src/share/vm/opto/escape.cpp

Sun, 13 Apr 2008 17:43:42 -0400

author
coleenp
date
Sun, 13 Apr 2008 17:43:42 -0400
changeset 548
ba764ed4b6f2
parent 537
f96100ac3d12
child 559
b130b98db9cf
permissions
-rw-r--r--

6420645: Create a vm that uses compressed oops for up to 32gb heapsizes
Summary: Compressed oops in instances, arrays, and headers. Code contributors are coleenp, phh, never, swamyv
Reviewed-by: jmasa, kamg, acorn, tbell, kvn, rasbold

duke@435 1 /*
duke@435 2 * Copyright 2005-2006 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_escape.cpp.incl"
duke@435 27
duke@435 28 uint PointsToNode::edge_target(uint e) const {
duke@435 29 assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
duke@435 30 return (_edges->at(e) >> EdgeShift);
duke@435 31 }
duke@435 32
duke@435 33 PointsToNode::EdgeType PointsToNode::edge_type(uint e) const {
duke@435 34 assert(_edges != NULL && e < (uint)_edges->length(), "valid edge index");
duke@435 35 return (EdgeType) (_edges->at(e) & EdgeMask);
duke@435 36 }
duke@435 37
duke@435 38 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 39 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 40 if (_edges == NULL) {
duke@435 41 Arena *a = Compile::current()->comp_arena();
duke@435 42 _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
duke@435 43 }
duke@435 44 _edges->append_if_missing(v);
duke@435 45 }
duke@435 46
duke@435 47 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 48 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 49
duke@435 50 _edges->remove(v);
duke@435 51 }
duke@435 52
duke@435 53 #ifndef PRODUCT
kvn@512 54 static const char *node_type_names[] = {
duke@435 55 "UnknownType",
duke@435 56 "JavaObject",
duke@435 57 "LocalVar",
duke@435 58 "Field"
duke@435 59 };
duke@435 60
kvn@512 61 static const char *esc_names[] = {
duke@435 62 "UnknownEscape",
kvn@500 63 "NoEscape",
kvn@500 64 "ArgEscape",
kvn@500 65 "GlobalEscape"
duke@435 66 };
duke@435 67
kvn@512 68 static const char *edge_type_suffix[] = {
duke@435 69 "?", // UnknownEdge
duke@435 70 "P", // PointsToEdge
duke@435 71 "D", // DeferredEdge
duke@435 72 "F" // FieldEdge
duke@435 73 };
duke@435 74
duke@435 75 void PointsToNode::dump() const {
duke@435 76 NodeType nt = node_type();
duke@435 77 EscapeState es = escape_state();
kvn@500 78 tty->print("%s %s %s [[", node_type_names[(int) nt], esc_names[(int) es], _scalar_replaceable ? "" : "NSR");
duke@435 79 for (uint i = 0; i < edge_count(); i++) {
duke@435 80 tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
duke@435 81 }
duke@435 82 tty->print("]] ");
duke@435 83 if (_node == NULL)
duke@435 84 tty->print_cr("<null>");
duke@435 85 else
duke@435 86 _node->dump();
duke@435 87 }
duke@435 88 #endif
duke@435 89
duke@435 90 ConnectionGraph::ConnectionGraph(Compile * C) : _processed(C->comp_arena()), _node_map(C->comp_arena()) {
duke@435 91 _collecting = true;
duke@435 92 this->_compile = C;
duke@435 93 const PointsToNode &dummy = PointsToNode();
kvn@500 94 int sz = C->unique();
kvn@500 95 _nodes = new(C->comp_arena()) GrowableArray<PointsToNode>(C->comp_arena(), sz, sz, dummy);
duke@435 96 _phantom_object = C->top()->_idx;
duke@435 97 PointsToNode *phn = ptnode_adr(_phantom_object);
kvn@500 98 phn->_node = C->top();
duke@435 99 phn->set_node_type(PointsToNode::JavaObject);
duke@435 100 phn->set_escape_state(PointsToNode::GlobalEscape);
duke@435 101 }
duke@435 102
duke@435 103 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
duke@435 104 PointsToNode *f = ptnode_adr(from_i);
duke@435 105 PointsToNode *t = ptnode_adr(to_i);
duke@435 106
duke@435 107 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 108 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
duke@435 109 assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
duke@435 110 f->add_edge(to_i, PointsToNode::PointsToEdge);
duke@435 111 }
duke@435 112
duke@435 113 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
duke@435 114 PointsToNode *f = ptnode_adr(from_i);
duke@435 115 PointsToNode *t = ptnode_adr(to_i);
duke@435 116
duke@435 117 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 118 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
duke@435 119 assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
duke@435 120 // don't add a self-referential edge, this can occur during removal of
duke@435 121 // deferred edges
duke@435 122 if (from_i != to_i)
duke@435 123 f->add_edge(to_i, PointsToNode::DeferredEdge);
duke@435 124 }
duke@435 125
kvn@500 126 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 127 const Type *adr_type = phase->type(adr);
kvn@500 128 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 129 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 130 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 131 // We are computing a raw address for a store captured by an Initialize
kvn@500 132 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 133 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 134 assert(offs != Type::OffsetBot ||
kvn@500 135 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 136 "offset must be a constant or it is initialization of array");
kvn@500 137 return offs;
kvn@500 138 }
kvn@500 139 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 140 assert(t_ptr != NULL, "must be a pointer type");
duke@435 141 return t_ptr->offset();
duke@435 142 }
duke@435 143
duke@435 144 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
duke@435 145 PointsToNode *f = ptnode_adr(from_i);
duke@435 146 PointsToNode *t = ptnode_adr(to_i);
duke@435 147
duke@435 148 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 149 assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
duke@435 150 assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
duke@435 151 assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
duke@435 152 t->set_offset(offset);
duke@435 153
duke@435 154 f->add_edge(to_i, PointsToNode::FieldEdge);
duke@435 155 }
duke@435 156
duke@435 157 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
duke@435 158 PointsToNode *npt = ptnode_adr(ni);
duke@435 159 PointsToNode::EscapeState old_es = npt->escape_state();
duke@435 160 if (es > old_es)
duke@435 161 npt->set_escape_state(es);
duke@435 162 }
duke@435 163
kvn@500 164 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
kvn@500 165 PointsToNode::EscapeState es, bool done) {
kvn@500 166 PointsToNode* ptadr = ptnode_adr(n->_idx);
kvn@500 167 ptadr->_node = n;
kvn@500 168 ptadr->set_node_type(nt);
kvn@500 169
kvn@500 170 // inline set_escape_state(idx, es);
kvn@500 171 PointsToNode::EscapeState old_es = ptadr->escape_state();
kvn@500 172 if (es > old_es)
kvn@500 173 ptadr->set_escape_state(es);
kvn@500 174
kvn@500 175 if (done)
kvn@500 176 _processed.set(n->_idx);
kvn@500 177 }
kvn@500 178
duke@435 179 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
duke@435 180 uint idx = n->_idx;
duke@435 181 PointsToNode::EscapeState es;
duke@435 182
kvn@500 183 // If we are still collecting or there were no non-escaping allocations
kvn@500 184 // we don't know the answer yet
kvn@500 185 if (_collecting || !_has_allocations)
duke@435 186 return PointsToNode::UnknownEscape;
duke@435 187
duke@435 188 // if the node was created after the escape computation, return
duke@435 189 // UnknownEscape
duke@435 190 if (idx >= (uint)_nodes->length())
duke@435 191 return PointsToNode::UnknownEscape;
duke@435 192
duke@435 193 es = _nodes->at_grow(idx).escape_state();
duke@435 194
duke@435 195 // if we have already computed a value, return it
duke@435 196 if (es != PointsToNode::UnknownEscape)
duke@435 197 return es;
duke@435 198
duke@435 199 // compute max escape state of anything this node could point to
duke@435 200 VectorSet ptset(Thread::current()->resource_area());
duke@435 201 PointsTo(ptset, n, phase);
kvn@500 202 for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
duke@435 203 uint pt = i.elem;
kvn@500 204 PointsToNode::EscapeState pes = _nodes->adr_at(pt)->escape_state();
duke@435 205 if (pes > es)
duke@435 206 es = pes;
duke@435 207 }
duke@435 208 // cache the computed escape state
duke@435 209 assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
duke@435 210 _nodes->adr_at(idx)->set_escape_state(es);
duke@435 211 return es;
duke@435 212 }
duke@435 213
duke@435 214 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
duke@435 215 VectorSet visited(Thread::current()->resource_area());
duke@435 216 GrowableArray<uint> worklist;
duke@435 217
kvn@500 218 n = n->uncast();
duke@435 219 PointsToNode npt = _nodes->at_grow(n->_idx);
duke@435 220
duke@435 221 // If we have a JavaObject, return just that object
duke@435 222 if (npt.node_type() == PointsToNode::JavaObject) {
duke@435 223 ptset.set(n->_idx);
duke@435 224 return;
duke@435 225 }
kvn@500 226 assert(npt._node != NULL, "unregistered node");
kvn@500 227
duke@435 228 worklist.push(n->_idx);
duke@435 229 while(worklist.length() > 0) {
duke@435 230 int ni = worklist.pop();
duke@435 231 PointsToNode pn = _nodes->at_grow(ni);
kvn@500 232 if (!visited.test_set(ni)) {
duke@435 233 // ensure that all inputs of a Phi have been processed
kvn@500 234 assert(!_collecting || !pn._node->is_Phi() || _processed.test(ni),"");
duke@435 235
duke@435 236 int edges_processed = 0;
duke@435 237 for (uint e = 0; e < pn.edge_count(); e++) {
kvn@500 238 uint etgt = pn.edge_target(e);
duke@435 239 PointsToNode::EdgeType et = pn.edge_type(e);
duke@435 240 if (et == PointsToNode::PointsToEdge) {
kvn@500 241 ptset.set(etgt);
duke@435 242 edges_processed++;
duke@435 243 } else if (et == PointsToNode::DeferredEdge) {
kvn@500 244 worklist.push(etgt);
duke@435 245 edges_processed++;
kvn@500 246 } else {
kvn@500 247 assert(false,"neither PointsToEdge or DeferredEdge");
duke@435 248 }
duke@435 249 }
duke@435 250 if (edges_processed == 0) {
kvn@500 251 // no deferred or pointsto edges found. Assume the value was set
kvn@500 252 // outside this method. Add the phantom object to the pointsto set.
duke@435 253 ptset.set(_phantom_object);
duke@435 254 }
duke@435 255 }
duke@435 256 }
duke@435 257 }
duke@435 258
kvn@536 259 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
kvn@536 260 // This method is most expensive during ConnectionGraph construction.
kvn@536 261 // Reuse vectorSet and an additional growable array for deferred edges.
kvn@536 262 deferred_edges->clear();
kvn@536 263 visited->Clear();
duke@435 264
duke@435 265 uint i = 0;
duke@435 266 PointsToNode *ptn = ptnode_adr(ni);
duke@435 267
kvn@536 268 // Mark current edges as visited and move deferred edges to separate array.
kvn@536 269 for (; i < ptn->edge_count(); i++) {
kvn@500 270 uint t = ptn->edge_target(i);
kvn@536 271 #ifdef ASSERT
kvn@536 272 assert(!visited->test_set(t), "expecting no duplications");
kvn@536 273 #else
kvn@536 274 visited->set(t);
kvn@536 275 #endif
kvn@536 276 if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
kvn@536 277 ptn->remove_edge(t, PointsToNode::DeferredEdge);
kvn@536 278 deferred_edges->append(t);
kvn@536 279 }
kvn@536 280 }
kvn@536 281 for (int next = 0; next < deferred_edges->length(); ++next) {
kvn@536 282 uint t = deferred_edges->at(next);
kvn@500 283 PointsToNode *ptt = ptnode_adr(t);
kvn@536 284 for (uint j = 0; j < ptt->edge_count(); j++) {
kvn@536 285 uint n1 = ptt->edge_target(j);
kvn@536 286 if (visited->test_set(n1))
kvn@536 287 continue;
kvn@536 288 switch(ptt->edge_type(j)) {
kvn@536 289 case PointsToNode::PointsToEdge:
kvn@536 290 add_pointsto_edge(ni, n1);
kvn@536 291 if(n1 == _phantom_object) {
kvn@536 292 // Special case - field set outside (globally escaping).
kvn@536 293 ptn->set_escape_state(PointsToNode::GlobalEscape);
duke@435 294 }
kvn@536 295 break;
kvn@536 296 case PointsToNode::DeferredEdge:
kvn@536 297 deferred_edges->append(n1);
kvn@536 298 break;
kvn@536 299 case PointsToNode::FieldEdge:
kvn@536 300 assert(false, "invalid connection graph");
kvn@536 301 break;
duke@435 302 }
duke@435 303 }
duke@435 304 }
duke@435 305 }
duke@435 306
duke@435 307
duke@435 308 // Add an edge to node given by "to_i" from any field of adr_i whose offset
duke@435 309 // matches "offset" A deferred edge is added if to_i is a LocalVar, and
duke@435 310 // a pointsto edge is added if it is a JavaObject
duke@435 311
duke@435 312 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
duke@435 313 PointsToNode an = _nodes->at_grow(adr_i);
duke@435 314 PointsToNode to = _nodes->at_grow(to_i);
duke@435 315 bool deferred = (to.node_type() == PointsToNode::LocalVar);
duke@435 316
duke@435 317 for (uint fe = 0; fe < an.edge_count(); fe++) {
duke@435 318 assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
duke@435 319 int fi = an.edge_target(fe);
duke@435 320 PointsToNode pf = _nodes->at_grow(fi);
duke@435 321 int po = pf.offset();
duke@435 322 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 323 if (deferred)
duke@435 324 add_deferred_edge(fi, to_i);
duke@435 325 else
duke@435 326 add_pointsto_edge(fi, to_i);
duke@435 327 }
duke@435 328 }
duke@435 329 }
duke@435 330
kvn@500 331 // Add a deferred edge from node given by "from_i" to any field of adr_i
kvn@500 332 // whose offset matches "offset".
duke@435 333 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
duke@435 334 PointsToNode an = _nodes->at_grow(adr_i);
duke@435 335 for (uint fe = 0; fe < an.edge_count(); fe++) {
duke@435 336 assert(an.edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
duke@435 337 int fi = an.edge_target(fe);
duke@435 338 PointsToNode pf = _nodes->at_grow(fi);
duke@435 339 int po = pf.offset();
duke@435 340 if (pf.edge_count() == 0) {
duke@435 341 // we have not seen any stores to this field, assume it was set outside this method
duke@435 342 add_pointsto_edge(fi, _phantom_object);
duke@435 343 }
duke@435 344 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 345 add_deferred_edge(from_i, fi);
duke@435 346 }
duke@435 347 }
duke@435 348 }
duke@435 349
kvn@500 350 // Helper functions
kvn@500 351
kvn@500 352 static Node* get_addp_base(Node *addp) {
kvn@500 353 assert(addp->is_AddP(), "must be AddP");
kvn@500 354 //
kvn@500 355 // AddP cases for Base and Address inputs:
kvn@500 356 // case #1. Direct object's field reference:
kvn@500 357 // Allocate
kvn@500 358 // |
kvn@500 359 // Proj #5 ( oop result )
kvn@500 360 // |
kvn@500 361 // CheckCastPP (cast to instance type)
kvn@500 362 // | |
kvn@500 363 // AddP ( base == address )
kvn@500 364 //
kvn@500 365 // case #2. Indirect object's field reference:
kvn@500 366 // Phi
kvn@500 367 // |
kvn@500 368 // CastPP (cast to instance type)
kvn@500 369 // | |
kvn@500 370 // AddP ( base == address )
kvn@500 371 //
kvn@500 372 // case #3. Raw object's field reference for Initialize node:
kvn@500 373 // Allocate
kvn@500 374 // |
kvn@500 375 // Proj #5 ( oop result )
kvn@500 376 // top |
kvn@500 377 // \ |
kvn@500 378 // AddP ( base == top )
kvn@500 379 //
kvn@500 380 // case #4. Array's element reference:
kvn@500 381 // {CheckCastPP | CastPP}
kvn@500 382 // | | |
kvn@500 383 // | AddP ( array's element offset )
kvn@500 384 // | |
kvn@500 385 // AddP ( array's offset )
kvn@500 386 //
kvn@500 387 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 388 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 389 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 390 // Allocate
kvn@500 391 // |
kvn@500 392 // Proj #5 ( oop result )
kvn@500 393 // | |
kvn@500 394 // AddP ( base == address )
kvn@500 395 //
kvn@512 396 // case #6. Constant Pool, ThreadLocal, CastX2P or
kvn@512 397 // Raw object's field reference:
kvn@512 398 // {ConP, ThreadLocal, CastX2P, raw Load}
kvn@500 399 // top |
kvn@500 400 // \ |
kvn@500 401 // AddP ( base == top )
kvn@500 402 //
kvn@512 403 // case #7. Klass's field reference.
kvn@512 404 // LoadKlass
kvn@512 405 // | |
kvn@512 406 // AddP ( base == address )
kvn@512 407 //
kvn@500 408 Node *base = addp->in(AddPNode::Base)->uncast();
kvn@500 409 if (base->is_top()) { // The AddP case #3 and #6.
kvn@500 410 base = addp->in(AddPNode::Address)->uncast();
kvn@500 411 assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
kvn@512 412 base->Opcode() == Op_CastX2P ||
kvn@512 413 (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
kvn@512 414 (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
duke@435 415 }
kvn@500 416 return base;
kvn@500 417 }
kvn@500 418
kvn@500 419 static Node* find_second_addp(Node* addp, Node* n) {
kvn@500 420 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 421
kvn@500 422 Node* addp2 = addp->raw_out(0);
kvn@500 423 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 424 addp2->in(AddPNode::Base) == n &&
kvn@500 425 addp2->in(AddPNode::Address) == addp) {
kvn@500 426
kvn@500 427 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 428 //
kvn@500 429 // Find array's offset to push it on worklist first and
kvn@500 430 // as result process an array's element offset first (pushed second)
kvn@500 431 // to avoid CastPP for the array's offset.
kvn@500 432 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 433 // the AddP (Field) points to. Which would be wrong since
kvn@500 434 // the algorithm expects the CastPP has the same point as
kvn@500 435 // as AddP's base CheckCastPP (LocalVar).
kvn@500 436 //
kvn@500 437 // ArrayAllocation
kvn@500 438 // |
kvn@500 439 // CheckCastPP
kvn@500 440 // |
kvn@500 441 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 442 // | ||
kvn@500 443 // | || Int (element index)
kvn@500 444 // | || | ConI (log(element size))
kvn@500 445 // | || | /
kvn@500 446 // | || LShift
kvn@500 447 // | || /
kvn@500 448 // | AddP (array's element offset)
kvn@500 449 // | |
kvn@500 450 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 451 // | / /
kvn@500 452 // AddP (array's offset)
kvn@500 453 // |
kvn@500 454 // Load/Store (memory operation on array's element)
kvn@500 455 //
kvn@500 456 return addp2;
kvn@500 457 }
kvn@500 458 return NULL;
duke@435 459 }
duke@435 460
duke@435 461 //
duke@435 462 // Adjust the type and inputs of an AddP which computes the
duke@435 463 // address of a field of an instance
duke@435 464 //
duke@435 465 void ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
kvn@500 466 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@500 467 assert(base_t != NULL && base_t->is_instance(), "expecting instance oopptr");
duke@435 468 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 469 if (t == NULL) {
kvn@500 470 // We are computing a raw address for a store captured by an Initialize
kvn@500 471 // compute an appropriate address type.
kvn@500 472 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 473 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@500 474 int offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 475 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 476 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 477 }
duke@435 478 uint inst_id = base_t->instance_id();
duke@435 479 assert(!t->is_instance() || t->instance_id() == inst_id,
duke@435 480 "old type must be non-instance or match new type");
duke@435 481 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@500 482 // Do NOT remove the next call: ensure an new alias index is allocated
kvn@500 483 // for the instance type
duke@435 484 int alias_idx = _compile->get_alias_index(tinst);
duke@435 485 igvn->set_type(addp, tinst);
duke@435 486 // record the allocation in the node map
duke@435 487 set_map(addp->_idx, get_map(base->_idx));
kvn@500 488 // if the Address input is not the appropriate instance type
kvn@500 489 // (due to intervening casts,) insert a cast
duke@435 490 Node *adr = addp->in(AddPNode::Address);
duke@435 491 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@500 492 if (atype != NULL && atype->instance_id() != inst_id) {
duke@435 493 assert(!atype->is_instance(), "no conflicting instances");
duke@435 494 const TypeOopPtr *new_atype = base_t->add_offset(atype->offset())->isa_oopptr();
duke@435 495 Node *acast = new (_compile, 2) CastPPNode(adr, new_atype);
duke@435 496 acast->set_req(0, adr->in(0));
duke@435 497 igvn->set_type(acast, new_atype);
duke@435 498 record_for_optimizer(acast);
duke@435 499 Node *bcast = acast;
duke@435 500 Node *abase = addp->in(AddPNode::Base);
duke@435 501 if (abase != adr) {
duke@435 502 bcast = new (_compile, 2) CastPPNode(abase, base_t);
duke@435 503 bcast->set_req(0, abase->in(0));
duke@435 504 igvn->set_type(bcast, base_t);
duke@435 505 record_for_optimizer(bcast);
duke@435 506 }
duke@435 507 igvn->hash_delete(addp);
duke@435 508 addp->set_req(AddPNode::Base, bcast);
duke@435 509 addp->set_req(AddPNode::Address, acast);
duke@435 510 igvn->hash_insert(addp);
duke@435 511 }
kvn@500 512 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 513 record_for_optimizer(addp);
duke@435 514 }
duke@435 515
duke@435 516 //
duke@435 517 // Create a new version of orig_phi if necessary. Returns either the newly
duke@435 518 // created phi or an existing phi. Sets create_new to indicate wheter a new
duke@435 519 // phi was created. Cache the last newly created phi in the node map.
duke@435 520 //
duke@435 521 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
duke@435 522 Compile *C = _compile;
duke@435 523 new_created = false;
duke@435 524 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 525 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 526 if (phi_alias_idx == alias_idx) {
duke@435 527 return orig_phi;
duke@435 528 }
duke@435 529 // have we already created a Phi for this alias index?
duke@435 530 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 531 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 532 return result;
duke@435 533 }
kvn@473 534 if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
kvn@473 535 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 536 // Retry compilation without escape analysis.
kvn@473 537 // If this is the first failure, the sentinel string will "stick"
kvn@473 538 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 539 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 540 }
kvn@473 541 return NULL;
kvn@473 542 }
duke@435 543 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 544 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 545 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
duke@435 546 set_map_phi(orig_phi->_idx, result);
duke@435 547 igvn->set_type(result, result->bottom_type());
duke@435 548 record_for_optimizer(result);
duke@435 549 new_created = true;
duke@435 550 return result;
duke@435 551 }
duke@435 552
duke@435 553 //
duke@435 554 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 555 // specified alias index.
duke@435 556 //
duke@435 557 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
duke@435 558
duke@435 559 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 560 Compile *C = _compile;
duke@435 561 bool new_phi_created;
kvn@500 562 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 563 if (!new_phi_created) {
duke@435 564 return result;
duke@435 565 }
duke@435 566
duke@435 567 GrowableArray<PhiNode *> phi_list;
duke@435 568 GrowableArray<uint> cur_input;
duke@435 569
duke@435 570 PhiNode *phi = orig_phi;
duke@435 571 uint idx = 1;
duke@435 572 bool finished = false;
duke@435 573 while(!finished) {
duke@435 574 while (idx < phi->req()) {
kvn@500 575 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
duke@435 576 if (mem != NULL && mem->is_Phi()) {
kvn@500 577 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 578 if (new_phi_created) {
duke@435 579 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 580 // processing new one
duke@435 581 phi_list.push(phi);
duke@435 582 cur_input.push(idx);
duke@435 583 phi = mem->as_Phi();
kvn@500 584 result = newphi;
duke@435 585 idx = 1;
duke@435 586 continue;
duke@435 587 } else {
kvn@500 588 mem = newphi;
duke@435 589 }
duke@435 590 }
kvn@473 591 if (C->failing()) {
kvn@473 592 return NULL;
kvn@473 593 }
duke@435 594 result->set_req(idx++, mem);
duke@435 595 }
duke@435 596 #ifdef ASSERT
duke@435 597 // verify that the new Phi has an input for each input of the original
duke@435 598 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 599 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 600 #endif
kvn@500 601 // Check if all new phi's inputs have specified alias index.
kvn@500 602 // Otherwise use old phi.
duke@435 603 for (uint i = 1; i < phi->req(); i++) {
kvn@500 604 Node* in = result->in(i);
kvn@500 605 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 606 }
duke@435 607 // we have finished processing a Phi, see if there are any more to do
duke@435 608 finished = (phi_list.length() == 0 );
duke@435 609 if (!finished) {
duke@435 610 phi = phi_list.pop();
duke@435 611 idx = cur_input.pop();
kvn@500 612 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 613 prev_result->set_req(idx++, result);
kvn@500 614 result = prev_result;
duke@435 615 }
duke@435 616 }
duke@435 617 return result;
duke@435 618 }
duke@435 619
kvn@500 620
kvn@500 621 //
kvn@500 622 // The next methods are derived from methods in MemNode.
kvn@500 623 //
kvn@500 624 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
kvn@500 625 Node *mem = mmem;
kvn@500 626 // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 627 // means an array I have not precisely typed yet. Do not do any
kvn@500 628 // alias stuff with it any time soon.
kvn@500 629 if( tinst->base() != Type::AnyPtr &&
kvn@500 630 !(tinst->klass()->is_java_lang_Object() &&
kvn@500 631 tinst->offset() == Type::OffsetBot) ) {
kvn@500 632 mem = mmem->memory_at(alias_idx);
kvn@500 633 // Update input if it is progress over what we have now
kvn@500 634 }
kvn@500 635 return mem;
kvn@500 636 }
kvn@500 637
kvn@500 638 //
kvn@500 639 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 640 // is the specified alias index.
kvn@500 641 //
kvn@500 642 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *phase) {
kvn@500 643 if (orig_mem == NULL)
kvn@500 644 return orig_mem;
kvn@500 645 Compile* C = phase->C;
kvn@500 646 const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
kvn@500 647 bool is_instance = (tinst != NULL) && tinst->is_instance();
kvn@500 648 Node *prev = NULL;
kvn@500 649 Node *result = orig_mem;
kvn@500 650 while (prev != result) {
kvn@500 651 prev = result;
kvn@500 652 if (result->is_Mem()) {
kvn@500 653 MemNode *mem = result->as_Mem();
kvn@500 654 const Type *at = phase->type(mem->in(MemNode::Address));
kvn@500 655 if (at != Type::TOP) {
kvn@500 656 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@500 657 int idx = C->get_alias_index(at->is_ptr());
kvn@500 658 if (idx == alias_idx)
kvn@500 659 break;
kvn@500 660 }
kvn@500 661 result = mem->in(MemNode::Memory);
kvn@500 662 }
kvn@500 663 if (!is_instance)
kvn@500 664 continue; // don't search further for non-instance types
kvn@500 665 // skip over a call which does not affect this memory slice
kvn@500 666 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 667 Node *proj_in = result->in(0);
kvn@500 668 if (proj_in->is_Call()) {
kvn@500 669 CallNode *call = proj_in->as_Call();
kvn@500 670 if (!call->may_modify(tinst, phase)) {
kvn@500 671 result = call->in(TypeFunc::Memory);
kvn@500 672 }
kvn@500 673 } else if (proj_in->is_Initialize()) {
kvn@500 674 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 675 // Stop if this is the initialization for the object instance which
kvn@500 676 // which contains this memory slice, otherwise skip over it.
kvn@500 677 if (alloc == NULL || alloc->_idx != tinst->instance_id()) {
kvn@500 678 result = proj_in->in(TypeFunc::Memory);
kvn@500 679 }
kvn@500 680 } else if (proj_in->is_MemBar()) {
kvn@500 681 result = proj_in->in(TypeFunc::Memory);
kvn@500 682 }
kvn@500 683 } else if (result->is_MergeMem()) {
kvn@500 684 MergeMemNode *mmem = result->as_MergeMem();
kvn@500 685 result = step_through_mergemem(mmem, alias_idx, tinst);
kvn@500 686 if (result == mmem->base_memory()) {
kvn@500 687 // Didn't find instance memory, search through general slice recursively.
kvn@500 688 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@500 689 result = find_inst_mem(result, alias_idx, orig_phis, phase);
kvn@500 690 if (C->failing()) {
kvn@500 691 return NULL;
kvn@500 692 }
kvn@500 693 mmem->set_memory_at(alias_idx, result);
kvn@500 694 }
kvn@500 695 } else if (result->is_Phi() &&
kvn@500 696 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@500 697 Node *un = result->as_Phi()->unique_input(phase);
kvn@500 698 if (un != NULL) {
kvn@500 699 result = un;
kvn@500 700 } else {
kvn@500 701 break;
kvn@500 702 }
kvn@500 703 }
kvn@500 704 }
kvn@500 705 if (is_instance && result->is_Phi()) {
kvn@500 706 PhiNode *mphi = result->as_Phi();
kvn@500 707 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 708 const TypePtr *t = mphi->adr_type();
kvn@500 709 if (C->get_alias_index(t) != alias_idx) {
kvn@500 710 result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
kvn@500 711 }
kvn@500 712 }
kvn@500 713 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 714 return result;
kvn@500 715 }
kvn@500 716
kvn@500 717
duke@435 718 //
duke@435 719 // Convert the types of unescaped object to instance types where possible,
duke@435 720 // propagate the new type information through the graph, and update memory
duke@435 721 // edges and MergeMem inputs to reflect the new type.
duke@435 722 //
duke@435 723 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 724 // The processing is done in 4 phases:
duke@435 725 //
duke@435 726 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 727 // types for the CheckCastPP for allocations where possible.
duke@435 728 // Propagate the the new types through users as follows:
duke@435 729 // casts and Phi: push users on alloc_worklist
duke@435 730 // AddP: cast Base and Address inputs to the instance type
duke@435 731 // push any AddP users on alloc_worklist and push any memnode
duke@435 732 // users onto memnode_worklist.
duke@435 733 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 734 // search the Memory chain for a store with the appropriate type
duke@435 735 // address type. If a Phi is found, create a new version with
duke@435 736 // the approriate memory slices from each of the Phi inputs.
duke@435 737 // For stores, process the users as follows:
duke@435 738 // MemNode: push on memnode_worklist
duke@435 739 // MergeMem: push on mergemem_worklist
duke@435 740 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 741 // moving the first node encountered of each instance type to the
duke@435 742 // the input corresponding to its alias index.
duke@435 743 // appropriate memory slice.
duke@435 744 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 745 //
duke@435 746 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 747 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 748 // instance type.
duke@435 749 //
duke@435 750 // We start with:
duke@435 751 //
duke@435 752 // 7 Parm #memory
duke@435 753 // 10 ConI "12"
duke@435 754 // 19 CheckCastPP "Foo"
duke@435 755 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 756 // 29 CheckCastPP "Foo"
duke@435 757 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 758 //
duke@435 759 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 760 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 761 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 762 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 763 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 764 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 765 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 766 //
duke@435 767 //
duke@435 768 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 769 // and creating a new alias index for node 30. This gives:
duke@435 770 //
duke@435 771 // 7 Parm #memory
duke@435 772 // 10 ConI "12"
duke@435 773 // 19 CheckCastPP "Foo"
duke@435 774 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 775 // 29 CheckCastPP "Foo" iid=24
duke@435 776 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 777 //
duke@435 778 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 779 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 780 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 781 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 782 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 783 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 784 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 785 //
duke@435 786 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 787 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 788 // node 80 are updated and then the memory nodes are updated with the
duke@435 789 // values computed in phase 2. This results in:
duke@435 790 //
duke@435 791 // 7 Parm #memory
duke@435 792 // 10 ConI "12"
duke@435 793 // 19 CheckCastPP "Foo"
duke@435 794 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 795 // 29 CheckCastPP "Foo" iid=24
duke@435 796 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 797 //
duke@435 798 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 799 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 800 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 801 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 802 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 803 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 804 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 805 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 806 //
duke@435 807 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 808 GrowableArray<Node *> memnode_worklist;
duke@435 809 GrowableArray<Node *> mergemem_worklist;
duke@435 810 GrowableArray<PhiNode *> orig_phis;
duke@435 811 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 812 uint new_index_start = (uint) _compile->num_alias_types();
duke@435 813 VectorSet visited(Thread::current()->resource_area());
duke@435 814 VectorSet ptset(Thread::current()->resource_area());
duke@435 815
kvn@500 816
kvn@500 817 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 818 // Create instance types for the CheckCastPP for allocations where possible.
duke@435 819 while (alloc_worklist.length() != 0) {
duke@435 820 Node *n = alloc_worklist.pop();
duke@435 821 uint ni = n->_idx;
kvn@500 822 const TypeOopPtr* tinst = NULL;
duke@435 823 if (n->is_Call()) {
duke@435 824 CallNode *alloc = n->as_Call();
duke@435 825 // copy escape information to call node
kvn@500 826 PointsToNode* ptn = _nodes->adr_at(alloc->_idx);
duke@435 827 PointsToNode::EscapeState es = escape_state(alloc, igvn);
kvn@500 828 // We have an allocation or call which returns a Java object,
kvn@500 829 // see if it is unescaped.
kvn@500 830 if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
duke@435 831 continue;
kvn@474 832 if (alloc->is_Allocate()) {
kvn@474 833 // Set the scalar_replaceable flag before the next check.
kvn@474 834 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@474 835 }
kvn@500 836 // find CheckCastPP of call return value
kvn@500 837 n = alloc->result_cast();
kvn@500 838 if (n == NULL || // No uses accept Initialize or
kvn@500 839 !n->is_CheckCastPP()) // not unique CheckCastPP.
kvn@500 840 continue;
kvn@500 841 // The inline code for Object.clone() casts the allocation result to
kvn@500 842 // java.lang.Object and then to the the actual type of the allocated
kvn@500 843 // object. Detect this case and use the second cast.
kvn@500 844 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@500 845 && igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT) {
kvn@500 846 Node *cast2 = NULL;
kvn@500 847 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 848 Node *use = n->fast_out(i);
kvn@500 849 if (use->is_CheckCastPP()) {
kvn@500 850 cast2 = use;
kvn@500 851 break;
kvn@500 852 }
kvn@500 853 }
kvn@500 854 if (cast2 != NULL) {
kvn@500 855 n = cast2;
kvn@500 856 } else {
kvn@500 857 continue;
kvn@500 858 }
kvn@500 859 }
kvn@500 860 set_escape_state(n->_idx, es);
kvn@500 861 // in order for an object to be stackallocatable, it must be:
kvn@500 862 // - a direct allocation (not a call returning an object)
kvn@500 863 // - non-escaping
kvn@500 864 // - eligible to be a unique type
kvn@500 865 // - not determined to be ineligible by escape analysis
duke@435 866 set_map(alloc->_idx, n);
duke@435 867 set_map(n->_idx, alloc);
kvn@500 868 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
kvn@500 869 if (t == NULL)
duke@435 870 continue; // not a TypeInstPtr
kvn@500 871 tinst = t->cast_to_instance(ni);
duke@435 872 igvn->hash_delete(n);
duke@435 873 igvn->set_type(n, tinst);
duke@435 874 n->raise_bottom_type(tinst);
duke@435 875 igvn->hash_insert(n);
kvn@500 876 record_for_optimizer(n);
kvn@500 877 if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
kvn@500 878 (t->isa_instptr() || t->isa_aryptr())) {
kvn@500 879 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 880 // the users of the raw allocation result and push AddP users
kvn@500 881 // on alloc_worklist.
kvn@500 882 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 883 assert (raw_result != NULL, "must have an allocation result");
kvn@500 884 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 885 Node *use = raw_result->fast_out(i);
kvn@500 886 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 887 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 888 if (addp2 != NULL) {
kvn@500 889 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 890 alloc_worklist.append_if_missing(addp2);
kvn@500 891 }
kvn@500 892 alloc_worklist.append_if_missing(use);
kvn@500 893 } else if (use->is_Initialize()) {
kvn@500 894 memnode_worklist.append_if_missing(use);
kvn@500 895 }
kvn@500 896 }
kvn@500 897 }
duke@435 898 } else if (n->is_AddP()) {
duke@435 899 ptset.Clear();
kvn@500 900 PointsTo(ptset, get_addp_base(n), igvn);
duke@435 901 assert(ptset.Size() == 1, "AddP address is unique");
kvn@500 902 uint elem = ptset.getelem(); // Allocation node's index
kvn@500 903 if (elem == _phantom_object)
kvn@500 904 continue; // Assume the value was set outside this method.
kvn@500 905 Node *base = get_map(elem); // CheckCastPP node
duke@435 906 split_AddP(n, base, igvn);
kvn@500 907 tinst = igvn->type(base)->isa_oopptr();
kvn@500 908 } else if (n->is_Phi() ||
kvn@500 909 n->is_CheckCastPP() ||
kvn@500 910 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 911 if (visited.test_set(n->_idx)) {
duke@435 912 assert(n->is_Phi(), "loops only through Phi's");
duke@435 913 continue; // already processed
duke@435 914 }
duke@435 915 ptset.Clear();
duke@435 916 PointsTo(ptset, n, igvn);
duke@435 917 if (ptset.Size() == 1) {
kvn@500 918 uint elem = ptset.getelem(); // Allocation node's index
kvn@500 919 if (elem == _phantom_object)
kvn@500 920 continue; // Assume the value was set outside this method.
kvn@500 921 Node *val = get_map(elem); // CheckCastPP node
duke@435 922 TypeNode *tn = n->as_Type();
kvn@500 923 tinst = igvn->type(val)->isa_oopptr();
kvn@500 924 assert(tinst != NULL && tinst->is_instance() &&
kvn@500 925 tinst->instance_id() == elem , "instance type expected.");
kvn@500 926 const TypeOopPtr *tn_t = igvn->type(tn)->isa_oopptr();
duke@435 927
kvn@500 928 if (tn_t != NULL &&
kvn@500 929 tinst->cast_to_instance(TypeOopPtr::UNKNOWN_INSTANCE)->higher_equal(tn_t)) {
duke@435 930 igvn->hash_delete(tn);
kvn@500 931 igvn->set_type(tn, tinst);
kvn@500 932 tn->set_type(tinst);
duke@435 933 igvn->hash_insert(tn);
kvn@500 934 record_for_optimizer(n);
duke@435 935 }
duke@435 936 }
duke@435 937 } else {
duke@435 938 continue;
duke@435 939 }
duke@435 940 // push users on appropriate worklist
duke@435 941 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 942 Node *use = n->fast_out(i);
duke@435 943 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@500 944 memnode_worklist.append_if_missing(use);
kvn@500 945 } else if (use->is_Initialize()) {
kvn@500 946 memnode_worklist.append_if_missing(use);
kvn@500 947 } else if (use->is_MergeMem()) {
kvn@500 948 mergemem_worklist.append_if_missing(use);
kvn@500 949 } else if (use->is_Call() && tinst != NULL) {
kvn@500 950 // Look for MergeMem nodes for calls which reference unique allocation
kvn@500 951 // (through CheckCastPP nodes) even for debug info.
kvn@500 952 Node* m = use->in(TypeFunc::Memory);
kvn@500 953 uint iid = tinst->instance_id();
kvn@500 954 while (m->is_Proj() && m->in(0)->is_Call() &&
kvn@500 955 m->in(0) != use && !m->in(0)->_idx != iid) {
kvn@500 956 m = m->in(0)->in(TypeFunc::Memory);
kvn@500 957 }
kvn@500 958 if (m->is_MergeMem()) {
kvn@500 959 mergemem_worklist.append_if_missing(m);
kvn@500 960 }
kvn@500 961 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 962 Node* addp2 = find_second_addp(use, n);
kvn@500 963 if (addp2 != NULL) {
kvn@500 964 alloc_worklist.append_if_missing(addp2);
kvn@500 965 }
kvn@500 966 alloc_worklist.append_if_missing(use);
kvn@500 967 } else if (use->is_Phi() ||
kvn@500 968 use->is_CheckCastPP() ||
kvn@500 969 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 970 alloc_worklist.append_if_missing(use);
duke@435 971 }
duke@435 972 }
duke@435 973
duke@435 974 }
kvn@500 975 // New alias types were created in split_AddP().
duke@435 976 uint new_index_end = (uint) _compile->num_alias_types();
duke@435 977
duke@435 978 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 979 // compute new values for Memory inputs (the Memory inputs are not
duke@435 980 // actually updated until phase 4.)
duke@435 981 if (memnode_worklist.length() == 0)
duke@435 982 return; // nothing to do
duke@435 983
duke@435 984 while (memnode_worklist.length() != 0) {
duke@435 985 Node *n = memnode_worklist.pop();
kvn@500 986 if (visited.test_set(n->_idx))
kvn@500 987 continue;
duke@435 988 if (n->is_Phi()) {
duke@435 989 assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
duke@435 990 // we don't need to do anything, but the users must be pushed if we haven't processed
duke@435 991 // this Phi before
kvn@500 992 } else if (n->is_Initialize()) {
kvn@500 993 // we don't need to do anything, but the users of the memory projection must be pushed
kvn@500 994 n = n->as_Initialize()->proj_out(TypeFunc::Memory);
kvn@500 995 if (n == NULL)
duke@435 996 continue;
duke@435 997 } else {
duke@435 998 assert(n->is_Mem(), "memory node required.");
duke@435 999 Node *addr = n->in(MemNode::Address);
kvn@500 1000 assert(addr->is_AddP(), "AddP required");
duke@435 1001 const Type *addr_t = igvn->type(addr);
duke@435 1002 if (addr_t == Type::TOP)
duke@435 1003 continue;
duke@435 1004 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 1005 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 1006 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@500 1007 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
kvn@473 1008 if (_compile->failing()) {
kvn@473 1009 return;
kvn@473 1010 }
kvn@500 1011 if (mem != n->in(MemNode::Memory)) {
duke@435 1012 set_map(n->_idx, mem);
kvn@500 1013 _nodes->adr_at(n->_idx)->_node = n;
kvn@500 1014 }
duke@435 1015 if (n->is_Load()) {
duke@435 1016 continue; // don't push users
duke@435 1017 } else if (n->is_LoadStore()) {
duke@435 1018 // get the memory projection
duke@435 1019 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1020 Node *use = n->fast_out(i);
duke@435 1021 if (use->Opcode() == Op_SCMemProj) {
duke@435 1022 n = use;
duke@435 1023 break;
duke@435 1024 }
duke@435 1025 }
duke@435 1026 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 1027 }
duke@435 1028 }
duke@435 1029 // push user on appropriate worklist
duke@435 1030 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1031 Node *use = n->fast_out(i);
duke@435 1032 if (use->is_Phi()) {
kvn@500 1033 memnode_worklist.append_if_missing(use);
duke@435 1034 } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@500 1035 memnode_worklist.append_if_missing(use);
kvn@500 1036 } else if (use->is_Initialize()) {
kvn@500 1037 memnode_worklist.append_if_missing(use);
duke@435 1038 } else if (use->is_MergeMem()) {
kvn@500 1039 mergemem_worklist.append_if_missing(use);
duke@435 1040 }
duke@435 1041 }
duke@435 1042 }
duke@435 1043
kvn@500 1044 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@500 1045 // Walk each memory moving the first node encountered of each
kvn@500 1046 // instance type to the the input corresponding to its alias index.
duke@435 1047 while (mergemem_worklist.length() != 0) {
duke@435 1048 Node *n = mergemem_worklist.pop();
duke@435 1049 assert(n->is_MergeMem(), "MergeMem node required.");
kvn@500 1050 if (visited.test_set(n->_idx))
kvn@500 1051 continue;
duke@435 1052 MergeMemNode *nmm = n->as_MergeMem();
duke@435 1053 // Note: we don't want to use MergeMemStream here because we only want to
kvn@500 1054 // scan inputs which exist at the start, not ones we add during processing.
duke@435 1055 uint nslices = nmm->req();
duke@435 1056 igvn->hash_delete(nmm);
duke@435 1057 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 1058 Node* mem = nmm->in(i);
kvn@500 1059 Node* cur = NULL;
duke@435 1060 if (mem == NULL || mem->is_top())
duke@435 1061 continue;
duke@435 1062 while (mem->is_Mem()) {
duke@435 1063 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 1064 if (at != Type::TOP) {
duke@435 1065 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 1066 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 1067 if (idx == i) {
duke@435 1068 if (cur == NULL)
duke@435 1069 cur = mem;
duke@435 1070 } else {
duke@435 1071 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 1072 nmm->set_memory_at(idx, mem);
duke@435 1073 }
duke@435 1074 }
duke@435 1075 }
duke@435 1076 mem = mem->in(MemNode::Memory);
duke@435 1077 }
duke@435 1078 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 1079 // Find any instance of the current type if we haven't encountered
kvn@500 1080 // a value of the instance along the chain.
kvn@500 1081 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1082 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 1083 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 1084 if (nmm->is_empty_memory(m)) {
kvn@500 1085 Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
kvn@500 1086 if (_compile->failing()) {
kvn@500 1087 return;
kvn@500 1088 }
kvn@500 1089 nmm->set_memory_at(ni, result);
kvn@500 1090 }
kvn@500 1091 }
kvn@500 1092 }
kvn@500 1093 }
kvn@500 1094 // Find the rest of instances values
kvn@500 1095 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1096 const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
kvn@500 1097 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 1098 if (result == nmm->base_memory()) {
kvn@500 1099 // Didn't find instance memory, search through general slice recursively.
kvn@500 1100 result = nmm->memory_at(igvn->C->get_general_index(ni));
kvn@500 1101 result = find_inst_mem(result, ni, orig_phis, igvn);
kvn@500 1102 if (_compile->failing()) {
kvn@500 1103 return;
kvn@500 1104 }
kvn@500 1105 nmm->set_memory_at(ni, result);
kvn@500 1106 }
kvn@500 1107 }
kvn@500 1108 igvn->hash_insert(nmm);
kvn@500 1109 record_for_optimizer(nmm);
kvn@500 1110
kvn@500 1111 // Propagate new memory slices to following MergeMem nodes.
kvn@500 1112 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1113 Node *use = n->fast_out(i);
kvn@500 1114 if (use->is_Call()) {
kvn@500 1115 CallNode* in = use->as_Call();
kvn@500 1116 if (in->proj_out(TypeFunc::Memory) != NULL) {
kvn@500 1117 Node* m = in->proj_out(TypeFunc::Memory);
kvn@500 1118 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
kvn@500 1119 Node* mm = m->fast_out(j);
kvn@500 1120 if (mm->is_MergeMem()) {
kvn@500 1121 mergemem_worklist.append_if_missing(mm);
kvn@500 1122 }
kvn@500 1123 }
kvn@500 1124 }
kvn@500 1125 if (use->is_Allocate()) {
kvn@500 1126 use = use->as_Allocate()->initialization();
kvn@500 1127 if (use == NULL) {
kvn@500 1128 continue;
kvn@500 1129 }
kvn@500 1130 }
kvn@500 1131 }
kvn@500 1132 if (use->is_Initialize()) {
kvn@500 1133 InitializeNode* in = use->as_Initialize();
kvn@500 1134 if (in->proj_out(TypeFunc::Memory) != NULL) {
kvn@500 1135 Node* m = in->proj_out(TypeFunc::Memory);
kvn@500 1136 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
kvn@500 1137 Node* mm = m->fast_out(j);
kvn@500 1138 if (mm->is_MergeMem()) {
kvn@500 1139 mergemem_worklist.append_if_missing(mm);
duke@435 1140 }
duke@435 1141 }
duke@435 1142 }
duke@435 1143 }
duke@435 1144 }
duke@435 1145 }
duke@435 1146
kvn@500 1147 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 1148 // the Memory input of memnodes
duke@435 1149 // First update the inputs of any non-instance Phi's from
duke@435 1150 // which we split out an instance Phi. Note we don't have
duke@435 1151 // to recursively process Phi's encounted on the input memory
duke@435 1152 // chains as is done in split_memory_phi() since they will
duke@435 1153 // also be processed here.
duke@435 1154 while (orig_phis.length() != 0) {
duke@435 1155 PhiNode *phi = orig_phis.pop();
duke@435 1156 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 1157 igvn->hash_delete(phi);
duke@435 1158 for (uint i = 1; i < phi->req(); i++) {
duke@435 1159 Node *mem = phi->in(i);
kvn@500 1160 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
kvn@500 1161 if (_compile->failing()) {
kvn@500 1162 return;
kvn@500 1163 }
duke@435 1164 if (mem != new_mem) {
duke@435 1165 phi->set_req(i, new_mem);
duke@435 1166 }
duke@435 1167 }
duke@435 1168 igvn->hash_insert(phi);
duke@435 1169 record_for_optimizer(phi);
duke@435 1170 }
duke@435 1171
duke@435 1172 // Update the memory inputs of MemNodes with the value we computed
duke@435 1173 // in Phase 2.
duke@435 1174 for (int i = 0; i < _nodes->length(); i++) {
duke@435 1175 Node *nmem = get_map(i);
duke@435 1176 if (nmem != NULL) {
kvn@500 1177 Node *n = _nodes->adr_at(i)->_node;
duke@435 1178 if (n != NULL && n->is_Mem()) {
duke@435 1179 igvn->hash_delete(n);
duke@435 1180 n->set_req(MemNode::Memory, nmem);
duke@435 1181 igvn->hash_insert(n);
duke@435 1182 record_for_optimizer(n);
duke@435 1183 }
duke@435 1184 }
duke@435 1185 }
duke@435 1186 }
duke@435 1187
duke@435 1188 void ConnectionGraph::compute_escape() {
duke@435 1189
kvn@500 1190 // 1. Populate Connection Graph with Ideal nodes.
duke@435 1191
kvn@500 1192 Unique_Node_List worklist_init;
kvn@500 1193 worklist_init.map(_compile->unique(), NULL); // preallocate space
kvn@500 1194
kvn@500 1195 // Initialize worklist
kvn@500 1196 if (_compile->root() != NULL) {
kvn@500 1197 worklist_init.push(_compile->root());
kvn@500 1198 }
kvn@500 1199
kvn@500 1200 GrowableArray<int> cg_worklist;
kvn@500 1201 PhaseGVN* igvn = _compile->initial_gvn();
kvn@500 1202 bool has_allocations = false;
kvn@500 1203
kvn@500 1204 // Push all useful nodes onto CG list and set their type.
kvn@500 1205 for( uint next = 0; next < worklist_init.size(); ++next ) {
kvn@500 1206 Node* n = worklist_init.at(next);
kvn@500 1207 record_for_escape_analysis(n, igvn);
kvn@500 1208 if (n->is_Call() &&
kvn@500 1209 _nodes->adr_at(n->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@500 1210 has_allocations = true;
kvn@500 1211 }
kvn@500 1212 if(n->is_AddP())
kvn@500 1213 cg_worklist.append(n->_idx);
kvn@500 1214 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1215 Node* m = n->fast_out(i); // Get user
kvn@500 1216 worklist_init.push(m);
kvn@500 1217 }
kvn@500 1218 }
kvn@500 1219
kvn@500 1220 if (has_allocations) {
kvn@500 1221 _has_allocations = true;
kvn@500 1222 } else {
kvn@500 1223 _has_allocations = false;
kvn@500 1224 _collecting = false;
kvn@500 1225 return; // Nothing to do.
kvn@500 1226 }
kvn@500 1227
kvn@500 1228 // 2. First pass to create simple CG edges (doesn't require to walk CG).
kvn@500 1229 for( uint next = 0; next < _delayed_worklist.size(); ++next ) {
kvn@500 1230 Node* n = _delayed_worklist.at(next);
kvn@500 1231 build_connection_graph(n, igvn);
kvn@500 1232 }
kvn@500 1233
kvn@500 1234 // 3. Pass to create fields edges (Allocate -F-> AddP).
kvn@500 1235 for( int next = 0; next < cg_worklist.length(); ++next ) {
kvn@500 1236 int ni = cg_worklist.at(next);
kvn@500 1237 build_connection_graph(_nodes->adr_at(ni)->_node, igvn);
kvn@500 1238 }
kvn@500 1239
kvn@500 1240 cg_worklist.clear();
kvn@500 1241 cg_worklist.append(_phantom_object);
kvn@500 1242
kvn@500 1243 // 4. Build Connection Graph which need
kvn@500 1244 // to walk the connection graph.
kvn@500 1245 for (uint ni = 0; ni < (uint)_nodes->length(); ni++) {
kvn@500 1246 PointsToNode* ptn = _nodes->adr_at(ni);
kvn@500 1247 Node *n = ptn->_node;
kvn@500 1248 if (n != NULL) { // Call, AddP, LoadP, StoreP
kvn@500 1249 build_connection_graph(n, igvn);
kvn@500 1250 if (ptn->node_type() != PointsToNode::UnknownType)
kvn@500 1251 cg_worklist.append(n->_idx); // Collect CG nodes
kvn@500 1252 }
duke@435 1253 }
duke@435 1254
duke@435 1255 VectorSet ptset(Thread::current()->resource_area());
kvn@536 1256 GrowableArray<Node*> alloc_worklist;
kvn@536 1257 GrowableArray<int> worklist;
kvn@536 1258 GrowableArray<uint> deferred_edges;
kvn@536 1259 VectorSet visited(Thread::current()->resource_area());
duke@435 1260
duke@435 1261 // remove deferred edges from the graph and collect
duke@435 1262 // information we will need for type splitting
kvn@500 1263 for( int next = 0; next < cg_worklist.length(); ++next ) {
kvn@500 1264 int ni = cg_worklist.at(next);
kvn@500 1265 PointsToNode* ptn = _nodes->adr_at(ni);
duke@435 1266 PointsToNode::NodeType nt = ptn->node_type();
duke@435 1267 Node *n = ptn->_node;
duke@435 1268 if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
kvn@536 1269 remove_deferred(ni, &deferred_edges, &visited);
duke@435 1270 if (n->is_AddP()) {
kvn@500 1271 // If this AddP computes an address which may point to more that one
kvn@500 1272 // object, nothing the address points to can be scalar replaceable.
kvn@500 1273 Node *base = get_addp_base(n);
duke@435 1274 ptset.Clear();
duke@435 1275 PointsTo(ptset, base, igvn);
duke@435 1276 if (ptset.Size() > 1) {
duke@435 1277 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1278 uint pt = j.elem;
kvn@500 1279 ptnode_adr(pt)->_scalar_replaceable = false;
duke@435 1280 }
duke@435 1281 }
duke@435 1282 }
kvn@500 1283 } else if (nt == PointsToNode::JavaObject && n->is_Call()) {
kvn@500 1284 // Push call on alloc_worlist (alocations are calls)
kvn@500 1285 // for processing by split_unique_types().
kvn@500 1286 alloc_worklist.append(n);
duke@435 1287 }
duke@435 1288 }
kvn@500 1289
duke@435 1290 // push all GlobalEscape nodes on the worklist
kvn@500 1291 for( int next = 0; next < cg_worklist.length(); ++next ) {
kvn@500 1292 int nk = cg_worklist.at(next);
kvn@500 1293 if (_nodes->adr_at(nk)->escape_state() == PointsToNode::GlobalEscape)
kvn@500 1294 worklist.append(nk);
duke@435 1295 }
duke@435 1296 // mark all node reachable from GlobalEscape nodes
duke@435 1297 while(worklist.length() > 0) {
duke@435 1298 PointsToNode n = _nodes->at(worklist.pop());
duke@435 1299 for (uint ei = 0; ei < n.edge_count(); ei++) {
duke@435 1300 uint npi = n.edge_target(ei);
duke@435 1301 PointsToNode *np = ptnode_adr(npi);
kvn@500 1302 if (np->escape_state() < PointsToNode::GlobalEscape) {
duke@435 1303 np->set_escape_state(PointsToNode::GlobalEscape);
duke@435 1304 worklist.append_if_missing(npi);
duke@435 1305 }
duke@435 1306 }
duke@435 1307 }
duke@435 1308
duke@435 1309 // push all ArgEscape nodes on the worklist
kvn@500 1310 for( int next = 0; next < cg_worklist.length(); ++next ) {
kvn@500 1311 int nk = cg_worklist.at(next);
kvn@500 1312 if (_nodes->adr_at(nk)->escape_state() == PointsToNode::ArgEscape)
duke@435 1313 worklist.push(nk);
duke@435 1314 }
duke@435 1315 // mark all node reachable from ArgEscape nodes
duke@435 1316 while(worklist.length() > 0) {
duke@435 1317 PointsToNode n = _nodes->at(worklist.pop());
duke@435 1318 for (uint ei = 0; ei < n.edge_count(); ei++) {
duke@435 1319 uint npi = n.edge_target(ei);
duke@435 1320 PointsToNode *np = ptnode_adr(npi);
kvn@500 1321 if (np->escape_state() < PointsToNode::ArgEscape) {
duke@435 1322 np->set_escape_state(PointsToNode::ArgEscape);
duke@435 1323 worklist.append_if_missing(npi);
duke@435 1324 }
duke@435 1325 }
duke@435 1326 }
kvn@500 1327
kvn@500 1328 // push all NoEscape nodes on the worklist
kvn@500 1329 for( int next = 0; next < cg_worklist.length(); ++next ) {
kvn@500 1330 int nk = cg_worklist.at(next);
kvn@500 1331 if (_nodes->adr_at(nk)->escape_state() == PointsToNode::NoEscape)
kvn@500 1332 worklist.push(nk);
kvn@500 1333 }
kvn@500 1334 // mark all node reachable from NoEscape nodes
kvn@500 1335 while(worklist.length() > 0) {
kvn@500 1336 PointsToNode n = _nodes->at(worklist.pop());
kvn@500 1337 for (uint ei = 0; ei < n.edge_count(); ei++) {
kvn@500 1338 uint npi = n.edge_target(ei);
kvn@500 1339 PointsToNode *np = ptnode_adr(npi);
kvn@500 1340 if (np->escape_state() < PointsToNode::NoEscape) {
kvn@500 1341 np->set_escape_state(PointsToNode::NoEscape);
kvn@500 1342 worklist.append_if_missing(npi);
kvn@500 1343 }
kvn@500 1344 }
kvn@500 1345 }
kvn@500 1346
duke@435 1347 _collecting = false;
duke@435 1348
kvn@500 1349 has_allocations = false; // Are there scalar replaceable allocations?
kvn@473 1350
kvn@500 1351 for( int next = 0; next < alloc_worklist.length(); ++next ) {
kvn@500 1352 Node* n = alloc_worklist.at(next);
kvn@500 1353 uint ni = n->_idx;
kvn@500 1354 PointsToNode* ptn = _nodes->adr_at(ni);
kvn@500 1355 PointsToNode::EscapeState es = ptn->escape_state();
kvn@500 1356 if (ptn->escape_state() == PointsToNode::NoEscape &&
kvn@500 1357 ptn->_scalar_replaceable) {
kvn@500 1358 has_allocations = true;
kvn@500 1359 break;
kvn@500 1360 }
kvn@500 1361 }
kvn@500 1362 if (!has_allocations) {
kvn@500 1363 return; // Nothing to do.
kvn@500 1364 }
duke@435 1365
kvn@500 1366 if(_compile->AliasLevel() >= 3 && EliminateAllocations) {
kvn@500 1367 // Now use the escape information to create unique types for
kvn@500 1368 // unescaped objects
kvn@500 1369 split_unique_types(alloc_worklist);
kvn@500 1370 if (_compile->failing()) return;
duke@435 1371
kvn@500 1372 // Clean up after split unique types.
kvn@500 1373 ResourceMark rm;
kvn@500 1374 PhaseRemoveUseless pru(_compile->initial_gvn(), _compile->for_igvn());
duke@435 1375
kvn@500 1376 #ifdef ASSERT
kvn@500 1377 } else if (PrintEscapeAnalysis || PrintEliminateAllocations) {
kvn@500 1378 tty->print("=== No allocations eliminated for ");
kvn@500 1379 C()->method()->print_short_name();
kvn@500 1380 if(!EliminateAllocations) {
kvn@500 1381 tty->print(" since EliminateAllocations is off ===");
kvn@500 1382 } else if(_compile->AliasLevel() < 3) {
kvn@500 1383 tty->print(" since AliasLevel < 3 ===");
duke@435 1384 }
kvn@500 1385 tty->cr();
kvn@500 1386 #endif
duke@435 1387 }
duke@435 1388 }
duke@435 1389
duke@435 1390 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
duke@435 1391
duke@435 1392 switch (call->Opcode()) {
kvn@500 1393 #ifdef ASSERT
duke@435 1394 case Op_Allocate:
duke@435 1395 case Op_AllocateArray:
duke@435 1396 case Op_Lock:
duke@435 1397 case Op_Unlock:
kvn@500 1398 assert(false, "should be done already");
duke@435 1399 break;
kvn@500 1400 #endif
kvn@500 1401 case Op_CallLeafNoFP:
kvn@500 1402 {
kvn@500 1403 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@500 1404 // Adjust escape state for outgoing arguments.
kvn@500 1405 const TypeTuple * d = call->tf()->domain();
kvn@500 1406 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1407 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1408 const Type* at = d->field_at(i);
kvn@500 1409 Node *arg = call->in(i)->uncast();
kvn@500 1410 const Type *aat = phase->type(arg);
kvn@500 1411 if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
kvn@500 1412 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@500 1413 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@500 1414 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1415 if (arg->is_AddP()) {
kvn@500 1416 //
kvn@500 1417 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 1418 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 1419 //
kvn@500 1420 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@500 1421 // pointer to the base (with offset) is passed as argument.
kvn@500 1422 //
kvn@500 1423 arg = get_addp_base(arg);
kvn@500 1424 }
kvn@500 1425 ptset.Clear();
kvn@500 1426 PointsTo(ptset, arg, phase);
kvn@500 1427 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1428 uint pt = j.elem;
kvn@500 1429 set_escape_state(pt, PointsToNode::ArgEscape);
kvn@500 1430 }
kvn@500 1431 }
kvn@500 1432 }
kvn@500 1433 break;
kvn@500 1434 }
duke@435 1435
duke@435 1436 case Op_CallStaticJava:
duke@435 1437 // For a static call, we know exactly what method is being called.
duke@435 1438 // Use bytecode estimator to record the call's escape affects
duke@435 1439 {
duke@435 1440 ciMethod *meth = call->as_CallJava()->method();
kvn@500 1441 BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@500 1442 // fall-through if not a Java method or no analyzer information
kvn@500 1443 if (call_analyzer != NULL) {
duke@435 1444 const TypeTuple * d = call->tf()->domain();
duke@435 1445 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1446 bool copy_dependencies = false;
duke@435 1447 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1448 const Type* at = d->field_at(i);
duke@435 1449 int k = i - TypeFunc::Parms;
duke@435 1450
duke@435 1451 if (at->isa_oopptr() != NULL) {
kvn@500 1452 Node *arg = call->in(i)->uncast();
duke@435 1453
kvn@500 1454 bool global_escapes = false;
kvn@500 1455 bool fields_escapes = false;
kvn@500 1456 if (!call_analyzer->is_arg_stack(k)) {
duke@435 1457 // The argument global escapes, mark everything it could point to
kvn@500 1458 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@500 1459 global_escapes = true;
kvn@500 1460 } else {
kvn@500 1461 if (!call_analyzer->is_arg_local(k)) {
kvn@500 1462 // The argument itself doesn't escape, but any fields might
kvn@500 1463 fields_escapes = true;
kvn@500 1464 }
kvn@500 1465 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1466 copy_dependencies = true;
kvn@500 1467 }
duke@435 1468
kvn@500 1469 ptset.Clear();
kvn@500 1470 PointsTo(ptset, arg, phase);
kvn@500 1471 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1472 uint pt = j.elem;
kvn@500 1473 if (global_escapes) {
kvn@500 1474 //The argument global escapes, mark everything it could point to
duke@435 1475 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@500 1476 } else {
kvn@500 1477 if (fields_escapes) {
kvn@500 1478 // The argument itself doesn't escape, but any fields might
kvn@500 1479 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
kvn@500 1480 }
kvn@500 1481 set_escape_state(pt, PointsToNode::ArgEscape);
duke@435 1482 }
duke@435 1483 }
duke@435 1484 }
duke@435 1485 }
kvn@500 1486 if (copy_dependencies)
kvn@500 1487 call_analyzer->copy_dependencies(C()->dependencies());
duke@435 1488 break;
duke@435 1489 }
duke@435 1490 }
duke@435 1491
duke@435 1492 default:
kvn@500 1493 // Fall-through here if not a Java method or no analyzer information
kvn@500 1494 // or some other type of call, assume the worst case: all arguments
duke@435 1495 // globally escape.
duke@435 1496 {
duke@435 1497 // adjust escape state for outgoing arguments
duke@435 1498 const TypeTuple * d = call->tf()->domain();
duke@435 1499 VectorSet ptset(Thread::current()->resource_area());
duke@435 1500 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1501 const Type* at = d->field_at(i);
duke@435 1502 if (at->isa_oopptr() != NULL) {
kvn@500 1503 Node *arg = call->in(i)->uncast();
kvn@500 1504 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
duke@435 1505 ptset.Clear();
duke@435 1506 PointsTo(ptset, arg, phase);
duke@435 1507 for( VectorSetI j(&ptset); j.test(); ++j ) {
duke@435 1508 uint pt = j.elem;
duke@435 1509 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@500 1510 PointsToNode *ptadr = ptnode_adr(pt);
duke@435 1511 }
duke@435 1512 }
duke@435 1513 }
duke@435 1514 }
duke@435 1515 }
duke@435 1516 }
duke@435 1517 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
duke@435 1518 PointsToNode *ptadr = ptnode_adr(resproj->_idx);
duke@435 1519
kvn@500 1520 CallNode *call = resproj->in(0)->as_Call();
duke@435 1521 switch (call->Opcode()) {
duke@435 1522 case Op_Allocate:
duke@435 1523 {
duke@435 1524 Node *k = call->in(AllocateNode::KlassNode);
duke@435 1525 const TypeKlassPtr *kt;
duke@435 1526 if (k->Opcode() == Op_LoadKlass) {
duke@435 1527 kt = k->as_Load()->type()->isa_klassptr();
duke@435 1528 } else {
duke@435 1529 kt = k->as_Type()->type()->isa_klassptr();
duke@435 1530 }
duke@435 1531 assert(kt != NULL, "TypeKlassPtr required.");
duke@435 1532 ciKlass* cik = kt->klass();
duke@435 1533 ciInstanceKlass* ciik = cik->as_instance_klass();
duke@435 1534
duke@435 1535 PointsToNode *ptadr = ptnode_adr(call->_idx);
kvn@500 1536 PointsToNode::EscapeState es;
kvn@500 1537 uint edge_to;
duke@435 1538 if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
kvn@500 1539 es = PointsToNode::GlobalEscape;
kvn@500 1540 edge_to = _phantom_object; // Could not be worse
duke@435 1541 } else {
kvn@500 1542 es = PointsToNode::NoEscape;
kvn@500 1543 edge_to = call->_idx;
duke@435 1544 }
kvn@500 1545 set_escape_state(call->_idx, es);
kvn@500 1546 add_pointsto_edge(resproj->_idx, edge_to);
kvn@500 1547 _processed.set(resproj->_idx);
duke@435 1548 break;
duke@435 1549 }
duke@435 1550
duke@435 1551 case Op_AllocateArray:
duke@435 1552 {
duke@435 1553 PointsToNode *ptadr = ptnode_adr(call->_idx);
kvn@500 1554 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@500 1555 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@500 1556 // Not scalar replaceable if the length is not constant or too big.
kvn@500 1557 ptadr->_scalar_replaceable = false;
kvn@500 1558 }
duke@435 1559 set_escape_state(call->_idx, PointsToNode::NoEscape);
duke@435 1560 add_pointsto_edge(resproj->_idx, call->_idx);
kvn@500 1561 _processed.set(resproj->_idx);
duke@435 1562 break;
duke@435 1563 }
duke@435 1564
duke@435 1565 case Op_CallStaticJava:
duke@435 1566 // For a static call, we know exactly what method is being called.
duke@435 1567 // Use bytecode estimator to record whether the call's return value escapes
duke@435 1568 {
kvn@500 1569 bool done = true;
duke@435 1570 const TypeTuple *r = call->tf()->range();
duke@435 1571 const Type* ret_type = NULL;
duke@435 1572
duke@435 1573 if (r->cnt() > TypeFunc::Parms)
duke@435 1574 ret_type = r->field_at(TypeFunc::Parms);
duke@435 1575
duke@435 1576 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 1577 // _multianewarray functions return a TypeRawPtr.
kvn@500 1578 if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
kvn@500 1579 _processed.set(resproj->_idx);
duke@435 1580 break; // doesn't return a pointer type
kvn@500 1581 }
duke@435 1582 ciMethod *meth = call->as_CallJava()->method();
kvn@500 1583 const TypeTuple * d = call->tf()->domain();
duke@435 1584 if (meth == NULL) {
duke@435 1585 // not a Java method, assume global escape
duke@435 1586 set_escape_state(call->_idx, PointsToNode::GlobalEscape);
duke@435 1587 if (resproj != NULL)
duke@435 1588 add_pointsto_edge(resproj->_idx, _phantom_object);
duke@435 1589 } else {
kvn@500 1590 BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
duke@435 1591 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1592 bool copy_dependencies = false;
duke@435 1593
kvn@500 1594 if (call_analyzer->is_return_allocated()) {
kvn@500 1595 // Returns a newly allocated unescaped object, simply
kvn@500 1596 // update dependency information.
kvn@500 1597 // Mark it as NoEscape so that objects referenced by
kvn@500 1598 // it's fields will be marked as NoEscape at least.
kvn@500 1599 set_escape_state(call->_idx, PointsToNode::NoEscape);
kvn@500 1600 if (resproj != NULL)
kvn@500 1601 add_pointsto_edge(resproj->_idx, call->_idx);
kvn@500 1602 copy_dependencies = true;
kvn@500 1603 } else if (call_analyzer->is_return_local() && resproj != NULL) {
duke@435 1604 // determine whether any arguments are returned
duke@435 1605 set_escape_state(call->_idx, PointsToNode::NoEscape);
duke@435 1606 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1607 const Type* at = d->field_at(i);
duke@435 1608
duke@435 1609 if (at->isa_oopptr() != NULL) {
kvn@500 1610 Node *arg = call->in(i)->uncast();
duke@435 1611
kvn@500 1612 if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
duke@435 1613 PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
kvn@500 1614 if (arg_esp->node_type() == PointsToNode::UnknownType)
kvn@500 1615 done = false;
kvn@500 1616 else if (arg_esp->node_type() == PointsToNode::JavaObject)
duke@435 1617 add_pointsto_edge(resproj->_idx, arg->_idx);
duke@435 1618 else
duke@435 1619 add_deferred_edge(resproj->_idx, arg->_idx);
duke@435 1620 arg_esp->_hidden_alias = true;
duke@435 1621 }
duke@435 1622 }
duke@435 1623 }
kvn@500 1624 copy_dependencies = true;
duke@435 1625 } else {
duke@435 1626 set_escape_state(call->_idx, PointsToNode::GlobalEscape);
duke@435 1627 if (resproj != NULL)
duke@435 1628 add_pointsto_edge(resproj->_idx, _phantom_object);
kvn@500 1629 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1630 const Type* at = d->field_at(i);
kvn@500 1631 if (at->isa_oopptr() != NULL) {
kvn@500 1632 Node *arg = call->in(i)->uncast();
kvn@500 1633 PointsToNode *arg_esp = _nodes->adr_at(arg->_idx);
kvn@500 1634 arg_esp->_hidden_alias = true;
kvn@500 1635 }
kvn@500 1636 }
duke@435 1637 }
kvn@500 1638 if (copy_dependencies)
kvn@500 1639 call_analyzer->copy_dependencies(C()->dependencies());
duke@435 1640 }
kvn@500 1641 if (done)
kvn@500 1642 _processed.set(resproj->_idx);
duke@435 1643 break;
duke@435 1644 }
duke@435 1645
duke@435 1646 default:
duke@435 1647 // Some other type of call, assume the worst case that the
duke@435 1648 // returned value, if any, globally escapes.
duke@435 1649 {
duke@435 1650 const TypeTuple *r = call->tf()->range();
duke@435 1651 if (r->cnt() > TypeFunc::Parms) {
duke@435 1652 const Type* ret_type = r->field_at(TypeFunc::Parms);
duke@435 1653
duke@435 1654 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 1655 // _multianewarray functions return a TypeRawPtr.
duke@435 1656 if (ret_type->isa_ptr() != NULL) {
duke@435 1657 PointsToNode *ptadr = ptnode_adr(call->_idx);
duke@435 1658 set_escape_state(call->_idx, PointsToNode::GlobalEscape);
duke@435 1659 if (resproj != NULL)
duke@435 1660 add_pointsto_edge(resproj->_idx, _phantom_object);
duke@435 1661 }
duke@435 1662 }
kvn@500 1663 _processed.set(resproj->_idx);
duke@435 1664 }
duke@435 1665 }
duke@435 1666 }
duke@435 1667
kvn@500 1668 // Populate Connection Graph with Ideal nodes and create simple
kvn@500 1669 // connection graph edges (do not need to check the node_type of inputs
kvn@500 1670 // or to call PointsTo() to walk the connection graph).
kvn@500 1671 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
kvn@500 1672 if (_processed.test(n->_idx))
kvn@500 1673 return; // No need to redefine node's state.
kvn@500 1674
kvn@500 1675 if (n->is_Call()) {
kvn@500 1676 // Arguments to allocation and locking don't escape.
kvn@500 1677 if (n->is_Allocate()) {
kvn@500 1678 add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
kvn@500 1679 record_for_optimizer(n);
kvn@500 1680 } else if (n->is_Lock() || n->is_Unlock()) {
kvn@500 1681 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@500 1682 // the first IGVN optimization when escape information is still available.
kvn@500 1683 record_for_optimizer(n);
kvn@500 1684 _processed.set(n->_idx);
kvn@500 1685 } else {
kvn@500 1686 // Have to process call's arguments first.
kvn@500 1687 PointsToNode::NodeType nt = PointsToNode::UnknownType;
kvn@500 1688
kvn@500 1689 // Check if a call returns an object.
kvn@500 1690 const TypeTuple *r = n->as_Call()->tf()->range();
kvn@500 1691 if (r->cnt() > TypeFunc::Parms &&
kvn@500 1692 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
kvn@500 1693 // Note: use isa_ptr() instead of isa_oopptr() here because
kvn@500 1694 // the _multianewarray functions return a TypeRawPtr.
kvn@500 1695 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@500 1696 nt = PointsToNode::JavaObject;
kvn@500 1697 }
duke@435 1698 }
kvn@500 1699 add_node(n, nt, PointsToNode::UnknownEscape, false);
duke@435 1700 }
kvn@500 1701 return;
duke@435 1702 }
kvn@500 1703
kvn@500 1704 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@500 1705 // ThreadLocal has RawPrt type.
kvn@500 1706 switch (n->Opcode()) {
kvn@500 1707 case Op_AddP:
kvn@500 1708 {
kvn@500 1709 add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
kvn@500 1710 break;
kvn@500 1711 }
kvn@500 1712 case Op_CastX2P:
kvn@500 1713 { // "Unsafe" memory access.
kvn@500 1714 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 1715 break;
kvn@500 1716 }
kvn@500 1717 case Op_CastPP:
kvn@500 1718 case Op_CheckCastPP:
kvn@500 1719 {
kvn@500 1720 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1721 int ti = n->in(1)->_idx;
kvn@500 1722 PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
kvn@500 1723 if (nt == PointsToNode::UnknownType) {
kvn@500 1724 _delayed_worklist.push(n); // Process it later.
kvn@500 1725 break;
kvn@500 1726 } else if (nt == PointsToNode::JavaObject) {
kvn@500 1727 add_pointsto_edge(n->_idx, ti);
kvn@500 1728 } else {
kvn@500 1729 add_deferred_edge(n->_idx, ti);
kvn@500 1730 }
kvn@500 1731 _processed.set(n->_idx);
kvn@500 1732 break;
kvn@500 1733 }
kvn@500 1734 case Op_ConP:
kvn@500 1735 {
kvn@500 1736 // assume all pointer constants globally escape except for null
kvn@500 1737 PointsToNode::EscapeState es;
kvn@500 1738 if (phase->type(n) == TypePtr::NULL_PTR)
kvn@500 1739 es = PointsToNode::NoEscape;
kvn@500 1740 else
kvn@500 1741 es = PointsToNode::GlobalEscape;
kvn@500 1742
kvn@500 1743 add_node(n, PointsToNode::JavaObject, es, true);
kvn@500 1744 break;
kvn@500 1745 }
kvn@500 1746 case Op_CreateEx:
kvn@500 1747 {
kvn@500 1748 // assume that all exception objects globally escape
kvn@500 1749 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 1750 break;
kvn@500 1751 }
coleenp@548 1752 case Op_ConN:
coleenp@548 1753 {
coleenp@548 1754 // assume all narrow oop constants globally escape except for null
coleenp@548 1755 PointsToNode::EscapeState es;
coleenp@548 1756 if (phase->type(n) == TypeNarrowOop::NULL_PTR)
coleenp@548 1757 es = PointsToNode::NoEscape;
coleenp@548 1758 else
coleenp@548 1759 es = PointsToNode::GlobalEscape;
coleenp@548 1760
coleenp@548 1761 add_node(n, PointsToNode::JavaObject, es, true);
coleenp@548 1762 break;
coleenp@548 1763 }
kvn@500 1764 case Op_LoadKlass:
kvn@500 1765 {
kvn@500 1766 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 1767 break;
kvn@500 1768 }
kvn@500 1769 case Op_LoadP:
coleenp@548 1770 case Op_LoadN:
kvn@500 1771 {
kvn@500 1772 const Type *t = phase->type(n);
coleenp@548 1773 if (!t->isa_narrowoop() && t->isa_ptr() == NULL) {
kvn@500 1774 _processed.set(n->_idx);
kvn@500 1775 return;
kvn@500 1776 }
kvn@500 1777 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1778 break;
kvn@500 1779 }
kvn@500 1780 case Op_Parm:
kvn@500 1781 {
kvn@500 1782 _processed.set(n->_idx); // No need to redefine it state.
kvn@500 1783 uint con = n->as_Proj()->_con;
kvn@500 1784 if (con < TypeFunc::Parms)
kvn@500 1785 return;
kvn@500 1786 const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
kvn@500 1787 if (t->isa_ptr() == NULL)
kvn@500 1788 return;
kvn@500 1789 // We have to assume all input parameters globally escape
kvn@500 1790 // (Note: passing 'false' since _processed is already set).
kvn@500 1791 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
kvn@500 1792 break;
kvn@500 1793 }
kvn@500 1794 case Op_Phi:
kvn@500 1795 {
kvn@500 1796 if (n->as_Phi()->type()->isa_ptr() == NULL) {
kvn@500 1797 // nothing to do if not an oop
kvn@500 1798 _processed.set(n->_idx);
kvn@500 1799 return;
kvn@500 1800 }
kvn@500 1801 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1802 uint i;
kvn@500 1803 for (i = 1; i < n->req() ; i++) {
kvn@500 1804 Node* in = n->in(i);
kvn@500 1805 if (in == NULL)
kvn@500 1806 continue; // ignore NULL
kvn@500 1807 in = in->uncast();
kvn@500 1808 if (in->is_top() || in == n)
kvn@500 1809 continue; // ignore top or inputs which go back this node
kvn@500 1810 int ti = in->_idx;
kvn@500 1811 PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
kvn@500 1812 if (nt == PointsToNode::UnknownType) {
kvn@500 1813 break;
kvn@500 1814 } else if (nt == PointsToNode::JavaObject) {
kvn@500 1815 add_pointsto_edge(n->_idx, ti);
kvn@500 1816 } else {
kvn@500 1817 add_deferred_edge(n->_idx, ti);
kvn@500 1818 }
kvn@500 1819 }
kvn@500 1820 if (i >= n->req())
kvn@500 1821 _processed.set(n->_idx);
kvn@500 1822 else
kvn@500 1823 _delayed_worklist.push(n);
kvn@500 1824 break;
kvn@500 1825 }
kvn@500 1826 case Op_Proj:
kvn@500 1827 {
kvn@500 1828 // we are only interested in the result projection from a call
kvn@500 1829 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@500 1830 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1831 process_call_result(n->as_Proj(), phase);
kvn@500 1832 if (!_processed.test(n->_idx)) {
kvn@500 1833 // The call's result may need to be processed later if the call
kvn@500 1834 // returns it's argument and the argument is not processed yet.
kvn@500 1835 _delayed_worklist.push(n);
kvn@500 1836 }
kvn@500 1837 } else {
kvn@500 1838 _processed.set(n->_idx);
kvn@500 1839 }
kvn@500 1840 break;
kvn@500 1841 }
kvn@500 1842 case Op_Return:
kvn@500 1843 {
kvn@500 1844 if( n->req() > TypeFunc::Parms &&
kvn@500 1845 phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 1846 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@500 1847 add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
kvn@500 1848 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@500 1849 PointsToNode::NodeType nt = _nodes->adr_at(ti)->node_type();
kvn@500 1850 if (nt == PointsToNode::UnknownType) {
kvn@500 1851 _delayed_worklist.push(n); // Process it later.
kvn@500 1852 break;
kvn@500 1853 } else if (nt == PointsToNode::JavaObject) {
kvn@500 1854 add_pointsto_edge(n->_idx, ti);
kvn@500 1855 } else {
kvn@500 1856 add_deferred_edge(n->_idx, ti);
kvn@500 1857 }
kvn@500 1858 }
kvn@500 1859 _processed.set(n->_idx);
kvn@500 1860 break;
kvn@500 1861 }
kvn@500 1862 case Op_StoreP:
coleenp@548 1863 case Op_StoreN:
kvn@500 1864 {
kvn@500 1865 const Type *adr_type = phase->type(n->in(MemNode::Address));
coleenp@548 1866 if (adr_type->isa_narrowoop()) {
coleenp@548 1867 adr_type = adr_type->is_narrowoop()->make_oopptr();
coleenp@548 1868 }
kvn@500 1869 if (adr_type->isa_oopptr()) {
kvn@500 1870 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 1871 } else {
kvn@500 1872 Node* adr = n->in(MemNode::Address);
kvn@500 1873 if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
kvn@500 1874 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 1875 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 1876 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 1877 // We are computing a raw address for a store captured
kvn@500 1878 // by an Initialize compute an appropriate address type.
kvn@500 1879 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 1880 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 1881 } else {
kvn@500 1882 _processed.set(n->_idx);
kvn@500 1883 return;
kvn@500 1884 }
kvn@500 1885 }
kvn@500 1886 break;
kvn@500 1887 }
kvn@500 1888 case Op_StorePConditional:
kvn@500 1889 case Op_CompareAndSwapP:
coleenp@548 1890 case Op_CompareAndSwapN:
kvn@500 1891 {
kvn@500 1892 const Type *adr_type = phase->type(n->in(MemNode::Address));
coleenp@548 1893 if (adr_type->isa_narrowoop()) {
coleenp@548 1894 adr_type = adr_type->is_narrowoop()->make_oopptr();
coleenp@548 1895 }
kvn@500 1896 if (adr_type->isa_oopptr()) {
kvn@500 1897 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 1898 } else {
kvn@500 1899 _processed.set(n->_idx);
kvn@500 1900 return;
kvn@500 1901 }
kvn@500 1902 break;
kvn@500 1903 }
kvn@500 1904 case Op_ThreadLocal:
kvn@500 1905 {
kvn@500 1906 add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
kvn@500 1907 break;
kvn@500 1908 }
kvn@500 1909 default:
kvn@500 1910 ;
kvn@500 1911 // nothing to do
kvn@500 1912 }
kvn@500 1913 return;
duke@435 1914 }
duke@435 1915
kvn@500 1916 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
kvn@500 1917 // Don't set processed bit for AddP, LoadP, StoreP since
kvn@500 1918 // they may need more then one pass to process.
kvn@500 1919 if (_processed.test(n->_idx))
kvn@500 1920 return; // No need to redefine node's state.
duke@435 1921
duke@435 1922 PointsToNode *ptadr = ptnode_adr(n->_idx);
duke@435 1923
duke@435 1924 if (n->is_Call()) {
duke@435 1925 CallNode *call = n->as_Call();
duke@435 1926 process_call_arguments(call, phase);
kvn@500 1927 _processed.set(n->_idx);
duke@435 1928 return;
duke@435 1929 }
duke@435 1930
kvn@500 1931 switch (n->Opcode()) {
duke@435 1932 case Op_AddP:
duke@435 1933 {
kvn@500 1934 Node *base = get_addp_base(n);
kvn@500 1935 // Create a field edge to this node from everything base could point to.
duke@435 1936 VectorSet ptset(Thread::current()->resource_area());
duke@435 1937 PointsTo(ptset, base, phase);
duke@435 1938 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 1939 uint pt = i.elem;
kvn@500 1940 add_field_edge(pt, n->_idx, address_offset(n, phase));
kvn@500 1941 }
kvn@500 1942 break;
kvn@500 1943 }
kvn@500 1944 case Op_CastX2P:
kvn@500 1945 {
kvn@500 1946 assert(false, "Op_CastX2P");
kvn@500 1947 break;
kvn@500 1948 }
kvn@500 1949 case Op_CastPP:
kvn@500 1950 case Op_CheckCastPP:
coleenp@548 1951 case Op_EncodeP:
coleenp@548 1952 case Op_DecodeN:
kvn@500 1953 {
kvn@500 1954 int ti = n->in(1)->_idx;
kvn@500 1955 if (_nodes->adr_at(ti)->node_type() == PointsToNode::JavaObject) {
kvn@500 1956 add_pointsto_edge(n->_idx, ti);
kvn@500 1957 } else {
kvn@500 1958 add_deferred_edge(n->_idx, ti);
kvn@500 1959 }
kvn@500 1960 _processed.set(n->_idx);
kvn@500 1961 break;
kvn@500 1962 }
kvn@500 1963 case Op_ConP:
kvn@500 1964 {
kvn@500 1965 assert(false, "Op_ConP");
kvn@500 1966 break;
kvn@500 1967 }
kvn@500 1968 case Op_CreateEx:
kvn@500 1969 {
kvn@500 1970 assert(false, "Op_CreateEx");
kvn@500 1971 break;
kvn@500 1972 }
kvn@500 1973 case Op_LoadKlass:
kvn@500 1974 {
kvn@500 1975 assert(false, "Op_LoadKlass");
kvn@500 1976 break;
kvn@500 1977 }
kvn@500 1978 case Op_LoadP:
kvn@500 1979 {
kvn@500 1980 const Type *t = phase->type(n);
kvn@500 1981 #ifdef ASSERT
kvn@500 1982 if (t->isa_ptr() == NULL)
kvn@500 1983 assert(false, "Op_LoadP");
kvn@500 1984 #endif
kvn@500 1985
kvn@500 1986 Node* adr = n->in(MemNode::Address)->uncast();
kvn@500 1987 const Type *adr_type = phase->type(adr);
kvn@500 1988 Node* adr_base;
kvn@500 1989 if (adr->is_AddP()) {
kvn@500 1990 adr_base = get_addp_base(adr);
kvn@500 1991 } else {
kvn@500 1992 adr_base = adr;
kvn@500 1993 }
kvn@500 1994
kvn@500 1995 // For everything "adr_base" could point to, create a deferred edge from
kvn@500 1996 // this node to each field with the same offset.
kvn@500 1997 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1998 PointsTo(ptset, adr_base, phase);
kvn@500 1999 int offset = address_offset(adr, phase);
kvn@500 2000 for( VectorSetI i(&ptset); i.test(); ++i ) {
kvn@500 2001 uint pt = i.elem;
kvn@500 2002 add_deferred_edge_to_fields(n->_idx, pt, offset);
duke@435 2003 }
duke@435 2004 break;
duke@435 2005 }
duke@435 2006 case Op_Parm:
duke@435 2007 {
kvn@500 2008 assert(false, "Op_Parm");
kvn@500 2009 break;
kvn@500 2010 }
kvn@500 2011 case Op_Phi:
kvn@500 2012 {
kvn@500 2013 #ifdef ASSERT
kvn@500 2014 if (n->as_Phi()->type()->isa_ptr() == NULL)
kvn@500 2015 assert(false, "Op_Phi");
kvn@500 2016 #endif
kvn@500 2017 for (uint i = 1; i < n->req() ; i++) {
kvn@500 2018 Node* in = n->in(i);
kvn@500 2019 if (in == NULL)
kvn@500 2020 continue; // ignore NULL
kvn@500 2021 in = in->uncast();
kvn@500 2022 if (in->is_top() || in == n)
kvn@500 2023 continue; // ignore top or inputs which go back this node
kvn@500 2024 int ti = in->_idx;
kvn@500 2025 if (_nodes->adr_at(in->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@500 2026 add_pointsto_edge(n->_idx, ti);
kvn@500 2027 } else {
kvn@500 2028 add_deferred_edge(n->_idx, ti);
kvn@500 2029 }
duke@435 2030 }
duke@435 2031 _processed.set(n->_idx);
duke@435 2032 break;
duke@435 2033 }
kvn@500 2034 case Op_Proj:
duke@435 2035 {
kvn@500 2036 // we are only interested in the result projection from a call
kvn@500 2037 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@500 2038 process_call_result(n->as_Proj(), phase);
kvn@500 2039 assert(_processed.test(n->_idx), "all call results should be processed");
kvn@500 2040 } else {
kvn@500 2041 assert(false, "Op_Proj");
kvn@500 2042 }
duke@435 2043 break;
duke@435 2044 }
kvn@500 2045 case Op_Return:
duke@435 2046 {
kvn@500 2047 #ifdef ASSERT
kvn@500 2048 if( n->req() <= TypeFunc::Parms ||
kvn@500 2049 !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2050 assert(false, "Op_Return");
kvn@500 2051 }
kvn@500 2052 #endif
kvn@500 2053 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@500 2054 if (_nodes->adr_at(ti)->node_type() == PointsToNode::JavaObject) {
kvn@500 2055 add_pointsto_edge(n->_idx, ti);
kvn@500 2056 } else {
kvn@500 2057 add_deferred_edge(n->_idx, ti);
kvn@500 2058 }
duke@435 2059 _processed.set(n->_idx);
duke@435 2060 break;
duke@435 2061 }
duke@435 2062 case Op_StoreP:
duke@435 2063 case Op_StorePConditional:
duke@435 2064 case Op_CompareAndSwapP:
duke@435 2065 {
duke@435 2066 Node *adr = n->in(MemNode::Address);
duke@435 2067 const Type *adr_type = phase->type(adr);
kvn@500 2068 #ifdef ASSERT
duke@435 2069 if (!adr_type->isa_oopptr())
kvn@500 2070 assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
kvn@500 2071 #endif
duke@435 2072
kvn@500 2073 assert(adr->is_AddP(), "expecting an AddP");
kvn@500 2074 Node *adr_base = get_addp_base(adr);
kvn@500 2075 Node *val = n->in(MemNode::ValueIn)->uncast();
kvn@500 2076 // For everything "adr_base" could point to, create a deferred edge
kvn@500 2077 // to "val" from each field with the same offset.
duke@435 2078 VectorSet ptset(Thread::current()->resource_area());
duke@435 2079 PointsTo(ptset, adr_base, phase);
duke@435 2080 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2081 uint pt = i.elem;
kvn@500 2082 add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
duke@435 2083 }
duke@435 2084 break;
duke@435 2085 }
kvn@500 2086 case Op_ThreadLocal:
duke@435 2087 {
kvn@500 2088 assert(false, "Op_ThreadLocal");
duke@435 2089 break;
duke@435 2090 }
duke@435 2091 default:
duke@435 2092 ;
duke@435 2093 // nothing to do
duke@435 2094 }
duke@435 2095 }
duke@435 2096
duke@435 2097 #ifndef PRODUCT
duke@435 2098 void ConnectionGraph::dump() {
duke@435 2099 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 2100 bool first = true;
duke@435 2101
kvn@500 2102 uint size = (uint)_nodes->length();
kvn@500 2103 for (uint ni = 0; ni < size; ni++) {
kvn@500 2104 PointsToNode *ptn = _nodes->adr_at(ni);
kvn@500 2105 PointsToNode::NodeType ptn_type = ptn->node_type();
kvn@500 2106
kvn@500 2107 if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
duke@435 2108 continue;
kvn@500 2109 PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
kvn@500 2110 if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
kvn@500 2111 if (first) {
kvn@500 2112 tty->cr();
kvn@500 2113 tty->print("======== Connection graph for ");
kvn@500 2114 C()->method()->print_short_name();
kvn@500 2115 tty->cr();
kvn@500 2116 first = false;
kvn@500 2117 }
kvn@500 2118 tty->print("%6d ", ni);
kvn@500 2119 ptn->dump();
kvn@500 2120 // Print all locals which reference this allocation
kvn@500 2121 for (uint li = ni; li < size; li++) {
kvn@500 2122 PointsToNode *ptn_loc = _nodes->adr_at(li);
kvn@500 2123 PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
kvn@500 2124 if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
kvn@500 2125 ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
kvn@500 2126 tty->print("%6d LocalVar [[%d]]", li, ni);
kvn@500 2127 _nodes->adr_at(li)->_node->dump();
duke@435 2128 }
duke@435 2129 }
kvn@500 2130 if (Verbose) {
kvn@500 2131 // Print all fields which reference this allocation
kvn@500 2132 for (uint i = 0; i < ptn->edge_count(); i++) {
kvn@500 2133 uint ei = ptn->edge_target(i);
kvn@500 2134 tty->print("%6d Field [[%d]]", ei, ni);
kvn@500 2135 _nodes->adr_at(ei)->_node->dump();
kvn@500 2136 }
kvn@500 2137 }
kvn@500 2138 tty->cr();
duke@435 2139 }
duke@435 2140 }
duke@435 2141 }
duke@435 2142 #endif

mercurial