src/share/vm/opto/memnode.hpp

Thu, 28 Jan 2010 16:28:28 -0800

author
never
date
Thu, 28 Jan 2010 16:28:28 -0800
changeset 1633
8d9bfe6a446b
parent 1535
f96a1a986f7b
child 1802
9e321dcfa5b7
permissions
-rw-r--r--

6920346: G1: "must avoid base_memory and AliasIdxTop"
Reviewed-by: kvn

duke@435 1 /*
twisti@1059 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // Portions of code courtesy of Clifford Click
duke@435 26
duke@435 27 class MultiNode;
duke@435 28 class PhaseCCP;
duke@435 29 class PhaseTransform;
duke@435 30
duke@435 31 //------------------------------MemNode----------------------------------------
duke@435 32 // Load or Store, possibly throwing a NULL pointer exception
duke@435 33 class MemNode : public Node {
duke@435 34 protected:
duke@435 35 #ifdef ASSERT
duke@435 36 const TypePtr* _adr_type; // What kind of memory is being addressed?
duke@435 37 #endif
duke@435 38 virtual uint size_of() const; // Size is bigger (ASSERT only)
duke@435 39 public:
duke@435 40 enum { Control, // When is it safe to do this load?
duke@435 41 Memory, // Chunk of memory is being loaded from
duke@435 42 Address, // Actually address, derived from base
duke@435 43 ValueIn, // Value to store
duke@435 44 OopStore // Preceeding oop store, only in StoreCM
duke@435 45 };
duke@435 46 protected:
duke@435 47 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
duke@435 48 : Node(c0,c1,c2 ) {
duke@435 49 init_class_id(Class_Mem);
duke@435 50 debug_only(_adr_type=at; adr_type();)
duke@435 51 }
duke@435 52 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
duke@435 53 : Node(c0,c1,c2,c3) {
duke@435 54 init_class_id(Class_Mem);
duke@435 55 debug_only(_adr_type=at; adr_type();)
duke@435 56 }
duke@435 57 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
duke@435 58 : Node(c0,c1,c2,c3,c4) {
duke@435 59 init_class_id(Class_Mem);
duke@435 60 debug_only(_adr_type=at; adr_type();)
duke@435 61 }
duke@435 62
kvn@468 63 public:
duke@435 64 // Helpers for the optimizer. Documented in memnode.cpp.
duke@435 65 static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
duke@435 66 Node* p2, AllocateNode* a2,
duke@435 67 PhaseTransform* phase);
duke@435 68 static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
duke@435 69
kvn@509 70 static Node *optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
kvn@509 71 static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
duke@435 72 // This one should probably be a phase-specific function:
kvn@520 73 static bool all_controls_dominate(Node* dom, Node* sub);
duke@435 74
kvn@598 75 // Find any cast-away of null-ness and keep its control.
kvn@598 76 static Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
duke@435 77 virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
duke@435 78
duke@435 79 virtual const class TypePtr *adr_type() const; // returns bottom_type of address
duke@435 80
duke@435 81 // Shared code for Ideal methods:
duke@435 82 Node *Ideal_common(PhaseGVN *phase, bool can_reshape); // Return -1 for short-circuit NULL.
duke@435 83
duke@435 84 // Helper function for adr_type() implementations.
duke@435 85 static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
duke@435 86
duke@435 87 // Raw access function, to allow copying of adr_type efficiently in
duke@435 88 // product builds and retain the debug info for debug builds.
duke@435 89 const TypePtr *raw_adr_type() const {
duke@435 90 #ifdef ASSERT
duke@435 91 return _adr_type;
duke@435 92 #else
duke@435 93 return 0;
duke@435 94 #endif
duke@435 95 }
duke@435 96
duke@435 97 // Map a load or store opcode to its corresponding store opcode.
duke@435 98 // (Return -1 if unknown.)
duke@435 99 virtual int store_Opcode() const { return -1; }
duke@435 100
duke@435 101 // What is the type of the value in memory? (T_VOID mean "unspecified".)
duke@435 102 virtual BasicType memory_type() const = 0;
kvn@464 103 virtual int memory_size() const {
kvn@464 104 #ifdef ASSERT
kvn@464 105 return type2aelembytes(memory_type(), true);
kvn@464 106 #else
kvn@464 107 return type2aelembytes(memory_type());
kvn@464 108 #endif
kvn@464 109 }
duke@435 110
duke@435 111 // Search through memory states which precede this node (load or store).
duke@435 112 // Look for an exact match for the address, with no intervening
duke@435 113 // aliased stores.
duke@435 114 Node* find_previous_store(PhaseTransform* phase);
duke@435 115
duke@435 116 // Can this node (load or store) accurately see a stored value in
duke@435 117 // the given memory state? (The state may or may not be in(Memory).)
duke@435 118 Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
duke@435 119
duke@435 120 #ifndef PRODUCT
duke@435 121 static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
duke@435 122 virtual void dump_spec(outputStream *st) const;
duke@435 123 #endif
duke@435 124 };
duke@435 125
duke@435 126 //------------------------------LoadNode---------------------------------------
duke@435 127 // Load value; requires Memory and Address
duke@435 128 class LoadNode : public MemNode {
duke@435 129 protected:
duke@435 130 virtual uint cmp( const Node &n ) const;
duke@435 131 virtual uint size_of() const; // Size is bigger
duke@435 132 const Type* const _type; // What kind of value is loaded?
duke@435 133 public:
duke@435 134
duke@435 135 LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
duke@435 136 : MemNode(c,mem,adr,at), _type(rt) {
duke@435 137 init_class_id(Class_Load);
duke@435 138 }
duke@435 139
duke@435 140 // Polymorphic factory method:
coleenp@548 141 static Node* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
coleenp@548 142 const TypePtr* at, const Type *rt, BasicType bt );
duke@435 143
duke@435 144 virtual uint hash() const; // Check the type
duke@435 145
duke@435 146 // Handle algebraic identities here. If we have an identity, return the Node
duke@435 147 // we are equivalent to. We look for Load of a Store.
duke@435 148 virtual Node *Identity( PhaseTransform *phase );
duke@435 149
duke@435 150 // If the load is from Field memory and the pointer is non-null, we can
duke@435 151 // zero out the control input.
duke@435 152 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 153
kvn@598 154 // Split instance field load through Phi.
kvn@598 155 Node* split_through_phi(PhaseGVN *phase);
kvn@598 156
never@452 157 // Recover original value from boxed values
never@452 158 Node *eliminate_autobox(PhaseGVN *phase);
never@452 159
duke@435 160 // Compute a new Type for this node. Basically we just do the pre-check,
duke@435 161 // then call the virtual add() to set the type.
duke@435 162 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 163
kvn@599 164 // Common methods for LoadKlass and LoadNKlass nodes.
kvn@599 165 const Type *klass_value_common( PhaseTransform *phase ) const;
kvn@599 166 Node *klass_identity_common( PhaseTransform *phase );
kvn@599 167
duke@435 168 virtual uint ideal_reg() const;
duke@435 169 virtual const Type *bottom_type() const;
duke@435 170 // Following method is copied from TypeNode:
duke@435 171 void set_type(const Type* t) {
duke@435 172 assert(t != NULL, "sanity");
duke@435 173 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
duke@435 174 *(const Type**)&_type = t; // cast away const-ness
duke@435 175 // If this node is in the hash table, make sure it doesn't need a rehash.
duke@435 176 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
duke@435 177 }
duke@435 178 const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
duke@435 179
duke@435 180 // Do not match memory edge
duke@435 181 virtual uint match_edge(uint idx) const;
duke@435 182
duke@435 183 // Map a load opcode to its corresponding store opcode.
duke@435 184 virtual int store_Opcode() const = 0;
duke@435 185
kvn@499 186 // Check if the load's memory input is a Phi node with the same control.
kvn@499 187 bool is_instance_field_load_with_local_phi(Node* ctrl);
kvn@499 188
duke@435 189 #ifndef PRODUCT
duke@435 190 virtual void dump_spec(outputStream *st) const;
duke@435 191 #endif
duke@435 192 protected:
duke@435 193 const Type* load_array_final_field(const TypeKlassPtr *tkls,
duke@435 194 ciKlass* klass) const;
duke@435 195 };
duke@435 196
duke@435 197 //------------------------------LoadBNode--------------------------------------
duke@435 198 // Load a byte (8bits signed) from memory
duke@435 199 class LoadBNode : public LoadNode {
duke@435 200 public:
duke@435 201 LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
duke@435 202 : LoadNode(c,mem,adr,at,ti) {}
duke@435 203 virtual int Opcode() const;
duke@435 204 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 205 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 206 virtual int store_Opcode() const { return Op_StoreB; }
duke@435 207 virtual BasicType memory_type() const { return T_BYTE; }
duke@435 208 };
duke@435 209
twisti@1059 210 //------------------------------LoadUBNode-------------------------------------
twisti@1059 211 // Load a unsigned byte (8bits unsigned) from memory
twisti@1059 212 class LoadUBNode : public LoadNode {
twisti@1059 213 public:
twisti@1059 214 LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti = TypeInt::UBYTE )
twisti@1059 215 : LoadNode(c, mem, adr, at, ti) {}
twisti@1059 216 virtual int Opcode() const;
twisti@1059 217 virtual uint ideal_reg() const { return Op_RegI; }
twisti@1059 218 virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
twisti@1059 219 virtual int store_Opcode() const { return Op_StoreB; }
twisti@1059 220 virtual BasicType memory_type() const { return T_BYTE; }
twisti@1059 221 };
twisti@1059 222
twisti@993 223 //------------------------------LoadUSNode-------------------------------------
twisti@993 224 // Load an unsigned short/char (16bits unsigned) from memory
twisti@993 225 class LoadUSNode : public LoadNode {
duke@435 226 public:
twisti@993 227 LoadUSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
duke@435 228 : LoadNode(c,mem,adr,at,ti) {}
duke@435 229 virtual int Opcode() const;
duke@435 230 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 231 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 232 virtual int store_Opcode() const { return Op_StoreC; }
duke@435 233 virtual BasicType memory_type() const { return T_CHAR; }
duke@435 234 };
duke@435 235
duke@435 236 //------------------------------LoadINode--------------------------------------
duke@435 237 // Load an integer from memory
duke@435 238 class LoadINode : public LoadNode {
duke@435 239 public:
duke@435 240 LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
duke@435 241 : LoadNode(c,mem,adr,at,ti) {}
duke@435 242 virtual int Opcode() const;
duke@435 243 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 244 virtual int store_Opcode() const { return Op_StoreI; }
duke@435 245 virtual BasicType memory_type() const { return T_INT; }
duke@435 246 };
duke@435 247
twisti@1059 248 //------------------------------LoadUI2LNode-----------------------------------
twisti@1059 249 // Load an unsigned integer into long from memory
twisti@1059 250 class LoadUI2LNode : public LoadNode {
twisti@1059 251 public:
twisti@1059 252 LoadUI2LNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeLong* t = TypeLong::UINT)
twisti@1059 253 : LoadNode(c, mem, adr, at, t) {}
twisti@1059 254 virtual int Opcode() const;
twisti@1059 255 virtual uint ideal_reg() const { return Op_RegL; }
twisti@1059 256 virtual int store_Opcode() const { return Op_StoreL; }
twisti@1059 257 virtual BasicType memory_type() const { return T_LONG; }
twisti@1059 258 };
twisti@1059 259
duke@435 260 //------------------------------LoadRangeNode----------------------------------
duke@435 261 // Load an array length from the array
duke@435 262 class LoadRangeNode : public LoadINode {
duke@435 263 public:
duke@435 264 LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
duke@435 265 : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
duke@435 266 virtual int Opcode() const;
duke@435 267 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 268 virtual Node *Identity( PhaseTransform *phase );
rasbold@801 269 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 270 };
duke@435 271
duke@435 272 //------------------------------LoadLNode--------------------------------------
duke@435 273 // Load a long from memory
duke@435 274 class LoadLNode : public LoadNode {
duke@435 275 virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
duke@435 276 virtual uint cmp( const Node &n ) const {
duke@435 277 return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
duke@435 278 && LoadNode::cmp(n);
duke@435 279 }
duke@435 280 virtual uint size_of() const { return sizeof(*this); }
duke@435 281 const bool _require_atomic_access; // is piecewise load forbidden?
duke@435 282
duke@435 283 public:
duke@435 284 LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
duke@435 285 const TypeLong *tl = TypeLong::LONG,
duke@435 286 bool require_atomic_access = false )
duke@435 287 : LoadNode(c,mem,adr,at,tl)
duke@435 288 , _require_atomic_access(require_atomic_access)
duke@435 289 {}
duke@435 290 virtual int Opcode() const;
duke@435 291 virtual uint ideal_reg() const { return Op_RegL; }
duke@435 292 virtual int store_Opcode() const { return Op_StoreL; }
duke@435 293 virtual BasicType memory_type() const { return T_LONG; }
duke@435 294 bool require_atomic_access() { return _require_atomic_access; }
duke@435 295 static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
duke@435 296 #ifndef PRODUCT
duke@435 297 virtual void dump_spec(outputStream *st) const {
duke@435 298 LoadNode::dump_spec(st);
duke@435 299 if (_require_atomic_access) st->print(" Atomic!");
duke@435 300 }
duke@435 301 #endif
duke@435 302 };
duke@435 303
duke@435 304 //------------------------------LoadL_unalignedNode----------------------------
duke@435 305 // Load a long from unaligned memory
duke@435 306 class LoadL_unalignedNode : public LoadLNode {
duke@435 307 public:
duke@435 308 LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
duke@435 309 : LoadLNode(c,mem,adr,at) {}
duke@435 310 virtual int Opcode() const;
duke@435 311 };
duke@435 312
duke@435 313 //------------------------------LoadFNode--------------------------------------
duke@435 314 // Load a float (64 bits) from memory
duke@435 315 class LoadFNode : public LoadNode {
duke@435 316 public:
duke@435 317 LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
duke@435 318 : LoadNode(c,mem,adr,at,t) {}
duke@435 319 virtual int Opcode() const;
duke@435 320 virtual uint ideal_reg() const { return Op_RegF; }
duke@435 321 virtual int store_Opcode() const { return Op_StoreF; }
duke@435 322 virtual BasicType memory_type() const { return T_FLOAT; }
duke@435 323 };
duke@435 324
duke@435 325 //------------------------------LoadDNode--------------------------------------
duke@435 326 // Load a double (64 bits) from memory
duke@435 327 class LoadDNode : public LoadNode {
duke@435 328 public:
duke@435 329 LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
duke@435 330 : LoadNode(c,mem,adr,at,t) {}
duke@435 331 virtual int Opcode() const;
duke@435 332 virtual uint ideal_reg() const { return Op_RegD; }
duke@435 333 virtual int store_Opcode() const { return Op_StoreD; }
duke@435 334 virtual BasicType memory_type() const { return T_DOUBLE; }
duke@435 335 };
duke@435 336
duke@435 337 //------------------------------LoadD_unalignedNode----------------------------
duke@435 338 // Load a double from unaligned memory
duke@435 339 class LoadD_unalignedNode : public LoadDNode {
duke@435 340 public:
duke@435 341 LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
duke@435 342 : LoadDNode(c,mem,adr,at) {}
duke@435 343 virtual int Opcode() const;
duke@435 344 };
duke@435 345
duke@435 346 //------------------------------LoadPNode--------------------------------------
duke@435 347 // Load a pointer from memory (either object or array)
duke@435 348 class LoadPNode : public LoadNode {
duke@435 349 public:
duke@435 350 LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
duke@435 351 : LoadNode(c,mem,adr,at,t) {}
duke@435 352 virtual int Opcode() const;
duke@435 353 virtual uint ideal_reg() const { return Op_RegP; }
duke@435 354 virtual int store_Opcode() const { return Op_StoreP; }
duke@435 355 virtual BasicType memory_type() const { return T_ADDRESS; }
duke@435 356 // depends_only_on_test is almost always true, and needs to be almost always
duke@435 357 // true to enable key hoisting & commoning optimizations. However, for the
duke@435 358 // special case of RawPtr loads from TLS top & end, the control edge carries
duke@435 359 // the dependence preventing hoisting past a Safepoint instead of the memory
duke@435 360 // edge. (An unfortunate consequence of having Safepoints not set Raw
duke@435 361 // Memory; itself an unfortunate consequence of having Nodes which produce
duke@435 362 // results (new raw memory state) inside of loops preventing all manner of
duke@435 363 // other optimizations). Basically, it's ugly but so is the alternative.
duke@435 364 // See comment in macro.cpp, around line 125 expand_allocate_common().
duke@435 365 virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
duke@435 366 };
duke@435 367
coleenp@548 368
coleenp@548 369 //------------------------------LoadNNode--------------------------------------
coleenp@548 370 // Load a narrow oop from memory (either object or array)
coleenp@548 371 class LoadNNode : public LoadNode {
coleenp@548 372 public:
coleenp@548 373 LoadNNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t )
coleenp@548 374 : LoadNode(c,mem,adr,at,t) {}
coleenp@548 375 virtual int Opcode() const;
coleenp@548 376 virtual uint ideal_reg() const { return Op_RegN; }
coleenp@548 377 virtual int store_Opcode() const { return Op_StoreN; }
coleenp@548 378 virtual BasicType memory_type() const { return T_NARROWOOP; }
coleenp@548 379 // depends_only_on_test is almost always true, and needs to be almost always
coleenp@548 380 // true to enable key hoisting & commoning optimizations. However, for the
coleenp@548 381 // special case of RawPtr loads from TLS top & end, the control edge carries
coleenp@548 382 // the dependence preventing hoisting past a Safepoint instead of the memory
coleenp@548 383 // edge. (An unfortunate consequence of having Safepoints not set Raw
coleenp@548 384 // Memory; itself an unfortunate consequence of having Nodes which produce
coleenp@548 385 // results (new raw memory state) inside of loops preventing all manner of
coleenp@548 386 // other optimizations). Basically, it's ugly but so is the alternative.
coleenp@548 387 // See comment in macro.cpp, around line 125 expand_allocate_common().
coleenp@548 388 virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
coleenp@548 389 };
coleenp@548 390
duke@435 391 //------------------------------LoadKlassNode----------------------------------
duke@435 392 // Load a Klass from an object
duke@435 393 class LoadKlassNode : public LoadPNode {
duke@435 394 public:
kvn@599 395 LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk )
duke@435 396 : LoadPNode(c,mem,adr,at,tk) {}
duke@435 397 virtual int Opcode() const;
duke@435 398 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 399 virtual Node *Identity( PhaseTransform *phase );
duke@435 400 virtual bool depends_only_on_test() const { return true; }
kvn@599 401
kvn@599 402 // Polymorphic factory method:
kvn@599 403 static Node* make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at,
kvn@599 404 const TypeKlassPtr *tk = TypeKlassPtr::OBJECT );
duke@435 405 };
duke@435 406
kvn@599 407 //------------------------------LoadNKlassNode---------------------------------
kvn@599 408 // Load a narrow Klass from an object.
kvn@599 409 class LoadNKlassNode : public LoadNNode {
kvn@599 410 public:
kvn@599 411 LoadNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowOop *tk )
kvn@599 412 : LoadNNode(c,mem,adr,at,tk) {}
kvn@599 413 virtual int Opcode() const;
kvn@599 414 virtual uint ideal_reg() const { return Op_RegN; }
kvn@599 415 virtual int store_Opcode() const { return Op_StoreN; }
kvn@599 416 virtual BasicType memory_type() const { return T_NARROWOOP; }
kvn@599 417
kvn@599 418 virtual const Type *Value( PhaseTransform *phase ) const;
kvn@599 419 virtual Node *Identity( PhaseTransform *phase );
kvn@599 420 virtual bool depends_only_on_test() const { return true; }
kvn@599 421 };
kvn@599 422
kvn@599 423
duke@435 424 //------------------------------LoadSNode--------------------------------------
duke@435 425 // Load a short (16bits signed) from memory
duke@435 426 class LoadSNode : public LoadNode {
duke@435 427 public:
duke@435 428 LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
duke@435 429 : LoadNode(c,mem,adr,at,ti) {}
duke@435 430 virtual int Opcode() const;
duke@435 431 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 432 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 433 virtual int store_Opcode() const { return Op_StoreC; }
duke@435 434 virtual BasicType memory_type() const { return T_SHORT; }
duke@435 435 };
duke@435 436
duke@435 437 //------------------------------StoreNode--------------------------------------
duke@435 438 // Store value; requires Store, Address and Value
duke@435 439 class StoreNode : public MemNode {
duke@435 440 protected:
duke@435 441 virtual uint cmp( const Node &n ) const;
duke@435 442 virtual bool depends_only_on_test() const { return false; }
duke@435 443
duke@435 444 Node *Ideal_masked_input (PhaseGVN *phase, uint mask);
duke@435 445 Node *Ideal_sign_extended_input(PhaseGVN *phase, int num_bits);
duke@435 446
duke@435 447 public:
duke@435 448 StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
duke@435 449 : MemNode(c,mem,adr,at,val) {
duke@435 450 init_class_id(Class_Store);
duke@435 451 }
duke@435 452 StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
duke@435 453 : MemNode(c,mem,adr,at,val,oop_store) {
duke@435 454 init_class_id(Class_Store);
duke@435 455 }
duke@435 456
duke@435 457 // Polymorphic factory method:
coleenp@548 458 static StoreNode* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
coleenp@548 459 const TypePtr* at, Node *val, BasicType bt );
duke@435 460
duke@435 461 virtual uint hash() const; // Check the type
duke@435 462
duke@435 463 // If the store is to Field memory and the pointer is non-null, we can
duke@435 464 // zero out the control input.
duke@435 465 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 466
duke@435 467 // Compute a new Type for this node. Basically we just do the pre-check,
duke@435 468 // then call the virtual add() to set the type.
duke@435 469 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 470
duke@435 471 // Check for identity function on memory (Load then Store at same address)
duke@435 472 virtual Node *Identity( PhaseTransform *phase );
duke@435 473
duke@435 474 // Do not match memory edge
duke@435 475 virtual uint match_edge(uint idx) const;
duke@435 476
duke@435 477 virtual const Type *bottom_type() const; // returns Type::MEMORY
duke@435 478
duke@435 479 // Map a store opcode to its corresponding own opcode, trivially.
duke@435 480 virtual int store_Opcode() const { return Opcode(); }
duke@435 481
duke@435 482 // have all possible loads of the value stored been optimized away?
duke@435 483 bool value_never_loaded(PhaseTransform *phase) const;
duke@435 484 };
duke@435 485
duke@435 486 //------------------------------StoreBNode-------------------------------------
duke@435 487 // Store byte to memory
duke@435 488 class StoreBNode : public StoreNode {
duke@435 489 public:
duke@435 490 StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 491 virtual int Opcode() const;
duke@435 492 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 493 virtual BasicType memory_type() const { return T_BYTE; }
duke@435 494 };
duke@435 495
duke@435 496 //------------------------------StoreCNode-------------------------------------
duke@435 497 // Store char/short to memory
duke@435 498 class StoreCNode : public StoreNode {
duke@435 499 public:
duke@435 500 StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 501 virtual int Opcode() const;
duke@435 502 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 503 virtual BasicType memory_type() const { return T_CHAR; }
duke@435 504 };
duke@435 505
duke@435 506 //------------------------------StoreINode-------------------------------------
duke@435 507 // Store int to memory
duke@435 508 class StoreINode : public StoreNode {
duke@435 509 public:
duke@435 510 StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 511 virtual int Opcode() const;
duke@435 512 virtual BasicType memory_type() const { return T_INT; }
duke@435 513 };
duke@435 514
duke@435 515 //------------------------------StoreLNode-------------------------------------
duke@435 516 // Store long to memory
duke@435 517 class StoreLNode : public StoreNode {
duke@435 518 virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
duke@435 519 virtual uint cmp( const Node &n ) const {
duke@435 520 return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
duke@435 521 && StoreNode::cmp(n);
duke@435 522 }
duke@435 523 virtual uint size_of() const { return sizeof(*this); }
duke@435 524 const bool _require_atomic_access; // is piecewise store forbidden?
duke@435 525
duke@435 526 public:
duke@435 527 StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
duke@435 528 bool require_atomic_access = false )
duke@435 529 : StoreNode(c,mem,adr,at,val)
duke@435 530 , _require_atomic_access(require_atomic_access)
duke@435 531 {}
duke@435 532 virtual int Opcode() const;
duke@435 533 virtual BasicType memory_type() const { return T_LONG; }
duke@435 534 bool require_atomic_access() { return _require_atomic_access; }
duke@435 535 static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
duke@435 536 #ifndef PRODUCT
duke@435 537 virtual void dump_spec(outputStream *st) const {
duke@435 538 StoreNode::dump_spec(st);
duke@435 539 if (_require_atomic_access) st->print(" Atomic!");
duke@435 540 }
duke@435 541 #endif
duke@435 542 };
duke@435 543
duke@435 544 //------------------------------StoreFNode-------------------------------------
duke@435 545 // Store float to memory
duke@435 546 class StoreFNode : public StoreNode {
duke@435 547 public:
duke@435 548 StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 549 virtual int Opcode() const;
duke@435 550 virtual BasicType memory_type() const { return T_FLOAT; }
duke@435 551 };
duke@435 552
duke@435 553 //------------------------------StoreDNode-------------------------------------
duke@435 554 // Store double to memory
duke@435 555 class StoreDNode : public StoreNode {
duke@435 556 public:
duke@435 557 StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 558 virtual int Opcode() const;
duke@435 559 virtual BasicType memory_type() const { return T_DOUBLE; }
duke@435 560 };
duke@435 561
duke@435 562 //------------------------------StorePNode-------------------------------------
duke@435 563 // Store pointer to memory
duke@435 564 class StorePNode : public StoreNode {
duke@435 565 public:
duke@435 566 StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
duke@435 567 virtual int Opcode() const;
duke@435 568 virtual BasicType memory_type() const { return T_ADDRESS; }
duke@435 569 };
duke@435 570
coleenp@548 571 //------------------------------StoreNNode-------------------------------------
coleenp@548 572 // Store narrow oop to memory
coleenp@548 573 class StoreNNode : public StoreNode {
coleenp@548 574 public:
coleenp@548 575 StoreNNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
coleenp@548 576 virtual int Opcode() const;
coleenp@548 577 virtual BasicType memory_type() const { return T_NARROWOOP; }
coleenp@548 578 };
coleenp@548 579
duke@435 580 //------------------------------StoreCMNode-----------------------------------
duke@435 581 // Store card-mark byte to memory for CM
duke@435 582 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
duke@435 583 // Preceeding equivalent StoreCMs may be eliminated.
duke@435 584 class StoreCMNode : public StoreNode {
cfang@1420 585 private:
never@1633 586 virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
never@1633 587 virtual uint cmp( const Node &n ) const {
never@1633 588 return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
never@1633 589 && StoreNode::cmp(n);
never@1633 590 }
never@1633 591 virtual uint size_of() const { return sizeof(*this); }
cfang@1420 592 int _oop_alias_idx; // The alias_idx of OopStore
never@1633 593
duke@435 594 public:
never@1633 595 StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
never@1633 596 StoreNode(c,mem,adr,at,val,oop_store),
never@1633 597 _oop_alias_idx(oop_alias_idx) {
never@1633 598 assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
never@1633 599 _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
never@1633 600 "bad oop alias idx");
never@1633 601 }
duke@435 602 virtual int Opcode() const;
duke@435 603 virtual Node *Identity( PhaseTransform *phase );
cfang@1420 604 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 605 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 606 virtual BasicType memory_type() const { return T_VOID; } // unspecific
cfang@1420 607 int oop_alias_idx() const { return _oop_alias_idx; }
duke@435 608 };
duke@435 609
duke@435 610 //------------------------------LoadPLockedNode---------------------------------
duke@435 611 // Load-locked a pointer from memory (either object or array).
duke@435 612 // On Sparc & Intel this is implemented as a normal pointer load.
duke@435 613 // On PowerPC and friends it's a real load-locked.
duke@435 614 class LoadPLockedNode : public LoadPNode {
duke@435 615 public:
duke@435 616 LoadPLockedNode( Node *c, Node *mem, Node *adr )
duke@435 617 : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
duke@435 618 virtual int Opcode() const;
duke@435 619 virtual int store_Opcode() const { return Op_StorePConditional; }
duke@435 620 virtual bool depends_only_on_test() const { return true; }
duke@435 621 };
duke@435 622
duke@435 623 //------------------------------LoadLLockedNode---------------------------------
duke@435 624 // Load-locked a pointer from memory (either object or array).
duke@435 625 // On Sparc & Intel this is implemented as a normal long load.
duke@435 626 class LoadLLockedNode : public LoadLNode {
duke@435 627 public:
duke@435 628 LoadLLockedNode( Node *c, Node *mem, Node *adr )
duke@435 629 : LoadLNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeLong::LONG) {}
duke@435 630 virtual int Opcode() const;
duke@435 631 virtual int store_Opcode() const { return Op_StoreLConditional; }
duke@435 632 };
duke@435 633
duke@435 634 //------------------------------SCMemProjNode---------------------------------------
duke@435 635 // This class defines a projection of the memory state of a store conditional node.
duke@435 636 // These nodes return a value, but also update memory.
duke@435 637 class SCMemProjNode : public ProjNode {
duke@435 638 public:
duke@435 639 enum {SCMEMPROJCON = (uint)-2};
duke@435 640 SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
duke@435 641 virtual int Opcode() const;
duke@435 642 virtual bool is_CFG() const { return false; }
duke@435 643 virtual const Type *bottom_type() const {return Type::MEMORY;}
duke@435 644 virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
duke@435 645 virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
duke@435 646 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 647 #ifndef PRODUCT
duke@435 648 virtual void dump_spec(outputStream *st) const {};
duke@435 649 #endif
duke@435 650 };
duke@435 651
duke@435 652 //------------------------------LoadStoreNode---------------------------
kvn@688 653 // Note: is_Mem() method returns 'true' for this class.
duke@435 654 class LoadStoreNode : public Node {
duke@435 655 public:
duke@435 656 enum {
duke@435 657 ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
duke@435 658 };
duke@435 659 LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex);
duke@435 660 virtual bool depends_only_on_test() const { return false; }
duke@435 661 virtual const Type *bottom_type() const { return TypeInt::BOOL; }
duke@435 662 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 663 virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
duke@435 664 };
duke@435 665
duke@435 666 //------------------------------StorePConditionalNode---------------------------
duke@435 667 // Conditionally store pointer to memory, if no change since prior
duke@435 668 // load-locked. Sets flags for success or failure of the store.
duke@435 669 class StorePConditionalNode : public LoadStoreNode {
duke@435 670 public:
duke@435 671 StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
duke@435 672 virtual int Opcode() const;
duke@435 673 // Produces flags
duke@435 674 virtual uint ideal_reg() const { return Op_RegFlags; }
duke@435 675 };
duke@435 676
kvn@855 677 //------------------------------StoreIConditionalNode---------------------------
kvn@855 678 // Conditionally store int to memory, if no change since prior
kvn@855 679 // load-locked. Sets flags for success or failure of the store.
kvn@855 680 class StoreIConditionalNode : public LoadStoreNode {
kvn@855 681 public:
kvn@855 682 StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreNode(c, mem, adr, val, ii) { }
kvn@855 683 virtual int Opcode() const;
kvn@855 684 // Produces flags
kvn@855 685 virtual uint ideal_reg() const { return Op_RegFlags; }
kvn@855 686 };
kvn@855 687
duke@435 688 //------------------------------StoreLConditionalNode---------------------------
duke@435 689 // Conditionally store long to memory, if no change since prior
duke@435 690 // load-locked. Sets flags for success or failure of the store.
duke@435 691 class StoreLConditionalNode : public LoadStoreNode {
duke@435 692 public:
duke@435 693 StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
duke@435 694 virtual int Opcode() const;
kvn@855 695 // Produces flags
kvn@855 696 virtual uint ideal_reg() const { return Op_RegFlags; }
duke@435 697 };
duke@435 698
duke@435 699
duke@435 700 //------------------------------CompareAndSwapLNode---------------------------
duke@435 701 class CompareAndSwapLNode : public LoadStoreNode {
duke@435 702 public:
duke@435 703 CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
duke@435 704 virtual int Opcode() const;
duke@435 705 };
duke@435 706
duke@435 707
duke@435 708 //------------------------------CompareAndSwapINode---------------------------
duke@435 709 class CompareAndSwapINode : public LoadStoreNode {
duke@435 710 public:
duke@435 711 CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
duke@435 712 virtual int Opcode() const;
duke@435 713 };
duke@435 714
duke@435 715
duke@435 716 //------------------------------CompareAndSwapPNode---------------------------
duke@435 717 class CompareAndSwapPNode : public LoadStoreNode {
duke@435 718 public:
duke@435 719 CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
duke@435 720 virtual int Opcode() const;
duke@435 721 };
duke@435 722
coleenp@548 723 //------------------------------CompareAndSwapNNode---------------------------
coleenp@548 724 class CompareAndSwapNNode : public LoadStoreNode {
coleenp@548 725 public:
coleenp@548 726 CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
coleenp@548 727 virtual int Opcode() const;
coleenp@548 728 };
coleenp@548 729
duke@435 730 //------------------------------ClearArray-------------------------------------
duke@435 731 class ClearArrayNode: public Node {
duke@435 732 public:
kvn@1535 733 ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
kvn@1535 734 : Node(ctrl,arymem,word_cnt,base) {
kvn@1535 735 init_class_id(Class_ClearArray);
kvn@1535 736 }
duke@435 737 virtual int Opcode() const;
duke@435 738 virtual const Type *bottom_type() const { return Type::MEMORY; }
duke@435 739 // ClearArray modifies array elements, and so affects only the
duke@435 740 // array memory addressed by the bottom_type of its base address.
duke@435 741 virtual const class TypePtr *adr_type() const;
duke@435 742 virtual Node *Identity( PhaseTransform *phase );
duke@435 743 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 744 virtual uint match_edge(uint idx) const;
duke@435 745
duke@435 746 // Clear the given area of an object or array.
duke@435 747 // The start offset must always be aligned mod BytesPerInt.
duke@435 748 // The end offset must always be aligned mod BytesPerLong.
duke@435 749 // Return the new memory.
duke@435 750 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 751 intptr_t start_offset,
duke@435 752 intptr_t end_offset,
duke@435 753 PhaseGVN* phase);
duke@435 754 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 755 intptr_t start_offset,
duke@435 756 Node* end_offset,
duke@435 757 PhaseGVN* phase);
duke@435 758 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 759 Node* start_offset,
duke@435 760 Node* end_offset,
duke@435 761 PhaseGVN* phase);
kvn@1535 762 // Return allocation input memory edge if it is different instance
kvn@1535 763 // or itself if it is the one we are looking for.
kvn@1535 764 static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
duke@435 765 };
duke@435 766
duke@435 767 //------------------------------StrComp-------------------------------------
duke@435 768 class StrCompNode: public Node {
duke@435 769 public:
kvn@1421 770 StrCompNode(Node* control, Node* char_array_mem,
kvn@1421 771 Node* s1, Node* c1,
kvn@1421 772 Node* s2, Node* c2): Node(control, char_array_mem,
kvn@1421 773 s1, c1,
kvn@1421 774 s2, c2) {};
duke@435 775 virtual int Opcode() const;
duke@435 776 virtual bool depends_only_on_test() const { return false; }
duke@435 777 virtual const Type* bottom_type() const { return TypeInt::INT; }
kvn@1421 778 virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
duke@435 779 virtual uint match_edge(uint idx) const;
duke@435 780 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 781 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 782 };
duke@435 783
cfang@1116 784 //------------------------------StrEquals-------------------------------------
cfang@1116 785 class StrEqualsNode: public Node {
cfang@1116 786 public:
kvn@1421 787 StrEqualsNode(Node* control, Node* char_array_mem,
kvn@1421 788 Node* s1, Node* s2, Node* c): Node(control, char_array_mem,
kvn@1421 789 s1, s2, c) {};
cfang@1116 790 virtual int Opcode() const;
cfang@1116 791 virtual bool depends_only_on_test() const { return false; }
cfang@1116 792 virtual const Type* bottom_type() const { return TypeInt::BOOL; }
kvn@1421 793 virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
cfang@1116 794 virtual uint match_edge(uint idx) const;
cfang@1116 795 virtual uint ideal_reg() const { return Op_RegI; }
cfang@1116 796 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
cfang@1116 797 };
cfang@1116 798
cfang@1116 799 //------------------------------StrIndexOf-------------------------------------
cfang@1116 800 class StrIndexOfNode: public Node {
cfang@1116 801 public:
kvn@1421 802 StrIndexOfNode(Node* control, Node* char_array_mem,
kvn@1421 803 Node* s1, Node* c1,
kvn@1421 804 Node* s2, Node* c2): Node(control, char_array_mem,
kvn@1421 805 s1, c1,
kvn@1421 806 s2, c2) {};
cfang@1116 807 virtual int Opcode() const;
cfang@1116 808 virtual bool depends_only_on_test() const { return false; }
cfang@1116 809 virtual const Type* bottom_type() const { return TypeInt::INT; }
kvn@1421 810 virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
cfang@1116 811 virtual uint match_edge(uint idx) const;
cfang@1116 812 virtual uint ideal_reg() const { return Op_RegI; }
cfang@1116 813 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
cfang@1116 814 };
cfang@1116 815
rasbold@604 816 //------------------------------AryEq---------------------------------------
rasbold@604 817 class AryEqNode: public Node {
rasbold@604 818 public:
kvn@1421 819 AryEqNode(Node* control, Node* char_array_mem,
kvn@1421 820 Node* s1, Node* s2): Node(control, char_array_mem, s1, s2) {};
rasbold@604 821 virtual int Opcode() const;
rasbold@604 822 virtual bool depends_only_on_test() const { return false; }
rasbold@604 823 virtual const Type* bottom_type() const { return TypeInt::BOOL; }
rasbold@604 824 virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
kvn@1421 825 virtual uint match_edge(uint idx) const;
rasbold@604 826 virtual uint ideal_reg() const { return Op_RegI; }
rasbold@604 827 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
rasbold@604 828 };
rasbold@604 829
duke@435 830 //------------------------------MemBar-----------------------------------------
duke@435 831 // There are different flavors of Memory Barriers to match the Java Memory
duke@435 832 // Model. Monitor-enter and volatile-load act as Aquires: no following ref
duke@435 833 // can be moved to before them. We insert a MemBar-Acquire after a FastLock or
duke@435 834 // volatile-load. Monitor-exit and volatile-store act as Release: no
twisti@1040 835 // preceding ref can be moved to after them. We insert a MemBar-Release
duke@435 836 // before a FastUnlock or volatile-store. All volatiles need to be
duke@435 837 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
twisti@1040 838 // separate it from any following volatile-load.
duke@435 839 class MemBarNode: public MultiNode {
duke@435 840 virtual uint hash() const ; // { return NO_HASH; }
duke@435 841 virtual uint cmp( const Node &n ) const ; // Always fail, except on self
duke@435 842
duke@435 843 virtual uint size_of() const { return sizeof(*this); }
duke@435 844 // Memory type this node is serializing. Usually either rawptr or bottom.
duke@435 845 const TypePtr* _adr_type;
duke@435 846
duke@435 847 public:
duke@435 848 enum {
duke@435 849 Precedent = TypeFunc::Parms // optional edge to force precedence
duke@435 850 };
duke@435 851 MemBarNode(Compile* C, int alias_idx, Node* precedent);
duke@435 852 virtual int Opcode() const = 0;
duke@435 853 virtual const class TypePtr *adr_type() const { return _adr_type; }
duke@435 854 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 855 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 856 virtual uint match_edge(uint idx) const { return 0; }
duke@435 857 virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
duke@435 858 virtual Node *match( const ProjNode *proj, const Matcher *m );
duke@435 859 // Factory method. Builds a wide or narrow membar.
duke@435 860 // Optional 'precedent' becomes an extra edge if not null.
duke@435 861 static MemBarNode* make(Compile* C, int opcode,
duke@435 862 int alias_idx = Compile::AliasIdxBot,
duke@435 863 Node* precedent = NULL);
duke@435 864 };
duke@435 865
duke@435 866 // "Acquire" - no following ref can move before (but earlier refs can
duke@435 867 // follow, like an early Load stalled in cache). Requires multi-cpu
duke@435 868 // visibility. Inserted after a volatile load or FastLock.
duke@435 869 class MemBarAcquireNode: public MemBarNode {
duke@435 870 public:
duke@435 871 MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
duke@435 872 : MemBarNode(C, alias_idx, precedent) {}
duke@435 873 virtual int Opcode() const;
duke@435 874 };
duke@435 875
duke@435 876 // "Release" - no earlier ref can move after (but later refs can move
duke@435 877 // up, like a speculative pipelined cache-hitting Load). Requires
duke@435 878 // multi-cpu visibility. Inserted before a volatile store or FastUnLock.
duke@435 879 class MemBarReleaseNode: public MemBarNode {
duke@435 880 public:
duke@435 881 MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
duke@435 882 : MemBarNode(C, alias_idx, precedent) {}
duke@435 883 virtual int Opcode() const;
duke@435 884 };
duke@435 885
duke@435 886 // Ordering between a volatile store and a following volatile load.
duke@435 887 // Requires multi-CPU visibility?
duke@435 888 class MemBarVolatileNode: public MemBarNode {
duke@435 889 public:
duke@435 890 MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
duke@435 891 : MemBarNode(C, alias_idx, precedent) {}
duke@435 892 virtual int Opcode() const;
duke@435 893 };
duke@435 894
duke@435 895 // Ordering within the same CPU. Used to order unsafe memory references
duke@435 896 // inside the compiler when we lack alias info. Not needed "outside" the
duke@435 897 // compiler because the CPU does all the ordering for us.
duke@435 898 class MemBarCPUOrderNode: public MemBarNode {
duke@435 899 public:
duke@435 900 MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
duke@435 901 : MemBarNode(C, alias_idx, precedent) {}
duke@435 902 virtual int Opcode() const;
duke@435 903 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
duke@435 904 };
duke@435 905
duke@435 906 // Isolation of object setup after an AllocateNode and before next safepoint.
duke@435 907 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
duke@435 908 class InitializeNode: public MemBarNode {
duke@435 909 friend class AllocateNode;
duke@435 910
duke@435 911 bool _is_complete;
duke@435 912
duke@435 913 public:
duke@435 914 enum {
duke@435 915 Control = TypeFunc::Control,
duke@435 916 Memory = TypeFunc::Memory, // MergeMem for states affected by this op
duke@435 917 RawAddress = TypeFunc::Parms+0, // the newly-allocated raw address
duke@435 918 RawStores = TypeFunc::Parms+1 // zero or more stores (or TOP)
duke@435 919 };
duke@435 920
duke@435 921 InitializeNode(Compile* C, int adr_type, Node* rawoop);
duke@435 922 virtual int Opcode() const;
duke@435 923 virtual uint size_of() const { return sizeof(*this); }
duke@435 924 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
duke@435 925 virtual const RegMask &in_RegMask(uint) const; // mask for RawAddress
duke@435 926
duke@435 927 // Manage incoming memory edges via a MergeMem on in(Memory):
duke@435 928 Node* memory(uint alias_idx);
duke@435 929
duke@435 930 // The raw memory edge coming directly from the Allocation.
duke@435 931 // The contents of this memory are *always* all-zero-bits.
duke@435 932 Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
duke@435 933
duke@435 934 // Return the corresponding allocation for this initialization (or null if none).
duke@435 935 // (Note: Both InitializeNode::allocation and AllocateNode::initialization
duke@435 936 // are defined in graphKit.cpp, which sets up the bidirectional relation.)
duke@435 937 AllocateNode* allocation();
duke@435 938
duke@435 939 // Anything other than zeroing in this init?
duke@435 940 bool is_non_zero();
duke@435 941
duke@435 942 // An InitializeNode must completed before macro expansion is done.
duke@435 943 // Completion requires that the AllocateNode must be followed by
duke@435 944 // initialization of the new memory to zero, then to any initializers.
duke@435 945 bool is_complete() { return _is_complete; }
duke@435 946
duke@435 947 // Mark complete. (Must not yet be complete.)
duke@435 948 void set_complete(PhaseGVN* phase);
duke@435 949
duke@435 950 #ifdef ASSERT
duke@435 951 // ensure all non-degenerate stores are ordered and non-overlapping
duke@435 952 bool stores_are_sane(PhaseTransform* phase);
duke@435 953 #endif //ASSERT
duke@435 954
duke@435 955 // See if this store can be captured; return offset where it initializes.
duke@435 956 // Return 0 if the store cannot be moved (any sort of problem).
duke@435 957 intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase);
duke@435 958
duke@435 959 // Capture another store; reformat it to write my internal raw memory.
duke@435 960 // Return the captured copy, else NULL if there is some sort of problem.
duke@435 961 Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase);
duke@435 962
duke@435 963 // Find captured store which corresponds to the range [start..start+size).
duke@435 964 // Return my own memory projection (meaning the initial zero bits)
duke@435 965 // if there is no such store. Return NULL if there is a problem.
duke@435 966 Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
duke@435 967
duke@435 968 // Called when the associated AllocateNode is expanded into CFG.
duke@435 969 Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
duke@435 970 intptr_t header_size, Node* size_in_bytes,
duke@435 971 PhaseGVN* phase);
duke@435 972
duke@435 973 private:
duke@435 974 void remove_extra_zeroes();
duke@435 975
duke@435 976 // Find out where a captured store should be placed (or already is placed).
duke@435 977 int captured_store_insertion_point(intptr_t start, int size_in_bytes,
duke@435 978 PhaseTransform* phase);
duke@435 979
duke@435 980 static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
duke@435 981
duke@435 982 Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
duke@435 983
duke@435 984 bool detect_init_independence(Node* n, bool st_is_pinned, int& count);
duke@435 985
duke@435 986 void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
duke@435 987 PhaseGVN* phase);
duke@435 988
duke@435 989 intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
duke@435 990 };
duke@435 991
duke@435 992 //------------------------------MergeMem---------------------------------------
duke@435 993 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
duke@435 994 class MergeMemNode: public Node {
duke@435 995 virtual uint hash() const ; // { return NO_HASH; }
duke@435 996 virtual uint cmp( const Node &n ) const ; // Always fail, except on self
duke@435 997 friend class MergeMemStream;
duke@435 998 MergeMemNode(Node* def); // clients use MergeMemNode::make
duke@435 999
duke@435 1000 public:
duke@435 1001 // If the input is a whole memory state, clone it with all its slices intact.
duke@435 1002 // Otherwise, make a new memory state with just that base memory input.
duke@435 1003 // In either case, the result is a newly created MergeMem.
duke@435 1004 static MergeMemNode* make(Compile* C, Node* base_memory);
duke@435 1005
duke@435 1006 virtual int Opcode() const;
duke@435 1007 virtual Node *Identity( PhaseTransform *phase );
duke@435 1008 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 1009 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1010 virtual uint match_edge(uint idx) const { return 0; }
duke@435 1011 virtual const RegMask &out_RegMask() const;
duke@435 1012 virtual const Type *bottom_type() const { return Type::MEMORY; }
duke@435 1013 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
duke@435 1014 // sparse accessors
duke@435 1015 // Fetch the previously stored "set_memory_at", or else the base memory.
duke@435 1016 // (Caller should clone it if it is a phi-nest.)
duke@435 1017 Node* memory_at(uint alias_idx) const;
duke@435 1018 // set the memory, regardless of its previous value
duke@435 1019 void set_memory_at(uint alias_idx, Node* n);
duke@435 1020 // the "base" is the memory that provides the non-finite support
duke@435 1021 Node* base_memory() const { return in(Compile::AliasIdxBot); }
duke@435 1022 // warning: setting the base can implicitly set any of the other slices too
duke@435 1023 void set_base_memory(Node* def);
duke@435 1024 // sentinel value which denotes a copy of the base memory:
duke@435 1025 Node* empty_memory() const { return in(Compile::AliasIdxTop); }
duke@435 1026 static Node* make_empty_memory(); // where the sentinel comes from
duke@435 1027 bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
duke@435 1028 // hook for the iterator, to perform any necessary setup
duke@435 1029 void iteration_setup(const MergeMemNode* other = NULL);
duke@435 1030 // push sentinels until I am at least as long as the other (semantic no-op)
duke@435 1031 void grow_to_match(const MergeMemNode* other);
duke@435 1032 bool verify_sparse() const PRODUCT_RETURN0;
duke@435 1033 #ifndef PRODUCT
duke@435 1034 virtual void dump_spec(outputStream *st) const;
duke@435 1035 #endif
duke@435 1036 };
duke@435 1037
duke@435 1038 class MergeMemStream : public StackObj {
duke@435 1039 private:
duke@435 1040 MergeMemNode* _mm;
duke@435 1041 const MergeMemNode* _mm2; // optional second guy, contributes non-empty iterations
duke@435 1042 Node* _mm_base; // loop-invariant base memory of _mm
duke@435 1043 int _idx;
duke@435 1044 int _cnt;
duke@435 1045 Node* _mem;
duke@435 1046 Node* _mem2;
duke@435 1047 int _cnt2;
duke@435 1048
duke@435 1049 void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
duke@435 1050 // subsume_node will break sparseness at times, whenever a memory slice
duke@435 1051 // folds down to a copy of the base ("fat") memory. In such a case,
duke@435 1052 // the raw edge will update to base, although it should be top.
duke@435 1053 // This iterator will recognize either top or base_memory as an
duke@435 1054 // "empty" slice. See is_empty, is_empty2, and next below.
duke@435 1055 //
duke@435 1056 // The sparseness property is repaired in MergeMemNode::Ideal.
duke@435 1057 // As long as access to a MergeMem goes through this iterator
duke@435 1058 // or the memory_at accessor, flaws in the sparseness will
duke@435 1059 // never be observed.
duke@435 1060 //
duke@435 1061 // Also, iteration_setup repairs sparseness.
duke@435 1062 assert(mm->verify_sparse(), "please, no dups of base");
duke@435 1063 assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
duke@435 1064
duke@435 1065 _mm = mm;
duke@435 1066 _mm_base = mm->base_memory();
duke@435 1067 _mm2 = mm2;
duke@435 1068 _cnt = mm->req();
duke@435 1069 _idx = Compile::AliasIdxBot-1; // start at the base memory
duke@435 1070 _mem = NULL;
duke@435 1071 _mem2 = NULL;
duke@435 1072 }
duke@435 1073
duke@435 1074 #ifdef ASSERT
duke@435 1075 Node* check_memory() const {
duke@435 1076 if (at_base_memory())
duke@435 1077 return _mm->base_memory();
duke@435 1078 else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
duke@435 1079 return _mm->memory_at(_idx);
duke@435 1080 else
duke@435 1081 return _mm_base;
duke@435 1082 }
duke@435 1083 Node* check_memory2() const {
duke@435 1084 return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
duke@435 1085 }
duke@435 1086 #endif
duke@435 1087
duke@435 1088 static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
duke@435 1089 void assert_synch() const {
duke@435 1090 assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
duke@435 1091 "no side-effects except through the stream");
duke@435 1092 }
duke@435 1093
duke@435 1094 public:
duke@435 1095
duke@435 1096 // expected usages:
duke@435 1097 // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
duke@435 1098 // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
duke@435 1099
duke@435 1100 // iterate over one merge
duke@435 1101 MergeMemStream(MergeMemNode* mm) {
duke@435 1102 mm->iteration_setup();
duke@435 1103 init(mm);
duke@435 1104 debug_only(_cnt2 = 999);
duke@435 1105 }
duke@435 1106 // iterate in parallel over two merges
duke@435 1107 // only iterates through non-empty elements of mm2
duke@435 1108 MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
duke@435 1109 assert(mm2, "second argument must be a MergeMem also");
duke@435 1110 ((MergeMemNode*)mm2)->iteration_setup(); // update hidden state
duke@435 1111 mm->iteration_setup(mm2);
duke@435 1112 init(mm, mm2);
duke@435 1113 _cnt2 = mm2->req();
duke@435 1114 }
duke@435 1115 #ifdef ASSERT
duke@435 1116 ~MergeMemStream() {
duke@435 1117 assert_synch();
duke@435 1118 }
duke@435 1119 #endif
duke@435 1120
duke@435 1121 MergeMemNode* all_memory() const {
duke@435 1122 return _mm;
duke@435 1123 }
duke@435 1124 Node* base_memory() const {
duke@435 1125 assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
duke@435 1126 return _mm_base;
duke@435 1127 }
duke@435 1128 const MergeMemNode* all_memory2() const {
duke@435 1129 assert(_mm2 != NULL, "");
duke@435 1130 return _mm2;
duke@435 1131 }
duke@435 1132 bool at_base_memory() const {
duke@435 1133 return _idx == Compile::AliasIdxBot;
duke@435 1134 }
duke@435 1135 int alias_idx() const {
duke@435 1136 assert(_mem, "must call next 1st");
duke@435 1137 return _idx;
duke@435 1138 }
duke@435 1139
duke@435 1140 const TypePtr* adr_type() const {
duke@435 1141 return Compile::current()->get_adr_type(alias_idx());
duke@435 1142 }
duke@435 1143
duke@435 1144 const TypePtr* adr_type(Compile* C) const {
duke@435 1145 return C->get_adr_type(alias_idx());
duke@435 1146 }
duke@435 1147 bool is_empty() const {
duke@435 1148 assert(_mem, "must call next 1st");
duke@435 1149 assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
duke@435 1150 return _mem->is_top();
duke@435 1151 }
duke@435 1152 bool is_empty2() const {
duke@435 1153 assert(_mem2, "must call next 1st");
duke@435 1154 assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
duke@435 1155 return _mem2->is_top();
duke@435 1156 }
duke@435 1157 Node* memory() const {
duke@435 1158 assert(!is_empty(), "must not be empty");
duke@435 1159 assert_synch();
duke@435 1160 return _mem;
duke@435 1161 }
duke@435 1162 // get the current memory, regardless of empty or non-empty status
duke@435 1163 Node* force_memory() const {
duke@435 1164 assert(!is_empty() || !at_base_memory(), "");
duke@435 1165 // Use _mm_base to defend against updates to _mem->base_memory().
duke@435 1166 Node *mem = _mem->is_top() ? _mm_base : _mem;
duke@435 1167 assert(mem == check_memory(), "");
duke@435 1168 return mem;
duke@435 1169 }
duke@435 1170 Node* memory2() const {
duke@435 1171 assert(_mem2 == check_memory2(), "");
duke@435 1172 return _mem2;
duke@435 1173 }
duke@435 1174 void set_memory(Node* mem) {
duke@435 1175 if (at_base_memory()) {
duke@435 1176 // Note that this does not change the invariant _mm_base.
duke@435 1177 _mm->set_base_memory(mem);
duke@435 1178 } else {
duke@435 1179 _mm->set_memory_at(_idx, mem);
duke@435 1180 }
duke@435 1181 _mem = mem;
duke@435 1182 assert_synch();
duke@435 1183 }
duke@435 1184
duke@435 1185 // Recover from a side effect to the MergeMemNode.
duke@435 1186 void set_memory() {
duke@435 1187 _mem = _mm->in(_idx);
duke@435 1188 }
duke@435 1189
duke@435 1190 bool next() { return next(false); }
duke@435 1191 bool next2() { return next(true); }
duke@435 1192
duke@435 1193 bool next_non_empty() { return next_non_empty(false); }
duke@435 1194 bool next_non_empty2() { return next_non_empty(true); }
duke@435 1195 // next_non_empty2 can yield states where is_empty() is true
duke@435 1196
duke@435 1197 private:
duke@435 1198 // find the next item, which might be empty
duke@435 1199 bool next(bool have_mm2) {
duke@435 1200 assert((_mm2 != NULL) == have_mm2, "use other next");
duke@435 1201 assert_synch();
duke@435 1202 if (++_idx < _cnt) {
duke@435 1203 // Note: This iterator allows _mm to be non-sparse.
duke@435 1204 // It behaves the same whether _mem is top or base_memory.
duke@435 1205 _mem = _mm->in(_idx);
duke@435 1206 if (have_mm2)
duke@435 1207 _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
duke@435 1208 return true;
duke@435 1209 }
duke@435 1210 return false;
duke@435 1211 }
duke@435 1212
duke@435 1213 // find the next non-empty item
duke@435 1214 bool next_non_empty(bool have_mm2) {
duke@435 1215 while (next(have_mm2)) {
duke@435 1216 if (!is_empty()) {
duke@435 1217 // make sure _mem2 is filled in sensibly
duke@435 1218 if (have_mm2 && _mem2->is_top()) _mem2 = _mm2->base_memory();
duke@435 1219 return true;
duke@435 1220 } else if (have_mm2 && !is_empty2()) {
duke@435 1221 return true; // is_empty() == true
duke@435 1222 }
duke@435 1223 }
duke@435 1224 return false;
duke@435 1225 }
duke@435 1226 };
duke@435 1227
duke@435 1228 //------------------------------Prefetch---------------------------------------
duke@435 1229
duke@435 1230 // Non-faulting prefetch load. Prefetch for many reads.
duke@435 1231 class PrefetchReadNode : public Node {
duke@435 1232 public:
duke@435 1233 PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
duke@435 1234 virtual int Opcode() const;
duke@435 1235 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1236 virtual uint match_edge(uint idx) const { return idx==2; }
duke@435 1237 virtual const Type *bottom_type() const { return Type::ABIO; }
duke@435 1238 };
duke@435 1239
duke@435 1240 // Non-faulting prefetch load. Prefetch for many reads & many writes.
duke@435 1241 class PrefetchWriteNode : public Node {
duke@435 1242 public:
duke@435 1243 PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
duke@435 1244 virtual int Opcode() const;
duke@435 1245 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1246 virtual uint match_edge(uint idx) const { return idx==2; }
duke@435 1247 virtual const Type *bottom_type() const { return Type::ABIO; }
duke@435 1248 };

mercurial