src/share/vm/opto/memnode.hpp

Tue, 25 Jul 2017 10:10:41 -0400

author
dbuck
date
Tue, 25 Jul 2017 10:10:41 -0400
changeset 8879
6bc9abf210fd
parent 8653
0ffee573412b
child 9041
95a08233f46c
permissions
-rw-r--r--

8178047: Aliasing problem with raw memory accesses
Summary: Require equal bases when unaliasing offsets for raw accesses
Reviewed-by: thartmann, kvn

     1 /*
     2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
    26 #define SHARE_VM_OPTO_MEMNODE_HPP
    28 #include "opto/multnode.hpp"
    29 #include "opto/node.hpp"
    30 #include "opto/opcodes.hpp"
    31 #include "opto/type.hpp"
    33 // Portions of code courtesy of Clifford Click
    35 class MultiNode;
    36 class PhaseCCP;
    37 class PhaseTransform;
    39 //------------------------------MemNode----------------------------------------
    40 // Load or Store, possibly throwing a NULL pointer exception
    41 class MemNode : public Node {
    42 private:
    43   bool _unaligned_access; // Unaligned access from unsafe
    44   bool _mismatched_access; // Mismatched access from unsafe: byte read in integer array for instance
    45 protected:
    46 #ifdef ASSERT
    47   const TypePtr* _adr_type;     // What kind of memory is being addressed?
    48 #endif
    49   virtual uint size_of() const;
    50 public:
    51   enum { Control,               // When is it safe to do this load?
    52          Memory,                // Chunk of memory is being loaded from
    53          Address,               // Actually address, derived from base
    54          ValueIn,               // Value to store
    55          OopStore               // Preceeding oop store, only in StoreCM
    56   };
    57   typedef enum { unordered = 0,
    58                  acquire,       // Load has to acquire or be succeeded by MemBarAcquire.
    59                  release        // Store has to release or be preceded by MemBarRelease.
    60   } MemOrd;
    61 protected:
    62   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
    63     : Node(c0,c1,c2   ), _unaligned_access(false), _mismatched_access(false) {
    64     init_class_id(Class_Mem);
    65     debug_only(_adr_type=at; adr_type();)
    66   }
    67   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
    68     : Node(c0,c1,c2,c3), _unaligned_access(false), _mismatched_access(false) {
    69     init_class_id(Class_Mem);
    70     debug_only(_adr_type=at; adr_type();)
    71   }
    72   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
    73     : Node(c0,c1,c2,c3,c4), _unaligned_access(false), _mismatched_access(false) {
    74     init_class_id(Class_Mem);
    75     debug_only(_adr_type=at; adr_type();)
    76   }
    78   static bool check_if_adr_maybe_raw(Node* adr);
    80 public:
    81   // Helpers for the optimizer.  Documented in memnode.cpp.
    82   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
    83                                       Node* p2, AllocateNode* a2,
    84                                       PhaseTransform* phase);
    85   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
    87   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
    88   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
    89   // This one should probably be a phase-specific function:
    90   static bool all_controls_dominate(Node* dom, Node* sub);
    92   // Find any cast-away of null-ness and keep its control.
    93   static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
    94   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
    96   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
    98   // Shared code for Ideal methods:
    99   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
   101   // Helper function for adr_type() implementations.
   102   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
   104   // Raw access function, to allow copying of adr_type efficiently in
   105   // product builds and retain the debug info for debug builds.
   106   const TypePtr *raw_adr_type() const {
   107 #ifdef ASSERT
   108     return _adr_type;
   109 #else
   110     return 0;
   111 #endif
   112   }
   114   // Map a load or store opcode to its corresponding store opcode.
   115   // (Return -1 if unknown.)
   116   virtual int store_Opcode() const { return -1; }
   118   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
   119   virtual BasicType memory_type() const = 0;
   120   virtual int memory_size() const {
   121 #ifdef ASSERT
   122     return type2aelembytes(memory_type(), true);
   123 #else
   124     return type2aelembytes(memory_type());
   125 #endif
   126   }
   128   // Search through memory states which precede this node (load or store).
   129   // Look for an exact match for the address, with no intervening
   130   // aliased stores.
   131   Node* find_previous_store(PhaseTransform* phase);
   133   // Can this node (load or store) accurately see a stored value in
   134   // the given memory state?  (The state may or may not be in(Memory).)
   135   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
   137   void set_unaligned_access() { _unaligned_access = true; }
   138   bool is_unaligned_access() const { return _unaligned_access; }
   139   void set_mismatched_access() { _mismatched_access = true; }
   140   bool is_mismatched_access() const { return _mismatched_access; }
   142 #ifndef PRODUCT
   143   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
   144   virtual void dump_spec(outputStream *st) const;
   145 #endif
   146 };
   148 //------------------------------LoadNode---------------------------------------
   149 // Load value; requires Memory and Address
   150 class LoadNode : public MemNode {
   151 public:
   152   // Some loads (from unsafe) should be pinned: they don't depend only
   153   // on the dominating test.  The boolean field _depends_only_on_test
   154   // below records whether that node depends only on the dominating
   155   // test.
   156   // Methods used to build LoadNodes pass an argument of type enum
   157   // ControlDependency instead of a boolean because those methods
   158   // typically have multiple boolean parameters with default values:
   159   // passing the wrong boolean to one of these parameters by mistake
   160   // goes easily unnoticed. Using an enum, the compiler can check that
   161   // the type of a value and the type of the parameter match.
   162   enum ControlDependency {
   163     Pinned,
   164     DependsOnlyOnTest
   165   };
   166 private:
   167   // LoadNode::hash() doesn't take the _depends_only_on_test field
   168   // into account: If the graph already has a non-pinned LoadNode and
   169   // we add a pinned LoadNode with the same inputs, it's safe for GVN
   170   // to replace the pinned LoadNode with the non-pinned LoadNode,
   171   // otherwise it wouldn't be safe to have a non pinned LoadNode with
   172   // those inputs in the first place. If the graph already has a
   173   // pinned LoadNode and we add a non pinned LoadNode with the same
   174   // inputs, it's safe (but suboptimal) for GVN to replace the
   175   // non-pinned LoadNode by the pinned LoadNode.
   176   bool _depends_only_on_test;
   178   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
   179   // loads that can be reordered, and such requiring acquire semantics to
   180   // adhere to the Java specification.  The required behaviour is stored in
   181   // this field.
   182   const MemOrd _mo;
   184 protected:
   185   virtual uint cmp(const Node &n) const;
   186   virtual uint size_of() const; // Size is bigger
   187   // Should LoadNode::Ideal() attempt to remove control edges?
   188   virtual bool can_remove_control() const;
   189   const Type* const _type;      // What kind of value is loaded?
   190 public:
   192   LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
   193     : MemNode(c,mem,adr,at), _type(rt), _mo(mo), _depends_only_on_test(control_dependency == DependsOnlyOnTest) {
   194     init_class_id(Class_Load);
   195   }
   196   inline bool is_unordered() const { return !is_acquire(); }
   197   inline bool is_acquire() const {
   198     assert(_mo == unordered || _mo == acquire, "unexpected");
   199     return _mo == acquire;
   200   }
   202   // Polymorphic factory method:
   203    static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
   204                      const TypePtr* at, const Type *rt, BasicType bt,
   205                      MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
   207   virtual uint hash()   const;  // Check the type
   209   // Handle algebraic identities here.  If we have an identity, return the Node
   210   // we are equivalent to.  We look for Load of a Store.
   211   virtual Node *Identity( PhaseTransform *phase );
   213   // If the load is from Field memory and the pointer is non-null, it might be possible to
   214   // zero out the control input.
   215   // If the offset is constant and the base is an object allocation,
   216   // try to hook me up to the exact initializing store.
   217   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   219   // Split instance field load through Phi.
   220   Node* split_through_phi(PhaseGVN *phase);
   222   // Recover original value from boxed values
   223   Node *eliminate_autobox(PhaseGVN *phase);
   225   // Compute a new Type for this node.  Basically we just do the pre-check,
   226   // then call the virtual add() to set the type.
   227   virtual const Type *Value( PhaseTransform *phase ) const;
   229   // Common methods for LoadKlass and LoadNKlass nodes.
   230   const Type *klass_value_common( PhaseTransform *phase ) const;
   231   Node *klass_identity_common( PhaseTransform *phase );
   233   virtual uint ideal_reg() const;
   234   virtual const Type *bottom_type() const;
   235   // Following method is copied from TypeNode:
   236   void set_type(const Type* t) {
   237     assert(t != NULL, "sanity");
   238     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
   239     *(const Type**)&_type = t;   // cast away const-ness
   240     // If this node is in the hash table, make sure it doesn't need a rehash.
   241     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
   242   }
   243   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
   245   // Do not match memory edge
   246   virtual uint match_edge(uint idx) const;
   248   // Map a load opcode to its corresponding store opcode.
   249   virtual int store_Opcode() const = 0;
   251   // Check if the load's memory input is a Phi node with the same control.
   252   bool is_instance_field_load_with_local_phi(Node* ctrl);
   254 #ifndef PRODUCT
   255   virtual void dump_spec(outputStream *st) const;
   256 #endif
   257 #ifdef ASSERT
   258   // Helper function to allow a raw load without control edge for some cases
   259   static bool is_immutable_value(Node* adr);
   260 #endif
   261 protected:
   262   const Type* load_array_final_field(const TypeKlassPtr *tkls,
   263                                      ciKlass* klass) const;
   264   // depends_only_on_test is almost always true, and needs to be almost always
   265   // true to enable key hoisting & commoning optimizations.  However, for the
   266   // special case of RawPtr loads from TLS top & end, and other loads performed by
   267   // GC barriers, the control edge carries the dependence preventing hoisting past
   268   // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
   269   // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
   270   // which produce results (new raw memory state) inside of loops preventing all
   271   // manner of other optimizations).  Basically, it's ugly but so is the alternative.
   272   // See comment in macro.cpp, around line 125 expand_allocate_common().
   273   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM && _depends_only_on_test; }
   274 };
   276 //------------------------------LoadBNode--------------------------------------
   277 // Load a byte (8bits signed) from memory
   278 class LoadBNode : public LoadNode {
   279 public:
   280   LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   281     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
   282   virtual int Opcode() const;
   283   virtual uint ideal_reg() const { return Op_RegI; }
   284   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   285   virtual const Type *Value(PhaseTransform *phase) const;
   286   virtual int store_Opcode() const { return Op_StoreB; }
   287   virtual BasicType memory_type() const { return T_BYTE; }
   288 };
   290 //------------------------------LoadUBNode-------------------------------------
   291 // Load a unsigned byte (8bits unsigned) from memory
   292 class LoadUBNode : public LoadNode {
   293 public:
   294   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   295     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
   296   virtual int Opcode() const;
   297   virtual uint ideal_reg() const { return Op_RegI; }
   298   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
   299   virtual const Type *Value(PhaseTransform *phase) const;
   300   virtual int store_Opcode() const { return Op_StoreB; }
   301   virtual BasicType memory_type() const { return T_BYTE; }
   302 };
   304 //------------------------------LoadUSNode-------------------------------------
   305 // Load an unsigned short/char (16bits unsigned) from memory
   306 class LoadUSNode : public LoadNode {
   307 public:
   308   LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   309     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
   310   virtual int Opcode() const;
   311   virtual uint ideal_reg() const { return Op_RegI; }
   312   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   313   virtual const Type *Value(PhaseTransform *phase) const;
   314   virtual int store_Opcode() const { return Op_StoreC; }
   315   virtual BasicType memory_type() const { return T_CHAR; }
   316 };
   318 //------------------------------LoadSNode--------------------------------------
   319 // Load a short (16bits signed) from memory
   320 class LoadSNode : public LoadNode {
   321 public:
   322   LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   323     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
   324   virtual int Opcode() const;
   325   virtual uint ideal_reg() const { return Op_RegI; }
   326   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   327   virtual const Type *Value(PhaseTransform *phase) const;
   328   virtual int store_Opcode() const { return Op_StoreC; }
   329   virtual BasicType memory_type() const { return T_SHORT; }
   330 };
   332 //------------------------------LoadINode--------------------------------------
   333 // Load an integer from memory
   334 class LoadINode : public LoadNode {
   335 public:
   336   LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   337     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
   338   virtual int Opcode() const;
   339   virtual uint ideal_reg() const { return Op_RegI; }
   340   virtual int store_Opcode() const { return Op_StoreI; }
   341   virtual BasicType memory_type() const { return T_INT; }
   342 };
   344 //------------------------------LoadRangeNode----------------------------------
   345 // Load an array length from the array
   346 class LoadRangeNode : public LoadINode {
   347 public:
   348   LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
   349     : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
   350   virtual int Opcode() const;
   351   virtual const Type *Value( PhaseTransform *phase ) const;
   352   virtual Node *Identity( PhaseTransform *phase );
   353   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   354 };
   356 //------------------------------LoadLNode--------------------------------------
   357 // Load a long from memory
   358 class LoadLNode : public LoadNode {
   359   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
   360   virtual uint cmp( const Node &n ) const {
   361     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
   362       && LoadNode::cmp(n);
   363   }
   364   virtual uint size_of() const { return sizeof(*this); }
   365   const bool _require_atomic_access;  // is piecewise load forbidden?
   367 public:
   368   LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
   369             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
   370     : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
   371   virtual int Opcode() const;
   372   virtual uint ideal_reg() const { return Op_RegL; }
   373   virtual int store_Opcode() const { return Op_StoreL; }
   374   virtual BasicType memory_type() const { return T_LONG; }
   375   bool require_atomic_access() const { return _require_atomic_access; }
   376   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
   377                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
   378 #ifndef PRODUCT
   379   virtual void dump_spec(outputStream *st) const {
   380     LoadNode::dump_spec(st);
   381     if (_require_atomic_access)  st->print(" Atomic!");
   382   }
   383 #endif
   384 };
   386 //------------------------------LoadL_unalignedNode----------------------------
   387 // Load a long from unaligned memory
   388 class LoadL_unalignedNode : public LoadLNode {
   389 public:
   390   LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   391     : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
   392   virtual int Opcode() const;
   393 };
   395 //------------------------------LoadFNode--------------------------------------
   396 // Load a float (64 bits) from memory
   397 class LoadFNode : public LoadNode {
   398 public:
   399   LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   400     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
   401   virtual int Opcode() const;
   402   virtual uint ideal_reg() const { return Op_RegF; }
   403   virtual int store_Opcode() const { return Op_StoreF; }
   404   virtual BasicType memory_type() const { return T_FLOAT; }
   405 };
   407 //------------------------------LoadDNode--------------------------------------
   408 // Load a double (64 bits) from memory
   409 class LoadDNode : public LoadNode {
   410   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
   411   virtual uint cmp( const Node &n ) const {
   412     return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
   413       && LoadNode::cmp(n);
   414   }
   415   virtual uint size_of() const { return sizeof(*this); }
   416   const bool _require_atomic_access;  // is piecewise load forbidden?
   418 public:
   419   LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
   420             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
   421     : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
   422   virtual int Opcode() const;
   423   virtual uint ideal_reg() const { return Op_RegD; }
   424   virtual int store_Opcode() const { return Op_StoreD; }
   425   virtual BasicType memory_type() const { return T_DOUBLE; }
   426   bool require_atomic_access() const { return _require_atomic_access; }
   427   static LoadDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
   428                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
   429 #ifndef PRODUCT
   430   virtual void dump_spec(outputStream *st) const {
   431     LoadNode::dump_spec(st);
   432     if (_require_atomic_access)  st->print(" Atomic!");
   433   }
   434 #endif
   435 };
   437 //------------------------------LoadD_unalignedNode----------------------------
   438 // Load a double from unaligned memory
   439 class LoadD_unalignedNode : public LoadDNode {
   440 public:
   441   LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   442     : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
   443   virtual int Opcode() const;
   444 };
   446 //------------------------------LoadPNode--------------------------------------
   447 // Load a pointer from memory (either object or array)
   448 class LoadPNode : public LoadNode {
   449 public:
   450   LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   451     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
   452   virtual int Opcode() const;
   453   virtual uint ideal_reg() const { return Op_RegP; }
   454   virtual int store_Opcode() const { return Op_StoreP; }
   455   virtual BasicType memory_type() const { return T_ADDRESS; }
   456 };
   459 //------------------------------LoadNNode--------------------------------------
   460 // Load a narrow oop from memory (either object or array)
   461 class LoadNNode : public LoadNode {
   462 public:
   463   LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
   464     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
   465   virtual int Opcode() const;
   466   virtual uint ideal_reg() const { return Op_RegN; }
   467   virtual int store_Opcode() const { return Op_StoreN; }
   468   virtual BasicType memory_type() const { return T_NARROWOOP; }
   469 };
   471 //------------------------------LoadKlassNode----------------------------------
   472 // Load a Klass from an object
   473 class LoadKlassNode : public LoadPNode {
   474 protected:
   475   // In most cases, LoadKlassNode does not have the control input set. If the control
   476   // input is set, it must not be removed (by LoadNode::Ideal()).
   477   virtual bool can_remove_control() const;
   478 public:
   479   LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
   480     : LoadPNode(c, mem, adr, at, tk, mo) {}
   481   virtual int Opcode() const;
   482   virtual const Type *Value( PhaseTransform *phase ) const;
   483   virtual Node *Identity( PhaseTransform *phase );
   484   virtual bool depends_only_on_test() const { return true; }
   486   // Polymorphic factory method:
   487   static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
   488                     const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
   489 };
   491 //------------------------------LoadNKlassNode---------------------------------
   492 // Load a narrow Klass from an object.
   493 class LoadNKlassNode : public LoadNNode {
   494 public:
   495   LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
   496     : LoadNNode(c, mem, adr, at, tk, mo) {}
   497   virtual int Opcode() const;
   498   virtual uint ideal_reg() const { return Op_RegN; }
   499   virtual int store_Opcode() const { return Op_StoreNKlass; }
   500   virtual BasicType memory_type() const { return T_NARROWKLASS; }
   502   virtual const Type *Value( PhaseTransform *phase ) const;
   503   virtual Node *Identity( PhaseTransform *phase );
   504   virtual bool depends_only_on_test() const { return true; }
   505 };
   508 //------------------------------StoreNode--------------------------------------
   509 // Store value; requires Store, Address and Value
   510 class StoreNode : public MemNode {
   511 private:
   512   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
   513   // stores that can be reordered, and such requiring release semantics to
   514   // adhere to the Java specification.  The required behaviour is stored in
   515   // this field.
   516   const MemOrd _mo;
   517   // Needed for proper cloning.
   518   virtual uint size_of() const { return sizeof(*this); }
   519 protected:
   520   virtual uint cmp( const Node &n ) const;
   521   virtual bool depends_only_on_test() const { return false; }
   523   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
   524   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
   526 public:
   527   // We must ensure that stores of object references will be visible
   528   // only after the object's initialization. So the callers of this
   529   // procedure must indicate that the store requires `release'
   530   // semantics, if the stored value is an object reference that might
   531   // point to a new object and may become externally visible.
   532   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   533     : MemNode(c, mem, adr, at, val), _mo(mo) {
   534     init_class_id(Class_Store);
   535   }
   536   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
   537     : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
   538     init_class_id(Class_Store);
   539   }
   541   inline bool is_unordered() const { return !is_release(); }
   542   inline bool is_release() const {
   543     assert((_mo == unordered || _mo == release), "unexpected");
   544     return _mo == release;
   545   }
   547   // Conservatively release stores of object references in order to
   548   // ensure visibility of object initialization.
   549   static inline MemOrd release_if_reference(const BasicType t) {
   550     const MemOrd mo = (t == T_ARRAY ||
   551                        t == T_ADDRESS || // Might be the address of an object reference (`boxing').
   552                        t == T_OBJECT) ? release : unordered;
   553     return mo;
   554   }
   556   // Polymorphic factory method
   557   //
   558   // We must ensure that stores of object references will be visible
   559   // only after the object's initialization. So the callers of this
   560   // procedure must indicate that the store requires `release'
   561   // semantics, if the stored value is an object reference that might
   562   // point to a new object and may become externally visible.
   563   static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
   564                          const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
   566   virtual uint hash() const;    // Check the type
   568   // If the store is to Field memory and the pointer is non-null, we can
   569   // zero out the control input.
   570   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   572   // Compute a new Type for this node.  Basically we just do the pre-check,
   573   // then call the virtual add() to set the type.
   574   virtual const Type *Value( PhaseTransform *phase ) const;
   576   // Check for identity function on memory (Load then Store at same address)
   577   virtual Node *Identity( PhaseTransform *phase );
   579   // Do not match memory edge
   580   virtual uint match_edge(uint idx) const;
   582   virtual const Type *bottom_type() const;  // returns Type::MEMORY
   584   // Map a store opcode to its corresponding own opcode, trivially.
   585   virtual int store_Opcode() const { return Opcode(); }
   587   // have all possible loads of the value stored been optimized away?
   588   bool value_never_loaded(PhaseTransform *phase) const;
   589 };
   591 //------------------------------StoreBNode-------------------------------------
   592 // Store byte to memory
   593 class StoreBNode : public StoreNode {
   594 public:
   595   StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   596     : StoreNode(c, mem, adr, at, val, mo) {}
   597   virtual int Opcode() const;
   598   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   599   virtual BasicType memory_type() const { return T_BYTE; }
   600 };
   602 //------------------------------StoreCNode-------------------------------------
   603 // Store char/short to memory
   604 class StoreCNode : public StoreNode {
   605 public:
   606   StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   607     : StoreNode(c, mem, adr, at, val, mo) {}
   608   virtual int Opcode() const;
   609   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   610   virtual BasicType memory_type() const { return T_CHAR; }
   611 };
   613 //------------------------------StoreINode-------------------------------------
   614 // Store int to memory
   615 class StoreINode : public StoreNode {
   616 public:
   617   StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   618     : StoreNode(c, mem, adr, at, val, mo) {}
   619   virtual int Opcode() const;
   620   virtual BasicType memory_type() const { return T_INT; }
   621 };
   623 //------------------------------StoreLNode-------------------------------------
   624 // Store long to memory
   625 class StoreLNode : public StoreNode {
   626   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
   627   virtual uint cmp( const Node &n ) const {
   628     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
   629       && StoreNode::cmp(n);
   630   }
   631   virtual uint size_of() const { return sizeof(*this); }
   632   const bool _require_atomic_access;  // is piecewise store forbidden?
   634 public:
   635   StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
   636     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
   637   virtual int Opcode() const;
   638   virtual BasicType memory_type() const { return T_LONG; }
   639   bool require_atomic_access() const { return _require_atomic_access; }
   640   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
   641 #ifndef PRODUCT
   642   virtual void dump_spec(outputStream *st) const {
   643     StoreNode::dump_spec(st);
   644     if (_require_atomic_access)  st->print(" Atomic!");
   645   }
   646 #endif
   647 };
   649 //------------------------------StoreFNode-------------------------------------
   650 // Store float to memory
   651 class StoreFNode : public StoreNode {
   652 public:
   653   StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   654     : StoreNode(c, mem, adr, at, val, mo) {}
   655   virtual int Opcode() const;
   656   virtual BasicType memory_type() const { return T_FLOAT; }
   657 };
   659 //------------------------------StoreDNode-------------------------------------
   660 // Store double to memory
   661 class StoreDNode : public StoreNode {
   662   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
   663   virtual uint cmp( const Node &n ) const {
   664     return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
   665       && StoreNode::cmp(n);
   666   }
   667   virtual uint size_of() const { return sizeof(*this); }
   668   const bool _require_atomic_access;  // is piecewise store forbidden?
   669 public:
   670   StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
   671              MemOrd mo, bool require_atomic_access = false)
   672     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
   673   virtual int Opcode() const;
   674   virtual BasicType memory_type() const { return T_DOUBLE; }
   675   bool require_atomic_access() const { return _require_atomic_access; }
   676   static StoreDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
   677 #ifndef PRODUCT
   678   virtual void dump_spec(outputStream *st) const {
   679     StoreNode::dump_spec(st);
   680     if (_require_atomic_access)  st->print(" Atomic!");
   681   }
   682 #endif
   684 };
   686 //------------------------------StorePNode-------------------------------------
   687 // Store pointer to memory
   688 class StorePNode : public StoreNode {
   689 public:
   690   StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   691     : StoreNode(c, mem, adr, at, val, mo) {}
   692   virtual int Opcode() const;
   693   virtual BasicType memory_type() const { return T_ADDRESS; }
   694 };
   696 //------------------------------StoreNNode-------------------------------------
   697 // Store narrow oop to memory
   698 class StoreNNode : public StoreNode {
   699 public:
   700   StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   701     : StoreNode(c, mem, adr, at, val, mo) {}
   702   virtual int Opcode() const;
   703   virtual BasicType memory_type() const { return T_NARROWOOP; }
   704 };
   706 //------------------------------StoreNKlassNode--------------------------------------
   707 // Store narrow klass to memory
   708 class StoreNKlassNode : public StoreNNode {
   709 public:
   710   StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
   711     : StoreNNode(c, mem, adr, at, val, mo) {}
   712   virtual int Opcode() const;
   713   virtual BasicType memory_type() const { return T_NARROWKLASS; }
   714 };
   716 //------------------------------StoreCMNode-----------------------------------
   717 // Store card-mark byte to memory for CM
   718 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
   719 // Preceeding equivalent StoreCMs may be eliminated.
   720 class StoreCMNode : public StoreNode {
   721  private:
   722   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
   723   virtual uint cmp( const Node &n ) const {
   724     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
   725       && StoreNode::cmp(n);
   726   }
   727   virtual uint size_of() const { return sizeof(*this); }
   728   int _oop_alias_idx;   // The alias_idx of OopStore
   730 public:
   731   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
   732     StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
   733     _oop_alias_idx(oop_alias_idx) {
   734     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
   735            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
   736            "bad oop alias idx");
   737   }
   738   virtual int Opcode() const;
   739   virtual Node *Identity( PhaseTransform *phase );
   740   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   741   virtual const Type *Value( PhaseTransform *phase ) const;
   742   virtual BasicType memory_type() const { return T_VOID; } // unspecific
   743   int oop_alias_idx() const { return _oop_alias_idx; }
   744 };
   746 //------------------------------LoadPLockedNode---------------------------------
   747 // Load-locked a pointer from memory (either object or array).
   748 // On Sparc & Intel this is implemented as a normal pointer load.
   749 // On PowerPC and friends it's a real load-locked.
   750 class LoadPLockedNode : public LoadPNode {
   751 public:
   752   LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
   753     : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
   754   virtual int Opcode() const;
   755   virtual int store_Opcode() const { return Op_StorePConditional; }
   756   virtual bool depends_only_on_test() const { return true; }
   757 };
   759 //------------------------------SCMemProjNode---------------------------------------
   760 // This class defines a projection of the memory  state of a store conditional node.
   761 // These nodes return a value, but also update memory.
   762 class SCMemProjNode : public ProjNode {
   763 public:
   764   enum {SCMEMPROJCON = (uint)-2};
   765   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
   766   virtual int Opcode() const;
   767   virtual bool      is_CFG() const  { return false; }
   768   virtual const Type *bottom_type() const {return Type::MEMORY;}
   769   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
   770   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
   771   virtual const Type *Value( PhaseTransform *phase ) const;
   772 #ifndef PRODUCT
   773   virtual void dump_spec(outputStream *st) const {};
   774 #endif
   775 };
   777 //------------------------------LoadStoreNode---------------------------
   778 // Note: is_Mem() method returns 'true' for this class.
   779 class LoadStoreNode : public Node {
   780 private:
   781   const Type* const _type;      // What kind of value is loaded?
   782   const TypePtr* _adr_type;     // What kind of memory is being addressed?
   783   virtual uint size_of() const; // Size is bigger
   784 public:
   785   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
   786   virtual bool depends_only_on_test() const { return false; }
   787   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
   789   virtual const Type *bottom_type() const { return _type; }
   790   virtual uint ideal_reg() const;
   791   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
   793   bool result_not_used() const;
   794 };
   796 class LoadStoreConditionalNode : public LoadStoreNode {
   797 public:
   798   enum {
   799     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
   800   };
   801   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
   802 };
   804 //------------------------------StorePConditionalNode---------------------------
   805 // Conditionally store pointer to memory, if no change since prior
   806 // load-locked.  Sets flags for success or failure of the store.
   807 class StorePConditionalNode : public LoadStoreConditionalNode {
   808 public:
   809   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
   810   virtual int Opcode() const;
   811   // Produces flags
   812   virtual uint ideal_reg() const { return Op_RegFlags; }
   813 };
   815 //------------------------------StoreIConditionalNode---------------------------
   816 // Conditionally store int to memory, if no change since prior
   817 // load-locked.  Sets flags for success or failure of the store.
   818 class StoreIConditionalNode : public LoadStoreConditionalNode {
   819 public:
   820   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
   821   virtual int Opcode() const;
   822   // Produces flags
   823   virtual uint ideal_reg() const { return Op_RegFlags; }
   824 };
   826 //------------------------------StoreLConditionalNode---------------------------
   827 // Conditionally store long to memory, if no change since prior
   828 // load-locked.  Sets flags for success or failure of the store.
   829 class StoreLConditionalNode : public LoadStoreConditionalNode {
   830 public:
   831   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
   832   virtual int Opcode() const;
   833   // Produces flags
   834   virtual uint ideal_reg() const { return Op_RegFlags; }
   835 };
   838 //------------------------------CompareAndSwapLNode---------------------------
   839 class CompareAndSwapLNode : public LoadStoreConditionalNode {
   840 public:
   841   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   842   virtual int Opcode() const;
   843 };
   846 //------------------------------CompareAndSwapINode---------------------------
   847 class CompareAndSwapINode : public LoadStoreConditionalNode {
   848 public:
   849   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   850   virtual int Opcode() const;
   851 };
   854 //------------------------------CompareAndSwapPNode---------------------------
   855 class CompareAndSwapPNode : public LoadStoreConditionalNode {
   856 public:
   857   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   858   virtual int Opcode() const;
   859 };
   861 //------------------------------CompareAndSwapNNode---------------------------
   862 class CompareAndSwapNNode : public LoadStoreConditionalNode {
   863 public:
   864   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
   865   virtual int Opcode() const;
   866 };
   868 //------------------------------GetAndAddINode---------------------------
   869 class GetAndAddINode : public LoadStoreNode {
   870 public:
   871   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
   872   virtual int Opcode() const;
   873 };
   875 //------------------------------GetAndAddLNode---------------------------
   876 class GetAndAddLNode : public LoadStoreNode {
   877 public:
   878   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
   879   virtual int Opcode() const;
   880 };
   883 //------------------------------GetAndSetINode---------------------------
   884 class GetAndSetINode : public LoadStoreNode {
   885 public:
   886   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
   887   virtual int Opcode() const;
   888 };
   890 //------------------------------GetAndSetINode---------------------------
   891 class GetAndSetLNode : public LoadStoreNode {
   892 public:
   893   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
   894   virtual int Opcode() const;
   895 };
   897 //------------------------------GetAndSetPNode---------------------------
   898 class GetAndSetPNode : public LoadStoreNode {
   899 public:
   900   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
   901   virtual int Opcode() const;
   902 };
   904 //------------------------------GetAndSetNNode---------------------------
   905 class GetAndSetNNode : public LoadStoreNode {
   906 public:
   907   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
   908   virtual int Opcode() const;
   909 };
   911 //------------------------------ClearArray-------------------------------------
   912 class ClearArrayNode: public Node {
   913 public:
   914   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
   915     : Node(ctrl,arymem,word_cnt,base) {
   916     init_class_id(Class_ClearArray);
   917   }
   918   virtual int         Opcode() const;
   919   virtual const Type *bottom_type() const { return Type::MEMORY; }
   920   // ClearArray modifies array elements, and so affects only the
   921   // array memory addressed by the bottom_type of its base address.
   922   virtual const class TypePtr *adr_type() const;
   923   virtual Node *Identity( PhaseTransform *phase );
   924   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   925   virtual uint match_edge(uint idx) const;
   927   // Clear the given area of an object or array.
   928   // The start offset must always be aligned mod BytesPerInt.
   929   // The end offset must always be aligned mod BytesPerLong.
   930   // Return the new memory.
   931   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   932                             intptr_t start_offset,
   933                             intptr_t end_offset,
   934                             PhaseGVN* phase);
   935   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   936                             intptr_t start_offset,
   937                             Node* end_offset,
   938                             PhaseGVN* phase);
   939   static Node* clear_memory(Node* control, Node* mem, Node* dest,
   940                             Node* start_offset,
   941                             Node* end_offset,
   942                             PhaseGVN* phase);
   943   // Return allocation input memory edge if it is different instance
   944   // or itself if it is the one we are looking for.
   945   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
   946 };
   948 //------------------------------StrIntrinsic-------------------------------
   949 // Base class for Ideal nodes used in String instrinsic code.
   950 class StrIntrinsicNode: public Node {
   951 public:
   952   StrIntrinsicNode(Node* control, Node* char_array_mem,
   953                    Node* s1, Node* c1, Node* s2, Node* c2):
   954     Node(control, char_array_mem, s1, c1, s2, c2) {
   955   }
   957   StrIntrinsicNode(Node* control, Node* char_array_mem,
   958                    Node* s1, Node* s2, Node* c):
   959     Node(control, char_array_mem, s1, s2, c) {
   960   }
   962   StrIntrinsicNode(Node* control, Node* char_array_mem,
   963                    Node* s1, Node* s2):
   964     Node(control, char_array_mem, s1, s2) {
   965   }
   967   virtual bool depends_only_on_test() const { return false; }
   968   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
   969   virtual uint match_edge(uint idx) const;
   970   virtual uint ideal_reg() const { return Op_RegI; }
   971   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
   972   virtual const Type *Value(PhaseTransform *phase) const;
   973 };
   975 //------------------------------StrComp-------------------------------------
   976 class StrCompNode: public StrIntrinsicNode {
   977 public:
   978   StrCompNode(Node* control, Node* char_array_mem,
   979               Node* s1, Node* c1, Node* s2, Node* c2):
   980     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
   981   virtual int Opcode() const;
   982   virtual const Type* bottom_type() const { return TypeInt::INT; }
   983 };
   985 //------------------------------StrEquals-------------------------------------
   986 class StrEqualsNode: public StrIntrinsicNode {
   987 public:
   988   StrEqualsNode(Node* control, Node* char_array_mem,
   989                 Node* s1, Node* s2, Node* c):
   990     StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
   991   virtual int Opcode() const;
   992   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
   993 };
   995 //------------------------------StrIndexOf-------------------------------------
   996 class StrIndexOfNode: public StrIntrinsicNode {
   997 public:
   998   StrIndexOfNode(Node* control, Node* char_array_mem,
   999               Node* s1, Node* c1, Node* s2, Node* c2):
  1000     StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
  1001   virtual int Opcode() const;
  1002   virtual const Type* bottom_type() const { return TypeInt::INT; }
  1003 };
  1005 //------------------------------AryEq---------------------------------------
  1006 class AryEqNode: public StrIntrinsicNode {
  1007 public:
  1008   AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
  1009     StrIntrinsicNode(control, char_array_mem, s1, s2) {};
  1010   virtual int Opcode() const;
  1011   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
  1012 };
  1015 //------------------------------EncodeISOArray--------------------------------
  1016 // encode char[] to byte[] in ISO_8859_1
  1017 class EncodeISOArrayNode: public Node {
  1018 public:
  1019   EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {};
  1020   virtual int Opcode() const;
  1021   virtual bool depends_only_on_test() const { return false; }
  1022   virtual const Type* bottom_type() const { return TypeInt::INT; }
  1023   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
  1024   virtual uint match_edge(uint idx) const;
  1025   virtual uint ideal_reg() const { return Op_RegI; }
  1026   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  1027   virtual const Type *Value(PhaseTransform *phase) const;
  1028 };
  1030 //------------------------------MemBar-----------------------------------------
  1031 // There are different flavors of Memory Barriers to match the Java Memory
  1032 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
  1033 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
  1034 // volatile-load.  Monitor-exit and volatile-store act as Release: no
  1035 // preceding ref can be moved to after them.  We insert a MemBar-Release
  1036 // before a FastUnlock or volatile-store.  All volatiles need to be
  1037 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
  1038 // separate it from any following volatile-load.
  1039 class MemBarNode: public MultiNode {
  1040   virtual uint hash() const ;                  // { return NO_HASH; }
  1041   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
  1043   virtual uint size_of() const { return sizeof(*this); }
  1044   // Memory type this node is serializing.  Usually either rawptr or bottom.
  1045   const TypePtr* _adr_type;
  1047 public:
  1048   enum {
  1049     Precedent = TypeFunc::Parms  // optional edge to force precedence
  1050   };
  1051   MemBarNode(Compile* C, int alias_idx, Node* precedent);
  1052   virtual int Opcode() const = 0;
  1053   virtual const class TypePtr *adr_type() const { return _adr_type; }
  1054   virtual const Type *Value( PhaseTransform *phase ) const;
  1055   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  1056   virtual uint match_edge(uint idx) const { return 0; }
  1057   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
  1058   virtual Node *match( const ProjNode *proj, const Matcher *m );
  1059   // Factory method.  Builds a wide or narrow membar.
  1060   // Optional 'precedent' becomes an extra edge if not null.
  1061   static MemBarNode* make(Compile* C, int opcode,
  1062                           int alias_idx = Compile::AliasIdxBot,
  1063                           Node* precedent = NULL);
  1064 };
  1066 // "Acquire" - no following ref can move before (but earlier refs can
  1067 // follow, like an early Load stalled in cache).  Requires multi-cpu
  1068 // visibility.  Inserted after a volatile load.
  1069 class MemBarAcquireNode: public MemBarNode {
  1070 public:
  1071   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
  1072     : MemBarNode(C, alias_idx, precedent) {}
  1073   virtual int Opcode() const;
  1074 };
  1076 // "Acquire" - no following ref can move before (but earlier refs can
  1077 // follow, like an early Load stalled in cache).  Requires multi-cpu
  1078 // visibility.  Inserted independ of any load, as required
  1079 // for intrinsic sun.misc.Unsafe.loadFence().
  1080 class LoadFenceNode: public MemBarNode {
  1081 public:
  1082   LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
  1083     : MemBarNode(C, alias_idx, precedent) {}
  1084   virtual int Opcode() const;
  1085 };
  1087 // "Release" - no earlier ref can move after (but later refs can move
  1088 // up, like a speculative pipelined cache-hitting Load).  Requires
  1089 // multi-cpu visibility.  Inserted before a volatile store.
  1090 class MemBarReleaseNode: public MemBarNode {
  1091 public:
  1092   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
  1093     : MemBarNode(C, alias_idx, precedent) {}
  1094   virtual int Opcode() const;
  1095 };
  1097 // "Release" - no earlier ref can move after (but later refs can move
  1098 // up, like a speculative pipelined cache-hitting Load).  Requires
  1099 // multi-cpu visibility.  Inserted independent of any store, as required
  1100 // for intrinsic sun.misc.Unsafe.storeFence().
  1101 class StoreFenceNode: public MemBarNode {
  1102 public:
  1103   StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
  1104     : MemBarNode(C, alias_idx, precedent) {}
  1105   virtual int Opcode() const;
  1106 };
  1108 // "Acquire" - no following ref can move before (but earlier refs can
  1109 // follow, like an early Load stalled in cache).  Requires multi-cpu
  1110 // visibility.  Inserted after a FastLock.
  1111 class MemBarAcquireLockNode: public MemBarNode {
  1112 public:
  1113   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
  1114     : MemBarNode(C, alias_idx, precedent) {}
  1115   virtual int Opcode() const;
  1116 };
  1118 // "Release" - no earlier ref can move after (but later refs can move
  1119 // up, like a speculative pipelined cache-hitting Load).  Requires
  1120 // multi-cpu visibility.  Inserted before a FastUnLock.
  1121 class MemBarReleaseLockNode: public MemBarNode {
  1122 public:
  1123   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
  1124     : MemBarNode(C, alias_idx, precedent) {}
  1125   virtual int Opcode() const;
  1126 };
  1128 class MemBarStoreStoreNode: public MemBarNode {
  1129 public:
  1130   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
  1131     : MemBarNode(C, alias_idx, precedent) {
  1132     init_class_id(Class_MemBarStoreStore);
  1134   virtual int Opcode() const;
  1135 };
  1137 // Ordering between a volatile store and a following volatile load.
  1138 // Requires multi-CPU visibility?
  1139 class MemBarVolatileNode: public MemBarNode {
  1140 public:
  1141   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
  1142     : MemBarNode(C, alias_idx, precedent) {}
  1143   virtual int Opcode() const;
  1144 };
  1146 // Ordering within the same CPU.  Used to order unsafe memory references
  1147 // inside the compiler when we lack alias info.  Not needed "outside" the
  1148 // compiler because the CPU does all the ordering for us.
  1149 class MemBarCPUOrderNode: public MemBarNode {
  1150 public:
  1151   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
  1152     : MemBarNode(C, alias_idx, precedent) {}
  1153   virtual int Opcode() const;
  1154   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
  1155 };
  1157 // Isolation of object setup after an AllocateNode and before next safepoint.
  1158 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
  1159 class InitializeNode: public MemBarNode {
  1160   friend class AllocateNode;
  1162   enum {
  1163     Incomplete    = 0,
  1164     Complete      = 1,
  1165     WithArraycopy = 2
  1166   };
  1167   int _is_complete;
  1169   bool _does_not_escape;
  1171 public:
  1172   enum {
  1173     Control    = TypeFunc::Control,
  1174     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
  1175     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
  1176     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
  1177   };
  1179   InitializeNode(Compile* C, int adr_type, Node* rawoop);
  1180   virtual int Opcode() const;
  1181   virtual uint size_of() const { return sizeof(*this); }
  1182   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
  1183   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
  1185   // Manage incoming memory edges via a MergeMem on in(Memory):
  1186   Node* memory(uint alias_idx);
  1188   // The raw memory edge coming directly from the Allocation.
  1189   // The contents of this memory are *always* all-zero-bits.
  1190   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
  1192   // Return the corresponding allocation for this initialization (or null if none).
  1193   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
  1194   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
  1195   AllocateNode* allocation();
  1197   // Anything other than zeroing in this init?
  1198   bool is_non_zero();
  1200   // An InitializeNode must completed before macro expansion is done.
  1201   // Completion requires that the AllocateNode must be followed by
  1202   // initialization of the new memory to zero, then to any initializers.
  1203   bool is_complete() { return _is_complete != Incomplete; }
  1204   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
  1206   // Mark complete.  (Must not yet be complete.)
  1207   void set_complete(PhaseGVN* phase);
  1208   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
  1210   bool does_not_escape() { return _does_not_escape; }
  1211   void set_does_not_escape() { _does_not_escape = true; }
  1213 #ifdef ASSERT
  1214   // ensure all non-degenerate stores are ordered and non-overlapping
  1215   bool stores_are_sane(PhaseTransform* phase);
  1216 #endif //ASSERT
  1218   // See if this store can be captured; return offset where it initializes.
  1219   // Return 0 if the store cannot be moved (any sort of problem).
  1220   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
  1222   // Capture another store; reformat it to write my internal raw memory.
  1223   // Return the captured copy, else NULL if there is some sort of problem.
  1224   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
  1226   // Find captured store which corresponds to the range [start..start+size).
  1227   // Return my own memory projection (meaning the initial zero bits)
  1228   // if there is no such store.  Return NULL if there is a problem.
  1229   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
  1231   // Called when the associated AllocateNode is expanded into CFG.
  1232   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
  1233                         intptr_t header_size, Node* size_in_bytes,
  1234                         PhaseGVN* phase);
  1236  private:
  1237   void remove_extra_zeroes();
  1239   // Find out where a captured store should be placed (or already is placed).
  1240   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
  1241                                      PhaseTransform* phase);
  1243   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
  1245   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
  1247   bool detect_init_independence(Node* n, int& count);
  1249   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
  1250                                PhaseGVN* phase);
  1252   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
  1253 };
  1255 //------------------------------MergeMem---------------------------------------
  1256 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
  1257 class MergeMemNode: public Node {
  1258   virtual uint hash() const ;                  // { return NO_HASH; }
  1259   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
  1260   friend class MergeMemStream;
  1261   MergeMemNode(Node* def);  // clients use MergeMemNode::make
  1263 public:
  1264   // If the input is a whole memory state, clone it with all its slices intact.
  1265   // Otherwise, make a new memory state with just that base memory input.
  1266   // In either case, the result is a newly created MergeMem.
  1267   static MergeMemNode* make(Compile* C, Node* base_memory);
  1269   virtual int Opcode() const;
  1270   virtual Node *Identity( PhaseTransform *phase );
  1271   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  1272   virtual uint ideal_reg() const { return NotAMachineReg; }
  1273   virtual uint match_edge(uint idx) const { return 0; }
  1274   virtual const RegMask &out_RegMask() const;
  1275   virtual const Type *bottom_type() const { return Type::MEMORY; }
  1276   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  1277   // sparse accessors
  1278   // Fetch the previously stored "set_memory_at", or else the base memory.
  1279   // (Caller should clone it if it is a phi-nest.)
  1280   Node* memory_at(uint alias_idx) const;
  1281   // set the memory, regardless of its previous value
  1282   void set_memory_at(uint alias_idx, Node* n);
  1283   // the "base" is the memory that provides the non-finite support
  1284   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
  1285   // warning: setting the base can implicitly set any of the other slices too
  1286   void set_base_memory(Node* def);
  1287   // sentinel value which denotes a copy of the base memory:
  1288   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
  1289   static Node* make_empty_memory(); // where the sentinel comes from
  1290   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
  1291   // hook for the iterator, to perform any necessary setup
  1292   void iteration_setup(const MergeMemNode* other = NULL);
  1293   // push sentinels until I am at least as long as the other (semantic no-op)
  1294   void grow_to_match(const MergeMemNode* other);
  1295   bool verify_sparse() const PRODUCT_RETURN0;
  1296 #ifndef PRODUCT
  1297   virtual void dump_spec(outputStream *st) const;
  1298 #endif
  1299 };
  1301 class MergeMemStream : public StackObj {
  1302  private:
  1303   MergeMemNode*       _mm;
  1304   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
  1305   Node*               _mm_base;  // loop-invariant base memory of _mm
  1306   int                 _idx;
  1307   int                 _cnt;
  1308   Node*               _mem;
  1309   Node*               _mem2;
  1310   int                 _cnt2;
  1312   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
  1313     // subsume_node will break sparseness at times, whenever a memory slice
  1314     // folds down to a copy of the base ("fat") memory.  In such a case,
  1315     // the raw edge will update to base, although it should be top.
  1316     // This iterator will recognize either top or base_memory as an
  1317     // "empty" slice.  See is_empty, is_empty2, and next below.
  1318     //
  1319     // The sparseness property is repaired in MergeMemNode::Ideal.
  1320     // As long as access to a MergeMem goes through this iterator
  1321     // or the memory_at accessor, flaws in the sparseness will
  1322     // never be observed.
  1323     //
  1324     // Also, iteration_setup repairs sparseness.
  1325     assert(mm->verify_sparse(), "please, no dups of base");
  1326     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
  1328     _mm  = mm;
  1329     _mm_base = mm->base_memory();
  1330     _mm2 = mm2;
  1331     _cnt = mm->req();
  1332     _idx = Compile::AliasIdxBot-1; // start at the base memory
  1333     _mem = NULL;
  1334     _mem2 = NULL;
  1337 #ifdef ASSERT
  1338   Node* check_memory() const {
  1339     if (at_base_memory())
  1340       return _mm->base_memory();
  1341     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
  1342       return _mm->memory_at(_idx);
  1343     else
  1344       return _mm_base;
  1346   Node* check_memory2() const {
  1347     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
  1349 #endif
  1351   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
  1352   void assert_synch() const {
  1353     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
  1354            "no side-effects except through the stream");
  1357  public:
  1359   // expected usages:
  1360   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
  1361   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
  1363   // iterate over one merge
  1364   MergeMemStream(MergeMemNode* mm) {
  1365     mm->iteration_setup();
  1366     init(mm);
  1367     debug_only(_cnt2 = 999);
  1369   // iterate in parallel over two merges
  1370   // only iterates through non-empty elements of mm2
  1371   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
  1372     assert(mm2, "second argument must be a MergeMem also");
  1373     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
  1374     mm->iteration_setup(mm2);
  1375     init(mm, mm2);
  1376     _cnt2 = mm2->req();
  1378 #ifdef ASSERT
  1379   ~MergeMemStream() {
  1380     assert_synch();
  1382 #endif
  1384   MergeMemNode* all_memory() const {
  1385     return _mm;
  1387   Node* base_memory() const {
  1388     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
  1389     return _mm_base;
  1391   const MergeMemNode* all_memory2() const {
  1392     assert(_mm2 != NULL, "");
  1393     return _mm2;
  1395   bool at_base_memory() const {
  1396     return _idx == Compile::AliasIdxBot;
  1398   int alias_idx() const {
  1399     assert(_mem, "must call next 1st");
  1400     return _idx;
  1403   const TypePtr* adr_type() const {
  1404     return Compile::current()->get_adr_type(alias_idx());
  1407   const TypePtr* adr_type(Compile* C) const {
  1408     return C->get_adr_type(alias_idx());
  1410   bool is_empty() const {
  1411     assert(_mem, "must call next 1st");
  1412     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
  1413     return _mem->is_top();
  1415   bool is_empty2() const {
  1416     assert(_mem2, "must call next 1st");
  1417     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
  1418     return _mem2->is_top();
  1420   Node* memory() const {
  1421     assert(!is_empty(), "must not be empty");
  1422     assert_synch();
  1423     return _mem;
  1425   // get the current memory, regardless of empty or non-empty status
  1426   Node* force_memory() const {
  1427     assert(!is_empty() || !at_base_memory(), "");
  1428     // Use _mm_base to defend against updates to _mem->base_memory().
  1429     Node *mem = _mem->is_top() ? _mm_base : _mem;
  1430     assert(mem == check_memory(), "");
  1431     return mem;
  1433   Node* memory2() const {
  1434     assert(_mem2 == check_memory2(), "");
  1435     return _mem2;
  1437   void set_memory(Node* mem) {
  1438     if (at_base_memory()) {
  1439       // Note that this does not change the invariant _mm_base.
  1440       _mm->set_base_memory(mem);
  1441     } else {
  1442       _mm->set_memory_at(_idx, mem);
  1444     _mem = mem;
  1445     assert_synch();
  1448   // Recover from a side effect to the MergeMemNode.
  1449   void set_memory() {
  1450     _mem = _mm->in(_idx);
  1453   bool next()  { return next(false); }
  1454   bool next2() { return next(true); }
  1456   bool next_non_empty()  { return next_non_empty(false); }
  1457   bool next_non_empty2() { return next_non_empty(true); }
  1458   // next_non_empty2 can yield states where is_empty() is true
  1460  private:
  1461   // find the next item, which might be empty
  1462   bool next(bool have_mm2) {
  1463     assert((_mm2 != NULL) == have_mm2, "use other next");
  1464     assert_synch();
  1465     if (++_idx < _cnt) {
  1466       // Note:  This iterator allows _mm to be non-sparse.
  1467       // It behaves the same whether _mem is top or base_memory.
  1468       _mem = _mm->in(_idx);
  1469       if (have_mm2)
  1470         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
  1471       return true;
  1473     return false;
  1476   // find the next non-empty item
  1477   bool next_non_empty(bool have_mm2) {
  1478     while (next(have_mm2)) {
  1479       if (!is_empty()) {
  1480         // make sure _mem2 is filled in sensibly
  1481         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
  1482         return true;
  1483       } else if (have_mm2 && !is_empty2()) {
  1484         return true;   // is_empty() == true
  1487     return false;
  1489 };
  1491 //------------------------------Prefetch---------------------------------------
  1493 // Non-faulting prefetch load.  Prefetch for many reads.
  1494 class PrefetchReadNode : public Node {
  1495 public:
  1496   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1497   virtual int Opcode() const;
  1498   virtual uint ideal_reg() const { return NotAMachineReg; }
  1499   virtual uint match_edge(uint idx) const { return idx==2; }
  1500   virtual const Type *bottom_type() const { return Type::ABIO; }
  1501 };
  1503 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
  1504 class PrefetchWriteNode : public Node {
  1505 public:
  1506   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
  1507   virtual int Opcode() const;
  1508   virtual uint ideal_reg() const { return NotAMachineReg; }
  1509   virtual uint match_edge(uint idx) const { return idx==2; }
  1510   virtual const Type *bottom_type() const { return Type::ABIO; }
  1511 };
  1513 // Allocation prefetch which may fault, TLAB size have to be adjusted.
  1514 class PrefetchAllocationNode : public Node {
  1515 public:
  1516   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
  1517   virtual int Opcode() const;
  1518   virtual uint ideal_reg() const { return NotAMachineReg; }
  1519   virtual uint match_edge(uint idx) const { return idx==2; }
  1520   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
  1521 };
  1523 #endif // SHARE_VM_OPTO_MEMNODE_HPP

mercurial