src/share/vm/opto/memnode.hpp

Wed, 03 Jun 2015 14:22:57 +0200

author
roland
date
Wed, 03 Jun 2015 14:22:57 +0200
changeset 7859
c1c199dde5c9
parent 7858
55d07ec5bde4
child 7994
04ff2f6cd0eb
child 8653
0ffee573412b
permissions
-rw-r--r--

8077504: Unsafe load can loose control dependency and cause crash
Summary: Node::depends_only_on_test() should return false for Unsafe loads
Reviewed-by: kvn, adinn

duke@435 1 /*
mikael@6198 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
stefank@2314 26 #define SHARE_VM_OPTO_MEMNODE_HPP
stefank@2314 27
stefank@2314 28 #include "opto/multnode.hpp"
stefank@2314 29 #include "opto/node.hpp"
stefank@2314 30 #include "opto/opcodes.hpp"
stefank@2314 31 #include "opto/type.hpp"
stefank@2314 32
duke@435 33 // Portions of code courtesy of Clifford Click
duke@435 34
duke@435 35 class MultiNode;
duke@435 36 class PhaseCCP;
duke@435 37 class PhaseTransform;
duke@435 38
duke@435 39 //------------------------------MemNode----------------------------------------
duke@435 40 // Load or Store, possibly throwing a NULL pointer exception
duke@435 41 class MemNode : public Node {
duke@435 42 protected:
duke@435 43 #ifdef ASSERT
duke@435 44 const TypePtr* _adr_type; // What kind of memory is being addressed?
duke@435 45 #endif
duke@435 46 virtual uint size_of() const; // Size is bigger (ASSERT only)
duke@435 47 public:
duke@435 48 enum { Control, // When is it safe to do this load?
duke@435 49 Memory, // Chunk of memory is being loaded from
duke@435 50 Address, // Actually address, derived from base
duke@435 51 ValueIn, // Value to store
duke@435 52 OopStore // Preceeding oop store, only in StoreCM
duke@435 53 };
goetz@6479 54 typedef enum { unordered = 0,
goetz@6479 55 acquire, // Load has to acquire or be succeeded by MemBarAcquire.
goetz@6479 56 release // Store has to release or be preceded by MemBarRelease.
goetz@6479 57 } MemOrd;
duke@435 58 protected:
duke@435 59 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
duke@435 60 : Node(c0,c1,c2 ) {
duke@435 61 init_class_id(Class_Mem);
duke@435 62 debug_only(_adr_type=at; adr_type();)
duke@435 63 }
duke@435 64 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
duke@435 65 : Node(c0,c1,c2,c3) {
duke@435 66 init_class_id(Class_Mem);
duke@435 67 debug_only(_adr_type=at; adr_type();)
duke@435 68 }
duke@435 69 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
duke@435 70 : Node(c0,c1,c2,c3,c4) {
duke@435 71 init_class_id(Class_Mem);
duke@435 72 debug_only(_adr_type=at; adr_type();)
duke@435 73 }
duke@435 74
kvn@468 75 public:
duke@435 76 // Helpers for the optimizer. Documented in memnode.cpp.
duke@435 77 static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
duke@435 78 Node* p2, AllocateNode* a2,
duke@435 79 PhaseTransform* phase);
duke@435 80 static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
duke@435 81
kvn@5110 82 static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
kvn@5110 83 static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
duke@435 84 // This one should probably be a phase-specific function:
kvn@520 85 static bool all_controls_dominate(Node* dom, Node* sub);
duke@435 86
kvn@598 87 // Find any cast-away of null-ness and keep its control.
kvn@598 88 static Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
duke@435 89 virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
duke@435 90
duke@435 91 virtual const class TypePtr *adr_type() const; // returns bottom_type of address
duke@435 92
duke@435 93 // Shared code for Ideal methods:
duke@435 94 Node *Ideal_common(PhaseGVN *phase, bool can_reshape); // Return -1 for short-circuit NULL.
duke@435 95
duke@435 96 // Helper function for adr_type() implementations.
duke@435 97 static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
duke@435 98
duke@435 99 // Raw access function, to allow copying of adr_type efficiently in
duke@435 100 // product builds and retain the debug info for debug builds.
duke@435 101 const TypePtr *raw_adr_type() const {
duke@435 102 #ifdef ASSERT
duke@435 103 return _adr_type;
duke@435 104 #else
duke@435 105 return 0;
duke@435 106 #endif
duke@435 107 }
duke@435 108
duke@435 109 // Map a load or store opcode to its corresponding store opcode.
duke@435 110 // (Return -1 if unknown.)
duke@435 111 virtual int store_Opcode() const { return -1; }
duke@435 112
duke@435 113 // What is the type of the value in memory? (T_VOID mean "unspecified".)
duke@435 114 virtual BasicType memory_type() const = 0;
kvn@464 115 virtual int memory_size() const {
kvn@464 116 #ifdef ASSERT
kvn@464 117 return type2aelembytes(memory_type(), true);
kvn@464 118 #else
kvn@464 119 return type2aelembytes(memory_type());
kvn@464 120 #endif
kvn@464 121 }
duke@435 122
duke@435 123 // Search through memory states which precede this node (load or store).
duke@435 124 // Look for an exact match for the address, with no intervening
duke@435 125 // aliased stores.
duke@435 126 Node* find_previous_store(PhaseTransform* phase);
duke@435 127
duke@435 128 // Can this node (load or store) accurately see a stored value in
duke@435 129 // the given memory state? (The state may or may not be in(Memory).)
duke@435 130 Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
duke@435 131
duke@435 132 #ifndef PRODUCT
duke@435 133 static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
duke@435 134 virtual void dump_spec(outputStream *st) const;
duke@435 135 #endif
duke@435 136 };
duke@435 137
duke@435 138 //------------------------------LoadNode---------------------------------------
duke@435 139 // Load value; requires Memory and Address
duke@435 140 class LoadNode : public MemNode {
roland@7859 141 public:
roland@7859 142 // Some loads (from unsafe) should be pinned: they don't depend only
roland@7859 143 // on the dominating test. The boolean field _depends_only_on_test
roland@7859 144 // below records whether that node depends only on the dominating
roland@7859 145 // test.
roland@7859 146 // Methods used to build LoadNodes pass an argument of type enum
roland@7859 147 // ControlDependency instead of a boolean because those methods
roland@7859 148 // typically have multiple boolean parameters with default values:
roland@7859 149 // passing the wrong boolean to one of these parameters by mistake
roland@7859 150 // goes easily unnoticed. Using an enum, the compiler can check that
roland@7859 151 // the type of a value and the type of the parameter match.
roland@7859 152 enum ControlDependency {
roland@7859 153 Pinned,
roland@7859 154 DependsOnlyOnTest
roland@7859 155 };
goetz@6479 156 private:
roland@7859 157 // LoadNode::hash() doesn't take the _depends_only_on_test field
roland@7859 158 // into account: If the graph already has a non-pinned LoadNode and
roland@7859 159 // we add a pinned LoadNode with the same inputs, it's safe for GVN
roland@7859 160 // to replace the pinned LoadNode with the non-pinned LoadNode,
roland@7859 161 // otherwise it wouldn't be safe to have a non pinned LoadNode with
roland@7859 162 // those inputs in the first place. If the graph already has a
roland@7859 163 // pinned LoadNode and we add a non pinned LoadNode with the same
roland@7859 164 // inputs, it's safe (but suboptimal) for GVN to replace the
roland@7859 165 // non-pinned LoadNode by the pinned LoadNode.
roland@7859 166 bool _depends_only_on_test;
roland@7859 167
goetz@6479 168 // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
goetz@6479 169 // loads that can be reordered, and such requiring acquire semantics to
goetz@6479 170 // adhere to the Java specification. The required behaviour is stored in
goetz@6479 171 // this field.
goetz@6479 172 const MemOrd _mo;
goetz@6479 173
duke@435 174 protected:
goetz@6479 175 virtual uint cmp(const Node &n) const;
duke@435 176 virtual uint size_of() const; // Size is bigger
zmajo@7341 177 // Should LoadNode::Ideal() attempt to remove control edges?
zmajo@7341 178 virtual bool can_remove_control() const;
duke@435 179 const Type* const _type; // What kind of value is loaded?
duke@435 180 public:
duke@435 181
roland@7859 182 LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
roland@7859 183 : MemNode(c,mem,adr,at), _type(rt), _mo(mo), _depends_only_on_test(control_dependency == DependsOnlyOnTest) {
duke@435 184 init_class_id(Class_Load);
duke@435 185 }
goetz@6479 186 inline bool is_unordered() const { return !is_acquire(); }
goetz@6479 187 inline bool is_acquire() const {
goetz@6479 188 assert(_mo == unordered || _mo == acquire, "unexpected");
goetz@6479 189 return _mo == acquire;
goetz@6479 190 }
duke@435 191
duke@435 192 // Polymorphic factory method:
goetz@6479 193 static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
roland@7859 194 const TypePtr* at, const Type *rt, BasicType bt,
roland@7859 195 MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
duke@435 196
duke@435 197 virtual uint hash() const; // Check the type
duke@435 198
duke@435 199 // Handle algebraic identities here. If we have an identity, return the Node
duke@435 200 // we are equivalent to. We look for Load of a Store.
duke@435 201 virtual Node *Identity( PhaseTransform *phase );
duke@435 202
zmajo@7341 203 // If the load is from Field memory and the pointer is non-null, it might be possible to
duke@435 204 // zero out the control input.
zmajo@7341 205 // If the offset is constant and the base is an object allocation,
zmajo@7341 206 // try to hook me up to the exact initializing store.
duke@435 207 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 208
kvn@598 209 // Split instance field load through Phi.
kvn@598 210 Node* split_through_phi(PhaseGVN *phase);
kvn@598 211
never@452 212 // Recover original value from boxed values
never@452 213 Node *eliminate_autobox(PhaseGVN *phase);
never@452 214
duke@435 215 // Compute a new Type for this node. Basically we just do the pre-check,
duke@435 216 // then call the virtual add() to set the type.
duke@435 217 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 218
kvn@599 219 // Common methods for LoadKlass and LoadNKlass nodes.
kvn@599 220 const Type *klass_value_common( PhaseTransform *phase ) const;
kvn@599 221 Node *klass_identity_common( PhaseTransform *phase );
kvn@599 222
duke@435 223 virtual uint ideal_reg() const;
duke@435 224 virtual const Type *bottom_type() const;
duke@435 225 // Following method is copied from TypeNode:
duke@435 226 void set_type(const Type* t) {
duke@435 227 assert(t != NULL, "sanity");
duke@435 228 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
duke@435 229 *(const Type**)&_type = t; // cast away const-ness
duke@435 230 // If this node is in the hash table, make sure it doesn't need a rehash.
duke@435 231 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
duke@435 232 }
duke@435 233 const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
duke@435 234
duke@435 235 // Do not match memory edge
duke@435 236 virtual uint match_edge(uint idx) const;
duke@435 237
duke@435 238 // Map a load opcode to its corresponding store opcode.
duke@435 239 virtual int store_Opcode() const = 0;
duke@435 240
kvn@499 241 // Check if the load's memory input is a Phi node with the same control.
kvn@499 242 bool is_instance_field_load_with_local_phi(Node* ctrl);
kvn@499 243
duke@435 244 #ifndef PRODUCT
duke@435 245 virtual void dump_spec(outputStream *st) const;
duke@435 246 #endif
kvn@1964 247 #ifdef ASSERT
kvn@1964 248 // Helper function to allow a raw load without control edge for some cases
kvn@1964 249 static bool is_immutable_value(Node* adr);
kvn@1964 250 #endif
duke@435 251 protected:
duke@435 252 const Type* load_array_final_field(const TypeKlassPtr *tkls,
duke@435 253 ciKlass* klass) const;
iveresov@6070 254 // depends_only_on_test is almost always true, and needs to be almost always
iveresov@6070 255 // true to enable key hoisting & commoning optimizations. However, for the
iveresov@6070 256 // special case of RawPtr loads from TLS top & end, and other loads performed by
iveresov@6070 257 // GC barriers, the control edge carries the dependence preventing hoisting past
iveresov@6070 258 // a Safepoint instead of the memory edge. (An unfortunate consequence of having
iveresov@6070 259 // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
iveresov@6070 260 // which produce results (new raw memory state) inside of loops preventing all
iveresov@6070 261 // manner of other optimizations). Basically, it's ugly but so is the alternative.
iveresov@6070 262 // See comment in macro.cpp, around line 125 expand_allocate_common().
roland@7859 263 virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM && _depends_only_on_test; }
duke@435 264 };
duke@435 265
duke@435 266 //------------------------------LoadBNode--------------------------------------
duke@435 267 // Load a byte (8bits signed) from memory
duke@435 268 class LoadBNode : public LoadNode {
duke@435 269 public:
roland@7859 270 LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 271 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
duke@435 272 virtual int Opcode() const;
duke@435 273 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 274 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
kvn@3442 275 virtual const Type *Value(PhaseTransform *phase) const;
duke@435 276 virtual int store_Opcode() const { return Op_StoreB; }
duke@435 277 virtual BasicType memory_type() const { return T_BYTE; }
duke@435 278 };
duke@435 279
twisti@1059 280 //------------------------------LoadUBNode-------------------------------------
twisti@1059 281 // Load a unsigned byte (8bits unsigned) from memory
twisti@1059 282 class LoadUBNode : public LoadNode {
twisti@1059 283 public:
roland@7859 284 LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 285 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
twisti@1059 286 virtual int Opcode() const;
twisti@1059 287 virtual uint ideal_reg() const { return Op_RegI; }
twisti@1059 288 virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
kvn@3442 289 virtual const Type *Value(PhaseTransform *phase) const;
twisti@1059 290 virtual int store_Opcode() const { return Op_StoreB; }
twisti@1059 291 virtual BasicType memory_type() const { return T_BYTE; }
twisti@1059 292 };
twisti@1059 293
twisti@993 294 //------------------------------LoadUSNode-------------------------------------
twisti@993 295 // Load an unsigned short/char (16bits unsigned) from memory
twisti@993 296 class LoadUSNode : public LoadNode {
duke@435 297 public:
roland@7859 298 LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 299 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
duke@435 300 virtual int Opcode() const;
duke@435 301 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 302 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
kvn@3442 303 virtual const Type *Value(PhaseTransform *phase) const;
duke@435 304 virtual int store_Opcode() const { return Op_StoreC; }
duke@435 305 virtual BasicType memory_type() const { return T_CHAR; }
duke@435 306 };
duke@435 307
kvn@3442 308 //------------------------------LoadSNode--------------------------------------
kvn@3442 309 // Load a short (16bits signed) from memory
kvn@3442 310 class LoadSNode : public LoadNode {
kvn@3442 311 public:
roland@7859 312 LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 313 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
kvn@3442 314 virtual int Opcode() const;
kvn@3442 315 virtual uint ideal_reg() const { return Op_RegI; }
kvn@3442 316 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
kvn@3442 317 virtual const Type *Value(PhaseTransform *phase) const;
kvn@3442 318 virtual int store_Opcode() const { return Op_StoreC; }
kvn@3442 319 virtual BasicType memory_type() const { return T_SHORT; }
kvn@3442 320 };
kvn@3442 321
duke@435 322 //------------------------------LoadINode--------------------------------------
duke@435 323 // Load an integer from memory
duke@435 324 class LoadINode : public LoadNode {
duke@435 325 public:
roland@7859 326 LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 327 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
duke@435 328 virtual int Opcode() const;
duke@435 329 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 330 virtual int store_Opcode() const { return Op_StoreI; }
duke@435 331 virtual BasicType memory_type() const { return T_INT; }
duke@435 332 };
duke@435 333
duke@435 334 //------------------------------LoadRangeNode----------------------------------
duke@435 335 // Load an array length from the array
duke@435 336 class LoadRangeNode : public LoadINode {
duke@435 337 public:
goetz@6479 338 LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
goetz@6479 339 : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
duke@435 340 virtual int Opcode() const;
duke@435 341 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 342 virtual Node *Identity( PhaseTransform *phase );
rasbold@801 343 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 344 };
duke@435 345
duke@435 346 //------------------------------LoadLNode--------------------------------------
duke@435 347 // Load a long from memory
duke@435 348 class LoadLNode : public LoadNode {
duke@435 349 virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
duke@435 350 virtual uint cmp( const Node &n ) const {
duke@435 351 return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
duke@435 352 && LoadNode::cmp(n);
duke@435 353 }
duke@435 354 virtual uint size_of() const { return sizeof(*this); }
duke@435 355 const bool _require_atomic_access; // is piecewise load forbidden?
duke@435 356
duke@435 357 public:
goetz@6479 358 LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
roland@7859 359 MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
roland@7859 360 : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
duke@435 361 virtual int Opcode() const;
duke@435 362 virtual uint ideal_reg() const { return Op_RegL; }
duke@435 363 virtual int store_Opcode() const { return Op_StoreL; }
duke@435 364 virtual BasicType memory_type() const { return T_LONG; }
anoll@7858 365 bool require_atomic_access() const { return _require_atomic_access; }
goetz@6479 366 static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
roland@7859 367 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
duke@435 368 #ifndef PRODUCT
duke@435 369 virtual void dump_spec(outputStream *st) const {
duke@435 370 LoadNode::dump_spec(st);
duke@435 371 if (_require_atomic_access) st->print(" Atomic!");
duke@435 372 }
duke@435 373 #endif
duke@435 374 };
duke@435 375
duke@435 376 //------------------------------LoadL_unalignedNode----------------------------
duke@435 377 // Load a long from unaligned memory
duke@435 378 class LoadL_unalignedNode : public LoadLNode {
duke@435 379 public:
roland@7859 380 LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 381 : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
duke@435 382 virtual int Opcode() const;
duke@435 383 };
duke@435 384
duke@435 385 //------------------------------LoadFNode--------------------------------------
duke@435 386 // Load a float (64 bits) from memory
duke@435 387 class LoadFNode : public LoadNode {
duke@435 388 public:
roland@7859 389 LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 390 : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
duke@435 391 virtual int Opcode() const;
duke@435 392 virtual uint ideal_reg() const { return Op_RegF; }
duke@435 393 virtual int store_Opcode() const { return Op_StoreF; }
duke@435 394 virtual BasicType memory_type() const { return T_FLOAT; }
duke@435 395 };
duke@435 396
duke@435 397 //------------------------------LoadDNode--------------------------------------
duke@435 398 // Load a double (64 bits) from memory
duke@435 399 class LoadDNode : public LoadNode {
anoll@7858 400 virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
anoll@7858 401 virtual uint cmp( const Node &n ) const {
anoll@7858 402 return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
anoll@7858 403 && LoadNode::cmp(n);
anoll@7858 404 }
anoll@7858 405 virtual uint size_of() const { return sizeof(*this); }
anoll@7858 406 const bool _require_atomic_access; // is piecewise load forbidden?
anoll@7858 407
duke@435 408 public:
anoll@7858 409 LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
roland@7859 410 MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
roland@7859 411 : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
duke@435 412 virtual int Opcode() const;
duke@435 413 virtual uint ideal_reg() const { return Op_RegD; }
duke@435 414 virtual int store_Opcode() const { return Op_StoreD; }
duke@435 415 virtual BasicType memory_type() const { return T_DOUBLE; }
anoll@7858 416 bool require_atomic_access() const { return _require_atomic_access; }
anoll@7858 417 static LoadDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
roland@7859 418 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
anoll@7858 419 #ifndef PRODUCT
anoll@7858 420 virtual void dump_spec(outputStream *st) const {
anoll@7858 421 LoadNode::dump_spec(st);
anoll@7858 422 if (_require_atomic_access) st->print(" Atomic!");
anoll@7858 423 }
anoll@7858 424 #endif
duke@435 425 };
duke@435 426
duke@435 427 //------------------------------LoadD_unalignedNode----------------------------
duke@435 428 // Load a double from unaligned memory
duke@435 429 class LoadD_unalignedNode : public LoadDNode {
duke@435 430 public:
roland@7859 431 LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 432 : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
duke@435 433 virtual int Opcode() const;
duke@435 434 };
duke@435 435
duke@435 436 //------------------------------LoadPNode--------------------------------------
duke@435 437 // Load a pointer from memory (either object or array)
duke@435 438 class LoadPNode : public LoadNode {
duke@435 439 public:
roland@7859 440 LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 441 : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
duke@435 442 virtual int Opcode() const;
duke@435 443 virtual uint ideal_reg() const { return Op_RegP; }
duke@435 444 virtual int store_Opcode() const { return Op_StoreP; }
duke@435 445 virtual BasicType memory_type() const { return T_ADDRESS; }
duke@435 446 };
duke@435 447
coleenp@548 448
coleenp@548 449 //------------------------------LoadNNode--------------------------------------
coleenp@548 450 // Load a narrow oop from memory (either object or array)
coleenp@548 451 class LoadNNode : public LoadNode {
coleenp@548 452 public:
roland@7859 453 LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 454 : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
coleenp@548 455 virtual int Opcode() const;
coleenp@548 456 virtual uint ideal_reg() const { return Op_RegN; }
coleenp@548 457 virtual int store_Opcode() const { return Op_StoreN; }
coleenp@548 458 virtual BasicType memory_type() const { return T_NARROWOOP; }
coleenp@548 459 };
coleenp@548 460
duke@435 461 //------------------------------LoadKlassNode----------------------------------
duke@435 462 // Load a Klass from an object
duke@435 463 class LoadKlassNode : public LoadPNode {
zmajo@7341 464 protected:
zmajo@7341 465 // In most cases, LoadKlassNode does not have the control input set. If the control
zmajo@7341 466 // input is set, it must not be removed (by LoadNode::Ideal()).
zmajo@7341 467 virtual bool can_remove_control() const;
duke@435 468 public:
goetz@6479 469 LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
goetz@6479 470 : LoadPNode(c, mem, adr, at, tk, mo) {}
duke@435 471 virtual int Opcode() const;
duke@435 472 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 473 virtual Node *Identity( PhaseTransform *phase );
duke@435 474 virtual bool depends_only_on_test() const { return true; }
kvn@599 475
kvn@599 476 // Polymorphic factory method:
zmajo@7341 477 static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
zmajo@7341 478 const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
duke@435 479 };
duke@435 480
kvn@599 481 //------------------------------LoadNKlassNode---------------------------------
kvn@599 482 // Load a narrow Klass from an object.
kvn@599 483 class LoadNKlassNode : public LoadNNode {
kvn@599 484 public:
goetz@6479 485 LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
goetz@6479 486 : LoadNNode(c, mem, adr, at, tk, mo) {}
kvn@599 487 virtual int Opcode() const;
kvn@599 488 virtual uint ideal_reg() const { return Op_RegN; }
roland@4159 489 virtual int store_Opcode() const { return Op_StoreNKlass; }
roland@4159 490 virtual BasicType memory_type() const { return T_NARROWKLASS; }
kvn@599 491
kvn@599 492 virtual const Type *Value( PhaseTransform *phase ) const;
kvn@599 493 virtual Node *Identity( PhaseTransform *phase );
kvn@599 494 virtual bool depends_only_on_test() const { return true; }
kvn@599 495 };
kvn@599 496
kvn@599 497
duke@435 498 //------------------------------StoreNode--------------------------------------
duke@435 499 // Store value; requires Store, Address and Value
duke@435 500 class StoreNode : public MemNode {
goetz@6479 501 private:
goetz@6479 502 // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
goetz@6479 503 // stores that can be reordered, and such requiring release semantics to
goetz@6479 504 // adhere to the Java specification. The required behaviour is stored in
goetz@6479 505 // this field.
goetz@6479 506 const MemOrd _mo;
goetz@6479 507 // Needed for proper cloning.
goetz@6479 508 virtual uint size_of() const { return sizeof(*this); }
duke@435 509 protected:
duke@435 510 virtual uint cmp( const Node &n ) const;
duke@435 511 virtual bool depends_only_on_test() const { return false; }
duke@435 512
duke@435 513 Node *Ideal_masked_input (PhaseGVN *phase, uint mask);
duke@435 514 Node *Ideal_sign_extended_input(PhaseGVN *phase, int num_bits);
duke@435 515
duke@435 516 public:
goetz@6479 517 // We must ensure that stores of object references will be visible
goetz@6479 518 // only after the object's initialization. So the callers of this
goetz@6479 519 // procedure must indicate that the store requires `release'
goetz@6479 520 // semantics, if the stored value is an object reference that might
goetz@6479 521 // point to a new object and may become externally visible.
goetz@6479 522 StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 523 : MemNode(c, mem, adr, at, val), _mo(mo) {
duke@435 524 init_class_id(Class_Store);
duke@435 525 }
goetz@6479 526 StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
goetz@6479 527 : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
duke@435 528 init_class_id(Class_Store);
duke@435 529 }
duke@435 530
goetz@6479 531 inline bool is_unordered() const { return !is_release(); }
goetz@6479 532 inline bool is_release() const {
goetz@6479 533 assert((_mo == unordered || _mo == release), "unexpected");
goetz@6479 534 return _mo == release;
goetz@6479 535 }
goetz@6479 536
goetz@6479 537 // Conservatively release stores of object references in order to
goetz@6479 538 // ensure visibility of object initialization.
goetz@6479 539 static inline MemOrd release_if_reference(const BasicType t) {
goetz@6479 540 const MemOrd mo = (t == T_ARRAY ||
goetz@6479 541 t == T_ADDRESS || // Might be the address of an object reference (`boxing').
goetz@6479 542 t == T_OBJECT) ? release : unordered;
goetz@6479 543 return mo;
goetz@6479 544 }
goetz@6479 545
goetz@6479 546 // Polymorphic factory method
goetz@6479 547 //
goetz@6479 548 // We must ensure that stores of object references will be visible
goetz@6479 549 // only after the object's initialization. So the callers of this
goetz@6479 550 // procedure must indicate that the store requires `release'
goetz@6479 551 // semantics, if the stored value is an object reference that might
goetz@6479 552 // point to a new object and may become externally visible.
goetz@6479 553 static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
goetz@6479 554 const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
duke@435 555
duke@435 556 virtual uint hash() const; // Check the type
duke@435 557
duke@435 558 // If the store is to Field memory and the pointer is non-null, we can
duke@435 559 // zero out the control input.
duke@435 560 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 561
duke@435 562 // Compute a new Type for this node. Basically we just do the pre-check,
duke@435 563 // then call the virtual add() to set the type.
duke@435 564 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 565
duke@435 566 // Check for identity function on memory (Load then Store at same address)
duke@435 567 virtual Node *Identity( PhaseTransform *phase );
duke@435 568
duke@435 569 // Do not match memory edge
duke@435 570 virtual uint match_edge(uint idx) const;
duke@435 571
duke@435 572 virtual const Type *bottom_type() const; // returns Type::MEMORY
duke@435 573
duke@435 574 // Map a store opcode to its corresponding own opcode, trivially.
duke@435 575 virtual int store_Opcode() const { return Opcode(); }
duke@435 576
duke@435 577 // have all possible loads of the value stored been optimized away?
duke@435 578 bool value_never_loaded(PhaseTransform *phase) const;
duke@435 579 };
duke@435 580
duke@435 581 //------------------------------StoreBNode-------------------------------------
duke@435 582 // Store byte to memory
duke@435 583 class StoreBNode : public StoreNode {
duke@435 584 public:
goetz@6479 585 StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 586 : StoreNode(c, mem, adr, at, val, mo) {}
duke@435 587 virtual int Opcode() const;
duke@435 588 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 589 virtual BasicType memory_type() const { return T_BYTE; }
duke@435 590 };
duke@435 591
duke@435 592 //------------------------------StoreCNode-------------------------------------
duke@435 593 // Store char/short to memory
duke@435 594 class StoreCNode : public StoreNode {
duke@435 595 public:
goetz@6479 596 StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 597 : StoreNode(c, mem, adr, at, val, mo) {}
duke@435 598 virtual int Opcode() const;
duke@435 599 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 600 virtual BasicType memory_type() const { return T_CHAR; }
duke@435 601 };
duke@435 602
duke@435 603 //------------------------------StoreINode-------------------------------------
duke@435 604 // Store int to memory
duke@435 605 class StoreINode : public StoreNode {
duke@435 606 public:
goetz@6479 607 StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 608 : StoreNode(c, mem, adr, at, val, mo) {}
duke@435 609 virtual int Opcode() const;
duke@435 610 virtual BasicType memory_type() const { return T_INT; }
duke@435 611 };
duke@435 612
duke@435 613 //------------------------------StoreLNode-------------------------------------
duke@435 614 // Store long to memory
duke@435 615 class StoreLNode : public StoreNode {
duke@435 616 virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
duke@435 617 virtual uint cmp( const Node &n ) const {
duke@435 618 return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
duke@435 619 && StoreNode::cmp(n);
duke@435 620 }
duke@435 621 virtual uint size_of() const { return sizeof(*this); }
duke@435 622 const bool _require_atomic_access; // is piecewise store forbidden?
duke@435 623
duke@435 624 public:
goetz@6479 625 StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
goetz@6479 626 : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
duke@435 627 virtual int Opcode() const;
duke@435 628 virtual BasicType memory_type() const { return T_LONG; }
anoll@7858 629 bool require_atomic_access() const { return _require_atomic_access; }
goetz@6479 630 static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
duke@435 631 #ifndef PRODUCT
duke@435 632 virtual void dump_spec(outputStream *st) const {
duke@435 633 StoreNode::dump_spec(st);
duke@435 634 if (_require_atomic_access) st->print(" Atomic!");
duke@435 635 }
duke@435 636 #endif
duke@435 637 };
duke@435 638
duke@435 639 //------------------------------StoreFNode-------------------------------------
duke@435 640 // Store float to memory
duke@435 641 class StoreFNode : public StoreNode {
duke@435 642 public:
goetz@6479 643 StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 644 : StoreNode(c, mem, adr, at, val, mo) {}
duke@435 645 virtual int Opcode() const;
duke@435 646 virtual BasicType memory_type() const { return T_FLOAT; }
duke@435 647 };
duke@435 648
duke@435 649 //------------------------------StoreDNode-------------------------------------
duke@435 650 // Store double to memory
duke@435 651 class StoreDNode : public StoreNode {
anoll@7858 652 virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
anoll@7858 653 virtual uint cmp( const Node &n ) const {
anoll@7858 654 return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
anoll@7858 655 && StoreNode::cmp(n);
anoll@7858 656 }
anoll@7858 657 virtual uint size_of() const { return sizeof(*this); }
anoll@7858 658 const bool _require_atomic_access; // is piecewise store forbidden?
duke@435 659 public:
anoll@7858 660 StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
anoll@7858 661 MemOrd mo, bool require_atomic_access = false)
anoll@7858 662 : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
duke@435 663 virtual int Opcode() const;
duke@435 664 virtual BasicType memory_type() const { return T_DOUBLE; }
anoll@7858 665 bool require_atomic_access() const { return _require_atomic_access; }
anoll@7858 666 static StoreDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
anoll@7858 667 #ifndef PRODUCT
anoll@7858 668 virtual void dump_spec(outputStream *st) const {
anoll@7858 669 StoreNode::dump_spec(st);
anoll@7858 670 if (_require_atomic_access) st->print(" Atomic!");
anoll@7858 671 }
anoll@7858 672 #endif
anoll@7858 673
duke@435 674 };
duke@435 675
duke@435 676 //------------------------------StorePNode-------------------------------------
duke@435 677 // Store pointer to memory
duke@435 678 class StorePNode : public StoreNode {
duke@435 679 public:
goetz@6479 680 StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 681 : StoreNode(c, mem, adr, at, val, mo) {}
duke@435 682 virtual int Opcode() const;
duke@435 683 virtual BasicType memory_type() const { return T_ADDRESS; }
duke@435 684 };
duke@435 685
coleenp@548 686 //------------------------------StoreNNode-------------------------------------
coleenp@548 687 // Store narrow oop to memory
coleenp@548 688 class StoreNNode : public StoreNode {
coleenp@548 689 public:
goetz@6479 690 StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 691 : StoreNode(c, mem, adr, at, val, mo) {}
coleenp@548 692 virtual int Opcode() const;
coleenp@548 693 virtual BasicType memory_type() const { return T_NARROWOOP; }
coleenp@548 694 };
coleenp@548 695
roland@4159 696 //------------------------------StoreNKlassNode--------------------------------------
roland@4159 697 // Store narrow klass to memory
roland@4159 698 class StoreNKlassNode : public StoreNNode {
roland@4159 699 public:
goetz@6479 700 StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 701 : StoreNNode(c, mem, adr, at, val, mo) {}
roland@4159 702 virtual int Opcode() const;
roland@4159 703 virtual BasicType memory_type() const { return T_NARROWKLASS; }
roland@4159 704 };
roland@4159 705
duke@435 706 //------------------------------StoreCMNode-----------------------------------
duke@435 707 // Store card-mark byte to memory for CM
duke@435 708 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
duke@435 709 // Preceeding equivalent StoreCMs may be eliminated.
duke@435 710 class StoreCMNode : public StoreNode {
cfang@1420 711 private:
never@1633 712 virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
never@1633 713 virtual uint cmp( const Node &n ) const {
never@1633 714 return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
never@1633 715 && StoreNode::cmp(n);
never@1633 716 }
never@1633 717 virtual uint size_of() const { return sizeof(*this); }
cfang@1420 718 int _oop_alias_idx; // The alias_idx of OopStore
never@1633 719
duke@435 720 public:
never@1633 721 StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
goetz@6479 722 StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
never@1633 723 _oop_alias_idx(oop_alias_idx) {
never@1633 724 assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
never@1633 725 _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
never@1633 726 "bad oop alias idx");
never@1633 727 }
duke@435 728 virtual int Opcode() const;
duke@435 729 virtual Node *Identity( PhaseTransform *phase );
cfang@1420 730 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 731 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 732 virtual BasicType memory_type() const { return T_VOID; } // unspecific
cfang@1420 733 int oop_alias_idx() const { return _oop_alias_idx; }
duke@435 734 };
duke@435 735
duke@435 736 //------------------------------LoadPLockedNode---------------------------------
duke@435 737 // Load-locked a pointer from memory (either object or array).
duke@435 738 // On Sparc & Intel this is implemented as a normal pointer load.
duke@435 739 // On PowerPC and friends it's a real load-locked.
duke@435 740 class LoadPLockedNode : public LoadPNode {
duke@435 741 public:
goetz@6479 742 LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
goetz@6479 743 : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
duke@435 744 virtual int Opcode() const;
duke@435 745 virtual int store_Opcode() const { return Op_StorePConditional; }
duke@435 746 virtual bool depends_only_on_test() const { return true; }
duke@435 747 };
duke@435 748
duke@435 749 //------------------------------SCMemProjNode---------------------------------------
duke@435 750 // This class defines a projection of the memory state of a store conditional node.
duke@435 751 // These nodes return a value, but also update memory.
duke@435 752 class SCMemProjNode : public ProjNode {
duke@435 753 public:
duke@435 754 enum {SCMEMPROJCON = (uint)-2};
duke@435 755 SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
duke@435 756 virtual int Opcode() const;
duke@435 757 virtual bool is_CFG() const { return false; }
duke@435 758 virtual const Type *bottom_type() const {return Type::MEMORY;}
duke@435 759 virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
duke@435 760 virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
duke@435 761 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 762 #ifndef PRODUCT
duke@435 763 virtual void dump_spec(outputStream *st) const {};
duke@435 764 #endif
duke@435 765 };
duke@435 766
duke@435 767 //------------------------------LoadStoreNode---------------------------
kvn@688 768 // Note: is_Mem() method returns 'true' for this class.
duke@435 769 class LoadStoreNode : public Node {
roland@4106 770 private:
roland@4106 771 const Type* const _type; // What kind of value is loaded?
roland@4106 772 const TypePtr* _adr_type; // What kind of memory is being addressed?
roland@4106 773 virtual uint size_of() const; // Size is bigger
roland@4106 774 public:
roland@4106 775 LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
roland@4106 776 virtual bool depends_only_on_test() const { return false; }
roland@4106 777 virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
roland@4106 778
roland@4106 779 virtual const Type *bottom_type() const { return _type; }
roland@4106 780 virtual uint ideal_reg() const;
roland@4106 781 virtual const class TypePtr *adr_type() const { return _adr_type; } // returns bottom_type of address
roland@4106 782
roland@4106 783 bool result_not_used() const;
roland@4106 784 };
roland@4106 785
roland@4106 786 class LoadStoreConditionalNode : public LoadStoreNode {
duke@435 787 public:
duke@435 788 enum {
duke@435 789 ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
duke@435 790 };
roland@4106 791 LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
duke@435 792 };
duke@435 793
duke@435 794 //------------------------------StorePConditionalNode---------------------------
duke@435 795 // Conditionally store pointer to memory, if no change since prior
duke@435 796 // load-locked. Sets flags for success or failure of the store.
roland@4106 797 class StorePConditionalNode : public LoadStoreConditionalNode {
duke@435 798 public:
roland@4106 799 StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
duke@435 800 virtual int Opcode() const;
duke@435 801 // Produces flags
duke@435 802 virtual uint ideal_reg() const { return Op_RegFlags; }
duke@435 803 };
duke@435 804
kvn@855 805 //------------------------------StoreIConditionalNode---------------------------
kvn@855 806 // Conditionally store int to memory, if no change since prior
kvn@855 807 // load-locked. Sets flags for success or failure of the store.
roland@4106 808 class StoreIConditionalNode : public LoadStoreConditionalNode {
kvn@855 809 public:
roland@4106 810 StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
kvn@855 811 virtual int Opcode() const;
kvn@855 812 // Produces flags
kvn@855 813 virtual uint ideal_reg() const { return Op_RegFlags; }
kvn@855 814 };
kvn@855 815
duke@435 816 //------------------------------StoreLConditionalNode---------------------------
duke@435 817 // Conditionally store long to memory, if no change since prior
duke@435 818 // load-locked. Sets flags for success or failure of the store.
roland@4106 819 class StoreLConditionalNode : public LoadStoreConditionalNode {
duke@435 820 public:
roland@4106 821 StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
duke@435 822 virtual int Opcode() const;
kvn@855 823 // Produces flags
kvn@855 824 virtual uint ideal_reg() const { return Op_RegFlags; }
duke@435 825 };
duke@435 826
duke@435 827
duke@435 828 //------------------------------CompareAndSwapLNode---------------------------
roland@4106 829 class CompareAndSwapLNode : public LoadStoreConditionalNode {
duke@435 830 public:
roland@4106 831 CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
duke@435 832 virtual int Opcode() const;
duke@435 833 };
duke@435 834
duke@435 835
duke@435 836 //------------------------------CompareAndSwapINode---------------------------
roland@4106 837 class CompareAndSwapINode : public LoadStoreConditionalNode {
duke@435 838 public:
roland@4106 839 CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
duke@435 840 virtual int Opcode() const;
duke@435 841 };
duke@435 842
duke@435 843
duke@435 844 //------------------------------CompareAndSwapPNode---------------------------
roland@4106 845 class CompareAndSwapPNode : public LoadStoreConditionalNode {
duke@435 846 public:
roland@4106 847 CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
duke@435 848 virtual int Opcode() const;
duke@435 849 };
duke@435 850
coleenp@548 851 //------------------------------CompareAndSwapNNode---------------------------
roland@4106 852 class CompareAndSwapNNode : public LoadStoreConditionalNode {
coleenp@548 853 public:
roland@4106 854 CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
roland@4106 855 virtual int Opcode() const;
roland@4106 856 };
roland@4106 857
roland@4106 858 //------------------------------GetAndAddINode---------------------------
roland@4106 859 class GetAndAddINode : public LoadStoreNode {
roland@4106 860 public:
roland@4106 861 GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
roland@4106 862 virtual int Opcode() const;
roland@4106 863 };
roland@4106 864
roland@4106 865 //------------------------------GetAndAddLNode---------------------------
roland@4106 866 class GetAndAddLNode : public LoadStoreNode {
roland@4106 867 public:
roland@4106 868 GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
roland@4106 869 virtual int Opcode() const;
roland@4106 870 };
roland@4106 871
roland@4106 872
roland@4106 873 //------------------------------GetAndSetINode---------------------------
roland@4106 874 class GetAndSetINode : public LoadStoreNode {
roland@4106 875 public:
roland@4106 876 GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
roland@4106 877 virtual int Opcode() const;
roland@4106 878 };
roland@4106 879
roland@4106 880 //------------------------------GetAndSetINode---------------------------
roland@4106 881 class GetAndSetLNode : public LoadStoreNode {
roland@4106 882 public:
roland@4106 883 GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
roland@4106 884 virtual int Opcode() const;
roland@4106 885 };
roland@4106 886
roland@4106 887 //------------------------------GetAndSetPNode---------------------------
roland@4106 888 class GetAndSetPNode : public LoadStoreNode {
roland@4106 889 public:
roland@4106 890 GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
roland@4106 891 virtual int Opcode() const;
roland@4106 892 };
roland@4106 893
roland@4106 894 //------------------------------GetAndSetNNode---------------------------
roland@4106 895 class GetAndSetNNode : public LoadStoreNode {
roland@4106 896 public:
roland@4106 897 GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
coleenp@548 898 virtual int Opcode() const;
coleenp@548 899 };
coleenp@548 900
duke@435 901 //------------------------------ClearArray-------------------------------------
duke@435 902 class ClearArrayNode: public Node {
duke@435 903 public:
kvn@1535 904 ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
kvn@1535 905 : Node(ctrl,arymem,word_cnt,base) {
kvn@1535 906 init_class_id(Class_ClearArray);
kvn@1535 907 }
duke@435 908 virtual int Opcode() const;
duke@435 909 virtual const Type *bottom_type() const { return Type::MEMORY; }
duke@435 910 // ClearArray modifies array elements, and so affects only the
duke@435 911 // array memory addressed by the bottom_type of its base address.
duke@435 912 virtual const class TypePtr *adr_type() const;
duke@435 913 virtual Node *Identity( PhaseTransform *phase );
duke@435 914 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 915 virtual uint match_edge(uint idx) const;
duke@435 916
duke@435 917 // Clear the given area of an object or array.
duke@435 918 // The start offset must always be aligned mod BytesPerInt.
duke@435 919 // The end offset must always be aligned mod BytesPerLong.
duke@435 920 // Return the new memory.
duke@435 921 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 922 intptr_t start_offset,
duke@435 923 intptr_t end_offset,
duke@435 924 PhaseGVN* phase);
duke@435 925 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 926 intptr_t start_offset,
duke@435 927 Node* end_offset,
duke@435 928 PhaseGVN* phase);
duke@435 929 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 930 Node* start_offset,
duke@435 931 Node* end_offset,
duke@435 932 PhaseGVN* phase);
kvn@1535 933 // Return allocation input memory edge if it is different instance
kvn@1535 934 // or itself if it is the one we are looking for.
kvn@1535 935 static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
duke@435 936 };
duke@435 937
kvn@2694 938 //------------------------------StrIntrinsic-------------------------------
kvn@2694 939 // Base class for Ideal nodes used in String instrinsic code.
kvn@2694 940 class StrIntrinsicNode: public Node {
duke@435 941 public:
kvn@2694 942 StrIntrinsicNode(Node* control, Node* char_array_mem,
kvn@2694 943 Node* s1, Node* c1, Node* s2, Node* c2):
kvn@2694 944 Node(control, char_array_mem, s1, c1, s2, c2) {
kvn@2694 945 }
kvn@2694 946
kvn@2694 947 StrIntrinsicNode(Node* control, Node* char_array_mem,
kvn@2694 948 Node* s1, Node* s2, Node* c):
kvn@2694 949 Node(control, char_array_mem, s1, s2, c) {
kvn@2694 950 }
kvn@2694 951
kvn@2694 952 StrIntrinsicNode(Node* control, Node* char_array_mem,
kvn@2694 953 Node* s1, Node* s2):
kvn@2694 954 Node(control, char_array_mem, s1, s2) {
kvn@2694 955 }
kvn@2694 956
duke@435 957 virtual bool depends_only_on_test() const { return false; }
kvn@1421 958 virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
duke@435 959 virtual uint match_edge(uint idx) const;
duke@435 960 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 961 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
kvn@3311 962 virtual const Type *Value(PhaseTransform *phase) const;
duke@435 963 };
duke@435 964
kvn@2694 965 //------------------------------StrComp-------------------------------------
kvn@2694 966 class StrCompNode: public StrIntrinsicNode {
kvn@2694 967 public:
kvn@2694 968 StrCompNode(Node* control, Node* char_array_mem,
kvn@2694 969 Node* s1, Node* c1, Node* s2, Node* c2):
kvn@2694 970 StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
kvn@2694 971 virtual int Opcode() const;
kvn@2694 972 virtual const Type* bottom_type() const { return TypeInt::INT; }
kvn@2694 973 };
kvn@2694 974
cfang@1116 975 //------------------------------StrEquals-------------------------------------
kvn@2694 976 class StrEqualsNode: public StrIntrinsicNode {
cfang@1116 977 public:
kvn@1421 978 StrEqualsNode(Node* control, Node* char_array_mem,
kvn@2694 979 Node* s1, Node* s2, Node* c):
kvn@2694 980 StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
cfang@1116 981 virtual int Opcode() const;
cfang@1116 982 virtual const Type* bottom_type() const { return TypeInt::BOOL; }
cfang@1116 983 };
cfang@1116 984
cfang@1116 985 //------------------------------StrIndexOf-------------------------------------
kvn@2694 986 class StrIndexOfNode: public StrIntrinsicNode {
cfang@1116 987 public:
kvn@1421 988 StrIndexOfNode(Node* control, Node* char_array_mem,
kvn@2694 989 Node* s1, Node* c1, Node* s2, Node* c2):
kvn@2694 990 StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
cfang@1116 991 virtual int Opcode() const;
cfang@1116 992 virtual const Type* bottom_type() const { return TypeInt::INT; }
cfang@1116 993 };
cfang@1116 994
rasbold@604 995 //------------------------------AryEq---------------------------------------
kvn@2694 996 class AryEqNode: public StrIntrinsicNode {
rasbold@604 997 public:
kvn@2694 998 AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
kvn@2694 999 StrIntrinsicNode(control, char_array_mem, s1, s2) {};
rasbold@604 1000 virtual int Opcode() const;
rasbold@604 1001 virtual const Type* bottom_type() const { return TypeInt::BOOL; }
rasbold@604 1002 };
rasbold@604 1003
kvn@4479 1004
kvn@4479 1005 //------------------------------EncodeISOArray--------------------------------
kvn@4479 1006 // encode char[] to byte[] in ISO_8859_1
kvn@4479 1007 class EncodeISOArrayNode: public Node {
kvn@4479 1008 public:
kvn@4479 1009 EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {};
kvn@4479 1010 virtual int Opcode() const;
kvn@4479 1011 virtual bool depends_only_on_test() const { return false; }
kvn@4479 1012 virtual const Type* bottom_type() const { return TypeInt::INT; }
kvn@4479 1013 virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
kvn@4479 1014 virtual uint match_edge(uint idx) const;
kvn@4479 1015 virtual uint ideal_reg() const { return Op_RegI; }
kvn@4479 1016 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
kvn@4479 1017 virtual const Type *Value(PhaseTransform *phase) const;
kvn@4479 1018 };
kvn@4479 1019
duke@435 1020 //------------------------------MemBar-----------------------------------------
duke@435 1021 // There are different flavors of Memory Barriers to match the Java Memory
duke@435 1022 // Model. Monitor-enter and volatile-load act as Aquires: no following ref
duke@435 1023 // can be moved to before them. We insert a MemBar-Acquire after a FastLock or
duke@435 1024 // volatile-load. Monitor-exit and volatile-store act as Release: no
twisti@1040 1025 // preceding ref can be moved to after them. We insert a MemBar-Release
duke@435 1026 // before a FastUnlock or volatile-store. All volatiles need to be
duke@435 1027 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
twisti@1040 1028 // separate it from any following volatile-load.
duke@435 1029 class MemBarNode: public MultiNode {
duke@435 1030 virtual uint hash() const ; // { return NO_HASH; }
duke@435 1031 virtual uint cmp( const Node &n ) const ; // Always fail, except on self
duke@435 1032
duke@435 1033 virtual uint size_of() const { return sizeof(*this); }
duke@435 1034 // Memory type this node is serializing. Usually either rawptr or bottom.
duke@435 1035 const TypePtr* _adr_type;
duke@435 1036
duke@435 1037 public:
duke@435 1038 enum {
duke@435 1039 Precedent = TypeFunc::Parms // optional edge to force precedence
duke@435 1040 };
duke@435 1041 MemBarNode(Compile* C, int alias_idx, Node* precedent);
duke@435 1042 virtual int Opcode() const = 0;
duke@435 1043 virtual const class TypePtr *adr_type() const { return _adr_type; }
duke@435 1044 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 1045 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 1046 virtual uint match_edge(uint idx) const { return 0; }
duke@435 1047 virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
duke@435 1048 virtual Node *match( const ProjNode *proj, const Matcher *m );
duke@435 1049 // Factory method. Builds a wide or narrow membar.
duke@435 1050 // Optional 'precedent' becomes an extra edge if not null.
duke@435 1051 static MemBarNode* make(Compile* C, int opcode,
duke@435 1052 int alias_idx = Compile::AliasIdxBot,
duke@435 1053 Node* precedent = NULL);
duke@435 1054 };
duke@435 1055
duke@435 1056 // "Acquire" - no following ref can move before (but earlier refs can
duke@435 1057 // follow, like an early Load stalled in cache). Requires multi-cpu
roland@3047 1058 // visibility. Inserted after a volatile load.
duke@435 1059 class MemBarAcquireNode: public MemBarNode {
duke@435 1060 public:
duke@435 1061 MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
duke@435 1062 : MemBarNode(C, alias_idx, precedent) {}
duke@435 1063 virtual int Opcode() const;
duke@435 1064 };
duke@435 1065
goetz@6489 1066 // "Acquire" - no following ref can move before (but earlier refs can
goetz@6489 1067 // follow, like an early Load stalled in cache). Requires multi-cpu
goetz@6489 1068 // visibility. Inserted independ of any load, as required
goetz@6489 1069 // for intrinsic sun.misc.Unsafe.loadFence().
goetz@6489 1070 class LoadFenceNode: public MemBarNode {
goetz@6489 1071 public:
goetz@6489 1072 LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
goetz@6489 1073 : MemBarNode(C, alias_idx, precedent) {}
goetz@6489 1074 virtual int Opcode() const;
goetz@6489 1075 };
goetz@6489 1076
duke@435 1077 // "Release" - no earlier ref can move after (but later refs can move
duke@435 1078 // up, like a speculative pipelined cache-hitting Load). Requires
roland@3047 1079 // multi-cpu visibility. Inserted before a volatile store.
duke@435 1080 class MemBarReleaseNode: public MemBarNode {
duke@435 1081 public:
duke@435 1082 MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
duke@435 1083 : MemBarNode(C, alias_idx, precedent) {}
duke@435 1084 virtual int Opcode() const;
duke@435 1085 };
duke@435 1086
goetz@6489 1087 // "Release" - no earlier ref can move after (but later refs can move
goetz@6489 1088 // up, like a speculative pipelined cache-hitting Load). Requires
goetz@6489 1089 // multi-cpu visibility. Inserted independent of any store, as required
goetz@6489 1090 // for intrinsic sun.misc.Unsafe.storeFence().
goetz@6489 1091 class StoreFenceNode: public MemBarNode {
goetz@6489 1092 public:
goetz@6489 1093 StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
goetz@6489 1094 : MemBarNode(C, alias_idx, precedent) {}
goetz@6489 1095 virtual int Opcode() const;
goetz@6489 1096 };
goetz@6489 1097
roland@3047 1098 // "Acquire" - no following ref can move before (but earlier refs can
roland@3047 1099 // follow, like an early Load stalled in cache). Requires multi-cpu
roland@3047 1100 // visibility. Inserted after a FastLock.
roland@3047 1101 class MemBarAcquireLockNode: public MemBarNode {
roland@3047 1102 public:
roland@3047 1103 MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
roland@3047 1104 : MemBarNode(C, alias_idx, precedent) {}
roland@3047 1105 virtual int Opcode() const;
roland@3047 1106 };
roland@3047 1107
roland@3047 1108 // "Release" - no earlier ref can move after (but later refs can move
roland@3047 1109 // up, like a speculative pipelined cache-hitting Load). Requires
roland@3047 1110 // multi-cpu visibility. Inserted before a FastUnLock.
roland@3047 1111 class MemBarReleaseLockNode: public MemBarNode {
roland@3047 1112 public:
roland@3047 1113 MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
roland@3047 1114 : MemBarNode(C, alias_idx, precedent) {}
roland@3047 1115 virtual int Opcode() const;
roland@3047 1116 };
roland@3047 1117
roland@3392 1118 class MemBarStoreStoreNode: public MemBarNode {
roland@3392 1119 public:
roland@3392 1120 MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
roland@3392 1121 : MemBarNode(C, alias_idx, precedent) {
roland@3392 1122 init_class_id(Class_MemBarStoreStore);
roland@3392 1123 }
roland@3392 1124 virtual int Opcode() const;
roland@3392 1125 };
roland@3392 1126
duke@435 1127 // Ordering between a volatile store and a following volatile load.
duke@435 1128 // Requires multi-CPU visibility?
duke@435 1129 class MemBarVolatileNode: public MemBarNode {
duke@435 1130 public:
duke@435 1131 MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
duke@435 1132 : MemBarNode(C, alias_idx, precedent) {}
duke@435 1133 virtual int Opcode() const;
duke@435 1134 };
duke@435 1135
duke@435 1136 // Ordering within the same CPU. Used to order unsafe memory references
duke@435 1137 // inside the compiler when we lack alias info. Not needed "outside" the
duke@435 1138 // compiler because the CPU does all the ordering for us.
duke@435 1139 class MemBarCPUOrderNode: public MemBarNode {
duke@435 1140 public:
duke@435 1141 MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
duke@435 1142 : MemBarNode(C, alias_idx, precedent) {}
duke@435 1143 virtual int Opcode() const;
duke@435 1144 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
duke@435 1145 };
duke@435 1146
duke@435 1147 // Isolation of object setup after an AllocateNode and before next safepoint.
duke@435 1148 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
duke@435 1149 class InitializeNode: public MemBarNode {
duke@435 1150 friend class AllocateNode;
duke@435 1151
kvn@3157 1152 enum {
kvn@3157 1153 Incomplete = 0,
kvn@3157 1154 Complete = 1,
kvn@3157 1155 WithArraycopy = 2
kvn@3157 1156 };
kvn@3157 1157 int _is_complete;
duke@435 1158
roland@3392 1159 bool _does_not_escape;
roland@3392 1160
duke@435 1161 public:
duke@435 1162 enum {
duke@435 1163 Control = TypeFunc::Control,
duke@435 1164 Memory = TypeFunc::Memory, // MergeMem for states affected by this op
duke@435 1165 RawAddress = TypeFunc::Parms+0, // the newly-allocated raw address
duke@435 1166 RawStores = TypeFunc::Parms+1 // zero or more stores (or TOP)
duke@435 1167 };
duke@435 1168
duke@435 1169 InitializeNode(Compile* C, int adr_type, Node* rawoop);
duke@435 1170 virtual int Opcode() const;
duke@435 1171 virtual uint size_of() const { return sizeof(*this); }
duke@435 1172 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
duke@435 1173 virtual const RegMask &in_RegMask(uint) const; // mask for RawAddress
duke@435 1174
duke@435 1175 // Manage incoming memory edges via a MergeMem on in(Memory):
duke@435 1176 Node* memory(uint alias_idx);
duke@435 1177
duke@435 1178 // The raw memory edge coming directly from the Allocation.
duke@435 1179 // The contents of this memory are *always* all-zero-bits.
duke@435 1180 Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
duke@435 1181
duke@435 1182 // Return the corresponding allocation for this initialization (or null if none).
duke@435 1183 // (Note: Both InitializeNode::allocation and AllocateNode::initialization
duke@435 1184 // are defined in graphKit.cpp, which sets up the bidirectional relation.)
duke@435 1185 AllocateNode* allocation();
duke@435 1186
duke@435 1187 // Anything other than zeroing in this init?
duke@435 1188 bool is_non_zero();
duke@435 1189
duke@435 1190 // An InitializeNode must completed before macro expansion is done.
duke@435 1191 // Completion requires that the AllocateNode must be followed by
duke@435 1192 // initialization of the new memory to zero, then to any initializers.
kvn@3157 1193 bool is_complete() { return _is_complete != Incomplete; }
kvn@3157 1194 bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
duke@435 1195
duke@435 1196 // Mark complete. (Must not yet be complete.)
duke@435 1197 void set_complete(PhaseGVN* phase);
kvn@3157 1198 void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
duke@435 1199
roland@3392 1200 bool does_not_escape() { return _does_not_escape; }
roland@3392 1201 void set_does_not_escape() { _does_not_escape = true; }
roland@3392 1202
duke@435 1203 #ifdef ASSERT
duke@435 1204 // ensure all non-degenerate stores are ordered and non-overlapping
duke@435 1205 bool stores_are_sane(PhaseTransform* phase);
duke@435 1206 #endif //ASSERT
duke@435 1207
duke@435 1208 // See if this store can be captured; return offset where it initializes.
duke@435 1209 // Return 0 if the store cannot be moved (any sort of problem).
roland@4657 1210 intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
duke@435 1211
duke@435 1212 // Capture another store; reformat it to write my internal raw memory.
duke@435 1213 // Return the captured copy, else NULL if there is some sort of problem.
roland@4657 1214 Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
duke@435 1215
duke@435 1216 // Find captured store which corresponds to the range [start..start+size).
duke@435 1217 // Return my own memory projection (meaning the initial zero bits)
duke@435 1218 // if there is no such store. Return NULL if there is a problem.
duke@435 1219 Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
duke@435 1220
duke@435 1221 // Called when the associated AllocateNode is expanded into CFG.
duke@435 1222 Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
duke@435 1223 intptr_t header_size, Node* size_in_bytes,
duke@435 1224 PhaseGVN* phase);
duke@435 1225
duke@435 1226 private:
duke@435 1227 void remove_extra_zeroes();
duke@435 1228
duke@435 1229 // Find out where a captured store should be placed (or already is placed).
duke@435 1230 int captured_store_insertion_point(intptr_t start, int size_in_bytes,
duke@435 1231 PhaseTransform* phase);
duke@435 1232
duke@435 1233 static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
duke@435 1234
duke@435 1235 Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
duke@435 1236
kvn@5110 1237 bool detect_init_independence(Node* n, int& count);
duke@435 1238
duke@435 1239 void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
duke@435 1240 PhaseGVN* phase);
duke@435 1241
duke@435 1242 intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
duke@435 1243 };
duke@435 1244
duke@435 1245 //------------------------------MergeMem---------------------------------------
duke@435 1246 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
duke@435 1247 class MergeMemNode: public Node {
duke@435 1248 virtual uint hash() const ; // { return NO_HASH; }
duke@435 1249 virtual uint cmp( const Node &n ) const ; // Always fail, except on self
duke@435 1250 friend class MergeMemStream;
duke@435 1251 MergeMemNode(Node* def); // clients use MergeMemNode::make
duke@435 1252
duke@435 1253 public:
duke@435 1254 // If the input is a whole memory state, clone it with all its slices intact.
duke@435 1255 // Otherwise, make a new memory state with just that base memory input.
duke@435 1256 // In either case, the result is a newly created MergeMem.
duke@435 1257 static MergeMemNode* make(Compile* C, Node* base_memory);
duke@435 1258
duke@435 1259 virtual int Opcode() const;
duke@435 1260 virtual Node *Identity( PhaseTransform *phase );
duke@435 1261 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 1262 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1263 virtual uint match_edge(uint idx) const { return 0; }
duke@435 1264 virtual const RegMask &out_RegMask() const;
duke@435 1265 virtual const Type *bottom_type() const { return Type::MEMORY; }
duke@435 1266 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
duke@435 1267 // sparse accessors
duke@435 1268 // Fetch the previously stored "set_memory_at", or else the base memory.
duke@435 1269 // (Caller should clone it if it is a phi-nest.)
duke@435 1270 Node* memory_at(uint alias_idx) const;
duke@435 1271 // set the memory, regardless of its previous value
duke@435 1272 void set_memory_at(uint alias_idx, Node* n);
duke@435 1273 // the "base" is the memory that provides the non-finite support
duke@435 1274 Node* base_memory() const { return in(Compile::AliasIdxBot); }
duke@435 1275 // warning: setting the base can implicitly set any of the other slices too
duke@435 1276 void set_base_memory(Node* def);
duke@435 1277 // sentinel value which denotes a copy of the base memory:
duke@435 1278 Node* empty_memory() const { return in(Compile::AliasIdxTop); }
duke@435 1279 static Node* make_empty_memory(); // where the sentinel comes from
duke@435 1280 bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
duke@435 1281 // hook for the iterator, to perform any necessary setup
duke@435 1282 void iteration_setup(const MergeMemNode* other = NULL);
duke@435 1283 // push sentinels until I am at least as long as the other (semantic no-op)
duke@435 1284 void grow_to_match(const MergeMemNode* other);
duke@435 1285 bool verify_sparse() const PRODUCT_RETURN0;
duke@435 1286 #ifndef PRODUCT
duke@435 1287 virtual void dump_spec(outputStream *st) const;
duke@435 1288 #endif
duke@435 1289 };
duke@435 1290
duke@435 1291 class MergeMemStream : public StackObj {
duke@435 1292 private:
duke@435 1293 MergeMemNode* _mm;
duke@435 1294 const MergeMemNode* _mm2; // optional second guy, contributes non-empty iterations
duke@435 1295 Node* _mm_base; // loop-invariant base memory of _mm
duke@435 1296 int _idx;
duke@435 1297 int _cnt;
duke@435 1298 Node* _mem;
duke@435 1299 Node* _mem2;
duke@435 1300 int _cnt2;
duke@435 1301
duke@435 1302 void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
duke@435 1303 // subsume_node will break sparseness at times, whenever a memory slice
duke@435 1304 // folds down to a copy of the base ("fat") memory. In such a case,
duke@435 1305 // the raw edge will update to base, although it should be top.
duke@435 1306 // This iterator will recognize either top or base_memory as an
duke@435 1307 // "empty" slice. See is_empty, is_empty2, and next below.
duke@435 1308 //
duke@435 1309 // The sparseness property is repaired in MergeMemNode::Ideal.
duke@435 1310 // As long as access to a MergeMem goes through this iterator
duke@435 1311 // or the memory_at accessor, flaws in the sparseness will
duke@435 1312 // never be observed.
duke@435 1313 //
duke@435 1314 // Also, iteration_setup repairs sparseness.
duke@435 1315 assert(mm->verify_sparse(), "please, no dups of base");
duke@435 1316 assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
duke@435 1317
duke@435 1318 _mm = mm;
duke@435 1319 _mm_base = mm->base_memory();
duke@435 1320 _mm2 = mm2;
duke@435 1321 _cnt = mm->req();
duke@435 1322 _idx = Compile::AliasIdxBot-1; // start at the base memory
duke@435 1323 _mem = NULL;
duke@435 1324 _mem2 = NULL;
duke@435 1325 }
duke@435 1326
duke@435 1327 #ifdef ASSERT
duke@435 1328 Node* check_memory() const {
duke@435 1329 if (at_base_memory())
duke@435 1330 return _mm->base_memory();
duke@435 1331 else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
duke@435 1332 return _mm->memory_at(_idx);
duke@435 1333 else
duke@435 1334 return _mm_base;
duke@435 1335 }
duke@435 1336 Node* check_memory2() const {
duke@435 1337 return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
duke@435 1338 }
duke@435 1339 #endif
duke@435 1340
duke@435 1341 static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
duke@435 1342 void assert_synch() const {
duke@435 1343 assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
duke@435 1344 "no side-effects except through the stream");
duke@435 1345 }
duke@435 1346
duke@435 1347 public:
duke@435 1348
duke@435 1349 // expected usages:
duke@435 1350 // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
duke@435 1351 // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
duke@435 1352
duke@435 1353 // iterate over one merge
duke@435 1354 MergeMemStream(MergeMemNode* mm) {
duke@435 1355 mm->iteration_setup();
duke@435 1356 init(mm);
duke@435 1357 debug_only(_cnt2 = 999);
duke@435 1358 }
duke@435 1359 // iterate in parallel over two merges
duke@435 1360 // only iterates through non-empty elements of mm2
duke@435 1361 MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
duke@435 1362 assert(mm2, "second argument must be a MergeMem also");
duke@435 1363 ((MergeMemNode*)mm2)->iteration_setup(); // update hidden state
duke@435 1364 mm->iteration_setup(mm2);
duke@435 1365 init(mm, mm2);
duke@435 1366 _cnt2 = mm2->req();
duke@435 1367 }
duke@435 1368 #ifdef ASSERT
duke@435 1369 ~MergeMemStream() {
duke@435 1370 assert_synch();
duke@435 1371 }
duke@435 1372 #endif
duke@435 1373
duke@435 1374 MergeMemNode* all_memory() const {
duke@435 1375 return _mm;
duke@435 1376 }
duke@435 1377 Node* base_memory() const {
duke@435 1378 assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
duke@435 1379 return _mm_base;
duke@435 1380 }
duke@435 1381 const MergeMemNode* all_memory2() const {
duke@435 1382 assert(_mm2 != NULL, "");
duke@435 1383 return _mm2;
duke@435 1384 }
duke@435 1385 bool at_base_memory() const {
duke@435 1386 return _idx == Compile::AliasIdxBot;
duke@435 1387 }
duke@435 1388 int alias_idx() const {
duke@435 1389 assert(_mem, "must call next 1st");
duke@435 1390 return _idx;
duke@435 1391 }
duke@435 1392
duke@435 1393 const TypePtr* adr_type() const {
duke@435 1394 return Compile::current()->get_adr_type(alias_idx());
duke@435 1395 }
duke@435 1396
duke@435 1397 const TypePtr* adr_type(Compile* C) const {
duke@435 1398 return C->get_adr_type(alias_idx());
duke@435 1399 }
duke@435 1400 bool is_empty() const {
duke@435 1401 assert(_mem, "must call next 1st");
duke@435 1402 assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
duke@435 1403 return _mem->is_top();
duke@435 1404 }
duke@435 1405 bool is_empty2() const {
duke@435 1406 assert(_mem2, "must call next 1st");
duke@435 1407 assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
duke@435 1408 return _mem2->is_top();
duke@435 1409 }
duke@435 1410 Node* memory() const {
duke@435 1411 assert(!is_empty(), "must not be empty");
duke@435 1412 assert_synch();
duke@435 1413 return _mem;
duke@435 1414 }
duke@435 1415 // get the current memory, regardless of empty or non-empty status
duke@435 1416 Node* force_memory() const {
duke@435 1417 assert(!is_empty() || !at_base_memory(), "");
duke@435 1418 // Use _mm_base to defend against updates to _mem->base_memory().
duke@435 1419 Node *mem = _mem->is_top() ? _mm_base : _mem;
duke@435 1420 assert(mem == check_memory(), "");
duke@435 1421 return mem;
duke@435 1422 }
duke@435 1423 Node* memory2() const {
duke@435 1424 assert(_mem2 == check_memory2(), "");
duke@435 1425 return _mem2;
duke@435 1426 }
duke@435 1427 void set_memory(Node* mem) {
duke@435 1428 if (at_base_memory()) {
duke@435 1429 // Note that this does not change the invariant _mm_base.
duke@435 1430 _mm->set_base_memory(mem);
duke@435 1431 } else {
duke@435 1432 _mm->set_memory_at(_idx, mem);
duke@435 1433 }
duke@435 1434 _mem = mem;
duke@435 1435 assert_synch();
duke@435 1436 }
duke@435 1437
duke@435 1438 // Recover from a side effect to the MergeMemNode.
duke@435 1439 void set_memory() {
duke@435 1440 _mem = _mm->in(_idx);
duke@435 1441 }
duke@435 1442
duke@435 1443 bool next() { return next(false); }
duke@435 1444 bool next2() { return next(true); }
duke@435 1445
duke@435 1446 bool next_non_empty() { return next_non_empty(false); }
duke@435 1447 bool next_non_empty2() { return next_non_empty(true); }
duke@435 1448 // next_non_empty2 can yield states where is_empty() is true
duke@435 1449
duke@435 1450 private:
duke@435 1451 // find the next item, which might be empty
duke@435 1452 bool next(bool have_mm2) {
duke@435 1453 assert((_mm2 != NULL) == have_mm2, "use other next");
duke@435 1454 assert_synch();
duke@435 1455 if (++_idx < _cnt) {
duke@435 1456 // Note: This iterator allows _mm to be non-sparse.
duke@435 1457 // It behaves the same whether _mem is top or base_memory.
duke@435 1458 _mem = _mm->in(_idx);
duke@435 1459 if (have_mm2)
duke@435 1460 _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
duke@435 1461 return true;
duke@435 1462 }
duke@435 1463 return false;
duke@435 1464 }
duke@435 1465
duke@435 1466 // find the next non-empty item
duke@435 1467 bool next_non_empty(bool have_mm2) {
duke@435 1468 while (next(have_mm2)) {
duke@435 1469 if (!is_empty()) {
duke@435 1470 // make sure _mem2 is filled in sensibly
duke@435 1471 if (have_mm2 && _mem2->is_top()) _mem2 = _mm2->base_memory();
duke@435 1472 return true;
duke@435 1473 } else if (have_mm2 && !is_empty2()) {
duke@435 1474 return true; // is_empty() == true
duke@435 1475 }
duke@435 1476 }
duke@435 1477 return false;
duke@435 1478 }
duke@435 1479 };
duke@435 1480
duke@435 1481 //------------------------------Prefetch---------------------------------------
duke@435 1482
duke@435 1483 // Non-faulting prefetch load. Prefetch for many reads.
duke@435 1484 class PrefetchReadNode : public Node {
duke@435 1485 public:
duke@435 1486 PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
duke@435 1487 virtual int Opcode() const;
duke@435 1488 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1489 virtual uint match_edge(uint idx) const { return idx==2; }
duke@435 1490 virtual const Type *bottom_type() const { return Type::ABIO; }
duke@435 1491 };
duke@435 1492
duke@435 1493 // Non-faulting prefetch load. Prefetch for many reads & many writes.
duke@435 1494 class PrefetchWriteNode : public Node {
duke@435 1495 public:
duke@435 1496 PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
duke@435 1497 virtual int Opcode() const;
duke@435 1498 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1499 virtual uint match_edge(uint idx) const { return idx==2; }
kvn@3052 1500 virtual const Type *bottom_type() const { return Type::ABIO; }
kvn@3052 1501 };
kvn@3052 1502
kvn@3052 1503 // Allocation prefetch which may fault, TLAB size have to be adjusted.
kvn@3052 1504 class PrefetchAllocationNode : public Node {
kvn@3052 1505 public:
kvn@3052 1506 PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
kvn@3052 1507 virtual int Opcode() const;
kvn@3052 1508 virtual uint ideal_reg() const { return NotAMachineReg; }
kvn@3052 1509 virtual uint match_edge(uint idx) const { return idx==2; }
kvn@1802 1510 virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
duke@435 1511 };
stefank@2314 1512
stefank@2314 1513 #endif // SHARE_VM_OPTO_MEMNODE_HPP

mercurial