src/share/vm/opto/memnode.hpp

Tue, 25 Jul 2017 10:10:41 -0400

author
dbuck
date
Tue, 25 Jul 2017 10:10:41 -0400
changeset 8879
6bc9abf210fd
parent 8653
0ffee573412b
child 9041
95a08233f46c
permissions
-rw-r--r--

8178047: Aliasing problem with raw memory accesses
Summary: Require equal bases when unaliasing offsets for raw accesses
Reviewed-by: thartmann, kvn

duke@435 1 /*
dbuck@8879 2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
stefank@2314 26 #define SHARE_VM_OPTO_MEMNODE_HPP
stefank@2314 27
stefank@2314 28 #include "opto/multnode.hpp"
stefank@2314 29 #include "opto/node.hpp"
stefank@2314 30 #include "opto/opcodes.hpp"
stefank@2314 31 #include "opto/type.hpp"
stefank@2314 32
duke@435 33 // Portions of code courtesy of Clifford Click
duke@435 34
duke@435 35 class MultiNode;
duke@435 36 class PhaseCCP;
duke@435 37 class PhaseTransform;
duke@435 38
duke@435 39 //------------------------------MemNode----------------------------------------
duke@435 40 // Load or Store, possibly throwing a NULL pointer exception
duke@435 41 class MemNode : public Node {
shshahma@8653 42 private:
shshahma@8653 43 bool _unaligned_access; // Unaligned access from unsafe
shshahma@8653 44 bool _mismatched_access; // Mismatched access from unsafe: byte read in integer array for instance
duke@435 45 protected:
duke@435 46 #ifdef ASSERT
duke@435 47 const TypePtr* _adr_type; // What kind of memory is being addressed?
duke@435 48 #endif
shshahma@8653 49 virtual uint size_of() const;
duke@435 50 public:
duke@435 51 enum { Control, // When is it safe to do this load?
duke@435 52 Memory, // Chunk of memory is being loaded from
duke@435 53 Address, // Actually address, derived from base
duke@435 54 ValueIn, // Value to store
duke@435 55 OopStore // Preceeding oop store, only in StoreCM
duke@435 56 };
goetz@6479 57 typedef enum { unordered = 0,
goetz@6479 58 acquire, // Load has to acquire or be succeeded by MemBarAcquire.
goetz@6479 59 release // Store has to release or be preceded by MemBarRelease.
goetz@6479 60 } MemOrd;
duke@435 61 protected:
duke@435 62 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
shshahma@8653 63 : Node(c0,c1,c2 ), _unaligned_access(false), _mismatched_access(false) {
duke@435 64 init_class_id(Class_Mem);
duke@435 65 debug_only(_adr_type=at; adr_type();)
duke@435 66 }
duke@435 67 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
shshahma@8653 68 : Node(c0,c1,c2,c3), _unaligned_access(false), _mismatched_access(false) {
duke@435 69 init_class_id(Class_Mem);
duke@435 70 debug_only(_adr_type=at; adr_type();)
duke@435 71 }
duke@435 72 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
shshahma@8653 73 : Node(c0,c1,c2,c3,c4), _unaligned_access(false), _mismatched_access(false) {
duke@435 74 init_class_id(Class_Mem);
duke@435 75 debug_only(_adr_type=at; adr_type();)
duke@435 76 }
duke@435 77
dbuck@8879 78 static bool check_if_adr_maybe_raw(Node* adr);
dbuck@8879 79
kvn@468 80 public:
duke@435 81 // Helpers for the optimizer. Documented in memnode.cpp.
duke@435 82 static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
duke@435 83 Node* p2, AllocateNode* a2,
duke@435 84 PhaseTransform* phase);
duke@435 85 static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
duke@435 86
kvn@5110 87 static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
kvn@5110 88 static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
duke@435 89 // This one should probably be a phase-specific function:
kvn@520 90 static bool all_controls_dominate(Node* dom, Node* sub);
duke@435 91
kvn@598 92 // Find any cast-away of null-ness and keep its control.
kvn@598 93 static Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
duke@435 94 virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
duke@435 95
duke@435 96 virtual const class TypePtr *adr_type() const; // returns bottom_type of address
duke@435 97
duke@435 98 // Shared code for Ideal methods:
duke@435 99 Node *Ideal_common(PhaseGVN *phase, bool can_reshape); // Return -1 for short-circuit NULL.
duke@435 100
duke@435 101 // Helper function for adr_type() implementations.
duke@435 102 static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
duke@435 103
duke@435 104 // Raw access function, to allow copying of adr_type efficiently in
duke@435 105 // product builds and retain the debug info for debug builds.
duke@435 106 const TypePtr *raw_adr_type() const {
duke@435 107 #ifdef ASSERT
duke@435 108 return _adr_type;
duke@435 109 #else
duke@435 110 return 0;
duke@435 111 #endif
duke@435 112 }
duke@435 113
duke@435 114 // Map a load or store opcode to its corresponding store opcode.
duke@435 115 // (Return -1 if unknown.)
duke@435 116 virtual int store_Opcode() const { return -1; }
duke@435 117
duke@435 118 // What is the type of the value in memory? (T_VOID mean "unspecified".)
duke@435 119 virtual BasicType memory_type() const = 0;
kvn@464 120 virtual int memory_size() const {
kvn@464 121 #ifdef ASSERT
kvn@464 122 return type2aelembytes(memory_type(), true);
kvn@464 123 #else
kvn@464 124 return type2aelembytes(memory_type());
kvn@464 125 #endif
kvn@464 126 }
duke@435 127
duke@435 128 // Search through memory states which precede this node (load or store).
duke@435 129 // Look for an exact match for the address, with no intervening
duke@435 130 // aliased stores.
duke@435 131 Node* find_previous_store(PhaseTransform* phase);
duke@435 132
duke@435 133 // Can this node (load or store) accurately see a stored value in
duke@435 134 // the given memory state? (The state may or may not be in(Memory).)
duke@435 135 Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
duke@435 136
shshahma@8653 137 void set_unaligned_access() { _unaligned_access = true; }
shshahma@8653 138 bool is_unaligned_access() const { return _unaligned_access; }
shshahma@8653 139 void set_mismatched_access() { _mismatched_access = true; }
shshahma@8653 140 bool is_mismatched_access() const { return _mismatched_access; }
shshahma@8653 141
duke@435 142 #ifndef PRODUCT
duke@435 143 static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
duke@435 144 virtual void dump_spec(outputStream *st) const;
duke@435 145 #endif
duke@435 146 };
duke@435 147
duke@435 148 //------------------------------LoadNode---------------------------------------
duke@435 149 // Load value; requires Memory and Address
duke@435 150 class LoadNode : public MemNode {
roland@7859 151 public:
roland@7859 152 // Some loads (from unsafe) should be pinned: they don't depend only
roland@7859 153 // on the dominating test. The boolean field _depends_only_on_test
roland@7859 154 // below records whether that node depends only on the dominating
roland@7859 155 // test.
roland@7859 156 // Methods used to build LoadNodes pass an argument of type enum
roland@7859 157 // ControlDependency instead of a boolean because those methods
roland@7859 158 // typically have multiple boolean parameters with default values:
roland@7859 159 // passing the wrong boolean to one of these parameters by mistake
roland@7859 160 // goes easily unnoticed. Using an enum, the compiler can check that
roland@7859 161 // the type of a value and the type of the parameter match.
roland@7859 162 enum ControlDependency {
roland@7859 163 Pinned,
roland@7859 164 DependsOnlyOnTest
roland@7859 165 };
goetz@6479 166 private:
roland@7859 167 // LoadNode::hash() doesn't take the _depends_only_on_test field
roland@7859 168 // into account: If the graph already has a non-pinned LoadNode and
roland@7859 169 // we add a pinned LoadNode with the same inputs, it's safe for GVN
roland@7859 170 // to replace the pinned LoadNode with the non-pinned LoadNode,
roland@7859 171 // otherwise it wouldn't be safe to have a non pinned LoadNode with
roland@7859 172 // those inputs in the first place. If the graph already has a
roland@7859 173 // pinned LoadNode and we add a non pinned LoadNode with the same
roland@7859 174 // inputs, it's safe (but suboptimal) for GVN to replace the
roland@7859 175 // non-pinned LoadNode by the pinned LoadNode.
roland@7859 176 bool _depends_only_on_test;
roland@7859 177
goetz@6479 178 // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
goetz@6479 179 // loads that can be reordered, and such requiring acquire semantics to
goetz@6479 180 // adhere to the Java specification. The required behaviour is stored in
goetz@6479 181 // this field.
goetz@6479 182 const MemOrd _mo;
goetz@6479 183
duke@435 184 protected:
goetz@6479 185 virtual uint cmp(const Node &n) const;
duke@435 186 virtual uint size_of() const; // Size is bigger
zmajo@7341 187 // Should LoadNode::Ideal() attempt to remove control edges?
zmajo@7341 188 virtual bool can_remove_control() const;
duke@435 189 const Type* const _type; // What kind of value is loaded?
duke@435 190 public:
duke@435 191
roland@7859 192 LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
roland@7859 193 : MemNode(c,mem,adr,at), _type(rt), _mo(mo), _depends_only_on_test(control_dependency == DependsOnlyOnTest) {
duke@435 194 init_class_id(Class_Load);
duke@435 195 }
goetz@6479 196 inline bool is_unordered() const { return !is_acquire(); }
goetz@6479 197 inline bool is_acquire() const {
goetz@6479 198 assert(_mo == unordered || _mo == acquire, "unexpected");
goetz@6479 199 return _mo == acquire;
goetz@6479 200 }
duke@435 201
duke@435 202 // Polymorphic factory method:
goetz@6479 203 static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
roland@7859 204 const TypePtr* at, const Type *rt, BasicType bt,
roland@7859 205 MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
duke@435 206
duke@435 207 virtual uint hash() const; // Check the type
duke@435 208
duke@435 209 // Handle algebraic identities here. If we have an identity, return the Node
duke@435 210 // we are equivalent to. We look for Load of a Store.
duke@435 211 virtual Node *Identity( PhaseTransform *phase );
duke@435 212
zmajo@7341 213 // If the load is from Field memory and the pointer is non-null, it might be possible to
duke@435 214 // zero out the control input.
zmajo@7341 215 // If the offset is constant and the base is an object allocation,
zmajo@7341 216 // try to hook me up to the exact initializing store.
duke@435 217 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 218
kvn@598 219 // Split instance field load through Phi.
kvn@598 220 Node* split_through_phi(PhaseGVN *phase);
kvn@598 221
never@452 222 // Recover original value from boxed values
never@452 223 Node *eliminate_autobox(PhaseGVN *phase);
never@452 224
duke@435 225 // Compute a new Type for this node. Basically we just do the pre-check,
duke@435 226 // then call the virtual add() to set the type.
duke@435 227 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 228
kvn@599 229 // Common methods for LoadKlass and LoadNKlass nodes.
kvn@599 230 const Type *klass_value_common( PhaseTransform *phase ) const;
kvn@599 231 Node *klass_identity_common( PhaseTransform *phase );
kvn@599 232
duke@435 233 virtual uint ideal_reg() const;
duke@435 234 virtual const Type *bottom_type() const;
duke@435 235 // Following method is copied from TypeNode:
duke@435 236 void set_type(const Type* t) {
duke@435 237 assert(t != NULL, "sanity");
duke@435 238 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
duke@435 239 *(const Type**)&_type = t; // cast away const-ness
duke@435 240 // If this node is in the hash table, make sure it doesn't need a rehash.
duke@435 241 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
duke@435 242 }
duke@435 243 const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
duke@435 244
duke@435 245 // Do not match memory edge
duke@435 246 virtual uint match_edge(uint idx) const;
duke@435 247
duke@435 248 // Map a load opcode to its corresponding store opcode.
duke@435 249 virtual int store_Opcode() const = 0;
duke@435 250
kvn@499 251 // Check if the load's memory input is a Phi node with the same control.
kvn@499 252 bool is_instance_field_load_with_local_phi(Node* ctrl);
kvn@499 253
duke@435 254 #ifndef PRODUCT
duke@435 255 virtual void dump_spec(outputStream *st) const;
duke@435 256 #endif
kvn@1964 257 #ifdef ASSERT
kvn@1964 258 // Helper function to allow a raw load without control edge for some cases
kvn@1964 259 static bool is_immutable_value(Node* adr);
kvn@1964 260 #endif
duke@435 261 protected:
duke@435 262 const Type* load_array_final_field(const TypeKlassPtr *tkls,
duke@435 263 ciKlass* klass) const;
iveresov@6070 264 // depends_only_on_test is almost always true, and needs to be almost always
iveresov@6070 265 // true to enable key hoisting & commoning optimizations. However, for the
iveresov@6070 266 // special case of RawPtr loads from TLS top & end, and other loads performed by
iveresov@6070 267 // GC barriers, the control edge carries the dependence preventing hoisting past
iveresov@6070 268 // a Safepoint instead of the memory edge. (An unfortunate consequence of having
iveresov@6070 269 // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
iveresov@6070 270 // which produce results (new raw memory state) inside of loops preventing all
iveresov@6070 271 // manner of other optimizations). Basically, it's ugly but so is the alternative.
iveresov@6070 272 // See comment in macro.cpp, around line 125 expand_allocate_common().
roland@7859 273 virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM && _depends_only_on_test; }
duke@435 274 };
duke@435 275
duke@435 276 //------------------------------LoadBNode--------------------------------------
duke@435 277 // Load a byte (8bits signed) from memory
duke@435 278 class LoadBNode : public LoadNode {
duke@435 279 public:
roland@7859 280 LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 281 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
duke@435 282 virtual int Opcode() const;
duke@435 283 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 284 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
kvn@3442 285 virtual const Type *Value(PhaseTransform *phase) const;
duke@435 286 virtual int store_Opcode() const { return Op_StoreB; }
duke@435 287 virtual BasicType memory_type() const { return T_BYTE; }
duke@435 288 };
duke@435 289
twisti@1059 290 //------------------------------LoadUBNode-------------------------------------
twisti@1059 291 // Load a unsigned byte (8bits unsigned) from memory
twisti@1059 292 class LoadUBNode : public LoadNode {
twisti@1059 293 public:
roland@7859 294 LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 295 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
twisti@1059 296 virtual int Opcode() const;
twisti@1059 297 virtual uint ideal_reg() const { return Op_RegI; }
twisti@1059 298 virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
kvn@3442 299 virtual const Type *Value(PhaseTransform *phase) const;
twisti@1059 300 virtual int store_Opcode() const { return Op_StoreB; }
twisti@1059 301 virtual BasicType memory_type() const { return T_BYTE; }
twisti@1059 302 };
twisti@1059 303
twisti@993 304 //------------------------------LoadUSNode-------------------------------------
twisti@993 305 // Load an unsigned short/char (16bits unsigned) from memory
twisti@993 306 class LoadUSNode : public LoadNode {
duke@435 307 public:
roland@7859 308 LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 309 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
duke@435 310 virtual int Opcode() const;
duke@435 311 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 312 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
kvn@3442 313 virtual const Type *Value(PhaseTransform *phase) const;
duke@435 314 virtual int store_Opcode() const { return Op_StoreC; }
duke@435 315 virtual BasicType memory_type() const { return T_CHAR; }
duke@435 316 };
duke@435 317
kvn@3442 318 //------------------------------LoadSNode--------------------------------------
kvn@3442 319 // Load a short (16bits signed) from memory
kvn@3442 320 class LoadSNode : public LoadNode {
kvn@3442 321 public:
roland@7859 322 LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 323 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
kvn@3442 324 virtual int Opcode() const;
kvn@3442 325 virtual uint ideal_reg() const { return Op_RegI; }
kvn@3442 326 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
kvn@3442 327 virtual const Type *Value(PhaseTransform *phase) const;
kvn@3442 328 virtual int store_Opcode() const { return Op_StoreC; }
kvn@3442 329 virtual BasicType memory_type() const { return T_SHORT; }
kvn@3442 330 };
kvn@3442 331
duke@435 332 //------------------------------LoadINode--------------------------------------
duke@435 333 // Load an integer from memory
duke@435 334 class LoadINode : public LoadNode {
duke@435 335 public:
roland@7859 336 LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 337 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
duke@435 338 virtual int Opcode() const;
duke@435 339 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 340 virtual int store_Opcode() const { return Op_StoreI; }
duke@435 341 virtual BasicType memory_type() const { return T_INT; }
duke@435 342 };
duke@435 343
duke@435 344 //------------------------------LoadRangeNode----------------------------------
duke@435 345 // Load an array length from the array
duke@435 346 class LoadRangeNode : public LoadINode {
duke@435 347 public:
goetz@6479 348 LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
goetz@6479 349 : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
duke@435 350 virtual int Opcode() const;
duke@435 351 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 352 virtual Node *Identity( PhaseTransform *phase );
rasbold@801 353 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 354 };
duke@435 355
duke@435 356 //------------------------------LoadLNode--------------------------------------
duke@435 357 // Load a long from memory
duke@435 358 class LoadLNode : public LoadNode {
duke@435 359 virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
duke@435 360 virtual uint cmp( const Node &n ) const {
duke@435 361 return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
duke@435 362 && LoadNode::cmp(n);
duke@435 363 }
duke@435 364 virtual uint size_of() const { return sizeof(*this); }
duke@435 365 const bool _require_atomic_access; // is piecewise load forbidden?
duke@435 366
duke@435 367 public:
goetz@6479 368 LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
roland@7859 369 MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
roland@7859 370 : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
duke@435 371 virtual int Opcode() const;
duke@435 372 virtual uint ideal_reg() const { return Op_RegL; }
duke@435 373 virtual int store_Opcode() const { return Op_StoreL; }
duke@435 374 virtual BasicType memory_type() const { return T_LONG; }
anoll@7858 375 bool require_atomic_access() const { return _require_atomic_access; }
goetz@6479 376 static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
roland@7859 377 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
duke@435 378 #ifndef PRODUCT
duke@435 379 virtual void dump_spec(outputStream *st) const {
duke@435 380 LoadNode::dump_spec(st);
duke@435 381 if (_require_atomic_access) st->print(" Atomic!");
duke@435 382 }
duke@435 383 #endif
duke@435 384 };
duke@435 385
duke@435 386 //------------------------------LoadL_unalignedNode----------------------------
duke@435 387 // Load a long from unaligned memory
duke@435 388 class LoadL_unalignedNode : public LoadLNode {
duke@435 389 public:
roland@7859 390 LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 391 : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
duke@435 392 virtual int Opcode() const;
duke@435 393 };
duke@435 394
duke@435 395 //------------------------------LoadFNode--------------------------------------
duke@435 396 // Load a float (64 bits) from memory
duke@435 397 class LoadFNode : public LoadNode {
duke@435 398 public:
roland@7859 399 LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 400 : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
duke@435 401 virtual int Opcode() const;
duke@435 402 virtual uint ideal_reg() const { return Op_RegF; }
duke@435 403 virtual int store_Opcode() const { return Op_StoreF; }
duke@435 404 virtual BasicType memory_type() const { return T_FLOAT; }
duke@435 405 };
duke@435 406
duke@435 407 //------------------------------LoadDNode--------------------------------------
duke@435 408 // Load a double (64 bits) from memory
duke@435 409 class LoadDNode : public LoadNode {
anoll@7858 410 virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
anoll@7858 411 virtual uint cmp( const Node &n ) const {
anoll@7858 412 return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
anoll@7858 413 && LoadNode::cmp(n);
anoll@7858 414 }
anoll@7858 415 virtual uint size_of() const { return sizeof(*this); }
anoll@7858 416 const bool _require_atomic_access; // is piecewise load forbidden?
anoll@7858 417
duke@435 418 public:
anoll@7858 419 LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
roland@7859 420 MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
roland@7859 421 : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
duke@435 422 virtual int Opcode() const;
duke@435 423 virtual uint ideal_reg() const { return Op_RegD; }
duke@435 424 virtual int store_Opcode() const { return Op_StoreD; }
duke@435 425 virtual BasicType memory_type() const { return T_DOUBLE; }
anoll@7858 426 bool require_atomic_access() const { return _require_atomic_access; }
anoll@7858 427 static LoadDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
roland@7859 428 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
anoll@7858 429 #ifndef PRODUCT
anoll@7858 430 virtual void dump_spec(outputStream *st) const {
anoll@7858 431 LoadNode::dump_spec(st);
anoll@7858 432 if (_require_atomic_access) st->print(" Atomic!");
anoll@7858 433 }
anoll@7858 434 #endif
duke@435 435 };
duke@435 436
duke@435 437 //------------------------------LoadD_unalignedNode----------------------------
duke@435 438 // Load a double from unaligned memory
duke@435 439 class LoadD_unalignedNode : public LoadDNode {
duke@435 440 public:
roland@7859 441 LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 442 : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
duke@435 443 virtual int Opcode() const;
duke@435 444 };
duke@435 445
duke@435 446 //------------------------------LoadPNode--------------------------------------
duke@435 447 // Load a pointer from memory (either object or array)
duke@435 448 class LoadPNode : public LoadNode {
duke@435 449 public:
roland@7859 450 LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 451 : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
duke@435 452 virtual int Opcode() const;
duke@435 453 virtual uint ideal_reg() const { return Op_RegP; }
duke@435 454 virtual int store_Opcode() const { return Op_StoreP; }
duke@435 455 virtual BasicType memory_type() const { return T_ADDRESS; }
duke@435 456 };
duke@435 457
coleenp@548 458
coleenp@548 459 //------------------------------LoadNNode--------------------------------------
coleenp@548 460 // Load a narrow oop from memory (either object or array)
coleenp@548 461 class LoadNNode : public LoadNode {
coleenp@548 462 public:
roland@7859 463 LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 464 : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
coleenp@548 465 virtual int Opcode() const;
coleenp@548 466 virtual uint ideal_reg() const { return Op_RegN; }
coleenp@548 467 virtual int store_Opcode() const { return Op_StoreN; }
coleenp@548 468 virtual BasicType memory_type() const { return T_NARROWOOP; }
coleenp@548 469 };
coleenp@548 470
duke@435 471 //------------------------------LoadKlassNode----------------------------------
duke@435 472 // Load a Klass from an object
duke@435 473 class LoadKlassNode : public LoadPNode {
zmajo@7341 474 protected:
zmajo@7341 475 // In most cases, LoadKlassNode does not have the control input set. If the control
zmajo@7341 476 // input is set, it must not be removed (by LoadNode::Ideal()).
zmajo@7341 477 virtual bool can_remove_control() const;
duke@435 478 public:
goetz@6479 479 LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
goetz@6479 480 : LoadPNode(c, mem, adr, at, tk, mo) {}
duke@435 481 virtual int Opcode() const;
duke@435 482 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 483 virtual Node *Identity( PhaseTransform *phase );
duke@435 484 virtual bool depends_only_on_test() const { return true; }
kvn@599 485
kvn@599 486 // Polymorphic factory method:
zmajo@7341 487 static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
zmajo@7341 488 const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
duke@435 489 };
duke@435 490
kvn@599 491 //------------------------------LoadNKlassNode---------------------------------
kvn@599 492 // Load a narrow Klass from an object.
kvn@599 493 class LoadNKlassNode : public LoadNNode {
kvn@599 494 public:
goetz@6479 495 LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
goetz@6479 496 : LoadNNode(c, mem, adr, at, tk, mo) {}
kvn@599 497 virtual int Opcode() const;
kvn@599 498 virtual uint ideal_reg() const { return Op_RegN; }
roland@4159 499 virtual int store_Opcode() const { return Op_StoreNKlass; }
roland@4159 500 virtual BasicType memory_type() const { return T_NARROWKLASS; }
kvn@599 501
kvn@599 502 virtual const Type *Value( PhaseTransform *phase ) const;
kvn@599 503 virtual Node *Identity( PhaseTransform *phase );
kvn@599 504 virtual bool depends_only_on_test() const { return true; }
kvn@599 505 };
kvn@599 506
kvn@599 507
duke@435 508 //------------------------------StoreNode--------------------------------------
duke@435 509 // Store value; requires Store, Address and Value
duke@435 510 class StoreNode : public MemNode {
goetz@6479 511 private:
goetz@6479 512 // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
goetz@6479 513 // stores that can be reordered, and such requiring release semantics to
goetz@6479 514 // adhere to the Java specification. The required behaviour is stored in
goetz@6479 515 // this field.
goetz@6479 516 const MemOrd _mo;
goetz@6479 517 // Needed for proper cloning.
goetz@6479 518 virtual uint size_of() const { return sizeof(*this); }
duke@435 519 protected:
duke@435 520 virtual uint cmp( const Node &n ) const;
duke@435 521 virtual bool depends_only_on_test() const { return false; }
duke@435 522
duke@435 523 Node *Ideal_masked_input (PhaseGVN *phase, uint mask);
duke@435 524 Node *Ideal_sign_extended_input(PhaseGVN *phase, int num_bits);
duke@435 525
duke@435 526 public:
goetz@6479 527 // We must ensure that stores of object references will be visible
goetz@6479 528 // only after the object's initialization. So the callers of this
goetz@6479 529 // procedure must indicate that the store requires `release'
goetz@6479 530 // semantics, if the stored value is an object reference that might
goetz@6479 531 // point to a new object and may become externally visible.
goetz@6479 532 StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 533 : MemNode(c, mem, adr, at, val), _mo(mo) {
duke@435 534 init_class_id(Class_Store);
duke@435 535 }
goetz@6479 536 StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
goetz@6479 537 : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
duke@435 538 init_class_id(Class_Store);
duke@435 539 }
duke@435 540
goetz@6479 541 inline bool is_unordered() const { return !is_release(); }
goetz@6479 542 inline bool is_release() const {
goetz@6479 543 assert((_mo == unordered || _mo == release), "unexpected");
goetz@6479 544 return _mo == release;
goetz@6479 545 }
goetz@6479 546
goetz@6479 547 // Conservatively release stores of object references in order to
goetz@6479 548 // ensure visibility of object initialization.
goetz@6479 549 static inline MemOrd release_if_reference(const BasicType t) {
goetz@6479 550 const MemOrd mo = (t == T_ARRAY ||
goetz@6479 551 t == T_ADDRESS || // Might be the address of an object reference (`boxing').
goetz@6479 552 t == T_OBJECT) ? release : unordered;
goetz@6479 553 return mo;
goetz@6479 554 }
goetz@6479 555
goetz@6479 556 // Polymorphic factory method
goetz@6479 557 //
goetz@6479 558 // We must ensure that stores of object references will be visible
goetz@6479 559 // only after the object's initialization. So the callers of this
goetz@6479 560 // procedure must indicate that the store requires `release'
goetz@6479 561 // semantics, if the stored value is an object reference that might
goetz@6479 562 // point to a new object and may become externally visible.
goetz@6479 563 static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
goetz@6479 564 const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
duke@435 565
duke@435 566 virtual uint hash() const; // Check the type
duke@435 567
duke@435 568 // If the store is to Field memory and the pointer is non-null, we can
duke@435 569 // zero out the control input.
duke@435 570 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 571
duke@435 572 // Compute a new Type for this node. Basically we just do the pre-check,
duke@435 573 // then call the virtual add() to set the type.
duke@435 574 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 575
duke@435 576 // Check for identity function on memory (Load then Store at same address)
duke@435 577 virtual Node *Identity( PhaseTransform *phase );
duke@435 578
duke@435 579 // Do not match memory edge
duke@435 580 virtual uint match_edge(uint idx) const;
duke@435 581
duke@435 582 virtual const Type *bottom_type() const; // returns Type::MEMORY
duke@435 583
duke@435 584 // Map a store opcode to its corresponding own opcode, trivially.
duke@435 585 virtual int store_Opcode() const { return Opcode(); }
duke@435 586
duke@435 587 // have all possible loads of the value stored been optimized away?
duke@435 588 bool value_never_loaded(PhaseTransform *phase) const;
duke@435 589 };
duke@435 590
duke@435 591 //------------------------------StoreBNode-------------------------------------
duke@435 592 // Store byte to memory
duke@435 593 class StoreBNode : public StoreNode {
duke@435 594 public:
goetz@6479 595 StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 596 : StoreNode(c, mem, adr, at, val, mo) {}
duke@435 597 virtual int Opcode() const;
duke@435 598 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 599 virtual BasicType memory_type() const { return T_BYTE; }
duke@435 600 };
duke@435 601
duke@435 602 //------------------------------StoreCNode-------------------------------------
duke@435 603 // Store char/short to memory
duke@435 604 class StoreCNode : public StoreNode {
duke@435 605 public:
goetz@6479 606 StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 607 : StoreNode(c, mem, adr, at, val, mo) {}
duke@435 608 virtual int Opcode() const;
duke@435 609 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 610 virtual BasicType memory_type() const { return T_CHAR; }
duke@435 611 };
duke@435 612
duke@435 613 //------------------------------StoreINode-------------------------------------
duke@435 614 // Store int to memory
duke@435 615 class StoreINode : public StoreNode {
duke@435 616 public:
goetz@6479 617 StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 618 : StoreNode(c, mem, adr, at, val, mo) {}
duke@435 619 virtual int Opcode() const;
duke@435 620 virtual BasicType memory_type() const { return T_INT; }
duke@435 621 };
duke@435 622
duke@435 623 //------------------------------StoreLNode-------------------------------------
duke@435 624 // Store long to memory
duke@435 625 class StoreLNode : public StoreNode {
duke@435 626 virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
duke@435 627 virtual uint cmp( const Node &n ) const {
duke@435 628 return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
duke@435 629 && StoreNode::cmp(n);
duke@435 630 }
duke@435 631 virtual uint size_of() const { return sizeof(*this); }
duke@435 632 const bool _require_atomic_access; // is piecewise store forbidden?
duke@435 633
duke@435 634 public:
goetz@6479 635 StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
goetz@6479 636 : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
duke@435 637 virtual int Opcode() const;
duke@435 638 virtual BasicType memory_type() const { return T_LONG; }
anoll@7858 639 bool require_atomic_access() const { return _require_atomic_access; }
goetz@6479 640 static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
duke@435 641 #ifndef PRODUCT
duke@435 642 virtual void dump_spec(outputStream *st) const {
duke@435 643 StoreNode::dump_spec(st);
duke@435 644 if (_require_atomic_access) st->print(" Atomic!");
duke@435 645 }
duke@435 646 #endif
duke@435 647 };
duke@435 648
duke@435 649 //------------------------------StoreFNode-------------------------------------
duke@435 650 // Store float to memory
duke@435 651 class StoreFNode : public StoreNode {
duke@435 652 public:
goetz@6479 653 StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 654 : StoreNode(c, mem, adr, at, val, mo) {}
duke@435 655 virtual int Opcode() const;
duke@435 656 virtual BasicType memory_type() const { return T_FLOAT; }
duke@435 657 };
duke@435 658
duke@435 659 //------------------------------StoreDNode-------------------------------------
duke@435 660 // Store double to memory
duke@435 661 class StoreDNode : public StoreNode {
anoll@7858 662 virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
anoll@7858 663 virtual uint cmp( const Node &n ) const {
anoll@7858 664 return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
anoll@7858 665 && StoreNode::cmp(n);
anoll@7858 666 }
anoll@7858 667 virtual uint size_of() const { return sizeof(*this); }
anoll@7858 668 const bool _require_atomic_access; // is piecewise store forbidden?
duke@435 669 public:
anoll@7858 670 StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
anoll@7858 671 MemOrd mo, bool require_atomic_access = false)
anoll@7858 672 : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
duke@435 673 virtual int Opcode() const;
duke@435 674 virtual BasicType memory_type() const { return T_DOUBLE; }
anoll@7858 675 bool require_atomic_access() const { return _require_atomic_access; }
anoll@7858 676 static StoreDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
anoll@7858 677 #ifndef PRODUCT
anoll@7858 678 virtual void dump_spec(outputStream *st) const {
anoll@7858 679 StoreNode::dump_spec(st);
anoll@7858 680 if (_require_atomic_access) st->print(" Atomic!");
anoll@7858 681 }
anoll@7858 682 #endif
anoll@7858 683
duke@435 684 };
duke@435 685
duke@435 686 //------------------------------StorePNode-------------------------------------
duke@435 687 // Store pointer to memory
duke@435 688 class StorePNode : public StoreNode {
duke@435 689 public:
goetz@6479 690 StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 691 : StoreNode(c, mem, adr, at, val, mo) {}
duke@435 692 virtual int Opcode() const;
duke@435 693 virtual BasicType memory_type() const { return T_ADDRESS; }
duke@435 694 };
duke@435 695
coleenp@548 696 //------------------------------StoreNNode-------------------------------------
coleenp@548 697 // Store narrow oop to memory
coleenp@548 698 class StoreNNode : public StoreNode {
coleenp@548 699 public:
goetz@6479 700 StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 701 : StoreNode(c, mem, adr, at, val, mo) {}
coleenp@548 702 virtual int Opcode() const;
coleenp@548 703 virtual BasicType memory_type() const { return T_NARROWOOP; }
coleenp@548 704 };
coleenp@548 705
roland@4159 706 //------------------------------StoreNKlassNode--------------------------------------
roland@4159 707 // Store narrow klass to memory
roland@4159 708 class StoreNKlassNode : public StoreNNode {
roland@4159 709 public:
goetz@6479 710 StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 711 : StoreNNode(c, mem, adr, at, val, mo) {}
roland@4159 712 virtual int Opcode() const;
roland@4159 713 virtual BasicType memory_type() const { return T_NARROWKLASS; }
roland@4159 714 };
roland@4159 715
duke@435 716 //------------------------------StoreCMNode-----------------------------------
duke@435 717 // Store card-mark byte to memory for CM
duke@435 718 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
duke@435 719 // Preceeding equivalent StoreCMs may be eliminated.
duke@435 720 class StoreCMNode : public StoreNode {
cfang@1420 721 private:
never@1633 722 virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
never@1633 723 virtual uint cmp( const Node &n ) const {
never@1633 724 return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
never@1633 725 && StoreNode::cmp(n);
never@1633 726 }
never@1633 727 virtual uint size_of() const { return sizeof(*this); }
cfang@1420 728 int _oop_alias_idx; // The alias_idx of OopStore
never@1633 729
duke@435 730 public:
never@1633 731 StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
goetz@6479 732 StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
never@1633 733 _oop_alias_idx(oop_alias_idx) {
never@1633 734 assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
never@1633 735 _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
never@1633 736 "bad oop alias idx");
never@1633 737 }
duke@435 738 virtual int Opcode() const;
duke@435 739 virtual Node *Identity( PhaseTransform *phase );
cfang@1420 740 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 741 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 742 virtual BasicType memory_type() const { return T_VOID; } // unspecific
cfang@1420 743 int oop_alias_idx() const { return _oop_alias_idx; }
duke@435 744 };
duke@435 745
duke@435 746 //------------------------------LoadPLockedNode---------------------------------
duke@435 747 // Load-locked a pointer from memory (either object or array).
duke@435 748 // On Sparc & Intel this is implemented as a normal pointer load.
duke@435 749 // On PowerPC and friends it's a real load-locked.
duke@435 750 class LoadPLockedNode : public LoadPNode {
duke@435 751 public:
goetz@6479 752 LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
goetz@6479 753 : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
duke@435 754 virtual int Opcode() const;
duke@435 755 virtual int store_Opcode() const { return Op_StorePConditional; }
duke@435 756 virtual bool depends_only_on_test() const { return true; }
duke@435 757 };
duke@435 758
duke@435 759 //------------------------------SCMemProjNode---------------------------------------
duke@435 760 // This class defines a projection of the memory state of a store conditional node.
duke@435 761 // These nodes return a value, but also update memory.
duke@435 762 class SCMemProjNode : public ProjNode {
duke@435 763 public:
duke@435 764 enum {SCMEMPROJCON = (uint)-2};
duke@435 765 SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
duke@435 766 virtual int Opcode() const;
duke@435 767 virtual bool is_CFG() const { return false; }
duke@435 768 virtual const Type *bottom_type() const {return Type::MEMORY;}
duke@435 769 virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
duke@435 770 virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
duke@435 771 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 772 #ifndef PRODUCT
duke@435 773 virtual void dump_spec(outputStream *st) const {};
duke@435 774 #endif
duke@435 775 };
duke@435 776
duke@435 777 //------------------------------LoadStoreNode---------------------------
kvn@688 778 // Note: is_Mem() method returns 'true' for this class.
duke@435 779 class LoadStoreNode : public Node {
roland@4106 780 private:
roland@4106 781 const Type* const _type; // What kind of value is loaded?
roland@4106 782 const TypePtr* _adr_type; // What kind of memory is being addressed?
roland@4106 783 virtual uint size_of() const; // Size is bigger
roland@4106 784 public:
roland@4106 785 LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
roland@4106 786 virtual bool depends_only_on_test() const { return false; }
roland@4106 787 virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
roland@4106 788
roland@4106 789 virtual const Type *bottom_type() const { return _type; }
roland@4106 790 virtual uint ideal_reg() const;
roland@4106 791 virtual const class TypePtr *adr_type() const { return _adr_type; } // returns bottom_type of address
roland@4106 792
roland@4106 793 bool result_not_used() const;
roland@4106 794 };
roland@4106 795
roland@4106 796 class LoadStoreConditionalNode : public LoadStoreNode {
duke@435 797 public:
duke@435 798 enum {
duke@435 799 ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
duke@435 800 };
roland@4106 801 LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
duke@435 802 };
duke@435 803
duke@435 804 //------------------------------StorePConditionalNode---------------------------
duke@435 805 // Conditionally store pointer to memory, if no change since prior
duke@435 806 // load-locked. Sets flags for success or failure of the store.
roland@4106 807 class StorePConditionalNode : public LoadStoreConditionalNode {
duke@435 808 public:
roland@4106 809 StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
duke@435 810 virtual int Opcode() const;
duke@435 811 // Produces flags
duke@435 812 virtual uint ideal_reg() const { return Op_RegFlags; }
duke@435 813 };
duke@435 814
kvn@855 815 //------------------------------StoreIConditionalNode---------------------------
kvn@855 816 // Conditionally store int to memory, if no change since prior
kvn@855 817 // load-locked. Sets flags for success or failure of the store.
roland@4106 818 class StoreIConditionalNode : public LoadStoreConditionalNode {
kvn@855 819 public:
roland@4106 820 StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
kvn@855 821 virtual int Opcode() const;
kvn@855 822 // Produces flags
kvn@855 823 virtual uint ideal_reg() const { return Op_RegFlags; }
kvn@855 824 };
kvn@855 825
duke@435 826 //------------------------------StoreLConditionalNode---------------------------
duke@435 827 // Conditionally store long to memory, if no change since prior
duke@435 828 // load-locked. Sets flags for success or failure of the store.
roland@4106 829 class StoreLConditionalNode : public LoadStoreConditionalNode {
duke@435 830 public:
roland@4106 831 StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
duke@435 832 virtual int Opcode() const;
kvn@855 833 // Produces flags
kvn@855 834 virtual uint ideal_reg() const { return Op_RegFlags; }
duke@435 835 };
duke@435 836
duke@435 837
duke@435 838 //------------------------------CompareAndSwapLNode---------------------------
roland@4106 839 class CompareAndSwapLNode : public LoadStoreConditionalNode {
duke@435 840 public:
roland@4106 841 CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
duke@435 842 virtual int Opcode() const;
duke@435 843 };
duke@435 844
duke@435 845
duke@435 846 //------------------------------CompareAndSwapINode---------------------------
roland@4106 847 class CompareAndSwapINode : public LoadStoreConditionalNode {
duke@435 848 public:
roland@4106 849 CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
duke@435 850 virtual int Opcode() const;
duke@435 851 };
duke@435 852
duke@435 853
duke@435 854 //------------------------------CompareAndSwapPNode---------------------------
roland@4106 855 class CompareAndSwapPNode : public LoadStoreConditionalNode {
duke@435 856 public:
roland@4106 857 CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
duke@435 858 virtual int Opcode() const;
duke@435 859 };
duke@435 860
coleenp@548 861 //------------------------------CompareAndSwapNNode---------------------------
roland@4106 862 class CompareAndSwapNNode : public LoadStoreConditionalNode {
coleenp@548 863 public:
roland@4106 864 CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
roland@4106 865 virtual int Opcode() const;
roland@4106 866 };
roland@4106 867
roland@4106 868 //------------------------------GetAndAddINode---------------------------
roland@4106 869 class GetAndAddINode : public LoadStoreNode {
roland@4106 870 public:
roland@4106 871 GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
roland@4106 872 virtual int Opcode() const;
roland@4106 873 };
roland@4106 874
roland@4106 875 //------------------------------GetAndAddLNode---------------------------
roland@4106 876 class GetAndAddLNode : public LoadStoreNode {
roland@4106 877 public:
roland@4106 878 GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
roland@4106 879 virtual int Opcode() const;
roland@4106 880 };
roland@4106 881
roland@4106 882
roland@4106 883 //------------------------------GetAndSetINode---------------------------
roland@4106 884 class GetAndSetINode : public LoadStoreNode {
roland@4106 885 public:
roland@4106 886 GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
roland@4106 887 virtual int Opcode() const;
roland@4106 888 };
roland@4106 889
roland@4106 890 //------------------------------GetAndSetINode---------------------------
roland@4106 891 class GetAndSetLNode : public LoadStoreNode {
roland@4106 892 public:
roland@4106 893 GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
roland@4106 894 virtual int Opcode() const;
roland@4106 895 };
roland@4106 896
roland@4106 897 //------------------------------GetAndSetPNode---------------------------
roland@4106 898 class GetAndSetPNode : public LoadStoreNode {
roland@4106 899 public:
roland@4106 900 GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
roland@4106 901 virtual int Opcode() const;
roland@4106 902 };
roland@4106 903
roland@4106 904 //------------------------------GetAndSetNNode---------------------------
roland@4106 905 class GetAndSetNNode : public LoadStoreNode {
roland@4106 906 public:
roland@4106 907 GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
coleenp@548 908 virtual int Opcode() const;
coleenp@548 909 };
coleenp@548 910
duke@435 911 //------------------------------ClearArray-------------------------------------
duke@435 912 class ClearArrayNode: public Node {
duke@435 913 public:
kvn@1535 914 ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
kvn@1535 915 : Node(ctrl,arymem,word_cnt,base) {
kvn@1535 916 init_class_id(Class_ClearArray);
kvn@1535 917 }
duke@435 918 virtual int Opcode() const;
duke@435 919 virtual const Type *bottom_type() const { return Type::MEMORY; }
duke@435 920 // ClearArray modifies array elements, and so affects only the
duke@435 921 // array memory addressed by the bottom_type of its base address.
duke@435 922 virtual const class TypePtr *adr_type() const;
duke@435 923 virtual Node *Identity( PhaseTransform *phase );
duke@435 924 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 925 virtual uint match_edge(uint idx) const;
duke@435 926
duke@435 927 // Clear the given area of an object or array.
duke@435 928 // The start offset must always be aligned mod BytesPerInt.
duke@435 929 // The end offset must always be aligned mod BytesPerLong.
duke@435 930 // Return the new memory.
duke@435 931 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 932 intptr_t start_offset,
duke@435 933 intptr_t end_offset,
duke@435 934 PhaseGVN* phase);
duke@435 935 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 936 intptr_t start_offset,
duke@435 937 Node* end_offset,
duke@435 938 PhaseGVN* phase);
duke@435 939 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 940 Node* start_offset,
duke@435 941 Node* end_offset,
duke@435 942 PhaseGVN* phase);
kvn@1535 943 // Return allocation input memory edge if it is different instance
kvn@1535 944 // or itself if it is the one we are looking for.
kvn@1535 945 static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
duke@435 946 };
duke@435 947
kvn@2694 948 //------------------------------StrIntrinsic-------------------------------
kvn@2694 949 // Base class for Ideal nodes used in String instrinsic code.
kvn@2694 950 class StrIntrinsicNode: public Node {
duke@435 951 public:
kvn@2694 952 StrIntrinsicNode(Node* control, Node* char_array_mem,
kvn@2694 953 Node* s1, Node* c1, Node* s2, Node* c2):
kvn@2694 954 Node(control, char_array_mem, s1, c1, s2, c2) {
kvn@2694 955 }
kvn@2694 956
kvn@2694 957 StrIntrinsicNode(Node* control, Node* char_array_mem,
kvn@2694 958 Node* s1, Node* s2, Node* c):
kvn@2694 959 Node(control, char_array_mem, s1, s2, c) {
kvn@2694 960 }
kvn@2694 961
kvn@2694 962 StrIntrinsicNode(Node* control, Node* char_array_mem,
kvn@2694 963 Node* s1, Node* s2):
kvn@2694 964 Node(control, char_array_mem, s1, s2) {
kvn@2694 965 }
kvn@2694 966
duke@435 967 virtual bool depends_only_on_test() const { return false; }
kvn@1421 968 virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
duke@435 969 virtual uint match_edge(uint idx) const;
duke@435 970 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 971 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
kvn@3311 972 virtual const Type *Value(PhaseTransform *phase) const;
duke@435 973 };
duke@435 974
kvn@2694 975 //------------------------------StrComp-------------------------------------
kvn@2694 976 class StrCompNode: public StrIntrinsicNode {
kvn@2694 977 public:
kvn@2694 978 StrCompNode(Node* control, Node* char_array_mem,
kvn@2694 979 Node* s1, Node* c1, Node* s2, Node* c2):
kvn@2694 980 StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
kvn@2694 981 virtual int Opcode() const;
kvn@2694 982 virtual const Type* bottom_type() const { return TypeInt::INT; }
kvn@2694 983 };
kvn@2694 984
cfang@1116 985 //------------------------------StrEquals-------------------------------------
kvn@2694 986 class StrEqualsNode: public StrIntrinsicNode {
cfang@1116 987 public:
kvn@1421 988 StrEqualsNode(Node* control, Node* char_array_mem,
kvn@2694 989 Node* s1, Node* s2, Node* c):
kvn@2694 990 StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
cfang@1116 991 virtual int Opcode() const;
cfang@1116 992 virtual const Type* bottom_type() const { return TypeInt::BOOL; }
cfang@1116 993 };
cfang@1116 994
cfang@1116 995 //------------------------------StrIndexOf-------------------------------------
kvn@2694 996 class StrIndexOfNode: public StrIntrinsicNode {
cfang@1116 997 public:
kvn@1421 998 StrIndexOfNode(Node* control, Node* char_array_mem,
kvn@2694 999 Node* s1, Node* c1, Node* s2, Node* c2):
kvn@2694 1000 StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
cfang@1116 1001 virtual int Opcode() const;
cfang@1116 1002 virtual const Type* bottom_type() const { return TypeInt::INT; }
cfang@1116 1003 };
cfang@1116 1004
rasbold@604 1005 //------------------------------AryEq---------------------------------------
kvn@2694 1006 class AryEqNode: public StrIntrinsicNode {
rasbold@604 1007 public:
kvn@2694 1008 AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
kvn@2694 1009 StrIntrinsicNode(control, char_array_mem, s1, s2) {};
rasbold@604 1010 virtual int Opcode() const;
rasbold@604 1011 virtual const Type* bottom_type() const { return TypeInt::BOOL; }
rasbold@604 1012 };
rasbold@604 1013
kvn@4479 1014
kvn@4479 1015 //------------------------------EncodeISOArray--------------------------------
kvn@4479 1016 // encode char[] to byte[] in ISO_8859_1
kvn@4479 1017 class EncodeISOArrayNode: public Node {
kvn@4479 1018 public:
kvn@4479 1019 EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {};
kvn@4479 1020 virtual int Opcode() const;
kvn@4479 1021 virtual bool depends_only_on_test() const { return false; }
kvn@4479 1022 virtual const Type* bottom_type() const { return TypeInt::INT; }
kvn@4479 1023 virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
kvn@4479 1024 virtual uint match_edge(uint idx) const;
kvn@4479 1025 virtual uint ideal_reg() const { return Op_RegI; }
kvn@4479 1026 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
kvn@4479 1027 virtual const Type *Value(PhaseTransform *phase) const;
kvn@4479 1028 };
kvn@4479 1029
duke@435 1030 //------------------------------MemBar-----------------------------------------
duke@435 1031 // There are different flavors of Memory Barriers to match the Java Memory
duke@435 1032 // Model. Monitor-enter and volatile-load act as Aquires: no following ref
duke@435 1033 // can be moved to before them. We insert a MemBar-Acquire after a FastLock or
duke@435 1034 // volatile-load. Monitor-exit and volatile-store act as Release: no
twisti@1040 1035 // preceding ref can be moved to after them. We insert a MemBar-Release
duke@435 1036 // before a FastUnlock or volatile-store. All volatiles need to be
duke@435 1037 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
twisti@1040 1038 // separate it from any following volatile-load.
duke@435 1039 class MemBarNode: public MultiNode {
duke@435 1040 virtual uint hash() const ; // { return NO_HASH; }
duke@435 1041 virtual uint cmp( const Node &n ) const ; // Always fail, except on self
duke@435 1042
duke@435 1043 virtual uint size_of() const { return sizeof(*this); }
duke@435 1044 // Memory type this node is serializing. Usually either rawptr or bottom.
duke@435 1045 const TypePtr* _adr_type;
duke@435 1046
duke@435 1047 public:
duke@435 1048 enum {
duke@435 1049 Precedent = TypeFunc::Parms // optional edge to force precedence
duke@435 1050 };
duke@435 1051 MemBarNode(Compile* C, int alias_idx, Node* precedent);
duke@435 1052 virtual int Opcode() const = 0;
duke@435 1053 virtual const class TypePtr *adr_type() const { return _adr_type; }
duke@435 1054 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 1055 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 1056 virtual uint match_edge(uint idx) const { return 0; }
duke@435 1057 virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
duke@435 1058 virtual Node *match( const ProjNode *proj, const Matcher *m );
duke@435 1059 // Factory method. Builds a wide or narrow membar.
duke@435 1060 // Optional 'precedent' becomes an extra edge if not null.
duke@435 1061 static MemBarNode* make(Compile* C, int opcode,
duke@435 1062 int alias_idx = Compile::AliasIdxBot,
duke@435 1063 Node* precedent = NULL);
duke@435 1064 };
duke@435 1065
duke@435 1066 // "Acquire" - no following ref can move before (but earlier refs can
duke@435 1067 // follow, like an early Load stalled in cache). Requires multi-cpu
roland@3047 1068 // visibility. Inserted after a volatile load.
duke@435 1069 class MemBarAcquireNode: public MemBarNode {
duke@435 1070 public:
duke@435 1071 MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
duke@435 1072 : MemBarNode(C, alias_idx, precedent) {}
duke@435 1073 virtual int Opcode() const;
duke@435 1074 };
duke@435 1075
goetz@6489 1076 // "Acquire" - no following ref can move before (but earlier refs can
goetz@6489 1077 // follow, like an early Load stalled in cache). Requires multi-cpu
goetz@6489 1078 // visibility. Inserted independ of any load, as required
goetz@6489 1079 // for intrinsic sun.misc.Unsafe.loadFence().
goetz@6489 1080 class LoadFenceNode: public MemBarNode {
goetz@6489 1081 public:
goetz@6489 1082 LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
goetz@6489 1083 : MemBarNode(C, alias_idx, precedent) {}
goetz@6489 1084 virtual int Opcode() const;
goetz@6489 1085 };
goetz@6489 1086
duke@435 1087 // "Release" - no earlier ref can move after (but later refs can move
duke@435 1088 // up, like a speculative pipelined cache-hitting Load). Requires
roland@3047 1089 // multi-cpu visibility. Inserted before a volatile store.
duke@435 1090 class MemBarReleaseNode: public MemBarNode {
duke@435 1091 public:
duke@435 1092 MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
duke@435 1093 : MemBarNode(C, alias_idx, precedent) {}
duke@435 1094 virtual int Opcode() const;
duke@435 1095 };
duke@435 1096
goetz@6489 1097 // "Release" - no earlier ref can move after (but later refs can move
goetz@6489 1098 // up, like a speculative pipelined cache-hitting Load). Requires
goetz@6489 1099 // multi-cpu visibility. Inserted independent of any store, as required
goetz@6489 1100 // for intrinsic sun.misc.Unsafe.storeFence().
goetz@6489 1101 class StoreFenceNode: public MemBarNode {
goetz@6489 1102 public:
goetz@6489 1103 StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
goetz@6489 1104 : MemBarNode(C, alias_idx, precedent) {}
goetz@6489 1105 virtual int Opcode() const;
goetz@6489 1106 };
goetz@6489 1107
roland@3047 1108 // "Acquire" - no following ref can move before (but earlier refs can
roland@3047 1109 // follow, like an early Load stalled in cache). Requires multi-cpu
roland@3047 1110 // visibility. Inserted after a FastLock.
roland@3047 1111 class MemBarAcquireLockNode: public MemBarNode {
roland@3047 1112 public:
roland@3047 1113 MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
roland@3047 1114 : MemBarNode(C, alias_idx, precedent) {}
roland@3047 1115 virtual int Opcode() const;
roland@3047 1116 };
roland@3047 1117
roland@3047 1118 // "Release" - no earlier ref can move after (but later refs can move
roland@3047 1119 // up, like a speculative pipelined cache-hitting Load). Requires
roland@3047 1120 // multi-cpu visibility. Inserted before a FastUnLock.
roland@3047 1121 class MemBarReleaseLockNode: public MemBarNode {
roland@3047 1122 public:
roland@3047 1123 MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
roland@3047 1124 : MemBarNode(C, alias_idx, precedent) {}
roland@3047 1125 virtual int Opcode() const;
roland@3047 1126 };
roland@3047 1127
roland@3392 1128 class MemBarStoreStoreNode: public MemBarNode {
roland@3392 1129 public:
roland@3392 1130 MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
roland@3392 1131 : MemBarNode(C, alias_idx, precedent) {
roland@3392 1132 init_class_id(Class_MemBarStoreStore);
roland@3392 1133 }
roland@3392 1134 virtual int Opcode() const;
roland@3392 1135 };
roland@3392 1136
duke@435 1137 // Ordering between a volatile store and a following volatile load.
duke@435 1138 // Requires multi-CPU visibility?
duke@435 1139 class MemBarVolatileNode: public MemBarNode {
duke@435 1140 public:
duke@435 1141 MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
duke@435 1142 : MemBarNode(C, alias_idx, precedent) {}
duke@435 1143 virtual int Opcode() const;
duke@435 1144 };
duke@435 1145
duke@435 1146 // Ordering within the same CPU. Used to order unsafe memory references
duke@435 1147 // inside the compiler when we lack alias info. Not needed "outside" the
duke@435 1148 // compiler because the CPU does all the ordering for us.
duke@435 1149 class MemBarCPUOrderNode: public MemBarNode {
duke@435 1150 public:
duke@435 1151 MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
duke@435 1152 : MemBarNode(C, alias_idx, precedent) {}
duke@435 1153 virtual int Opcode() const;
duke@435 1154 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
duke@435 1155 };
duke@435 1156
duke@435 1157 // Isolation of object setup after an AllocateNode and before next safepoint.
duke@435 1158 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
duke@435 1159 class InitializeNode: public MemBarNode {
duke@435 1160 friend class AllocateNode;
duke@435 1161
kvn@3157 1162 enum {
kvn@3157 1163 Incomplete = 0,
kvn@3157 1164 Complete = 1,
kvn@3157 1165 WithArraycopy = 2
kvn@3157 1166 };
kvn@3157 1167 int _is_complete;
duke@435 1168
roland@3392 1169 bool _does_not_escape;
roland@3392 1170
duke@435 1171 public:
duke@435 1172 enum {
duke@435 1173 Control = TypeFunc::Control,
duke@435 1174 Memory = TypeFunc::Memory, // MergeMem for states affected by this op
duke@435 1175 RawAddress = TypeFunc::Parms+0, // the newly-allocated raw address
duke@435 1176 RawStores = TypeFunc::Parms+1 // zero or more stores (or TOP)
duke@435 1177 };
duke@435 1178
duke@435 1179 InitializeNode(Compile* C, int adr_type, Node* rawoop);
duke@435 1180 virtual int Opcode() const;
duke@435 1181 virtual uint size_of() const { return sizeof(*this); }
duke@435 1182 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
duke@435 1183 virtual const RegMask &in_RegMask(uint) const; // mask for RawAddress
duke@435 1184
duke@435 1185 // Manage incoming memory edges via a MergeMem on in(Memory):
duke@435 1186 Node* memory(uint alias_idx);
duke@435 1187
duke@435 1188 // The raw memory edge coming directly from the Allocation.
duke@435 1189 // The contents of this memory are *always* all-zero-bits.
duke@435 1190 Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
duke@435 1191
duke@435 1192 // Return the corresponding allocation for this initialization (or null if none).
duke@435 1193 // (Note: Both InitializeNode::allocation and AllocateNode::initialization
duke@435 1194 // are defined in graphKit.cpp, which sets up the bidirectional relation.)
duke@435 1195 AllocateNode* allocation();
duke@435 1196
duke@435 1197 // Anything other than zeroing in this init?
duke@435 1198 bool is_non_zero();
duke@435 1199
duke@435 1200 // An InitializeNode must completed before macro expansion is done.
duke@435 1201 // Completion requires that the AllocateNode must be followed by
duke@435 1202 // initialization of the new memory to zero, then to any initializers.
kvn@3157 1203 bool is_complete() { return _is_complete != Incomplete; }
kvn@3157 1204 bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
duke@435 1205
duke@435 1206 // Mark complete. (Must not yet be complete.)
duke@435 1207 void set_complete(PhaseGVN* phase);
kvn@3157 1208 void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
duke@435 1209
roland@3392 1210 bool does_not_escape() { return _does_not_escape; }
roland@3392 1211 void set_does_not_escape() { _does_not_escape = true; }
roland@3392 1212
duke@435 1213 #ifdef ASSERT
duke@435 1214 // ensure all non-degenerate stores are ordered and non-overlapping
duke@435 1215 bool stores_are_sane(PhaseTransform* phase);
duke@435 1216 #endif //ASSERT
duke@435 1217
duke@435 1218 // See if this store can be captured; return offset where it initializes.
duke@435 1219 // Return 0 if the store cannot be moved (any sort of problem).
roland@4657 1220 intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
duke@435 1221
duke@435 1222 // Capture another store; reformat it to write my internal raw memory.
duke@435 1223 // Return the captured copy, else NULL if there is some sort of problem.
roland@4657 1224 Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
duke@435 1225
duke@435 1226 // Find captured store which corresponds to the range [start..start+size).
duke@435 1227 // Return my own memory projection (meaning the initial zero bits)
duke@435 1228 // if there is no such store. Return NULL if there is a problem.
duke@435 1229 Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
duke@435 1230
duke@435 1231 // Called when the associated AllocateNode is expanded into CFG.
duke@435 1232 Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
duke@435 1233 intptr_t header_size, Node* size_in_bytes,
duke@435 1234 PhaseGVN* phase);
duke@435 1235
duke@435 1236 private:
duke@435 1237 void remove_extra_zeroes();
duke@435 1238
duke@435 1239 // Find out where a captured store should be placed (or already is placed).
duke@435 1240 int captured_store_insertion_point(intptr_t start, int size_in_bytes,
duke@435 1241 PhaseTransform* phase);
duke@435 1242
duke@435 1243 static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
duke@435 1244
duke@435 1245 Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
duke@435 1246
kvn@5110 1247 bool detect_init_independence(Node* n, int& count);
duke@435 1248
duke@435 1249 void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
duke@435 1250 PhaseGVN* phase);
duke@435 1251
duke@435 1252 intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
duke@435 1253 };
duke@435 1254
duke@435 1255 //------------------------------MergeMem---------------------------------------
duke@435 1256 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
duke@435 1257 class MergeMemNode: public Node {
duke@435 1258 virtual uint hash() const ; // { return NO_HASH; }
duke@435 1259 virtual uint cmp( const Node &n ) const ; // Always fail, except on self
duke@435 1260 friend class MergeMemStream;
duke@435 1261 MergeMemNode(Node* def); // clients use MergeMemNode::make
duke@435 1262
duke@435 1263 public:
duke@435 1264 // If the input is a whole memory state, clone it with all its slices intact.
duke@435 1265 // Otherwise, make a new memory state with just that base memory input.
duke@435 1266 // In either case, the result is a newly created MergeMem.
duke@435 1267 static MergeMemNode* make(Compile* C, Node* base_memory);
duke@435 1268
duke@435 1269 virtual int Opcode() const;
duke@435 1270 virtual Node *Identity( PhaseTransform *phase );
duke@435 1271 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 1272 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1273 virtual uint match_edge(uint idx) const { return 0; }
duke@435 1274 virtual const RegMask &out_RegMask() const;
duke@435 1275 virtual const Type *bottom_type() const { return Type::MEMORY; }
duke@435 1276 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
duke@435 1277 // sparse accessors
duke@435 1278 // Fetch the previously stored "set_memory_at", or else the base memory.
duke@435 1279 // (Caller should clone it if it is a phi-nest.)
duke@435 1280 Node* memory_at(uint alias_idx) const;
duke@435 1281 // set the memory, regardless of its previous value
duke@435 1282 void set_memory_at(uint alias_idx, Node* n);
duke@435 1283 // the "base" is the memory that provides the non-finite support
duke@435 1284 Node* base_memory() const { return in(Compile::AliasIdxBot); }
duke@435 1285 // warning: setting the base can implicitly set any of the other slices too
duke@435 1286 void set_base_memory(Node* def);
duke@435 1287 // sentinel value which denotes a copy of the base memory:
duke@435 1288 Node* empty_memory() const { return in(Compile::AliasIdxTop); }
duke@435 1289 static Node* make_empty_memory(); // where the sentinel comes from
duke@435 1290 bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
duke@435 1291 // hook for the iterator, to perform any necessary setup
duke@435 1292 void iteration_setup(const MergeMemNode* other = NULL);
duke@435 1293 // push sentinels until I am at least as long as the other (semantic no-op)
duke@435 1294 void grow_to_match(const MergeMemNode* other);
duke@435 1295 bool verify_sparse() const PRODUCT_RETURN0;
duke@435 1296 #ifndef PRODUCT
duke@435 1297 virtual void dump_spec(outputStream *st) const;
duke@435 1298 #endif
duke@435 1299 };
duke@435 1300
duke@435 1301 class MergeMemStream : public StackObj {
duke@435 1302 private:
duke@435 1303 MergeMemNode* _mm;
duke@435 1304 const MergeMemNode* _mm2; // optional second guy, contributes non-empty iterations
duke@435 1305 Node* _mm_base; // loop-invariant base memory of _mm
duke@435 1306 int _idx;
duke@435 1307 int _cnt;
duke@435 1308 Node* _mem;
duke@435 1309 Node* _mem2;
duke@435 1310 int _cnt2;
duke@435 1311
duke@435 1312 void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
duke@435 1313 // subsume_node will break sparseness at times, whenever a memory slice
duke@435 1314 // folds down to a copy of the base ("fat") memory. In such a case,
duke@435 1315 // the raw edge will update to base, although it should be top.
duke@435 1316 // This iterator will recognize either top or base_memory as an
duke@435 1317 // "empty" slice. See is_empty, is_empty2, and next below.
duke@435 1318 //
duke@435 1319 // The sparseness property is repaired in MergeMemNode::Ideal.
duke@435 1320 // As long as access to a MergeMem goes through this iterator
duke@435 1321 // or the memory_at accessor, flaws in the sparseness will
duke@435 1322 // never be observed.
duke@435 1323 //
duke@435 1324 // Also, iteration_setup repairs sparseness.
duke@435 1325 assert(mm->verify_sparse(), "please, no dups of base");
duke@435 1326 assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
duke@435 1327
duke@435 1328 _mm = mm;
duke@435 1329 _mm_base = mm->base_memory();
duke@435 1330 _mm2 = mm2;
duke@435 1331 _cnt = mm->req();
duke@435 1332 _idx = Compile::AliasIdxBot-1; // start at the base memory
duke@435 1333 _mem = NULL;
duke@435 1334 _mem2 = NULL;
duke@435 1335 }
duke@435 1336
duke@435 1337 #ifdef ASSERT
duke@435 1338 Node* check_memory() const {
duke@435 1339 if (at_base_memory())
duke@435 1340 return _mm->base_memory();
duke@435 1341 else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
duke@435 1342 return _mm->memory_at(_idx);
duke@435 1343 else
duke@435 1344 return _mm_base;
duke@435 1345 }
duke@435 1346 Node* check_memory2() const {
duke@435 1347 return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
duke@435 1348 }
duke@435 1349 #endif
duke@435 1350
duke@435 1351 static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
duke@435 1352 void assert_synch() const {
duke@435 1353 assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
duke@435 1354 "no side-effects except through the stream");
duke@435 1355 }
duke@435 1356
duke@435 1357 public:
duke@435 1358
duke@435 1359 // expected usages:
duke@435 1360 // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
duke@435 1361 // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
duke@435 1362
duke@435 1363 // iterate over one merge
duke@435 1364 MergeMemStream(MergeMemNode* mm) {
duke@435 1365 mm->iteration_setup();
duke@435 1366 init(mm);
duke@435 1367 debug_only(_cnt2 = 999);
duke@435 1368 }
duke@435 1369 // iterate in parallel over two merges
duke@435 1370 // only iterates through non-empty elements of mm2
duke@435 1371 MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
duke@435 1372 assert(mm2, "second argument must be a MergeMem also");
duke@435 1373 ((MergeMemNode*)mm2)->iteration_setup(); // update hidden state
duke@435 1374 mm->iteration_setup(mm2);
duke@435 1375 init(mm, mm2);
duke@435 1376 _cnt2 = mm2->req();
duke@435 1377 }
duke@435 1378 #ifdef ASSERT
duke@435 1379 ~MergeMemStream() {
duke@435 1380 assert_synch();
duke@435 1381 }
duke@435 1382 #endif
duke@435 1383
duke@435 1384 MergeMemNode* all_memory() const {
duke@435 1385 return _mm;
duke@435 1386 }
duke@435 1387 Node* base_memory() const {
duke@435 1388 assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
duke@435 1389 return _mm_base;
duke@435 1390 }
duke@435 1391 const MergeMemNode* all_memory2() const {
duke@435 1392 assert(_mm2 != NULL, "");
duke@435 1393 return _mm2;
duke@435 1394 }
duke@435 1395 bool at_base_memory() const {
duke@435 1396 return _idx == Compile::AliasIdxBot;
duke@435 1397 }
duke@435 1398 int alias_idx() const {
duke@435 1399 assert(_mem, "must call next 1st");
duke@435 1400 return _idx;
duke@435 1401 }
duke@435 1402
duke@435 1403 const TypePtr* adr_type() const {
duke@435 1404 return Compile::current()->get_adr_type(alias_idx());
duke@435 1405 }
duke@435 1406
duke@435 1407 const TypePtr* adr_type(Compile* C) const {
duke@435 1408 return C->get_adr_type(alias_idx());
duke@435 1409 }
duke@435 1410 bool is_empty() const {
duke@435 1411 assert(_mem, "must call next 1st");
duke@435 1412 assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
duke@435 1413 return _mem->is_top();
duke@435 1414 }
duke@435 1415 bool is_empty2() const {
duke@435 1416 assert(_mem2, "must call next 1st");
duke@435 1417 assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
duke@435 1418 return _mem2->is_top();
duke@435 1419 }
duke@435 1420 Node* memory() const {
duke@435 1421 assert(!is_empty(), "must not be empty");
duke@435 1422 assert_synch();
duke@435 1423 return _mem;
duke@435 1424 }
duke@435 1425 // get the current memory, regardless of empty or non-empty status
duke@435 1426 Node* force_memory() const {
duke@435 1427 assert(!is_empty() || !at_base_memory(), "");
duke@435 1428 // Use _mm_base to defend against updates to _mem->base_memory().
duke@435 1429 Node *mem = _mem->is_top() ? _mm_base : _mem;
duke@435 1430 assert(mem == check_memory(), "");
duke@435 1431 return mem;
duke@435 1432 }
duke@435 1433 Node* memory2() const {
duke@435 1434 assert(_mem2 == check_memory2(), "");
duke@435 1435 return _mem2;
duke@435 1436 }
duke@435 1437 void set_memory(Node* mem) {
duke@435 1438 if (at_base_memory()) {
duke@435 1439 // Note that this does not change the invariant _mm_base.
duke@435 1440 _mm->set_base_memory(mem);
duke@435 1441 } else {
duke@435 1442 _mm->set_memory_at(_idx, mem);
duke@435 1443 }
duke@435 1444 _mem = mem;
duke@435 1445 assert_synch();
duke@435 1446 }
duke@435 1447
duke@435 1448 // Recover from a side effect to the MergeMemNode.
duke@435 1449 void set_memory() {
duke@435 1450 _mem = _mm->in(_idx);
duke@435 1451 }
duke@435 1452
duke@435 1453 bool next() { return next(false); }
duke@435 1454 bool next2() { return next(true); }
duke@435 1455
duke@435 1456 bool next_non_empty() { return next_non_empty(false); }
duke@435 1457 bool next_non_empty2() { return next_non_empty(true); }
duke@435 1458 // next_non_empty2 can yield states where is_empty() is true
duke@435 1459
duke@435 1460 private:
duke@435 1461 // find the next item, which might be empty
duke@435 1462 bool next(bool have_mm2) {
duke@435 1463 assert((_mm2 != NULL) == have_mm2, "use other next");
duke@435 1464 assert_synch();
duke@435 1465 if (++_idx < _cnt) {
duke@435 1466 // Note: This iterator allows _mm to be non-sparse.
duke@435 1467 // It behaves the same whether _mem is top or base_memory.
duke@435 1468 _mem = _mm->in(_idx);
duke@435 1469 if (have_mm2)
duke@435 1470 _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
duke@435 1471 return true;
duke@435 1472 }
duke@435 1473 return false;
duke@435 1474 }
duke@435 1475
duke@435 1476 // find the next non-empty item
duke@435 1477 bool next_non_empty(bool have_mm2) {
duke@435 1478 while (next(have_mm2)) {
duke@435 1479 if (!is_empty()) {
duke@435 1480 // make sure _mem2 is filled in sensibly
duke@435 1481 if (have_mm2 && _mem2->is_top()) _mem2 = _mm2->base_memory();
duke@435 1482 return true;
duke@435 1483 } else if (have_mm2 && !is_empty2()) {
duke@435 1484 return true; // is_empty() == true
duke@435 1485 }
duke@435 1486 }
duke@435 1487 return false;
duke@435 1488 }
duke@435 1489 };
duke@435 1490
duke@435 1491 //------------------------------Prefetch---------------------------------------
duke@435 1492
duke@435 1493 // Non-faulting prefetch load. Prefetch for many reads.
duke@435 1494 class PrefetchReadNode : public Node {
duke@435 1495 public:
duke@435 1496 PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
duke@435 1497 virtual int Opcode() const;
duke@435 1498 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1499 virtual uint match_edge(uint idx) const { return idx==2; }
duke@435 1500 virtual const Type *bottom_type() const { return Type::ABIO; }
duke@435 1501 };
duke@435 1502
duke@435 1503 // Non-faulting prefetch load. Prefetch for many reads & many writes.
duke@435 1504 class PrefetchWriteNode : public Node {
duke@435 1505 public:
duke@435 1506 PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
duke@435 1507 virtual int Opcode() const;
duke@435 1508 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1509 virtual uint match_edge(uint idx) const { return idx==2; }
kvn@3052 1510 virtual const Type *bottom_type() const { return Type::ABIO; }
kvn@3052 1511 };
kvn@3052 1512
kvn@3052 1513 // Allocation prefetch which may fault, TLAB size have to be adjusted.
kvn@3052 1514 class PrefetchAllocationNode : public Node {
kvn@3052 1515 public:
kvn@3052 1516 PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
kvn@3052 1517 virtual int Opcode() const;
kvn@3052 1518 virtual uint ideal_reg() const { return NotAMachineReg; }
kvn@3052 1519 virtual uint match_edge(uint idx) const { return idx==2; }
kvn@1802 1520 virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
duke@435 1521 };
stefank@2314 1522
stefank@2314 1523 #endif // SHARE_VM_OPTO_MEMNODE_HPP

mercurial