src/share/vm/opto/memnode.hpp

Tue, 20 Dec 2011 16:56:50 +0100

author
roland
date
Tue, 20 Dec 2011 16:56:50 +0100
changeset 3392
1dc233a8c7fe
parent 3311
1bd45abaa507
child 3442
53a127075045
permissions
-rw-r--r--

7121140: Allocation paths require explicit memory synchronization operations for RMO systems
Summary: adds store store barrier after initialization of header and body of objects.
Reviewed-by: never, kvn

duke@435 1 /*
trims@2708 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
stefank@2314 26 #define SHARE_VM_OPTO_MEMNODE_HPP
stefank@2314 27
stefank@2314 28 #include "opto/multnode.hpp"
stefank@2314 29 #include "opto/node.hpp"
stefank@2314 30 #include "opto/opcodes.hpp"
stefank@2314 31 #include "opto/type.hpp"
stefank@2314 32
duke@435 33 // Portions of code courtesy of Clifford Click
duke@435 34
duke@435 35 class MultiNode;
duke@435 36 class PhaseCCP;
duke@435 37 class PhaseTransform;
duke@435 38
duke@435 39 //------------------------------MemNode----------------------------------------
duke@435 40 // Load or Store, possibly throwing a NULL pointer exception
duke@435 41 class MemNode : public Node {
duke@435 42 protected:
duke@435 43 #ifdef ASSERT
duke@435 44 const TypePtr* _adr_type; // What kind of memory is being addressed?
duke@435 45 #endif
duke@435 46 virtual uint size_of() const; // Size is bigger (ASSERT only)
duke@435 47 public:
duke@435 48 enum { Control, // When is it safe to do this load?
duke@435 49 Memory, // Chunk of memory is being loaded from
duke@435 50 Address, // Actually address, derived from base
duke@435 51 ValueIn, // Value to store
duke@435 52 OopStore // Preceeding oop store, only in StoreCM
duke@435 53 };
duke@435 54 protected:
duke@435 55 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
duke@435 56 : Node(c0,c1,c2 ) {
duke@435 57 init_class_id(Class_Mem);
duke@435 58 debug_only(_adr_type=at; adr_type();)
duke@435 59 }
duke@435 60 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
duke@435 61 : Node(c0,c1,c2,c3) {
duke@435 62 init_class_id(Class_Mem);
duke@435 63 debug_only(_adr_type=at; adr_type();)
duke@435 64 }
duke@435 65 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
duke@435 66 : Node(c0,c1,c2,c3,c4) {
duke@435 67 init_class_id(Class_Mem);
duke@435 68 debug_only(_adr_type=at; adr_type();)
duke@435 69 }
duke@435 70
kvn@468 71 public:
duke@435 72 // Helpers for the optimizer. Documented in memnode.cpp.
duke@435 73 static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
duke@435 74 Node* p2, AllocateNode* a2,
duke@435 75 PhaseTransform* phase);
duke@435 76 static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
duke@435 77
kvn@509 78 static Node *optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
kvn@509 79 static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
duke@435 80 // This one should probably be a phase-specific function:
kvn@520 81 static bool all_controls_dominate(Node* dom, Node* sub);
duke@435 82
kvn@598 83 // Find any cast-away of null-ness and keep its control.
kvn@598 84 static Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
duke@435 85 virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
duke@435 86
duke@435 87 virtual const class TypePtr *adr_type() const; // returns bottom_type of address
duke@435 88
duke@435 89 // Shared code for Ideal methods:
duke@435 90 Node *Ideal_common(PhaseGVN *phase, bool can_reshape); // Return -1 for short-circuit NULL.
duke@435 91
duke@435 92 // Helper function for adr_type() implementations.
duke@435 93 static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
duke@435 94
duke@435 95 // Raw access function, to allow copying of adr_type efficiently in
duke@435 96 // product builds and retain the debug info for debug builds.
duke@435 97 const TypePtr *raw_adr_type() const {
duke@435 98 #ifdef ASSERT
duke@435 99 return _adr_type;
duke@435 100 #else
duke@435 101 return 0;
duke@435 102 #endif
duke@435 103 }
duke@435 104
duke@435 105 // Map a load or store opcode to its corresponding store opcode.
duke@435 106 // (Return -1 if unknown.)
duke@435 107 virtual int store_Opcode() const { return -1; }
duke@435 108
duke@435 109 // What is the type of the value in memory? (T_VOID mean "unspecified".)
duke@435 110 virtual BasicType memory_type() const = 0;
kvn@464 111 virtual int memory_size() const {
kvn@464 112 #ifdef ASSERT
kvn@464 113 return type2aelembytes(memory_type(), true);
kvn@464 114 #else
kvn@464 115 return type2aelembytes(memory_type());
kvn@464 116 #endif
kvn@464 117 }
duke@435 118
duke@435 119 // Search through memory states which precede this node (load or store).
duke@435 120 // Look for an exact match for the address, with no intervening
duke@435 121 // aliased stores.
duke@435 122 Node* find_previous_store(PhaseTransform* phase);
duke@435 123
duke@435 124 // Can this node (load or store) accurately see a stored value in
duke@435 125 // the given memory state? (The state may or may not be in(Memory).)
duke@435 126 Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
duke@435 127
duke@435 128 #ifndef PRODUCT
duke@435 129 static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
duke@435 130 virtual void dump_spec(outputStream *st) const;
duke@435 131 #endif
duke@435 132 };
duke@435 133
duke@435 134 //------------------------------LoadNode---------------------------------------
duke@435 135 // Load value; requires Memory and Address
duke@435 136 class LoadNode : public MemNode {
duke@435 137 protected:
duke@435 138 virtual uint cmp( const Node &n ) const;
duke@435 139 virtual uint size_of() const; // Size is bigger
duke@435 140 const Type* const _type; // What kind of value is loaded?
duke@435 141 public:
duke@435 142
duke@435 143 LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
duke@435 144 : MemNode(c,mem,adr,at), _type(rt) {
duke@435 145 init_class_id(Class_Load);
duke@435 146 }
duke@435 147
duke@435 148 // Polymorphic factory method:
coleenp@548 149 static Node* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
coleenp@548 150 const TypePtr* at, const Type *rt, BasicType bt );
duke@435 151
duke@435 152 virtual uint hash() const; // Check the type
duke@435 153
duke@435 154 // Handle algebraic identities here. If we have an identity, return the Node
duke@435 155 // we are equivalent to. We look for Load of a Store.
duke@435 156 virtual Node *Identity( PhaseTransform *phase );
duke@435 157
duke@435 158 // If the load is from Field memory and the pointer is non-null, we can
duke@435 159 // zero out the control input.
duke@435 160 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 161
kvn@598 162 // Split instance field load through Phi.
kvn@598 163 Node* split_through_phi(PhaseGVN *phase);
kvn@598 164
never@452 165 // Recover original value from boxed values
never@452 166 Node *eliminate_autobox(PhaseGVN *phase);
never@452 167
duke@435 168 // Compute a new Type for this node. Basically we just do the pre-check,
duke@435 169 // then call the virtual add() to set the type.
duke@435 170 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 171
kvn@599 172 // Common methods for LoadKlass and LoadNKlass nodes.
kvn@599 173 const Type *klass_value_common( PhaseTransform *phase ) const;
kvn@599 174 Node *klass_identity_common( PhaseTransform *phase );
kvn@599 175
duke@435 176 virtual uint ideal_reg() const;
duke@435 177 virtual const Type *bottom_type() const;
duke@435 178 // Following method is copied from TypeNode:
duke@435 179 void set_type(const Type* t) {
duke@435 180 assert(t != NULL, "sanity");
duke@435 181 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
duke@435 182 *(const Type**)&_type = t; // cast away const-ness
duke@435 183 // If this node is in the hash table, make sure it doesn't need a rehash.
duke@435 184 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
duke@435 185 }
duke@435 186 const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
duke@435 187
duke@435 188 // Do not match memory edge
duke@435 189 virtual uint match_edge(uint idx) const;
duke@435 190
duke@435 191 // Map a load opcode to its corresponding store opcode.
duke@435 192 virtual int store_Opcode() const = 0;
duke@435 193
kvn@499 194 // Check if the load's memory input is a Phi node with the same control.
kvn@499 195 bool is_instance_field_load_with_local_phi(Node* ctrl);
kvn@499 196
duke@435 197 #ifndef PRODUCT
duke@435 198 virtual void dump_spec(outputStream *st) const;
duke@435 199 #endif
kvn@1964 200 #ifdef ASSERT
kvn@1964 201 // Helper function to allow a raw load without control edge for some cases
kvn@1964 202 static bool is_immutable_value(Node* adr);
kvn@1964 203 #endif
duke@435 204 protected:
duke@435 205 const Type* load_array_final_field(const TypeKlassPtr *tkls,
duke@435 206 ciKlass* klass) const;
duke@435 207 };
duke@435 208
duke@435 209 //------------------------------LoadBNode--------------------------------------
duke@435 210 // Load a byte (8bits signed) from memory
duke@435 211 class LoadBNode : public LoadNode {
duke@435 212 public:
duke@435 213 LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
duke@435 214 : LoadNode(c,mem,adr,at,ti) {}
duke@435 215 virtual int Opcode() const;
duke@435 216 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 217 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 218 virtual int store_Opcode() const { return Op_StoreB; }
duke@435 219 virtual BasicType memory_type() const { return T_BYTE; }
duke@435 220 };
duke@435 221
twisti@1059 222 //------------------------------LoadUBNode-------------------------------------
twisti@1059 223 // Load a unsigned byte (8bits unsigned) from memory
twisti@1059 224 class LoadUBNode : public LoadNode {
twisti@1059 225 public:
twisti@1059 226 LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti = TypeInt::UBYTE )
twisti@1059 227 : LoadNode(c, mem, adr, at, ti) {}
twisti@1059 228 virtual int Opcode() const;
twisti@1059 229 virtual uint ideal_reg() const { return Op_RegI; }
twisti@1059 230 virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
twisti@1059 231 virtual int store_Opcode() const { return Op_StoreB; }
twisti@1059 232 virtual BasicType memory_type() const { return T_BYTE; }
twisti@1059 233 };
twisti@1059 234
twisti@993 235 //------------------------------LoadUSNode-------------------------------------
twisti@993 236 // Load an unsigned short/char (16bits unsigned) from memory
twisti@993 237 class LoadUSNode : public LoadNode {
duke@435 238 public:
twisti@993 239 LoadUSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
duke@435 240 : LoadNode(c,mem,adr,at,ti) {}
duke@435 241 virtual int Opcode() const;
duke@435 242 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 243 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 244 virtual int store_Opcode() const { return Op_StoreC; }
duke@435 245 virtual BasicType memory_type() const { return T_CHAR; }
duke@435 246 };
duke@435 247
duke@435 248 //------------------------------LoadINode--------------------------------------
duke@435 249 // Load an integer from memory
duke@435 250 class LoadINode : public LoadNode {
duke@435 251 public:
duke@435 252 LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
duke@435 253 : LoadNode(c,mem,adr,at,ti) {}
duke@435 254 virtual int Opcode() const;
duke@435 255 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 256 virtual int store_Opcode() const { return Op_StoreI; }
duke@435 257 virtual BasicType memory_type() const { return T_INT; }
duke@435 258 };
duke@435 259
twisti@1059 260 //------------------------------LoadUI2LNode-----------------------------------
twisti@1059 261 // Load an unsigned integer into long from memory
twisti@1059 262 class LoadUI2LNode : public LoadNode {
twisti@1059 263 public:
twisti@1059 264 LoadUI2LNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeLong* t = TypeLong::UINT)
twisti@1059 265 : LoadNode(c, mem, adr, at, t) {}
twisti@1059 266 virtual int Opcode() const;
twisti@1059 267 virtual uint ideal_reg() const { return Op_RegL; }
twisti@1059 268 virtual int store_Opcode() const { return Op_StoreL; }
twisti@1059 269 virtual BasicType memory_type() const { return T_LONG; }
twisti@1059 270 };
twisti@1059 271
duke@435 272 //------------------------------LoadRangeNode----------------------------------
duke@435 273 // Load an array length from the array
duke@435 274 class LoadRangeNode : public LoadINode {
duke@435 275 public:
duke@435 276 LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
duke@435 277 : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
duke@435 278 virtual int Opcode() const;
duke@435 279 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 280 virtual Node *Identity( PhaseTransform *phase );
rasbold@801 281 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 282 };
duke@435 283
duke@435 284 //------------------------------LoadLNode--------------------------------------
duke@435 285 // Load a long from memory
duke@435 286 class LoadLNode : public LoadNode {
duke@435 287 virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
duke@435 288 virtual uint cmp( const Node &n ) const {
duke@435 289 return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
duke@435 290 && LoadNode::cmp(n);
duke@435 291 }
duke@435 292 virtual uint size_of() const { return sizeof(*this); }
duke@435 293 const bool _require_atomic_access; // is piecewise load forbidden?
duke@435 294
duke@435 295 public:
duke@435 296 LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
duke@435 297 const TypeLong *tl = TypeLong::LONG,
duke@435 298 bool require_atomic_access = false )
duke@435 299 : LoadNode(c,mem,adr,at,tl)
duke@435 300 , _require_atomic_access(require_atomic_access)
duke@435 301 {}
duke@435 302 virtual int Opcode() const;
duke@435 303 virtual uint ideal_reg() const { return Op_RegL; }
duke@435 304 virtual int store_Opcode() const { return Op_StoreL; }
duke@435 305 virtual BasicType memory_type() const { return T_LONG; }
duke@435 306 bool require_atomic_access() { return _require_atomic_access; }
duke@435 307 static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
duke@435 308 #ifndef PRODUCT
duke@435 309 virtual void dump_spec(outputStream *st) const {
duke@435 310 LoadNode::dump_spec(st);
duke@435 311 if (_require_atomic_access) st->print(" Atomic!");
duke@435 312 }
duke@435 313 #endif
duke@435 314 };
duke@435 315
duke@435 316 //------------------------------LoadL_unalignedNode----------------------------
duke@435 317 // Load a long from unaligned memory
duke@435 318 class LoadL_unalignedNode : public LoadLNode {
duke@435 319 public:
duke@435 320 LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
duke@435 321 : LoadLNode(c,mem,adr,at) {}
duke@435 322 virtual int Opcode() const;
duke@435 323 };
duke@435 324
duke@435 325 //------------------------------LoadFNode--------------------------------------
duke@435 326 // Load a float (64 bits) from memory
duke@435 327 class LoadFNode : public LoadNode {
duke@435 328 public:
duke@435 329 LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
duke@435 330 : LoadNode(c,mem,adr,at,t) {}
duke@435 331 virtual int Opcode() const;
duke@435 332 virtual uint ideal_reg() const { return Op_RegF; }
duke@435 333 virtual int store_Opcode() const { return Op_StoreF; }
duke@435 334 virtual BasicType memory_type() const { return T_FLOAT; }
duke@435 335 };
duke@435 336
duke@435 337 //------------------------------LoadDNode--------------------------------------
duke@435 338 // Load a double (64 bits) from memory
duke@435 339 class LoadDNode : public LoadNode {
duke@435 340 public:
duke@435 341 LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
duke@435 342 : LoadNode(c,mem,adr,at,t) {}
duke@435 343 virtual int Opcode() const;
duke@435 344 virtual uint ideal_reg() const { return Op_RegD; }
duke@435 345 virtual int store_Opcode() const { return Op_StoreD; }
duke@435 346 virtual BasicType memory_type() const { return T_DOUBLE; }
duke@435 347 };
duke@435 348
duke@435 349 //------------------------------LoadD_unalignedNode----------------------------
duke@435 350 // Load a double from unaligned memory
duke@435 351 class LoadD_unalignedNode : public LoadDNode {
duke@435 352 public:
duke@435 353 LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
duke@435 354 : LoadDNode(c,mem,adr,at) {}
duke@435 355 virtual int Opcode() const;
duke@435 356 };
duke@435 357
duke@435 358 //------------------------------LoadPNode--------------------------------------
duke@435 359 // Load a pointer from memory (either object or array)
duke@435 360 class LoadPNode : public LoadNode {
duke@435 361 public:
duke@435 362 LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
duke@435 363 : LoadNode(c,mem,adr,at,t) {}
duke@435 364 virtual int Opcode() const;
duke@435 365 virtual uint ideal_reg() const { return Op_RegP; }
duke@435 366 virtual int store_Opcode() const { return Op_StoreP; }
duke@435 367 virtual BasicType memory_type() const { return T_ADDRESS; }
duke@435 368 // depends_only_on_test is almost always true, and needs to be almost always
duke@435 369 // true to enable key hoisting & commoning optimizations. However, for the
duke@435 370 // special case of RawPtr loads from TLS top & end, the control edge carries
duke@435 371 // the dependence preventing hoisting past a Safepoint instead of the memory
duke@435 372 // edge. (An unfortunate consequence of having Safepoints not set Raw
duke@435 373 // Memory; itself an unfortunate consequence of having Nodes which produce
duke@435 374 // results (new raw memory state) inside of loops preventing all manner of
duke@435 375 // other optimizations). Basically, it's ugly but so is the alternative.
duke@435 376 // See comment in macro.cpp, around line 125 expand_allocate_common().
duke@435 377 virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
duke@435 378 };
duke@435 379
coleenp@548 380
coleenp@548 381 //------------------------------LoadNNode--------------------------------------
coleenp@548 382 // Load a narrow oop from memory (either object or array)
coleenp@548 383 class LoadNNode : public LoadNode {
coleenp@548 384 public:
coleenp@548 385 LoadNNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t )
coleenp@548 386 : LoadNode(c,mem,adr,at,t) {}
coleenp@548 387 virtual int Opcode() const;
coleenp@548 388 virtual uint ideal_reg() const { return Op_RegN; }
coleenp@548 389 virtual int store_Opcode() const { return Op_StoreN; }
coleenp@548 390 virtual BasicType memory_type() const { return T_NARROWOOP; }
coleenp@548 391 // depends_only_on_test is almost always true, and needs to be almost always
coleenp@548 392 // true to enable key hoisting & commoning optimizations. However, for the
coleenp@548 393 // special case of RawPtr loads from TLS top & end, the control edge carries
coleenp@548 394 // the dependence preventing hoisting past a Safepoint instead of the memory
coleenp@548 395 // edge. (An unfortunate consequence of having Safepoints not set Raw
coleenp@548 396 // Memory; itself an unfortunate consequence of having Nodes which produce
coleenp@548 397 // results (new raw memory state) inside of loops preventing all manner of
coleenp@548 398 // other optimizations). Basically, it's ugly but so is the alternative.
coleenp@548 399 // See comment in macro.cpp, around line 125 expand_allocate_common().
coleenp@548 400 virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
coleenp@548 401 };
coleenp@548 402
duke@435 403 //------------------------------LoadKlassNode----------------------------------
duke@435 404 // Load a Klass from an object
duke@435 405 class LoadKlassNode : public LoadPNode {
duke@435 406 public:
kvn@599 407 LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk )
duke@435 408 : LoadPNode(c,mem,adr,at,tk) {}
duke@435 409 virtual int Opcode() const;
duke@435 410 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 411 virtual Node *Identity( PhaseTransform *phase );
duke@435 412 virtual bool depends_only_on_test() const { return true; }
kvn@599 413
kvn@599 414 // Polymorphic factory method:
kvn@599 415 static Node* make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at,
kvn@599 416 const TypeKlassPtr *tk = TypeKlassPtr::OBJECT );
duke@435 417 };
duke@435 418
kvn@599 419 //------------------------------LoadNKlassNode---------------------------------
kvn@599 420 // Load a narrow Klass from an object.
kvn@599 421 class LoadNKlassNode : public LoadNNode {
kvn@599 422 public:
kvn@599 423 LoadNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowOop *tk )
kvn@599 424 : LoadNNode(c,mem,adr,at,tk) {}
kvn@599 425 virtual int Opcode() const;
kvn@599 426 virtual uint ideal_reg() const { return Op_RegN; }
kvn@599 427 virtual int store_Opcode() const { return Op_StoreN; }
kvn@599 428 virtual BasicType memory_type() const { return T_NARROWOOP; }
kvn@599 429
kvn@599 430 virtual const Type *Value( PhaseTransform *phase ) const;
kvn@599 431 virtual Node *Identity( PhaseTransform *phase );
kvn@599 432 virtual bool depends_only_on_test() const { return true; }
kvn@599 433 };
kvn@599 434
kvn@599 435
duke@435 436 //------------------------------LoadSNode--------------------------------------
duke@435 437 // Load a short (16bits signed) from memory
duke@435 438 class LoadSNode : public LoadNode {
duke@435 439 public:
duke@435 440 LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
duke@435 441 : LoadNode(c,mem,adr,at,ti) {}
duke@435 442 virtual int Opcode() const;
duke@435 443 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 444 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 445 virtual int store_Opcode() const { return Op_StoreC; }
duke@435 446 virtual BasicType memory_type() const { return T_SHORT; }
duke@435 447 };
duke@435 448
duke@435 449 //------------------------------StoreNode--------------------------------------
duke@435 450 // Store value; requires Store, Address and Value
duke@435 451 class StoreNode : public MemNode {
duke@435 452 protected:
duke@435 453 virtual uint cmp( const Node &n ) const;
duke@435 454 virtual bool depends_only_on_test() const { return false; }
duke@435 455
duke@435 456 Node *Ideal_masked_input (PhaseGVN *phase, uint mask);
duke@435 457 Node *Ideal_sign_extended_input(PhaseGVN *phase, int num_bits);
duke@435 458
duke@435 459 public:
duke@435 460 StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
duke@435 461 : MemNode(c,mem,adr,at,val) {
duke@435 462 init_class_id(Class_Store);
duke@435 463 }
duke@435 464 StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
duke@435 465 : MemNode(c,mem,adr,at,val,oop_store) {
duke@435 466 init_class_id(Class_Store);
duke@435 467 }
duke@435 468
duke@435 469 // Polymorphic factory method:
coleenp@548 470 static StoreNode* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
coleenp@548 471 const TypePtr* at, Node *val, BasicType bt );
duke@435 472
duke@435 473 virtual uint hash() const; // Check the type
duke@435 474
duke@435 475 // If the store is to Field memory and the pointer is non-null, we can
duke@435 476 // zero out the control input.
duke@435 477 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 478
duke@435 479 // Compute a new Type for this node. Basically we just do the pre-check,
duke@435 480 // then call the virtual add() to set the type.
duke@435 481 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 482
duke@435 483 // Check for identity function on memory (Load then Store at same address)
duke@435 484 virtual Node *Identity( PhaseTransform *phase );
duke@435 485
duke@435 486 // Do not match memory edge
duke@435 487 virtual uint match_edge(uint idx) const;
duke@435 488
duke@435 489 virtual const Type *bottom_type() const; // returns Type::MEMORY
duke@435 490
duke@435 491 // Map a store opcode to its corresponding own opcode, trivially.
duke@435 492 virtual int store_Opcode() const { return Opcode(); }
duke@435 493
duke@435 494 // have all possible loads of the value stored been optimized away?
duke@435 495 bool value_never_loaded(PhaseTransform *phase) const;
duke@435 496 };
duke@435 497
duke@435 498 //------------------------------StoreBNode-------------------------------------
duke@435 499 // Store byte to memory
duke@435 500 class StoreBNode : public StoreNode {
duke@435 501 public:
duke@435 502 StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 503 virtual int Opcode() const;
duke@435 504 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 505 virtual BasicType memory_type() const { return T_BYTE; }
duke@435 506 };
duke@435 507
duke@435 508 //------------------------------StoreCNode-------------------------------------
duke@435 509 // Store char/short to memory
duke@435 510 class StoreCNode : public StoreNode {
duke@435 511 public:
duke@435 512 StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 513 virtual int Opcode() const;
duke@435 514 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 515 virtual BasicType memory_type() const { return T_CHAR; }
duke@435 516 };
duke@435 517
duke@435 518 //------------------------------StoreINode-------------------------------------
duke@435 519 // Store int to memory
duke@435 520 class StoreINode : public StoreNode {
duke@435 521 public:
duke@435 522 StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 523 virtual int Opcode() const;
duke@435 524 virtual BasicType memory_type() const { return T_INT; }
duke@435 525 };
duke@435 526
duke@435 527 //------------------------------StoreLNode-------------------------------------
duke@435 528 // Store long to memory
duke@435 529 class StoreLNode : public StoreNode {
duke@435 530 virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
duke@435 531 virtual uint cmp( const Node &n ) const {
duke@435 532 return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
duke@435 533 && StoreNode::cmp(n);
duke@435 534 }
duke@435 535 virtual uint size_of() const { return sizeof(*this); }
duke@435 536 const bool _require_atomic_access; // is piecewise store forbidden?
duke@435 537
duke@435 538 public:
duke@435 539 StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
duke@435 540 bool require_atomic_access = false )
duke@435 541 : StoreNode(c,mem,adr,at,val)
duke@435 542 , _require_atomic_access(require_atomic_access)
duke@435 543 {}
duke@435 544 virtual int Opcode() const;
duke@435 545 virtual BasicType memory_type() const { return T_LONG; }
duke@435 546 bool require_atomic_access() { return _require_atomic_access; }
duke@435 547 static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
duke@435 548 #ifndef PRODUCT
duke@435 549 virtual void dump_spec(outputStream *st) const {
duke@435 550 StoreNode::dump_spec(st);
duke@435 551 if (_require_atomic_access) st->print(" Atomic!");
duke@435 552 }
duke@435 553 #endif
duke@435 554 };
duke@435 555
duke@435 556 //------------------------------StoreFNode-------------------------------------
duke@435 557 // Store float to memory
duke@435 558 class StoreFNode : public StoreNode {
duke@435 559 public:
duke@435 560 StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 561 virtual int Opcode() const;
duke@435 562 virtual BasicType memory_type() const { return T_FLOAT; }
duke@435 563 };
duke@435 564
duke@435 565 //------------------------------StoreDNode-------------------------------------
duke@435 566 // Store double to memory
duke@435 567 class StoreDNode : public StoreNode {
duke@435 568 public:
duke@435 569 StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 570 virtual int Opcode() const;
duke@435 571 virtual BasicType memory_type() const { return T_DOUBLE; }
duke@435 572 };
duke@435 573
duke@435 574 //------------------------------StorePNode-------------------------------------
duke@435 575 // Store pointer to memory
duke@435 576 class StorePNode : public StoreNode {
duke@435 577 public:
duke@435 578 StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 579 virtual int Opcode() const;
duke@435 580 virtual BasicType memory_type() const { return T_ADDRESS; }
duke@435 581 };
duke@435 582
coleenp@548 583 //------------------------------StoreNNode-------------------------------------
coleenp@548 584 // Store narrow oop to memory
coleenp@548 585 class StoreNNode : public StoreNode {
coleenp@548 586 public:
coleenp@548 587 StoreNNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
coleenp@548 588 virtual int Opcode() const;
coleenp@548 589 virtual BasicType memory_type() const { return T_NARROWOOP; }
coleenp@548 590 };
coleenp@548 591
duke@435 592 //------------------------------StoreCMNode-----------------------------------
duke@435 593 // Store card-mark byte to memory for CM
duke@435 594 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
duke@435 595 // Preceeding equivalent StoreCMs may be eliminated.
duke@435 596 class StoreCMNode : public StoreNode {
cfang@1420 597 private:
never@1633 598 virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
never@1633 599 virtual uint cmp( const Node &n ) const {
never@1633 600 return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
never@1633 601 && StoreNode::cmp(n);
never@1633 602 }
never@1633 603 virtual uint size_of() const { return sizeof(*this); }
cfang@1420 604 int _oop_alias_idx; // The alias_idx of OopStore
never@1633 605
duke@435 606 public:
never@1633 607 StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
never@1633 608 StoreNode(c,mem,adr,at,val,oop_store),
never@1633 609 _oop_alias_idx(oop_alias_idx) {
never@1633 610 assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
never@1633 611 _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
never@1633 612 "bad oop alias idx");
never@1633 613 }
duke@435 614 virtual int Opcode() const;
duke@435 615 virtual Node *Identity( PhaseTransform *phase );
cfang@1420 616 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 617 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 618 virtual BasicType memory_type() const { return T_VOID; } // unspecific
cfang@1420 619 int oop_alias_idx() const { return _oop_alias_idx; }
duke@435 620 };
duke@435 621
duke@435 622 //------------------------------LoadPLockedNode---------------------------------
duke@435 623 // Load-locked a pointer from memory (either object or array).
duke@435 624 // On Sparc & Intel this is implemented as a normal pointer load.
duke@435 625 // On PowerPC and friends it's a real load-locked.
duke@435 626 class LoadPLockedNode : public LoadPNode {
duke@435 627 public:
duke@435 628 LoadPLockedNode( Node *c, Node *mem, Node *adr )
duke@435 629 : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
duke@435 630 virtual int Opcode() const;
duke@435 631 virtual int store_Opcode() const { return Op_StorePConditional; }
duke@435 632 virtual bool depends_only_on_test() const { return true; }
duke@435 633 };
duke@435 634
duke@435 635 //------------------------------LoadLLockedNode---------------------------------
duke@435 636 // Load-locked a pointer from memory (either object or array).
duke@435 637 // On Sparc & Intel this is implemented as a normal long load.
duke@435 638 class LoadLLockedNode : public LoadLNode {
duke@435 639 public:
duke@435 640 LoadLLockedNode( Node *c, Node *mem, Node *adr )
duke@435 641 : LoadLNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeLong::LONG) {}
duke@435 642 virtual int Opcode() const;
duke@435 643 virtual int store_Opcode() const { return Op_StoreLConditional; }
duke@435 644 };
duke@435 645
duke@435 646 //------------------------------SCMemProjNode---------------------------------------
duke@435 647 // This class defines a projection of the memory state of a store conditional node.
duke@435 648 // These nodes return a value, but also update memory.
duke@435 649 class SCMemProjNode : public ProjNode {
duke@435 650 public:
duke@435 651 enum {SCMEMPROJCON = (uint)-2};
duke@435 652 SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
duke@435 653 virtual int Opcode() const;
duke@435 654 virtual bool is_CFG() const { return false; }
duke@435 655 virtual const Type *bottom_type() const {return Type::MEMORY;}
duke@435 656 virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
duke@435 657 virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
duke@435 658 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 659 #ifndef PRODUCT
duke@435 660 virtual void dump_spec(outputStream *st) const {};
duke@435 661 #endif
duke@435 662 };
duke@435 663
duke@435 664 //------------------------------LoadStoreNode---------------------------
kvn@688 665 // Note: is_Mem() method returns 'true' for this class.
duke@435 666 class LoadStoreNode : public Node {
duke@435 667 public:
duke@435 668 enum {
duke@435 669 ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
duke@435 670 };
duke@435 671 LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex);
duke@435 672 virtual bool depends_only_on_test() const { return false; }
duke@435 673 virtual const Type *bottom_type() const { return TypeInt::BOOL; }
duke@435 674 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 675 virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
duke@435 676 };
duke@435 677
duke@435 678 //------------------------------StorePConditionalNode---------------------------
duke@435 679 // Conditionally store pointer to memory, if no change since prior
duke@435 680 // load-locked. Sets flags for success or failure of the store.
duke@435 681 class StorePConditionalNode : public LoadStoreNode {
duke@435 682 public:
duke@435 683 StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
duke@435 684 virtual int Opcode() const;
duke@435 685 // Produces flags
duke@435 686 virtual uint ideal_reg() const { return Op_RegFlags; }
duke@435 687 };
duke@435 688
kvn@855 689 //------------------------------StoreIConditionalNode---------------------------
kvn@855 690 // Conditionally store int to memory, if no change since prior
kvn@855 691 // load-locked. Sets flags for success or failure of the store.
kvn@855 692 class StoreIConditionalNode : public LoadStoreNode {
kvn@855 693 public:
kvn@855 694 StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreNode(c, mem, adr, val, ii) { }
kvn@855 695 virtual int Opcode() const;
kvn@855 696 // Produces flags
kvn@855 697 virtual uint ideal_reg() const { return Op_RegFlags; }
kvn@855 698 };
kvn@855 699
duke@435 700 //------------------------------StoreLConditionalNode---------------------------
duke@435 701 // Conditionally store long to memory, if no change since prior
duke@435 702 // load-locked. Sets flags for success or failure of the store.
duke@435 703 class StoreLConditionalNode : public LoadStoreNode {
duke@435 704 public:
duke@435 705 StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
duke@435 706 virtual int Opcode() const;
kvn@855 707 // Produces flags
kvn@855 708 virtual uint ideal_reg() const { return Op_RegFlags; }
duke@435 709 };
duke@435 710
duke@435 711
duke@435 712 //------------------------------CompareAndSwapLNode---------------------------
duke@435 713 class CompareAndSwapLNode : public LoadStoreNode {
duke@435 714 public:
duke@435 715 CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
duke@435 716 virtual int Opcode() const;
duke@435 717 };
duke@435 718
duke@435 719
duke@435 720 //------------------------------CompareAndSwapINode---------------------------
duke@435 721 class CompareAndSwapINode : public LoadStoreNode {
duke@435 722 public:
duke@435 723 CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
duke@435 724 virtual int Opcode() const;
duke@435 725 };
duke@435 726
duke@435 727
duke@435 728 //------------------------------CompareAndSwapPNode---------------------------
duke@435 729 class CompareAndSwapPNode : public LoadStoreNode {
duke@435 730 public:
duke@435 731 CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
duke@435 732 virtual int Opcode() const;
duke@435 733 };
duke@435 734
coleenp@548 735 //------------------------------CompareAndSwapNNode---------------------------
coleenp@548 736 class CompareAndSwapNNode : public LoadStoreNode {
coleenp@548 737 public:
coleenp@548 738 CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
coleenp@548 739 virtual int Opcode() const;
coleenp@548 740 };
coleenp@548 741
duke@435 742 //------------------------------ClearArray-------------------------------------
duke@435 743 class ClearArrayNode: public Node {
duke@435 744 public:
kvn@1535 745 ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
kvn@1535 746 : Node(ctrl,arymem,word_cnt,base) {
kvn@1535 747 init_class_id(Class_ClearArray);
kvn@1535 748 }
duke@435 749 virtual int Opcode() const;
duke@435 750 virtual const Type *bottom_type() const { return Type::MEMORY; }
duke@435 751 // ClearArray modifies array elements, and so affects only the
duke@435 752 // array memory addressed by the bottom_type of its base address.
duke@435 753 virtual const class TypePtr *adr_type() const;
duke@435 754 virtual Node *Identity( PhaseTransform *phase );
duke@435 755 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 756 virtual uint match_edge(uint idx) const;
duke@435 757
duke@435 758 // Clear the given area of an object or array.
duke@435 759 // The start offset must always be aligned mod BytesPerInt.
duke@435 760 // The end offset must always be aligned mod BytesPerLong.
duke@435 761 // Return the new memory.
duke@435 762 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 763 intptr_t start_offset,
duke@435 764 intptr_t end_offset,
duke@435 765 PhaseGVN* phase);
duke@435 766 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 767 intptr_t start_offset,
duke@435 768 Node* end_offset,
duke@435 769 PhaseGVN* phase);
duke@435 770 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 771 Node* start_offset,
duke@435 772 Node* end_offset,
duke@435 773 PhaseGVN* phase);
kvn@1535 774 // Return allocation input memory edge if it is different instance
kvn@1535 775 // or itself if it is the one we are looking for.
kvn@1535 776 static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
duke@435 777 };
duke@435 778
kvn@2694 779 //------------------------------StrIntrinsic-------------------------------
kvn@2694 780 // Base class for Ideal nodes used in String instrinsic code.
kvn@2694 781 class StrIntrinsicNode: public Node {
duke@435 782 public:
kvn@2694 783 StrIntrinsicNode(Node* control, Node* char_array_mem,
kvn@2694 784 Node* s1, Node* c1, Node* s2, Node* c2):
kvn@2694 785 Node(control, char_array_mem, s1, c1, s2, c2) {
kvn@2694 786 }
kvn@2694 787
kvn@2694 788 StrIntrinsicNode(Node* control, Node* char_array_mem,
kvn@2694 789 Node* s1, Node* s2, Node* c):
kvn@2694 790 Node(control, char_array_mem, s1, s2, c) {
kvn@2694 791 }
kvn@2694 792
kvn@2694 793 StrIntrinsicNode(Node* control, Node* char_array_mem,
kvn@2694 794 Node* s1, Node* s2):
kvn@2694 795 Node(control, char_array_mem, s1, s2) {
kvn@2694 796 }
kvn@2694 797
duke@435 798 virtual bool depends_only_on_test() const { return false; }
kvn@1421 799 virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
duke@435 800 virtual uint match_edge(uint idx) const;
duke@435 801 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 802 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
kvn@3311 803 virtual const Type *Value(PhaseTransform *phase) const;
duke@435 804 };
duke@435 805
kvn@2694 806 //------------------------------StrComp-------------------------------------
kvn@2694 807 class StrCompNode: public StrIntrinsicNode {
kvn@2694 808 public:
kvn@2694 809 StrCompNode(Node* control, Node* char_array_mem,
kvn@2694 810 Node* s1, Node* c1, Node* s2, Node* c2):
kvn@2694 811 StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
kvn@2694 812 virtual int Opcode() const;
kvn@2694 813 virtual const Type* bottom_type() const { return TypeInt::INT; }
kvn@2694 814 };
kvn@2694 815
cfang@1116 816 //------------------------------StrEquals-------------------------------------
kvn@2694 817 class StrEqualsNode: public StrIntrinsicNode {
cfang@1116 818 public:
kvn@1421 819 StrEqualsNode(Node* control, Node* char_array_mem,
kvn@2694 820 Node* s1, Node* s2, Node* c):
kvn@2694 821 StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
cfang@1116 822 virtual int Opcode() const;
cfang@1116 823 virtual const Type* bottom_type() const { return TypeInt::BOOL; }
cfang@1116 824 };
cfang@1116 825
cfang@1116 826 //------------------------------StrIndexOf-------------------------------------
kvn@2694 827 class StrIndexOfNode: public StrIntrinsicNode {
cfang@1116 828 public:
kvn@1421 829 StrIndexOfNode(Node* control, Node* char_array_mem,
kvn@2694 830 Node* s1, Node* c1, Node* s2, Node* c2):
kvn@2694 831 StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
cfang@1116 832 virtual int Opcode() const;
cfang@1116 833 virtual const Type* bottom_type() const { return TypeInt::INT; }
cfang@1116 834 };
cfang@1116 835
rasbold@604 836 //------------------------------AryEq---------------------------------------
kvn@2694 837 class AryEqNode: public StrIntrinsicNode {
rasbold@604 838 public:
kvn@2694 839 AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
kvn@2694 840 StrIntrinsicNode(control, char_array_mem, s1, s2) {};
rasbold@604 841 virtual int Opcode() const;
rasbold@604 842 virtual const Type* bottom_type() const { return TypeInt::BOOL; }
rasbold@604 843 };
rasbold@604 844
duke@435 845 //------------------------------MemBar-----------------------------------------
duke@435 846 // There are different flavors of Memory Barriers to match the Java Memory
duke@435 847 // Model. Monitor-enter and volatile-load act as Aquires: no following ref
duke@435 848 // can be moved to before them. We insert a MemBar-Acquire after a FastLock or
duke@435 849 // volatile-load. Monitor-exit and volatile-store act as Release: no
twisti@1040 850 // preceding ref can be moved to after them. We insert a MemBar-Release
duke@435 851 // before a FastUnlock or volatile-store. All volatiles need to be
duke@435 852 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
twisti@1040 853 // separate it from any following volatile-load.
duke@435 854 class MemBarNode: public MultiNode {
duke@435 855 virtual uint hash() const ; // { return NO_HASH; }
duke@435 856 virtual uint cmp( const Node &n ) const ; // Always fail, except on self
duke@435 857
duke@435 858 virtual uint size_of() const { return sizeof(*this); }
duke@435 859 // Memory type this node is serializing. Usually either rawptr or bottom.
duke@435 860 const TypePtr* _adr_type;
duke@435 861
duke@435 862 public:
duke@435 863 enum {
duke@435 864 Precedent = TypeFunc::Parms // optional edge to force precedence
duke@435 865 };
duke@435 866 MemBarNode(Compile* C, int alias_idx, Node* precedent);
duke@435 867 virtual int Opcode() const = 0;
duke@435 868 virtual const class TypePtr *adr_type() const { return _adr_type; }
duke@435 869 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 870 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 871 virtual uint match_edge(uint idx) const { return 0; }
duke@435 872 virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
duke@435 873 virtual Node *match( const ProjNode *proj, const Matcher *m );
duke@435 874 // Factory method. Builds a wide or narrow membar.
duke@435 875 // Optional 'precedent' becomes an extra edge if not null.
duke@435 876 static MemBarNode* make(Compile* C, int opcode,
duke@435 877 int alias_idx = Compile::AliasIdxBot,
duke@435 878 Node* precedent = NULL);
duke@435 879 };
duke@435 880
duke@435 881 // "Acquire" - no following ref can move before (but earlier refs can
duke@435 882 // follow, like an early Load stalled in cache). Requires multi-cpu
roland@3047 883 // visibility. Inserted after a volatile load.
duke@435 884 class MemBarAcquireNode: public MemBarNode {
duke@435 885 public:
duke@435 886 MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
duke@435 887 : MemBarNode(C, alias_idx, precedent) {}
duke@435 888 virtual int Opcode() const;
duke@435 889 };
duke@435 890
duke@435 891 // "Release" - no earlier ref can move after (but later refs can move
duke@435 892 // up, like a speculative pipelined cache-hitting Load). Requires
roland@3047 893 // multi-cpu visibility. Inserted before a volatile store.
duke@435 894 class MemBarReleaseNode: public MemBarNode {
duke@435 895 public:
duke@435 896 MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
duke@435 897 : MemBarNode(C, alias_idx, precedent) {}
duke@435 898 virtual int Opcode() const;
duke@435 899 };
duke@435 900
roland@3047 901 // "Acquire" - no following ref can move before (but earlier refs can
roland@3047 902 // follow, like an early Load stalled in cache). Requires multi-cpu
roland@3047 903 // visibility. Inserted after a FastLock.
roland@3047 904 class MemBarAcquireLockNode: public MemBarNode {
roland@3047 905 public:
roland@3047 906 MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
roland@3047 907 : MemBarNode(C, alias_idx, precedent) {}
roland@3047 908 virtual int Opcode() const;
roland@3047 909 };
roland@3047 910
roland@3047 911 // "Release" - no earlier ref can move after (but later refs can move
roland@3047 912 // up, like a speculative pipelined cache-hitting Load). Requires
roland@3047 913 // multi-cpu visibility. Inserted before a FastUnLock.
roland@3047 914 class MemBarReleaseLockNode: public MemBarNode {
roland@3047 915 public:
roland@3047 916 MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
roland@3047 917 : MemBarNode(C, alias_idx, precedent) {}
roland@3047 918 virtual int Opcode() const;
roland@3047 919 };
roland@3047 920
roland@3392 921 class MemBarStoreStoreNode: public MemBarNode {
roland@3392 922 public:
roland@3392 923 MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
roland@3392 924 : MemBarNode(C, alias_idx, precedent) {
roland@3392 925 init_class_id(Class_MemBarStoreStore);
roland@3392 926 }
roland@3392 927 virtual int Opcode() const;
roland@3392 928 };
roland@3392 929
duke@435 930 // Ordering between a volatile store and a following volatile load.
duke@435 931 // Requires multi-CPU visibility?
duke@435 932 class MemBarVolatileNode: public MemBarNode {
duke@435 933 public:
duke@435 934 MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
duke@435 935 : MemBarNode(C, alias_idx, precedent) {}
duke@435 936 virtual int Opcode() const;
duke@435 937 };
duke@435 938
duke@435 939 // Ordering within the same CPU. Used to order unsafe memory references
duke@435 940 // inside the compiler when we lack alias info. Not needed "outside" the
duke@435 941 // compiler because the CPU does all the ordering for us.
duke@435 942 class MemBarCPUOrderNode: public MemBarNode {
duke@435 943 public:
duke@435 944 MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
duke@435 945 : MemBarNode(C, alias_idx, precedent) {}
duke@435 946 virtual int Opcode() const;
duke@435 947 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
duke@435 948 };
duke@435 949
duke@435 950 // Isolation of object setup after an AllocateNode and before next safepoint.
duke@435 951 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
duke@435 952 class InitializeNode: public MemBarNode {
duke@435 953 friend class AllocateNode;
duke@435 954
kvn@3157 955 enum {
kvn@3157 956 Incomplete = 0,
kvn@3157 957 Complete = 1,
kvn@3157 958 WithArraycopy = 2
kvn@3157 959 };
kvn@3157 960 int _is_complete;
duke@435 961
roland@3392 962 bool _does_not_escape;
roland@3392 963
duke@435 964 public:
duke@435 965 enum {
duke@435 966 Control = TypeFunc::Control,
duke@435 967 Memory = TypeFunc::Memory, // MergeMem for states affected by this op
duke@435 968 RawAddress = TypeFunc::Parms+0, // the newly-allocated raw address
duke@435 969 RawStores = TypeFunc::Parms+1 // zero or more stores (or TOP)
duke@435 970 };
duke@435 971
duke@435 972 InitializeNode(Compile* C, int adr_type, Node* rawoop);
duke@435 973 virtual int Opcode() const;
duke@435 974 virtual uint size_of() const { return sizeof(*this); }
duke@435 975 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
duke@435 976 virtual const RegMask &in_RegMask(uint) const; // mask for RawAddress
duke@435 977
duke@435 978 // Manage incoming memory edges via a MergeMem on in(Memory):
duke@435 979 Node* memory(uint alias_idx);
duke@435 980
duke@435 981 // The raw memory edge coming directly from the Allocation.
duke@435 982 // The contents of this memory are *always* all-zero-bits.
duke@435 983 Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
duke@435 984
duke@435 985 // Return the corresponding allocation for this initialization (or null if none).
duke@435 986 // (Note: Both InitializeNode::allocation and AllocateNode::initialization
duke@435 987 // are defined in graphKit.cpp, which sets up the bidirectional relation.)
duke@435 988 AllocateNode* allocation();
duke@435 989
duke@435 990 // Anything other than zeroing in this init?
duke@435 991 bool is_non_zero();
duke@435 992
duke@435 993 // An InitializeNode must completed before macro expansion is done.
duke@435 994 // Completion requires that the AllocateNode must be followed by
duke@435 995 // initialization of the new memory to zero, then to any initializers.
kvn@3157 996 bool is_complete() { return _is_complete != Incomplete; }
kvn@3157 997 bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
duke@435 998
duke@435 999 // Mark complete. (Must not yet be complete.)
duke@435 1000 void set_complete(PhaseGVN* phase);
kvn@3157 1001 void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
duke@435 1002
roland@3392 1003 bool does_not_escape() { return _does_not_escape; }
roland@3392 1004 void set_does_not_escape() { _does_not_escape = true; }
roland@3392 1005
duke@435 1006 #ifdef ASSERT
duke@435 1007 // ensure all non-degenerate stores are ordered and non-overlapping
duke@435 1008 bool stores_are_sane(PhaseTransform* phase);
duke@435 1009 #endif //ASSERT
duke@435 1010
duke@435 1011 // See if this store can be captured; return offset where it initializes.
duke@435 1012 // Return 0 if the store cannot be moved (any sort of problem).
duke@435 1013 intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase);
duke@435 1014
duke@435 1015 // Capture another store; reformat it to write my internal raw memory.
duke@435 1016 // Return the captured copy, else NULL if there is some sort of problem.
duke@435 1017 Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase);
duke@435 1018
duke@435 1019 // Find captured store which corresponds to the range [start..start+size).
duke@435 1020 // Return my own memory projection (meaning the initial zero bits)
duke@435 1021 // if there is no such store. Return NULL if there is a problem.
duke@435 1022 Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
duke@435 1023
duke@435 1024 // Called when the associated AllocateNode is expanded into CFG.
duke@435 1025 Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
duke@435 1026 intptr_t header_size, Node* size_in_bytes,
duke@435 1027 PhaseGVN* phase);
duke@435 1028
duke@435 1029 private:
duke@435 1030 void remove_extra_zeroes();
duke@435 1031
duke@435 1032 // Find out where a captured store should be placed (or already is placed).
duke@435 1033 int captured_store_insertion_point(intptr_t start, int size_in_bytes,
duke@435 1034 PhaseTransform* phase);
duke@435 1035
duke@435 1036 static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
duke@435 1037
duke@435 1038 Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
duke@435 1039
duke@435 1040 bool detect_init_independence(Node* n, bool st_is_pinned, int& count);
duke@435 1041
duke@435 1042 void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
duke@435 1043 PhaseGVN* phase);
duke@435 1044
duke@435 1045 intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
duke@435 1046 };
duke@435 1047
duke@435 1048 //------------------------------MergeMem---------------------------------------
duke@435 1049 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
duke@435 1050 class MergeMemNode: public Node {
duke@435 1051 virtual uint hash() const ; // { return NO_HASH; }
duke@435 1052 virtual uint cmp( const Node &n ) const ; // Always fail, except on self
duke@435 1053 friend class MergeMemStream;
duke@435 1054 MergeMemNode(Node* def); // clients use MergeMemNode::make
duke@435 1055
duke@435 1056 public:
duke@435 1057 // If the input is a whole memory state, clone it with all its slices intact.
duke@435 1058 // Otherwise, make a new memory state with just that base memory input.
duke@435 1059 // In either case, the result is a newly created MergeMem.
duke@435 1060 static MergeMemNode* make(Compile* C, Node* base_memory);
duke@435 1061
duke@435 1062 virtual int Opcode() const;
duke@435 1063 virtual Node *Identity( PhaseTransform *phase );
duke@435 1064 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 1065 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1066 virtual uint match_edge(uint idx) const { return 0; }
duke@435 1067 virtual const RegMask &out_RegMask() const;
duke@435 1068 virtual const Type *bottom_type() const { return Type::MEMORY; }
duke@435 1069 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
duke@435 1070 // sparse accessors
duke@435 1071 // Fetch the previously stored "set_memory_at", or else the base memory.
duke@435 1072 // (Caller should clone it if it is a phi-nest.)
duke@435 1073 Node* memory_at(uint alias_idx) const;
duke@435 1074 // set the memory, regardless of its previous value
duke@435 1075 void set_memory_at(uint alias_idx, Node* n);
duke@435 1076 // the "base" is the memory that provides the non-finite support
duke@435 1077 Node* base_memory() const { return in(Compile::AliasIdxBot); }
duke@435 1078 // warning: setting the base can implicitly set any of the other slices too
duke@435 1079 void set_base_memory(Node* def);
duke@435 1080 // sentinel value which denotes a copy of the base memory:
duke@435 1081 Node* empty_memory() const { return in(Compile::AliasIdxTop); }
duke@435 1082 static Node* make_empty_memory(); // where the sentinel comes from
duke@435 1083 bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
duke@435 1084 // hook for the iterator, to perform any necessary setup
duke@435 1085 void iteration_setup(const MergeMemNode* other = NULL);
duke@435 1086 // push sentinels until I am at least as long as the other (semantic no-op)
duke@435 1087 void grow_to_match(const MergeMemNode* other);
duke@435 1088 bool verify_sparse() const PRODUCT_RETURN0;
duke@435 1089 #ifndef PRODUCT
duke@435 1090 virtual void dump_spec(outputStream *st) const;
duke@435 1091 #endif
duke@435 1092 };
duke@435 1093
duke@435 1094 class MergeMemStream : public StackObj {
duke@435 1095 private:
duke@435 1096 MergeMemNode* _mm;
duke@435 1097 const MergeMemNode* _mm2; // optional second guy, contributes non-empty iterations
duke@435 1098 Node* _mm_base; // loop-invariant base memory of _mm
duke@435 1099 int _idx;
duke@435 1100 int _cnt;
duke@435 1101 Node* _mem;
duke@435 1102 Node* _mem2;
duke@435 1103 int _cnt2;
duke@435 1104
duke@435 1105 void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
duke@435 1106 // subsume_node will break sparseness at times, whenever a memory slice
duke@435 1107 // folds down to a copy of the base ("fat") memory. In such a case,
duke@435 1108 // the raw edge will update to base, although it should be top.
duke@435 1109 // This iterator will recognize either top or base_memory as an
duke@435 1110 // "empty" slice. See is_empty, is_empty2, and next below.
duke@435 1111 //
duke@435 1112 // The sparseness property is repaired in MergeMemNode::Ideal.
duke@435 1113 // As long as access to a MergeMem goes through this iterator
duke@435 1114 // or the memory_at accessor, flaws in the sparseness will
duke@435 1115 // never be observed.
duke@435 1116 //
duke@435 1117 // Also, iteration_setup repairs sparseness.
duke@435 1118 assert(mm->verify_sparse(), "please, no dups of base");
duke@435 1119 assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
duke@435 1120
duke@435 1121 _mm = mm;
duke@435 1122 _mm_base = mm->base_memory();
duke@435 1123 _mm2 = mm2;
duke@435 1124 _cnt = mm->req();
duke@435 1125 _idx = Compile::AliasIdxBot-1; // start at the base memory
duke@435 1126 _mem = NULL;
duke@435 1127 _mem2 = NULL;
duke@435 1128 }
duke@435 1129
duke@435 1130 #ifdef ASSERT
duke@435 1131 Node* check_memory() const {
duke@435 1132 if (at_base_memory())
duke@435 1133 return _mm->base_memory();
duke@435 1134 else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
duke@435 1135 return _mm->memory_at(_idx);
duke@435 1136 else
duke@435 1137 return _mm_base;
duke@435 1138 }
duke@435 1139 Node* check_memory2() const {
duke@435 1140 return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
duke@435 1141 }
duke@435 1142 #endif
duke@435 1143
duke@435 1144 static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
duke@435 1145 void assert_synch() const {
duke@435 1146 assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
duke@435 1147 "no side-effects except through the stream");
duke@435 1148 }
duke@435 1149
duke@435 1150 public:
duke@435 1151
duke@435 1152 // expected usages:
duke@435 1153 // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
duke@435 1154 // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
duke@435 1155
duke@435 1156 // iterate over one merge
duke@435 1157 MergeMemStream(MergeMemNode* mm) {
duke@435 1158 mm->iteration_setup();
duke@435 1159 init(mm);
duke@435 1160 debug_only(_cnt2 = 999);
duke@435 1161 }
duke@435 1162 // iterate in parallel over two merges
duke@435 1163 // only iterates through non-empty elements of mm2
duke@435 1164 MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
duke@435 1165 assert(mm2, "second argument must be a MergeMem also");
duke@435 1166 ((MergeMemNode*)mm2)->iteration_setup(); // update hidden state
duke@435 1167 mm->iteration_setup(mm2);
duke@435 1168 init(mm, mm2);
duke@435 1169 _cnt2 = mm2->req();
duke@435 1170 }
duke@435 1171 #ifdef ASSERT
duke@435 1172 ~MergeMemStream() {
duke@435 1173 assert_synch();
duke@435 1174 }
duke@435 1175 #endif
duke@435 1176
duke@435 1177 MergeMemNode* all_memory() const {
duke@435 1178 return _mm;
duke@435 1179 }
duke@435 1180 Node* base_memory() const {
duke@435 1181 assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
duke@435 1182 return _mm_base;
duke@435 1183 }
duke@435 1184 const MergeMemNode* all_memory2() const {
duke@435 1185 assert(_mm2 != NULL, "");
duke@435 1186 return _mm2;
duke@435 1187 }
duke@435 1188 bool at_base_memory() const {
duke@435 1189 return _idx == Compile::AliasIdxBot;
duke@435 1190 }
duke@435 1191 int alias_idx() const {
duke@435 1192 assert(_mem, "must call next 1st");
duke@435 1193 return _idx;
duke@435 1194 }
duke@435 1195
duke@435 1196 const TypePtr* adr_type() const {
duke@435 1197 return Compile::current()->get_adr_type(alias_idx());
duke@435 1198 }
duke@435 1199
duke@435 1200 const TypePtr* adr_type(Compile* C) const {
duke@435 1201 return C->get_adr_type(alias_idx());
duke@435 1202 }
duke@435 1203 bool is_empty() const {
duke@435 1204 assert(_mem, "must call next 1st");
duke@435 1205 assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
duke@435 1206 return _mem->is_top();
duke@435 1207 }
duke@435 1208 bool is_empty2() const {
duke@435 1209 assert(_mem2, "must call next 1st");
duke@435 1210 assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
duke@435 1211 return _mem2->is_top();
duke@435 1212 }
duke@435 1213 Node* memory() const {
duke@435 1214 assert(!is_empty(), "must not be empty");
duke@435 1215 assert_synch();
duke@435 1216 return _mem;
duke@435 1217 }
duke@435 1218 // get the current memory, regardless of empty or non-empty status
duke@435 1219 Node* force_memory() const {
duke@435 1220 assert(!is_empty() || !at_base_memory(), "");
duke@435 1221 // Use _mm_base to defend against updates to _mem->base_memory().
duke@435 1222 Node *mem = _mem->is_top() ? _mm_base : _mem;
duke@435 1223 assert(mem == check_memory(), "");
duke@435 1224 return mem;
duke@435 1225 }
duke@435 1226 Node* memory2() const {
duke@435 1227 assert(_mem2 == check_memory2(), "");
duke@435 1228 return _mem2;
duke@435 1229 }
duke@435 1230 void set_memory(Node* mem) {
duke@435 1231 if (at_base_memory()) {
duke@435 1232 // Note that this does not change the invariant _mm_base.
duke@435 1233 _mm->set_base_memory(mem);
duke@435 1234 } else {
duke@435 1235 _mm->set_memory_at(_idx, mem);
duke@435 1236 }
duke@435 1237 _mem = mem;
duke@435 1238 assert_synch();
duke@435 1239 }
duke@435 1240
duke@435 1241 // Recover from a side effect to the MergeMemNode.
duke@435 1242 void set_memory() {
duke@435 1243 _mem = _mm->in(_idx);
duke@435 1244 }
duke@435 1245
duke@435 1246 bool next() { return next(false); }
duke@435 1247 bool next2() { return next(true); }
duke@435 1248
duke@435 1249 bool next_non_empty() { return next_non_empty(false); }
duke@435 1250 bool next_non_empty2() { return next_non_empty(true); }
duke@435 1251 // next_non_empty2 can yield states where is_empty() is true
duke@435 1252
duke@435 1253 private:
duke@435 1254 // find the next item, which might be empty
duke@435 1255 bool next(bool have_mm2) {
duke@435 1256 assert((_mm2 != NULL) == have_mm2, "use other next");
duke@435 1257 assert_synch();
duke@435 1258 if (++_idx < _cnt) {
duke@435 1259 // Note: This iterator allows _mm to be non-sparse.
duke@435 1260 // It behaves the same whether _mem is top or base_memory.
duke@435 1261 _mem = _mm->in(_idx);
duke@435 1262 if (have_mm2)
duke@435 1263 _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
duke@435 1264 return true;
duke@435 1265 }
duke@435 1266 return false;
duke@435 1267 }
duke@435 1268
duke@435 1269 // find the next non-empty item
duke@435 1270 bool next_non_empty(bool have_mm2) {
duke@435 1271 while (next(have_mm2)) {
duke@435 1272 if (!is_empty()) {
duke@435 1273 // make sure _mem2 is filled in sensibly
duke@435 1274 if (have_mm2 && _mem2->is_top()) _mem2 = _mm2->base_memory();
duke@435 1275 return true;
duke@435 1276 } else if (have_mm2 && !is_empty2()) {
duke@435 1277 return true; // is_empty() == true
duke@435 1278 }
duke@435 1279 }
duke@435 1280 return false;
duke@435 1281 }
duke@435 1282 };
duke@435 1283
duke@435 1284 //------------------------------Prefetch---------------------------------------
duke@435 1285
duke@435 1286 // Non-faulting prefetch load. Prefetch for many reads.
duke@435 1287 class PrefetchReadNode : public Node {
duke@435 1288 public:
duke@435 1289 PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
duke@435 1290 virtual int Opcode() const;
duke@435 1291 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1292 virtual uint match_edge(uint idx) const { return idx==2; }
duke@435 1293 virtual const Type *bottom_type() const { return Type::ABIO; }
duke@435 1294 };
duke@435 1295
duke@435 1296 // Non-faulting prefetch load. Prefetch for many reads & many writes.
duke@435 1297 class PrefetchWriteNode : public Node {
duke@435 1298 public:
duke@435 1299 PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
duke@435 1300 virtual int Opcode() const;
duke@435 1301 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1302 virtual uint match_edge(uint idx) const { return idx==2; }
kvn@3052 1303 virtual const Type *bottom_type() const { return Type::ABIO; }
kvn@3052 1304 };
kvn@3052 1305
kvn@3052 1306 // Allocation prefetch which may fault, TLAB size have to be adjusted.
kvn@3052 1307 class PrefetchAllocationNode : public Node {
kvn@3052 1308 public:
kvn@3052 1309 PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
kvn@3052 1310 virtual int Opcode() const;
kvn@3052 1311 virtual uint ideal_reg() const { return NotAMachineReg; }
kvn@3052 1312 virtual uint match_edge(uint idx) const { return idx==2; }
kvn@1802 1313 virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
duke@435 1314 };
stefank@2314 1315
stefank@2314 1316 #endif // SHARE_VM_OPTO_MEMNODE_HPP

mercurial