src/share/vm/opto/memnode.hpp

Wed, 23 Nov 2016 23:01:34 -0800

author
shshahma
date
Wed, 23 Nov 2016 23:01:34 -0800
changeset 8653
0ffee573412b
parent 7859
c1c199dde5c9
child 8856
ac27a9c85bea
child 8879
6bc9abf210fd
permissions
-rw-r--r--

8140309: [REDO] failed: no mismatched stores, except on raw memory: StoreB StoreI
Summary: Mismatched stores on same slice possible with Unsafe.Put*Unaligned methods
Reviewed-by: kvn, thartmann

duke@435 1 /*
mikael@6198 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
stefank@2314 26 #define SHARE_VM_OPTO_MEMNODE_HPP
stefank@2314 27
stefank@2314 28 #include "opto/multnode.hpp"
stefank@2314 29 #include "opto/node.hpp"
stefank@2314 30 #include "opto/opcodes.hpp"
stefank@2314 31 #include "opto/type.hpp"
stefank@2314 32
duke@435 33 // Portions of code courtesy of Clifford Click
duke@435 34
duke@435 35 class MultiNode;
duke@435 36 class PhaseCCP;
duke@435 37 class PhaseTransform;
duke@435 38
duke@435 39 //------------------------------MemNode----------------------------------------
duke@435 40 // Load or Store, possibly throwing a NULL pointer exception
duke@435 41 class MemNode : public Node {
shshahma@8653 42 private:
shshahma@8653 43 bool _unaligned_access; // Unaligned access from unsafe
shshahma@8653 44 bool _mismatched_access; // Mismatched access from unsafe: byte read in integer array for instance
duke@435 45 protected:
duke@435 46 #ifdef ASSERT
duke@435 47 const TypePtr* _adr_type; // What kind of memory is being addressed?
duke@435 48 #endif
shshahma@8653 49 virtual uint size_of() const;
duke@435 50 public:
duke@435 51 enum { Control, // When is it safe to do this load?
duke@435 52 Memory, // Chunk of memory is being loaded from
duke@435 53 Address, // Actually address, derived from base
duke@435 54 ValueIn, // Value to store
duke@435 55 OopStore // Preceeding oop store, only in StoreCM
duke@435 56 };
goetz@6479 57 typedef enum { unordered = 0,
goetz@6479 58 acquire, // Load has to acquire or be succeeded by MemBarAcquire.
goetz@6479 59 release // Store has to release or be preceded by MemBarRelease.
goetz@6479 60 } MemOrd;
duke@435 61 protected:
duke@435 62 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
shshahma@8653 63 : Node(c0,c1,c2 ), _unaligned_access(false), _mismatched_access(false) {
duke@435 64 init_class_id(Class_Mem);
duke@435 65 debug_only(_adr_type=at; adr_type();)
duke@435 66 }
duke@435 67 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
shshahma@8653 68 : Node(c0,c1,c2,c3), _unaligned_access(false), _mismatched_access(false) {
duke@435 69 init_class_id(Class_Mem);
duke@435 70 debug_only(_adr_type=at; adr_type();)
duke@435 71 }
duke@435 72 MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
shshahma@8653 73 : Node(c0,c1,c2,c3,c4), _unaligned_access(false), _mismatched_access(false) {
duke@435 74 init_class_id(Class_Mem);
duke@435 75 debug_only(_adr_type=at; adr_type();)
duke@435 76 }
duke@435 77
kvn@468 78 public:
duke@435 79 // Helpers for the optimizer. Documented in memnode.cpp.
duke@435 80 static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
duke@435 81 Node* p2, AllocateNode* a2,
duke@435 82 PhaseTransform* phase);
duke@435 83 static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
duke@435 84
kvn@5110 85 static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
kvn@5110 86 static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
duke@435 87 // This one should probably be a phase-specific function:
kvn@520 88 static bool all_controls_dominate(Node* dom, Node* sub);
duke@435 89
kvn@598 90 // Find any cast-away of null-ness and keep its control.
kvn@598 91 static Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
duke@435 92 virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
duke@435 93
duke@435 94 virtual const class TypePtr *adr_type() const; // returns bottom_type of address
duke@435 95
duke@435 96 // Shared code for Ideal methods:
duke@435 97 Node *Ideal_common(PhaseGVN *phase, bool can_reshape); // Return -1 for short-circuit NULL.
duke@435 98
duke@435 99 // Helper function for adr_type() implementations.
duke@435 100 static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
duke@435 101
duke@435 102 // Raw access function, to allow copying of adr_type efficiently in
duke@435 103 // product builds and retain the debug info for debug builds.
duke@435 104 const TypePtr *raw_adr_type() const {
duke@435 105 #ifdef ASSERT
duke@435 106 return _adr_type;
duke@435 107 #else
duke@435 108 return 0;
duke@435 109 #endif
duke@435 110 }
duke@435 111
duke@435 112 // Map a load or store opcode to its corresponding store opcode.
duke@435 113 // (Return -1 if unknown.)
duke@435 114 virtual int store_Opcode() const { return -1; }
duke@435 115
duke@435 116 // What is the type of the value in memory? (T_VOID mean "unspecified".)
duke@435 117 virtual BasicType memory_type() const = 0;
kvn@464 118 virtual int memory_size() const {
kvn@464 119 #ifdef ASSERT
kvn@464 120 return type2aelembytes(memory_type(), true);
kvn@464 121 #else
kvn@464 122 return type2aelembytes(memory_type());
kvn@464 123 #endif
kvn@464 124 }
duke@435 125
duke@435 126 // Search through memory states which precede this node (load or store).
duke@435 127 // Look for an exact match for the address, with no intervening
duke@435 128 // aliased stores.
duke@435 129 Node* find_previous_store(PhaseTransform* phase);
duke@435 130
duke@435 131 // Can this node (load or store) accurately see a stored value in
duke@435 132 // the given memory state? (The state may or may not be in(Memory).)
duke@435 133 Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
duke@435 134
shshahma@8653 135 void set_unaligned_access() { _unaligned_access = true; }
shshahma@8653 136 bool is_unaligned_access() const { return _unaligned_access; }
shshahma@8653 137 void set_mismatched_access() { _mismatched_access = true; }
shshahma@8653 138 bool is_mismatched_access() const { return _mismatched_access; }
shshahma@8653 139
duke@435 140 #ifndef PRODUCT
duke@435 141 static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
duke@435 142 virtual void dump_spec(outputStream *st) const;
duke@435 143 #endif
duke@435 144 };
duke@435 145
duke@435 146 //------------------------------LoadNode---------------------------------------
duke@435 147 // Load value; requires Memory and Address
duke@435 148 class LoadNode : public MemNode {
roland@7859 149 public:
roland@7859 150 // Some loads (from unsafe) should be pinned: they don't depend only
roland@7859 151 // on the dominating test. The boolean field _depends_only_on_test
roland@7859 152 // below records whether that node depends only on the dominating
roland@7859 153 // test.
roland@7859 154 // Methods used to build LoadNodes pass an argument of type enum
roland@7859 155 // ControlDependency instead of a boolean because those methods
roland@7859 156 // typically have multiple boolean parameters with default values:
roland@7859 157 // passing the wrong boolean to one of these parameters by mistake
roland@7859 158 // goes easily unnoticed. Using an enum, the compiler can check that
roland@7859 159 // the type of a value and the type of the parameter match.
roland@7859 160 enum ControlDependency {
roland@7859 161 Pinned,
roland@7859 162 DependsOnlyOnTest
roland@7859 163 };
goetz@6479 164 private:
roland@7859 165 // LoadNode::hash() doesn't take the _depends_only_on_test field
roland@7859 166 // into account: If the graph already has a non-pinned LoadNode and
roland@7859 167 // we add a pinned LoadNode with the same inputs, it's safe for GVN
roland@7859 168 // to replace the pinned LoadNode with the non-pinned LoadNode,
roland@7859 169 // otherwise it wouldn't be safe to have a non pinned LoadNode with
roland@7859 170 // those inputs in the first place. If the graph already has a
roland@7859 171 // pinned LoadNode and we add a non pinned LoadNode with the same
roland@7859 172 // inputs, it's safe (but suboptimal) for GVN to replace the
roland@7859 173 // non-pinned LoadNode by the pinned LoadNode.
roland@7859 174 bool _depends_only_on_test;
roland@7859 175
goetz@6479 176 // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
goetz@6479 177 // loads that can be reordered, and such requiring acquire semantics to
goetz@6479 178 // adhere to the Java specification. The required behaviour is stored in
goetz@6479 179 // this field.
goetz@6479 180 const MemOrd _mo;
goetz@6479 181
duke@435 182 protected:
goetz@6479 183 virtual uint cmp(const Node &n) const;
duke@435 184 virtual uint size_of() const; // Size is bigger
zmajo@7341 185 // Should LoadNode::Ideal() attempt to remove control edges?
zmajo@7341 186 virtual bool can_remove_control() const;
duke@435 187 const Type* const _type; // What kind of value is loaded?
duke@435 188 public:
duke@435 189
roland@7859 190 LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
roland@7859 191 : MemNode(c,mem,adr,at), _type(rt), _mo(mo), _depends_only_on_test(control_dependency == DependsOnlyOnTest) {
duke@435 192 init_class_id(Class_Load);
duke@435 193 }
goetz@6479 194 inline bool is_unordered() const { return !is_acquire(); }
goetz@6479 195 inline bool is_acquire() const {
goetz@6479 196 assert(_mo == unordered || _mo == acquire, "unexpected");
goetz@6479 197 return _mo == acquire;
goetz@6479 198 }
duke@435 199
duke@435 200 // Polymorphic factory method:
goetz@6479 201 static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
roland@7859 202 const TypePtr* at, const Type *rt, BasicType bt,
roland@7859 203 MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
duke@435 204
duke@435 205 virtual uint hash() const; // Check the type
duke@435 206
duke@435 207 // Handle algebraic identities here. If we have an identity, return the Node
duke@435 208 // we are equivalent to. We look for Load of a Store.
duke@435 209 virtual Node *Identity( PhaseTransform *phase );
duke@435 210
zmajo@7341 211 // If the load is from Field memory and the pointer is non-null, it might be possible to
duke@435 212 // zero out the control input.
zmajo@7341 213 // If the offset is constant and the base is an object allocation,
zmajo@7341 214 // try to hook me up to the exact initializing store.
duke@435 215 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 216
kvn@598 217 // Split instance field load through Phi.
kvn@598 218 Node* split_through_phi(PhaseGVN *phase);
kvn@598 219
never@452 220 // Recover original value from boxed values
never@452 221 Node *eliminate_autobox(PhaseGVN *phase);
never@452 222
duke@435 223 // Compute a new Type for this node. Basically we just do the pre-check,
duke@435 224 // then call the virtual add() to set the type.
duke@435 225 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 226
kvn@599 227 // Common methods for LoadKlass and LoadNKlass nodes.
kvn@599 228 const Type *klass_value_common( PhaseTransform *phase ) const;
kvn@599 229 Node *klass_identity_common( PhaseTransform *phase );
kvn@599 230
duke@435 231 virtual uint ideal_reg() const;
duke@435 232 virtual const Type *bottom_type() const;
duke@435 233 // Following method is copied from TypeNode:
duke@435 234 void set_type(const Type* t) {
duke@435 235 assert(t != NULL, "sanity");
duke@435 236 debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
duke@435 237 *(const Type**)&_type = t; // cast away const-ness
duke@435 238 // If this node is in the hash table, make sure it doesn't need a rehash.
duke@435 239 assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
duke@435 240 }
duke@435 241 const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
duke@435 242
duke@435 243 // Do not match memory edge
duke@435 244 virtual uint match_edge(uint idx) const;
duke@435 245
duke@435 246 // Map a load opcode to its corresponding store opcode.
duke@435 247 virtual int store_Opcode() const = 0;
duke@435 248
kvn@499 249 // Check if the load's memory input is a Phi node with the same control.
kvn@499 250 bool is_instance_field_load_with_local_phi(Node* ctrl);
kvn@499 251
duke@435 252 #ifndef PRODUCT
duke@435 253 virtual void dump_spec(outputStream *st) const;
duke@435 254 #endif
kvn@1964 255 #ifdef ASSERT
kvn@1964 256 // Helper function to allow a raw load without control edge for some cases
kvn@1964 257 static bool is_immutable_value(Node* adr);
kvn@1964 258 #endif
duke@435 259 protected:
duke@435 260 const Type* load_array_final_field(const TypeKlassPtr *tkls,
duke@435 261 ciKlass* klass) const;
iveresov@6070 262 // depends_only_on_test is almost always true, and needs to be almost always
iveresov@6070 263 // true to enable key hoisting & commoning optimizations. However, for the
iveresov@6070 264 // special case of RawPtr loads from TLS top & end, and other loads performed by
iveresov@6070 265 // GC barriers, the control edge carries the dependence preventing hoisting past
iveresov@6070 266 // a Safepoint instead of the memory edge. (An unfortunate consequence of having
iveresov@6070 267 // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
iveresov@6070 268 // which produce results (new raw memory state) inside of loops preventing all
iveresov@6070 269 // manner of other optimizations). Basically, it's ugly but so is the alternative.
iveresov@6070 270 // See comment in macro.cpp, around line 125 expand_allocate_common().
roland@7859 271 virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM && _depends_only_on_test; }
duke@435 272 };
duke@435 273
duke@435 274 //------------------------------LoadBNode--------------------------------------
duke@435 275 // Load a byte (8bits signed) from memory
duke@435 276 class LoadBNode : public LoadNode {
duke@435 277 public:
roland@7859 278 LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 279 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
duke@435 280 virtual int Opcode() const;
duke@435 281 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 282 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
kvn@3442 283 virtual const Type *Value(PhaseTransform *phase) const;
duke@435 284 virtual int store_Opcode() const { return Op_StoreB; }
duke@435 285 virtual BasicType memory_type() const { return T_BYTE; }
duke@435 286 };
duke@435 287
twisti@1059 288 //------------------------------LoadUBNode-------------------------------------
twisti@1059 289 // Load a unsigned byte (8bits unsigned) from memory
twisti@1059 290 class LoadUBNode : public LoadNode {
twisti@1059 291 public:
roland@7859 292 LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 293 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
twisti@1059 294 virtual int Opcode() const;
twisti@1059 295 virtual uint ideal_reg() const { return Op_RegI; }
twisti@1059 296 virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
kvn@3442 297 virtual const Type *Value(PhaseTransform *phase) const;
twisti@1059 298 virtual int store_Opcode() const { return Op_StoreB; }
twisti@1059 299 virtual BasicType memory_type() const { return T_BYTE; }
twisti@1059 300 };
twisti@1059 301
twisti@993 302 //------------------------------LoadUSNode-------------------------------------
twisti@993 303 // Load an unsigned short/char (16bits unsigned) from memory
twisti@993 304 class LoadUSNode : public LoadNode {
duke@435 305 public:
roland@7859 306 LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 307 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
duke@435 308 virtual int Opcode() const;
duke@435 309 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 310 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
kvn@3442 311 virtual const Type *Value(PhaseTransform *phase) const;
duke@435 312 virtual int store_Opcode() const { return Op_StoreC; }
duke@435 313 virtual BasicType memory_type() const { return T_CHAR; }
duke@435 314 };
duke@435 315
kvn@3442 316 //------------------------------LoadSNode--------------------------------------
kvn@3442 317 // Load a short (16bits signed) from memory
kvn@3442 318 class LoadSNode : public LoadNode {
kvn@3442 319 public:
roland@7859 320 LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 321 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
kvn@3442 322 virtual int Opcode() const;
kvn@3442 323 virtual uint ideal_reg() const { return Op_RegI; }
kvn@3442 324 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
kvn@3442 325 virtual const Type *Value(PhaseTransform *phase) const;
kvn@3442 326 virtual int store_Opcode() const { return Op_StoreC; }
kvn@3442 327 virtual BasicType memory_type() const { return T_SHORT; }
kvn@3442 328 };
kvn@3442 329
duke@435 330 //------------------------------LoadINode--------------------------------------
duke@435 331 // Load an integer from memory
duke@435 332 class LoadINode : public LoadNode {
duke@435 333 public:
roland@7859 334 LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 335 : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
duke@435 336 virtual int Opcode() const;
duke@435 337 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 338 virtual int store_Opcode() const { return Op_StoreI; }
duke@435 339 virtual BasicType memory_type() const { return T_INT; }
duke@435 340 };
duke@435 341
duke@435 342 //------------------------------LoadRangeNode----------------------------------
duke@435 343 // Load an array length from the array
duke@435 344 class LoadRangeNode : public LoadINode {
duke@435 345 public:
goetz@6479 346 LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
goetz@6479 347 : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
duke@435 348 virtual int Opcode() const;
duke@435 349 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 350 virtual Node *Identity( PhaseTransform *phase );
rasbold@801 351 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 352 };
duke@435 353
duke@435 354 //------------------------------LoadLNode--------------------------------------
duke@435 355 // Load a long from memory
duke@435 356 class LoadLNode : public LoadNode {
duke@435 357 virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
duke@435 358 virtual uint cmp( const Node &n ) const {
duke@435 359 return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
duke@435 360 && LoadNode::cmp(n);
duke@435 361 }
duke@435 362 virtual uint size_of() const { return sizeof(*this); }
duke@435 363 const bool _require_atomic_access; // is piecewise load forbidden?
duke@435 364
duke@435 365 public:
goetz@6479 366 LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
roland@7859 367 MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
roland@7859 368 : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
duke@435 369 virtual int Opcode() const;
duke@435 370 virtual uint ideal_reg() const { return Op_RegL; }
duke@435 371 virtual int store_Opcode() const { return Op_StoreL; }
duke@435 372 virtual BasicType memory_type() const { return T_LONG; }
anoll@7858 373 bool require_atomic_access() const { return _require_atomic_access; }
goetz@6479 374 static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
roland@7859 375 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
duke@435 376 #ifndef PRODUCT
duke@435 377 virtual void dump_spec(outputStream *st) const {
duke@435 378 LoadNode::dump_spec(st);
duke@435 379 if (_require_atomic_access) st->print(" Atomic!");
duke@435 380 }
duke@435 381 #endif
duke@435 382 };
duke@435 383
duke@435 384 //------------------------------LoadL_unalignedNode----------------------------
duke@435 385 // Load a long from unaligned memory
duke@435 386 class LoadL_unalignedNode : public LoadLNode {
duke@435 387 public:
roland@7859 388 LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 389 : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
duke@435 390 virtual int Opcode() const;
duke@435 391 };
duke@435 392
duke@435 393 //------------------------------LoadFNode--------------------------------------
duke@435 394 // Load a float (64 bits) from memory
duke@435 395 class LoadFNode : public LoadNode {
duke@435 396 public:
roland@7859 397 LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 398 : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
duke@435 399 virtual int Opcode() const;
duke@435 400 virtual uint ideal_reg() const { return Op_RegF; }
duke@435 401 virtual int store_Opcode() const { return Op_StoreF; }
duke@435 402 virtual BasicType memory_type() const { return T_FLOAT; }
duke@435 403 };
duke@435 404
duke@435 405 //------------------------------LoadDNode--------------------------------------
duke@435 406 // Load a double (64 bits) from memory
duke@435 407 class LoadDNode : public LoadNode {
anoll@7858 408 virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
anoll@7858 409 virtual uint cmp( const Node &n ) const {
anoll@7858 410 return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
anoll@7858 411 && LoadNode::cmp(n);
anoll@7858 412 }
anoll@7858 413 virtual uint size_of() const { return sizeof(*this); }
anoll@7858 414 const bool _require_atomic_access; // is piecewise load forbidden?
anoll@7858 415
duke@435 416 public:
anoll@7858 417 LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
roland@7859 418 MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
roland@7859 419 : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
duke@435 420 virtual int Opcode() const;
duke@435 421 virtual uint ideal_reg() const { return Op_RegD; }
duke@435 422 virtual int store_Opcode() const { return Op_StoreD; }
duke@435 423 virtual BasicType memory_type() const { return T_DOUBLE; }
anoll@7858 424 bool require_atomic_access() const { return _require_atomic_access; }
anoll@7858 425 static LoadDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
roland@7859 426 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
anoll@7858 427 #ifndef PRODUCT
anoll@7858 428 virtual void dump_spec(outputStream *st) const {
anoll@7858 429 LoadNode::dump_spec(st);
anoll@7858 430 if (_require_atomic_access) st->print(" Atomic!");
anoll@7858 431 }
anoll@7858 432 #endif
duke@435 433 };
duke@435 434
duke@435 435 //------------------------------LoadD_unalignedNode----------------------------
duke@435 436 // Load a double from unaligned memory
duke@435 437 class LoadD_unalignedNode : public LoadDNode {
duke@435 438 public:
roland@7859 439 LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 440 : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
duke@435 441 virtual int Opcode() const;
duke@435 442 };
duke@435 443
duke@435 444 //------------------------------LoadPNode--------------------------------------
duke@435 445 // Load a pointer from memory (either object or array)
duke@435 446 class LoadPNode : public LoadNode {
duke@435 447 public:
roland@7859 448 LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 449 : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
duke@435 450 virtual int Opcode() const;
duke@435 451 virtual uint ideal_reg() const { return Op_RegP; }
duke@435 452 virtual int store_Opcode() const { return Op_StoreP; }
duke@435 453 virtual BasicType memory_type() const { return T_ADDRESS; }
duke@435 454 };
duke@435 455
coleenp@548 456
coleenp@548 457 //------------------------------LoadNNode--------------------------------------
coleenp@548 458 // Load a narrow oop from memory (either object or array)
coleenp@548 459 class LoadNNode : public LoadNode {
coleenp@548 460 public:
roland@7859 461 LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
roland@7859 462 : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
coleenp@548 463 virtual int Opcode() const;
coleenp@548 464 virtual uint ideal_reg() const { return Op_RegN; }
coleenp@548 465 virtual int store_Opcode() const { return Op_StoreN; }
coleenp@548 466 virtual BasicType memory_type() const { return T_NARROWOOP; }
coleenp@548 467 };
coleenp@548 468
duke@435 469 //------------------------------LoadKlassNode----------------------------------
duke@435 470 // Load a Klass from an object
duke@435 471 class LoadKlassNode : public LoadPNode {
zmajo@7341 472 protected:
zmajo@7341 473 // In most cases, LoadKlassNode does not have the control input set. If the control
zmajo@7341 474 // input is set, it must not be removed (by LoadNode::Ideal()).
zmajo@7341 475 virtual bool can_remove_control() const;
duke@435 476 public:
goetz@6479 477 LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
goetz@6479 478 : LoadPNode(c, mem, adr, at, tk, mo) {}
duke@435 479 virtual int Opcode() const;
duke@435 480 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 481 virtual Node *Identity( PhaseTransform *phase );
duke@435 482 virtual bool depends_only_on_test() const { return true; }
kvn@599 483
kvn@599 484 // Polymorphic factory method:
zmajo@7341 485 static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
zmajo@7341 486 const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
duke@435 487 };
duke@435 488
kvn@599 489 //------------------------------LoadNKlassNode---------------------------------
kvn@599 490 // Load a narrow Klass from an object.
kvn@599 491 class LoadNKlassNode : public LoadNNode {
kvn@599 492 public:
goetz@6479 493 LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
goetz@6479 494 : LoadNNode(c, mem, adr, at, tk, mo) {}
kvn@599 495 virtual int Opcode() const;
kvn@599 496 virtual uint ideal_reg() const { return Op_RegN; }
roland@4159 497 virtual int store_Opcode() const { return Op_StoreNKlass; }
roland@4159 498 virtual BasicType memory_type() const { return T_NARROWKLASS; }
kvn@599 499
kvn@599 500 virtual const Type *Value( PhaseTransform *phase ) const;
kvn@599 501 virtual Node *Identity( PhaseTransform *phase );
kvn@599 502 virtual bool depends_only_on_test() const { return true; }
kvn@599 503 };
kvn@599 504
kvn@599 505
duke@435 506 //------------------------------StoreNode--------------------------------------
duke@435 507 // Store value; requires Store, Address and Value
duke@435 508 class StoreNode : public MemNode {
goetz@6479 509 private:
goetz@6479 510 // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
goetz@6479 511 // stores that can be reordered, and such requiring release semantics to
goetz@6479 512 // adhere to the Java specification. The required behaviour is stored in
goetz@6479 513 // this field.
goetz@6479 514 const MemOrd _mo;
goetz@6479 515 // Needed for proper cloning.
goetz@6479 516 virtual uint size_of() const { return sizeof(*this); }
duke@435 517 protected:
duke@435 518 virtual uint cmp( const Node &n ) const;
duke@435 519 virtual bool depends_only_on_test() const { return false; }
duke@435 520
duke@435 521 Node *Ideal_masked_input (PhaseGVN *phase, uint mask);
duke@435 522 Node *Ideal_sign_extended_input(PhaseGVN *phase, int num_bits);
duke@435 523
duke@435 524 public:
goetz@6479 525 // We must ensure that stores of object references will be visible
goetz@6479 526 // only after the object's initialization. So the callers of this
goetz@6479 527 // procedure must indicate that the store requires `release'
goetz@6479 528 // semantics, if the stored value is an object reference that might
goetz@6479 529 // point to a new object and may become externally visible.
goetz@6479 530 StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 531 : MemNode(c, mem, adr, at, val), _mo(mo) {
duke@435 532 init_class_id(Class_Store);
duke@435 533 }
goetz@6479 534 StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
goetz@6479 535 : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
duke@435 536 init_class_id(Class_Store);
duke@435 537 }
duke@435 538
goetz@6479 539 inline bool is_unordered() const { return !is_release(); }
goetz@6479 540 inline bool is_release() const {
goetz@6479 541 assert((_mo == unordered || _mo == release), "unexpected");
goetz@6479 542 return _mo == release;
goetz@6479 543 }
goetz@6479 544
goetz@6479 545 // Conservatively release stores of object references in order to
goetz@6479 546 // ensure visibility of object initialization.
goetz@6479 547 static inline MemOrd release_if_reference(const BasicType t) {
goetz@6479 548 const MemOrd mo = (t == T_ARRAY ||
goetz@6479 549 t == T_ADDRESS || // Might be the address of an object reference (`boxing').
goetz@6479 550 t == T_OBJECT) ? release : unordered;
goetz@6479 551 return mo;
goetz@6479 552 }
goetz@6479 553
goetz@6479 554 // Polymorphic factory method
goetz@6479 555 //
goetz@6479 556 // We must ensure that stores of object references will be visible
goetz@6479 557 // only after the object's initialization. So the callers of this
goetz@6479 558 // procedure must indicate that the store requires `release'
goetz@6479 559 // semantics, if the stored value is an object reference that might
goetz@6479 560 // point to a new object and may become externally visible.
goetz@6479 561 static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
goetz@6479 562 const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
duke@435 563
duke@435 564 virtual uint hash() const; // Check the type
duke@435 565
duke@435 566 // If the store is to Field memory and the pointer is non-null, we can
duke@435 567 // zero out the control input.
duke@435 568 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 569
duke@435 570 // Compute a new Type for this node. Basically we just do the pre-check,
duke@435 571 // then call the virtual add() to set the type.
duke@435 572 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 573
duke@435 574 // Check for identity function on memory (Load then Store at same address)
duke@435 575 virtual Node *Identity( PhaseTransform *phase );
duke@435 576
duke@435 577 // Do not match memory edge
duke@435 578 virtual uint match_edge(uint idx) const;
duke@435 579
duke@435 580 virtual const Type *bottom_type() const; // returns Type::MEMORY
duke@435 581
duke@435 582 // Map a store opcode to its corresponding own opcode, trivially.
duke@435 583 virtual int store_Opcode() const { return Opcode(); }
duke@435 584
duke@435 585 // have all possible loads of the value stored been optimized away?
duke@435 586 bool value_never_loaded(PhaseTransform *phase) const;
duke@435 587 };
duke@435 588
duke@435 589 //------------------------------StoreBNode-------------------------------------
duke@435 590 // Store byte to memory
duke@435 591 class StoreBNode : public StoreNode {
duke@435 592 public:
goetz@6479 593 StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 594 : StoreNode(c, mem, adr, at, val, mo) {}
duke@435 595 virtual int Opcode() const;
duke@435 596 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 597 virtual BasicType memory_type() const { return T_BYTE; }
duke@435 598 };
duke@435 599
duke@435 600 //------------------------------StoreCNode-------------------------------------
duke@435 601 // Store char/short to memory
duke@435 602 class StoreCNode : public StoreNode {
duke@435 603 public:
goetz@6479 604 StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 605 : StoreNode(c, mem, adr, at, val, mo) {}
duke@435 606 virtual int Opcode() const;
duke@435 607 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 608 virtual BasicType memory_type() const { return T_CHAR; }
duke@435 609 };
duke@435 610
duke@435 611 //------------------------------StoreINode-------------------------------------
duke@435 612 // Store int to memory
duke@435 613 class StoreINode : public StoreNode {
duke@435 614 public:
goetz@6479 615 StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 616 : StoreNode(c, mem, adr, at, val, mo) {}
duke@435 617 virtual int Opcode() const;
duke@435 618 virtual BasicType memory_type() const { return T_INT; }
duke@435 619 };
duke@435 620
duke@435 621 //------------------------------StoreLNode-------------------------------------
duke@435 622 // Store long to memory
duke@435 623 class StoreLNode : public StoreNode {
duke@435 624 virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
duke@435 625 virtual uint cmp( const Node &n ) const {
duke@435 626 return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
duke@435 627 && StoreNode::cmp(n);
duke@435 628 }
duke@435 629 virtual uint size_of() const { return sizeof(*this); }
duke@435 630 const bool _require_atomic_access; // is piecewise store forbidden?
duke@435 631
duke@435 632 public:
goetz@6479 633 StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
goetz@6479 634 : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
duke@435 635 virtual int Opcode() const;
duke@435 636 virtual BasicType memory_type() const { return T_LONG; }
anoll@7858 637 bool require_atomic_access() const { return _require_atomic_access; }
goetz@6479 638 static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
duke@435 639 #ifndef PRODUCT
duke@435 640 virtual void dump_spec(outputStream *st) const {
duke@435 641 StoreNode::dump_spec(st);
duke@435 642 if (_require_atomic_access) st->print(" Atomic!");
duke@435 643 }
duke@435 644 #endif
duke@435 645 };
duke@435 646
duke@435 647 //------------------------------StoreFNode-------------------------------------
duke@435 648 // Store float to memory
duke@435 649 class StoreFNode : public StoreNode {
duke@435 650 public:
goetz@6479 651 StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 652 : StoreNode(c, mem, adr, at, val, mo) {}
duke@435 653 virtual int Opcode() const;
duke@435 654 virtual BasicType memory_type() const { return T_FLOAT; }
duke@435 655 };
duke@435 656
duke@435 657 //------------------------------StoreDNode-------------------------------------
duke@435 658 // Store double to memory
duke@435 659 class StoreDNode : public StoreNode {
anoll@7858 660 virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
anoll@7858 661 virtual uint cmp( const Node &n ) const {
anoll@7858 662 return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
anoll@7858 663 && StoreNode::cmp(n);
anoll@7858 664 }
anoll@7858 665 virtual uint size_of() const { return sizeof(*this); }
anoll@7858 666 const bool _require_atomic_access; // is piecewise store forbidden?
duke@435 667 public:
anoll@7858 668 StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
anoll@7858 669 MemOrd mo, bool require_atomic_access = false)
anoll@7858 670 : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
duke@435 671 virtual int Opcode() const;
duke@435 672 virtual BasicType memory_type() const { return T_DOUBLE; }
anoll@7858 673 bool require_atomic_access() const { return _require_atomic_access; }
anoll@7858 674 static StoreDNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
anoll@7858 675 #ifndef PRODUCT
anoll@7858 676 virtual void dump_spec(outputStream *st) const {
anoll@7858 677 StoreNode::dump_spec(st);
anoll@7858 678 if (_require_atomic_access) st->print(" Atomic!");
anoll@7858 679 }
anoll@7858 680 #endif
anoll@7858 681
duke@435 682 };
duke@435 683
duke@435 684 //------------------------------StorePNode-------------------------------------
duke@435 685 // Store pointer to memory
duke@435 686 class StorePNode : public StoreNode {
duke@435 687 public:
goetz@6479 688 StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 689 : StoreNode(c, mem, adr, at, val, mo) {}
duke@435 690 virtual int Opcode() const;
duke@435 691 virtual BasicType memory_type() const { return T_ADDRESS; }
duke@435 692 };
duke@435 693
coleenp@548 694 //------------------------------StoreNNode-------------------------------------
coleenp@548 695 // Store narrow oop to memory
coleenp@548 696 class StoreNNode : public StoreNode {
coleenp@548 697 public:
goetz@6479 698 StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 699 : StoreNode(c, mem, adr, at, val, mo) {}
coleenp@548 700 virtual int Opcode() const;
coleenp@548 701 virtual BasicType memory_type() const { return T_NARROWOOP; }
coleenp@548 702 };
coleenp@548 703
roland@4159 704 //------------------------------StoreNKlassNode--------------------------------------
roland@4159 705 // Store narrow klass to memory
roland@4159 706 class StoreNKlassNode : public StoreNNode {
roland@4159 707 public:
goetz@6479 708 StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
goetz@6479 709 : StoreNNode(c, mem, adr, at, val, mo) {}
roland@4159 710 virtual int Opcode() const;
roland@4159 711 virtual BasicType memory_type() const { return T_NARROWKLASS; }
roland@4159 712 };
roland@4159 713
duke@435 714 //------------------------------StoreCMNode-----------------------------------
duke@435 715 // Store card-mark byte to memory for CM
duke@435 716 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
duke@435 717 // Preceeding equivalent StoreCMs may be eliminated.
duke@435 718 class StoreCMNode : public StoreNode {
cfang@1420 719 private:
never@1633 720 virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
never@1633 721 virtual uint cmp( const Node &n ) const {
never@1633 722 return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
never@1633 723 && StoreNode::cmp(n);
never@1633 724 }
never@1633 725 virtual uint size_of() const { return sizeof(*this); }
cfang@1420 726 int _oop_alias_idx; // The alias_idx of OopStore
never@1633 727
duke@435 728 public:
never@1633 729 StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
goetz@6479 730 StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
never@1633 731 _oop_alias_idx(oop_alias_idx) {
never@1633 732 assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
never@1633 733 _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
never@1633 734 "bad oop alias idx");
never@1633 735 }
duke@435 736 virtual int Opcode() const;
duke@435 737 virtual Node *Identity( PhaseTransform *phase );
cfang@1420 738 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 739 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 740 virtual BasicType memory_type() const { return T_VOID; } // unspecific
cfang@1420 741 int oop_alias_idx() const { return _oop_alias_idx; }
duke@435 742 };
duke@435 743
duke@435 744 //------------------------------LoadPLockedNode---------------------------------
duke@435 745 // Load-locked a pointer from memory (either object or array).
duke@435 746 // On Sparc & Intel this is implemented as a normal pointer load.
duke@435 747 // On PowerPC and friends it's a real load-locked.
duke@435 748 class LoadPLockedNode : public LoadPNode {
duke@435 749 public:
goetz@6479 750 LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
goetz@6479 751 : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
duke@435 752 virtual int Opcode() const;
duke@435 753 virtual int store_Opcode() const { return Op_StorePConditional; }
duke@435 754 virtual bool depends_only_on_test() const { return true; }
duke@435 755 };
duke@435 756
duke@435 757 //------------------------------SCMemProjNode---------------------------------------
duke@435 758 // This class defines a projection of the memory state of a store conditional node.
duke@435 759 // These nodes return a value, but also update memory.
duke@435 760 class SCMemProjNode : public ProjNode {
duke@435 761 public:
duke@435 762 enum {SCMEMPROJCON = (uint)-2};
duke@435 763 SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
duke@435 764 virtual int Opcode() const;
duke@435 765 virtual bool is_CFG() const { return false; }
duke@435 766 virtual const Type *bottom_type() const {return Type::MEMORY;}
duke@435 767 virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
duke@435 768 virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
duke@435 769 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 770 #ifndef PRODUCT
duke@435 771 virtual void dump_spec(outputStream *st) const {};
duke@435 772 #endif
duke@435 773 };
duke@435 774
duke@435 775 //------------------------------LoadStoreNode---------------------------
kvn@688 776 // Note: is_Mem() method returns 'true' for this class.
duke@435 777 class LoadStoreNode : public Node {
roland@4106 778 private:
roland@4106 779 const Type* const _type; // What kind of value is loaded?
roland@4106 780 const TypePtr* _adr_type; // What kind of memory is being addressed?
roland@4106 781 virtual uint size_of() const; // Size is bigger
roland@4106 782 public:
roland@4106 783 LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
roland@4106 784 virtual bool depends_only_on_test() const { return false; }
roland@4106 785 virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
roland@4106 786
roland@4106 787 virtual const Type *bottom_type() const { return _type; }
roland@4106 788 virtual uint ideal_reg() const;
roland@4106 789 virtual const class TypePtr *adr_type() const { return _adr_type; } // returns bottom_type of address
roland@4106 790
roland@4106 791 bool result_not_used() const;
roland@4106 792 };
roland@4106 793
roland@4106 794 class LoadStoreConditionalNode : public LoadStoreNode {
duke@435 795 public:
duke@435 796 enum {
duke@435 797 ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
duke@435 798 };
roland@4106 799 LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
duke@435 800 };
duke@435 801
duke@435 802 //------------------------------StorePConditionalNode---------------------------
duke@435 803 // Conditionally store pointer to memory, if no change since prior
duke@435 804 // load-locked. Sets flags for success or failure of the store.
roland@4106 805 class StorePConditionalNode : public LoadStoreConditionalNode {
duke@435 806 public:
roland@4106 807 StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
duke@435 808 virtual int Opcode() const;
duke@435 809 // Produces flags
duke@435 810 virtual uint ideal_reg() const { return Op_RegFlags; }
duke@435 811 };
duke@435 812
kvn@855 813 //------------------------------StoreIConditionalNode---------------------------
kvn@855 814 // Conditionally store int to memory, if no change since prior
kvn@855 815 // load-locked. Sets flags for success or failure of the store.
roland@4106 816 class StoreIConditionalNode : public LoadStoreConditionalNode {
kvn@855 817 public:
roland@4106 818 StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
kvn@855 819 virtual int Opcode() const;
kvn@855 820 // Produces flags
kvn@855 821 virtual uint ideal_reg() const { return Op_RegFlags; }
kvn@855 822 };
kvn@855 823
duke@435 824 //------------------------------StoreLConditionalNode---------------------------
duke@435 825 // Conditionally store long to memory, if no change since prior
duke@435 826 // load-locked. Sets flags for success or failure of the store.
roland@4106 827 class StoreLConditionalNode : public LoadStoreConditionalNode {
duke@435 828 public:
roland@4106 829 StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
duke@435 830 virtual int Opcode() const;
kvn@855 831 // Produces flags
kvn@855 832 virtual uint ideal_reg() const { return Op_RegFlags; }
duke@435 833 };
duke@435 834
duke@435 835
duke@435 836 //------------------------------CompareAndSwapLNode---------------------------
roland@4106 837 class CompareAndSwapLNode : public LoadStoreConditionalNode {
duke@435 838 public:
roland@4106 839 CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
duke@435 840 virtual int Opcode() const;
duke@435 841 };
duke@435 842
duke@435 843
duke@435 844 //------------------------------CompareAndSwapINode---------------------------
roland@4106 845 class CompareAndSwapINode : public LoadStoreConditionalNode {
duke@435 846 public:
roland@4106 847 CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
duke@435 848 virtual int Opcode() const;
duke@435 849 };
duke@435 850
duke@435 851
duke@435 852 //------------------------------CompareAndSwapPNode---------------------------
roland@4106 853 class CompareAndSwapPNode : public LoadStoreConditionalNode {
duke@435 854 public:
roland@4106 855 CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
duke@435 856 virtual int Opcode() const;
duke@435 857 };
duke@435 858
coleenp@548 859 //------------------------------CompareAndSwapNNode---------------------------
roland@4106 860 class CompareAndSwapNNode : public LoadStoreConditionalNode {
coleenp@548 861 public:
roland@4106 862 CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
roland@4106 863 virtual int Opcode() const;
roland@4106 864 };
roland@4106 865
roland@4106 866 //------------------------------GetAndAddINode---------------------------
roland@4106 867 class GetAndAddINode : public LoadStoreNode {
roland@4106 868 public:
roland@4106 869 GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
roland@4106 870 virtual int Opcode() const;
roland@4106 871 };
roland@4106 872
roland@4106 873 //------------------------------GetAndAddLNode---------------------------
roland@4106 874 class GetAndAddLNode : public LoadStoreNode {
roland@4106 875 public:
roland@4106 876 GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
roland@4106 877 virtual int Opcode() const;
roland@4106 878 };
roland@4106 879
roland@4106 880
roland@4106 881 //------------------------------GetAndSetINode---------------------------
roland@4106 882 class GetAndSetINode : public LoadStoreNode {
roland@4106 883 public:
roland@4106 884 GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
roland@4106 885 virtual int Opcode() const;
roland@4106 886 };
roland@4106 887
roland@4106 888 //------------------------------GetAndSetINode---------------------------
roland@4106 889 class GetAndSetLNode : public LoadStoreNode {
roland@4106 890 public:
roland@4106 891 GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
roland@4106 892 virtual int Opcode() const;
roland@4106 893 };
roland@4106 894
roland@4106 895 //------------------------------GetAndSetPNode---------------------------
roland@4106 896 class GetAndSetPNode : public LoadStoreNode {
roland@4106 897 public:
roland@4106 898 GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
roland@4106 899 virtual int Opcode() const;
roland@4106 900 };
roland@4106 901
roland@4106 902 //------------------------------GetAndSetNNode---------------------------
roland@4106 903 class GetAndSetNNode : public LoadStoreNode {
roland@4106 904 public:
roland@4106 905 GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
coleenp@548 906 virtual int Opcode() const;
coleenp@548 907 };
coleenp@548 908
duke@435 909 //------------------------------ClearArray-------------------------------------
duke@435 910 class ClearArrayNode: public Node {
duke@435 911 public:
kvn@1535 912 ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
kvn@1535 913 : Node(ctrl,arymem,word_cnt,base) {
kvn@1535 914 init_class_id(Class_ClearArray);
kvn@1535 915 }
duke@435 916 virtual int Opcode() const;
duke@435 917 virtual const Type *bottom_type() const { return Type::MEMORY; }
duke@435 918 // ClearArray modifies array elements, and so affects only the
duke@435 919 // array memory addressed by the bottom_type of its base address.
duke@435 920 virtual const class TypePtr *adr_type() const;
duke@435 921 virtual Node *Identity( PhaseTransform *phase );
duke@435 922 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 923 virtual uint match_edge(uint idx) const;
duke@435 924
duke@435 925 // Clear the given area of an object or array.
duke@435 926 // The start offset must always be aligned mod BytesPerInt.
duke@435 927 // The end offset must always be aligned mod BytesPerLong.
duke@435 928 // Return the new memory.
duke@435 929 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 930 intptr_t start_offset,
duke@435 931 intptr_t end_offset,
duke@435 932 PhaseGVN* phase);
duke@435 933 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 934 intptr_t start_offset,
duke@435 935 Node* end_offset,
duke@435 936 PhaseGVN* phase);
duke@435 937 static Node* clear_memory(Node* control, Node* mem, Node* dest,
duke@435 938 Node* start_offset,
duke@435 939 Node* end_offset,
duke@435 940 PhaseGVN* phase);
kvn@1535 941 // Return allocation input memory edge if it is different instance
kvn@1535 942 // or itself if it is the one we are looking for.
kvn@1535 943 static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
duke@435 944 };
duke@435 945
kvn@2694 946 //------------------------------StrIntrinsic-------------------------------
kvn@2694 947 // Base class for Ideal nodes used in String instrinsic code.
kvn@2694 948 class StrIntrinsicNode: public Node {
duke@435 949 public:
kvn@2694 950 StrIntrinsicNode(Node* control, Node* char_array_mem,
kvn@2694 951 Node* s1, Node* c1, Node* s2, Node* c2):
kvn@2694 952 Node(control, char_array_mem, s1, c1, s2, c2) {
kvn@2694 953 }
kvn@2694 954
kvn@2694 955 StrIntrinsicNode(Node* control, Node* char_array_mem,
kvn@2694 956 Node* s1, Node* s2, Node* c):
kvn@2694 957 Node(control, char_array_mem, s1, s2, c) {
kvn@2694 958 }
kvn@2694 959
kvn@2694 960 StrIntrinsicNode(Node* control, Node* char_array_mem,
kvn@2694 961 Node* s1, Node* s2):
kvn@2694 962 Node(control, char_array_mem, s1, s2) {
kvn@2694 963 }
kvn@2694 964
duke@435 965 virtual bool depends_only_on_test() const { return false; }
kvn@1421 966 virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
duke@435 967 virtual uint match_edge(uint idx) const;
duke@435 968 virtual uint ideal_reg() const { return Op_RegI; }
duke@435 969 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
kvn@3311 970 virtual const Type *Value(PhaseTransform *phase) const;
duke@435 971 };
duke@435 972
kvn@2694 973 //------------------------------StrComp-------------------------------------
kvn@2694 974 class StrCompNode: public StrIntrinsicNode {
kvn@2694 975 public:
kvn@2694 976 StrCompNode(Node* control, Node* char_array_mem,
kvn@2694 977 Node* s1, Node* c1, Node* s2, Node* c2):
kvn@2694 978 StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
kvn@2694 979 virtual int Opcode() const;
kvn@2694 980 virtual const Type* bottom_type() const { return TypeInt::INT; }
kvn@2694 981 };
kvn@2694 982
cfang@1116 983 //------------------------------StrEquals-------------------------------------
kvn@2694 984 class StrEqualsNode: public StrIntrinsicNode {
cfang@1116 985 public:
kvn@1421 986 StrEqualsNode(Node* control, Node* char_array_mem,
kvn@2694 987 Node* s1, Node* s2, Node* c):
kvn@2694 988 StrIntrinsicNode(control, char_array_mem, s1, s2, c) {};
cfang@1116 989 virtual int Opcode() const;
cfang@1116 990 virtual const Type* bottom_type() const { return TypeInt::BOOL; }
cfang@1116 991 };
cfang@1116 992
cfang@1116 993 //------------------------------StrIndexOf-------------------------------------
kvn@2694 994 class StrIndexOfNode: public StrIntrinsicNode {
cfang@1116 995 public:
kvn@1421 996 StrIndexOfNode(Node* control, Node* char_array_mem,
kvn@2694 997 Node* s1, Node* c1, Node* s2, Node* c2):
kvn@2694 998 StrIntrinsicNode(control, char_array_mem, s1, c1, s2, c2) {};
cfang@1116 999 virtual int Opcode() const;
cfang@1116 1000 virtual const Type* bottom_type() const { return TypeInt::INT; }
cfang@1116 1001 };
cfang@1116 1002
rasbold@604 1003 //------------------------------AryEq---------------------------------------
kvn@2694 1004 class AryEqNode: public StrIntrinsicNode {
rasbold@604 1005 public:
kvn@2694 1006 AryEqNode(Node* control, Node* char_array_mem, Node* s1, Node* s2):
kvn@2694 1007 StrIntrinsicNode(control, char_array_mem, s1, s2) {};
rasbold@604 1008 virtual int Opcode() const;
rasbold@604 1009 virtual const Type* bottom_type() const { return TypeInt::BOOL; }
rasbold@604 1010 };
rasbold@604 1011
kvn@4479 1012
kvn@4479 1013 //------------------------------EncodeISOArray--------------------------------
kvn@4479 1014 // encode char[] to byte[] in ISO_8859_1
kvn@4479 1015 class EncodeISOArrayNode: public Node {
kvn@4479 1016 public:
kvn@4479 1017 EncodeISOArrayNode(Node *control, Node* arymem, Node* s1, Node* s2, Node* c): Node(control, arymem, s1, s2, c) {};
kvn@4479 1018 virtual int Opcode() const;
kvn@4479 1019 virtual bool depends_only_on_test() const { return false; }
kvn@4479 1020 virtual const Type* bottom_type() const { return TypeInt::INT; }
kvn@4479 1021 virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
kvn@4479 1022 virtual uint match_edge(uint idx) const;
kvn@4479 1023 virtual uint ideal_reg() const { return Op_RegI; }
kvn@4479 1024 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
kvn@4479 1025 virtual const Type *Value(PhaseTransform *phase) const;
kvn@4479 1026 };
kvn@4479 1027
duke@435 1028 //------------------------------MemBar-----------------------------------------
duke@435 1029 // There are different flavors of Memory Barriers to match the Java Memory
duke@435 1030 // Model. Monitor-enter and volatile-load act as Aquires: no following ref
duke@435 1031 // can be moved to before them. We insert a MemBar-Acquire after a FastLock or
duke@435 1032 // volatile-load. Monitor-exit and volatile-store act as Release: no
twisti@1040 1033 // preceding ref can be moved to after them. We insert a MemBar-Release
duke@435 1034 // before a FastUnlock or volatile-store. All volatiles need to be
duke@435 1035 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
twisti@1040 1036 // separate it from any following volatile-load.
duke@435 1037 class MemBarNode: public MultiNode {
duke@435 1038 virtual uint hash() const ; // { return NO_HASH; }
duke@435 1039 virtual uint cmp( const Node &n ) const ; // Always fail, except on self
duke@435 1040
duke@435 1041 virtual uint size_of() const { return sizeof(*this); }
duke@435 1042 // Memory type this node is serializing. Usually either rawptr or bottom.
duke@435 1043 const TypePtr* _adr_type;
duke@435 1044
duke@435 1045 public:
duke@435 1046 enum {
duke@435 1047 Precedent = TypeFunc::Parms // optional edge to force precedence
duke@435 1048 };
duke@435 1049 MemBarNode(Compile* C, int alias_idx, Node* precedent);
duke@435 1050 virtual int Opcode() const = 0;
duke@435 1051 virtual const class TypePtr *adr_type() const { return _adr_type; }
duke@435 1052 virtual const Type *Value( PhaseTransform *phase ) const;
duke@435 1053 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 1054 virtual uint match_edge(uint idx) const { return 0; }
duke@435 1055 virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
duke@435 1056 virtual Node *match( const ProjNode *proj, const Matcher *m );
duke@435 1057 // Factory method. Builds a wide or narrow membar.
duke@435 1058 // Optional 'precedent' becomes an extra edge if not null.
duke@435 1059 static MemBarNode* make(Compile* C, int opcode,
duke@435 1060 int alias_idx = Compile::AliasIdxBot,
duke@435 1061 Node* precedent = NULL);
duke@435 1062 };
duke@435 1063
duke@435 1064 // "Acquire" - no following ref can move before (but earlier refs can
duke@435 1065 // follow, like an early Load stalled in cache). Requires multi-cpu
roland@3047 1066 // visibility. Inserted after a volatile load.
duke@435 1067 class MemBarAcquireNode: public MemBarNode {
duke@435 1068 public:
duke@435 1069 MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
duke@435 1070 : MemBarNode(C, alias_idx, precedent) {}
duke@435 1071 virtual int Opcode() const;
duke@435 1072 };
duke@435 1073
goetz@6489 1074 // "Acquire" - no following ref can move before (but earlier refs can
goetz@6489 1075 // follow, like an early Load stalled in cache). Requires multi-cpu
goetz@6489 1076 // visibility. Inserted independ of any load, as required
goetz@6489 1077 // for intrinsic sun.misc.Unsafe.loadFence().
goetz@6489 1078 class LoadFenceNode: public MemBarNode {
goetz@6489 1079 public:
goetz@6489 1080 LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
goetz@6489 1081 : MemBarNode(C, alias_idx, precedent) {}
goetz@6489 1082 virtual int Opcode() const;
goetz@6489 1083 };
goetz@6489 1084
duke@435 1085 // "Release" - no earlier ref can move after (but later refs can move
duke@435 1086 // up, like a speculative pipelined cache-hitting Load). Requires
roland@3047 1087 // multi-cpu visibility. Inserted before a volatile store.
duke@435 1088 class MemBarReleaseNode: public MemBarNode {
duke@435 1089 public:
duke@435 1090 MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
duke@435 1091 : MemBarNode(C, alias_idx, precedent) {}
duke@435 1092 virtual int Opcode() const;
duke@435 1093 };
duke@435 1094
goetz@6489 1095 // "Release" - no earlier ref can move after (but later refs can move
goetz@6489 1096 // up, like a speculative pipelined cache-hitting Load). Requires
goetz@6489 1097 // multi-cpu visibility. Inserted independent of any store, as required
goetz@6489 1098 // for intrinsic sun.misc.Unsafe.storeFence().
goetz@6489 1099 class StoreFenceNode: public MemBarNode {
goetz@6489 1100 public:
goetz@6489 1101 StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
goetz@6489 1102 : MemBarNode(C, alias_idx, precedent) {}
goetz@6489 1103 virtual int Opcode() const;
goetz@6489 1104 };
goetz@6489 1105
roland@3047 1106 // "Acquire" - no following ref can move before (but earlier refs can
roland@3047 1107 // follow, like an early Load stalled in cache). Requires multi-cpu
roland@3047 1108 // visibility. Inserted after a FastLock.
roland@3047 1109 class MemBarAcquireLockNode: public MemBarNode {
roland@3047 1110 public:
roland@3047 1111 MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
roland@3047 1112 : MemBarNode(C, alias_idx, precedent) {}
roland@3047 1113 virtual int Opcode() const;
roland@3047 1114 };
roland@3047 1115
roland@3047 1116 // "Release" - no earlier ref can move after (but later refs can move
roland@3047 1117 // up, like a speculative pipelined cache-hitting Load). Requires
roland@3047 1118 // multi-cpu visibility. Inserted before a FastUnLock.
roland@3047 1119 class MemBarReleaseLockNode: public MemBarNode {
roland@3047 1120 public:
roland@3047 1121 MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
roland@3047 1122 : MemBarNode(C, alias_idx, precedent) {}
roland@3047 1123 virtual int Opcode() const;
roland@3047 1124 };
roland@3047 1125
roland@3392 1126 class MemBarStoreStoreNode: public MemBarNode {
roland@3392 1127 public:
roland@3392 1128 MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
roland@3392 1129 : MemBarNode(C, alias_idx, precedent) {
roland@3392 1130 init_class_id(Class_MemBarStoreStore);
roland@3392 1131 }
roland@3392 1132 virtual int Opcode() const;
roland@3392 1133 };
roland@3392 1134
duke@435 1135 // Ordering between a volatile store and a following volatile load.
duke@435 1136 // Requires multi-CPU visibility?
duke@435 1137 class MemBarVolatileNode: public MemBarNode {
duke@435 1138 public:
duke@435 1139 MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
duke@435 1140 : MemBarNode(C, alias_idx, precedent) {}
duke@435 1141 virtual int Opcode() const;
duke@435 1142 };
duke@435 1143
duke@435 1144 // Ordering within the same CPU. Used to order unsafe memory references
duke@435 1145 // inside the compiler when we lack alias info. Not needed "outside" the
duke@435 1146 // compiler because the CPU does all the ordering for us.
duke@435 1147 class MemBarCPUOrderNode: public MemBarNode {
duke@435 1148 public:
duke@435 1149 MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
duke@435 1150 : MemBarNode(C, alias_idx, precedent) {}
duke@435 1151 virtual int Opcode() const;
duke@435 1152 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
duke@435 1153 };
duke@435 1154
duke@435 1155 // Isolation of object setup after an AllocateNode and before next safepoint.
duke@435 1156 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
duke@435 1157 class InitializeNode: public MemBarNode {
duke@435 1158 friend class AllocateNode;
duke@435 1159
kvn@3157 1160 enum {
kvn@3157 1161 Incomplete = 0,
kvn@3157 1162 Complete = 1,
kvn@3157 1163 WithArraycopy = 2
kvn@3157 1164 };
kvn@3157 1165 int _is_complete;
duke@435 1166
roland@3392 1167 bool _does_not_escape;
roland@3392 1168
duke@435 1169 public:
duke@435 1170 enum {
duke@435 1171 Control = TypeFunc::Control,
duke@435 1172 Memory = TypeFunc::Memory, // MergeMem for states affected by this op
duke@435 1173 RawAddress = TypeFunc::Parms+0, // the newly-allocated raw address
duke@435 1174 RawStores = TypeFunc::Parms+1 // zero or more stores (or TOP)
duke@435 1175 };
duke@435 1176
duke@435 1177 InitializeNode(Compile* C, int adr_type, Node* rawoop);
duke@435 1178 virtual int Opcode() const;
duke@435 1179 virtual uint size_of() const { return sizeof(*this); }
duke@435 1180 virtual uint ideal_reg() const { return 0; } // not matched in the AD file
duke@435 1181 virtual const RegMask &in_RegMask(uint) const; // mask for RawAddress
duke@435 1182
duke@435 1183 // Manage incoming memory edges via a MergeMem on in(Memory):
duke@435 1184 Node* memory(uint alias_idx);
duke@435 1185
duke@435 1186 // The raw memory edge coming directly from the Allocation.
duke@435 1187 // The contents of this memory are *always* all-zero-bits.
duke@435 1188 Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
duke@435 1189
duke@435 1190 // Return the corresponding allocation for this initialization (or null if none).
duke@435 1191 // (Note: Both InitializeNode::allocation and AllocateNode::initialization
duke@435 1192 // are defined in graphKit.cpp, which sets up the bidirectional relation.)
duke@435 1193 AllocateNode* allocation();
duke@435 1194
duke@435 1195 // Anything other than zeroing in this init?
duke@435 1196 bool is_non_zero();
duke@435 1197
duke@435 1198 // An InitializeNode must completed before macro expansion is done.
duke@435 1199 // Completion requires that the AllocateNode must be followed by
duke@435 1200 // initialization of the new memory to zero, then to any initializers.
kvn@3157 1201 bool is_complete() { return _is_complete != Incomplete; }
kvn@3157 1202 bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
duke@435 1203
duke@435 1204 // Mark complete. (Must not yet be complete.)
duke@435 1205 void set_complete(PhaseGVN* phase);
kvn@3157 1206 void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
duke@435 1207
roland@3392 1208 bool does_not_escape() { return _does_not_escape; }
roland@3392 1209 void set_does_not_escape() { _does_not_escape = true; }
roland@3392 1210
duke@435 1211 #ifdef ASSERT
duke@435 1212 // ensure all non-degenerate stores are ordered and non-overlapping
duke@435 1213 bool stores_are_sane(PhaseTransform* phase);
duke@435 1214 #endif //ASSERT
duke@435 1215
duke@435 1216 // See if this store can be captured; return offset where it initializes.
duke@435 1217 // Return 0 if the store cannot be moved (any sort of problem).
roland@4657 1218 intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
duke@435 1219
duke@435 1220 // Capture another store; reformat it to write my internal raw memory.
duke@435 1221 // Return the captured copy, else NULL if there is some sort of problem.
roland@4657 1222 Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
duke@435 1223
duke@435 1224 // Find captured store which corresponds to the range [start..start+size).
duke@435 1225 // Return my own memory projection (meaning the initial zero bits)
duke@435 1226 // if there is no such store. Return NULL if there is a problem.
duke@435 1227 Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
duke@435 1228
duke@435 1229 // Called when the associated AllocateNode is expanded into CFG.
duke@435 1230 Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
duke@435 1231 intptr_t header_size, Node* size_in_bytes,
duke@435 1232 PhaseGVN* phase);
duke@435 1233
duke@435 1234 private:
duke@435 1235 void remove_extra_zeroes();
duke@435 1236
duke@435 1237 // Find out where a captured store should be placed (or already is placed).
duke@435 1238 int captured_store_insertion_point(intptr_t start, int size_in_bytes,
duke@435 1239 PhaseTransform* phase);
duke@435 1240
duke@435 1241 static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
duke@435 1242
duke@435 1243 Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
duke@435 1244
kvn@5110 1245 bool detect_init_independence(Node* n, int& count);
duke@435 1246
duke@435 1247 void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
duke@435 1248 PhaseGVN* phase);
duke@435 1249
duke@435 1250 intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
duke@435 1251 };
duke@435 1252
duke@435 1253 //------------------------------MergeMem---------------------------------------
duke@435 1254 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
duke@435 1255 class MergeMemNode: public Node {
duke@435 1256 virtual uint hash() const ; // { return NO_HASH; }
duke@435 1257 virtual uint cmp( const Node &n ) const ; // Always fail, except on self
duke@435 1258 friend class MergeMemStream;
duke@435 1259 MergeMemNode(Node* def); // clients use MergeMemNode::make
duke@435 1260
duke@435 1261 public:
duke@435 1262 // If the input is a whole memory state, clone it with all its slices intact.
duke@435 1263 // Otherwise, make a new memory state with just that base memory input.
duke@435 1264 // In either case, the result is a newly created MergeMem.
duke@435 1265 static MergeMemNode* make(Compile* C, Node* base_memory);
duke@435 1266
duke@435 1267 virtual int Opcode() const;
duke@435 1268 virtual Node *Identity( PhaseTransform *phase );
duke@435 1269 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
duke@435 1270 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1271 virtual uint match_edge(uint idx) const { return 0; }
duke@435 1272 virtual const RegMask &out_RegMask() const;
duke@435 1273 virtual const Type *bottom_type() const { return Type::MEMORY; }
duke@435 1274 virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
duke@435 1275 // sparse accessors
duke@435 1276 // Fetch the previously stored "set_memory_at", or else the base memory.
duke@435 1277 // (Caller should clone it if it is a phi-nest.)
duke@435 1278 Node* memory_at(uint alias_idx) const;
duke@435 1279 // set the memory, regardless of its previous value
duke@435 1280 void set_memory_at(uint alias_idx, Node* n);
duke@435 1281 // the "base" is the memory that provides the non-finite support
duke@435 1282 Node* base_memory() const { return in(Compile::AliasIdxBot); }
duke@435 1283 // warning: setting the base can implicitly set any of the other slices too
duke@435 1284 void set_base_memory(Node* def);
duke@435 1285 // sentinel value which denotes a copy of the base memory:
duke@435 1286 Node* empty_memory() const { return in(Compile::AliasIdxTop); }
duke@435 1287 static Node* make_empty_memory(); // where the sentinel comes from
duke@435 1288 bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
duke@435 1289 // hook for the iterator, to perform any necessary setup
duke@435 1290 void iteration_setup(const MergeMemNode* other = NULL);
duke@435 1291 // push sentinels until I am at least as long as the other (semantic no-op)
duke@435 1292 void grow_to_match(const MergeMemNode* other);
duke@435 1293 bool verify_sparse() const PRODUCT_RETURN0;
duke@435 1294 #ifndef PRODUCT
duke@435 1295 virtual void dump_spec(outputStream *st) const;
duke@435 1296 #endif
duke@435 1297 };
duke@435 1298
duke@435 1299 class MergeMemStream : public StackObj {
duke@435 1300 private:
duke@435 1301 MergeMemNode* _mm;
duke@435 1302 const MergeMemNode* _mm2; // optional second guy, contributes non-empty iterations
duke@435 1303 Node* _mm_base; // loop-invariant base memory of _mm
duke@435 1304 int _idx;
duke@435 1305 int _cnt;
duke@435 1306 Node* _mem;
duke@435 1307 Node* _mem2;
duke@435 1308 int _cnt2;
duke@435 1309
duke@435 1310 void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
duke@435 1311 // subsume_node will break sparseness at times, whenever a memory slice
duke@435 1312 // folds down to a copy of the base ("fat") memory. In such a case,
duke@435 1313 // the raw edge will update to base, although it should be top.
duke@435 1314 // This iterator will recognize either top or base_memory as an
duke@435 1315 // "empty" slice. See is_empty, is_empty2, and next below.
duke@435 1316 //
duke@435 1317 // The sparseness property is repaired in MergeMemNode::Ideal.
duke@435 1318 // As long as access to a MergeMem goes through this iterator
duke@435 1319 // or the memory_at accessor, flaws in the sparseness will
duke@435 1320 // never be observed.
duke@435 1321 //
duke@435 1322 // Also, iteration_setup repairs sparseness.
duke@435 1323 assert(mm->verify_sparse(), "please, no dups of base");
duke@435 1324 assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
duke@435 1325
duke@435 1326 _mm = mm;
duke@435 1327 _mm_base = mm->base_memory();
duke@435 1328 _mm2 = mm2;
duke@435 1329 _cnt = mm->req();
duke@435 1330 _idx = Compile::AliasIdxBot-1; // start at the base memory
duke@435 1331 _mem = NULL;
duke@435 1332 _mem2 = NULL;
duke@435 1333 }
duke@435 1334
duke@435 1335 #ifdef ASSERT
duke@435 1336 Node* check_memory() const {
duke@435 1337 if (at_base_memory())
duke@435 1338 return _mm->base_memory();
duke@435 1339 else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
duke@435 1340 return _mm->memory_at(_idx);
duke@435 1341 else
duke@435 1342 return _mm_base;
duke@435 1343 }
duke@435 1344 Node* check_memory2() const {
duke@435 1345 return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
duke@435 1346 }
duke@435 1347 #endif
duke@435 1348
duke@435 1349 static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
duke@435 1350 void assert_synch() const {
duke@435 1351 assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
duke@435 1352 "no side-effects except through the stream");
duke@435 1353 }
duke@435 1354
duke@435 1355 public:
duke@435 1356
duke@435 1357 // expected usages:
duke@435 1358 // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
duke@435 1359 // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
duke@435 1360
duke@435 1361 // iterate over one merge
duke@435 1362 MergeMemStream(MergeMemNode* mm) {
duke@435 1363 mm->iteration_setup();
duke@435 1364 init(mm);
duke@435 1365 debug_only(_cnt2 = 999);
duke@435 1366 }
duke@435 1367 // iterate in parallel over two merges
duke@435 1368 // only iterates through non-empty elements of mm2
duke@435 1369 MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
duke@435 1370 assert(mm2, "second argument must be a MergeMem also");
duke@435 1371 ((MergeMemNode*)mm2)->iteration_setup(); // update hidden state
duke@435 1372 mm->iteration_setup(mm2);
duke@435 1373 init(mm, mm2);
duke@435 1374 _cnt2 = mm2->req();
duke@435 1375 }
duke@435 1376 #ifdef ASSERT
duke@435 1377 ~MergeMemStream() {
duke@435 1378 assert_synch();
duke@435 1379 }
duke@435 1380 #endif
duke@435 1381
duke@435 1382 MergeMemNode* all_memory() const {
duke@435 1383 return _mm;
duke@435 1384 }
duke@435 1385 Node* base_memory() const {
duke@435 1386 assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
duke@435 1387 return _mm_base;
duke@435 1388 }
duke@435 1389 const MergeMemNode* all_memory2() const {
duke@435 1390 assert(_mm2 != NULL, "");
duke@435 1391 return _mm2;
duke@435 1392 }
duke@435 1393 bool at_base_memory() const {
duke@435 1394 return _idx == Compile::AliasIdxBot;
duke@435 1395 }
duke@435 1396 int alias_idx() const {
duke@435 1397 assert(_mem, "must call next 1st");
duke@435 1398 return _idx;
duke@435 1399 }
duke@435 1400
duke@435 1401 const TypePtr* adr_type() const {
duke@435 1402 return Compile::current()->get_adr_type(alias_idx());
duke@435 1403 }
duke@435 1404
duke@435 1405 const TypePtr* adr_type(Compile* C) const {
duke@435 1406 return C->get_adr_type(alias_idx());
duke@435 1407 }
duke@435 1408 bool is_empty() const {
duke@435 1409 assert(_mem, "must call next 1st");
duke@435 1410 assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
duke@435 1411 return _mem->is_top();
duke@435 1412 }
duke@435 1413 bool is_empty2() const {
duke@435 1414 assert(_mem2, "must call next 1st");
duke@435 1415 assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
duke@435 1416 return _mem2->is_top();
duke@435 1417 }
duke@435 1418 Node* memory() const {
duke@435 1419 assert(!is_empty(), "must not be empty");
duke@435 1420 assert_synch();
duke@435 1421 return _mem;
duke@435 1422 }
duke@435 1423 // get the current memory, regardless of empty or non-empty status
duke@435 1424 Node* force_memory() const {
duke@435 1425 assert(!is_empty() || !at_base_memory(), "");
duke@435 1426 // Use _mm_base to defend against updates to _mem->base_memory().
duke@435 1427 Node *mem = _mem->is_top() ? _mm_base : _mem;
duke@435 1428 assert(mem == check_memory(), "");
duke@435 1429 return mem;
duke@435 1430 }
duke@435 1431 Node* memory2() const {
duke@435 1432 assert(_mem2 == check_memory2(), "");
duke@435 1433 return _mem2;
duke@435 1434 }
duke@435 1435 void set_memory(Node* mem) {
duke@435 1436 if (at_base_memory()) {
duke@435 1437 // Note that this does not change the invariant _mm_base.
duke@435 1438 _mm->set_base_memory(mem);
duke@435 1439 } else {
duke@435 1440 _mm->set_memory_at(_idx, mem);
duke@435 1441 }
duke@435 1442 _mem = mem;
duke@435 1443 assert_synch();
duke@435 1444 }
duke@435 1445
duke@435 1446 // Recover from a side effect to the MergeMemNode.
duke@435 1447 void set_memory() {
duke@435 1448 _mem = _mm->in(_idx);
duke@435 1449 }
duke@435 1450
duke@435 1451 bool next() { return next(false); }
duke@435 1452 bool next2() { return next(true); }
duke@435 1453
duke@435 1454 bool next_non_empty() { return next_non_empty(false); }
duke@435 1455 bool next_non_empty2() { return next_non_empty(true); }
duke@435 1456 // next_non_empty2 can yield states where is_empty() is true
duke@435 1457
duke@435 1458 private:
duke@435 1459 // find the next item, which might be empty
duke@435 1460 bool next(bool have_mm2) {
duke@435 1461 assert((_mm2 != NULL) == have_mm2, "use other next");
duke@435 1462 assert_synch();
duke@435 1463 if (++_idx < _cnt) {
duke@435 1464 // Note: This iterator allows _mm to be non-sparse.
duke@435 1465 // It behaves the same whether _mem is top or base_memory.
duke@435 1466 _mem = _mm->in(_idx);
duke@435 1467 if (have_mm2)
duke@435 1468 _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
duke@435 1469 return true;
duke@435 1470 }
duke@435 1471 return false;
duke@435 1472 }
duke@435 1473
duke@435 1474 // find the next non-empty item
duke@435 1475 bool next_non_empty(bool have_mm2) {
duke@435 1476 while (next(have_mm2)) {
duke@435 1477 if (!is_empty()) {
duke@435 1478 // make sure _mem2 is filled in sensibly
duke@435 1479 if (have_mm2 && _mem2->is_top()) _mem2 = _mm2->base_memory();
duke@435 1480 return true;
duke@435 1481 } else if (have_mm2 && !is_empty2()) {
duke@435 1482 return true; // is_empty() == true
duke@435 1483 }
duke@435 1484 }
duke@435 1485 return false;
duke@435 1486 }
duke@435 1487 };
duke@435 1488
duke@435 1489 //------------------------------Prefetch---------------------------------------
duke@435 1490
duke@435 1491 // Non-faulting prefetch load. Prefetch for many reads.
duke@435 1492 class PrefetchReadNode : public Node {
duke@435 1493 public:
duke@435 1494 PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
duke@435 1495 virtual int Opcode() const;
duke@435 1496 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1497 virtual uint match_edge(uint idx) const { return idx==2; }
duke@435 1498 virtual const Type *bottom_type() const { return Type::ABIO; }
duke@435 1499 };
duke@435 1500
duke@435 1501 // Non-faulting prefetch load. Prefetch for many reads & many writes.
duke@435 1502 class PrefetchWriteNode : public Node {
duke@435 1503 public:
duke@435 1504 PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
duke@435 1505 virtual int Opcode() const;
duke@435 1506 virtual uint ideal_reg() const { return NotAMachineReg; }
duke@435 1507 virtual uint match_edge(uint idx) const { return idx==2; }
kvn@3052 1508 virtual const Type *bottom_type() const { return Type::ABIO; }
kvn@3052 1509 };
kvn@3052 1510
kvn@3052 1511 // Allocation prefetch which may fault, TLAB size have to be adjusted.
kvn@3052 1512 class PrefetchAllocationNode : public Node {
kvn@3052 1513 public:
kvn@3052 1514 PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
kvn@3052 1515 virtual int Opcode() const;
kvn@3052 1516 virtual uint ideal_reg() const { return NotAMachineReg; }
kvn@3052 1517 virtual uint match_edge(uint idx) const { return idx==2; }
kvn@1802 1518 virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
duke@435 1519 };
stefank@2314 1520
stefank@2314 1521 #endif // SHARE_VM_OPTO_MEMNODE_HPP

mercurial