  1974       break;
  1976     default: {
  1977       ShouldNotReachHere();
  1978       break;
  1984 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
  1985   if (right->is_constant()) {
  1986     if (dest->is_single_cpu()) {
  1987       int simm13 = right->as_constant_ptr()->as_jint();
  1988       switch (code) {
  1989         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
  1990         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
  1991         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
  1992         default: ShouldNotReachHere();
  1994     } else {
  1995       long c = right->as_constant_ptr()->as_jlong();
  1996       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
  1997       int simm13 = (int)c;
  1998       switch (code) {
  1999         case lir_logic_and:
  2000 #ifndef _LP64
  2001           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2002 #endif
  2003           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2004           break;
  2006         case lir_logic_or:
  2007 #ifndef _LP64
  2008           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2009 #endif
  2010           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2011           break;
  2013         case lir_logic_xor:
  2014 #ifndef _LP64
  2015           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
  2016 #endif
  2017           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
  2018           break;
  2020         default: ShouldNotReachHere();
  2023   } else {
  2024     assert(right->is_register(), "right should be in register");
  2026     if (dest->is_single_cpu()) {
  2027       switch (code) {
  2028         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
  2029         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
  2030         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
  2031         default: ShouldNotReachHere();
  2033     } else {
  2034 #ifdef _LP64
  2035       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
  2036                                                                         left->as_register_lo();
  2037       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
  2038                                                                           right->as_register_lo();
  2040       switch (code) {
  2041         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
  2042         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
  2043         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
  2044         default: ShouldNotReachHere();
  2046 #else
  2047       switch (code) {
  2048         case lir_logic_and:
  2049           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2050           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2051           break;
  2053         case lir_logic_or:
  2054           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2055           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2056           break;
  2058         case lir_logic_xor:
  2059           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
  2060           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
  2061           break;
  2063         default: ShouldNotReachHere();
  2065 #endif
  2071 int LIR_Assembler::shift_amount(BasicType t) {
  2072   int elem_size = type2aelembytes(t);
  2073   switch (elem_size) {
  2074     case 1 : return 0;
  2075     case 2 : return 1;
  2076     case 4 : return 2;
  2077     case 8 : return 3;
  2079   ShouldNotReachHere();
  2080   return -1;
  2084 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2085   assert(exceptionOop->as_register() == Oexception, "should match");
  2086   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
  2088   info->add_register_oop(exceptionOop);
  2090   // reuse the debug info from the safepoint poll for the throw op itself
  2091   address pc_for_athrow  = __ pc();
  2092   int pc_for_athrow_offset = __ offset();
  2093   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
  2094   __ set(pc_for_athrow, Oissuing_pc, rspec);
  2095   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2097   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
  2098   __ delayed()->nop();
  2102 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2103   assert(exceptionOop->as_register() == Oexception, "should match");
  2105   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
  2106   __ delayed()->nop();
  2109 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  2110   Register src = op->src()->as_register();
  2111   Register dst = op->dst()->as_register();
  2112   Register src_pos = op->src_pos()->as_register();
  2113   Register dst_pos = op->dst_pos()->as_register();
  2114   Register length  = op->length()->as_register();
  2115   Register tmp = op->tmp()->as_register();
  2116   Register tmp2 = O7;
  2118   int flags = op->flags();
  2119   ciArrayKlass* default_type = op->expected_type();
  2120   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  2121   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  2123 #ifdef _LP64
  2124   // higher 32bits must be null
  2125   __ sra(dst_pos, 0, dst_pos);
  2126   __ sra(src_pos, 0, src_pos);
  2127   __ sra(length, 0, length);
  2128 #endif
  2130   // set up the arraycopy stub information
  2131   ArrayCopyStub* stub = op->stub();
  2133   // always do stub if no type information is available.  it's ok if
  2134   // the known type isn't loaded since the code sanity checks
  2135   // in debug mode and the type isn't required when we know the exact type
  2136   // also check that the type is an array type.
  2137   if (op->expected_type() == NULL) {
  2138     __ mov(src,     O0);
  2139     __ mov(src_pos, O1);
  2140     __ mov(dst,     O2);
  2141     __ mov(dst_pos, O3);
  2142     __ mov(length,  O4);
  2143     address copyfunc_addr = StubRoutines::generic_arraycopy();
  2145     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  2146       __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
  2147     } else {
  2148 #ifndef PRODUCT
  2149       if (PrintC1Statistics) {
  2150         address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
  2151         __ inc_counter(counter, G1, G3);
  2153 #endif
  2154       __ call_VM_leaf(tmp, copyfunc_addr);
  2157     if (copyfunc_addr != NULL) {
  2158       __ xor3(O0, -1, tmp);
  2159       __ sub(length, tmp, length);
  2160       __ add(src_pos, tmp, src_pos);
  2161       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
  2162       __ delayed()->add(dst_pos, tmp, dst_pos);
  2163     } else {
  2164       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
  2165       __ delayed()->nop();
  2167     __ bind(*stub->continuation());
  2168     return;
  2171   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
  2173   // make sure src and dst are non-null and load array length
  2174   if (flags & LIR_OpArrayCopy::src_null_check) {
  2175     __ tst(src);
  2176     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  2177     __ delayed()->nop();
  2180   if (flags & LIR_OpArrayCopy::dst_null_check) {
  2181     __ tst(dst);
  2182     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
  2183     __ delayed()->nop();
  2186   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  2187     // test src_pos register
  2188     __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
  2189     __ delayed()->nop();
  2192   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  2193     // test dst_pos register
  2194     __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
  2195     __ delayed()->nop();
  2198   if (flags & LIR_OpArrayCopy::length_positive_check) {
  2199     // make sure length isn't negative
  2200     __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
  2201     __ delayed()->nop();
  2204   if (flags & LIR_OpArrayCopy::src_range_check) {
  2205     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2206     __ add(length, src_pos, tmp);
  2207     __ cmp(tmp2, tmp);
  2208     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2209     __ delayed()->nop();
  2212   if (flags & LIR_OpArrayCopy::dst_range_check) {
  2213     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
  2214     __ add(length, dst_pos, tmp);
  2215     __ cmp(tmp2, tmp);
  2216     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
  2217     __ delayed()->nop();
  2220   int shift = shift_amount(basic_type);
  2222   if (flags & LIR_OpArrayCopy::type_check) {
  2223     // We don't know the array types are compatible
  2224     if (basic_type != T_OBJECT) {
  2225       // Simple test for basic type arrays
  2226       if (UseCompressedKlassPointers) {
  2227         // We don't need decode because we just need to compare
  2228         __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
  2229         __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2230         __ cmp(tmp, tmp2);
  2231         __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2232       } else {
  2233         __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
  2234         __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2235         __ cmp(tmp, tmp2);
  2236         __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
  2238       __ delayed()->nop();
  2239     } else {
  2240       // For object arrays, if src is a sub class of dst then we can
  2241       // safely do the copy.
  2242       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  2244       Label cont, slow;
  2245       assert_different_registers(tmp, tmp2, G3, G1);
  2247       __ load_klass(src, G3);
  2248       __ load_klass(dst, G1);
  2250       __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
  2252       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2253       __ delayed()->nop();
  2255       __ cmp(G3, 0);
  2256       if (copyfunc_addr != NULL) { // use stub if available
  2257         // src is not a sub class of dst so we have to do a
  2258         // per-element check.
  2259         __ br(Assembler::notEqual, false, Assembler::pt, cont);
  2260         __ delayed()->nop();
  2262         __ bind(slow);
  2264         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  2265         if ((flags & mask) != mask) {
  2266           // Check that at least both of them object arrays.
  2267           assert(flags & mask, "one of the two should be known to be an object array");
  2269           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  2270             __ load_klass(src, tmp);
  2271           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  2272             __ load_klass(dst, tmp);
  2274           int lh_offset = in_bytes(Klass::layout_helper_offset());
  2276           __ lduw(tmp, lh_offset, tmp2);
  2278           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  2279           __ set(objArray_lh, tmp);
  2280           __ cmp(tmp, tmp2);
  2281           __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
  2282           __ delayed()->nop();
  2285         Register src_ptr = O0;
  2286         Register dst_ptr = O1;
  2287         Register len     = O2;
  2288         Register chk_off = O3;
  2289         Register super_k = O4;
  2291         __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2292         if (shift == 0) {
  2293           __ add(src_ptr, src_pos, src_ptr);
  2294         } else {
  2295           __ sll(src_pos, shift, tmp);
  2296           __ add(src_ptr, tmp, src_ptr);
  2299         __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2300         if (shift == 0) {
  2301           __ add(dst_ptr, dst_pos, dst_ptr);
  2302         } else {
  2303           __ sll(dst_pos, shift, tmp);
  2304           __ add(dst_ptr, tmp, dst_ptr);
  2306         __ mov(length, len);
  2307         __ load_klass(dst, tmp);
  2309         int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
  2310         __ ld_ptr(tmp, ek_offset, super_k);
  2312         int sco_offset = in_bytes(Klass::super_check_offset_offset());
  2313         __ lduw(super_k, sco_offset, chk_off);
  2315         __ call_VM_leaf(tmp, copyfunc_addr);
  2317 #ifndef PRODUCT
  2318         if (PrintC1Statistics) {
  2319           Label failed;
  2320           __ br_notnull_short(O0, Assembler::pn, failed);
  2321           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
  2322           __ bind(failed);
  2324 #endif
  2326         __ br_null(O0, false, Assembler::pt,  *stub->continuation());
  2327         __ delayed()->xor3(O0, -1, tmp);
  2329 #ifndef PRODUCT
  2330         if (PrintC1Statistics) {
  2331           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
  2333 #endif
  2335         __ sub(length, tmp, length);
  2336         __ add(src_pos, tmp, src_pos);
  2337         __ br(Assembler::always, false, Assembler::pt, *stub->entry());
  2338         __ delayed()->add(dst_pos, tmp, dst_pos);
  2340         __ bind(cont);
  2341       } else {
  2342         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
  2343         __ delayed()->nop();
  2344         __ bind(cont);
  2349 #ifdef ASSERT
  2350   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  2351     // Sanity check the known type with the incoming class.  For the
  2352     // primitive case the types must match exactly with src.klass and
  2353     // dst.klass each exactly matching the default type.  For the
  2354     // object array case, if no type check is needed then either the
  2355     // dst type is exactly the expected type and the src type is a
  2356     // subtype which we can't check or src is the same array as dst
  2357     // but not necessarily exactly of type default_type.
  2358     Label known_ok, halt;
  2359     metadata2reg(op->expected_type()->constant_encoding(), tmp);
  2360     if (UseCompressedKlassPointers) {
  2361       // tmp holds the default type. It currently comes uncompressed after the
  2362       // load of a constant, so encode it.
  2363       __ encode_klass_not_null(tmp);
  2364       // load the raw value of the dst klass, since we will be comparing
  2365       // uncompressed values directly.
  2366       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2367       if (basic_type != T_OBJECT) {
  2368         __ cmp(tmp, tmp2);
  2369         __ br(Assembler::notEqual, false, Assembler::pn, halt);
  2370         // load the raw value of the src klass.
  2371         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2372         __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
  2373       } else {
  2374         __ cmp(tmp, tmp2);
  2375         __ br(Assembler::equal, false, Assembler::pn, known_ok);
  2376         __ delayed()->cmp(src, dst);
  2377         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2378         __ delayed()->nop();
  2380     } else {
  2381       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
  2382       if (basic_type != T_OBJECT) {
  2383         __ cmp(tmp, tmp2);
  2384         __ brx(Assembler::notEqual, false, Assembler::pn, halt);
  2385         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
  2386         __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
  2387       } else {
  2388         __ cmp(tmp, tmp2);
  2389         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2390         __ delayed()->cmp(src, dst);
  2391         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
  2392         __ delayed()->nop();
  2395     __ bind(halt);
  2396     __ stop("incorrect type information in arraycopy");
  2397     __ bind(known_ok);
  2399 #endif
  2401 #ifndef PRODUCT
  2402   if (PrintC1Statistics) {
  2403     address counter = Runtime1::arraycopy_count_address(basic_type);
  2404     __ inc_counter(counter, G1, G3);
  2406 #endif
  2408   Register src_ptr = O0;
  2409   Register dst_ptr = O1;
  2410   Register len     = O2;
  2412   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
  2413   if (shift == 0) {
  2414     __ add(src_ptr, src_pos, src_ptr);
  2415   } else {
  2416     __ sll(src_pos, shift, tmp);
  2417     __ add(src_ptr, tmp, src_ptr);
  2420   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
  2421   if (shift == 0) {
  2422     __ add(dst_ptr, dst_pos, dst_ptr);
  2423   } else {
  2424     __ sll(dst_pos, shift, tmp);
  2425     __ add(dst_ptr, tmp, dst_ptr);
  2428   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  2429   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  2430   const char *name;
  2431   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  2433   // arraycopy stubs takes a length in number of elements, so don't scale it.
  2434   __ mov(length, len);
  2435   __ call_VM_leaf(tmp, entry);
  2437   __ bind(*stub->continuation());
  2441 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2442   if (dest->is_single_cpu()) {
  2443 #ifdef _LP64
  2444     if (left->type() == T_OBJECT) {
  2445       switch (code) {
  2446         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
  2447         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
  2448         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2449         default: ShouldNotReachHere();
  2451     } else
  2452 #endif
  2453       switch (code) {
  2454         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
  2455         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
  2456         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
  2457         default: ShouldNotReachHere();
  2459   } else {
  2460 #ifdef _LP64
  2461     switch (code) {
  2462       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2463       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2464       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
  2465       default: ShouldNotReachHere();
  2467 #else
  2468     switch (code) {
  2469       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2470       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2471       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
  2472       default: ShouldNotReachHere();
  2474 #endif
  2479 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2480 #ifdef _LP64
  2481   if (left->type() == T_OBJECT) {
  2482     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
  2483     Register l = left->as_register();
  2484     Register d = dest->as_register_lo();
  2485     switch (code) {
  2486       case lir_shl:  __ sllx  (l, count, d); break;
  2487       case lir_shr:  __ srax  (l, count, d); break;
  2488       case lir_ushr: __ srlx  (l, count, d); break;
  2489       default: ShouldNotReachHere();
  2491     return;
  2493 #endif
  2495   if (dest->is_single_cpu()) {
  2496     count = count & 0x1F; // Java spec
  2497     switch (code) {
  2498       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
  2499       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
  2500       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
  2501       default: ShouldNotReachHere();
  2503   } else if (dest->is_double_cpu()) {
  2504     count = count & 63; // Java spec
  2505     switch (code) {
  2506       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2507       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2508       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
  2509       default: ShouldNotReachHere();
  2511   } else {
  2512     ShouldNotReachHere();
  2517 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  2518   assert(op->tmp1()->as_register()  == G1 &&
  2519          op->tmp2()->as_register()  == G3 &&
  2520          op->tmp3()->as_register()  == G4 &&
  2521          op->obj()->as_register()   == O0 &&
  2522          op->klass()->as_register() == G5, "must be");
  2523   if (op->init_check()) {
  2524     __ ldub(op->klass()->as_register(),
  2525           in_bytes(InstanceKlass::init_state_offset()),
  2526           op->tmp1()->as_register());
  2527     add_debug_info_for_null_check_here(op->stub()->info());
  2528     __ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
  2529     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
  2530     __ delayed()->nop();
  2532   __ allocate_object(op->obj()->as_register(),
  2533                      op->tmp1()->as_register(),
  2534                      op->tmp2()->as_register(),
  2535                      op->tmp3()->as_register(),
  2536                      op->header_size(),
  2537                      op->object_size(),
  2538                      op->klass()->as_register(),
  2539                      *op->stub()->entry());
  2540   __ bind(*op->stub()->continuation());
  2541   __ verify_oop(op->obj()->as_register());
  2545 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  2546   assert(op->tmp1()->as_register()  == G1 &&
  2547          op->tmp2()->as_register()  == G3 &&
  2548          op->tmp3()->as_register()  == G4 &&
  2549          op->tmp4()->as_register()  == O1 &&
  2550          op->klass()->as_register() == G5, "must be");
  2552   LP64_ONLY( __ signx(op->len()->as_register()); )
  2553   if (UseSlowPath ||
  2554       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  2555       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  2556     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2557     __ delayed()->nop();
  2558   } else {
  2559     __ allocate_array(op->obj()->as_register(),
  2560                       op->len()->as_register(),
  2561                       op->tmp1()->as_register(),
  2562                       op->tmp2()->as_register(),
  2563                       op->tmp3()->as_register(),
  2564                       arrayOopDesc::header_size(op->type()),
  2565                       type2aelembytes(op->type()),
  2566                       op->klass()->as_register(),
  2567                       *op->stub()->entry());
  2569   __ bind(*op->stub()->continuation());
  2573 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
  2574                                         ciMethodData *md, ciProfileData *data,
  2575                                         Register recv, Register tmp1, Label* update_done) {
  2576   uint i;
  2577   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2578     Label next_test;
  2579     // See if the receiver is receiver[n].
  2580     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2581                           mdo_offset_bias);
  2582     __ ld_ptr(receiver_addr, tmp1);
  2583     __ verify_oop(tmp1);
  2584     __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
  2585     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2586                       mdo_offset_bias);
  2587     __ ld_ptr(data_addr, tmp1);
  2588     __ add(tmp1, DataLayout::counter_increment, tmp1);
  2589     __ st_ptr(tmp1, data_addr);
  2590     __ ba(*update_done);
  2591     __ delayed()->nop();
  2592     __ bind(next_test);
  2595   // Didn't find receiver; find next empty slot and fill it in
  2596   for (i = 0; i < VirtualCallData::row_limit(); i++) {
  2597     Label next_test;
  2598     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
  2599                       mdo_offset_bias);
  2600     __ ld_ptr(recv_addr, tmp1);
  2601     __ br_notnull_short(tmp1, Assembler::pt, next_test);
  2602     __ st_ptr(recv, recv_addr);
  2603     __ set(DataLayout::counter_increment, tmp1);
  2604     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
  2605               mdo_offset_bias);
  2606     __ ba(*update_done);
  2607     __ delayed()->nop();
  2608     __ bind(next_test);
  2613 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
  2614                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
  2615   md = method->method_data_or_null();
  2616   assert(md != NULL, "Sanity");
  2617   data = md->bci_to_data(bci);
  2618   assert(data != NULL,       "need data for checkcast");
  2619   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  2620   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
  2621     // The offset is large so bias the mdo by the base of the slot so
  2622     // that the ld can use simm13s to reference the slots of the data
  2623     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
  2627 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  2628   // we always need a stub for the failure case.
  2629   CodeStub* stub = op->stub();
  2630   Register obj = op->object()->as_register();
  2631   Register k_RInfo = op->tmp1()->as_register();
  2632   Register klass_RInfo = op->tmp2()->as_register();
  2633   Register dst = op->result_opr()->as_register();
  2634   Register Rtmp1 = op->tmp3()->as_register();
  2635   ciKlass* k = op->klass();
  2638   if (obj == k_RInfo) {
  2639     k_RInfo = klass_RInfo;
  2640     klass_RInfo = obj;
  2643   ciMethodData* md;
  2644   ciProfileData* data;
  2645   int mdo_offset_bias = 0;
  2646   if (op->should_profile()) {
  2647     ciMethod* method = op->profiled_method();
  2648     assert(method != NULL, "Should have method");
  2649     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2651     Label not_null;
  2652     __ br_notnull_short(obj, Assembler::pn, not_null);
  2653     Register mdo      = k_RInfo;
  2654     Register data_val = Rtmp1;
  2655     metadata2reg(md->constant_encoding(), mdo);
  2656     if (mdo_offset_bias > 0) {
  2657       __ set(mdo_offset_bias, data_val);
  2658       __ add(mdo, data_val, mdo);
  2660     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2661     __ ldub(flags_addr, data_val);
  2662     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2663     __ stb(data_val, flags_addr);
  2664     __ ba(*obj_is_null);
  2665     __ delayed()->nop();
  2666     __ bind(not_null);
  2667   } else {
  2668     __ br_null(obj, false, Assembler::pn, *obj_is_null);
  2669     __ delayed()->nop();
  2672   Label profile_cast_failure, profile_cast_success;
  2673   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  2674   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  2676   // patching may screw with our temporaries on sparc,
  2677   // so let's do it before loading the class
  2678   if (k->is_loaded()) {
  2679     metadata2reg(k->constant_encoding(), k_RInfo);
  2680   } else {
  2681     klass2reg_with_patching(k_RInfo, op->info_for_patch());
  2683   assert(obj != k_RInfo, "must be different");
  2685   // get object class
  2686   // not a safepoint as obj null check happens earlier
  2687   __ load_klass(obj, klass_RInfo);
  2688   if (op->fast_check()) {
  2689     assert_different_registers(klass_RInfo, k_RInfo);
  2690     __ cmp(k_RInfo, klass_RInfo);
  2691     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
  2692     __ delayed()->nop();
  2693   } else {
  2694     bool need_slow_path = true;
  2695     if (k->is_loaded()) {
  2696       if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
  2697         need_slow_path = false;
  2698       // perform the fast part of the checking logic
  2699       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
  2700                                        (need_slow_path ? success_target : NULL),
  2701                                        failure_target, NULL,
  2702                                        RegisterOrConstant(k->super_check_offset()));
  2703     } else {
  2704       // perform the fast part of the checking logic
  2705       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
  2706                                        failure_target, NULL);
  2708     if (need_slow_path) {
  2709       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2710       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2711       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2712       __ delayed()->nop();
  2713       __ cmp(G3, 0);
  2714       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2715       __ delayed()->nop();
  2716       // Fall through to success case
  2720   if (op->should_profile()) {
  2721     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2722     assert_different_registers(obj, mdo, recv, tmp1);
  2723     __ bind(profile_cast_success);
  2724     metadata2reg(md->constant_encoding(), mdo);
  2725     if (mdo_offset_bias > 0) {
  2726       __ set(mdo_offset_bias, tmp1);
  2727       __ add(mdo, tmp1, mdo);
  2729     __ load_klass(obj, recv);
  2730     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
  2731     // Jump over the failure case
  2732     __ ba(*success);
  2733     __ delayed()->nop();
  2734     // Cast failure case
  2735     __ bind(profile_cast_failure);
  2736     metadata2reg(md->constant_encoding(), mdo);
  2737     if (mdo_offset_bias > 0) {
  2738       __ set(mdo_offset_bias, tmp1);
  2739       __ add(mdo, tmp1, mdo);
  2741     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2742     __ ld_ptr(data_addr, tmp1);
  2743     __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2744     __ st_ptr(tmp1, data_addr);
  2745     __ ba(*failure);
  2746     __ delayed()->nop();
  2748   __ ba(*success);
  2749   __ delayed()->nop();
  2752 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  2753   LIR_Code code = op->code();
  2754   if (code == lir_store_check) {
  2755     Register value = op->object()->as_register();
  2756     Register array = op->array()->as_register();
  2757     Register k_RInfo = op->tmp1()->as_register();
  2758     Register klass_RInfo = op->tmp2()->as_register();
  2759     Register Rtmp1 = op->tmp3()->as_register();
  2761     __ verify_oop(value);
  2762     CodeStub* stub = op->stub();
  2763     // check if it needs to be profiled
  2764     ciMethodData* md;
  2765     ciProfileData* data;
  2766     int mdo_offset_bias = 0;
  2767     if (op->should_profile()) {
  2768       ciMethod* method = op->profiled_method();
  2769       assert(method != NULL, "Should have method");
  2770       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
  2772     Label profile_cast_success, profile_cast_failure, done;
  2773     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  2774     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  2776     if (op->should_profile()) {
  2777       Label not_null;
  2778       __ br_notnull_short(value, Assembler::pn, not_null);
  2779       Register mdo      = k_RInfo;
  2780       Register data_val = Rtmp1;
  2781       metadata2reg(md->constant_encoding(), mdo);
  2782       if (mdo_offset_bias > 0) {
  2783         __ set(mdo_offset_bias, data_val);
  2784         __ add(mdo, data_val, mdo);
  2786       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
  2787       __ ldub(flags_addr, data_val);
  2788       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
  2789       __ stb(data_val, flags_addr);
  2790       __ ba_short(done);
  2791       __ bind(not_null);
  2792     } else {
  2793       __ br_null_short(value, Assembler::pn, done);
  2795     add_debug_info_for_null_check_here(op->info_for_exception());
  2796     __ load_klass(array, k_RInfo);
  2797     __ load_klass(value, klass_RInfo);
  2799     // get instance klass
  2800     __ ld_ptr(Address(k_RInfo, objArrayKlass::element_klass_offset()), k_RInfo);
  2801     // perform the fast part of the checking logic
  2802     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
  2804     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  2805     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
  2806     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
  2807     __ delayed()->nop();
  2808     __ cmp(G3, 0);
  2809     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
  2810     __ delayed()->nop();
  2811     // fall through to the success case
  2813     if (op->should_profile()) {
  2814       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
  2815       assert_different_registers(value, mdo, recv, tmp1);
  2816       __ bind(profile_cast_success);
  2817       metadata2reg(md->constant_encoding(), mdo);
  2818       if (mdo_offset_bias > 0) {
  2819         __ set(mdo_offset_bias, tmp1);
  2820         __ add(mdo, tmp1, mdo);
  2822       __ load_klass(value, recv);
  2823       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
  2824       __ ba_short(done);
  2825       // Cast failure case
  2826       __ bind(profile_cast_failure);
  2827       metadata2reg(md->constant_encoding(), mdo);
  2828       if (mdo_offset_bias > 0) {
  2829         __ set(mdo_offset_bias, tmp1);
  2830         __ add(mdo, tmp1, mdo);
  2832       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  2833       __ ld_ptr(data_addr, tmp1);
  2834       __ sub(tmp1, DataLayout::counter_increment, tmp1);
  2835       __ st_ptr(tmp1, data_addr);
  2836       __ ba(*stub->entry());
  2837       __ delayed()->nop();
  2839     __ bind(done);
  2840   } else if (code == lir_checkcast) {
  2841     Register obj = op->object()->as_register();
  2842     Register dst = op->result_opr()->as_register();
  2843     Label success;
  2844     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  2845     __ bind(success);
  2846     __ mov(obj, dst);
  2847   } else if (code == lir_instanceof) {
  2848     Register obj = op->object()->as_register();
  2849     Register dst = op->result_opr()->as_register();
  2850     Label success, failure, done;
  2851     emit_typecheck_helper(op, &success, &failure, &failure);
  2852     __ bind(failure);
  2853     __ set(0, dst);
  2854     __ ba_short(done);
  2855     __ bind(success);
  2856     __ set(1, dst);
  2857     __ bind(done);
  2858   } else {
  2859     ShouldNotReachHere();
  2865 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  2866   if (op->code() == lir_cas_long) {
  2867     assert(VM_Version::supports_cx8(), "wrong machine");
  2868     Register addr = op->addr()->as_pointer_register();
  2869     Register cmp_value_lo = op->cmp_value()->as_register_lo();
  2870     Register cmp_value_hi = op->cmp_value()->as_register_hi();
  2871     Register new_value_lo = op->new_value()->as_register_lo();
  2872     Register new_value_hi = op->new_value()->as_register_hi();
  2873     Register t1 = op->tmp1()->as_register();
  2874     Register t2 = op->tmp2()->as_register();
  2875 #ifdef _LP64
  2876     __ mov(cmp_value_lo, t1);
  2877     __ mov(new_value_lo, t2);
  2878     // perform the compare and swap operation
  2879     __ casx(addr, t1, t2);
  2880     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2881     // overwritten with the original value in "addr" and will be equal to t1.
  2882     __ cmp(t1, t2);
  2883 #else
  2884     // move high and low halves of long values into single registers
  2885     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
  2886     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
  2887     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
  2888     __ sllx(new_value_hi, 32, t2);
  2889     __ srl(new_value_lo, 0, new_value_lo);
  2890     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
  2891     // perform the compare and swap operation
  2892     __ casx(addr, t1, t2);
  2893     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
  2894     // overwritten with the original value in "addr" and will be equal to t1.
  2895     // Produce icc flag for 32bit.
  2896     __ sub(t1, t2, t2);
  2897     __ srlx(t2, 32, t1);
  2898     __ orcc(t2, t1, G0);
  2899 #endif
  2900   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
  2901     Register addr = op->addr()->as_pointer_register();
  2902     Register cmp_value = op->cmp_value()->as_register();
  2903     Register new_value = op->new_value()->as_register();
  2904     Register t1 = op->tmp1()->as_register();
  2905     Register t2 = op->tmp2()->as_register();
  2906     __ mov(cmp_value, t1);
  2907     __ mov(new_value, t2);
  2908     if (op->code() == lir_cas_obj) {
  2909       if (UseCompressedOops) {
  2910         __ encode_heap_oop(t1);
  2911         __ encode_heap_oop(t2);
  2912         __ cas(addr, t1, t2);
  2913       } else {
  2914         __ cas_ptr(addr, t1, t2);
  2916     } else {
  2917       __ cas(addr, t1, t2);
  2919     __ cmp(t1, t2);
  2920   } else {
  2921     Unimplemented();
  2925 void LIR_Assembler::set_24bit_FPU() {
  2926   Unimplemented();
  2930 void LIR_Assembler::reset_FPU() {
  2931   Unimplemented();
  2935 void LIR_Assembler::breakpoint() {
  2936   __ breakpoint_trap();
  2940 void LIR_Assembler::push(LIR_Opr opr) {
  2941   Unimplemented();
  2945 void LIR_Assembler::pop(LIR_Opr opr) {
  2946   Unimplemented();
  2950 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
  2951   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
  2952   Register dst = dst_opr->as_register();
  2953   Register reg = mon_addr.base();
  2954   int offset = mon_addr.disp();
  2955   // compute pointer to BasicLock
  2956   if (mon_addr.is_simm13()) {
  2957     __ add(reg, offset, dst);
  2958   } else {
  2959     __ set(offset, dst);
  2960     __ add(dst, reg, dst);
  2965 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  2966   Register obj = op->obj_opr()->as_register();
  2967   Register hdr = op->hdr_opr()->as_register();
  2968   Register lock = op->lock_opr()->as_register();
  2970   // obj may not be an oop
  2971   if (op->code() == lir_lock) {
  2972     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
  2973     if (UseFastLocking) {
  2974       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2975       // add debug info for NullPointerException only if one is possible
  2976       if (op->info() != NULL) {
  2977         add_debug_info_for_null_check_here(op->info());
  2979       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
  2980     } else {
  2981       // always do slow locking
  2982       // note: the slow locking code could be inlined here, however if we use
  2983       //       slow locking, speed doesn't matter anyway and this solution is
  2984       //       simpler and requires less duplicated code - additionally, the
  2985       //       slow locking code is the same in either case which simplifies
  2986       //       debugging
  2987       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  2988       __ delayed()->nop();
  2990   } else {
  2991     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
  2992     if (UseFastLocking) {
  2993       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  2994       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  2995     } else {
  2996       // always do slow unlocking
  2997       // note: the slow unlocking code could be inlined here, however if we use
  2998       //       slow unlocking, speed doesn't matter anyway and this solution is
  2999       //       simpler and requires less duplicated code - additionally, the
  3000       //       slow unlocking code is the same in either case which simplifies
  3001       //       debugging
  3002       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
  3003       __ delayed()->nop();
  3006   __ bind(*op->stub()->continuation());
  3010 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3011   ciMethod* method = op->profiled_method();
  3012   int bci          = op->profiled_bci();
  3013   ciMethod* callee = op->profiled_callee();
  3015   // Update counter for all call types
  3016   ciMethodData* md = method->method_data_or_null();
  3017   assert(md != NULL, "Sanity");
  3018   ciProfileData* data = md->bci_to_data(bci);
  3019   assert(data->is_CounterData(), "need CounterData for calls");
  3020   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3021   Register mdo  = op->mdo()->as_register();
  3022 #ifdef _LP64
  3023   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
  3024   Register tmp1 = op->tmp1()->as_register_lo();
  3025 #else
  3026   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
  3027   Register tmp1 = op->tmp1()->as_register();
  3028 #endif
  3029   metadata2reg(md->constant_encoding(), mdo);
  3030   int mdo_offset_bias = 0;
  3031   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
  3032                             data->size_in_bytes())) {
  3033     // The offset is large so bias the mdo by the base of the slot so
  3034     // that the ld can use simm13s to reference the slots of the data
  3035     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
  3036     __ set(mdo_offset_bias, O7);
  3037     __ add(mdo, O7, mdo);
  3040   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
  3041   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3042   const bool callee_is_static = callee->is_loaded() && callee->is_static();
  3043   // Perform additional virtual call profiling for invokevirtual and
  3044   // invokeinterface bytecodes
  3045   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3046       !callee_is_static &&  // required for optimized MH invokes
  3047       C1ProfileVirtualCalls) {
  3048     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3049     Register recv = op->recv()->as_register();
  3050     assert_different_registers(mdo, tmp1, recv);
  3051     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3052     ciKlass* known_klass = op->known_holder();
  3053     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3054       // We know the type that will be seen at this call site; we can
  3055       // statically update the MethodData* rather than needing to do
  3056       // dynamic tests on the receiver type
  3058       // NOTE: we should probably put a lock around this search to
  3059       // avoid collisions by concurrent compilations
  3060       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3061       uint i;
  3062       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3063         ciKlass* receiver = vc_data->receiver(i);
  3064         if (known_klass->equals(receiver)) {
  3065           Address data_addr(mdo, md->byte_offset_of_slot(data,
  3066                                                          VirtualCallData::receiver_count_offset(i)) -
  3067                             mdo_offset_bias);
  3068           __ ld_ptr(data_addr, tmp1);
  3069           __ add(tmp1, DataLayout::counter_increment, tmp1);
  3070           __ st_ptr(tmp1, data_addr);
  3071           return;
  3075       // Receiver type not found in profile data; select an empty slot
  3077       // Note that this is less efficient than it should be because it
  3078       // always does a write to the receiver part of the
  3079       // VirtualCallData rather than just the first time
  3080       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3081         ciKlass* receiver = vc_data->receiver(i);
  3082         if (receiver == NULL) {
  3083           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
  3084                             mdo_offset_bias);
  3085           metadata2reg(known_klass->constant_encoding(), tmp1);
  3086           __ st_ptr(tmp1, recv_addr);
  3087           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
  3088                             mdo_offset_bias);
  3089           __ ld_ptr(data_addr, tmp1);
  3090           __ add(tmp1, DataLayout::counter_increment, tmp1);
  3091           __ st_ptr(tmp1, data_addr);
  3092           return;
  3095     } else {
  3096       __ load_klass(recv, recv);
  3097       Label update_done;
  3098       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
  3099       // Receiver did not match any saved receiver and there is no empty row for it.
  3100       // Increment total counter to indicate polymorphic case.
  3101       __ ld_ptr(counter_addr, tmp1);
  3102       __ add(tmp1, DataLayout::counter_increment, tmp1);
  3103       __ st_ptr(tmp1, counter_addr);
  3105       __ bind(update_done);
  3107   } else {
  3108     // Static call
  3109     __ ld_ptr(counter_addr, tmp1);
  3110     __ add(tmp1, DataLayout::counter_increment, tmp1);
  3111     __ st_ptr(tmp1, counter_addr);
  3115 void LIR_Assembler::align_backward_branch_target() {
  3116   __ align(OptoLoopAlignment);
  3120 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
  3121   // make sure we are expecting a delay
  3122   // this has the side effect of clearing the delay state
  3123   // so we can use _masm instead of _masm->delayed() to do the
  3124   // code generation.
  3125   __ delayed();
  3127   // make sure we only emit one instruction
  3128   int offset = code_offset();
  3129   op->delay_op()->emit_code(this);
  3130 #ifdef ASSERT
  3131   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
  3132     op->delay_op()->print();
  3134   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
  3135          "only one instruction can go in a delay slot");
  3136 #endif
  3138   // we may also be emitting the call info for the instruction
  3139   // which we are the delay slot of.
  3140   CodeEmitInfo* call_info = op->call_info();
  3141   if (call_info) {
  3142     add_call_info(code_offset(), call_info);
  3145   if (VerifyStackAtCalls) {
  3146     _masm->sub(FP, SP, O7);
  3147     _masm->cmp(O7, initial_frame_size_in_bytes());
  3148     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
  3153 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3154   assert(left->is_register(), "can only handle registers");
  3156   if (left->is_single_cpu()) {
  3157     __ neg(left->as_register(), dest->as_register());
  3158   } else if (left->is_single_fpu()) {
  3159     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
  3160   } else if (left->is_double_fpu()) {
  3161     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
  3162   } else {
  3163     assert (left->is_double_cpu(), "Must be a long");
  3164     Register Rlow = left->as_register_lo();
  3165     Register Rhi = left->as_register_hi();
  3166 #ifdef _LP64
  3167     __ sub(G0, Rlow, dest->as_register_lo());
  3168 #else
  3169     __ subcc(G0, Rlow, dest->as_register_lo());
  3170     __ subc (G0, Rhi,  dest->as_register_hi());
  3171 #endif
  3176 void LIR_Assembler::fxch(int i) {
  3177   Unimplemented();
  3180 void LIR_Assembler::fld(int i) {
  3181   Unimplemented();
  3184 void LIR_Assembler::ffree(int i) {
  3185   Unimplemented();
  3188 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
  3189                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3191   // if tmp is invalid, then the function being called doesn't destroy the thread
  3192   if (tmp->is_valid()) {
  3193     __ save_thread(tmp->as_register());
  3195   __ call(dest, relocInfo::runtime_call_type);
  3196   __ delayed()->nop();
  3197   if (info != NULL) {
  3198     add_call_info_here(info);
  3200   if (tmp->is_valid()) {
  3201     __ restore_thread(tmp->as_register());
  3204 #ifdef ASSERT
  3205   __ verify_thread();
  3206 #endif // ASSERT
  3210 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3211 #ifdef _LP64
  3212   ShouldNotReachHere();
  3213 #endif
  3215   NEEDS_CLEANUP;
  3216   if (type == T_LONG) {
  3217     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
  3219     // (extended to allow indexed as well as constant displaced for JSR-166)
  3220     Register idx = noreg; // contains either constant offset or index
  3222     int disp = mem_addr->disp();
  3223     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
  3224       if (!Assembler::is_simm13(disp)) {
  3225         idx = O7;
  3226         __ set(disp, idx);
  3228     } else {
  3229       assert(disp == 0, "not both indexed and disp");
  3230       idx = mem_addr->index()->as_register();
  3233     int null_check_offset = -1;
  3235     Register base = mem_addr->base()->as_register();
  3236     if (src->is_register() && dest->is_address()) {
  3237       // G4 is high half, G5 is low half
  3238       if (VM_Version::v9_instructions_work()) {
  3239         // clear the top bits of G5, and scale up G4
  3240         __ srl (src->as_register_lo(),  0, G5);
  3241         __ sllx(src->as_register_hi(), 32, G4);
  3242         // combine the two halves into the 64 bits of G4
  3243         __ or3(G4, G5, G4);
  3244         null_check_offset = __ offset();
  3245         if (idx == noreg) {
  3246           __ stx(G4, base, disp);
  3247         } else {
  3248           __ stx(G4, base, idx);
  3250       } else {
  3251         __ mov (src->as_register_hi(), G4);
  3252         __ mov (src->as_register_lo(), G5);
  3253         null_check_offset = __ offset();
  3254         if (idx == noreg) {
  3255           __ std(G4, base, disp);
  3256         } else {
  3257           __ std(G4, base, idx);
  3260     } else if (src->is_address() && dest->is_register()) {
  3261       null_check_offset = __ offset();
  3262       if (VM_Version::v9_instructions_work()) {
  3263         if (idx == noreg) {
  3264           __ ldx(base, disp, G5);
  3265         } else {
  3266           __ ldx(base, idx, G5);
  3268         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
  3269         __ mov (G5, dest->as_register_lo());     // copy low half into lo
  3270       } else {
  3271         if (idx == noreg) {
  3272           __ ldd(base, disp, G4);
  3273         } else {
  3274           __ ldd(base, idx, G4);
  3276         // G4 is high half, G5 is low half
  3277         __ mov (G4, dest->as_register_hi());
  3278         __ mov (G5, dest->as_register_lo());
  3280     } else {
  3281       Unimplemented();
  3283     if (info != NULL) {
  3284       add_debug_info_for_null_check(null_check_offset, info);
  3287   } else {
  3288     // use normal move for all other volatiles since they don't need
  3289     // special handling to remain atomic.
  3290     move_op(src, dest, type, lir_patch_none, info, false, false, false);
  3294 void LIR_Assembler::membar() {
  3295   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
  3296   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
  3299 void LIR_Assembler::membar_acquire() {
  3300   // no-op on TSO
  3303 void LIR_Assembler::membar_release() {
  3304   // no-op on TSO
  3307 void LIR_Assembler::membar_loadload() {
  3308   // no-op
  3309   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
  3312 void LIR_Assembler::membar_storestore() {
  3313   // no-op
  3314   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
  3317 void LIR_Assembler::membar_loadstore() {
  3318   // no-op
  3319   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
  3322 void LIR_Assembler::membar_storeload() {
  3323   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3327 // Pack two sequential registers containing 32 bit values
  3328 // into a single 64 bit register.
  3329 // src and src->successor() are packed into dst
  3330 // src and dst may be the same register.
  3331 // Note: src is destroyed
  3332 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
  3333   Register rs = src->as_register();
  3334   Register rd = dst->as_register_lo();
  3335   __ sllx(rs, 32, rs);
  3336   __ srl(rs->successor(), 0, rs->successor());
  3337   __ or3(rs, rs->successor(), rd);
  3340 // Unpack a 64 bit value in a register into
  3341 // two sequential registers.
  3342 // src is unpacked into dst and dst->successor()
  3343 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
  3344   Register rs = src->as_register_lo();
  3345   Register rd = dst->as_register_hi();
  3346   assert_different_registers(rs, rd, rd->successor());
  3347   __ srlx(rs, 32, rd);
  3348   __ srl (rs,  0, rd->successor());
  3352 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
  3353   LIR_Address* addr = addr_opr->as_address_ptr();
  3354   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
  3356   __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
  3360 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3361   assert(result_reg->is_register(), "check");
  3362   __ mov(G2_thread, result_reg->as_register());
  3366 void LIR_Assembler::peephole(LIR_List* lir) {
  3367   LIR_OpList* inst = lir->instructions_list();
  3368   for (int i = 0; i < inst->length(); i++) {
  3369     LIR_Op* op = inst->at(i);
  3370     switch (op->code()) {
  3371       case lir_cond_float_branch:
  3372       case lir_branch: {
  3373         LIR_OpBranch* branch = op->as_OpBranch();
  3374         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
  3375         LIR_Op* delay_op = NULL;
  3376         // we'd like to be able to pull following instructions into
  3377         // this slot but we don't know enough to do it safely yet so
  3378         // only optimize block to block control flow.
  3379         if (LIRFillDelaySlots && branch->block()) {
  3380           LIR_Op* prev = inst->at(i - 1);
  3381           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
  3382             // swap previous instruction into delay slot
  3383             inst->at_put(i - 1, op);
  3384             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3385 #ifndef PRODUCT
  3386             if (LIRTracePeephole) {
  3387               tty->print_cr("delayed");
  3388               inst->at(i - 1)->print();
  3389               inst->at(i)->print();
  3390               tty->cr();
  3392 #endif
  3393             continue;
  3397         if (!delay_op) {
  3398           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
  3400         inst->insert_before(i + 1, delay_op);
  3401         break;
  3403       case lir_static_call:
  3404       case lir_virtual_call:
  3405       case lir_icvirtual_call:
  3406       case lir_optvirtual_call:
  3407       case lir_dynamic_call: {
  3408         LIR_Op* prev = inst->at(i - 1);
  3409         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
  3410             (op->code() != lir_virtual_call ||
  3411              !prev->result_opr()->is_single_cpu() ||
  3412              prev->result_opr()->as_register() != O0) &&
  3413             LIR_Assembler::is_single_instruction(prev)) {
  3414           // Only moves without info can be put into the delay slot.
  3415           // Also don't allow the setup of the receiver in the delay
  3416           // slot for vtable calls.
  3417           inst->at_put(i - 1, op);
  3418           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
  3419 #ifndef PRODUCT
  3420           if (LIRTracePeephole) {
  3421             tty->print_cr("delayed");
  3422             inst->at(i - 1)->print();
  3423             inst->at(i)->print();
  3424             tty->cr();
  3426 #endif
  3427         } else {
  3428           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
  3429           inst->insert_before(i + 1, delay_op);
  3430           i++;
  3433 #if defined(TIERED) && !defined(_LP64)
  3434         // fixup the return value from G1 to O0/O1 for long returns.
  3435         // It's done here instead of in LIRGenerator because there's
  3436         // such a mismatch between the single reg and double reg
  3437         // calling convention.
  3438         LIR_OpJavaCall* callop = op->as_OpJavaCall();
  3439         if (callop->result_opr() == FrameMap::out_long_opr) {
  3440           LIR_OpJavaCall* call;
  3441           LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
  3442           for (int a = 0; a < arguments->length(); a++) {
  3443             arguments[a] = callop->arguments()[a];
  3445           if (op->code() == lir_virtual_call) {
  3446             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3447                                       callop->vtable_offset(), arguments, callop->info());
  3448           } else {
  3449             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
  3450                                       callop->addr(), arguments, callop->info());
  3452           inst->at_put(i - 1, call);
  3453           inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
  3454                                                  T_LONG, lir_patch_none, NULL));
  3456 #endif
  3457         break;
  3463 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
  3464   LIR_Address* addr = src->as_address_ptr();
  3466   assert(data == dest, "swap uses only 2 operands");
  3467   assert (code == lir_xchg, "no xadd on sparc");
  3469   if (data->type() == T_INT) {
  3470     __ swap(as_Address(addr), data->as_register());
  3471   } else if (data->is_oop()) {
  3472     Register obj = data->as_register();
  3473     Register narrow = tmp->as_register();
  3474 #ifdef _LP64
  3475     assert(UseCompressedOops, "swap is 32bit only");
  3476     __ encode_heap_oop(obj, narrow);
  3477     __ swap(as_Address(addr), narrow);
  3478     __ decode_heap_oop(narrow, obj);
  3479 #else
  3480     __ swap(as_Address(addr), obj);
  3481 #endif
  3482   } else {
  3483     ShouldNotReachHere();
  3487 #undef __

mercurial