src/cpu/sparc/vm/assembler_sparc.cpp

Wed, 16 Nov 2011 01:39:50 -0800

author
twisti
date
Wed, 16 Nov 2011 01:39:50 -0800
changeset 3310
6729bbc1fcd6
parent 3137
e6b1331a51d2
child 3391
069ab3f976d3
permissions
-rw-r--r--

7003454: order constants in constant table by number of references in code
Reviewed-by: kvn, never, bdelsart

duke@435 1 /*
phh@2423 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@2399 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_sparc.inline.hpp"
stefank@2314 28 #include "gc_interface/collectedHeap.inline.hpp"
stefank@2314 29 #include "interpreter/interpreter.hpp"
stefank@2314 30 #include "memory/cardTableModRefBS.hpp"
stefank@2314 31 #include "memory/resourceArea.hpp"
stefank@2314 32 #include "prims/methodHandles.hpp"
stefank@2314 33 #include "runtime/biasedLocking.hpp"
stefank@2314 34 #include "runtime/interfaceSupport.hpp"
stefank@2314 35 #include "runtime/objectMonitor.hpp"
stefank@2314 36 #include "runtime/os.hpp"
stefank@2314 37 #include "runtime/sharedRuntime.hpp"
stefank@2314 38 #include "runtime/stubRoutines.hpp"
stefank@2314 39 #ifndef SERIALGC
stefank@2314 40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
stefank@2314 41 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
stefank@2314 42 #include "gc_implementation/g1/heapRegion.hpp"
stefank@2314 43 #endif
duke@435 44
never@2950 45 #ifdef PRODUCT
never@2950 46 #define BLOCK_COMMENT(str) /* nothing */
never@2950 47 #else
never@2950 48 #define BLOCK_COMMENT(str) block_comment(str)
never@2950 49 #endif
never@2950 50
twisti@1162 51 // Convert the raw encoding form into the form expected by the
twisti@1162 52 // constructor for Address.
twisti@1162 53 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
twisti@1162 54 assert(scale == 0, "not supported");
twisti@1162 55 RelocationHolder rspec;
twisti@1162 56 if (disp_is_oop) {
twisti@1162 57 rspec = Relocation::spec_simple(relocInfo::oop_type);
duke@435 58 }
twisti@1162 59
twisti@1162 60 Register rindex = as_Register(index);
twisti@1162 61 if (rindex != G0) {
twisti@1162 62 Address madr(as_Register(base), rindex);
twisti@1162 63 madr._rspec = rspec;
twisti@1162 64 return madr;
twisti@1162 65 } else {
twisti@1162 66 Address madr(as_Register(base), disp);
twisti@1162 67 madr._rspec = rspec;
twisti@1162 68 return madr;
twisti@1162 69 }
twisti@1162 70 }
twisti@1162 71
twisti@1162 72 Address Argument::address_in_frame() const {
twisti@1162 73 // Warning: In LP64 mode disp will occupy more than 10 bits, but
twisti@1162 74 // op codes such as ld or ldx, only access disp() to get
twisti@1162 75 // their simm13 argument.
twisti@1162 76 int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
twisti@1162 77 if (is_in())
twisti@1162 78 return Address(FP, disp); // In argument.
twisti@1162 79 else
twisti@1162 80 return Address(SP, disp); // Out argument.
duke@435 81 }
duke@435 82
duke@435 83 static const char* argumentNames[][2] = {
duke@435 84 {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
duke@435 85 {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
duke@435 86 {"A(n>9)","P(n>9)"}
duke@435 87 };
duke@435 88
duke@435 89 const char* Argument::name() const {
duke@435 90 int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
duke@435 91 int num = number();
duke@435 92 if (num >= nofArgs) num = nofArgs - 1;
duke@435 93 return argumentNames[num][is_in() ? 1 : 0];
duke@435 94 }
duke@435 95
duke@435 96 void Assembler::print_instruction(int inst) {
duke@435 97 const char* s;
duke@435 98 switch (inv_op(inst)) {
duke@435 99 default: s = "????"; break;
duke@435 100 case call_op: s = "call"; break;
duke@435 101 case branch_op:
duke@435 102 switch (inv_op2(inst)) {
duke@435 103 case fb_op2: s = "fb"; break;
duke@435 104 case fbp_op2: s = "fbp"; break;
duke@435 105 case br_op2: s = "br"; break;
duke@435 106 case bp_op2: s = "bp"; break;
duke@435 107 case cb_op2: s = "cb"; break;
kvn@3037 108 case bpr_op2: {
kvn@3037 109 if (is_cbcond(inst)) {
kvn@3037 110 s = is_cxb(inst) ? "cxb" : "cwb";
kvn@3037 111 } else {
kvn@3037 112 s = "bpr";
kvn@3037 113 }
kvn@3037 114 break;
kvn@3037 115 }
duke@435 116 default: s = "????"; break;
duke@435 117 }
duke@435 118 }
duke@435 119 ::tty->print("%s", s);
duke@435 120 }
duke@435 121
duke@435 122
duke@435 123 // Patch instruction inst at offset inst_pos to refer to dest_pos
duke@435 124 // and return the resulting instruction.
duke@435 125 // We should have pcs, not offsets, but since all is relative, it will work out
duke@435 126 // OK.
duke@435 127 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
duke@435 128
duke@435 129 int m; // mask for displacement field
duke@435 130 int v; // new value for displacement field
duke@435 131 const int word_aligned_ones = -4;
duke@435 132 switch (inv_op(inst)) {
duke@435 133 default: ShouldNotReachHere();
duke@435 134 case call_op: m = wdisp(word_aligned_ones, 0, 30); v = wdisp(dest_pos, inst_pos, 30); break;
duke@435 135 case branch_op:
duke@435 136 switch (inv_op2(inst)) {
duke@435 137 case fbp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
duke@435 138 case bp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
duke@435 139 case fb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 140 case br_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 141 case cb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
kvn@3037 142 case bpr_op2: {
kvn@3037 143 if (is_cbcond(inst)) {
kvn@3037 144 m = wdisp10(word_aligned_ones, 0);
kvn@3037 145 v = wdisp10(dest_pos, inst_pos);
kvn@3037 146 } else {
kvn@3037 147 m = wdisp16(word_aligned_ones, 0);
kvn@3037 148 v = wdisp16(dest_pos, inst_pos);
kvn@3037 149 }
kvn@3037 150 break;
kvn@3037 151 }
duke@435 152 default: ShouldNotReachHere();
duke@435 153 }
duke@435 154 }
duke@435 155 return inst & ~m | v;
duke@435 156 }
duke@435 157
duke@435 158 // Return the offset of the branch destionation of instruction inst
duke@435 159 // at offset pos.
duke@435 160 // Should have pcs, but since all is relative, it works out.
duke@435 161 int Assembler::branch_destination(int inst, int pos) {
duke@435 162 int r;
duke@435 163 switch (inv_op(inst)) {
duke@435 164 default: ShouldNotReachHere();
duke@435 165 case call_op: r = inv_wdisp(inst, pos, 30); break;
duke@435 166 case branch_op:
duke@435 167 switch (inv_op2(inst)) {
duke@435 168 case fbp_op2: r = inv_wdisp( inst, pos, 19); break;
duke@435 169 case bp_op2: r = inv_wdisp( inst, pos, 19); break;
duke@435 170 case fb_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 171 case br_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 172 case cb_op2: r = inv_wdisp( inst, pos, 22); break;
kvn@3037 173 case bpr_op2: {
kvn@3037 174 if (is_cbcond(inst)) {
kvn@3037 175 r = inv_wdisp10(inst, pos);
kvn@3037 176 } else {
kvn@3037 177 r = inv_wdisp16(inst, pos);
kvn@3037 178 }
kvn@3037 179 break;
kvn@3037 180 }
duke@435 181 default: ShouldNotReachHere();
duke@435 182 }
duke@435 183 }
duke@435 184 return r;
duke@435 185 }
duke@435 186
duke@435 187 int AbstractAssembler::code_fill_byte() {
duke@435 188 return 0x00; // illegal instruction 0x00000000
duke@435 189 }
duke@435 190
ysr@777 191 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
ysr@777 192 switch (in) {
ysr@777 193 case rc_z: return equal;
ysr@777 194 case rc_lez: return lessEqual;
ysr@777 195 case rc_lz: return less;
ysr@777 196 case rc_nz: return notEqual;
ysr@777 197 case rc_gz: return greater;
ysr@777 198 case rc_gez: return greaterEqual;
ysr@777 199 default:
ysr@777 200 ShouldNotReachHere();
ysr@777 201 }
ysr@777 202 return equal;
ysr@777 203 }
ysr@777 204
duke@435 205 // Generate a bunch 'o stuff (including v9's
duke@435 206 #ifndef PRODUCT
duke@435 207 void Assembler::test_v9() {
duke@435 208 add( G0, G1, G2 );
duke@435 209 add( G3, 0, G4 );
duke@435 210
duke@435 211 addcc( G5, G6, G7 );
duke@435 212 addcc( I0, 1, I1 );
duke@435 213 addc( I2, I3, I4 );
duke@435 214 addc( I5, -1, I6 );
duke@435 215 addccc( I7, L0, L1 );
duke@435 216 addccc( L2, (1 << 12) - 2, L3 );
duke@435 217
duke@435 218 Label lbl1, lbl2, lbl3;
duke@435 219
duke@435 220 bind(lbl1);
duke@435 221
duke@435 222 bpr( rc_z, true, pn, L4, pc(), relocInfo::oop_type );
duke@435 223 delayed()->nop();
duke@435 224 bpr( rc_lez, false, pt, L5, lbl1);
duke@435 225 delayed()->nop();
duke@435 226
duke@435 227 fb( f_never, true, pc() + 4, relocInfo::none);
duke@435 228 delayed()->nop();
duke@435 229 fb( f_notEqual, false, lbl2 );
duke@435 230 delayed()->nop();
duke@435 231
duke@435 232 fbp( f_notZero, true, fcc0, pn, pc() - 4, relocInfo::none);
duke@435 233 delayed()->nop();
duke@435 234 fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
duke@435 235 delayed()->nop();
duke@435 236
duke@435 237 br( equal, true, pc() + 1024, relocInfo::none);
duke@435 238 delayed()->nop();
duke@435 239 br( lessEqual, false, lbl1 );
duke@435 240 delayed()->nop();
duke@435 241 br( never, false, lbl1 );
duke@435 242 delayed()->nop();
duke@435 243
duke@435 244 bp( less, true, icc, pn, pc(), relocInfo::none);
duke@435 245 delayed()->nop();
duke@435 246 bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
duke@435 247 delayed()->nop();
duke@435 248
duke@435 249 call( pc(), relocInfo::none);
duke@435 250 delayed()->nop();
duke@435 251 call( lbl3 );
duke@435 252 delayed()->nop();
duke@435 253
duke@435 254
duke@435 255 casa( L6, L7, O0 );
duke@435 256 casxa( O1, O2, O3, 0 );
duke@435 257
duke@435 258 udiv( O4, O5, O7 );
duke@435 259 udiv( G0, (1 << 12) - 1, G1 );
duke@435 260 sdiv( G1, G2, G3 );
duke@435 261 sdiv( G4, -((1 << 12) - 1), G5 );
duke@435 262 udivcc( G6, G7, I0 );
duke@435 263 udivcc( I1, -((1 << 12) - 2), I2 );
duke@435 264 sdivcc( I3, I4, I5 );
duke@435 265 sdivcc( I6, -((1 << 12) - 0), I7 );
duke@435 266
duke@435 267 done();
duke@435 268 retry();
duke@435 269
duke@435 270 fadd( FloatRegisterImpl::S, F0, F1, F2 );
duke@435 271 fsub( FloatRegisterImpl::D, F34, F0, F62 );
duke@435 272
duke@435 273 fcmp( FloatRegisterImpl::Q, fcc0, F0, F60);
duke@435 274 fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
duke@435 275
duke@435 276 ftox( FloatRegisterImpl::D, F2, F4 );
duke@435 277 ftoi( FloatRegisterImpl::Q, F4, F8 );
duke@435 278
duke@435 279 ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
duke@435 280
duke@435 281 fxtof( FloatRegisterImpl::S, F4, F5 );
duke@435 282 fitof( FloatRegisterImpl::D, F6, F8 );
duke@435 283
duke@435 284 fmov( FloatRegisterImpl::Q, F16, F20 );
duke@435 285 fneg( FloatRegisterImpl::S, F6, F7 );
duke@435 286 fabs( FloatRegisterImpl::D, F10, F12 );
duke@435 287
duke@435 288 fmul( FloatRegisterImpl::Q, F24, F28, F32 );
duke@435 289 fmul( FloatRegisterImpl::S, FloatRegisterImpl::D, F8, F9, F14 );
duke@435 290 fdiv( FloatRegisterImpl::S, F10, F11, F12 );
duke@435 291
duke@435 292 fsqrt( FloatRegisterImpl::S, F13, F14 );
duke@435 293
duke@435 294 flush( L0, L1 );
duke@435 295 flush( L2, -1 );
duke@435 296
duke@435 297 flushw();
duke@435 298
duke@435 299 illtrap( (1 << 22) - 2);
duke@435 300
duke@435 301 impdep1( 17, (1 << 19) - 1 );
duke@435 302 impdep2( 3, 0 );
duke@435 303
duke@435 304 jmpl( L3, L4, L5 );
duke@435 305 delayed()->nop();
duke@435 306 jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
duke@435 307 delayed()->nop();
duke@435 308
duke@435 309
duke@435 310 ldf( FloatRegisterImpl::S, O0, O1, F15 );
duke@435 311 ldf( FloatRegisterImpl::D, O2, -1, F14 );
duke@435 312
duke@435 313
duke@435 314 ldfsr( O3, O4 );
duke@435 315 ldfsr( O5, -1 );
duke@435 316 ldxfsr( O6, O7 );
duke@435 317 ldxfsr( I0, -1 );
duke@435 318
duke@435 319 ldfa( FloatRegisterImpl::D, I1, I2, 1, F16 );
duke@435 320 ldfa( FloatRegisterImpl::Q, I3, -1, F36 );
duke@435 321
duke@435 322 ldsb( I4, I5, I6 );
duke@435 323 ldsb( I7, -1, G0 );
duke@435 324 ldsh( G1, G3, G4 );
duke@435 325 ldsh( G5, -1, G6 );
duke@435 326 ldsw( G7, L0, L1 );
duke@435 327 ldsw( L2, -1, L3 );
duke@435 328 ldub( L4, L5, L6 );
duke@435 329 ldub( L7, -1, O0 );
duke@435 330 lduh( O1, O2, O3 );
duke@435 331 lduh( O4, -1, O5 );
duke@435 332 lduw( O6, O7, G0 );
duke@435 333 lduw( G1, -1, G2 );
duke@435 334 ldx( G3, G4, G5 );
duke@435 335 ldx( G6, -1, G7 );
duke@435 336 ldd( I0, I1, I2 );
duke@435 337 ldd( I3, -1, I4 );
duke@435 338
duke@435 339 ldsba( I5, I6, 2, I7 );
duke@435 340 ldsba( L0, -1, L1 );
duke@435 341 ldsha( L2, L3, 3, L4 );
duke@435 342 ldsha( L5, -1, L6 );
duke@435 343 ldswa( L7, O0, (1 << 8) - 1, O1 );
duke@435 344 ldswa( O2, -1, O3 );
duke@435 345 lduba( O4, O5, 0, O6 );
duke@435 346 lduba( O7, -1, I0 );
duke@435 347 lduha( I1, I2, 1, I3 );
duke@435 348 lduha( I4, -1, I5 );
duke@435 349 lduwa( I6, I7, 2, L0 );
duke@435 350 lduwa( L1, -1, L2 );
duke@435 351 ldxa( L3, L4, 3, L5 );
duke@435 352 ldxa( L6, -1, L7 );
duke@435 353 ldda( G0, G1, 4, G2 );
duke@435 354 ldda( G3, -1, G4 );
duke@435 355
duke@435 356 ldstub( G5, G6, G7 );
duke@435 357 ldstub( O0, -1, O1 );
duke@435 358
duke@435 359 ldstuba( O2, O3, 5, O4 );
duke@435 360 ldstuba( O5, -1, O6 );
duke@435 361
duke@435 362 and3( I0, L0, O0 );
duke@435 363 and3( G7, -1, O7 );
duke@435 364 andcc( L2, I2, G2 );
duke@435 365 andcc( L4, -1, G4 );
duke@435 366 andn( I5, I6, I7 );
duke@435 367 andn( I6, -1, I7 );
duke@435 368 andncc( I5, I6, I7 );
duke@435 369 andncc( I7, -1, I6 );
duke@435 370 or3( I5, I6, I7 );
duke@435 371 or3( I7, -1, I6 );
duke@435 372 orcc( I5, I6, I7 );
duke@435 373 orcc( I7, -1, I6 );
duke@435 374 orn( I5, I6, I7 );
duke@435 375 orn( I7, -1, I6 );
duke@435 376 orncc( I5, I6, I7 );
duke@435 377 orncc( I7, -1, I6 );
duke@435 378 xor3( I5, I6, I7 );
duke@435 379 xor3( I7, -1, I6 );
duke@435 380 xorcc( I5, I6, I7 );
duke@435 381 xorcc( I7, -1, I6 );
duke@435 382 xnor( I5, I6, I7 );
duke@435 383 xnor( I7, -1, I6 );
duke@435 384 xnorcc( I5, I6, I7 );
duke@435 385 xnorcc( I7, -1, I6 );
duke@435 386
duke@435 387 membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
duke@435 388 membar( StoreStore );
duke@435 389 membar( LoadStore );
duke@435 390 membar( StoreLoad );
duke@435 391 membar( LoadLoad );
duke@435 392 membar( Sync );
duke@435 393 membar( MemIssue );
duke@435 394 membar( Lookaside );
duke@435 395
duke@435 396 fmov( FloatRegisterImpl::S, f_ordered, true, fcc2, F16, F17 );
duke@435 397 fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
duke@435 398
duke@435 399 movcc( overflowClear, false, icc, I6, L4 );
duke@435 400 movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
duke@435 401
duke@435 402 movr( rc_nz, I5, I6, I7 );
duke@435 403 movr( rc_gz, L1, -1, L2 );
duke@435 404
duke@435 405 mulx( I5, I6, I7 );
duke@435 406 mulx( I7, -1, I6 );
duke@435 407 sdivx( I5, I6, I7 );
duke@435 408 sdivx( I7, -1, I6 );
duke@435 409 udivx( I5, I6, I7 );
duke@435 410 udivx( I7, -1, I6 );
duke@435 411
duke@435 412 umul( I5, I6, I7 );
duke@435 413 umul( I7, -1, I6 );
duke@435 414 smul( I5, I6, I7 );
duke@435 415 smul( I7, -1, I6 );
duke@435 416 umulcc( I5, I6, I7 );
duke@435 417 umulcc( I7, -1, I6 );
duke@435 418 smulcc( I5, I6, I7 );
duke@435 419 smulcc( I7, -1, I6 );
duke@435 420
duke@435 421 mulscc( I5, I6, I7 );
duke@435 422 mulscc( I7, -1, I6 );
duke@435 423
duke@435 424 nop();
duke@435 425
duke@435 426
duke@435 427 popc( G0, G1);
duke@435 428 popc( -1, G2);
duke@435 429
duke@435 430 prefetch( L1, L2, severalReads );
duke@435 431 prefetch( L3, -1, oneRead );
duke@435 432 prefetcha( O3, O2, 6, severalWritesAndPossiblyReads );
duke@435 433 prefetcha( G2, -1, oneWrite );
duke@435 434
duke@435 435 rett( I7, I7);
duke@435 436 delayed()->nop();
duke@435 437 rett( G0, -1, relocInfo::none);
duke@435 438 delayed()->nop();
duke@435 439
duke@435 440 save( I5, I6, I7 );
duke@435 441 save( I7, -1, I6 );
duke@435 442 restore( I5, I6, I7 );
duke@435 443 restore( I7, -1, I6 );
duke@435 444
duke@435 445 saved();
duke@435 446 restored();
duke@435 447
duke@435 448 sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
duke@435 449
duke@435 450 sll( I5, I6, I7 );
duke@435 451 sll( I7, 31, I6 );
duke@435 452 srl( I5, I6, I7 );
duke@435 453 srl( I7, 0, I6 );
duke@435 454 sra( I5, I6, I7 );
duke@435 455 sra( I7, 30, I6 );
duke@435 456 sllx( I5, I6, I7 );
duke@435 457 sllx( I7, 63, I6 );
duke@435 458 srlx( I5, I6, I7 );
duke@435 459 srlx( I7, 0, I6 );
duke@435 460 srax( I5, I6, I7 );
duke@435 461 srax( I7, 62, I6 );
duke@435 462
duke@435 463 sir( -1 );
duke@435 464
duke@435 465 stbar();
duke@435 466
duke@435 467 stf( FloatRegisterImpl::Q, F40, G0, I7 );
duke@435 468 stf( FloatRegisterImpl::S, F18, I3, -1 );
duke@435 469
duke@435 470 stfsr( L1, L2 );
duke@435 471 stfsr( I7, -1 );
duke@435 472 stxfsr( I6, I5 );
duke@435 473 stxfsr( L4, -1 );
duke@435 474
duke@435 475 stfa( FloatRegisterImpl::D, F22, I6, I7, 7 );
duke@435 476 stfa( FloatRegisterImpl::Q, F44, G0, -1 );
duke@435 477
duke@435 478 stb( L5, O2, I7 );
duke@435 479 stb( I7, I6, -1 );
duke@435 480 sth( L5, O2, I7 );
duke@435 481 sth( I7, I6, -1 );
duke@435 482 stw( L5, O2, I7 );
duke@435 483 stw( I7, I6, -1 );
duke@435 484 stx( L5, O2, I7 );
duke@435 485 stx( I7, I6, -1 );
duke@435 486 std( L5, O2, I7 );
duke@435 487 std( I7, I6, -1 );
duke@435 488
duke@435 489 stba( L5, O2, I7, 8 );
duke@435 490 stba( I7, I6, -1 );
duke@435 491 stha( L5, O2, I7, 9 );
duke@435 492 stha( I7, I6, -1 );
duke@435 493 stwa( L5, O2, I7, 0 );
duke@435 494 stwa( I7, I6, -1 );
duke@435 495 stxa( L5, O2, I7, 11 );
duke@435 496 stxa( I7, I6, -1 );
duke@435 497 stda( L5, O2, I7, 12 );
duke@435 498 stda( I7, I6, -1 );
duke@435 499
duke@435 500 sub( I5, I6, I7 );
duke@435 501 sub( I7, -1, I6 );
duke@435 502 subcc( I5, I6, I7 );
duke@435 503 subcc( I7, -1, I6 );
duke@435 504 subc( I5, I6, I7 );
duke@435 505 subc( I7, -1, I6 );
duke@435 506 subccc( I5, I6, I7 );
duke@435 507 subccc( I7, -1, I6 );
duke@435 508
duke@435 509 swap( I5, I6, I7 );
duke@435 510 swap( I7, -1, I6 );
duke@435 511
duke@435 512 swapa( G0, G1, 13, G2 );
duke@435 513 swapa( I7, -1, I6 );
duke@435 514
duke@435 515 taddcc( I5, I6, I7 );
duke@435 516 taddcc( I7, -1, I6 );
duke@435 517 taddcctv( I5, I6, I7 );
duke@435 518 taddcctv( I7, -1, I6 );
duke@435 519
duke@435 520 tsubcc( I5, I6, I7 );
duke@435 521 tsubcc( I7, -1, I6 );
duke@435 522 tsubcctv( I5, I6, I7 );
duke@435 523 tsubcctv( I7, -1, I6 );
duke@435 524
duke@435 525 trap( overflowClear, xcc, G0, G1 );
duke@435 526 trap( lessEqual, icc, I7, 17 );
duke@435 527
duke@435 528 bind(lbl2);
duke@435 529 bind(lbl3);
duke@435 530
duke@435 531 code()->decode();
duke@435 532 }
duke@435 533
duke@435 534 // Generate a bunch 'o stuff unique to V8
duke@435 535 void Assembler::test_v8_onlys() {
duke@435 536 Label lbl1;
duke@435 537
duke@435 538 cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
duke@435 539 delayed()->nop();
duke@435 540 cb( cp_never, true, lbl1);
duke@435 541 delayed()->nop();
duke@435 542
duke@435 543 cpop1(1, 2, 3, 4);
duke@435 544 cpop2(5, 6, 7, 8);
duke@435 545
duke@435 546 ldc( I0, I1, 31);
duke@435 547 ldc( I2, -1, 0);
duke@435 548
duke@435 549 lddc( I4, I4, 30);
duke@435 550 lddc( I6, 0, 1 );
duke@435 551
duke@435 552 ldcsr( L0, L1, 0);
duke@435 553 ldcsr( L1, (1 << 12) - 1, 17 );
duke@435 554
duke@435 555 stc( 31, L4, L5);
duke@435 556 stc( 30, L6, -(1 << 12) );
duke@435 557
duke@435 558 stdc( 0, L7, G0);
duke@435 559 stdc( 1, G1, 0 );
duke@435 560
duke@435 561 stcsr( 16, G2, G3);
duke@435 562 stcsr( 17, G4, 1 );
duke@435 563
duke@435 564 stdcq( 4, G5, G6);
duke@435 565 stdcq( 5, G7, -1 );
duke@435 566
duke@435 567 bind(lbl1);
duke@435 568
duke@435 569 code()->decode();
duke@435 570 }
duke@435 571 #endif
duke@435 572
duke@435 573 // Implementation of MacroAssembler
duke@435 574
duke@435 575 void MacroAssembler::null_check(Register reg, int offset) {
duke@435 576 if (needs_explicit_null_check((intptr_t)offset)) {
duke@435 577 // provoke OS NULL exception if reg = NULL by
duke@435 578 // accessing M[reg] w/o changing any registers
duke@435 579 ld_ptr(reg, 0, G0);
duke@435 580 }
duke@435 581 else {
duke@435 582 // nothing to do, (later) access of M[reg + offset]
duke@435 583 // will provoke OS NULL exception if reg = NULL
duke@435 584 }
duke@435 585 }
duke@435 586
duke@435 587 // Ring buffer jumps
duke@435 588
duke@435 589 #ifndef PRODUCT
duke@435 590 void MacroAssembler::ret( bool trace ) { if (trace) {
duke@435 591 mov(I7, O7); // traceable register
duke@435 592 JMP(O7, 2 * BytesPerInstWord);
duke@435 593 } else {
duke@435 594 jmpl( I7, 2 * BytesPerInstWord, G0 );
duke@435 595 }
duke@435 596 }
duke@435 597
duke@435 598 void MacroAssembler::retl( bool trace ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
duke@435 599 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
duke@435 600 #endif /* PRODUCT */
duke@435 601
duke@435 602
duke@435 603 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
duke@435 604 assert_not_delayed();
duke@435 605 // This can only be traceable if r1 & r2 are visible after a window save
duke@435 606 if (TraceJumps) {
duke@435 607 #ifndef PRODUCT
duke@435 608 save_frame(0);
duke@435 609 verify_thread();
duke@435 610 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 611 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 612 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 613 add(O2, O1, O1);
duke@435 614
duke@435 615 add(r1->after_save(), r2->after_save(), O2);
duke@435 616 set((intptr_t)file, O3);
duke@435 617 set(line, O4);
duke@435 618 Label L;
duke@435 619 // get nearby pc, store jmp target
duke@435 620 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 621 delayed()->st(O2, O1, 0);
duke@435 622 bind(L);
duke@435 623
duke@435 624 // store nearby pc
duke@435 625 st(O7, O1, sizeof(intptr_t));
duke@435 626 // store file
duke@435 627 st(O3, O1, 2*sizeof(intptr_t));
duke@435 628 // store line
duke@435 629 st(O4, O1, 3*sizeof(intptr_t));
duke@435 630 add(O0, 1, O0);
duke@435 631 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 632 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 633 restore();
duke@435 634 #endif /* PRODUCT */
duke@435 635 }
duke@435 636 jmpl(r1, r2, G0);
duke@435 637 }
duke@435 638 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
duke@435 639 assert_not_delayed();
duke@435 640 // This can only be traceable if r1 is visible after a window save
duke@435 641 if (TraceJumps) {
duke@435 642 #ifndef PRODUCT
duke@435 643 save_frame(0);
duke@435 644 verify_thread();
duke@435 645 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 646 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 647 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 648 add(O2, O1, O1);
duke@435 649
duke@435 650 add(r1->after_save(), offset, O2);
duke@435 651 set((intptr_t)file, O3);
duke@435 652 set(line, O4);
duke@435 653 Label L;
duke@435 654 // get nearby pc, store jmp target
duke@435 655 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 656 delayed()->st(O2, O1, 0);
duke@435 657 bind(L);
duke@435 658
duke@435 659 // store nearby pc
duke@435 660 st(O7, O1, sizeof(intptr_t));
duke@435 661 // store file
duke@435 662 st(O3, O1, 2*sizeof(intptr_t));
duke@435 663 // store line
duke@435 664 st(O4, O1, 3*sizeof(intptr_t));
duke@435 665 add(O0, 1, O0);
duke@435 666 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 667 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 668 restore();
duke@435 669 #endif /* PRODUCT */
duke@435 670 }
duke@435 671 jmp(r1, offset);
duke@435 672 }
duke@435 673
duke@435 674 // This code sequence is relocatable to any address, even on LP64.
coleenp@2035 675 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
duke@435 676 assert_not_delayed();
duke@435 677 // Force fixed length sethi because NativeJump and NativeFarCall don't handle
duke@435 678 // variable length instruction streams.
twisti@1162 679 patchable_sethi(addrlit, temp);
twisti@1162 680 Address a(temp, addrlit.low10() + offset); // Add the offset to the displacement.
duke@435 681 if (TraceJumps) {
duke@435 682 #ifndef PRODUCT
duke@435 683 // Must do the add here so relocation can find the remainder of the
duke@435 684 // value to be relocated.
twisti@1162 685 add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
duke@435 686 save_frame(0);
duke@435 687 verify_thread();
duke@435 688 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 689 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 690 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 691 add(O2, O1, O1);
duke@435 692
duke@435 693 set((intptr_t)file, O3);
duke@435 694 set(line, O4);
duke@435 695 Label L;
duke@435 696
duke@435 697 // get nearby pc, store jmp target
duke@435 698 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 699 delayed()->st(a.base()->after_save(), O1, 0);
duke@435 700 bind(L);
duke@435 701
duke@435 702 // store nearby pc
duke@435 703 st(O7, O1, sizeof(intptr_t));
duke@435 704 // store file
duke@435 705 st(O3, O1, 2*sizeof(intptr_t));
duke@435 706 // store line
duke@435 707 st(O4, O1, 3*sizeof(intptr_t));
duke@435 708 add(O0, 1, O0);
duke@435 709 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 710 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 711 restore();
duke@435 712 jmpl(a.base(), G0, d);
duke@435 713 #else
twisti@1162 714 jmpl(a.base(), a.disp(), d);
duke@435 715 #endif /* PRODUCT */
duke@435 716 } else {
twisti@1162 717 jmpl(a.base(), a.disp(), d);
duke@435 718 }
duke@435 719 }
duke@435 720
coleenp@2035 721 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
twisti@1162 722 jumpl(addrlit, temp, G0, offset, file, line);
duke@435 723 }
duke@435 724
duke@435 725
duke@435 726 // Convert to C varargs format
duke@435 727 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
duke@435 728 // spill register-resident args to their memory slots
duke@435 729 // (SPARC calling convention requires callers to have already preallocated these)
duke@435 730 // Note that the inArg might in fact be an outgoing argument,
duke@435 731 // if a leaf routine or stub does some tricky argument shuffling.
duke@435 732 // This routine must work even though one of the saved arguments
duke@435 733 // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
duke@435 734 for (Argument savePtr = inArg;
duke@435 735 savePtr.is_register();
duke@435 736 savePtr = savePtr.successor()) {
duke@435 737 st_ptr(savePtr.as_register(), savePtr.address_in_frame());
duke@435 738 }
duke@435 739 // return the address of the first memory slot
twisti@1162 740 Address a = inArg.address_in_frame();
twisti@1162 741 add(a.base(), a.disp(), d);
duke@435 742 }
duke@435 743
duke@435 744 // Conditional breakpoint (for assertion checks in assembly code)
duke@435 745 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
duke@435 746 trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
duke@435 747 }
duke@435 748
duke@435 749 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
duke@435 750 void MacroAssembler::breakpoint_trap() {
duke@435 751 trap(ST_RESERVED_FOR_USER_0);
duke@435 752 }
duke@435 753
duke@435 754 // flush windows (except current) using flushw instruction if avail.
duke@435 755 void MacroAssembler::flush_windows() {
duke@435 756 if (VM_Version::v9_instructions_work()) flushw();
duke@435 757 else flush_windows_trap();
duke@435 758 }
duke@435 759
duke@435 760 // Write serialization page so VM thread can do a pseudo remote membar
duke@435 761 // We use the current thread pointer to calculate a thread specific
duke@435 762 // offset to write to within the page. This minimizes bus traffic
duke@435 763 // due to cache line collision.
duke@435 764 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
duke@435 765 srl(thread, os::get_serialize_page_shift_count(), tmp2);
duke@435 766 if (Assembler::is_simm13(os::vm_page_size())) {
duke@435 767 and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
duke@435 768 }
duke@435 769 else {
duke@435 770 set((os::vm_page_size() - sizeof(int)), tmp1);
duke@435 771 and3(tmp2, tmp1, tmp2);
duke@435 772 }
twisti@1162 773 set(os::get_memory_serialize_page(), tmp1);
duke@435 774 st(G0, tmp1, tmp2);
duke@435 775 }
duke@435 776
duke@435 777
duke@435 778
duke@435 779 void MacroAssembler::enter() {
duke@435 780 Unimplemented();
duke@435 781 }
duke@435 782
duke@435 783 void MacroAssembler::leave() {
duke@435 784 Unimplemented();
duke@435 785 }
duke@435 786
duke@435 787 void MacroAssembler::mult(Register s1, Register s2, Register d) {
duke@435 788 if(VM_Version::v9_instructions_work()) {
duke@435 789 mulx (s1, s2, d);
duke@435 790 } else {
duke@435 791 smul (s1, s2, d);
duke@435 792 }
duke@435 793 }
duke@435 794
duke@435 795 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
duke@435 796 if(VM_Version::v9_instructions_work()) {
duke@435 797 mulx (s1, simm13a, d);
duke@435 798 } else {
duke@435 799 smul (s1, simm13a, d);
duke@435 800 }
duke@435 801 }
duke@435 802
duke@435 803
duke@435 804 #ifdef ASSERT
duke@435 805 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
duke@435 806 const Register s1 = G3_scratch;
duke@435 807 const Register s2 = G4_scratch;
duke@435 808 Label get_psr_test;
duke@435 809 // Get the condition codes the V8 way.
duke@435 810 read_ccr_trap(s1);
duke@435 811 mov(ccr_save, s2);
duke@435 812 // This is a test of V8 which has icc but not xcc
duke@435 813 // so mask off the xcc bits
duke@435 814 and3(s2, 0xf, s2);
duke@435 815 // Compare condition codes from the V8 and V9 ways.
duke@435 816 subcc(s2, s1, G0);
duke@435 817 br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
duke@435 818 delayed()->breakpoint_trap();
duke@435 819 bind(get_psr_test);
duke@435 820 }
duke@435 821
duke@435 822 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
duke@435 823 const Register s1 = G3_scratch;
duke@435 824 const Register s2 = G4_scratch;
duke@435 825 Label set_psr_test;
duke@435 826 // Write out the saved condition codes the V8 way
duke@435 827 write_ccr_trap(ccr_save, s1, s2);
duke@435 828 // Read back the condition codes using the V9 instruction
duke@435 829 rdccr(s1);
duke@435 830 mov(ccr_save, s2);
duke@435 831 // This is a test of V8 which has icc but not xcc
duke@435 832 // so mask off the xcc bits
duke@435 833 and3(s2, 0xf, s2);
duke@435 834 and3(s1, 0xf, s1);
duke@435 835 // Compare the V8 way with the V9 way.
duke@435 836 subcc(s2, s1, G0);
duke@435 837 br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
duke@435 838 delayed()->breakpoint_trap();
duke@435 839 bind(set_psr_test);
duke@435 840 }
duke@435 841 #else
duke@435 842 #define read_ccr_v8_assert(x)
duke@435 843 #define write_ccr_v8_assert(x)
duke@435 844 #endif // ASSERT
duke@435 845
duke@435 846 void MacroAssembler::read_ccr(Register ccr_save) {
duke@435 847 if (VM_Version::v9_instructions_work()) {
duke@435 848 rdccr(ccr_save);
duke@435 849 // Test code sequence used on V8. Do not move above rdccr.
duke@435 850 read_ccr_v8_assert(ccr_save);
duke@435 851 } else {
duke@435 852 read_ccr_trap(ccr_save);
duke@435 853 }
duke@435 854 }
duke@435 855
duke@435 856 void MacroAssembler::write_ccr(Register ccr_save) {
duke@435 857 if (VM_Version::v9_instructions_work()) {
duke@435 858 // Test code sequence used on V8. Do not move below wrccr.
duke@435 859 write_ccr_v8_assert(ccr_save);
duke@435 860 wrccr(ccr_save);
duke@435 861 } else {
duke@435 862 const Register temp_reg1 = G3_scratch;
duke@435 863 const Register temp_reg2 = G4_scratch;
duke@435 864 write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
duke@435 865 }
duke@435 866 }
duke@435 867
duke@435 868
duke@435 869 // Calls to C land
duke@435 870
duke@435 871 #ifdef ASSERT
duke@435 872 // a hook for debugging
duke@435 873 static Thread* reinitialize_thread() {
duke@435 874 return ThreadLocalStorage::thread();
duke@435 875 }
duke@435 876 #else
duke@435 877 #define reinitialize_thread ThreadLocalStorage::thread
duke@435 878 #endif
duke@435 879
duke@435 880 #ifdef ASSERT
duke@435 881 address last_get_thread = NULL;
duke@435 882 #endif
duke@435 883
duke@435 884 // call this when G2_thread is not known to be valid
duke@435 885 void MacroAssembler::get_thread() {
duke@435 886 save_frame(0); // to avoid clobbering O0
duke@435 887 mov(G1, L0); // avoid clobbering G1
duke@435 888 mov(G5_method, L1); // avoid clobbering G5
duke@435 889 mov(G3, L2); // avoid clobbering G3 also
duke@435 890 mov(G4, L5); // avoid clobbering G4
duke@435 891 #ifdef ASSERT
twisti@1162 892 AddressLiteral last_get_thread_addrlit(&last_get_thread);
twisti@1162 893 set(last_get_thread_addrlit, L3);
duke@435 894 inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
twisti@1162 895 st_ptr(L4, L3, 0);
duke@435 896 #endif
duke@435 897 call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
duke@435 898 delayed()->nop();
duke@435 899 mov(L0, G1);
duke@435 900 mov(L1, G5_method);
duke@435 901 mov(L2, G3);
duke@435 902 mov(L5, G4);
duke@435 903 restore(O0, 0, G2_thread);
duke@435 904 }
duke@435 905
duke@435 906 static Thread* verify_thread_subroutine(Thread* gthread_value) {
duke@435 907 Thread* correct_value = ThreadLocalStorage::thread();
duke@435 908 guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
duke@435 909 return correct_value;
duke@435 910 }
duke@435 911
duke@435 912 void MacroAssembler::verify_thread() {
duke@435 913 if (VerifyThread) {
duke@435 914 // NOTE: this chops off the heads of the 64-bit O registers.
duke@435 915 #ifdef CC_INTERP
duke@435 916 save_frame(0);
duke@435 917 #else
duke@435 918 // make sure G2_thread contains the right value
duke@435 919 save_frame_and_mov(0, Lmethod, Lmethod); // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
duke@435 920 mov(G1, L1); // avoid clobbering G1
duke@435 921 // G2 saved below
duke@435 922 mov(G3, L3); // avoid clobbering G3
duke@435 923 mov(G4, L4); // avoid clobbering G4
duke@435 924 mov(G5_method, L5); // avoid clobbering G5_method
duke@435 925 #endif /* CC_INTERP */
duke@435 926 #if defined(COMPILER2) && !defined(_LP64)
duke@435 927 // Save & restore possible 64-bit Long arguments in G-regs
duke@435 928 srlx(G1,32,L0);
duke@435 929 srlx(G4,32,L6);
duke@435 930 #endif
duke@435 931 call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
duke@435 932 delayed()->mov(G2_thread, O0);
duke@435 933
duke@435 934 mov(L1, G1); // Restore G1
duke@435 935 // G2 restored below
duke@435 936 mov(L3, G3); // restore G3
duke@435 937 mov(L4, G4); // restore G4
duke@435 938 mov(L5, G5_method); // restore G5_method
duke@435 939 #if defined(COMPILER2) && !defined(_LP64)
duke@435 940 // Save & restore possible 64-bit Long arguments in G-regs
duke@435 941 sllx(L0,32,G2); // Move old high G1 bits high in G2
iveresov@2344 942 srl(G1, 0,G1); // Clear current high G1 bits
duke@435 943 or3 (G1,G2,G1); // Recover 64-bit G1
duke@435 944 sllx(L6,32,G2); // Move old high G4 bits high in G2
iveresov@2344 945 srl(G4, 0,G4); // Clear current high G4 bits
duke@435 946 or3 (G4,G2,G4); // Recover 64-bit G4
duke@435 947 #endif
duke@435 948 restore(O0, 0, G2_thread);
duke@435 949 }
duke@435 950 }
duke@435 951
duke@435 952
duke@435 953 void MacroAssembler::save_thread(const Register thread_cache) {
duke@435 954 verify_thread();
duke@435 955 if (thread_cache->is_valid()) {
duke@435 956 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
duke@435 957 mov(G2_thread, thread_cache);
duke@435 958 }
duke@435 959 if (VerifyThread) {
duke@435 960 // smash G2_thread, as if the VM were about to anyway
duke@435 961 set(0x67676767, G2_thread);
duke@435 962 }
duke@435 963 }
duke@435 964
duke@435 965
duke@435 966 void MacroAssembler::restore_thread(const Register thread_cache) {
duke@435 967 if (thread_cache->is_valid()) {
duke@435 968 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
duke@435 969 mov(thread_cache, G2_thread);
duke@435 970 verify_thread();
duke@435 971 } else {
duke@435 972 // do it the slow way
duke@435 973 get_thread();
duke@435 974 }
duke@435 975 }
duke@435 976
duke@435 977
duke@435 978 // %%% maybe get rid of [re]set_last_Java_frame
duke@435 979 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
duke@435 980 assert_not_delayed();
twisti@1162 981 Address flags(G2_thread, JavaThread::frame_anchor_offset() +
twisti@1162 982 JavaFrameAnchor::flags_offset());
twisti@1162 983 Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
duke@435 984
duke@435 985 // Always set last_Java_pc and flags first because once last_Java_sp is visible
duke@435 986 // has_last_Java_frame is true and users will look at the rest of the fields.
duke@435 987 // (Note: flags should always be zero before we get here so doesn't need to be set.)
duke@435 988
duke@435 989 #ifdef ASSERT
duke@435 990 // Verify that flags was zeroed on return to Java
duke@435 991 Label PcOk;
duke@435 992 save_frame(0); // to avoid clobbering O0
duke@435 993 ld_ptr(pc_addr, L0);
kvn@3037 994 br_null_short(L0, Assembler::pt, PcOk);
duke@435 995 stop("last_Java_pc not zeroed before leaving Java");
duke@435 996 bind(PcOk);
duke@435 997
duke@435 998 // Verify that flags was zeroed on return to Java
duke@435 999 Label FlagsOk;
duke@435 1000 ld(flags, L0);
duke@435 1001 tst(L0);
duke@435 1002 br(Assembler::zero, false, Assembler::pt, FlagsOk);
duke@435 1003 delayed() -> restore();
duke@435 1004 stop("flags not zeroed before leaving Java");
duke@435 1005 bind(FlagsOk);
duke@435 1006 #endif /* ASSERT */
duke@435 1007 //
duke@435 1008 // When returning from calling out from Java mode the frame anchor's last_Java_pc
duke@435 1009 // will always be set to NULL. It is set here so that if we are doing a call to
duke@435 1010 // native (not VM) that we capture the known pc and don't have to rely on the
duke@435 1011 // native call having a standard frame linkage where we can find the pc.
duke@435 1012
duke@435 1013 if (last_Java_pc->is_valid()) {
duke@435 1014 st_ptr(last_Java_pc, pc_addr);
duke@435 1015 }
duke@435 1016
duke@435 1017 #ifdef _LP64
duke@435 1018 #ifdef ASSERT
duke@435 1019 // Make sure that we have an odd stack
duke@435 1020 Label StackOk;
duke@435 1021 andcc(last_java_sp, 0x01, G0);
duke@435 1022 br(Assembler::notZero, false, Assembler::pt, StackOk);
kvn@3037 1023 delayed()->nop();
duke@435 1024 stop("Stack Not Biased in set_last_Java_frame");
duke@435 1025 bind(StackOk);
duke@435 1026 #endif // ASSERT
duke@435 1027 assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
duke@435 1028 add( last_java_sp, STACK_BIAS, G4_scratch );
twisti@1162 1029 st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
duke@435 1030 #else
twisti@1162 1031 st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
duke@435 1032 #endif // _LP64
duke@435 1033 }
duke@435 1034
duke@435 1035 void MacroAssembler::reset_last_Java_frame(void) {
duke@435 1036 assert_not_delayed();
duke@435 1037
twisti@1162 1038 Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
twisti@1162 1039 Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
twisti@1162 1040 Address flags (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
duke@435 1041
duke@435 1042 #ifdef ASSERT
duke@435 1043 // check that it WAS previously set
duke@435 1044 #ifdef CC_INTERP
duke@435 1045 save_frame(0);
duke@435 1046 #else
duke@435 1047 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod to helper frame for -Xprof
duke@435 1048 #endif /* CC_INTERP */
duke@435 1049 ld_ptr(sp_addr, L0);
duke@435 1050 tst(L0);
duke@435 1051 breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
duke@435 1052 restore();
duke@435 1053 #endif // ASSERT
duke@435 1054
duke@435 1055 st_ptr(G0, sp_addr);
duke@435 1056 // Always return last_Java_pc to zero
duke@435 1057 st_ptr(G0, pc_addr);
duke@435 1058 // Always null flags after return to Java
duke@435 1059 st(G0, flags);
duke@435 1060 }
duke@435 1061
duke@435 1062
duke@435 1063 void MacroAssembler::call_VM_base(
duke@435 1064 Register oop_result,
duke@435 1065 Register thread_cache,
duke@435 1066 Register last_java_sp,
duke@435 1067 address entry_point,
duke@435 1068 int number_of_arguments,
duke@435 1069 bool check_exceptions)
duke@435 1070 {
duke@435 1071 assert_not_delayed();
duke@435 1072
duke@435 1073 // determine last_java_sp register
duke@435 1074 if (!last_java_sp->is_valid()) {
duke@435 1075 last_java_sp = SP;
duke@435 1076 }
duke@435 1077 // debugging support
duke@435 1078 assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
duke@435 1079
duke@435 1080 // 64-bit last_java_sp is biased!
duke@435 1081 set_last_Java_frame(last_java_sp, noreg);
duke@435 1082 if (VerifyThread) mov(G2_thread, O0); // about to be smashed; pass early
duke@435 1083 save_thread(thread_cache);
duke@435 1084 // do the call
duke@435 1085 call(entry_point, relocInfo::runtime_call_type);
duke@435 1086 if (!VerifyThread)
duke@435 1087 delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 1088 else
duke@435 1089 delayed()->nop(); // (thread already passed)
duke@435 1090 restore_thread(thread_cache);
duke@435 1091 reset_last_Java_frame();
duke@435 1092
duke@435 1093 // check for pending exceptions. use Gtemp as scratch register.
duke@435 1094 if (check_exceptions) {
duke@435 1095 check_and_forward_exception(Gtemp);
duke@435 1096 }
duke@435 1097
never@2950 1098 #ifdef ASSERT
never@2950 1099 set(badHeapWordVal, G3);
never@2950 1100 set(badHeapWordVal, G4);
never@2950 1101 set(badHeapWordVal, G5);
never@2950 1102 #endif
never@2950 1103
duke@435 1104 // get oop result if there is one and reset the value in the thread
duke@435 1105 if (oop_result->is_valid()) {
duke@435 1106 get_vm_result(oop_result);
duke@435 1107 }
duke@435 1108 }
duke@435 1109
duke@435 1110 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
duke@435 1111 {
duke@435 1112 Label L;
duke@435 1113
duke@435 1114 check_and_handle_popframe(scratch_reg);
duke@435 1115 check_and_handle_earlyret(scratch_reg);
duke@435 1116
twisti@1162 1117 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 1118 ld_ptr(exception_addr, scratch_reg);
kvn@3037 1119 br_null_short(scratch_reg, pt, L);
duke@435 1120 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 1121 call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 1122 delayed()->nop();
duke@435 1123 bind(L);
duke@435 1124 }
duke@435 1125
duke@435 1126
duke@435 1127 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
duke@435 1128 }
duke@435 1129
duke@435 1130
duke@435 1131 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
duke@435 1132 }
duke@435 1133
duke@435 1134
duke@435 1135 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
duke@435 1136 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
duke@435 1137 }
duke@435 1138
duke@435 1139
duke@435 1140 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
duke@435 1141 // O0 is reserved for the thread
duke@435 1142 mov(arg_1, O1);
duke@435 1143 call_VM(oop_result, entry_point, 1, check_exceptions);
duke@435 1144 }
duke@435 1145
duke@435 1146
duke@435 1147 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
duke@435 1148 // O0 is reserved for the thread
duke@435 1149 mov(arg_1, O1);
duke@435 1150 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1151 call_VM(oop_result, entry_point, 2, check_exceptions);
duke@435 1152 }
duke@435 1153
duke@435 1154
duke@435 1155 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
duke@435 1156 // O0 is reserved for the thread
duke@435 1157 mov(arg_1, O1);
duke@435 1158 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1159 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
duke@435 1160 call_VM(oop_result, entry_point, 3, check_exceptions);
duke@435 1161 }
duke@435 1162
duke@435 1163
duke@435 1164
duke@435 1165 // Note: The following call_VM overloadings are useful when a "save"
duke@435 1166 // has already been performed by a stub, and the last Java frame is
duke@435 1167 // the previous one. In that case, last_java_sp must be passed as FP
duke@435 1168 // instead of SP.
duke@435 1169
duke@435 1170
duke@435 1171 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
duke@435 1172 call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
duke@435 1173 }
duke@435 1174
duke@435 1175
duke@435 1176 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
duke@435 1177 // O0 is reserved for the thread
duke@435 1178 mov(arg_1, O1);
duke@435 1179 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
duke@435 1180 }
duke@435 1181
duke@435 1182
duke@435 1183 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
duke@435 1184 // O0 is reserved for the thread
duke@435 1185 mov(arg_1, O1);
duke@435 1186 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1187 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
duke@435 1188 }
duke@435 1189
duke@435 1190
duke@435 1191 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
duke@435 1192 // O0 is reserved for the thread
duke@435 1193 mov(arg_1, O1);
duke@435 1194 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1195 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
duke@435 1196 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
duke@435 1197 }
duke@435 1198
duke@435 1199
duke@435 1200
duke@435 1201 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
duke@435 1202 assert_not_delayed();
duke@435 1203 save_thread(thread_cache);
duke@435 1204 // do the call
duke@435 1205 call(entry_point, relocInfo::runtime_call_type);
duke@435 1206 delayed()->nop();
duke@435 1207 restore_thread(thread_cache);
never@2950 1208 #ifdef ASSERT
never@2950 1209 set(badHeapWordVal, G3);
never@2950 1210 set(badHeapWordVal, G4);
never@2950 1211 set(badHeapWordVal, G5);
never@2950 1212 #endif
duke@435 1213 }
duke@435 1214
duke@435 1215
duke@435 1216 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
duke@435 1217 call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
duke@435 1218 }
duke@435 1219
duke@435 1220
duke@435 1221 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
duke@435 1222 mov(arg_1, O0);
duke@435 1223 call_VM_leaf(thread_cache, entry_point, 1);
duke@435 1224 }
duke@435 1225
duke@435 1226
duke@435 1227 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
duke@435 1228 mov(arg_1, O0);
duke@435 1229 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
duke@435 1230 call_VM_leaf(thread_cache, entry_point, 2);
duke@435 1231 }
duke@435 1232
duke@435 1233
duke@435 1234 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
duke@435 1235 mov(arg_1, O0);
duke@435 1236 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
duke@435 1237 mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
duke@435 1238 call_VM_leaf(thread_cache, entry_point, 3);
duke@435 1239 }
duke@435 1240
duke@435 1241
duke@435 1242 void MacroAssembler::get_vm_result(Register oop_result) {
duke@435 1243 verify_thread();
twisti@1162 1244 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
duke@435 1245 ld_ptr( vm_result_addr, oop_result);
duke@435 1246 st_ptr(G0, vm_result_addr);
duke@435 1247 verify_oop(oop_result);
duke@435 1248 }
duke@435 1249
duke@435 1250
duke@435 1251 void MacroAssembler::get_vm_result_2(Register oop_result) {
duke@435 1252 verify_thread();
twisti@1162 1253 Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
duke@435 1254 ld_ptr(vm_result_addr_2, oop_result);
duke@435 1255 st_ptr(G0, vm_result_addr_2);
duke@435 1256 verify_oop(oop_result);
duke@435 1257 }
duke@435 1258
duke@435 1259
duke@435 1260 // We require that C code which does not return a value in vm_result will
duke@435 1261 // leave it undisturbed.
duke@435 1262 void MacroAssembler::set_vm_result(Register oop_result) {
duke@435 1263 verify_thread();
twisti@1162 1264 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
duke@435 1265 verify_oop(oop_result);
duke@435 1266
duke@435 1267 # ifdef ASSERT
duke@435 1268 // Check that we are not overwriting any other oop.
duke@435 1269 #ifdef CC_INTERP
duke@435 1270 save_frame(0);
duke@435 1271 #else
duke@435 1272 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod for -Xprof
duke@435 1273 #endif /* CC_INTERP */
duke@435 1274 ld_ptr(vm_result_addr, L0);
duke@435 1275 tst(L0);
duke@435 1276 restore();
duke@435 1277 breakpoint_trap(notZero, Assembler::ptr_cc);
duke@435 1278 // }
duke@435 1279 # endif
duke@435 1280
duke@435 1281 st_ptr(oop_result, vm_result_addr);
duke@435 1282 }
duke@435 1283
duke@435 1284
ysr@777 1285 void MacroAssembler::card_table_write(jbyte* byte_map_base,
ysr@777 1286 Register tmp, Register obj) {
duke@435 1287 #ifdef _LP64
duke@435 1288 srlx(obj, CardTableModRefBS::card_shift, obj);
duke@435 1289 #else
duke@435 1290 srl(obj, CardTableModRefBS::card_shift, obj);
duke@435 1291 #endif
twisti@1162 1292 assert(tmp != obj, "need separate temp reg");
twisti@1162 1293 set((address) byte_map_base, tmp);
twisti@1162 1294 stb(G0, tmp, obj);
duke@435 1295 }
duke@435 1296
twisti@1162 1297
twisti@1162 1298 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
duke@435 1299 address save_pc;
duke@435 1300 int shiftcnt;
duke@435 1301 #ifdef _LP64
duke@435 1302 # ifdef CHECK_DELAY
twisti@1162 1303 assert_not_delayed((char*) "cannot put two instructions in delay slot");
duke@435 1304 # endif
duke@435 1305 v9_dep();
duke@435 1306 save_pc = pc();
twisti@1162 1307
twisti@1162 1308 int msb32 = (int) (addrlit.value() >> 32);
twisti@1162 1309 int lsb32 = (int) (addrlit.value());
twisti@1162 1310
twisti@1162 1311 if (msb32 == 0 && lsb32 >= 0) {
twisti@1162 1312 Assembler::sethi(lsb32, d, addrlit.rspec());
duke@435 1313 }
twisti@1162 1314 else if (msb32 == -1) {
twisti@1162 1315 Assembler::sethi(~lsb32, d, addrlit.rspec());
twisti@1162 1316 xor3(d, ~low10(~0), d);
duke@435 1317 }
duke@435 1318 else {
twisti@1162 1319 Assembler::sethi(msb32, d, addrlit.rspec()); // msb 22-bits
twisti@1162 1320 if (msb32 & 0x3ff) // Any bits?
twisti@1162 1321 or3(d, msb32 & 0x3ff, d); // msb 32-bits are now in lsb 32
twisti@1162 1322 if (lsb32 & 0xFFFFFC00) { // done?
twisti@1162 1323 if ((lsb32 >> 20) & 0xfff) { // Any bits set?
twisti@1162 1324 sllx(d, 12, d); // Make room for next 12 bits
twisti@1162 1325 or3(d, (lsb32 >> 20) & 0xfff, d); // Or in next 12
twisti@1162 1326 shiftcnt = 0; // We already shifted
duke@435 1327 }
duke@435 1328 else
duke@435 1329 shiftcnt = 12;
twisti@1162 1330 if ((lsb32 >> 10) & 0x3ff) {
twisti@1162 1331 sllx(d, shiftcnt + 10, d); // Make room for last 10 bits
twisti@1162 1332 or3(d, (lsb32 >> 10) & 0x3ff, d); // Or in next 10
duke@435 1333 shiftcnt = 0;
duke@435 1334 }
duke@435 1335 else
duke@435 1336 shiftcnt = 10;
twisti@1162 1337 sllx(d, shiftcnt + 10, d); // Shift leaving disp field 0'd
duke@435 1338 }
duke@435 1339 else
twisti@1162 1340 sllx(d, 32, d);
duke@435 1341 }
twisti@1162 1342 // Pad out the instruction sequence so it can be patched later.
twisti@1162 1343 if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
twisti@1162 1344 addrlit.rtype() != relocInfo::runtime_call_type)) {
twisti@1162 1345 while (pc() < (save_pc + (7 * BytesPerInstWord)))
duke@435 1346 nop();
duke@435 1347 }
duke@435 1348 #else
twisti@1162 1349 Assembler::sethi(addrlit.value(), d, addrlit.rspec());
duke@435 1350 #endif
duke@435 1351 }
duke@435 1352
twisti@1162 1353
twisti@1162 1354 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
twisti@1162 1355 internal_sethi(addrlit, d, false);
twisti@1162 1356 }
twisti@1162 1357
twisti@1162 1358
twisti@1162 1359 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
twisti@1162 1360 internal_sethi(addrlit, d, true);
twisti@1162 1361 }
twisti@1162 1362
twisti@1162 1363
twisti@2399 1364 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
duke@435 1365 #ifdef _LP64
twisti@2399 1366 if (worst_case) return 7;
twisti@2399 1367 intptr_t iaddr = (intptr_t) a;
twisti@2399 1368 int msb32 = (int) (iaddr >> 32);
twisti@2399 1369 int lsb32 = (int) (iaddr);
twisti@2399 1370 int count;
twisti@2399 1371 if (msb32 == 0 && lsb32 >= 0)
twisti@2399 1372 count = 1;
twisti@2399 1373 else if (msb32 == -1)
twisti@2399 1374 count = 2;
duke@435 1375 else {
twisti@2399 1376 count = 2;
twisti@2399 1377 if (msb32 & 0x3ff)
twisti@2399 1378 count++;
twisti@2399 1379 if (lsb32 & 0xFFFFFC00 ) {
twisti@2399 1380 if ((lsb32 >> 20) & 0xfff) count += 2;
twisti@2399 1381 if ((lsb32 >> 10) & 0x3ff) count += 2;
duke@435 1382 }
duke@435 1383 }
twisti@2399 1384 return count;
duke@435 1385 #else
twisti@2399 1386 return 1;
duke@435 1387 #endif
duke@435 1388 }
duke@435 1389
twisti@2399 1390 int MacroAssembler::worst_case_insts_for_set() {
twisti@2399 1391 return insts_for_sethi(NULL, true) + 1;
duke@435 1392 }
duke@435 1393
twisti@1162 1394
twisti@2399 1395 // Keep in sync with MacroAssembler::insts_for_internal_set
twisti@1162 1396 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
twisti@1162 1397 intptr_t value = addrlit.value();
twisti@1162 1398
twisti@1162 1399 if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
duke@435 1400 // can optimize
twisti@1162 1401 if (-4096 <= value && value <= 4095) {
duke@435 1402 or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
duke@435 1403 return;
duke@435 1404 }
duke@435 1405 if (inv_hi22(hi22(value)) == value) {
twisti@1162 1406 sethi(addrlit, d);
duke@435 1407 return;
duke@435 1408 }
duke@435 1409 }
twisti@1162 1410 assert_not_delayed((char*) "cannot put two instructions in delay slot");
twisti@1162 1411 internal_sethi(addrlit, d, ForceRelocatable);
twisti@1162 1412 if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
twisti@1162 1413 add(d, addrlit.low10(), d, addrlit.rspec());
duke@435 1414 }
duke@435 1415 }
duke@435 1416
twisti@2399 1417 // Keep in sync with MacroAssembler::internal_set
twisti@2399 1418 int MacroAssembler::insts_for_internal_set(intptr_t value) {
twisti@2399 1419 // can optimize
twisti@2399 1420 if (-4096 <= value && value <= 4095) {
twisti@2399 1421 return 1;
twisti@2399 1422 }
twisti@2399 1423 if (inv_hi22(hi22(value)) == value) {
twisti@2399 1424 return insts_for_sethi((address) value);
twisti@2399 1425 }
twisti@2399 1426 int count = insts_for_sethi((address) value);
twisti@2399 1427 AddressLiteral al(value);
twisti@2399 1428 if (al.low10() != 0) {
twisti@2399 1429 count++;
twisti@2399 1430 }
twisti@2399 1431 return count;
twisti@2399 1432 }
twisti@2399 1433
twisti@1162 1434 void MacroAssembler::set(const AddressLiteral& al, Register d) {
twisti@1162 1435 internal_set(al, d, false);
duke@435 1436 }
duke@435 1437
twisti@1162 1438 void MacroAssembler::set(intptr_t value, Register d) {
twisti@1162 1439 AddressLiteral al(value);
twisti@1162 1440 internal_set(al, d, false);
twisti@1162 1441 }
twisti@1162 1442
twisti@1162 1443 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
twisti@1162 1444 AddressLiteral al(addr, rspec);
twisti@1162 1445 internal_set(al, d, false);
twisti@1162 1446 }
twisti@1162 1447
twisti@1162 1448 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
twisti@1162 1449 internal_set(al, d, true);
twisti@1162 1450 }
twisti@1162 1451
twisti@1162 1452 void MacroAssembler::patchable_set(intptr_t value, Register d) {
twisti@1162 1453 AddressLiteral al(value);
twisti@1162 1454 internal_set(al, d, true);
twisti@1162 1455 }
duke@435 1456
duke@435 1457
duke@435 1458 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
duke@435 1459 assert_not_delayed();
duke@435 1460 v9_dep();
duke@435 1461
duke@435 1462 int hi = (int)(value >> 32);
duke@435 1463 int lo = (int)(value & ~0);
duke@435 1464 // (Matcher::isSimpleConstant64 knows about the following optimizations.)
duke@435 1465 if (Assembler::is_simm13(lo) && value == lo) {
duke@435 1466 or3(G0, lo, d);
duke@435 1467 } else if (hi == 0) {
duke@435 1468 Assembler::sethi(lo, d); // hardware version zero-extends to upper 32
duke@435 1469 if (low10(lo) != 0)
duke@435 1470 or3(d, low10(lo), d);
duke@435 1471 }
duke@435 1472 else if (hi == -1) {
duke@435 1473 Assembler::sethi(~lo, d); // hardware version zero-extends to upper 32
duke@435 1474 xor3(d, low10(lo) ^ ~low10(~0), d);
duke@435 1475 }
duke@435 1476 else if (lo == 0) {
duke@435 1477 if (Assembler::is_simm13(hi)) {
duke@435 1478 or3(G0, hi, d);
duke@435 1479 } else {
duke@435 1480 Assembler::sethi(hi, d); // hardware version zero-extends to upper 32
duke@435 1481 if (low10(hi) != 0)
duke@435 1482 or3(d, low10(hi), d);
duke@435 1483 }
duke@435 1484 sllx(d, 32, d);
duke@435 1485 }
duke@435 1486 else {
duke@435 1487 Assembler::sethi(hi, tmp);
duke@435 1488 Assembler::sethi(lo, d); // macro assembler version sign-extends
duke@435 1489 if (low10(hi) != 0)
duke@435 1490 or3 (tmp, low10(hi), tmp);
duke@435 1491 if (low10(lo) != 0)
duke@435 1492 or3 ( d, low10(lo), d);
duke@435 1493 sllx(tmp, 32, tmp);
duke@435 1494 or3 (d, tmp, d);
duke@435 1495 }
duke@435 1496 }
duke@435 1497
twisti@2399 1498 int MacroAssembler::insts_for_set64(jlong value) {
twisti@2350 1499 v9_dep();
twisti@2350 1500
twisti@2399 1501 int hi = (int) (value >> 32);
twisti@2399 1502 int lo = (int) (value & ~0);
twisti@2350 1503 int count = 0;
twisti@2350 1504
twisti@2350 1505 // (Matcher::isSimpleConstant64 knows about the following optimizations.)
twisti@2350 1506 if (Assembler::is_simm13(lo) && value == lo) {
twisti@2350 1507 count++;
twisti@2350 1508 } else if (hi == 0) {
twisti@2350 1509 count++;
twisti@2350 1510 if (low10(lo) != 0)
twisti@2350 1511 count++;
twisti@2350 1512 }
twisti@2350 1513 else if (hi == -1) {
twisti@2350 1514 count += 2;
twisti@2350 1515 }
twisti@2350 1516 else if (lo == 0) {
twisti@2350 1517 if (Assembler::is_simm13(hi)) {
twisti@2350 1518 count++;
twisti@2350 1519 } else {
twisti@2350 1520 count++;
twisti@2350 1521 if (low10(hi) != 0)
twisti@2350 1522 count++;
twisti@2350 1523 }
twisti@2350 1524 count++;
twisti@2350 1525 }
twisti@2350 1526 else {
twisti@2350 1527 count += 2;
twisti@2350 1528 if (low10(hi) != 0)
twisti@2350 1529 count++;
twisti@2350 1530 if (low10(lo) != 0)
twisti@2350 1531 count++;
twisti@2350 1532 count += 2;
twisti@2350 1533 }
twisti@2350 1534 return count;
twisti@2350 1535 }
twisti@2350 1536
duke@435 1537 // compute size in bytes of sparc frame, given
duke@435 1538 // number of extraWords
duke@435 1539 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
duke@435 1540
duke@435 1541 int nWords = frame::memory_parameter_word_sp_offset;
duke@435 1542
duke@435 1543 nWords += extraWords;
duke@435 1544
duke@435 1545 if (nWords & 1) ++nWords; // round up to double-word
duke@435 1546
duke@435 1547 return nWords * BytesPerWord;
duke@435 1548 }
duke@435 1549
duke@435 1550
duke@435 1551 // save_frame: given number of "extra" words in frame,
duke@435 1552 // issue approp. save instruction (p 200, v8 manual)
duke@435 1553
never@2950 1554 void MacroAssembler::save_frame(int extraWords) {
duke@435 1555 int delta = -total_frame_size_in_bytes(extraWords);
duke@435 1556 if (is_simm13(delta)) {
duke@435 1557 save(SP, delta, SP);
duke@435 1558 } else {
duke@435 1559 set(delta, G3_scratch);
duke@435 1560 save(SP, G3_scratch, SP);
duke@435 1561 }
duke@435 1562 }
duke@435 1563
duke@435 1564
duke@435 1565 void MacroAssembler::save_frame_c1(int size_in_bytes) {
duke@435 1566 if (is_simm13(-size_in_bytes)) {
duke@435 1567 save(SP, -size_in_bytes, SP);
duke@435 1568 } else {
duke@435 1569 set(-size_in_bytes, G3_scratch);
duke@435 1570 save(SP, G3_scratch, SP);
duke@435 1571 }
duke@435 1572 }
duke@435 1573
duke@435 1574
duke@435 1575 void MacroAssembler::save_frame_and_mov(int extraWords,
duke@435 1576 Register s1, Register d1,
duke@435 1577 Register s2, Register d2) {
duke@435 1578 assert_not_delayed();
duke@435 1579
duke@435 1580 // The trick here is to use precisely the same memory word
duke@435 1581 // that trap handlers also use to save the register.
duke@435 1582 // This word cannot be used for any other purpose, but
duke@435 1583 // it works fine to save the register's value, whether or not
duke@435 1584 // an interrupt flushes register windows at any given moment!
duke@435 1585 Address s1_addr;
duke@435 1586 if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
duke@435 1587 s1_addr = s1->address_in_saved_window();
duke@435 1588 st_ptr(s1, s1_addr);
duke@435 1589 }
duke@435 1590
duke@435 1591 Address s2_addr;
duke@435 1592 if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
duke@435 1593 s2_addr = s2->address_in_saved_window();
duke@435 1594 st_ptr(s2, s2_addr);
duke@435 1595 }
duke@435 1596
duke@435 1597 save_frame(extraWords);
duke@435 1598
duke@435 1599 if (s1_addr.base() == SP) {
duke@435 1600 ld_ptr(s1_addr.after_save(), d1);
duke@435 1601 } else if (s1->is_valid()) {
duke@435 1602 mov(s1->after_save(), d1);
duke@435 1603 }
duke@435 1604
duke@435 1605 if (s2_addr.base() == SP) {
duke@435 1606 ld_ptr(s2_addr.after_save(), d2);
duke@435 1607 } else if (s2->is_valid()) {
duke@435 1608 mov(s2->after_save(), d2);
duke@435 1609 }
duke@435 1610 }
duke@435 1611
duke@435 1612
twisti@1162 1613 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
duke@435 1614 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
duke@435 1615 int oop_index = oop_recorder()->allocate_index(obj);
twisti@1162 1616 return AddressLiteral(obj, oop_Relocation::spec(oop_index));
duke@435 1617 }
duke@435 1618
duke@435 1619
twisti@1162 1620 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
duke@435 1621 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
duke@435 1622 int oop_index = oop_recorder()->find_index(obj);
twisti@1162 1623 return AddressLiteral(obj, oop_Relocation::spec(oop_index));
duke@435 1624 }
duke@435 1625
kvn@599 1626 void MacroAssembler::set_narrow_oop(jobject obj, Register d) {
kvn@599 1627 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
kvn@599 1628 int oop_index = oop_recorder()->find_index(obj);
kvn@599 1629 RelocationHolder rspec = oop_Relocation::spec(oop_index);
kvn@599 1630
kvn@599 1631 assert_not_delayed();
kvn@599 1632 // Relocation with special format (see relocInfo_sparc.hpp).
kvn@599 1633 relocate(rspec, 1);
kvn@599 1634 // Assembler::sethi(0x3fffff, d);
kvn@599 1635 emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
kvn@599 1636 // Don't add relocation for 'add'. Do patching during 'sethi' processing.
kvn@599 1637 add(d, 0x3ff, d);
kvn@599 1638
kvn@599 1639 }
kvn@599 1640
duke@435 1641
duke@435 1642 void MacroAssembler::align(int modulus) {
duke@435 1643 while (offset() % modulus != 0) nop();
duke@435 1644 }
duke@435 1645
duke@435 1646
duke@435 1647 void MacroAssembler::safepoint() {
duke@435 1648 relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
duke@435 1649 }
duke@435 1650
duke@435 1651
duke@435 1652 void RegistersForDebugging::print(outputStream* s) {
duke@435 1653 int j;
duke@435 1654 for ( j = 0; j < 8; ++j )
duke@435 1655 if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
duke@435 1656 else s->print_cr( "fp = 0x%.16lx", i[j]);
duke@435 1657 s->cr();
duke@435 1658
duke@435 1659 for ( j = 0; j < 8; ++j )
duke@435 1660 s->print_cr("l%d = 0x%.16lx", j, l[j]);
duke@435 1661 s->cr();
duke@435 1662
duke@435 1663 for ( j = 0; j < 8; ++j )
duke@435 1664 if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
duke@435 1665 else s->print_cr( "sp = 0x%.16lx", o[j]);
duke@435 1666 s->cr();
duke@435 1667
duke@435 1668 for ( j = 0; j < 8; ++j )
duke@435 1669 s->print_cr("g%d = 0x%.16lx", j, g[j]);
duke@435 1670 s->cr();
duke@435 1671
duke@435 1672 // print out floats with compression
duke@435 1673 for (j = 0; j < 32; ) {
duke@435 1674 jfloat val = f[j];
duke@435 1675 int last = j;
duke@435 1676 for ( ; last+1 < 32; ++last ) {
duke@435 1677 char b1[1024], b2[1024];
duke@435 1678 sprintf(b1, "%f", val);
duke@435 1679 sprintf(b2, "%f", f[last+1]);
duke@435 1680 if (strcmp(b1, b2))
duke@435 1681 break;
duke@435 1682 }
duke@435 1683 s->print("f%d", j);
duke@435 1684 if ( j != last ) s->print(" - f%d", last);
duke@435 1685 s->print(" = %f", val);
duke@435 1686 s->fill_to(25);
duke@435 1687 s->print_cr(" (0x%x)", val);
duke@435 1688 j = last + 1;
duke@435 1689 }
duke@435 1690 s->cr();
duke@435 1691
duke@435 1692 // and doubles (evens only)
duke@435 1693 for (j = 0; j < 32; ) {
duke@435 1694 jdouble val = d[j];
duke@435 1695 int last = j;
duke@435 1696 for ( ; last+1 < 32; ++last ) {
duke@435 1697 char b1[1024], b2[1024];
duke@435 1698 sprintf(b1, "%f", val);
duke@435 1699 sprintf(b2, "%f", d[last+1]);
duke@435 1700 if (strcmp(b1, b2))
duke@435 1701 break;
duke@435 1702 }
duke@435 1703 s->print("d%d", 2 * j);
duke@435 1704 if ( j != last ) s->print(" - d%d", last);
duke@435 1705 s->print(" = %f", val);
duke@435 1706 s->fill_to(30);
duke@435 1707 s->print("(0x%x)", *(int*)&val);
duke@435 1708 s->fill_to(42);
duke@435 1709 s->print_cr("(0x%x)", *(1 + (int*)&val));
duke@435 1710 j = last + 1;
duke@435 1711 }
duke@435 1712 s->cr();
duke@435 1713 }
duke@435 1714
duke@435 1715 void RegistersForDebugging::save_registers(MacroAssembler* a) {
duke@435 1716 a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
duke@435 1717 a->flush_windows();
duke@435 1718 int i;
duke@435 1719 for (i = 0; i < 8; ++i) {
duke@435 1720 a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, i_offset(i));
duke@435 1721 a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, l_offset(i));
duke@435 1722 a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
duke@435 1723 a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
duke@435 1724 }
duke@435 1725 for (i = 0; i < 32; ++i) {
duke@435 1726 a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
duke@435 1727 }
duke@435 1728 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 1729 a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
duke@435 1730 }
duke@435 1731 }
duke@435 1732
duke@435 1733 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
duke@435 1734 for (int i = 1; i < 8; ++i) {
duke@435 1735 a->ld_ptr(r, g_offset(i), as_gRegister(i));
duke@435 1736 }
duke@435 1737 for (int j = 0; j < 32; ++j) {
duke@435 1738 a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
duke@435 1739 }
duke@435 1740 for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
duke@435 1741 a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
duke@435 1742 }
duke@435 1743 }
duke@435 1744
duke@435 1745
duke@435 1746 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 1747 void MacroAssembler::push_fTOS() {
duke@435 1748 // %%%%%% need to implement this
duke@435 1749 }
duke@435 1750
duke@435 1751 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 1752 void MacroAssembler::pop_fTOS() {
duke@435 1753 // %%%%%% need to implement this
duke@435 1754 }
duke@435 1755
duke@435 1756 void MacroAssembler::empty_FPU_stack() {
duke@435 1757 // %%%%%% need to implement this
duke@435 1758 }
duke@435 1759
duke@435 1760 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
duke@435 1761 // plausibility check for oops
duke@435 1762 if (!VerifyOops) return;
duke@435 1763
duke@435 1764 if (reg == G0) return; // always NULL, which is always an oop
duke@435 1765
never@2950 1766 BLOCK_COMMENT("verify_oop {");
ysr@777 1767 char buffer[64];
ysr@777 1768 #ifdef COMPILER1
ysr@777 1769 if (CommentedAssembly) {
ysr@777 1770 snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
ysr@777 1771 block_comment(buffer);
ysr@777 1772 }
ysr@777 1773 #endif
ysr@777 1774
ysr@777 1775 int len = strlen(file) + strlen(msg) + 1 + 4;
duke@435 1776 sprintf(buffer, "%d", line);
ysr@777 1777 len += strlen(buffer);
ysr@777 1778 sprintf(buffer, " at offset %d ", offset());
ysr@777 1779 len += strlen(buffer);
duke@435 1780 char * real_msg = new char[len];
ysr@777 1781 sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
duke@435 1782
duke@435 1783 // Call indirectly to solve generation ordering problem
twisti@1162 1784 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
duke@435 1785
duke@435 1786 // Make some space on stack above the current register window.
duke@435 1787 // Enough to hold 8 64-bit registers.
duke@435 1788 add(SP,-8*8,SP);
duke@435 1789
duke@435 1790 // Save some 64-bit registers; a normal 'save' chops the heads off
duke@435 1791 // of 64-bit longs in the 32-bit build.
duke@435 1792 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
duke@435 1793 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
duke@435 1794 mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
duke@435 1795 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
duke@435 1796
kvn@3098 1797 // Size of set() should stay the same
kvn@3098 1798 patchable_set((intptr_t)real_msg, O1);
duke@435 1799 // Load address to call to into O7
duke@435 1800 load_ptr_contents(a, O7);
duke@435 1801 // Register call to verify_oop_subroutine
duke@435 1802 callr(O7, G0);
duke@435 1803 delayed()->nop();
duke@435 1804 // recover frame size
duke@435 1805 add(SP, 8*8,SP);
never@2950 1806 BLOCK_COMMENT("} verify_oop");
duke@435 1807 }
duke@435 1808
duke@435 1809 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
duke@435 1810 // plausibility check for oops
duke@435 1811 if (!VerifyOops) return;
duke@435 1812
duke@435 1813 char buffer[64];
duke@435 1814 sprintf(buffer, "%d", line);
duke@435 1815 int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
duke@435 1816 sprintf(buffer, " at SP+%d ", addr.disp());
duke@435 1817 len += strlen(buffer);
duke@435 1818 char * real_msg = new char[len];
duke@435 1819 sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
duke@435 1820
duke@435 1821 // Call indirectly to solve generation ordering problem
twisti@1162 1822 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
duke@435 1823
duke@435 1824 // Make some space on stack above the current register window.
duke@435 1825 // Enough to hold 8 64-bit registers.
duke@435 1826 add(SP,-8*8,SP);
duke@435 1827
duke@435 1828 // Save some 64-bit registers; a normal 'save' chops the heads off
duke@435 1829 // of 64-bit longs in the 32-bit build.
duke@435 1830 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
duke@435 1831 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
duke@435 1832 ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
duke@435 1833 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
duke@435 1834
kvn@3098 1835 // Size of set() should stay the same
kvn@3098 1836 patchable_set((intptr_t)real_msg, O1);
duke@435 1837 // Load address to call to into O7
duke@435 1838 load_ptr_contents(a, O7);
duke@435 1839 // Register call to verify_oop_subroutine
duke@435 1840 callr(O7, G0);
duke@435 1841 delayed()->nop();
duke@435 1842 // recover frame size
duke@435 1843 add(SP, 8*8,SP);
duke@435 1844 }
duke@435 1845
duke@435 1846 // side-door communication with signalHandler in os_solaris.cpp
duke@435 1847 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
duke@435 1848
duke@435 1849 // This macro is expanded just once; it creates shared code. Contract:
duke@435 1850 // receives an oop in O0. Must restore O0 & O7 from TLS. Must not smash ANY
duke@435 1851 // registers, including flags. May not use a register 'save', as this blows
duke@435 1852 // the high bits of the O-regs if they contain Long values. Acts as a 'leaf'
duke@435 1853 // call.
duke@435 1854 void MacroAssembler::verify_oop_subroutine() {
duke@435 1855 assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
duke@435 1856
duke@435 1857 // Leaf call; no frame.
duke@435 1858 Label succeed, fail, null_or_fail;
duke@435 1859
duke@435 1860 // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
duke@435 1861 // O0 is now the oop to be checked. O7 is the return address.
duke@435 1862 Register O0_obj = O0;
duke@435 1863
duke@435 1864 // Save some more registers for temps.
duke@435 1865 stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
duke@435 1866 stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
duke@435 1867 stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
duke@435 1868 stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
duke@435 1869
duke@435 1870 // Save flags
duke@435 1871 Register O5_save_flags = O5;
duke@435 1872 rdccr( O5_save_flags );
duke@435 1873
duke@435 1874 { // count number of verifies
duke@435 1875 Register O2_adr = O2;
duke@435 1876 Register O3_accum = O3;
twisti@1162 1877 inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
duke@435 1878 }
duke@435 1879
duke@435 1880 Register O2_mask = O2;
duke@435 1881 Register O3_bits = O3;
duke@435 1882 Register O4_temp = O4;
duke@435 1883
duke@435 1884 // mark lower end of faulting range
duke@435 1885 assert(_verify_oop_implicit_branch[0] == NULL, "set once");
duke@435 1886 _verify_oop_implicit_branch[0] = pc();
duke@435 1887
duke@435 1888 // We can't check the mark oop because it could be in the process of
duke@435 1889 // locking or unlocking while this is running.
duke@435 1890 set(Universe::verify_oop_mask (), O2_mask);
duke@435 1891 set(Universe::verify_oop_bits (), O3_bits);
duke@435 1892
duke@435 1893 // assert((obj & oop_mask) == oop_bits);
duke@435 1894 and3(O0_obj, O2_mask, O4_temp);
kvn@3037 1895 cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
duke@435 1896
duke@435 1897 if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
duke@435 1898 // the null_or_fail case is useless; must test for null separately
kvn@3037 1899 br_null_short(O0_obj, pn, succeed);
duke@435 1900 }
duke@435 1901
duke@435 1902 // Check the klassOop of this object for being in the right area of memory.
duke@435 1903 // Cannot do the load in the delay above slot in case O0 is null
coleenp@548 1904 load_klass(O0_obj, O0_obj);
duke@435 1905 // assert((klass & klass_mask) == klass_bits);
duke@435 1906 if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
duke@435 1907 set(Universe::verify_klass_mask(), O2_mask);
duke@435 1908 if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
duke@435 1909 set(Universe::verify_klass_bits(), O3_bits);
duke@435 1910 and3(O0_obj, O2_mask, O4_temp);
kvn@3037 1911 cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, fail);
duke@435 1912 // Check the klass's klass
coleenp@548 1913 load_klass(O0_obj, O0_obj);
duke@435 1914 and3(O0_obj, O2_mask, O4_temp);
duke@435 1915 cmp(O4_temp, O3_bits);
duke@435 1916 brx(notEqual, false, pn, fail);
duke@435 1917 delayed()->wrccr( O5_save_flags ); // Restore CCR's
duke@435 1918
duke@435 1919 // mark upper end of faulting range
duke@435 1920 _verify_oop_implicit_branch[1] = pc();
duke@435 1921
duke@435 1922 //-----------------------
duke@435 1923 // all tests pass
duke@435 1924 bind(succeed);
duke@435 1925
duke@435 1926 // Restore prior 64-bit registers
duke@435 1927 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
duke@435 1928 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
duke@435 1929 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
duke@435 1930 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
duke@435 1931 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
duke@435 1932 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
duke@435 1933
duke@435 1934 retl(); // Leaf return; restore prior O7 in delay slot
duke@435 1935 delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
duke@435 1936
duke@435 1937 //-----------------------
duke@435 1938 bind(null_or_fail); // nulls are less common but OK
duke@435 1939 br_null(O0_obj, false, pt, succeed);
duke@435 1940 delayed()->wrccr( O5_save_flags ); // Restore CCR's
duke@435 1941
duke@435 1942 //-----------------------
duke@435 1943 // report failure:
duke@435 1944 bind(fail);
duke@435 1945 _verify_oop_implicit_branch[2] = pc();
duke@435 1946
duke@435 1947 wrccr( O5_save_flags ); // Restore CCR's
duke@435 1948
duke@435 1949 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1950
duke@435 1951 // stop_subroutine expects message pointer in I1.
duke@435 1952 mov(I1, O1);
duke@435 1953
duke@435 1954 // Restore prior 64-bit registers
duke@435 1955 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
duke@435 1956 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
duke@435 1957 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
duke@435 1958 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
duke@435 1959 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
duke@435 1960 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
duke@435 1961
duke@435 1962 // factor long stop-sequence into subroutine to save space
duke@435 1963 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
duke@435 1964
duke@435 1965 // call indirectly to solve generation ordering problem
twisti@1162 1966 AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
twisti@1162 1967 load_ptr_contents(al, O5);
duke@435 1968 jmpl(O5, 0, O7);
duke@435 1969 delayed()->nop();
duke@435 1970 }
duke@435 1971
duke@435 1972
duke@435 1973 void MacroAssembler::stop(const char* msg) {
duke@435 1974 // save frame first to get O7 for return address
duke@435 1975 // add one word to size in case struct is odd number of words long
duke@435 1976 // It must be doubleword-aligned for storing doubles into it.
duke@435 1977
duke@435 1978 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1979
duke@435 1980 // stop_subroutine expects message pointer in I1.
kvn@3098 1981 // Size of set() should stay the same
kvn@3098 1982 patchable_set((intptr_t)msg, O1);
duke@435 1983
duke@435 1984 // factor long stop-sequence into subroutine to save space
duke@435 1985 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
duke@435 1986
duke@435 1987 // call indirectly to solve generation ordering problem
twisti@1162 1988 AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
duke@435 1989 load_ptr_contents(a, O5);
duke@435 1990 jmpl(O5, 0, O7);
duke@435 1991 delayed()->nop();
duke@435 1992
duke@435 1993 breakpoint_trap(); // make stop actually stop rather than writing
duke@435 1994 // unnoticeable results in the output files.
duke@435 1995
duke@435 1996 // restore(); done in callee to save space!
duke@435 1997 }
duke@435 1998
duke@435 1999
duke@435 2000 void MacroAssembler::warn(const char* msg) {
duke@435 2001 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 2002 RegistersForDebugging::save_registers(this);
duke@435 2003 mov(O0, L0);
kvn@3098 2004 // Size of set() should stay the same
kvn@3098 2005 patchable_set((intptr_t)msg, O0);
duke@435 2006 call( CAST_FROM_FN_PTR(address, warning) );
duke@435 2007 delayed()->nop();
duke@435 2008 // ret();
duke@435 2009 // delayed()->restore();
duke@435 2010 RegistersForDebugging::restore_registers(this, L0);
duke@435 2011 restore();
duke@435 2012 }
duke@435 2013
duke@435 2014
duke@435 2015 void MacroAssembler::untested(const char* what) {
duke@435 2016 // We must be able to turn interactive prompting off
duke@435 2017 // in order to run automated test scripts on the VM
duke@435 2018 // Use the flag ShowMessageBoxOnError
duke@435 2019
duke@435 2020 char* b = new char[1024];
duke@435 2021 sprintf(b, "untested: %s", what);
duke@435 2022
duke@435 2023 if ( ShowMessageBoxOnError ) stop(b);
duke@435 2024 else warn(b);
duke@435 2025 }
duke@435 2026
duke@435 2027
duke@435 2028 void MacroAssembler::stop_subroutine() {
duke@435 2029 RegistersForDebugging::save_registers(this);
duke@435 2030
duke@435 2031 // for the sake of the debugger, stick a PC on the current frame
duke@435 2032 // (this assumes that the caller has performed an extra "save")
duke@435 2033 mov(I7, L7);
duke@435 2034 add(O7, -7 * BytesPerInt, I7);
duke@435 2035
duke@435 2036 save_frame(); // one more save to free up another O7 register
duke@435 2037 mov(I0, O1); // addr of reg save area
duke@435 2038
duke@435 2039 // We expect pointer to message in I1. Caller must set it up in O1
duke@435 2040 mov(I1, O0); // get msg
duke@435 2041 call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
duke@435 2042 delayed()->nop();
duke@435 2043
duke@435 2044 restore();
duke@435 2045
duke@435 2046 RegistersForDebugging::restore_registers(this, O0);
duke@435 2047
duke@435 2048 save_frame(0);
duke@435 2049 call(CAST_FROM_FN_PTR(address,breakpoint));
duke@435 2050 delayed()->nop();
duke@435 2051 restore();
duke@435 2052
duke@435 2053 mov(L7, I7);
duke@435 2054 retl();
duke@435 2055 delayed()->restore(); // see stop above
duke@435 2056 }
duke@435 2057
duke@435 2058
duke@435 2059 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
duke@435 2060 if ( ShowMessageBoxOnError ) {
duke@435 2061 JavaThreadState saved_state = JavaThread::current()->thread_state();
duke@435 2062 JavaThread::current()->set_thread_state(_thread_in_vm);
duke@435 2063 {
duke@435 2064 // In order to get locks work, we need to fake a in_VM state
duke@435 2065 ttyLocker ttyl;
duke@435 2066 ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
duke@435 2067 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
duke@435 2068 ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
duke@435 2069 }
duke@435 2070 if (os::message_box(msg, "Execution stopped, print registers?"))
duke@435 2071 regs->print(::tty);
duke@435 2072 }
duke@435 2073 ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
duke@435 2074 }
duke@435 2075 else
duke@435 2076 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
never@2950 2077 assert(false, err_msg("DEBUG MESSAGE: %s", msg));
duke@435 2078 }
duke@435 2079
duke@435 2080
duke@435 2081 #ifndef PRODUCT
duke@435 2082 void MacroAssembler::test() {
duke@435 2083 ResourceMark rm;
duke@435 2084
duke@435 2085 CodeBuffer cb("test", 10000, 10000);
duke@435 2086 MacroAssembler* a = new MacroAssembler(&cb);
duke@435 2087 VM_Version::allow_all();
duke@435 2088 a->test_v9();
duke@435 2089 a->test_v8_onlys();
duke@435 2090 VM_Version::revert();
duke@435 2091
duke@435 2092 StubRoutines::Sparc::test_stop_entry()();
duke@435 2093 }
duke@435 2094 #endif
duke@435 2095
duke@435 2096
duke@435 2097 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
duke@435 2098 subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
duke@435 2099 Label no_extras;
duke@435 2100 br( negative, true, pt, no_extras ); // if neg, clear reg
twisti@1162 2101 delayed()->set(0, Rresult); // annuled, so only if taken
duke@435 2102 bind( no_extras );
duke@435 2103 }
duke@435 2104
duke@435 2105
duke@435 2106 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
duke@435 2107 #ifdef _LP64
duke@435 2108 add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
duke@435 2109 #else
duke@435 2110 add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
duke@435 2111 #endif
duke@435 2112 bclr(1, Rresult);
duke@435 2113 sll(Rresult, LogBytesPerWord, Rresult); // Rresult has total frame bytes
duke@435 2114 }
duke@435 2115
duke@435 2116
duke@435 2117 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
duke@435 2118 calc_frame_size(Rextra_words, Rresult);
duke@435 2119 neg(Rresult);
duke@435 2120 save(SP, Rresult, SP);
duke@435 2121 }
duke@435 2122
duke@435 2123
duke@435 2124 // ---------------------------------------------------------
duke@435 2125 Assembler::RCondition cond2rcond(Assembler::Condition c) {
duke@435 2126 switch (c) {
duke@435 2127 /*case zero: */
duke@435 2128 case Assembler::equal: return Assembler::rc_z;
duke@435 2129 case Assembler::lessEqual: return Assembler::rc_lez;
duke@435 2130 case Assembler::less: return Assembler::rc_lz;
duke@435 2131 /*case notZero:*/
duke@435 2132 case Assembler::notEqual: return Assembler::rc_nz;
duke@435 2133 case Assembler::greater: return Assembler::rc_gz;
duke@435 2134 case Assembler::greaterEqual: return Assembler::rc_gez;
duke@435 2135 }
duke@435 2136 ShouldNotReachHere();
duke@435 2137 return Assembler::rc_z;
duke@435 2138 }
duke@435 2139
kvn@3037 2140 // compares (32 bit) register with zero and branches. NOT FOR USE WITH 64-bit POINTERS
kvn@3037 2141 void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
duke@435 2142 tst(s1);
duke@435 2143 br (c, a, p, L);
duke@435 2144 }
duke@435 2145
duke@435 2146 // Compares a pointer register with zero and branches on null.
duke@435 2147 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
duke@435 2148 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
duke@435 2149 assert_not_delayed();
duke@435 2150 #ifdef _LP64
duke@435 2151 bpr( rc_z, a, p, s1, L );
duke@435 2152 #else
duke@435 2153 tst(s1);
duke@435 2154 br ( zero, a, p, L );
duke@435 2155 #endif
duke@435 2156 }
duke@435 2157
duke@435 2158 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
duke@435 2159 assert_not_delayed();
duke@435 2160 #ifdef _LP64
duke@435 2161 bpr( rc_nz, a, p, s1, L );
duke@435 2162 #else
duke@435 2163 tst(s1);
duke@435 2164 br ( notZero, a, p, L );
duke@435 2165 #endif
duke@435 2166 }
duke@435 2167
kvn@3037 2168 // Compare registers and branch with nop in delay slot or cbcond without delay slot.
kvn@3037 2169
kvn@3037 2170 // Compare integer (32 bit) values (icc only).
kvn@3037 2171 void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
kvn@3037 2172 Predict p, Label& L) {
kvn@3037 2173 assert_not_delayed();
kvn@3037 2174 if (use_cbcond(L)) {
kvn@3037 2175 Assembler::cbcond(c, icc, s1, s2, L);
kvn@3037 2176 } else {
kvn@3037 2177 cmp(s1, s2);
kvn@3037 2178 br(c, false, p, L);
kvn@3037 2179 delayed()->nop();
kvn@3037 2180 }
kvn@3037 2181 }
kvn@3037 2182
kvn@3037 2183 // Compare integer (32 bit) values (icc only).
kvn@3037 2184 void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
kvn@3037 2185 Predict p, Label& L) {
kvn@3037 2186 assert_not_delayed();
kvn@3037 2187 if (is_simm(simm13a,5) && use_cbcond(L)) {
kvn@3037 2188 Assembler::cbcond(c, icc, s1, simm13a, L);
kvn@3037 2189 } else {
kvn@3037 2190 cmp(s1, simm13a);
kvn@3037 2191 br(c, false, p, L);
kvn@3037 2192 delayed()->nop();
kvn@3037 2193 }
kvn@3037 2194 }
kvn@3037 2195
kvn@3037 2196 // Branch that tests xcc in LP64 and icc in !LP64
kvn@3037 2197 void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
kvn@3037 2198 Predict p, Label& L) {
kvn@3037 2199 assert_not_delayed();
kvn@3037 2200 if (use_cbcond(L)) {
kvn@3037 2201 Assembler::cbcond(c, ptr_cc, s1, s2, L);
kvn@3037 2202 } else {
kvn@3037 2203 cmp(s1, s2);
kvn@3037 2204 brx(c, false, p, L);
kvn@3037 2205 delayed()->nop();
kvn@3037 2206 }
kvn@3037 2207 }
kvn@3037 2208
kvn@3037 2209 // Branch that tests xcc in LP64 and icc in !LP64
kvn@3037 2210 void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
kvn@3037 2211 Predict p, Label& L) {
kvn@3037 2212 assert_not_delayed();
kvn@3037 2213 if (is_simm(simm13a,5) && use_cbcond(L)) {
kvn@3037 2214 Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
kvn@3037 2215 } else {
kvn@3037 2216 cmp(s1, simm13a);
kvn@3037 2217 brx(c, false, p, L);
kvn@3037 2218 delayed()->nop();
kvn@3037 2219 }
kvn@3037 2220 }
kvn@3037 2221
kvn@3037 2222 // Short branch version for compares a pointer with zero.
kvn@3037 2223
kvn@3037 2224 void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
kvn@3037 2225 assert_not_delayed();
kvn@3037 2226 if (use_cbcond(L)) {
kvn@3037 2227 Assembler::cbcond(zero, ptr_cc, s1, 0, L);
kvn@3037 2228 return;
kvn@3037 2229 }
kvn@3037 2230 br_null(s1, false, p, L);
kvn@3037 2231 delayed()->nop();
kvn@3037 2232 }
kvn@3037 2233
kvn@3037 2234 void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
kvn@3037 2235 assert_not_delayed();
kvn@3037 2236 if (use_cbcond(L)) {
kvn@3037 2237 Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
kvn@3037 2238 return;
kvn@3037 2239 }
kvn@3037 2240 br_notnull(s1, false, p, L);
kvn@3037 2241 delayed()->nop();
kvn@3037 2242 }
kvn@3037 2243
kvn@3037 2244 // Unconditional short branch
kvn@3037 2245 void MacroAssembler::ba_short(Label& L) {
kvn@3037 2246 if (use_cbcond(L)) {
kvn@3037 2247 Assembler::cbcond(equal, icc, G0, G0, L);
kvn@3037 2248 return;
kvn@3037 2249 }
kvn@3037 2250 br(always, false, pt, L);
kvn@3037 2251 delayed()->nop();
kvn@3037 2252 }
duke@435 2253
duke@435 2254 // instruction sequences factored across compiler & interpreter
duke@435 2255
duke@435 2256
duke@435 2257 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
duke@435 2258 Register Rb_hi, Register Rb_low,
duke@435 2259 Register Rresult) {
duke@435 2260
duke@435 2261 Label check_low_parts, done;
duke@435 2262
duke@435 2263 cmp(Ra_hi, Rb_hi ); // compare hi parts
duke@435 2264 br(equal, true, pt, check_low_parts);
duke@435 2265 delayed()->cmp(Ra_low, Rb_low); // test low parts
duke@435 2266
duke@435 2267 // And, with an unsigned comparison, it does not matter if the numbers
duke@435 2268 // are negative or not.
duke@435 2269 // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
duke@435 2270 // The second one is bigger (unsignedly).
duke@435 2271
duke@435 2272 // Other notes: The first move in each triplet can be unconditional
duke@435 2273 // (and therefore probably prefetchable).
duke@435 2274 // And the equals case for the high part does not need testing,
duke@435 2275 // since that triplet is reached only after finding the high halves differ.
duke@435 2276
duke@435 2277 if (VM_Version::v9_instructions_work()) {
kvn@3037 2278 mov(-1, Rresult);
kvn@3037 2279 ba(done); delayed()-> movcc(greater, false, icc, 1, Rresult);
kvn@3037 2280 } else {
duke@435 2281 br(less, true, pt, done); delayed()-> set(-1, Rresult);
duke@435 2282 br(greater, true, pt, done); delayed()-> set( 1, Rresult);
duke@435 2283 }
duke@435 2284
duke@435 2285 bind( check_low_parts );
duke@435 2286
duke@435 2287 if (VM_Version::v9_instructions_work()) {
duke@435 2288 mov( -1, Rresult);
duke@435 2289 movcc(equal, false, icc, 0, Rresult);
duke@435 2290 movcc(greaterUnsigned, false, icc, 1, Rresult);
kvn@3037 2291 } else {
kvn@3037 2292 set(-1, Rresult);
duke@435 2293 br(equal, true, pt, done); delayed()->set( 0, Rresult);
duke@435 2294 br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
duke@435 2295 }
duke@435 2296 bind( done );
duke@435 2297 }
duke@435 2298
duke@435 2299 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
duke@435 2300 subcc( G0, Rlow, Rlow );
duke@435 2301 subc( G0, Rhi, Rhi );
duke@435 2302 }
duke@435 2303
duke@435 2304 void MacroAssembler::lshl( Register Rin_high, Register Rin_low,
duke@435 2305 Register Rcount,
duke@435 2306 Register Rout_high, Register Rout_low,
duke@435 2307 Register Rtemp ) {
duke@435 2308
duke@435 2309
duke@435 2310 Register Ralt_count = Rtemp;
duke@435 2311 Register Rxfer_bits = Rtemp;
duke@435 2312
duke@435 2313 assert( Ralt_count != Rin_high
duke@435 2314 && Ralt_count != Rin_low
duke@435 2315 && Ralt_count != Rcount
duke@435 2316 && Rxfer_bits != Rin_low
duke@435 2317 && Rxfer_bits != Rin_high
duke@435 2318 && Rxfer_bits != Rcount
duke@435 2319 && Rxfer_bits != Rout_low
duke@435 2320 && Rout_low != Rin_high,
duke@435 2321 "register alias checks");
duke@435 2322
duke@435 2323 Label big_shift, done;
duke@435 2324
duke@435 2325 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2326 // Here we use the 32 bit shifts.
duke@435 2327
kvn@3037 2328 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
kvn@3037 2329 subcc(Rcount, 31, Ralt_count);
duke@435 2330 br(greater, true, pn, big_shift);
kvn@3037 2331 delayed()->dec(Ralt_count);
duke@435 2332
duke@435 2333 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2334
duke@435 2335 // We get the transfer bits by shifting right by 32-count the low
duke@435 2336 // register. This is done by shifting right by 31-count and then by one
duke@435 2337 // more to take care of the special (rare) case where count is zero
duke@435 2338 // (shifting by 32 would not work).
duke@435 2339
kvn@3037 2340 neg(Ralt_count);
duke@435 2341
duke@435 2342 // The order of the next two instructions is critical in the case where
duke@435 2343 // Rin and Rout are the same and should not be reversed.
duke@435 2344
kvn@3037 2345 srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
duke@435 2346 if (Rcount != Rout_low) {
kvn@3037 2347 sll(Rin_low, Rcount, Rout_low); // low half
duke@435 2348 }
kvn@3037 2349 sll(Rin_high, Rcount, Rout_high);
duke@435 2350 if (Rcount == Rout_low) {
kvn@3037 2351 sll(Rin_low, Rcount, Rout_low); // low half
duke@435 2352 }
kvn@3037 2353 srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
kvn@3037 2354 ba(done);
kvn@3037 2355 delayed()->or3(Rout_high, Rxfer_bits, Rout_high); // new hi value: or in shifted old hi part and xfer from low
duke@435 2356
duke@435 2357 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2358 bind(big_shift);
kvn@3037 2359 sll(Rin_low, Ralt_count, Rout_high );
kvn@3037 2360 clr(Rout_low);
duke@435 2361
duke@435 2362 bind(done);
duke@435 2363 }
duke@435 2364
duke@435 2365
duke@435 2366 void MacroAssembler::lshr( Register Rin_high, Register Rin_low,
duke@435 2367 Register Rcount,
duke@435 2368 Register Rout_high, Register Rout_low,
duke@435 2369 Register Rtemp ) {
duke@435 2370
duke@435 2371 Register Ralt_count = Rtemp;
duke@435 2372 Register Rxfer_bits = Rtemp;
duke@435 2373
duke@435 2374 assert( Ralt_count != Rin_high
duke@435 2375 && Ralt_count != Rin_low
duke@435 2376 && Ralt_count != Rcount
duke@435 2377 && Rxfer_bits != Rin_low
duke@435 2378 && Rxfer_bits != Rin_high
duke@435 2379 && Rxfer_bits != Rcount
duke@435 2380 && Rxfer_bits != Rout_high
duke@435 2381 && Rout_high != Rin_low,
duke@435 2382 "register alias checks");
duke@435 2383
duke@435 2384 Label big_shift, done;
duke@435 2385
duke@435 2386 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2387 // Here we use the 32 bit shifts.
duke@435 2388
kvn@3037 2389 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
kvn@3037 2390 subcc(Rcount, 31, Ralt_count);
duke@435 2391 br(greater, true, pn, big_shift);
duke@435 2392 delayed()->dec(Ralt_count);
duke@435 2393
duke@435 2394 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2395
duke@435 2396 // We get the transfer bits by shifting left by 32-count the high
duke@435 2397 // register. This is done by shifting left by 31-count and then by one
duke@435 2398 // more to take care of the special (rare) case where count is zero
duke@435 2399 // (shifting by 32 would not work).
duke@435 2400
kvn@3037 2401 neg(Ralt_count);
duke@435 2402 if (Rcount != Rout_low) {
kvn@3037 2403 srl(Rin_low, Rcount, Rout_low);
duke@435 2404 }
duke@435 2405
duke@435 2406 // The order of the next two instructions is critical in the case where
duke@435 2407 // Rin and Rout are the same and should not be reversed.
duke@435 2408
kvn@3037 2409 sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
kvn@3037 2410 sra(Rin_high, Rcount, Rout_high ); // high half
kvn@3037 2411 sll(Rxfer_bits, 1, Rxfer_bits); // shift left by one more
duke@435 2412 if (Rcount == Rout_low) {
kvn@3037 2413 srl(Rin_low, Rcount, Rout_low);
duke@435 2414 }
kvn@3037 2415 ba(done);
kvn@3037 2416 delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
duke@435 2417
duke@435 2418 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2419 bind(big_shift);
duke@435 2420
kvn@3037 2421 sra(Rin_high, Ralt_count, Rout_low);
kvn@3037 2422 sra(Rin_high, 31, Rout_high); // sign into hi
duke@435 2423
duke@435 2424 bind( done );
duke@435 2425 }
duke@435 2426
duke@435 2427
duke@435 2428
duke@435 2429 void MacroAssembler::lushr( Register Rin_high, Register Rin_low,
duke@435 2430 Register Rcount,
duke@435 2431 Register Rout_high, Register Rout_low,
duke@435 2432 Register Rtemp ) {
duke@435 2433
duke@435 2434 Register Ralt_count = Rtemp;
duke@435 2435 Register Rxfer_bits = Rtemp;
duke@435 2436
duke@435 2437 assert( Ralt_count != Rin_high
duke@435 2438 && Ralt_count != Rin_low
duke@435 2439 && Ralt_count != Rcount
duke@435 2440 && Rxfer_bits != Rin_low
duke@435 2441 && Rxfer_bits != Rin_high
duke@435 2442 && Rxfer_bits != Rcount
duke@435 2443 && Rxfer_bits != Rout_high
duke@435 2444 && Rout_high != Rin_low,
duke@435 2445 "register alias checks");
duke@435 2446
duke@435 2447 Label big_shift, done;
duke@435 2448
duke@435 2449 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2450 // Here we use the 32 bit shifts.
duke@435 2451
kvn@3037 2452 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
kvn@3037 2453 subcc(Rcount, 31, Ralt_count);
duke@435 2454 br(greater, true, pn, big_shift);
duke@435 2455 delayed()->dec(Ralt_count);
duke@435 2456
duke@435 2457 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2458
duke@435 2459 // We get the transfer bits by shifting left by 32-count the high
duke@435 2460 // register. This is done by shifting left by 31-count and then by one
duke@435 2461 // more to take care of the special (rare) case where count is zero
duke@435 2462 // (shifting by 32 would not work).
duke@435 2463
kvn@3037 2464 neg(Ralt_count);
duke@435 2465 if (Rcount != Rout_low) {
kvn@3037 2466 srl(Rin_low, Rcount, Rout_low);
duke@435 2467 }
duke@435 2468
duke@435 2469 // The order of the next two instructions is critical in the case where
duke@435 2470 // Rin and Rout are the same and should not be reversed.
duke@435 2471
kvn@3037 2472 sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
kvn@3037 2473 srl(Rin_high, Rcount, Rout_high ); // high half
kvn@3037 2474 sll(Rxfer_bits, 1, Rxfer_bits); // shift left by one more
duke@435 2475 if (Rcount == Rout_low) {
kvn@3037 2476 srl(Rin_low, Rcount, Rout_low);
duke@435 2477 }
kvn@3037 2478 ba(done);
kvn@3037 2479 delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
duke@435 2480
duke@435 2481 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2482 bind(big_shift);
duke@435 2483
kvn@3037 2484 srl(Rin_high, Ralt_count, Rout_low);
kvn@3037 2485 clr(Rout_high);
duke@435 2486
duke@435 2487 bind( done );
duke@435 2488 }
duke@435 2489
duke@435 2490 #ifdef _LP64
duke@435 2491 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
duke@435 2492 cmp(Ra, Rb);
kvn@3037 2493 mov(-1, Rresult);
duke@435 2494 movcc(equal, false, xcc, 0, Rresult);
duke@435 2495 movcc(greater, false, xcc, 1, Rresult);
duke@435 2496 }
duke@435 2497 #endif
duke@435 2498
duke@435 2499
twisti@2565 2500 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
twisti@1858 2501 switch (size_in_bytes) {
twisti@2565 2502 case 8: ld_long(src, dst); break;
twisti@2565 2503 case 4: ld( src, dst); break;
twisti@2565 2504 case 2: is_signed ? ldsh(src, dst) : lduh(src, dst); break;
twisti@2565 2505 case 1: is_signed ? ldsb(src, dst) : ldub(src, dst); break;
twisti@2565 2506 default: ShouldNotReachHere();
twisti@2565 2507 }
twisti@2565 2508 }
twisti@2565 2509
twisti@2565 2510 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
twisti@2565 2511 switch (size_in_bytes) {
twisti@2565 2512 case 8: st_long(src, dst); break;
twisti@2565 2513 case 4: st( src, dst); break;
twisti@2565 2514 case 2: sth( src, dst); break;
twisti@2565 2515 case 1: stb( src, dst); break;
twisti@2565 2516 default: ShouldNotReachHere();
twisti@1858 2517 }
twisti@1858 2518 }
twisti@1858 2519
twisti@1858 2520
duke@435 2521 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
duke@435 2522 FloatRegister Fa, FloatRegister Fb,
duke@435 2523 Register Rresult) {
duke@435 2524
duke@435 2525 fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
duke@435 2526
duke@435 2527 Condition lt = unordered_result == -1 ? f_unorderedOrLess : f_less;
duke@435 2528 Condition eq = f_equal;
duke@435 2529 Condition gt = unordered_result == 1 ? f_unorderedOrGreater : f_greater;
duke@435 2530
duke@435 2531 if (VM_Version::v9_instructions_work()) {
duke@435 2532
kvn@3037 2533 mov(-1, Rresult);
kvn@3037 2534 movcc(eq, true, fcc0, 0, Rresult);
kvn@3037 2535 movcc(gt, true, fcc0, 1, Rresult);
duke@435 2536
duke@435 2537 } else {
duke@435 2538 Label done;
duke@435 2539
kvn@3037 2540 set( -1, Rresult );
duke@435 2541 //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
duke@435 2542 fb( eq, true, pn, done); delayed()->set( 0, Rresult );
duke@435 2543 fb( gt, true, pn, done); delayed()->set( 1, Rresult );
duke@435 2544
duke@435 2545 bind (done);
duke@435 2546 }
duke@435 2547 }
duke@435 2548
duke@435 2549
duke@435 2550 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2551 {
duke@435 2552 if (VM_Version::v9_instructions_work()) {
duke@435 2553 Assembler::fneg(w, s, d);
duke@435 2554 } else {
duke@435 2555 if (w == FloatRegisterImpl::S) {
duke@435 2556 Assembler::fneg(w, s, d);
duke@435 2557 } else if (w == FloatRegisterImpl::D) {
duke@435 2558 // number() does a sanity check on the alignment.
duke@435 2559 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2560 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2561
duke@435 2562 Assembler::fneg(FloatRegisterImpl::S, s, d);
duke@435 2563 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2564 } else {
duke@435 2565 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2566
duke@435 2567 // number() does a sanity check on the alignment.
duke@435 2568 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2569 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2570
duke@435 2571 Assembler::fneg(FloatRegisterImpl::S, s, d);
duke@435 2572 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2573 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2574 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2575 }
duke@435 2576 }
duke@435 2577 }
duke@435 2578
duke@435 2579 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2580 {
duke@435 2581 if (VM_Version::v9_instructions_work()) {
duke@435 2582 Assembler::fmov(w, s, d);
duke@435 2583 } else {
duke@435 2584 if (w == FloatRegisterImpl::S) {
duke@435 2585 Assembler::fmov(w, s, d);
duke@435 2586 } else if (w == FloatRegisterImpl::D) {
duke@435 2587 // number() does a sanity check on the alignment.
duke@435 2588 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2589 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2590
duke@435 2591 Assembler::fmov(FloatRegisterImpl::S, s, d);
duke@435 2592 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2593 } else {
duke@435 2594 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2595
duke@435 2596 // number() does a sanity check on the alignment.
duke@435 2597 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2598 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2599
duke@435 2600 Assembler::fmov(FloatRegisterImpl::S, s, d);
duke@435 2601 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2602 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2603 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2604 }
duke@435 2605 }
duke@435 2606 }
duke@435 2607
duke@435 2608 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2609 {
duke@435 2610 if (VM_Version::v9_instructions_work()) {
duke@435 2611 Assembler::fabs(w, s, d);
duke@435 2612 } else {
duke@435 2613 if (w == FloatRegisterImpl::S) {
duke@435 2614 Assembler::fabs(w, s, d);
duke@435 2615 } else if (w == FloatRegisterImpl::D) {
duke@435 2616 // number() does a sanity check on the alignment.
duke@435 2617 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2618 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2619
duke@435 2620 Assembler::fabs(FloatRegisterImpl::S, s, d);
duke@435 2621 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2622 } else {
duke@435 2623 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2624
duke@435 2625 // number() does a sanity check on the alignment.
duke@435 2626 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2627 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2628
duke@435 2629 Assembler::fabs(FloatRegisterImpl::S, s, d);
duke@435 2630 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2631 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2632 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2633 }
duke@435 2634 }
duke@435 2635 }
duke@435 2636
duke@435 2637 void MacroAssembler::save_all_globals_into_locals() {
duke@435 2638 mov(G1,L1);
duke@435 2639 mov(G2,L2);
duke@435 2640 mov(G3,L3);
duke@435 2641 mov(G4,L4);
duke@435 2642 mov(G5,L5);
duke@435 2643 mov(G6,L6);
duke@435 2644 mov(G7,L7);
duke@435 2645 }
duke@435 2646
duke@435 2647 void MacroAssembler::restore_globals_from_locals() {
duke@435 2648 mov(L1,G1);
duke@435 2649 mov(L2,G2);
duke@435 2650 mov(L3,G3);
duke@435 2651 mov(L4,G4);
duke@435 2652 mov(L5,G5);
duke@435 2653 mov(L6,G6);
duke@435 2654 mov(L7,G7);
duke@435 2655 }
duke@435 2656
duke@435 2657 // Use for 64 bit operation.
duke@435 2658 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
duke@435 2659 {
duke@435 2660 // store ptr_reg as the new top value
duke@435 2661 #ifdef _LP64
duke@435 2662 casx(top_ptr_reg, top_reg, ptr_reg);
duke@435 2663 #else
duke@435 2664 cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
duke@435 2665 #endif // _LP64
duke@435 2666 }
duke@435 2667
duke@435 2668 // [RGV] This routine does not handle 64 bit operations.
duke@435 2669 // use casx_under_lock() or casx directly!!!
duke@435 2670 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
duke@435 2671 {
duke@435 2672 // store ptr_reg as the new top value
duke@435 2673 if (VM_Version::v9_instructions_work()) {
duke@435 2674 cas(top_ptr_reg, top_reg, ptr_reg);
duke@435 2675 } else {
duke@435 2676
duke@435 2677 // If the register is not an out nor global, it is not visible
duke@435 2678 // after the save. Allocate a register for it, save its
duke@435 2679 // value in the register save area (the save may not flush
duke@435 2680 // registers to the save area).
duke@435 2681
duke@435 2682 Register top_ptr_reg_after_save;
duke@435 2683 Register top_reg_after_save;
duke@435 2684 Register ptr_reg_after_save;
duke@435 2685
duke@435 2686 if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
duke@435 2687 top_ptr_reg_after_save = top_ptr_reg->after_save();
duke@435 2688 } else {
duke@435 2689 Address reg_save_addr = top_ptr_reg->address_in_saved_window();
duke@435 2690 top_ptr_reg_after_save = L0;
duke@435 2691 st(top_ptr_reg, reg_save_addr);
duke@435 2692 }
duke@435 2693
duke@435 2694 if (top_reg->is_out() || top_reg->is_global()) {
duke@435 2695 top_reg_after_save = top_reg->after_save();
duke@435 2696 } else {
duke@435 2697 Address reg_save_addr = top_reg->address_in_saved_window();
duke@435 2698 top_reg_after_save = L1;
duke@435 2699 st(top_reg, reg_save_addr);
duke@435 2700 }
duke@435 2701
duke@435 2702 if (ptr_reg->is_out() || ptr_reg->is_global()) {
duke@435 2703 ptr_reg_after_save = ptr_reg->after_save();
duke@435 2704 } else {
duke@435 2705 Address reg_save_addr = ptr_reg->address_in_saved_window();
duke@435 2706 ptr_reg_after_save = L2;
duke@435 2707 st(ptr_reg, reg_save_addr);
duke@435 2708 }
duke@435 2709
duke@435 2710 const Register& lock_reg = L3;
duke@435 2711 const Register& lock_ptr_reg = L4;
duke@435 2712 const Register& value_reg = L5;
duke@435 2713 const Register& yield_reg = L6;
duke@435 2714 const Register& yieldall_reg = L7;
duke@435 2715
duke@435 2716 save_frame();
duke@435 2717
duke@435 2718 if (top_ptr_reg_after_save == L0) {
duke@435 2719 ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
duke@435 2720 }
duke@435 2721
duke@435 2722 if (top_reg_after_save == L1) {
duke@435 2723 ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
duke@435 2724 }
duke@435 2725
duke@435 2726 if (ptr_reg_after_save == L2) {
duke@435 2727 ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
duke@435 2728 }
duke@435 2729
duke@435 2730 Label(retry_get_lock);
duke@435 2731 Label(not_same);
duke@435 2732 Label(dont_yield);
duke@435 2733
duke@435 2734 assert(lock_addr, "lock_address should be non null for v8");
duke@435 2735 set((intptr_t)lock_addr, lock_ptr_reg);
duke@435 2736 // Initialize yield counter
duke@435 2737 mov(G0,yield_reg);
duke@435 2738 mov(G0, yieldall_reg);
duke@435 2739 set(StubRoutines::Sparc::locked, lock_reg);
duke@435 2740
duke@435 2741 bind(retry_get_lock);
kvn@3037 2742 cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dont_yield);
duke@435 2743
duke@435 2744 if(use_call_vm) {
duke@435 2745 Untested("Need to verify global reg consistancy");
duke@435 2746 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
duke@435 2747 } else {
duke@435 2748 // Save the regs and make space for a C call
duke@435 2749 save(SP, -96, SP);
duke@435 2750 save_all_globals_into_locals();
duke@435 2751 call(CAST_FROM_FN_PTR(address,os::yield_all));
duke@435 2752 delayed()->mov(yieldall_reg, O0);
duke@435 2753 restore_globals_from_locals();
duke@435 2754 restore();
duke@435 2755 }
duke@435 2756
duke@435 2757 // reset the counter
duke@435 2758 mov(G0,yield_reg);
duke@435 2759 add(yieldall_reg, 1, yieldall_reg);
duke@435 2760
duke@435 2761 bind(dont_yield);
duke@435 2762 // try to get lock
duke@435 2763 swap(lock_ptr_reg, 0, lock_reg);
duke@435 2764
duke@435 2765 // did we get the lock?
duke@435 2766 cmp(lock_reg, StubRoutines::Sparc::unlocked);
duke@435 2767 br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
duke@435 2768 delayed()->add(yield_reg,1,yield_reg);
duke@435 2769
duke@435 2770 // yes, got lock. do we have the same top?
duke@435 2771 ld(top_ptr_reg_after_save, 0, value_reg);
kvn@3037 2772 cmp_and_br_short(value_reg, top_reg_after_save, Assembler::notEqual, Assembler::pn, not_same);
duke@435 2773
duke@435 2774 // yes, same top.
duke@435 2775 st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
duke@435 2776 membar(Assembler::StoreStore);
duke@435 2777
duke@435 2778 bind(not_same);
duke@435 2779 mov(value_reg, ptr_reg_after_save);
duke@435 2780 st(lock_reg, lock_ptr_reg, 0); // unlock
duke@435 2781
duke@435 2782 restore();
duke@435 2783 }
duke@435 2784 }
duke@435 2785
jrose@1100 2786 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
jrose@1100 2787 Register tmp,
jrose@1100 2788 int offset) {
jrose@1057 2789 intptr_t value = *delayed_value_addr;
jrose@1057 2790 if (value != 0)
jrose@1100 2791 return RegisterOrConstant(value + offset);
jrose@1057 2792
jrose@1057 2793 // load indirectly to solve generation ordering problem
twisti@1162 2794 AddressLiteral a(delayed_value_addr);
jrose@1057 2795 load_ptr_contents(a, tmp);
jrose@1057 2796
jrose@1057 2797 #ifdef ASSERT
jrose@1057 2798 tst(tmp);
jrose@1057 2799 breakpoint_trap(zero, xcc);
jrose@1057 2800 #endif
jrose@1057 2801
jrose@1057 2802 if (offset != 0)
jrose@1057 2803 add(tmp, offset, tmp);
jrose@1057 2804
jrose@1100 2805 return RegisterOrConstant(tmp);
jrose@1057 2806 }
jrose@1057 2807
jrose@1057 2808
twisti@1858 2809 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
twisti@1858 2810 assert(d.register_or_noreg() != G0, "lost side effect");
twisti@1858 2811 if ((s2.is_constant() && s2.as_constant() == 0) ||
twisti@1858 2812 (s2.is_register() && s2.as_register() == G0)) {
twisti@1858 2813 // Do nothing, just move value.
twisti@1858 2814 if (s1.is_register()) {
twisti@1858 2815 if (d.is_constant()) d = temp;
twisti@1858 2816 mov(s1.as_register(), d.as_register());
twisti@1858 2817 return d;
twisti@1858 2818 } else {
twisti@1858 2819 return s1;
twisti@1858 2820 }
twisti@1858 2821 }
twisti@1858 2822
twisti@1858 2823 if (s1.is_register()) {
twisti@1858 2824 assert_different_registers(s1.as_register(), temp);
twisti@1858 2825 if (d.is_constant()) d = temp;
twisti@1858 2826 andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
twisti@1858 2827 return d;
jrose@1058 2828 } else {
twisti@1858 2829 if (s2.is_register()) {
twisti@1858 2830 assert_different_registers(s2.as_register(), temp);
twisti@1858 2831 if (d.is_constant()) d = temp;
twisti@1858 2832 set(s1.as_constant(), temp);
twisti@1858 2833 andn(temp, s2.as_register(), d.as_register());
twisti@1858 2834 return d;
twisti@1858 2835 } else {
twisti@1858 2836 intptr_t res = s1.as_constant() & ~s2.as_constant();
twisti@1858 2837 return res;
twisti@1858 2838 }
jrose@1058 2839 }
jrose@1058 2840 }
jrose@1058 2841
twisti@1858 2842 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
twisti@1858 2843 assert(d.register_or_noreg() != G0, "lost side effect");
twisti@1858 2844 if ((s2.is_constant() && s2.as_constant() == 0) ||
twisti@1858 2845 (s2.is_register() && s2.as_register() == G0)) {
twisti@1858 2846 // Do nothing, just move value.
twisti@1858 2847 if (s1.is_register()) {
twisti@1858 2848 if (d.is_constant()) d = temp;
twisti@1858 2849 mov(s1.as_register(), d.as_register());
twisti@1858 2850 return d;
twisti@1858 2851 } else {
twisti@1858 2852 return s1;
twisti@1858 2853 }
twisti@1858 2854 }
twisti@1858 2855
twisti@1858 2856 if (s1.is_register()) {
twisti@1858 2857 assert_different_registers(s1.as_register(), temp);
twisti@1858 2858 if (d.is_constant()) d = temp;
twisti@1858 2859 add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
twisti@1858 2860 return d;
jrose@1058 2861 } else {
twisti@1858 2862 if (s2.is_register()) {
twisti@1858 2863 assert_different_registers(s2.as_register(), temp);
twisti@1858 2864 if (d.is_constant()) d = temp;
twisti@1858 2865 add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
twisti@1858 2866 return d;
twisti@1858 2867 } else {
twisti@1858 2868 intptr_t res = s1.as_constant() + s2.as_constant();
twisti@1858 2869 return res;
twisti@1858 2870 }
twisti@1858 2871 }
twisti@1858 2872 }
twisti@1858 2873
twisti@1858 2874 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
twisti@1858 2875 assert(d.register_or_noreg() != G0, "lost side effect");
twisti@1858 2876 if (!is_simm13(s2.constant_or_zero()))
twisti@1858 2877 s2 = (s2.as_constant() & 0xFF);
twisti@1858 2878 if ((s2.is_constant() && s2.as_constant() == 0) ||
twisti@1858 2879 (s2.is_register() && s2.as_register() == G0)) {
twisti@1858 2880 // Do nothing, just move value.
twisti@1858 2881 if (s1.is_register()) {
twisti@1858 2882 if (d.is_constant()) d = temp;
twisti@1858 2883 mov(s1.as_register(), d.as_register());
twisti@1858 2884 return d;
twisti@1858 2885 } else {
twisti@1858 2886 return s1;
twisti@1858 2887 }
twisti@1858 2888 }
twisti@1858 2889
twisti@1858 2890 if (s1.is_register()) {
twisti@1858 2891 assert_different_registers(s1.as_register(), temp);
twisti@1858 2892 if (d.is_constant()) d = temp;
twisti@1858 2893 sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
twisti@1858 2894 return d;
twisti@1858 2895 } else {
twisti@1858 2896 if (s2.is_register()) {
twisti@1858 2897 assert_different_registers(s2.as_register(), temp);
twisti@1858 2898 if (d.is_constant()) d = temp;
twisti@1858 2899 set(s1.as_constant(), temp);
twisti@1858 2900 sll_ptr(temp, s2.as_register(), d.as_register());
twisti@1858 2901 return d;
twisti@1858 2902 } else {
twisti@1858 2903 intptr_t res = s1.as_constant() << s2.as_constant();
twisti@1858 2904 return res;
twisti@1858 2905 }
jrose@1058 2906 }
jrose@1058 2907 }
jrose@1058 2908
jrose@1058 2909
jrose@1058 2910 // Look up the method for a megamorphic invokeinterface call.
jrose@1058 2911 // The target method is determined by <intf_klass, itable_index>.
jrose@1058 2912 // The receiver klass is in recv_klass.
jrose@1058 2913 // On success, the result will be in method_result, and execution falls through.
jrose@1058 2914 // On failure, execution transfers to the given label.
jrose@1058 2915 void MacroAssembler::lookup_interface_method(Register recv_klass,
jrose@1058 2916 Register intf_klass,
jrose@1100 2917 RegisterOrConstant itable_index,
jrose@1058 2918 Register method_result,
jrose@1058 2919 Register scan_temp,
jrose@1058 2920 Register sethi_temp,
jrose@1058 2921 Label& L_no_such_interface) {
jrose@1058 2922 assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
jrose@1058 2923 assert(itable_index.is_constant() || itable_index.as_register() == method_result,
jrose@1058 2924 "caller must use same register for non-constant itable index as for method");
jrose@1058 2925
jrose@1058 2926 // Compute start of first itableOffsetEntry (which is at the end of the vtable)
jrose@1058 2927 int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
jrose@1058 2928 int scan_step = itableOffsetEntry::size() * wordSize;
jrose@1058 2929 int vte_size = vtableEntry::size() * wordSize;
jrose@1058 2930
jrose@1058 2931 lduw(recv_klass, instanceKlass::vtable_length_offset() * wordSize, scan_temp);
jrose@1058 2932 // %%% We should store the aligned, prescaled offset in the klassoop.
jrose@1058 2933 // Then the next several instructions would fold away.
jrose@1058 2934
jrose@1058 2935 int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
jrose@1058 2936 int itb_offset = vtable_base;
jrose@1058 2937 if (round_to_unit != 0) {
jrose@1058 2938 // hoist first instruction of round_to(scan_temp, BytesPerLong):
jrose@1058 2939 itb_offset += round_to_unit - wordSize;
jrose@1058 2940 }
jrose@1058 2941 int itb_scale = exact_log2(vtableEntry::size() * wordSize);
jrose@1058 2942 sll(scan_temp, itb_scale, scan_temp);
jrose@1058 2943 add(scan_temp, itb_offset, scan_temp);
jrose@1058 2944 if (round_to_unit != 0) {
jrose@1058 2945 // Round up to align_object_offset boundary
jrose@1058 2946 // see code for instanceKlass::start_of_itable!
jrose@1058 2947 // Was: round_to(scan_temp, BytesPerLong);
jrose@1058 2948 // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
jrose@1058 2949 and3(scan_temp, -round_to_unit, scan_temp);
jrose@1058 2950 }
jrose@1058 2951 add(recv_klass, scan_temp, scan_temp);
jrose@1058 2952
jrose@1058 2953 // Adjust recv_klass by scaled itable_index, so we can free itable_index.
jrose@1100 2954 RegisterOrConstant itable_offset = itable_index;
twisti@1858 2955 itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
twisti@1858 2956 itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
twisti@1441 2957 add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
jrose@1058 2958
jrose@1058 2959 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
jrose@1058 2960 // if (scan->interface() == intf) {
jrose@1058 2961 // result = (klass + scan->offset() + itable_index);
jrose@1058 2962 // }
jrose@1058 2963 // }
jrose@1058 2964 Label search, found_method;
jrose@1058 2965
jrose@1058 2966 for (int peel = 1; peel >= 0; peel--) {
jrose@1058 2967 // %%%% Could load both offset and interface in one ldx, if they were
jrose@1058 2968 // in the opposite order. This would save a load.
jrose@1058 2969 ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
jrose@1058 2970
jrose@1058 2971 // Check that this entry is non-null. A null entry means that
jrose@1058 2972 // the receiver class doesn't implement the interface, and wasn't the
jrose@1058 2973 // same as when the caller was compiled.
jrose@1058 2974 bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
jrose@1058 2975 delayed()->cmp(method_result, intf_klass);
jrose@1058 2976
jrose@1058 2977 if (peel) {
jrose@1058 2978 brx(Assembler::equal, false, Assembler::pt, found_method);
jrose@1058 2979 } else {
jrose@1058 2980 brx(Assembler::notEqual, false, Assembler::pn, search);
jrose@1058 2981 // (invert the test to fall through to found_method...)
jrose@1058 2982 }
jrose@1058 2983 delayed()->add(scan_temp, scan_step, scan_temp);
jrose@1058 2984
jrose@1058 2985 if (!peel) break;
jrose@1058 2986
jrose@1058 2987 bind(search);
jrose@1058 2988 }
jrose@1058 2989
jrose@1058 2990 bind(found_method);
jrose@1058 2991
jrose@1058 2992 // Got a hit.
jrose@1058 2993 int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
jrose@1058 2994 // scan_temp[-scan_step] points to the vtable offset we need
jrose@1058 2995 ito_offset -= scan_step;
jrose@1058 2996 lduw(scan_temp, ito_offset, scan_temp);
jrose@1058 2997 ld_ptr(recv_klass, scan_temp, method_result);
jrose@1058 2998 }
jrose@1058 2999
jrose@1058 3000
jrose@1079 3001 void MacroAssembler::check_klass_subtype(Register sub_klass,
jrose@1079 3002 Register super_klass,
jrose@1079 3003 Register temp_reg,
jrose@1079 3004 Register temp2_reg,
jrose@1079 3005 Label& L_success) {
jrose@1079 3006 Label L_failure, L_pop_to_failure;
jrose@1079 3007 check_klass_subtype_fast_path(sub_klass, super_klass,
jrose@1079 3008 temp_reg, temp2_reg,
jrose@1079 3009 &L_success, &L_failure, NULL);
jrose@1079 3010 Register sub_2 = sub_klass;
jrose@1079 3011 Register sup_2 = super_klass;
jrose@1079 3012 if (!sub_2->is_global()) sub_2 = L0;
jrose@1079 3013 if (!sup_2->is_global()) sup_2 = L1;
jrose@1079 3014
jrose@1079 3015 save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
jrose@1079 3016 check_klass_subtype_slow_path(sub_2, sup_2,
jrose@1079 3017 L2, L3, L4, L5,
jrose@1079 3018 NULL, &L_pop_to_failure);
jrose@1079 3019
jrose@1079 3020 // on success:
jrose@1079 3021 restore();
kvn@3037 3022 ba_short(L_success);
jrose@1079 3023
jrose@1079 3024 // on failure:
jrose@1079 3025 bind(L_pop_to_failure);
jrose@1079 3026 restore();
jrose@1079 3027 bind(L_failure);
jrose@1079 3028 }
jrose@1079 3029
jrose@1079 3030
jrose@1079 3031 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
jrose@1079 3032 Register super_klass,
jrose@1079 3033 Register temp_reg,
jrose@1079 3034 Register temp2_reg,
jrose@1079 3035 Label* L_success,
jrose@1079 3036 Label* L_failure,
jrose@1079 3037 Label* L_slow_path,
kvn@3037 3038 RegisterOrConstant super_check_offset) {
jrose@1079 3039 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 3040 Klass::secondary_super_cache_offset_in_bytes());
jrose@1079 3041 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 3042 Klass::super_check_offset_offset_in_bytes());
jrose@1079 3043
jrose@1079 3044 bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
jrose@1079 3045 bool need_slow_path = (must_load_sco ||
jrose@1079 3046 super_check_offset.constant_or_zero() == sco_offset);
jrose@1079 3047
jrose@1079 3048 assert_different_registers(sub_klass, super_klass, temp_reg);
jrose@1079 3049 if (super_check_offset.is_register()) {
twisti@1858 3050 assert_different_registers(sub_klass, super_klass, temp_reg,
jrose@1079 3051 super_check_offset.as_register());
jrose@1079 3052 } else if (must_load_sco) {
jrose@1079 3053 assert(temp2_reg != noreg, "supply either a temp or a register offset");
jrose@1079 3054 }
jrose@1079 3055
jrose@1079 3056 Label L_fallthrough;
jrose@1079 3057 int label_nulls = 0;
jrose@1079 3058 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
jrose@1079 3059 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
jrose@1079 3060 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
kvn@3037 3061 assert(label_nulls <= 1 ||
jrose@1079 3062 (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
jrose@1079 3063 "at most one NULL in the batch, usually");
jrose@1079 3064
jrose@1079 3065 // If the pointers are equal, we are done (e.g., String[] elements).
jrose@1079 3066 // This self-check enables sharing of secondary supertype arrays among
jrose@1079 3067 // non-primary types such as array-of-interface. Otherwise, each such
jrose@1079 3068 // type would need its own customized SSA.
jrose@1079 3069 // We move this check to the front of the fast path because many
jrose@1079 3070 // type checks are in fact trivially successful in this manner,
jrose@1079 3071 // so we get a nicely predicted branch right at the start of the check.
jrose@1079 3072 cmp(super_klass, sub_klass);
kvn@3037 3073 brx(Assembler::equal, false, Assembler::pn, *L_success);
kvn@3037 3074 delayed()->nop();
jrose@1079 3075
jrose@1079 3076 // Check the supertype display:
jrose@1079 3077 if (must_load_sco) {
jrose@1079 3078 // The super check offset is always positive...
jrose@1079 3079 lduw(super_klass, sco_offset, temp2_reg);
jrose@1100 3080 super_check_offset = RegisterOrConstant(temp2_reg);
twisti@1858 3081 // super_check_offset is register.
twisti@1858 3082 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
jrose@1079 3083 }
jrose@1079 3084 ld_ptr(sub_klass, super_check_offset, temp_reg);
jrose@1079 3085 cmp(super_klass, temp_reg);
jrose@1079 3086
jrose@1079 3087 // This check has worked decisively for primary supers.
jrose@1079 3088 // Secondary supers are sought in the super_cache ('super_cache_addr').
jrose@1079 3089 // (Secondary supers are interfaces and very deeply nested subtypes.)
jrose@1079 3090 // This works in the same check above because of a tricky aliasing
jrose@1079 3091 // between the super_cache and the primary super display elements.
jrose@1079 3092 // (The 'super_check_addr' can address either, as the case requires.)
jrose@1079 3093 // Note that the cache is updated below if it does not help us find
jrose@1079 3094 // what we need immediately.
jrose@1079 3095 // So if it was a primary super, we can just fail immediately.
jrose@1079 3096 // Otherwise, it's the slow path for us (no success at this point).
jrose@1079 3097
kvn@3037 3098 // Hacked ba(), which may only be used just before L_fallthrough.
kvn@3037 3099 #define FINAL_JUMP(label) \
kvn@3037 3100 if (&(label) != &L_fallthrough) { \
kvn@3037 3101 ba(label); delayed()->nop(); \
kvn@3037 3102 }
kvn@3037 3103
jrose@1079 3104 if (super_check_offset.is_register()) {
kvn@3037 3105 brx(Assembler::equal, false, Assembler::pn, *L_success);
kvn@3037 3106 delayed()->cmp(super_check_offset.as_register(), sc_offset);
jrose@1079 3107
jrose@1079 3108 if (L_failure == &L_fallthrough) {
kvn@3037 3109 brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
jrose@1079 3110 delayed()->nop();
jrose@1079 3111 } else {
kvn@3037 3112 brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
kvn@3037 3113 delayed()->nop();
kvn@3037 3114 FINAL_JUMP(*L_slow_path);
jrose@1079 3115 }
jrose@1079 3116 } else if (super_check_offset.as_constant() == sc_offset) {
jrose@1079 3117 // Need a slow path; fast failure is impossible.
jrose@1079 3118 if (L_slow_path == &L_fallthrough) {
kvn@3037 3119 brx(Assembler::equal, false, Assembler::pt, *L_success);
kvn@3037 3120 delayed()->nop();
jrose@1079 3121 } else {
jrose@1079 3122 brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
jrose@1079 3123 delayed()->nop();
kvn@3037 3124 FINAL_JUMP(*L_success);
jrose@1079 3125 }
jrose@1079 3126 } else {
jrose@1079 3127 // No slow path; it's a fast decision.
jrose@1079 3128 if (L_failure == &L_fallthrough) {
kvn@3037 3129 brx(Assembler::equal, false, Assembler::pt, *L_success);
kvn@3037 3130 delayed()->nop();
jrose@1079 3131 } else {
kvn@3037 3132 brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
kvn@3037 3133 delayed()->nop();
kvn@3037 3134 FINAL_JUMP(*L_success);
jrose@1079 3135 }
jrose@1079 3136 }
jrose@1079 3137
jrose@1079 3138 bind(L_fallthrough);
jrose@1079 3139
kvn@3037 3140 #undef FINAL_JUMP
jrose@1079 3141 }
jrose@1079 3142
jrose@1079 3143
jrose@1079 3144 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
jrose@1079 3145 Register super_klass,
jrose@1079 3146 Register count_temp,
jrose@1079 3147 Register scan_temp,
jrose@1079 3148 Register scratch_reg,
jrose@1079 3149 Register coop_reg,
jrose@1079 3150 Label* L_success,
jrose@1079 3151 Label* L_failure) {
jrose@1079 3152 assert_different_registers(sub_klass, super_klass,
jrose@1079 3153 count_temp, scan_temp, scratch_reg, coop_reg);
jrose@1079 3154
jrose@1079 3155 Label L_fallthrough, L_loop;
jrose@1079 3156 int label_nulls = 0;
jrose@1079 3157 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
jrose@1079 3158 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
jrose@1079 3159 assert(label_nulls <= 1, "at most one NULL in the batch");
jrose@1079 3160
jrose@1079 3161 // a couple of useful fields in sub_klass:
jrose@1079 3162 int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 3163 Klass::secondary_supers_offset_in_bytes());
jrose@1079 3164 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 3165 Klass::secondary_super_cache_offset_in_bytes());
jrose@1079 3166
jrose@1079 3167 // Do a linear scan of the secondary super-klass chain.
jrose@1079 3168 // This code is rarely used, so simplicity is a virtue here.
jrose@1079 3169
jrose@1079 3170 #ifndef PRODUCT
jrose@1079 3171 int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
jrose@1079 3172 inc_counter((address) pst_counter, count_temp, scan_temp);
jrose@1079 3173 #endif
jrose@1079 3174
jrose@1079 3175 // We will consult the secondary-super array.
jrose@1079 3176 ld_ptr(sub_klass, ss_offset, scan_temp);
jrose@1079 3177
jrose@1079 3178 // Compress superclass if necessary.
jrose@1079 3179 Register search_key = super_klass;
jrose@1079 3180 bool decode_super_klass = false;
jrose@1079 3181 if (UseCompressedOops) {
jrose@1079 3182 if (coop_reg != noreg) {
jrose@1079 3183 encode_heap_oop_not_null(super_klass, coop_reg);
jrose@1079 3184 search_key = coop_reg;
jrose@1079 3185 } else {
jrose@1079 3186 encode_heap_oop_not_null(super_klass);
jrose@1079 3187 decode_super_klass = true; // scarce temps!
jrose@1079 3188 }
jrose@1079 3189 // The superclass is never null; it would be a basic system error if a null
jrose@1079 3190 // pointer were to sneak in here. Note that we have already loaded the
jrose@1079 3191 // Klass::super_check_offset from the super_klass in the fast path,
jrose@1079 3192 // so if there is a null in that register, we are already in the afterlife.
jrose@1079 3193 }
jrose@1079 3194
jrose@1079 3195 // Load the array length. (Positive movl does right thing on LP64.)
jrose@1079 3196 lduw(scan_temp, arrayOopDesc::length_offset_in_bytes(), count_temp);
jrose@1079 3197
jrose@1079 3198 // Check for empty secondary super list
jrose@1079 3199 tst(count_temp);
jrose@1079 3200
jrose@1079 3201 // Top of search loop
jrose@1079 3202 bind(L_loop);
jrose@1079 3203 br(Assembler::equal, false, Assembler::pn, *L_failure);
jrose@1079 3204 delayed()->add(scan_temp, heapOopSize, scan_temp);
jrose@1079 3205 assert(heapOopSize != 0, "heapOopSize should be initialized");
jrose@1079 3206
jrose@1079 3207 // Skip the array header in all array accesses.
jrose@1079 3208 int elem_offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
jrose@1079 3209 elem_offset -= heapOopSize; // the scan pointer was pre-incremented also
jrose@1079 3210
jrose@1079 3211 // Load next super to check
jrose@1079 3212 if (UseCompressedOops) {
jrose@1079 3213 // Don't use load_heap_oop; we don't want to decode the element.
jrose@1079 3214 lduw( scan_temp, elem_offset, scratch_reg );
jrose@1079 3215 } else {
jrose@1079 3216 ld_ptr( scan_temp, elem_offset, scratch_reg );
jrose@1079 3217 }
jrose@1079 3218
jrose@1079 3219 // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
jrose@1079 3220 cmp(scratch_reg, search_key);
jrose@1079 3221
jrose@1079 3222 // A miss means we are NOT a subtype and need to keep looping
jrose@1079 3223 brx(Assembler::notEqual, false, Assembler::pn, L_loop);
jrose@1079 3224 delayed()->deccc(count_temp); // decrement trip counter in delay slot
jrose@1079 3225
jrose@1079 3226 // Falling out the bottom means we found a hit; we ARE a subtype
jrose@1079 3227 if (decode_super_klass) decode_heap_oop(super_klass);
jrose@1079 3228
jrose@1079 3229 // Success. Cache the super we found and proceed in triumph.
jrose@1079 3230 st_ptr(super_klass, sub_klass, sc_offset);
jrose@1079 3231
jrose@1079 3232 if (L_success != &L_fallthrough) {
kvn@3037 3233 ba(*L_success);
jrose@1079 3234 delayed()->nop();
jrose@1079 3235 }
jrose@1079 3236
jrose@1079 3237 bind(L_fallthrough);
jrose@1079 3238 }
jrose@1079 3239
jrose@1079 3240
jrose@1145 3241 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
jrose@1145 3242 Register temp_reg,
jrose@1145 3243 Label& wrong_method_type) {
jrose@1145 3244 assert_different_registers(mtype_reg, mh_reg, temp_reg);
jrose@1145 3245 // compare method type against that of the receiver
jrose@2639 3246 RegisterOrConstant mhtype_offset = delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg);
twisti@2201 3247 load_heap_oop(mh_reg, mhtype_offset, temp_reg);
kvn@3037 3248 cmp_and_brx_short(temp_reg, mtype_reg, Assembler::notEqual, Assembler::pn, wrong_method_type);
jrose@1145 3249 }
jrose@1145 3250
jrose@1145 3251
twisti@1858 3252 // A method handle has a "vmslots" field which gives the size of its
twisti@1858 3253 // argument list in JVM stack slots. This field is either located directly
twisti@1858 3254 // in every method handle, or else is indirectly accessed through the
twisti@1858 3255 // method handle's MethodType. This macro hides the distinction.
twisti@1858 3256 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
twisti@1858 3257 Register temp_reg) {
twisti@1858 3258 assert_different_registers(vmslots_reg, mh_reg, temp_reg);
twisti@1858 3259 // load mh.type.form.vmslots
never@3137 3260 Register temp2_reg = vmslots_reg;
never@3137 3261 load_heap_oop(Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)), temp2_reg);
never@3137 3262 load_heap_oop(Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)), temp2_reg);
never@3137 3263 ld( Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)), vmslots_reg);
twisti@1858 3264 }
twisti@1858 3265
twisti@1858 3266
twisti@1858 3267 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop) {
jrose@1145 3268 assert(mh_reg == G3_method_handle, "caller must put MH object in G3");
jrose@1145 3269 assert_different_registers(mh_reg, temp_reg);
jrose@1145 3270
jrose@1145 3271 // pick out the interpreted side of the handler
twisti@2201 3272 // NOTE: vmentry is not an oop!
jrose@2639 3273 ld_ptr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg), temp_reg);
jrose@1145 3274
jrose@1145 3275 // off we go...
jrose@1145 3276 ld_ptr(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes(), temp_reg);
jrose@1145 3277 jmp(temp_reg, 0);
jrose@1145 3278
jrose@1145 3279 // for the various stubs which take control at this point,
jrose@1145 3280 // see MethodHandles::generate_method_handle_stub
jrose@1145 3281
twisti@1858 3282 // Some callers can fill the delay slot.
twisti@1858 3283 if (emit_delayed_nop) {
twisti@1858 3284 delayed()->nop();
twisti@1858 3285 }
jrose@1145 3286 }
jrose@1145 3287
twisti@1858 3288
jrose@1145 3289 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
never@2950 3290 Register temp_reg,
jrose@1145 3291 int extra_slot_offset) {
jrose@1145 3292 // cf. TemplateTable::prepare_invoke(), if (load_receiver).
twisti@1861 3293 int stackElementSize = Interpreter::stackElementSize;
twisti@1858 3294 int offset = extra_slot_offset * stackElementSize;
jrose@1145 3295 if (arg_slot.is_constant()) {
jrose@1145 3296 offset += arg_slot.as_constant() * stackElementSize;
jrose@1145 3297 return offset;
jrose@1145 3298 } else {
never@2950 3299 assert(temp_reg != noreg, "must specify");
never@2950 3300 sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
jrose@1145 3301 if (offset != 0)
never@2950 3302 add(temp_reg, offset, temp_reg);
never@2950 3303 return temp_reg;
jrose@1145 3304 }
jrose@1145 3305 }
jrose@1145 3306
jrose@1145 3307
twisti@1858 3308 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
never@2950 3309 Register temp_reg,
twisti@1858 3310 int extra_slot_offset) {
never@2950 3311 return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
twisti@1858 3312 }
twisti@1858 3313
jrose@1145 3314
kvn@855 3315 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
kvn@855 3316 Register temp_reg,
duke@435 3317 Label& done, Label* slow_case,
duke@435 3318 BiasedLockingCounters* counters) {
duke@435 3319 assert(UseBiasedLocking, "why call this otherwise?");
duke@435 3320
duke@435 3321 if (PrintBiasedLockingStatistics) {
duke@435 3322 assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
duke@435 3323 if (counters == NULL)
duke@435 3324 counters = BiasedLocking::counters();
duke@435 3325 }
duke@435 3326
duke@435 3327 Label cas_label;
duke@435 3328
duke@435 3329 // Biased locking
duke@435 3330 // See whether the lock is currently biased toward our thread and
duke@435 3331 // whether the epoch is still valid
duke@435 3332 // Note that the runtime guarantees sufficient alignment of JavaThread
duke@435 3333 // pointers to allow age to be placed into low bits
duke@435 3334 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
duke@435 3335 and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
kvn@3037 3336 cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
coleenp@548 3337
coleenp@548 3338 load_klass(obj_reg, temp_reg);
twisti@1162 3339 ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
duke@435 3340 or3(G2_thread, temp_reg, temp_reg);
duke@435 3341 xor3(mark_reg, temp_reg, temp_reg);
duke@435 3342 andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
duke@435 3343 if (counters != NULL) {
duke@435 3344 cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3345 // Reload mark_reg as we may need it later
twisti@1162 3346 ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
duke@435 3347 }
duke@435 3348 brx(Assembler::equal, true, Assembler::pt, done);
duke@435 3349 delayed()->nop();
duke@435 3350
duke@435 3351 Label try_revoke_bias;
duke@435 3352 Label try_rebias;
twisti@1162 3353 Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 3354 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3355
duke@435 3356 // At this point we know that the header has the bias pattern and
duke@435 3357 // that we are not the bias owner in the current epoch. We need to
duke@435 3358 // figure out more details about the state of the header in order to
duke@435 3359 // know what operations can be legally performed on the object's
duke@435 3360 // header.
duke@435 3361
duke@435 3362 // If the low three bits in the xor result aren't clear, that means
duke@435 3363 // the prototype header is no longer biased and we have to revoke
duke@435 3364 // the bias on this object.
duke@435 3365 btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 3366 brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
duke@435 3367
duke@435 3368 // Biasing is still enabled for this data type. See whether the
duke@435 3369 // epoch of the current bias is still valid, meaning that the epoch
duke@435 3370 // bits of the mark word are equal to the epoch bits of the
duke@435 3371 // prototype header. (Note that the prototype header's epoch bits
duke@435 3372 // only change at a safepoint.) If not, attempt to rebias the object
duke@435 3373 // toward the current thread. Note that we must be absolutely sure
duke@435 3374 // that the current epoch is invalid in order to do this because
duke@435 3375 // otherwise the manipulations it performs on the mark word are
duke@435 3376 // illegal.
duke@435 3377 delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
duke@435 3378 brx(Assembler::notZero, false, Assembler::pn, try_rebias);
duke@435 3379
duke@435 3380 // The epoch of the current bias is still valid but we know nothing
duke@435 3381 // about the owner; it might be set or it might be clear. Try to
duke@435 3382 // acquire the bias of the object using an atomic operation. If this
duke@435 3383 // fails we will go in to the runtime to revoke the object's bias.
duke@435 3384 // Note that we first construct the presumed unbiased header so we
duke@435 3385 // don't accidentally blow away another thread's valid bias.
duke@435 3386 delayed()->and3(mark_reg,
duke@435 3387 markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
duke@435 3388 mark_reg);
duke@435 3389 or3(G2_thread, mark_reg, temp_reg);
kvn@855 3390 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3391 // If the biasing toward our thread failed, this means that
duke@435 3392 // another thread succeeded in biasing it toward itself and we
duke@435 3393 // need to revoke that bias. The revocation will occur in the
duke@435 3394 // interpreter runtime in the slow case.
duke@435 3395 cmp(mark_reg, temp_reg);
duke@435 3396 if (counters != NULL) {
duke@435 3397 cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3398 }
duke@435 3399 if (slow_case != NULL) {
duke@435 3400 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
duke@435 3401 delayed()->nop();
duke@435 3402 }
kvn@3037 3403 ba_short(done);
duke@435 3404
duke@435 3405 bind(try_rebias);
duke@435 3406 // At this point we know the epoch has expired, meaning that the
duke@435 3407 // current "bias owner", if any, is actually invalid. Under these
duke@435 3408 // circumstances _only_, we are allowed to use the current header's
duke@435 3409 // value as the comparison value when doing the cas to acquire the
duke@435 3410 // bias in the current epoch. In other words, we allow transfer of
duke@435 3411 // the bias from one thread to another directly in this situation.
duke@435 3412 //
duke@435 3413 // FIXME: due to a lack of registers we currently blow away the age
duke@435 3414 // bits in this situation. Should attempt to preserve them.
coleenp@548 3415 load_klass(obj_reg, temp_reg);
twisti@1162 3416 ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
duke@435 3417 or3(G2_thread, temp_reg, temp_reg);
kvn@855 3418 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3419 // If the biasing toward our thread failed, this means that
duke@435 3420 // another thread succeeded in biasing it toward itself and we
duke@435 3421 // need to revoke that bias. The revocation will occur in the
duke@435 3422 // interpreter runtime in the slow case.
duke@435 3423 cmp(mark_reg, temp_reg);
duke@435 3424 if (counters != NULL) {
duke@435 3425 cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3426 }
duke@435 3427 if (slow_case != NULL) {
duke@435 3428 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
duke@435 3429 delayed()->nop();
duke@435 3430 }
kvn@3037 3431 ba_short(done);
duke@435 3432
duke@435 3433 bind(try_revoke_bias);
duke@435 3434 // The prototype mark in the klass doesn't have the bias bit set any
duke@435 3435 // more, indicating that objects of this data type are not supposed
duke@435 3436 // to be biased any more. We are going to try to reset the mark of
duke@435 3437 // this object to the prototype value and fall through to the
duke@435 3438 // CAS-based locking scheme. Note that if our CAS fails, it means
duke@435 3439 // that another thread raced us for the privilege of revoking the
duke@435 3440 // bias of this particular object, so it's okay to continue in the
duke@435 3441 // normal locking code.
duke@435 3442 //
duke@435 3443 // FIXME: due to a lack of registers we currently blow away the age
duke@435 3444 // bits in this situation. Should attempt to preserve them.
coleenp@548 3445 load_klass(obj_reg, temp_reg);
twisti@1162 3446 ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
kvn@855 3447 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3448 // Fall through to the normal CAS-based lock, because no matter what
duke@435 3449 // the result of the above CAS, some thread must have succeeded in
duke@435 3450 // removing the bias bit from the object's header.
duke@435 3451 if (counters != NULL) {
duke@435 3452 cmp(mark_reg, temp_reg);
duke@435 3453 cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3454 }
duke@435 3455
duke@435 3456 bind(cas_label);
duke@435 3457 }
duke@435 3458
duke@435 3459 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
duke@435 3460 bool allow_delay_slot_filling) {
duke@435 3461 // Check for biased locking unlock case, which is a no-op
duke@435 3462 // Note: we do not have to check the thread ID for two reasons.
duke@435 3463 // First, the interpreter checks for IllegalMonitorStateException at
duke@435 3464 // a higher level. Second, if the bias was revoked while we held the
duke@435 3465 // lock, the object could not be rebiased toward another thread, so
duke@435 3466 // the bias bit would be clear.
duke@435 3467 ld_ptr(mark_addr, temp_reg);
duke@435 3468 and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 3469 cmp(temp_reg, markOopDesc::biased_lock_pattern);
duke@435 3470 brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
duke@435 3471 delayed();
duke@435 3472 if (!allow_delay_slot_filling) {
duke@435 3473 nop();
duke@435 3474 }
duke@435 3475 }
duke@435 3476
duke@435 3477
duke@435 3478 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
duke@435 3479 // Solaris/SPARC's "as". Another apt name would be cas_ptr()
duke@435 3480
duke@435 3481 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
kvn@3037 3482 casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 3483 }
duke@435 3484
duke@435 3485
duke@435 3486
duke@435 3487 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
duke@435 3488 // of i486.ad fast_lock() and fast_unlock(). See those methods for detailed comments.
duke@435 3489 // The code could be tightened up considerably.
duke@435 3490 //
duke@435 3491 // box->dhw disposition - post-conditions at DONE_LABEL.
duke@435 3492 // - Successful inflated lock: box->dhw != 0.
duke@435 3493 // Any non-zero value suffices.
duke@435 3494 // Consider G2_thread, rsp, boxReg, or unused_mark()
duke@435 3495 // - Successful Stack-lock: box->dhw == mark.
duke@435 3496 // box->dhw must contain the displaced mark word value
duke@435 3497 // - Failure -- icc.ZFlag == 0 and box->dhw is undefined.
duke@435 3498 // The slow-path fast_enter() and slow_enter() operators
duke@435 3499 // are responsible for setting box->dhw = NonZero (typically ::unused_mark).
duke@435 3500 // - Biased: box->dhw is undefined
duke@435 3501 //
duke@435 3502 // SPARC refworkload performance - specifically jetstream and scimark - are
duke@435 3503 // extremely sensitive to the size of the code emitted by compiler_lock_object
duke@435 3504 // and compiler_unlock_object. Critically, the key factor is code size, not path
duke@435 3505 // length. (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
duke@435 3506 // effect).
duke@435 3507
duke@435 3508
kvn@855 3509 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
kvn@855 3510 Register Rbox, Register Rscratch,
kvn@855 3511 BiasedLockingCounters* counters,
kvn@855 3512 bool try_bias) {
twisti@1162 3513 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
duke@435 3514
duke@435 3515 verify_oop(Roop);
duke@435 3516 Label done ;
duke@435 3517
duke@435 3518 if (counters != NULL) {
duke@435 3519 inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
duke@435 3520 }
duke@435 3521
duke@435 3522 if (EmitSync & 1) {
kvn@3037 3523 mov(3, Rscratch);
kvn@3037 3524 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
kvn@3037 3525 cmp(SP, G0);
duke@435 3526 return ;
duke@435 3527 }
duke@435 3528
duke@435 3529 if (EmitSync & 2) {
duke@435 3530
duke@435 3531 // Fetch object's markword
duke@435 3532 ld_ptr(mark_addr, Rmark);
duke@435 3533
kvn@855 3534 if (try_bias) {
duke@435 3535 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3536 }
duke@435 3537
duke@435 3538 // Save Rbox in Rscratch to be used for the cas operation
duke@435 3539 mov(Rbox, Rscratch);
duke@435 3540
duke@435 3541 // set Rmark to markOop | markOopDesc::unlocked_value
duke@435 3542 or3(Rmark, markOopDesc::unlocked_value, Rmark);
duke@435 3543
duke@435 3544 // Initialize the box. (Must happen before we update the object mark!)
duke@435 3545 st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3546
duke@435 3547 // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
duke@435 3548 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3549 casx_under_lock(mark_addr.base(), Rmark, Rscratch,
duke@435 3550 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 3551
duke@435 3552 // if compare/exchange succeeded we found an unlocked object and we now have locked it
duke@435 3553 // hence we are done
duke@435 3554 cmp(Rmark, Rscratch);
duke@435 3555 #ifdef _LP64
duke@435 3556 sub(Rscratch, STACK_BIAS, Rscratch);
duke@435 3557 #endif
duke@435 3558 brx(Assembler::equal, false, Assembler::pt, done);
duke@435 3559 delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot
duke@435 3560
duke@435 3561 // we did not find an unlocked object so see if this is a recursive case
duke@435 3562 // sub(Rscratch, SP, Rscratch);
duke@435 3563 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 3564 andcc(Rscratch, 0xfffff003, Rscratch);
duke@435 3565 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
kvn@3037 3566 bind (done);
duke@435 3567 return ;
duke@435 3568 }
duke@435 3569
duke@435 3570 Label Egress ;
duke@435 3571
duke@435 3572 if (EmitSync & 256) {
duke@435 3573 Label IsInflated ;
duke@435 3574
kvn@3037 3575 ld_ptr(mark_addr, Rmark); // fetch obj->mark
duke@435 3576 // Triage: biased, stack-locked, neutral, inflated
kvn@855 3577 if (try_bias) {
duke@435 3578 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3579 // Invariant: if control reaches this point in the emitted stream
duke@435 3580 // then Rmark has not been modified.
duke@435 3581 }
duke@435 3582
duke@435 3583 // Store mark into displaced mark field in the on-stack basic-lock "box"
duke@435 3584 // Critically, this must happen before the CAS
duke@435 3585 // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
kvn@3037 3586 st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
kvn@3037 3587 andcc(Rmark, 2, G0);
kvn@3037 3588 brx(Assembler::notZero, false, Assembler::pn, IsInflated);
kvn@3037 3589 delayed()->
duke@435 3590
duke@435 3591 // Try stack-lock acquisition.
duke@435 3592 // Beware: the 1st instruction is in a delay slot
kvn@3037 3593 mov(Rbox, Rscratch);
kvn@3037 3594 or3(Rmark, markOopDesc::unlocked_value, Rmark);
kvn@3037 3595 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
kvn@3037 3596 casn(mark_addr.base(), Rmark, Rscratch);
kvn@3037 3597 cmp(Rmark, Rscratch);
kvn@3037 3598 brx(Assembler::equal, false, Assembler::pt, done);
duke@435 3599 delayed()->sub(Rscratch, SP, Rscratch);
duke@435 3600
duke@435 3601 // Stack-lock attempt failed - check for recursive stack-lock.
duke@435 3602 // See the comments below about how we might remove this case.
duke@435 3603 #ifdef _LP64
kvn@3037 3604 sub(Rscratch, STACK_BIAS, Rscratch);
duke@435 3605 #endif
duke@435 3606 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
kvn@3037 3607 andcc(Rscratch, 0xfffff003, Rscratch);
kvn@3037 3608 br(Assembler::always, false, Assembler::pt, done);
kvn@3037 3609 delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
kvn@3037 3610
kvn@3037 3611 bind(IsInflated);
duke@435 3612 if (EmitSync & 64) {
duke@435 3613 // If m->owner != null goto IsLocked
duke@435 3614 // Pessimistic form: Test-and-CAS vs CAS
duke@435 3615 // The optimistic form avoids RTS->RTO cache line upgrades.
kvn@3037 3616 ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
kvn@3037 3617 andcc(Rscratch, Rscratch, G0);
kvn@3037 3618 brx(Assembler::notZero, false, Assembler::pn, done);
kvn@3037 3619 delayed()->nop();
duke@435 3620 // m->owner == null : it's unlocked.
duke@435 3621 }
duke@435 3622
duke@435 3623 // Try to CAS m->owner from null to Self
duke@435 3624 // Invariant: if we acquire the lock then _recursions should be 0.
kvn@3037 3625 add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
kvn@3037 3626 mov(G2_thread, Rscratch);
kvn@3037 3627 casn(Rmark, G0, Rscratch);
kvn@3037 3628 cmp(Rscratch, G0);
duke@435 3629 // Intentional fall-through into done
duke@435 3630 } else {
duke@435 3631 // Aggressively avoid the Store-before-CAS penalty
duke@435 3632 // Defer the store into box->dhw until after the CAS
duke@435 3633 Label IsInflated, Recursive ;
duke@435 3634
duke@435 3635 // Anticipate CAS -- Avoid RTS->RTO upgrade
kvn@3037 3636 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
kvn@3037 3637
kvn@3037 3638 ld_ptr(mark_addr, Rmark); // fetch obj->mark
duke@435 3639 // Triage: biased, stack-locked, neutral, inflated
duke@435 3640
kvn@855 3641 if (try_bias) {
duke@435 3642 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3643 // Invariant: if control reaches this point in the emitted stream
duke@435 3644 // then Rmark has not been modified.
duke@435 3645 }
kvn@3037 3646 andcc(Rmark, 2, G0);
kvn@3037 3647 brx(Assembler::notZero, false, Assembler::pn, IsInflated);
duke@435 3648 delayed()-> // Beware - dangling delay-slot
duke@435 3649
duke@435 3650 // Try stack-lock acquisition.
duke@435 3651 // Transiently install BUSY (0) encoding in the mark word.
duke@435 3652 // if the CAS of 0 into the mark was successful then we execute:
duke@435 3653 // ST box->dhw = mark -- save fetched mark in on-stack basiclock box
duke@435 3654 // ST obj->mark = box -- overwrite transient 0 value
duke@435 3655 // This presumes TSO, of course.
duke@435 3656
kvn@3037 3657 mov(0, Rscratch);
kvn@3037 3658 or3(Rmark, markOopDesc::unlocked_value, Rmark);
kvn@3037 3659 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
kvn@3037 3660 casn(mark_addr.base(), Rmark, Rscratch);
kvn@3037 3661 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
kvn@3037 3662 cmp(Rscratch, Rmark);
kvn@3037 3663 brx(Assembler::notZero, false, Assembler::pn, Recursive);
kvn@3037 3664 delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3665 if (counters != NULL) {
duke@435 3666 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
duke@435 3667 }
kvn@3037 3668 ba(done);
kvn@3037 3669 delayed()->st_ptr(Rbox, mark_addr);
kvn@3037 3670
kvn@3037 3671 bind(Recursive);
duke@435 3672 // Stack-lock attempt failed - check for recursive stack-lock.
duke@435 3673 // Tests show that we can remove the recursive case with no impact
duke@435 3674 // on refworkload 0.83. If we need to reduce the size of the code
duke@435 3675 // emitted by compiler_lock_object() the recursive case is perfect
duke@435 3676 // candidate.
duke@435 3677 //
duke@435 3678 // A more extreme idea is to always inflate on stack-lock recursion.
duke@435 3679 // This lets us eliminate the recursive checks in compiler_lock_object
duke@435 3680 // and compiler_unlock_object and the (box->dhw == 0) encoding.
duke@435 3681 // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
duke@435 3682 // and showed a performance *increase*. In the same experiment I eliminated
duke@435 3683 // the fast-path stack-lock code from the interpreter and always passed
duke@435 3684 // control to the "slow" operators in synchronizer.cpp.
duke@435 3685
duke@435 3686 // RScratch contains the fetched obj->mark value from the failed CASN.
duke@435 3687 #ifdef _LP64
kvn@3037 3688 sub(Rscratch, STACK_BIAS, Rscratch);
duke@435 3689 #endif
duke@435 3690 sub(Rscratch, SP, Rscratch);
duke@435 3691 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
kvn@3037 3692 andcc(Rscratch, 0xfffff003, Rscratch);
duke@435 3693 if (counters != NULL) {
duke@435 3694 // Accounting needs the Rscratch register
kvn@3037 3695 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3696 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
kvn@3037 3697 ba_short(done);
duke@435 3698 } else {
kvn@3037 3699 ba(done);
kvn@3037 3700 delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3701 }
duke@435 3702
kvn@3037 3703 bind (IsInflated);
duke@435 3704 if (EmitSync & 64) {
duke@435 3705 // If m->owner != null goto IsLocked
duke@435 3706 // Test-and-CAS vs CAS
duke@435 3707 // Pessimistic form avoids futile (doomed) CAS attempts
duke@435 3708 // The optimistic form avoids RTS->RTO cache line upgrades.
kvn@3037 3709 ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
kvn@3037 3710 andcc(Rscratch, Rscratch, G0);
kvn@3037 3711 brx(Assembler::notZero, false, Assembler::pn, done);
kvn@3037 3712 delayed()->nop();
duke@435 3713 // m->owner == null : it's unlocked.
duke@435 3714 }
duke@435 3715
duke@435 3716 // Try to CAS m->owner from null to Self
duke@435 3717 // Invariant: if we acquire the lock then _recursions should be 0.
kvn@3037 3718 add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
kvn@3037 3719 mov(G2_thread, Rscratch);
kvn@3037 3720 casn(Rmark, G0, Rscratch);
kvn@3037 3721 cmp(Rscratch, G0);
duke@435 3722 // ST box->displaced_header = NonZero.
duke@435 3723 // Any non-zero value suffices:
duke@435 3724 // unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
kvn@3037 3725 st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3726 // Intentional fall-through into done
duke@435 3727 }
duke@435 3728
kvn@3037 3729 bind (done);
duke@435 3730 }
duke@435 3731
kvn@855 3732 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
kvn@855 3733 Register Rbox, Register Rscratch,
kvn@855 3734 bool try_bias) {
twisti@1162 3735 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
duke@435 3736
duke@435 3737 Label done ;
duke@435 3738
duke@435 3739 if (EmitSync & 4) {
kvn@3037 3740 cmp(SP, G0);
duke@435 3741 return ;
duke@435 3742 }
duke@435 3743
duke@435 3744 if (EmitSync & 8) {
kvn@855 3745 if (try_bias) {
duke@435 3746 biased_locking_exit(mark_addr, Rscratch, done);
duke@435 3747 }
duke@435 3748
duke@435 3749 // Test first if it is a fast recursive unlock
duke@435 3750 ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
kvn@3037 3751 br_null_short(Rmark, Assembler::pt, done);
duke@435 3752
duke@435 3753 // Check if it is still a light weight lock, this is is true if we see
duke@435 3754 // the stack address of the basicLock in the markOop of the object
duke@435 3755 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3756 casx_under_lock(mark_addr.base(), Rbox, Rmark,
duke@435 3757 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
kvn@3037 3758 ba(done);
duke@435 3759 delayed()->cmp(Rbox, Rmark);
kvn@3037 3760 bind(done);
duke@435 3761 return ;
duke@435 3762 }
duke@435 3763
duke@435 3764 // Beware ... If the aggregate size of the code emitted by CLO and CUO is
duke@435 3765 // is too large performance rolls abruptly off a cliff.
duke@435 3766 // This could be related to inlining policies, code cache management, or
duke@435 3767 // I$ effects.
duke@435 3768 Label LStacked ;
duke@435 3769
kvn@855 3770 if (try_bias) {
duke@435 3771 // TODO: eliminate redundant LDs of obj->mark
duke@435 3772 biased_locking_exit(mark_addr, Rscratch, done);
duke@435 3773 }
duke@435 3774
kvn@3037 3775 ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
kvn@3037 3776 ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
kvn@3037 3777 andcc(Rscratch, Rscratch, G0);
kvn@3037 3778 brx(Assembler::zero, false, Assembler::pn, done);
kvn@3037 3779 delayed()->nop(); // consider: relocate fetch of mark, above, into this DS
kvn@3037 3780 andcc(Rmark, 2, G0);
kvn@3037 3781 brx(Assembler::zero, false, Assembler::pt, LStacked);
kvn@3037 3782 delayed()->nop();
duke@435 3783
duke@435 3784 // It's inflated
duke@435 3785 // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
duke@435 3786 // the ST of 0 into _owner which releases the lock. This prevents loads
duke@435 3787 // and stores within the critical section from reordering (floating)
duke@435 3788 // past the store that releases the lock. But TSO is a strong memory model
duke@435 3789 // and that particular flavor of barrier is a noop, so we can safely elide it.
duke@435 3790 // Note that we use 1-0 locking by default for the inflated case. We
duke@435 3791 // close the resultant (and rare) race by having contented threads in
duke@435 3792 // monitorenter periodically poll _owner.
kvn@3037 3793 ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
kvn@3037 3794 ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
kvn@3037 3795 xor3(Rscratch, G2_thread, Rscratch);
kvn@3037 3796 orcc(Rbox, Rscratch, Rbox);
kvn@3037 3797 brx(Assembler::notZero, false, Assembler::pn, done);
duke@435 3798 delayed()->
kvn@3037 3799 ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
kvn@3037 3800 ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
kvn@3037 3801 orcc(Rbox, Rscratch, G0);
duke@435 3802 if (EmitSync & 65536) {
duke@435 3803 Label LSucc ;
kvn@3037 3804 brx(Assembler::notZero, false, Assembler::pn, LSucc);
kvn@3037 3805 delayed()->nop();
kvn@3037 3806 ba(done);
kvn@3037 3807 delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
kvn@3037 3808
kvn@3037 3809 bind(LSucc);
kvn@3037 3810 st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
kvn@3037 3811 if (os::is_MP()) { membar (StoreLoad); }
kvn@3037 3812 ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
kvn@3037 3813 andcc(Rscratch, Rscratch, G0);
kvn@3037 3814 brx(Assembler::notZero, false, Assembler::pt, done);
kvn@3037 3815 delayed()->andcc(G0, G0, G0);
kvn@3037 3816 add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
kvn@3037 3817 mov(G2_thread, Rscratch);
kvn@3037 3818 casn(Rmark, G0, Rscratch);
duke@435 3819 // invert icc.zf and goto done
kvn@3037 3820 br_notnull(Rscratch, false, Assembler::pt, done);
kvn@3037 3821 delayed()->cmp(G0, G0);
kvn@3037 3822 ba(done);
kvn@3037 3823 delayed()->cmp(G0, 1);
duke@435 3824 } else {
kvn@3037 3825 brx(Assembler::notZero, false, Assembler::pn, done);
kvn@3037 3826 delayed()->nop();
kvn@3037 3827 ba(done);
kvn@3037 3828 delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
duke@435 3829 }
duke@435 3830
kvn@3037 3831 bind (LStacked);
duke@435 3832 // Consider: we could replace the expensive CAS in the exit
duke@435 3833 // path with a simple ST of the displaced mark value fetched from
duke@435 3834 // the on-stack basiclock box. That admits a race where a thread T2
duke@435 3835 // in the slow lock path -- inflating with monitor M -- could race a
duke@435 3836 // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
duke@435 3837 // More precisely T1 in the stack-lock unlock path could "stomp" the
duke@435 3838 // inflated mark value M installed by T2, resulting in an orphan
duke@435 3839 // object monitor M and T2 becoming stranded. We can remedy that situation
duke@435 3840 // by having T2 periodically poll the object's mark word using timed wait
duke@435 3841 // operations. If T2 discovers that a stomp has occurred it vacates
duke@435 3842 // the monitor M and wakes any other threads stranded on the now-orphan M.
duke@435 3843 // In addition the monitor scavenger, which performs deflation,
duke@435 3844 // would also need to check for orpan monitors and stranded threads.
duke@435 3845 //
duke@435 3846 // Finally, inflation is also used when T2 needs to assign a hashCode
duke@435 3847 // to O and O is stack-locked by T1. The "stomp" race could cause
duke@435 3848 // an assigned hashCode value to be lost. We can avoid that condition
duke@435 3849 // and provide the necessary hashCode stability invariants by ensuring
duke@435 3850 // that hashCode generation is idempotent between copying GCs.
duke@435 3851 // For example we could compute the hashCode of an object O as
duke@435 3852 // O's heap address XOR some high quality RNG value that is refreshed
duke@435 3853 // at GC-time. The monitor scavenger would install the hashCode
duke@435 3854 // found in any orphan monitors. Again, the mechanism admits a
duke@435 3855 // lost-update "stomp" WAW race but detects and recovers as needed.
duke@435 3856 //
duke@435 3857 // A prototype implementation showed excellent results, although
duke@435 3858 // the scavenger and timeout code was rather involved.
duke@435 3859
kvn@3037 3860 casn(mark_addr.base(), Rbox, Rscratch);
kvn@3037 3861 cmp(Rbox, Rscratch);
duke@435 3862 // Intentional fall through into done ...
duke@435 3863
kvn@3037 3864 bind(done);
duke@435 3865 }
duke@435 3866
duke@435 3867
duke@435 3868
duke@435 3869 void MacroAssembler::print_CPU_state() {
duke@435 3870 // %%%%% need to implement this
duke@435 3871 }
duke@435 3872
duke@435 3873 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
duke@435 3874 // %%%%% need to implement this
duke@435 3875 }
duke@435 3876
duke@435 3877 void MacroAssembler::push_IU_state() {
duke@435 3878 // %%%%% need to implement this
duke@435 3879 }
duke@435 3880
duke@435 3881
duke@435 3882 void MacroAssembler::pop_IU_state() {
duke@435 3883 // %%%%% need to implement this
duke@435 3884 }
duke@435 3885
duke@435 3886
duke@435 3887 void MacroAssembler::push_FPU_state() {
duke@435 3888 // %%%%% need to implement this
duke@435 3889 }
duke@435 3890
duke@435 3891
duke@435 3892 void MacroAssembler::pop_FPU_state() {
duke@435 3893 // %%%%% need to implement this
duke@435 3894 }
duke@435 3895
duke@435 3896
duke@435 3897 void MacroAssembler::push_CPU_state() {
duke@435 3898 // %%%%% need to implement this
duke@435 3899 }
duke@435 3900
duke@435 3901
duke@435 3902 void MacroAssembler::pop_CPU_state() {
duke@435 3903 // %%%%% need to implement this
duke@435 3904 }
duke@435 3905
duke@435 3906
duke@435 3907
duke@435 3908 void MacroAssembler::verify_tlab() {
duke@435 3909 #ifdef ASSERT
duke@435 3910 if (UseTLAB && VerifyOops) {
duke@435 3911 Label next, next2, ok;
duke@435 3912 Register t1 = L0;
duke@435 3913 Register t2 = L1;
duke@435 3914 Register t3 = L2;
duke@435 3915
duke@435 3916 save_frame(0);
duke@435 3917 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
duke@435 3918 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
duke@435 3919 or3(t1, t2, t3);
kvn@3037 3920 cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
duke@435 3921 stop("assert(top >= start)");
duke@435 3922 should_not_reach_here();
duke@435 3923
duke@435 3924 bind(next);
duke@435 3925 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
duke@435 3926 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
duke@435 3927 or3(t3, t2, t3);
kvn@3037 3928 cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
duke@435 3929 stop("assert(top <= end)");
duke@435 3930 should_not_reach_here();
duke@435 3931
duke@435 3932 bind(next2);
duke@435 3933 and3(t3, MinObjAlignmentInBytesMask, t3);
kvn@3037 3934 cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
duke@435 3935 stop("assert(aligned)");
duke@435 3936 should_not_reach_here();
duke@435 3937
duke@435 3938 bind(ok);
duke@435 3939 restore();
duke@435 3940 }
duke@435 3941 #endif
duke@435 3942 }
duke@435 3943
duke@435 3944
duke@435 3945 void MacroAssembler::eden_allocate(
duke@435 3946 Register obj, // result: pointer to object after successful allocation
duke@435 3947 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 3948 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 3949 Register t1, // temp register
duke@435 3950 Register t2, // temp register
duke@435 3951 Label& slow_case // continuation point if fast allocation fails
duke@435 3952 ){
duke@435 3953 // make sure arguments make sense
duke@435 3954 assert_different_registers(obj, var_size_in_bytes, t1, t2);
duke@435 3955 assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
duke@435 3956 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
duke@435 3957
ysr@777 3958 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
ysr@777 3959 // No allocation in the shared eden.
kvn@3037 3960 ba_short(slow_case);
ysr@777 3961 } else {
ysr@777 3962 // get eden boundaries
ysr@777 3963 // note: we need both top & top_addr!
ysr@777 3964 const Register top_addr = t1;
ysr@777 3965 const Register end = t2;
ysr@777 3966
ysr@777 3967 CollectedHeap* ch = Universe::heap();
ysr@777 3968 set((intx)ch->top_addr(), top_addr);
ysr@777 3969 intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
ysr@777 3970 ld_ptr(top_addr, delta, end);
ysr@777 3971 ld_ptr(top_addr, 0, obj);
ysr@777 3972
ysr@777 3973 // try to allocate
ysr@777 3974 Label retry;
ysr@777 3975 bind(retry);
duke@435 3976 #ifdef ASSERT
ysr@777 3977 // make sure eden top is properly aligned
ysr@777 3978 {
ysr@777 3979 Label L;
ysr@777 3980 btst(MinObjAlignmentInBytesMask, obj);
ysr@777 3981 br(Assembler::zero, false, Assembler::pt, L);
ysr@777 3982 delayed()->nop();
ysr@777 3983 stop("eden top is not properly aligned");
ysr@777 3984 bind(L);
ysr@777 3985 }
ysr@777 3986 #endif // ASSERT
ysr@777 3987 const Register free = end;
ysr@777 3988 sub(end, obj, free); // compute amount of free space
ysr@777 3989 if (var_size_in_bytes->is_valid()) {
ysr@777 3990 // size is unknown at compile time
ysr@777 3991 cmp(free, var_size_in_bytes);
ysr@777 3992 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
ysr@777 3993 delayed()->add(obj, var_size_in_bytes, end);
ysr@777 3994 } else {
ysr@777 3995 // size is known at compile time
ysr@777 3996 cmp(free, con_size_in_bytes);
ysr@777 3997 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
ysr@777 3998 delayed()->add(obj, con_size_in_bytes, end);
ysr@777 3999 }
ysr@777 4000 // Compare obj with the value at top_addr; if still equal, swap the value of
ysr@777 4001 // end with the value at top_addr. If not equal, read the value at top_addr
ysr@777 4002 // into end.
ysr@777 4003 casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
ysr@777 4004 // if someone beat us on the allocation, try again, otherwise continue
ysr@777 4005 cmp(obj, end);
ysr@777 4006 brx(Assembler::notEqual, false, Assembler::pn, retry);
ysr@777 4007 delayed()->mov(end, obj); // nop if successfull since obj == end
ysr@777 4008
ysr@777 4009 #ifdef ASSERT
ysr@777 4010 // make sure eden top is properly aligned
ysr@777 4011 {
ysr@777 4012 Label L;
ysr@777 4013 const Register top_addr = t1;
ysr@777 4014
ysr@777 4015 set((intx)ch->top_addr(), top_addr);
ysr@777 4016 ld_ptr(top_addr, 0, top_addr);
ysr@777 4017 btst(MinObjAlignmentInBytesMask, top_addr);
ysr@777 4018 br(Assembler::zero, false, Assembler::pt, L);
ysr@777 4019 delayed()->nop();
ysr@777 4020 stop("eden top is not properly aligned");
ysr@777 4021 bind(L);
ysr@777 4022 }
ysr@777 4023 #endif // ASSERT
duke@435 4024 }
duke@435 4025 }
duke@435 4026
duke@435 4027
duke@435 4028 void MacroAssembler::tlab_allocate(
duke@435 4029 Register obj, // result: pointer to object after successful allocation
duke@435 4030 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 4031 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 4032 Register t1, // temp register
duke@435 4033 Label& slow_case // continuation point if fast allocation fails
duke@435 4034 ){
duke@435 4035 // make sure arguments make sense
duke@435 4036 assert_different_registers(obj, var_size_in_bytes, t1);
duke@435 4037 assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
duke@435 4038 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
duke@435 4039
duke@435 4040 const Register free = t1;
duke@435 4041
duke@435 4042 verify_tlab();
duke@435 4043
duke@435 4044 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
duke@435 4045
duke@435 4046 // calculate amount of free space
duke@435 4047 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
duke@435 4048 sub(free, obj, free);
duke@435 4049
duke@435 4050 Label done;
duke@435 4051 if (var_size_in_bytes == noreg) {
duke@435 4052 cmp(free, con_size_in_bytes);
duke@435 4053 } else {
duke@435 4054 cmp(free, var_size_in_bytes);
duke@435 4055 }
duke@435 4056 br(Assembler::less, false, Assembler::pn, slow_case);
duke@435 4057 // calculate the new top pointer
duke@435 4058 if (var_size_in_bytes == noreg) {
duke@435 4059 delayed()->add(obj, con_size_in_bytes, free);
duke@435 4060 } else {
duke@435 4061 delayed()->add(obj, var_size_in_bytes, free);
duke@435 4062 }
duke@435 4063
duke@435 4064 bind(done);
duke@435 4065
duke@435 4066 #ifdef ASSERT
duke@435 4067 // make sure new free pointer is properly aligned
duke@435 4068 {
duke@435 4069 Label L;
duke@435 4070 btst(MinObjAlignmentInBytesMask, free);
duke@435 4071 br(Assembler::zero, false, Assembler::pt, L);
duke@435 4072 delayed()->nop();
duke@435 4073 stop("updated TLAB free is not properly aligned");
duke@435 4074 bind(L);
duke@435 4075 }
duke@435 4076 #endif // ASSERT
duke@435 4077
duke@435 4078 // update the tlab top pointer
duke@435 4079 st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
duke@435 4080 verify_tlab();
duke@435 4081 }
duke@435 4082
duke@435 4083
duke@435 4084 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
duke@435 4085 Register top = O0;
duke@435 4086 Register t1 = G1;
duke@435 4087 Register t2 = G3;
duke@435 4088 Register t3 = O1;
duke@435 4089 assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
duke@435 4090 Label do_refill, discard_tlab;
duke@435 4091
duke@435 4092 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
duke@435 4093 // No allocation in the shared eden.
kvn@3037 4094 ba_short(slow_case);
duke@435 4095 }
duke@435 4096
duke@435 4097 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
duke@435 4098 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
duke@435 4099 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
duke@435 4100
duke@435 4101 // calculate amount of free space
duke@435 4102 sub(t1, top, t1);
duke@435 4103 srl_ptr(t1, LogHeapWordSize, t1);
duke@435 4104
duke@435 4105 // Retain tlab and allocate object in shared space if
duke@435 4106 // the amount free in the tlab is too large to discard.
duke@435 4107 cmp(t1, t2);
duke@435 4108 brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
duke@435 4109
duke@435 4110 // increment waste limit to prevent getting stuck on this slow path
duke@435 4111 delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
duke@435 4112 st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
duke@435 4113 if (TLABStats) {
duke@435 4114 // increment number of slow_allocations
duke@435 4115 ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
duke@435 4116 add(t2, 1, t2);
duke@435 4117 stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
duke@435 4118 }
kvn@3037 4119 ba_short(try_eden);
duke@435 4120
duke@435 4121 bind(discard_tlab);
duke@435 4122 if (TLABStats) {
duke@435 4123 // increment number of refills
duke@435 4124 ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
duke@435 4125 add(t2, 1, t2);
duke@435 4126 stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
duke@435 4127 // accumulate wastage
duke@435 4128 ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
duke@435 4129 add(t2, t1, t2);
duke@435 4130 stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
duke@435 4131 }
duke@435 4132
duke@435 4133 // if tlab is currently allocated (top or end != null) then
duke@435 4134 // fill [top, end + alignment_reserve) with array object
kvn@3037 4135 br_null_short(top, Assembler::pn, do_refill);
duke@435 4136
duke@435 4137 set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
duke@435 4138 st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
duke@435 4139 // set klass to intArrayKlass
duke@435 4140 sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
duke@435 4141 add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
duke@435 4142 sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
duke@435 4143 st(t1, top, arrayOopDesc::length_offset_in_bytes());
coleenp@602 4144 set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
coleenp@602 4145 ld_ptr(t2, 0, t2);
coleenp@602 4146 // store klass last. concurrent gcs assumes klass length is valid if
coleenp@602 4147 // klass field is not null.
coleenp@602 4148 store_klass(t2, top);
duke@435 4149 verify_oop(top);
duke@435 4150
phh@2423 4151 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
phh@2423 4152 sub(top, t1, t1); // size of tlab's allocated portion
phh@2447 4153 incr_allocated_bytes(t1, t2, t3);
phh@2423 4154
duke@435 4155 // refill the tlab with an eden allocation
duke@435 4156 bind(do_refill);
duke@435 4157 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
duke@435 4158 sll_ptr(t1, LogHeapWordSize, t1);
phh@2423 4159 // allocate new tlab, address returned in top
duke@435 4160 eden_allocate(top, t1, 0, t2, t3, slow_case);
duke@435 4161
duke@435 4162 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
duke@435 4163 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
duke@435 4164 #ifdef ASSERT
duke@435 4165 // check that tlab_size (t1) is still valid
duke@435 4166 {
duke@435 4167 Label ok;
duke@435 4168 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
duke@435 4169 sll_ptr(t2, LogHeapWordSize, t2);
kvn@3037 4170 cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
duke@435 4171 stop("assert(t1 == tlab_size)");
duke@435 4172 should_not_reach_here();
duke@435 4173
duke@435 4174 bind(ok);
duke@435 4175 }
duke@435 4176 #endif // ASSERT
duke@435 4177 add(top, t1, top); // t1 is tlab_size
duke@435 4178 sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
duke@435 4179 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
duke@435 4180 verify_tlab();
kvn@3037 4181 ba_short(retry);
duke@435 4182 }
duke@435 4183
phh@2447 4184 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
phh@2447 4185 Register t1, Register t2) {
phh@2423 4186 // Bump total bytes allocated by this thread
phh@2423 4187 assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
phh@2447 4188 assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
phh@2423 4189 // v8 support has gone the way of the dodo
phh@2423 4190 ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
phh@2447 4191 add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
phh@2423 4192 stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
phh@2423 4193 }
phh@2423 4194
duke@435 4195 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
duke@435 4196 switch (cond) {
duke@435 4197 // Note some conditions are synonyms for others
duke@435 4198 case Assembler::never: return Assembler::always;
duke@435 4199 case Assembler::zero: return Assembler::notZero;
duke@435 4200 case Assembler::lessEqual: return Assembler::greater;
duke@435 4201 case Assembler::less: return Assembler::greaterEqual;
duke@435 4202 case Assembler::lessEqualUnsigned: return Assembler::greaterUnsigned;
duke@435 4203 case Assembler::lessUnsigned: return Assembler::greaterEqualUnsigned;
duke@435 4204 case Assembler::negative: return Assembler::positive;
duke@435 4205 case Assembler::overflowSet: return Assembler::overflowClear;
duke@435 4206 case Assembler::always: return Assembler::never;
duke@435 4207 case Assembler::notZero: return Assembler::zero;
duke@435 4208 case Assembler::greater: return Assembler::lessEqual;
duke@435 4209 case Assembler::greaterEqual: return Assembler::less;
duke@435 4210 case Assembler::greaterUnsigned: return Assembler::lessEqualUnsigned;
duke@435 4211 case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
duke@435 4212 case Assembler::positive: return Assembler::negative;
duke@435 4213 case Assembler::overflowClear: return Assembler::overflowSet;
duke@435 4214 }
duke@435 4215
duke@435 4216 ShouldNotReachHere(); return Assembler::overflowClear;
duke@435 4217 }
duke@435 4218
duke@435 4219 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
duke@435 4220 Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
duke@435 4221 Condition negated_cond = negate_condition(cond);
duke@435 4222 Label L;
duke@435 4223 brx(negated_cond, false, Assembler::pt, L);
duke@435 4224 delayed()->nop();
duke@435 4225 inc_counter(counter_ptr, Rtmp1, Rtmp2);
duke@435 4226 bind(L);
duke@435 4227 }
duke@435 4228
twisti@1162 4229 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
twisti@1162 4230 AddressLiteral addrlit(counter_addr);
twisti@1162 4231 sethi(addrlit, Rtmp1); // Move hi22 bits into temporary register.
twisti@1162 4232 Address addr(Rtmp1, addrlit.low10()); // Build an address with low10 bits.
twisti@1162 4233 ld(addr, Rtmp2);
duke@435 4234 inc(Rtmp2);
twisti@1162 4235 st(Rtmp2, addr);
twisti@1162 4236 }
twisti@1162 4237
twisti@1162 4238 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
twisti@1162 4239 inc_counter((address) counter_addr, Rtmp1, Rtmp2);
duke@435 4240 }
duke@435 4241
duke@435 4242 SkipIfEqual::SkipIfEqual(
duke@435 4243 MacroAssembler* masm, Register temp, const bool* flag_addr,
duke@435 4244 Assembler::Condition condition) {
duke@435 4245 _masm = masm;
twisti@1162 4246 AddressLiteral flag(flag_addr);
twisti@1162 4247 _masm->sethi(flag, temp);
twisti@1162 4248 _masm->ldub(temp, flag.low10(), temp);
duke@435 4249 _masm->tst(temp);
duke@435 4250 _masm->br(condition, false, Assembler::pt, _label);
duke@435 4251 _masm->delayed()->nop();
duke@435 4252 }
duke@435 4253
duke@435 4254 SkipIfEqual::~SkipIfEqual() {
duke@435 4255 _masm->bind(_label);
duke@435 4256 }
duke@435 4257
duke@435 4258
duke@435 4259 // Writes to stack successive pages until offset reached to check for
duke@435 4260 // stack overflow + shadow pages. This clobbers tsp and scratch.
duke@435 4261 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
duke@435 4262 Register Rscratch) {
duke@435 4263 // Use stack pointer in temp stack pointer
duke@435 4264 mov(SP, Rtsp);
duke@435 4265
duke@435 4266 // Bang stack for total size given plus stack shadow page size.
duke@435 4267 // Bang one page at a time because a large size can overflow yellow and
duke@435 4268 // red zones (the bang will fail but stack overflow handling can't tell that
duke@435 4269 // it was a stack overflow bang vs a regular segv).
duke@435 4270 int offset = os::vm_page_size();
duke@435 4271 Register Roffset = Rscratch;
duke@435 4272
duke@435 4273 Label loop;
duke@435 4274 bind(loop);
duke@435 4275 set((-offset)+STACK_BIAS, Rscratch);
duke@435 4276 st(G0, Rtsp, Rscratch);
duke@435 4277 set(offset, Roffset);
duke@435 4278 sub(Rsize, Roffset, Rsize);
duke@435 4279 cmp(Rsize, G0);
duke@435 4280 br(Assembler::greater, false, Assembler::pn, loop);
duke@435 4281 delayed()->sub(Rtsp, Roffset, Rtsp);
duke@435 4282
duke@435 4283 // Bang down shadow pages too.
duke@435 4284 // The -1 because we already subtracted 1 page.
duke@435 4285 for (int i = 0; i< StackShadowPages-1; i++) {
duke@435 4286 set((-i*offset)+STACK_BIAS, Rscratch);
duke@435 4287 st(G0, Rtsp, Rscratch);
duke@435 4288 }
duke@435 4289 }
coleenp@548 4290
ysr@777 4291 ///////////////////////////////////////////////////////////////////////////////////
ysr@777 4292 #ifndef SERIALGC
ysr@777 4293
johnc@2781 4294 static address satb_log_enqueue_with_frame = NULL;
johnc@2781 4295 static u_char* satb_log_enqueue_with_frame_end = NULL;
johnc@2781 4296
johnc@2781 4297 static address satb_log_enqueue_frameless = NULL;
johnc@2781 4298 static u_char* satb_log_enqueue_frameless_end = NULL;
ysr@777 4299
ysr@777 4300 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
ysr@777 4301
ysr@777 4302 static void generate_satb_log_enqueue(bool with_frame) {
ysr@777 4303 BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
twisti@2103 4304 CodeBuffer buf(bb);
ysr@777 4305 MacroAssembler masm(&buf);
kvn@3037 4306
kvn@3037 4307 #define __ masm.
kvn@3037 4308
kvn@3037 4309 address start = __ pc();
ysr@777 4310 Register pre_val;
ysr@777 4311
ysr@777 4312 Label refill, restart;
ysr@777 4313 if (with_frame) {
kvn@3037 4314 __ save_frame(0);
ysr@777 4315 pre_val = I0; // Was O0 before the save.
ysr@777 4316 } else {
ysr@777 4317 pre_val = O0;
ysr@777 4318 }
johnc@3088 4319
ysr@777 4320 int satb_q_index_byte_offset =
ysr@777 4321 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4322 PtrQueue::byte_offset_of_index());
johnc@3088 4323
ysr@777 4324 int satb_q_buf_byte_offset =
ysr@777 4325 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4326 PtrQueue::byte_offset_of_buf());
johnc@3088 4327
ysr@777 4328 assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
ysr@777 4329 in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
ysr@777 4330 "check sizes in assembly below");
ysr@777 4331
kvn@3037 4332 __ bind(restart);
johnc@3088 4333
johnc@3088 4334 // Load the index into the SATB buffer. PtrQueue::_index is a size_t
johnc@3088 4335 // so ld_ptr is appropriate.
kvn@3037 4336 __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
kvn@3037 4337
johnc@3088 4338 // index == 0?
johnc@3088 4339 __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
johnc@3088 4340
johnc@3088 4341 __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
kvn@3037 4342 __ sub(L0, oopSize, L0);
kvn@3037 4343
kvn@3037 4344 __ st_ptr(pre_val, L1, L0); // [_buf + index] := I0
ysr@777 4345 if (!with_frame) {
ysr@777 4346 // Use return-from-leaf
kvn@3037 4347 __ retl();
kvn@3037 4348 __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
ysr@777 4349 } else {
ysr@777 4350 // Not delayed.
kvn@3037 4351 __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
ysr@777 4352 }
ysr@777 4353 if (with_frame) {
kvn@3037 4354 __ ret();
kvn@3037 4355 __ delayed()->restore();
ysr@777 4356 }
kvn@3037 4357 __ bind(refill);
ysr@777 4358
ysr@777 4359 address handle_zero =
ysr@777 4360 CAST_FROM_FN_PTR(address,
ysr@777 4361 &SATBMarkQueueSet::handle_zero_index_for_thread);
ysr@777 4362 // This should be rare enough that we can afford to save all the
ysr@777 4363 // scratch registers that the calling context might be using.
kvn@3037 4364 __ mov(G1_scratch, L0);
kvn@3037 4365 __ mov(G3_scratch, L1);
kvn@3037 4366 __ mov(G4, L2);
ysr@777 4367 // We need the value of O0 above (for the write into the buffer), so we
ysr@777 4368 // save and restore it.
kvn@3037 4369 __ mov(O0, L3);
ysr@777 4370 // Since the call will overwrite O7, we save and restore that, as well.
kvn@3037 4371 __ mov(O7, L4);
kvn@3037 4372 __ call_VM_leaf(L5, handle_zero, G2_thread);
kvn@3037 4373 __ mov(L0, G1_scratch);
kvn@3037 4374 __ mov(L1, G3_scratch);
kvn@3037 4375 __ mov(L2, G4);
kvn@3037 4376 __ mov(L3, O0);
kvn@3037 4377 __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
kvn@3037 4378 __ delayed()->mov(L4, O7);
ysr@777 4379
ysr@777 4380 if (with_frame) {
ysr@777 4381 satb_log_enqueue_with_frame = start;
kvn@3037 4382 satb_log_enqueue_with_frame_end = __ pc();
ysr@777 4383 } else {
ysr@777 4384 satb_log_enqueue_frameless = start;
kvn@3037 4385 satb_log_enqueue_frameless_end = __ pc();
ysr@777 4386 }
kvn@3037 4387
kvn@3037 4388 #undef __
ysr@777 4389 }
ysr@777 4390
ysr@777 4391 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
ysr@777 4392 if (with_frame) {
ysr@777 4393 if (satb_log_enqueue_with_frame == 0) {
ysr@777 4394 generate_satb_log_enqueue(with_frame);
ysr@777 4395 assert(satb_log_enqueue_with_frame != 0, "postcondition.");
ysr@777 4396 if (G1SATBPrintStubs) {
ysr@777 4397 tty->print_cr("Generated with-frame satb enqueue:");
ysr@777 4398 Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
ysr@777 4399 satb_log_enqueue_with_frame_end,
ysr@777 4400 tty);
ysr@777 4401 }
ysr@777 4402 }
ysr@777 4403 } else {
ysr@777 4404 if (satb_log_enqueue_frameless == 0) {
ysr@777 4405 generate_satb_log_enqueue(with_frame);
ysr@777 4406 assert(satb_log_enqueue_frameless != 0, "postcondition.");
ysr@777 4407 if (G1SATBPrintStubs) {
ysr@777 4408 tty->print_cr("Generated frameless satb enqueue:");
ysr@777 4409 Disassembler::decode((u_char*)satb_log_enqueue_frameless,
ysr@777 4410 satb_log_enqueue_frameless_end,
ysr@777 4411 tty);
ysr@777 4412 }
ysr@777 4413 }
ysr@777 4414 }
ysr@777 4415 }
ysr@777 4416
johnc@2781 4417 void MacroAssembler::g1_write_barrier_pre(Register obj,
johnc@2781 4418 Register index,
johnc@2781 4419 int offset,
johnc@2781 4420 Register pre_val,
johnc@2781 4421 Register tmp,
johnc@2781 4422 bool preserve_o_regs) {
ysr@777 4423 Label filtered;
johnc@2781 4424
johnc@2781 4425 if (obj == noreg) {
johnc@2781 4426 // We are not loading the previous value so make
johnc@2781 4427 // sure that we don't trash the value in pre_val
johnc@2781 4428 // with the code below.
johnc@2781 4429 assert_different_registers(pre_val, tmp);
johnc@2781 4430 } else {
johnc@2781 4431 // We will be loading the previous value
johnc@2781 4432 // in this code so...
johnc@2781 4433 assert(offset == 0 || index == noreg, "choose one");
johnc@2781 4434 assert(pre_val == noreg, "check this code");
johnc@2781 4435 }
johnc@2781 4436
johnc@2781 4437 // Is marking active?
ysr@777 4438 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
ysr@777 4439 ld(G2,
ysr@777 4440 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4441 PtrQueue::byte_offset_of_active()),
ysr@777 4442 tmp);
ysr@777 4443 } else {
ysr@777 4444 guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
ysr@777 4445 "Assumption");
ysr@777 4446 ldsb(G2,
ysr@777 4447 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4448 PtrQueue::byte_offset_of_active()),
ysr@777 4449 tmp);
ysr@777 4450 }
ysr@1280 4451
johnc@3088 4452 // Is marking active?
johnc@3088 4453 cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
ysr@777 4454
johnc@2781 4455 // Do we need to load the previous value?
johnc@2781 4456 if (obj != noreg) {
johnc@2781 4457 // Load the previous value...
johnc@2781 4458 if (index == noreg) {
johnc@2781 4459 if (Assembler::is_simm13(offset)) {
johnc@2781 4460 load_heap_oop(obj, offset, tmp);
johnc@2781 4461 } else {
johnc@2781 4462 set(offset, tmp);
johnc@2781 4463 load_heap_oop(obj, tmp, tmp);
johnc@2781 4464 }
ysr@777 4465 } else {
johnc@2781 4466 load_heap_oop(obj, index, tmp);
ysr@777 4467 }
johnc@2781 4468 // Previous value has been loaded into tmp
johnc@2781 4469 pre_val = tmp;
ysr@777 4470 }
ysr@777 4471
johnc@2781 4472 assert(pre_val != noreg, "must have a real register");
johnc@2781 4473
johnc@2781 4474 // Is the previous value null?
johnc@3088 4475 cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
ysr@777 4476
ysr@777 4477 // OK, it's not filtered, so we'll need to call enqueue. In the normal
johnc@2781 4478 // case, pre_val will be a scratch G-reg, but there are some cases in
johnc@2781 4479 // which it's an O-reg. In the first case, do a normal call. In the
johnc@2781 4480 // latter, do a save here and call the frameless version.
ysr@777 4481
ysr@777 4482 guarantee(pre_val->is_global() || pre_val->is_out(),
ysr@777 4483 "Or we need to think harder.");
johnc@2781 4484
ysr@777 4485 if (pre_val->is_global() && !preserve_o_regs) {
johnc@2781 4486 generate_satb_log_enqueue_if_necessary(true); // with frame
johnc@2781 4487
ysr@777 4488 call(satb_log_enqueue_with_frame);
ysr@777 4489 delayed()->mov(pre_val, O0);
ysr@777 4490 } else {
johnc@2781 4491 generate_satb_log_enqueue_if_necessary(false); // frameless
johnc@2781 4492
ysr@777 4493 save_frame(0);
ysr@777 4494 call(satb_log_enqueue_frameless);
ysr@777 4495 delayed()->mov(pre_val->after_save(), O0);
ysr@777 4496 restore();
ysr@777 4497 }
ysr@777 4498
ysr@777 4499 bind(filtered);
ysr@777 4500 }
ysr@777 4501
ysr@777 4502 static address dirty_card_log_enqueue = 0;
ysr@777 4503 static u_char* dirty_card_log_enqueue_end = 0;
ysr@777 4504
ysr@777 4505 // This gets to assume that o0 contains the object address.
ysr@777 4506 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
ysr@777 4507 BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
twisti@2103 4508 CodeBuffer buf(bb);
ysr@777 4509 MacroAssembler masm(&buf);
kvn@3037 4510 #define __ masm.
kvn@3037 4511 address start = __ pc();
ysr@777 4512
ysr@777 4513 Label not_already_dirty, restart, refill;
ysr@777 4514
ysr@777 4515 #ifdef _LP64
kvn@3037 4516 __ srlx(O0, CardTableModRefBS::card_shift, O0);
ysr@777 4517 #else
kvn@3037 4518 __ srl(O0, CardTableModRefBS::card_shift, O0);
ysr@777 4519 #endif
twisti@1162 4520 AddressLiteral addrlit(byte_map_base);
kvn@3037 4521 __ set(addrlit, O1); // O1 := <card table base>
kvn@3037 4522 __ ldub(O0, O1, O2); // O2 := [O0 + O1]
kvn@3037 4523
johnc@3088 4524 assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
johnc@3088 4525 __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
ysr@777 4526
ysr@777 4527 // We didn't take the branch, so we're already dirty: return.
ysr@777 4528 // Use return-from-leaf
kvn@3037 4529 __ retl();
kvn@3037 4530 __ delayed()->nop();
ysr@777 4531
ysr@777 4532 // Not dirty.
kvn@3037 4533 __ bind(not_already_dirty);
johnc@3088 4534
johnc@3088 4535 // Get O0 + O1 into a reg by itself
johnc@3088 4536 __ add(O0, O1, O3);
johnc@3088 4537
ysr@777 4538 // First, dirty it.
kvn@3037 4539 __ stb(G0, O3, G0); // [cardPtr] := 0 (i.e., dirty).
johnc@3088 4540
ysr@777 4541 int dirty_card_q_index_byte_offset =
ysr@777 4542 in_bytes(JavaThread::dirty_card_queue_offset() +
ysr@777 4543 PtrQueue::byte_offset_of_index());
ysr@777 4544 int dirty_card_q_buf_byte_offset =
ysr@777 4545 in_bytes(JavaThread::dirty_card_queue_offset() +
ysr@777 4546 PtrQueue::byte_offset_of_buf());
kvn@3037 4547 __ bind(restart);
johnc@3088 4548
johnc@3088 4549 // Load the index into the update buffer. PtrQueue::_index is
johnc@3088 4550 // a size_t so ld_ptr is appropriate here.
kvn@3037 4551 __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
kvn@3037 4552
johnc@3088 4553 // index == 0?
johnc@3088 4554 __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
johnc@3088 4555
johnc@3088 4556 __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
kvn@3037 4557 __ sub(L0, oopSize, L0);
kvn@3037 4558
kvn@3037 4559 __ st_ptr(O3, L1, L0); // [_buf + index] := I0
ysr@777 4560 // Use return-from-leaf
kvn@3037 4561 __ retl();
kvn@3037 4562 __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
kvn@3037 4563
kvn@3037 4564 __ bind(refill);
ysr@777 4565 address handle_zero =
ysr@777 4566 CAST_FROM_FN_PTR(address,
ysr@777 4567 &DirtyCardQueueSet::handle_zero_index_for_thread);
ysr@777 4568 // This should be rare enough that we can afford to save all the
ysr@777 4569 // scratch registers that the calling context might be using.
kvn@3037 4570 __ mov(G1_scratch, L3);
kvn@3037 4571 __ mov(G3_scratch, L5);
ysr@777 4572 // We need the value of O3 above (for the write into the buffer), so we
ysr@777 4573 // save and restore it.
kvn@3037 4574 __ mov(O3, L6);
ysr@777 4575 // Since the call will overwrite O7, we save and restore that, as well.
kvn@3037 4576 __ mov(O7, L4);
kvn@3037 4577
kvn@3037 4578 __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
kvn@3037 4579 __ mov(L3, G1_scratch);
kvn@3037 4580 __ mov(L5, G3_scratch);
kvn@3037 4581 __ mov(L6, O3);
kvn@3037 4582 __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
kvn@3037 4583 __ delayed()->mov(L4, O7);
ysr@777 4584
ysr@777 4585 dirty_card_log_enqueue = start;
kvn@3037 4586 dirty_card_log_enqueue_end = __ pc();
ysr@777 4587 // XXX Should have a guarantee here about not going off the end!
ysr@777 4588 // Does it already do so? Do an experiment...
kvn@3037 4589
kvn@3037 4590 #undef __
kvn@3037 4591
ysr@777 4592 }
ysr@777 4593
ysr@777 4594 static inline void
ysr@777 4595 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
ysr@777 4596 if (dirty_card_log_enqueue == 0) {
ysr@777 4597 generate_dirty_card_log_enqueue(byte_map_base);
ysr@777 4598 assert(dirty_card_log_enqueue != 0, "postcondition.");
ysr@777 4599 if (G1SATBPrintStubs) {
ysr@777 4600 tty->print_cr("Generated dirty_card enqueue:");
ysr@777 4601 Disassembler::decode((u_char*)dirty_card_log_enqueue,
ysr@777 4602 dirty_card_log_enqueue_end,
ysr@777 4603 tty);
ysr@777 4604 }
ysr@777 4605 }
ysr@777 4606 }
ysr@777 4607
ysr@777 4608
ysr@777 4609 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
ysr@777 4610
ysr@777 4611 Label filtered;
ysr@777 4612 MacroAssembler* post_filter_masm = this;
ysr@777 4613
ysr@777 4614 if (new_val == G0) return;
ysr@777 4615
ysr@777 4616 G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
ysr@777 4617 assert(bs->kind() == BarrierSet::G1SATBCT ||
ysr@777 4618 bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
johnc@3088 4619
ysr@777 4620 if (G1RSBarrierRegionFilter) {
ysr@777 4621 xor3(store_addr, new_val, tmp);
ysr@777 4622 #ifdef _LP64
ysr@777 4623 srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
ysr@777 4624 #else
ysr@777 4625 srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
ysr@777 4626 #endif
johnc@2781 4627
johnc@3088 4628 // XXX Should I predict this taken or not? Does it matter?
johnc@3088 4629 cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
ysr@777 4630 }
ysr@777 4631
iveresov@1229 4632 // If the "store_addr" register is an "in" or "local" register, move it to
iveresov@1229 4633 // a scratch reg so we can pass it as an argument.
iveresov@1229 4634 bool use_scr = !(store_addr->is_global() || store_addr->is_out());
iveresov@1229 4635 // Pick a scratch register different from "tmp".
iveresov@1229 4636 Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
iveresov@1229 4637 // Make sure we use up the delay slot!
iveresov@1229 4638 if (use_scr) {
iveresov@1229 4639 post_filter_masm->mov(store_addr, scr);
ysr@777 4640 } else {
iveresov@1229 4641 post_filter_masm->nop();
ysr@777 4642 }
iveresov@1229 4643 generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
iveresov@1229 4644 save_frame(0);
iveresov@1229 4645 call(dirty_card_log_enqueue);
iveresov@1229 4646 if (use_scr) {
iveresov@1229 4647 delayed()->mov(scr, O0);
iveresov@1229 4648 } else {
iveresov@1229 4649 delayed()->mov(store_addr->after_save(), O0);
iveresov@1229 4650 }
iveresov@1229 4651 restore();
ysr@777 4652
ysr@777 4653 bind(filtered);
ysr@777 4654 }
ysr@777 4655
ysr@777 4656 #endif // SERIALGC
ysr@777 4657 ///////////////////////////////////////////////////////////////////////////////////
ysr@777 4658
ysr@777 4659 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
ysr@777 4660 // If we're writing constant NULL, we can skip the write barrier.
ysr@777 4661 if (new_val == G0) return;
ysr@777 4662 CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
ysr@777 4663 assert(bs->kind() == BarrierSet::CardTableModRef ||
ysr@777 4664 bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
ysr@777 4665 card_table_write(bs->byte_map_base, tmp, store_addr);
ysr@777 4666 }
ysr@777 4667
kvn@599 4668 void MacroAssembler::load_klass(Register src_oop, Register klass) {
coleenp@548 4669 // The number of bytes in this code is used by
coleenp@548 4670 // MachCallDynamicJavaNode::ret_addr_offset()
coleenp@548 4671 // if this changes, change that.
coleenp@548 4672 if (UseCompressedOops) {
kvn@599 4673 lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
kvn@599 4674 decode_heap_oop_not_null(klass);
coleenp@548 4675 } else {
kvn@599 4676 ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
coleenp@548 4677 }
coleenp@548 4678 }
coleenp@548 4679
kvn@599 4680 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
coleenp@548 4681 if (UseCompressedOops) {
kvn@599 4682 assert(dst_oop != klass, "not enough registers");
kvn@599 4683 encode_heap_oop_not_null(klass);
coleenp@602 4684 st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
coleenp@548 4685 } else {
kvn@599 4686 st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
kvn@559 4687 }
kvn@559 4688 }
kvn@559 4689
coleenp@602 4690 void MacroAssembler::store_klass_gap(Register s, Register d) {
coleenp@602 4691 if (UseCompressedOops) {
coleenp@602 4692 assert(s != d, "not enough registers");
coleenp@602 4693 st(s, d, oopDesc::klass_gap_offset_in_bytes());
coleenp@548 4694 }
coleenp@548 4695 }
coleenp@548 4696
twisti@1162 4697 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
coleenp@548 4698 if (UseCompressedOops) {
twisti@1162 4699 lduw(s, d);
coleenp@548 4700 decode_heap_oop(d);
coleenp@548 4701 } else {
twisti@1162 4702 ld_ptr(s, d);
coleenp@548 4703 }
coleenp@548 4704 }
coleenp@548 4705
coleenp@548 4706 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
coleenp@548 4707 if (UseCompressedOops) {
coleenp@548 4708 lduw(s1, s2, d);
coleenp@548 4709 decode_heap_oop(d, d);
coleenp@548 4710 } else {
coleenp@548 4711 ld_ptr(s1, s2, d);
coleenp@548 4712 }
coleenp@548 4713 }
coleenp@548 4714
coleenp@548 4715 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
coleenp@548 4716 if (UseCompressedOops) {
coleenp@548 4717 lduw(s1, simm13a, d);
coleenp@548 4718 decode_heap_oop(d, d);
coleenp@548 4719 } else {
coleenp@548 4720 ld_ptr(s1, simm13a, d);
coleenp@548 4721 }
coleenp@548 4722 }
coleenp@548 4723
twisti@2201 4724 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
twisti@2201 4725 if (s2.is_constant()) load_heap_oop(s1, s2.as_constant(), d);
twisti@2201 4726 else load_heap_oop(s1, s2.as_register(), d);
twisti@2201 4727 }
twisti@2201 4728
coleenp@548 4729 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
coleenp@548 4730 if (UseCompressedOops) {
coleenp@548 4731 assert(s1 != d && s2 != d, "not enough registers");
coleenp@548 4732 encode_heap_oop(d);
coleenp@548 4733 st(d, s1, s2);
coleenp@548 4734 } else {
coleenp@548 4735 st_ptr(d, s1, s2);
coleenp@548 4736 }
coleenp@548 4737 }
coleenp@548 4738
coleenp@548 4739 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
coleenp@548 4740 if (UseCompressedOops) {
coleenp@548 4741 assert(s1 != d, "not enough registers");
coleenp@548 4742 encode_heap_oop(d);
coleenp@548 4743 st(d, s1, simm13a);
coleenp@548 4744 } else {
coleenp@548 4745 st_ptr(d, s1, simm13a);
coleenp@548 4746 }
coleenp@548 4747 }
coleenp@548 4748
coleenp@548 4749 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
coleenp@548 4750 if (UseCompressedOops) {
coleenp@548 4751 assert(a.base() != d, "not enough registers");
coleenp@548 4752 encode_heap_oop(d);
coleenp@548 4753 st(d, a, offset);
coleenp@548 4754 } else {
coleenp@548 4755 st_ptr(d, a, offset);
coleenp@548 4756 }
coleenp@548 4757 }
coleenp@548 4758
coleenp@548 4759
coleenp@548 4760 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
coleenp@548 4761 assert (UseCompressedOops, "must be compressed");
kvn@1077 4762 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4763 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4764 verify_oop(src);
kvn@1077 4765 if (Universe::narrow_oop_base() == NULL) {
kvn@1077 4766 srlx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4767 return;
kvn@1077 4768 }
coleenp@548 4769 Label done;
coleenp@548 4770 if (src == dst) {
coleenp@548 4771 // optimize for frequent case src == dst
coleenp@548 4772 bpr(rc_nz, true, Assembler::pt, src, done);
coleenp@548 4773 delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
coleenp@548 4774 bind(done);
coleenp@548 4775 srlx(src, LogMinObjAlignmentInBytes, dst);
coleenp@548 4776 } else {
coleenp@548 4777 bpr(rc_z, false, Assembler::pn, src, done);
coleenp@548 4778 delayed() -> mov(G0, dst);
coleenp@548 4779 // could be moved before branch, and annulate delay,
coleenp@548 4780 // but may add some unneeded work decoding null
coleenp@548 4781 sub(src, G6_heapbase, dst);
coleenp@548 4782 srlx(dst, LogMinObjAlignmentInBytes, dst);
coleenp@548 4783 bind(done);
coleenp@548 4784 }
coleenp@548 4785 }
coleenp@548 4786
coleenp@548 4787
coleenp@548 4788 void MacroAssembler::encode_heap_oop_not_null(Register r) {
coleenp@548 4789 assert (UseCompressedOops, "must be compressed");
kvn@1077 4790 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4791 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4792 verify_oop(r);
kvn@1077 4793 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4794 sub(r, G6_heapbase, r);
coleenp@548 4795 srlx(r, LogMinObjAlignmentInBytes, r);
coleenp@548 4796 }
coleenp@548 4797
kvn@559 4798 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
kvn@559 4799 assert (UseCompressedOops, "must be compressed");
kvn@1077 4800 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4801 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4802 verify_oop(src);
kvn@1077 4803 if (Universe::narrow_oop_base() == NULL) {
kvn@1077 4804 srlx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4805 } else {
kvn@1077 4806 sub(src, G6_heapbase, dst);
kvn@1077 4807 srlx(dst, LogMinObjAlignmentInBytes, dst);
kvn@1077 4808 }
kvn@559 4809 }
kvn@559 4810
coleenp@548 4811 // Same algorithm as oops.inline.hpp decode_heap_oop.
coleenp@548 4812 void MacroAssembler::decode_heap_oop(Register src, Register dst) {
coleenp@548 4813 assert (UseCompressedOops, "must be compressed");
kvn@1077 4814 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4815 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@548 4816 sllx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4817 if (Universe::narrow_oop_base() != NULL) {
kvn@1077 4818 Label done;
kvn@1077 4819 bpr(rc_nz, true, Assembler::pt, dst, done);
kvn@1077 4820 delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
kvn@1077 4821 bind(done);
kvn@1077 4822 }
coleenp@613 4823 verify_oop(dst);
coleenp@548 4824 }
coleenp@548 4825
coleenp@548 4826 void MacroAssembler::decode_heap_oop_not_null(Register r) {
coleenp@548 4827 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
coleenp@548 4828 // pd_code_size_limit.
coleenp@613 4829 // Also do not verify_oop as this is called by verify_oop.
coleenp@548 4830 assert (UseCompressedOops, "must be compressed");
kvn@1077 4831 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4832 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@548 4833 sllx(r, LogMinObjAlignmentInBytes, r);
kvn@1077 4834 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4835 add(r, G6_heapbase, r);
coleenp@548 4836 }
coleenp@548 4837
kvn@559 4838 void MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
kvn@559 4839 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
kvn@559 4840 // pd_code_size_limit.
coleenp@613 4841 // Also do not verify_oop as this is called by verify_oop.
kvn@559 4842 assert (UseCompressedOops, "must be compressed");
kvn@1077 4843 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4844 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
kvn@559 4845 sllx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4846 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4847 add(dst, G6_heapbase, dst);
kvn@559 4848 }
kvn@559 4849
coleenp@548 4850 void MacroAssembler::reinit_heapbase() {
coleenp@548 4851 if (UseCompressedOops) {
coleenp@548 4852 // call indirectly to solve generation ordering problem
twisti@1162 4853 AddressLiteral base(Universe::narrow_oop_base_addr());
coleenp@548 4854 load_ptr_contents(base, G6_heapbase);
coleenp@548 4855 }
coleenp@548 4856 }
kvn@1421 4857
kvn@1421 4858 // Compare char[] arrays aligned to 4 bytes.
kvn@1421 4859 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
kvn@1421 4860 Register limit, Register result,
kvn@1421 4861 Register chr1, Register chr2, Label& Ldone) {
kvn@1421 4862 Label Lvector, Lloop;
kvn@1421 4863 assert(chr1 == result, "should be the same");
kvn@1421 4864
kvn@1421 4865 // Note: limit contains number of bytes (2*char_elements) != 0.
kvn@1421 4866 andcc(limit, 0x2, chr1); // trailing character ?
kvn@1421 4867 br(Assembler::zero, false, Assembler::pt, Lvector);
kvn@1421 4868 delayed()->nop();
kvn@1421 4869
kvn@1421 4870 // compare the trailing char
kvn@1421 4871 sub(limit, sizeof(jchar), limit);
kvn@1421 4872 lduh(ary1, limit, chr1);
kvn@1421 4873 lduh(ary2, limit, chr2);
kvn@1421 4874 cmp(chr1, chr2);
kvn@1421 4875 br(Assembler::notEqual, true, Assembler::pt, Ldone);
kvn@1421 4876 delayed()->mov(G0, result); // not equal
kvn@1421 4877
kvn@1421 4878 // only one char ?
kvn@3037 4879 cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
kvn@1421 4880 delayed()->add(G0, 1, result); // zero-length arrays are equal
kvn@1421 4881
kvn@1421 4882 // word by word compare, dont't need alignment check
kvn@1421 4883 bind(Lvector);
kvn@1421 4884 // Shift ary1 and ary2 to the end of the arrays, negate limit
kvn@1421 4885 add(ary1, limit, ary1);
kvn@1421 4886 add(ary2, limit, ary2);
kvn@1421 4887 neg(limit, limit);
kvn@1421 4888
kvn@1421 4889 lduw(ary1, limit, chr1);
kvn@1421 4890 bind(Lloop);
kvn@1421 4891 lduw(ary2, limit, chr2);
kvn@1421 4892 cmp(chr1, chr2);
kvn@1421 4893 br(Assembler::notEqual, true, Assembler::pt, Ldone);
kvn@1421 4894 delayed()->mov(G0, result); // not equal
kvn@1421 4895 inccc(limit, 2*sizeof(jchar));
kvn@1421 4896 // annul LDUW if branch is not taken to prevent access past end of array
kvn@1421 4897 br(Assembler::notZero, true, Assembler::pt, Lloop);
kvn@1421 4898 delayed()->lduw(ary1, limit, chr1); // hoisted
kvn@1421 4899
kvn@1421 4900 // Caller should set it:
kvn@1421 4901 // add(G0, 1, result); // equals
kvn@1421 4902 }
kvn@3092 4903
kvn@3092 4904 // Use BIS for zeroing (count is in bytes).
kvn@3092 4905 void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
kvn@3092 4906 assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
kvn@3092 4907 Register end = count;
kvn@3092 4908 int cache_line_size = VM_Version::prefetch_data_size();
kvn@3092 4909 // Minimum count when BIS zeroing can be used since
kvn@3092 4910 // it needs membar which is expensive.
kvn@3092 4911 int block_zero_size = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
kvn@3092 4912
kvn@3092 4913 Label small_loop;
kvn@3092 4914 // Check if count is negative (dead code) or zero.
kvn@3092 4915 // Note, count uses 64bit in 64 bit VM.
kvn@3092 4916 cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
kvn@3092 4917
kvn@3092 4918 // Use BIS zeroing only for big arrays since it requires membar.
kvn@3092 4919 if (Assembler::is_simm13(block_zero_size)) { // < 4096
kvn@3092 4920 cmp(count, block_zero_size);
kvn@3092 4921 } else {
kvn@3092 4922 set(block_zero_size, temp);
kvn@3092 4923 cmp(count, temp);
kvn@3092 4924 }
kvn@3092 4925 br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
kvn@3092 4926 delayed()->add(to, count, end);
kvn@3092 4927
kvn@3092 4928 // Note: size is >= three (32 bytes) cache lines.
kvn@3092 4929
kvn@3092 4930 // Clean the beginning of space up to next cache line.
kvn@3092 4931 for (int offs = 0; offs < cache_line_size; offs += 8) {
kvn@3092 4932 stx(G0, to, offs);
kvn@3092 4933 }
kvn@3092 4934
kvn@3092 4935 // align to next cache line
kvn@3092 4936 add(to, cache_line_size, to);
kvn@3092 4937 and3(to, -cache_line_size, to);
kvn@3092 4938
kvn@3092 4939 // Note: size left >= two (32 bytes) cache lines.
kvn@3092 4940
kvn@3092 4941 // BIS should not be used to zero tail (64 bytes)
kvn@3092 4942 // to avoid zeroing a header of the following object.
kvn@3092 4943 sub(end, (cache_line_size*2)-8, end);
kvn@3092 4944
kvn@3092 4945 Label bis_loop;
kvn@3092 4946 bind(bis_loop);
kvn@3092 4947 stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
kvn@3092 4948 add(to, cache_line_size, to);
kvn@3092 4949 cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
kvn@3092 4950
kvn@3092 4951 // BIS needs membar.
kvn@3092 4952 membar(Assembler::StoreLoad);
kvn@3092 4953
kvn@3092 4954 add(end, (cache_line_size*2)-8, end); // restore end
kvn@3092 4955 cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
kvn@3092 4956
kvn@3092 4957 // Clean the tail.
kvn@3092 4958 bind(small_loop);
kvn@3092 4959 stx(G0, to, 0);
kvn@3092 4960 add(to, 8, to);
kvn@3092 4961 cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
kvn@3092 4962 nop(); // Separate short branches
kvn@3092 4963 }

mercurial