src/cpu/sparc/vm/assembler_sparc.cpp

Mon, 14 Sep 2009 12:14:20 -0700

author
kvn
date
Mon, 14 Sep 2009 12:14:20 -0700
changeset 1421
62001a362ce9
parent 1280
df6caf649ff7
child 1441
dcf03e02b020
permissions
-rw-r--r--

6827605: new String intrinsics may prevent EA scalar replacement
6875866: Intrinsic for String.indexOf() is broken on x86 with SSE4.2
Summary: Modify String intrinsic methods to pass char[] pointers instead of string oops.
Reviewed-by: never

duke@435 1 /*
jrose@1100 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_assembler_sparc.cpp.incl"
duke@435 27
twisti@1162 28 // Convert the raw encoding form into the form expected by the
twisti@1162 29 // constructor for Address.
twisti@1162 30 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
twisti@1162 31 assert(scale == 0, "not supported");
twisti@1162 32 RelocationHolder rspec;
twisti@1162 33 if (disp_is_oop) {
twisti@1162 34 rspec = Relocation::spec_simple(relocInfo::oop_type);
duke@435 35 }
twisti@1162 36
twisti@1162 37 Register rindex = as_Register(index);
twisti@1162 38 if (rindex != G0) {
twisti@1162 39 Address madr(as_Register(base), rindex);
twisti@1162 40 madr._rspec = rspec;
twisti@1162 41 return madr;
twisti@1162 42 } else {
twisti@1162 43 Address madr(as_Register(base), disp);
twisti@1162 44 madr._rspec = rspec;
twisti@1162 45 return madr;
twisti@1162 46 }
twisti@1162 47 }
twisti@1162 48
twisti@1162 49 Address Argument::address_in_frame() const {
twisti@1162 50 // Warning: In LP64 mode disp will occupy more than 10 bits, but
twisti@1162 51 // op codes such as ld or ldx, only access disp() to get
twisti@1162 52 // their simm13 argument.
twisti@1162 53 int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
twisti@1162 54 if (is_in())
twisti@1162 55 return Address(FP, disp); // In argument.
twisti@1162 56 else
twisti@1162 57 return Address(SP, disp); // Out argument.
duke@435 58 }
duke@435 59
duke@435 60 static const char* argumentNames[][2] = {
duke@435 61 {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
duke@435 62 {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
duke@435 63 {"A(n>9)","P(n>9)"}
duke@435 64 };
duke@435 65
duke@435 66 const char* Argument::name() const {
duke@435 67 int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
duke@435 68 int num = number();
duke@435 69 if (num >= nofArgs) num = nofArgs - 1;
duke@435 70 return argumentNames[num][is_in() ? 1 : 0];
duke@435 71 }
duke@435 72
duke@435 73 void Assembler::print_instruction(int inst) {
duke@435 74 const char* s;
duke@435 75 switch (inv_op(inst)) {
duke@435 76 default: s = "????"; break;
duke@435 77 case call_op: s = "call"; break;
duke@435 78 case branch_op:
duke@435 79 switch (inv_op2(inst)) {
duke@435 80 case bpr_op2: s = "bpr"; break;
duke@435 81 case fb_op2: s = "fb"; break;
duke@435 82 case fbp_op2: s = "fbp"; break;
duke@435 83 case br_op2: s = "br"; break;
duke@435 84 case bp_op2: s = "bp"; break;
duke@435 85 case cb_op2: s = "cb"; break;
duke@435 86 default: s = "????"; break;
duke@435 87 }
duke@435 88 }
duke@435 89 ::tty->print("%s", s);
duke@435 90 }
duke@435 91
duke@435 92
duke@435 93 // Patch instruction inst at offset inst_pos to refer to dest_pos
duke@435 94 // and return the resulting instruction.
duke@435 95 // We should have pcs, not offsets, but since all is relative, it will work out
duke@435 96 // OK.
duke@435 97 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
duke@435 98
duke@435 99 int m; // mask for displacement field
duke@435 100 int v; // new value for displacement field
duke@435 101 const int word_aligned_ones = -4;
duke@435 102 switch (inv_op(inst)) {
duke@435 103 default: ShouldNotReachHere();
duke@435 104 case call_op: m = wdisp(word_aligned_ones, 0, 30); v = wdisp(dest_pos, inst_pos, 30); break;
duke@435 105 case branch_op:
duke@435 106 switch (inv_op2(inst)) {
duke@435 107 case bpr_op2: m = wdisp16(word_aligned_ones, 0); v = wdisp16(dest_pos, inst_pos); break;
duke@435 108 case fbp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
duke@435 109 case bp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
duke@435 110 case fb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 111 case br_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 112 case cb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 113 default: ShouldNotReachHere();
duke@435 114 }
duke@435 115 }
duke@435 116 return inst & ~m | v;
duke@435 117 }
duke@435 118
duke@435 119 // Return the offset of the branch destionation of instruction inst
duke@435 120 // at offset pos.
duke@435 121 // Should have pcs, but since all is relative, it works out.
duke@435 122 int Assembler::branch_destination(int inst, int pos) {
duke@435 123 int r;
duke@435 124 switch (inv_op(inst)) {
duke@435 125 default: ShouldNotReachHere();
duke@435 126 case call_op: r = inv_wdisp(inst, pos, 30); break;
duke@435 127 case branch_op:
duke@435 128 switch (inv_op2(inst)) {
duke@435 129 case bpr_op2: r = inv_wdisp16(inst, pos); break;
duke@435 130 case fbp_op2: r = inv_wdisp( inst, pos, 19); break;
duke@435 131 case bp_op2: r = inv_wdisp( inst, pos, 19); break;
duke@435 132 case fb_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 133 case br_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 134 case cb_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 135 default: ShouldNotReachHere();
duke@435 136 }
duke@435 137 }
duke@435 138 return r;
duke@435 139 }
duke@435 140
duke@435 141 int AbstractAssembler::code_fill_byte() {
duke@435 142 return 0x00; // illegal instruction 0x00000000
duke@435 143 }
duke@435 144
ysr@777 145 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
ysr@777 146 switch (in) {
ysr@777 147 case rc_z: return equal;
ysr@777 148 case rc_lez: return lessEqual;
ysr@777 149 case rc_lz: return less;
ysr@777 150 case rc_nz: return notEqual;
ysr@777 151 case rc_gz: return greater;
ysr@777 152 case rc_gez: return greaterEqual;
ysr@777 153 default:
ysr@777 154 ShouldNotReachHere();
ysr@777 155 }
ysr@777 156 return equal;
ysr@777 157 }
ysr@777 158
duke@435 159 // Generate a bunch 'o stuff (including v9's
duke@435 160 #ifndef PRODUCT
duke@435 161 void Assembler::test_v9() {
duke@435 162 add( G0, G1, G2 );
duke@435 163 add( G3, 0, G4 );
duke@435 164
duke@435 165 addcc( G5, G6, G7 );
duke@435 166 addcc( I0, 1, I1 );
duke@435 167 addc( I2, I3, I4 );
duke@435 168 addc( I5, -1, I6 );
duke@435 169 addccc( I7, L0, L1 );
duke@435 170 addccc( L2, (1 << 12) - 2, L3 );
duke@435 171
duke@435 172 Label lbl1, lbl2, lbl3;
duke@435 173
duke@435 174 bind(lbl1);
duke@435 175
duke@435 176 bpr( rc_z, true, pn, L4, pc(), relocInfo::oop_type );
duke@435 177 delayed()->nop();
duke@435 178 bpr( rc_lez, false, pt, L5, lbl1);
duke@435 179 delayed()->nop();
duke@435 180
duke@435 181 fb( f_never, true, pc() + 4, relocInfo::none);
duke@435 182 delayed()->nop();
duke@435 183 fb( f_notEqual, false, lbl2 );
duke@435 184 delayed()->nop();
duke@435 185
duke@435 186 fbp( f_notZero, true, fcc0, pn, pc() - 4, relocInfo::none);
duke@435 187 delayed()->nop();
duke@435 188 fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
duke@435 189 delayed()->nop();
duke@435 190
duke@435 191 br( equal, true, pc() + 1024, relocInfo::none);
duke@435 192 delayed()->nop();
duke@435 193 br( lessEqual, false, lbl1 );
duke@435 194 delayed()->nop();
duke@435 195 br( never, false, lbl1 );
duke@435 196 delayed()->nop();
duke@435 197
duke@435 198 bp( less, true, icc, pn, pc(), relocInfo::none);
duke@435 199 delayed()->nop();
duke@435 200 bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
duke@435 201 delayed()->nop();
duke@435 202
duke@435 203 call( pc(), relocInfo::none);
duke@435 204 delayed()->nop();
duke@435 205 call( lbl3 );
duke@435 206 delayed()->nop();
duke@435 207
duke@435 208
duke@435 209 casa( L6, L7, O0 );
duke@435 210 casxa( O1, O2, O3, 0 );
duke@435 211
duke@435 212 udiv( O4, O5, O7 );
duke@435 213 udiv( G0, (1 << 12) - 1, G1 );
duke@435 214 sdiv( G1, G2, G3 );
duke@435 215 sdiv( G4, -((1 << 12) - 1), G5 );
duke@435 216 udivcc( G6, G7, I0 );
duke@435 217 udivcc( I1, -((1 << 12) - 2), I2 );
duke@435 218 sdivcc( I3, I4, I5 );
duke@435 219 sdivcc( I6, -((1 << 12) - 0), I7 );
duke@435 220
duke@435 221 done();
duke@435 222 retry();
duke@435 223
duke@435 224 fadd( FloatRegisterImpl::S, F0, F1, F2 );
duke@435 225 fsub( FloatRegisterImpl::D, F34, F0, F62 );
duke@435 226
duke@435 227 fcmp( FloatRegisterImpl::Q, fcc0, F0, F60);
duke@435 228 fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
duke@435 229
duke@435 230 ftox( FloatRegisterImpl::D, F2, F4 );
duke@435 231 ftoi( FloatRegisterImpl::Q, F4, F8 );
duke@435 232
duke@435 233 ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
duke@435 234
duke@435 235 fxtof( FloatRegisterImpl::S, F4, F5 );
duke@435 236 fitof( FloatRegisterImpl::D, F6, F8 );
duke@435 237
duke@435 238 fmov( FloatRegisterImpl::Q, F16, F20 );
duke@435 239 fneg( FloatRegisterImpl::S, F6, F7 );
duke@435 240 fabs( FloatRegisterImpl::D, F10, F12 );
duke@435 241
duke@435 242 fmul( FloatRegisterImpl::Q, F24, F28, F32 );
duke@435 243 fmul( FloatRegisterImpl::S, FloatRegisterImpl::D, F8, F9, F14 );
duke@435 244 fdiv( FloatRegisterImpl::S, F10, F11, F12 );
duke@435 245
duke@435 246 fsqrt( FloatRegisterImpl::S, F13, F14 );
duke@435 247
duke@435 248 flush( L0, L1 );
duke@435 249 flush( L2, -1 );
duke@435 250
duke@435 251 flushw();
duke@435 252
duke@435 253 illtrap( (1 << 22) - 2);
duke@435 254
duke@435 255 impdep1( 17, (1 << 19) - 1 );
duke@435 256 impdep2( 3, 0 );
duke@435 257
duke@435 258 jmpl( L3, L4, L5 );
duke@435 259 delayed()->nop();
duke@435 260 jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
duke@435 261 delayed()->nop();
duke@435 262
duke@435 263
duke@435 264 ldf( FloatRegisterImpl::S, O0, O1, F15 );
duke@435 265 ldf( FloatRegisterImpl::D, O2, -1, F14 );
duke@435 266
duke@435 267
duke@435 268 ldfsr( O3, O4 );
duke@435 269 ldfsr( O5, -1 );
duke@435 270 ldxfsr( O6, O7 );
duke@435 271 ldxfsr( I0, -1 );
duke@435 272
duke@435 273 ldfa( FloatRegisterImpl::D, I1, I2, 1, F16 );
duke@435 274 ldfa( FloatRegisterImpl::Q, I3, -1, F36 );
duke@435 275
duke@435 276 ldsb( I4, I5, I6 );
duke@435 277 ldsb( I7, -1, G0 );
duke@435 278 ldsh( G1, G3, G4 );
duke@435 279 ldsh( G5, -1, G6 );
duke@435 280 ldsw( G7, L0, L1 );
duke@435 281 ldsw( L2, -1, L3 );
duke@435 282 ldub( L4, L5, L6 );
duke@435 283 ldub( L7, -1, O0 );
duke@435 284 lduh( O1, O2, O3 );
duke@435 285 lduh( O4, -1, O5 );
duke@435 286 lduw( O6, O7, G0 );
duke@435 287 lduw( G1, -1, G2 );
duke@435 288 ldx( G3, G4, G5 );
duke@435 289 ldx( G6, -1, G7 );
duke@435 290 ldd( I0, I1, I2 );
duke@435 291 ldd( I3, -1, I4 );
duke@435 292
duke@435 293 ldsba( I5, I6, 2, I7 );
duke@435 294 ldsba( L0, -1, L1 );
duke@435 295 ldsha( L2, L3, 3, L4 );
duke@435 296 ldsha( L5, -1, L6 );
duke@435 297 ldswa( L7, O0, (1 << 8) - 1, O1 );
duke@435 298 ldswa( O2, -1, O3 );
duke@435 299 lduba( O4, O5, 0, O6 );
duke@435 300 lduba( O7, -1, I0 );
duke@435 301 lduha( I1, I2, 1, I3 );
duke@435 302 lduha( I4, -1, I5 );
duke@435 303 lduwa( I6, I7, 2, L0 );
duke@435 304 lduwa( L1, -1, L2 );
duke@435 305 ldxa( L3, L4, 3, L5 );
duke@435 306 ldxa( L6, -1, L7 );
duke@435 307 ldda( G0, G1, 4, G2 );
duke@435 308 ldda( G3, -1, G4 );
duke@435 309
duke@435 310 ldstub( G5, G6, G7 );
duke@435 311 ldstub( O0, -1, O1 );
duke@435 312
duke@435 313 ldstuba( O2, O3, 5, O4 );
duke@435 314 ldstuba( O5, -1, O6 );
duke@435 315
duke@435 316 and3( I0, L0, O0 );
duke@435 317 and3( G7, -1, O7 );
duke@435 318 andcc( L2, I2, G2 );
duke@435 319 andcc( L4, -1, G4 );
duke@435 320 andn( I5, I6, I7 );
duke@435 321 andn( I6, -1, I7 );
duke@435 322 andncc( I5, I6, I7 );
duke@435 323 andncc( I7, -1, I6 );
duke@435 324 or3( I5, I6, I7 );
duke@435 325 or3( I7, -1, I6 );
duke@435 326 orcc( I5, I6, I7 );
duke@435 327 orcc( I7, -1, I6 );
duke@435 328 orn( I5, I6, I7 );
duke@435 329 orn( I7, -1, I6 );
duke@435 330 orncc( I5, I6, I7 );
duke@435 331 orncc( I7, -1, I6 );
duke@435 332 xor3( I5, I6, I7 );
duke@435 333 xor3( I7, -1, I6 );
duke@435 334 xorcc( I5, I6, I7 );
duke@435 335 xorcc( I7, -1, I6 );
duke@435 336 xnor( I5, I6, I7 );
duke@435 337 xnor( I7, -1, I6 );
duke@435 338 xnorcc( I5, I6, I7 );
duke@435 339 xnorcc( I7, -1, I6 );
duke@435 340
duke@435 341 membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
duke@435 342 membar( StoreStore );
duke@435 343 membar( LoadStore );
duke@435 344 membar( StoreLoad );
duke@435 345 membar( LoadLoad );
duke@435 346 membar( Sync );
duke@435 347 membar( MemIssue );
duke@435 348 membar( Lookaside );
duke@435 349
duke@435 350 fmov( FloatRegisterImpl::S, f_ordered, true, fcc2, F16, F17 );
duke@435 351 fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
duke@435 352
duke@435 353 movcc( overflowClear, false, icc, I6, L4 );
duke@435 354 movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
duke@435 355
duke@435 356 movr( rc_nz, I5, I6, I7 );
duke@435 357 movr( rc_gz, L1, -1, L2 );
duke@435 358
duke@435 359 mulx( I5, I6, I7 );
duke@435 360 mulx( I7, -1, I6 );
duke@435 361 sdivx( I5, I6, I7 );
duke@435 362 sdivx( I7, -1, I6 );
duke@435 363 udivx( I5, I6, I7 );
duke@435 364 udivx( I7, -1, I6 );
duke@435 365
duke@435 366 umul( I5, I6, I7 );
duke@435 367 umul( I7, -1, I6 );
duke@435 368 smul( I5, I6, I7 );
duke@435 369 smul( I7, -1, I6 );
duke@435 370 umulcc( I5, I6, I7 );
duke@435 371 umulcc( I7, -1, I6 );
duke@435 372 smulcc( I5, I6, I7 );
duke@435 373 smulcc( I7, -1, I6 );
duke@435 374
duke@435 375 mulscc( I5, I6, I7 );
duke@435 376 mulscc( I7, -1, I6 );
duke@435 377
duke@435 378 nop();
duke@435 379
duke@435 380
duke@435 381 popc( G0, G1);
duke@435 382 popc( -1, G2);
duke@435 383
duke@435 384 prefetch( L1, L2, severalReads );
duke@435 385 prefetch( L3, -1, oneRead );
duke@435 386 prefetcha( O3, O2, 6, severalWritesAndPossiblyReads );
duke@435 387 prefetcha( G2, -1, oneWrite );
duke@435 388
duke@435 389 rett( I7, I7);
duke@435 390 delayed()->nop();
duke@435 391 rett( G0, -1, relocInfo::none);
duke@435 392 delayed()->nop();
duke@435 393
duke@435 394 save( I5, I6, I7 );
duke@435 395 save( I7, -1, I6 );
duke@435 396 restore( I5, I6, I7 );
duke@435 397 restore( I7, -1, I6 );
duke@435 398
duke@435 399 saved();
duke@435 400 restored();
duke@435 401
duke@435 402 sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
duke@435 403
duke@435 404 sll( I5, I6, I7 );
duke@435 405 sll( I7, 31, I6 );
duke@435 406 srl( I5, I6, I7 );
duke@435 407 srl( I7, 0, I6 );
duke@435 408 sra( I5, I6, I7 );
duke@435 409 sra( I7, 30, I6 );
duke@435 410 sllx( I5, I6, I7 );
duke@435 411 sllx( I7, 63, I6 );
duke@435 412 srlx( I5, I6, I7 );
duke@435 413 srlx( I7, 0, I6 );
duke@435 414 srax( I5, I6, I7 );
duke@435 415 srax( I7, 62, I6 );
duke@435 416
duke@435 417 sir( -1 );
duke@435 418
duke@435 419 stbar();
duke@435 420
duke@435 421 stf( FloatRegisterImpl::Q, F40, G0, I7 );
duke@435 422 stf( FloatRegisterImpl::S, F18, I3, -1 );
duke@435 423
duke@435 424 stfsr( L1, L2 );
duke@435 425 stfsr( I7, -1 );
duke@435 426 stxfsr( I6, I5 );
duke@435 427 stxfsr( L4, -1 );
duke@435 428
duke@435 429 stfa( FloatRegisterImpl::D, F22, I6, I7, 7 );
duke@435 430 stfa( FloatRegisterImpl::Q, F44, G0, -1 );
duke@435 431
duke@435 432 stb( L5, O2, I7 );
duke@435 433 stb( I7, I6, -1 );
duke@435 434 sth( L5, O2, I7 );
duke@435 435 sth( I7, I6, -1 );
duke@435 436 stw( L5, O2, I7 );
duke@435 437 stw( I7, I6, -1 );
duke@435 438 stx( L5, O2, I7 );
duke@435 439 stx( I7, I6, -1 );
duke@435 440 std( L5, O2, I7 );
duke@435 441 std( I7, I6, -1 );
duke@435 442
duke@435 443 stba( L5, O2, I7, 8 );
duke@435 444 stba( I7, I6, -1 );
duke@435 445 stha( L5, O2, I7, 9 );
duke@435 446 stha( I7, I6, -1 );
duke@435 447 stwa( L5, O2, I7, 0 );
duke@435 448 stwa( I7, I6, -1 );
duke@435 449 stxa( L5, O2, I7, 11 );
duke@435 450 stxa( I7, I6, -1 );
duke@435 451 stda( L5, O2, I7, 12 );
duke@435 452 stda( I7, I6, -1 );
duke@435 453
duke@435 454 sub( I5, I6, I7 );
duke@435 455 sub( I7, -1, I6 );
duke@435 456 subcc( I5, I6, I7 );
duke@435 457 subcc( I7, -1, I6 );
duke@435 458 subc( I5, I6, I7 );
duke@435 459 subc( I7, -1, I6 );
duke@435 460 subccc( I5, I6, I7 );
duke@435 461 subccc( I7, -1, I6 );
duke@435 462
duke@435 463 swap( I5, I6, I7 );
duke@435 464 swap( I7, -1, I6 );
duke@435 465
duke@435 466 swapa( G0, G1, 13, G2 );
duke@435 467 swapa( I7, -1, I6 );
duke@435 468
duke@435 469 taddcc( I5, I6, I7 );
duke@435 470 taddcc( I7, -1, I6 );
duke@435 471 taddcctv( I5, I6, I7 );
duke@435 472 taddcctv( I7, -1, I6 );
duke@435 473
duke@435 474 tsubcc( I5, I6, I7 );
duke@435 475 tsubcc( I7, -1, I6 );
duke@435 476 tsubcctv( I5, I6, I7 );
duke@435 477 tsubcctv( I7, -1, I6 );
duke@435 478
duke@435 479 trap( overflowClear, xcc, G0, G1 );
duke@435 480 trap( lessEqual, icc, I7, 17 );
duke@435 481
duke@435 482 bind(lbl2);
duke@435 483 bind(lbl3);
duke@435 484
duke@435 485 code()->decode();
duke@435 486 }
duke@435 487
duke@435 488 // Generate a bunch 'o stuff unique to V8
duke@435 489 void Assembler::test_v8_onlys() {
duke@435 490 Label lbl1;
duke@435 491
duke@435 492 cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
duke@435 493 delayed()->nop();
duke@435 494 cb( cp_never, true, lbl1);
duke@435 495 delayed()->nop();
duke@435 496
duke@435 497 cpop1(1, 2, 3, 4);
duke@435 498 cpop2(5, 6, 7, 8);
duke@435 499
duke@435 500 ldc( I0, I1, 31);
duke@435 501 ldc( I2, -1, 0);
duke@435 502
duke@435 503 lddc( I4, I4, 30);
duke@435 504 lddc( I6, 0, 1 );
duke@435 505
duke@435 506 ldcsr( L0, L1, 0);
duke@435 507 ldcsr( L1, (1 << 12) - 1, 17 );
duke@435 508
duke@435 509 stc( 31, L4, L5);
duke@435 510 stc( 30, L6, -(1 << 12) );
duke@435 511
duke@435 512 stdc( 0, L7, G0);
duke@435 513 stdc( 1, G1, 0 );
duke@435 514
duke@435 515 stcsr( 16, G2, G3);
duke@435 516 stcsr( 17, G4, 1 );
duke@435 517
duke@435 518 stdcq( 4, G5, G6);
duke@435 519 stdcq( 5, G7, -1 );
duke@435 520
duke@435 521 bind(lbl1);
duke@435 522
duke@435 523 code()->decode();
duke@435 524 }
duke@435 525 #endif
duke@435 526
duke@435 527 // Implementation of MacroAssembler
duke@435 528
duke@435 529 void MacroAssembler::null_check(Register reg, int offset) {
duke@435 530 if (needs_explicit_null_check((intptr_t)offset)) {
duke@435 531 // provoke OS NULL exception if reg = NULL by
duke@435 532 // accessing M[reg] w/o changing any registers
duke@435 533 ld_ptr(reg, 0, G0);
duke@435 534 }
duke@435 535 else {
duke@435 536 // nothing to do, (later) access of M[reg + offset]
duke@435 537 // will provoke OS NULL exception if reg = NULL
duke@435 538 }
duke@435 539 }
duke@435 540
duke@435 541 // Ring buffer jumps
duke@435 542
duke@435 543 #ifndef PRODUCT
duke@435 544 void MacroAssembler::ret( bool trace ) { if (trace) {
duke@435 545 mov(I7, O7); // traceable register
duke@435 546 JMP(O7, 2 * BytesPerInstWord);
duke@435 547 } else {
duke@435 548 jmpl( I7, 2 * BytesPerInstWord, G0 );
duke@435 549 }
duke@435 550 }
duke@435 551
duke@435 552 void MacroAssembler::retl( bool trace ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
duke@435 553 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
duke@435 554 #endif /* PRODUCT */
duke@435 555
duke@435 556
duke@435 557 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
duke@435 558 assert_not_delayed();
duke@435 559 // This can only be traceable if r1 & r2 are visible after a window save
duke@435 560 if (TraceJumps) {
duke@435 561 #ifndef PRODUCT
duke@435 562 save_frame(0);
duke@435 563 verify_thread();
duke@435 564 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 565 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 566 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 567 add(O2, O1, O1);
duke@435 568
duke@435 569 add(r1->after_save(), r2->after_save(), O2);
duke@435 570 set((intptr_t)file, O3);
duke@435 571 set(line, O4);
duke@435 572 Label L;
duke@435 573 // get nearby pc, store jmp target
duke@435 574 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 575 delayed()->st(O2, O1, 0);
duke@435 576 bind(L);
duke@435 577
duke@435 578 // store nearby pc
duke@435 579 st(O7, O1, sizeof(intptr_t));
duke@435 580 // store file
duke@435 581 st(O3, O1, 2*sizeof(intptr_t));
duke@435 582 // store line
duke@435 583 st(O4, O1, 3*sizeof(intptr_t));
duke@435 584 add(O0, 1, O0);
duke@435 585 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 586 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 587 restore();
duke@435 588 #endif /* PRODUCT */
duke@435 589 }
duke@435 590 jmpl(r1, r2, G0);
duke@435 591 }
duke@435 592 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
duke@435 593 assert_not_delayed();
duke@435 594 // This can only be traceable if r1 is visible after a window save
duke@435 595 if (TraceJumps) {
duke@435 596 #ifndef PRODUCT
duke@435 597 save_frame(0);
duke@435 598 verify_thread();
duke@435 599 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 600 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 601 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 602 add(O2, O1, O1);
duke@435 603
duke@435 604 add(r1->after_save(), offset, O2);
duke@435 605 set((intptr_t)file, O3);
duke@435 606 set(line, O4);
duke@435 607 Label L;
duke@435 608 // get nearby pc, store jmp target
duke@435 609 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 610 delayed()->st(O2, O1, 0);
duke@435 611 bind(L);
duke@435 612
duke@435 613 // store nearby pc
duke@435 614 st(O7, O1, sizeof(intptr_t));
duke@435 615 // store file
duke@435 616 st(O3, O1, 2*sizeof(intptr_t));
duke@435 617 // store line
duke@435 618 st(O4, O1, 3*sizeof(intptr_t));
duke@435 619 add(O0, 1, O0);
duke@435 620 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 621 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 622 restore();
duke@435 623 #endif /* PRODUCT */
duke@435 624 }
duke@435 625 jmp(r1, offset);
duke@435 626 }
duke@435 627
duke@435 628 // This code sequence is relocatable to any address, even on LP64.
twisti@1162 629 void MacroAssembler::jumpl(AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
duke@435 630 assert_not_delayed();
duke@435 631 // Force fixed length sethi because NativeJump and NativeFarCall don't handle
duke@435 632 // variable length instruction streams.
twisti@1162 633 patchable_sethi(addrlit, temp);
twisti@1162 634 Address a(temp, addrlit.low10() + offset); // Add the offset to the displacement.
duke@435 635 if (TraceJumps) {
duke@435 636 #ifndef PRODUCT
duke@435 637 // Must do the add here so relocation can find the remainder of the
duke@435 638 // value to be relocated.
twisti@1162 639 add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
duke@435 640 save_frame(0);
duke@435 641 verify_thread();
duke@435 642 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 643 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 644 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 645 add(O2, O1, O1);
duke@435 646
duke@435 647 set((intptr_t)file, O3);
duke@435 648 set(line, O4);
duke@435 649 Label L;
duke@435 650
duke@435 651 // get nearby pc, store jmp target
duke@435 652 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 653 delayed()->st(a.base()->after_save(), O1, 0);
duke@435 654 bind(L);
duke@435 655
duke@435 656 // store nearby pc
duke@435 657 st(O7, O1, sizeof(intptr_t));
duke@435 658 // store file
duke@435 659 st(O3, O1, 2*sizeof(intptr_t));
duke@435 660 // store line
duke@435 661 st(O4, O1, 3*sizeof(intptr_t));
duke@435 662 add(O0, 1, O0);
duke@435 663 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 664 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 665 restore();
duke@435 666 jmpl(a.base(), G0, d);
duke@435 667 #else
twisti@1162 668 jmpl(a.base(), a.disp(), d);
duke@435 669 #endif /* PRODUCT */
duke@435 670 } else {
twisti@1162 671 jmpl(a.base(), a.disp(), d);
duke@435 672 }
duke@435 673 }
duke@435 674
twisti@1162 675 void MacroAssembler::jump(AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
twisti@1162 676 jumpl(addrlit, temp, G0, offset, file, line);
duke@435 677 }
duke@435 678
duke@435 679
duke@435 680 // Convert to C varargs format
duke@435 681 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
duke@435 682 // spill register-resident args to their memory slots
duke@435 683 // (SPARC calling convention requires callers to have already preallocated these)
duke@435 684 // Note that the inArg might in fact be an outgoing argument,
duke@435 685 // if a leaf routine or stub does some tricky argument shuffling.
duke@435 686 // This routine must work even though one of the saved arguments
duke@435 687 // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
duke@435 688 for (Argument savePtr = inArg;
duke@435 689 savePtr.is_register();
duke@435 690 savePtr = savePtr.successor()) {
duke@435 691 st_ptr(savePtr.as_register(), savePtr.address_in_frame());
duke@435 692 }
duke@435 693 // return the address of the first memory slot
twisti@1162 694 Address a = inArg.address_in_frame();
twisti@1162 695 add(a.base(), a.disp(), d);
duke@435 696 }
duke@435 697
duke@435 698 // Conditional breakpoint (for assertion checks in assembly code)
duke@435 699 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
duke@435 700 trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
duke@435 701 }
duke@435 702
duke@435 703 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
duke@435 704 void MacroAssembler::breakpoint_trap() {
duke@435 705 trap(ST_RESERVED_FOR_USER_0);
duke@435 706 }
duke@435 707
duke@435 708 // flush windows (except current) using flushw instruction if avail.
duke@435 709 void MacroAssembler::flush_windows() {
duke@435 710 if (VM_Version::v9_instructions_work()) flushw();
duke@435 711 else flush_windows_trap();
duke@435 712 }
duke@435 713
duke@435 714 // Write serialization page so VM thread can do a pseudo remote membar
duke@435 715 // We use the current thread pointer to calculate a thread specific
duke@435 716 // offset to write to within the page. This minimizes bus traffic
duke@435 717 // due to cache line collision.
duke@435 718 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
duke@435 719 srl(thread, os::get_serialize_page_shift_count(), tmp2);
duke@435 720 if (Assembler::is_simm13(os::vm_page_size())) {
duke@435 721 and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
duke@435 722 }
duke@435 723 else {
duke@435 724 set((os::vm_page_size() - sizeof(int)), tmp1);
duke@435 725 and3(tmp2, tmp1, tmp2);
duke@435 726 }
twisti@1162 727 set(os::get_memory_serialize_page(), tmp1);
duke@435 728 st(G0, tmp1, tmp2);
duke@435 729 }
duke@435 730
duke@435 731
duke@435 732
duke@435 733 void MacroAssembler::enter() {
duke@435 734 Unimplemented();
duke@435 735 }
duke@435 736
duke@435 737 void MacroAssembler::leave() {
duke@435 738 Unimplemented();
duke@435 739 }
duke@435 740
duke@435 741 void MacroAssembler::mult(Register s1, Register s2, Register d) {
duke@435 742 if(VM_Version::v9_instructions_work()) {
duke@435 743 mulx (s1, s2, d);
duke@435 744 } else {
duke@435 745 smul (s1, s2, d);
duke@435 746 }
duke@435 747 }
duke@435 748
duke@435 749 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
duke@435 750 if(VM_Version::v9_instructions_work()) {
duke@435 751 mulx (s1, simm13a, d);
duke@435 752 } else {
duke@435 753 smul (s1, simm13a, d);
duke@435 754 }
duke@435 755 }
duke@435 756
duke@435 757
duke@435 758 #ifdef ASSERT
duke@435 759 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
duke@435 760 const Register s1 = G3_scratch;
duke@435 761 const Register s2 = G4_scratch;
duke@435 762 Label get_psr_test;
duke@435 763 // Get the condition codes the V8 way.
duke@435 764 read_ccr_trap(s1);
duke@435 765 mov(ccr_save, s2);
duke@435 766 // This is a test of V8 which has icc but not xcc
duke@435 767 // so mask off the xcc bits
duke@435 768 and3(s2, 0xf, s2);
duke@435 769 // Compare condition codes from the V8 and V9 ways.
duke@435 770 subcc(s2, s1, G0);
duke@435 771 br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
duke@435 772 delayed()->breakpoint_trap();
duke@435 773 bind(get_psr_test);
duke@435 774 }
duke@435 775
duke@435 776 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
duke@435 777 const Register s1 = G3_scratch;
duke@435 778 const Register s2 = G4_scratch;
duke@435 779 Label set_psr_test;
duke@435 780 // Write out the saved condition codes the V8 way
duke@435 781 write_ccr_trap(ccr_save, s1, s2);
duke@435 782 // Read back the condition codes using the V9 instruction
duke@435 783 rdccr(s1);
duke@435 784 mov(ccr_save, s2);
duke@435 785 // This is a test of V8 which has icc but not xcc
duke@435 786 // so mask off the xcc bits
duke@435 787 and3(s2, 0xf, s2);
duke@435 788 and3(s1, 0xf, s1);
duke@435 789 // Compare the V8 way with the V9 way.
duke@435 790 subcc(s2, s1, G0);
duke@435 791 br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
duke@435 792 delayed()->breakpoint_trap();
duke@435 793 bind(set_psr_test);
duke@435 794 }
duke@435 795 #else
duke@435 796 #define read_ccr_v8_assert(x)
duke@435 797 #define write_ccr_v8_assert(x)
duke@435 798 #endif // ASSERT
duke@435 799
duke@435 800 void MacroAssembler::read_ccr(Register ccr_save) {
duke@435 801 if (VM_Version::v9_instructions_work()) {
duke@435 802 rdccr(ccr_save);
duke@435 803 // Test code sequence used on V8. Do not move above rdccr.
duke@435 804 read_ccr_v8_assert(ccr_save);
duke@435 805 } else {
duke@435 806 read_ccr_trap(ccr_save);
duke@435 807 }
duke@435 808 }
duke@435 809
duke@435 810 void MacroAssembler::write_ccr(Register ccr_save) {
duke@435 811 if (VM_Version::v9_instructions_work()) {
duke@435 812 // Test code sequence used on V8. Do not move below wrccr.
duke@435 813 write_ccr_v8_assert(ccr_save);
duke@435 814 wrccr(ccr_save);
duke@435 815 } else {
duke@435 816 const Register temp_reg1 = G3_scratch;
duke@435 817 const Register temp_reg2 = G4_scratch;
duke@435 818 write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
duke@435 819 }
duke@435 820 }
duke@435 821
duke@435 822
duke@435 823 // Calls to C land
duke@435 824
duke@435 825 #ifdef ASSERT
duke@435 826 // a hook for debugging
duke@435 827 static Thread* reinitialize_thread() {
duke@435 828 return ThreadLocalStorage::thread();
duke@435 829 }
duke@435 830 #else
duke@435 831 #define reinitialize_thread ThreadLocalStorage::thread
duke@435 832 #endif
duke@435 833
duke@435 834 #ifdef ASSERT
duke@435 835 address last_get_thread = NULL;
duke@435 836 #endif
duke@435 837
duke@435 838 // call this when G2_thread is not known to be valid
duke@435 839 void MacroAssembler::get_thread() {
duke@435 840 save_frame(0); // to avoid clobbering O0
duke@435 841 mov(G1, L0); // avoid clobbering G1
duke@435 842 mov(G5_method, L1); // avoid clobbering G5
duke@435 843 mov(G3, L2); // avoid clobbering G3 also
duke@435 844 mov(G4, L5); // avoid clobbering G4
duke@435 845 #ifdef ASSERT
twisti@1162 846 AddressLiteral last_get_thread_addrlit(&last_get_thread);
twisti@1162 847 set(last_get_thread_addrlit, L3);
duke@435 848 inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
twisti@1162 849 st_ptr(L4, L3, 0);
duke@435 850 #endif
duke@435 851 call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
duke@435 852 delayed()->nop();
duke@435 853 mov(L0, G1);
duke@435 854 mov(L1, G5_method);
duke@435 855 mov(L2, G3);
duke@435 856 mov(L5, G4);
duke@435 857 restore(O0, 0, G2_thread);
duke@435 858 }
duke@435 859
duke@435 860 static Thread* verify_thread_subroutine(Thread* gthread_value) {
duke@435 861 Thread* correct_value = ThreadLocalStorage::thread();
duke@435 862 guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
duke@435 863 return correct_value;
duke@435 864 }
duke@435 865
duke@435 866 void MacroAssembler::verify_thread() {
duke@435 867 if (VerifyThread) {
duke@435 868 // NOTE: this chops off the heads of the 64-bit O registers.
duke@435 869 #ifdef CC_INTERP
duke@435 870 save_frame(0);
duke@435 871 #else
duke@435 872 // make sure G2_thread contains the right value
duke@435 873 save_frame_and_mov(0, Lmethod, Lmethod); // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
duke@435 874 mov(G1, L1); // avoid clobbering G1
duke@435 875 // G2 saved below
duke@435 876 mov(G3, L3); // avoid clobbering G3
duke@435 877 mov(G4, L4); // avoid clobbering G4
duke@435 878 mov(G5_method, L5); // avoid clobbering G5_method
duke@435 879 #endif /* CC_INTERP */
duke@435 880 #if defined(COMPILER2) && !defined(_LP64)
duke@435 881 // Save & restore possible 64-bit Long arguments in G-regs
duke@435 882 srlx(G1,32,L0);
duke@435 883 srlx(G4,32,L6);
duke@435 884 #endif
duke@435 885 call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
duke@435 886 delayed()->mov(G2_thread, O0);
duke@435 887
duke@435 888 mov(L1, G1); // Restore G1
duke@435 889 // G2 restored below
duke@435 890 mov(L3, G3); // restore G3
duke@435 891 mov(L4, G4); // restore G4
duke@435 892 mov(L5, G5_method); // restore G5_method
duke@435 893 #if defined(COMPILER2) && !defined(_LP64)
duke@435 894 // Save & restore possible 64-bit Long arguments in G-regs
duke@435 895 sllx(L0,32,G2); // Move old high G1 bits high in G2
duke@435 896 sllx(G1, 0,G1); // Clear current high G1 bits
duke@435 897 or3 (G1,G2,G1); // Recover 64-bit G1
duke@435 898 sllx(L6,32,G2); // Move old high G4 bits high in G2
duke@435 899 sllx(G4, 0,G4); // Clear current high G4 bits
duke@435 900 or3 (G4,G2,G4); // Recover 64-bit G4
duke@435 901 #endif
duke@435 902 restore(O0, 0, G2_thread);
duke@435 903 }
duke@435 904 }
duke@435 905
duke@435 906
duke@435 907 void MacroAssembler::save_thread(const Register thread_cache) {
duke@435 908 verify_thread();
duke@435 909 if (thread_cache->is_valid()) {
duke@435 910 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
duke@435 911 mov(G2_thread, thread_cache);
duke@435 912 }
duke@435 913 if (VerifyThread) {
duke@435 914 // smash G2_thread, as if the VM were about to anyway
duke@435 915 set(0x67676767, G2_thread);
duke@435 916 }
duke@435 917 }
duke@435 918
duke@435 919
duke@435 920 void MacroAssembler::restore_thread(const Register thread_cache) {
duke@435 921 if (thread_cache->is_valid()) {
duke@435 922 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
duke@435 923 mov(thread_cache, G2_thread);
duke@435 924 verify_thread();
duke@435 925 } else {
duke@435 926 // do it the slow way
duke@435 927 get_thread();
duke@435 928 }
duke@435 929 }
duke@435 930
duke@435 931
duke@435 932 // %%% maybe get rid of [re]set_last_Java_frame
duke@435 933 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
duke@435 934 assert_not_delayed();
twisti@1162 935 Address flags(G2_thread, JavaThread::frame_anchor_offset() +
twisti@1162 936 JavaFrameAnchor::flags_offset());
twisti@1162 937 Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
duke@435 938
duke@435 939 // Always set last_Java_pc and flags first because once last_Java_sp is visible
duke@435 940 // has_last_Java_frame is true and users will look at the rest of the fields.
duke@435 941 // (Note: flags should always be zero before we get here so doesn't need to be set.)
duke@435 942
duke@435 943 #ifdef ASSERT
duke@435 944 // Verify that flags was zeroed on return to Java
duke@435 945 Label PcOk;
duke@435 946 save_frame(0); // to avoid clobbering O0
duke@435 947 ld_ptr(pc_addr, L0);
duke@435 948 tst(L0);
duke@435 949 #ifdef _LP64
duke@435 950 brx(Assembler::zero, false, Assembler::pt, PcOk);
duke@435 951 #else
duke@435 952 br(Assembler::zero, false, Assembler::pt, PcOk);
duke@435 953 #endif // _LP64
duke@435 954 delayed() -> nop();
duke@435 955 stop("last_Java_pc not zeroed before leaving Java");
duke@435 956 bind(PcOk);
duke@435 957
duke@435 958 // Verify that flags was zeroed on return to Java
duke@435 959 Label FlagsOk;
duke@435 960 ld(flags, L0);
duke@435 961 tst(L0);
duke@435 962 br(Assembler::zero, false, Assembler::pt, FlagsOk);
duke@435 963 delayed() -> restore();
duke@435 964 stop("flags not zeroed before leaving Java");
duke@435 965 bind(FlagsOk);
duke@435 966 #endif /* ASSERT */
duke@435 967 //
duke@435 968 // When returning from calling out from Java mode the frame anchor's last_Java_pc
duke@435 969 // will always be set to NULL. It is set here so that if we are doing a call to
duke@435 970 // native (not VM) that we capture the known pc and don't have to rely on the
duke@435 971 // native call having a standard frame linkage where we can find the pc.
duke@435 972
duke@435 973 if (last_Java_pc->is_valid()) {
duke@435 974 st_ptr(last_Java_pc, pc_addr);
duke@435 975 }
duke@435 976
duke@435 977 #ifdef _LP64
duke@435 978 #ifdef ASSERT
duke@435 979 // Make sure that we have an odd stack
duke@435 980 Label StackOk;
duke@435 981 andcc(last_java_sp, 0x01, G0);
duke@435 982 br(Assembler::notZero, false, Assembler::pt, StackOk);
duke@435 983 delayed() -> nop();
duke@435 984 stop("Stack Not Biased in set_last_Java_frame");
duke@435 985 bind(StackOk);
duke@435 986 #endif // ASSERT
duke@435 987 assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
duke@435 988 add( last_java_sp, STACK_BIAS, G4_scratch );
twisti@1162 989 st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
duke@435 990 #else
twisti@1162 991 st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
duke@435 992 #endif // _LP64
duke@435 993 }
duke@435 994
duke@435 995 void MacroAssembler::reset_last_Java_frame(void) {
duke@435 996 assert_not_delayed();
duke@435 997
twisti@1162 998 Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
twisti@1162 999 Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
twisti@1162 1000 Address flags (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
duke@435 1001
duke@435 1002 #ifdef ASSERT
duke@435 1003 // check that it WAS previously set
duke@435 1004 #ifdef CC_INTERP
duke@435 1005 save_frame(0);
duke@435 1006 #else
duke@435 1007 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod to helper frame for -Xprof
duke@435 1008 #endif /* CC_INTERP */
duke@435 1009 ld_ptr(sp_addr, L0);
duke@435 1010 tst(L0);
duke@435 1011 breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
duke@435 1012 restore();
duke@435 1013 #endif // ASSERT
duke@435 1014
duke@435 1015 st_ptr(G0, sp_addr);
duke@435 1016 // Always return last_Java_pc to zero
duke@435 1017 st_ptr(G0, pc_addr);
duke@435 1018 // Always null flags after return to Java
duke@435 1019 st(G0, flags);
duke@435 1020 }
duke@435 1021
duke@435 1022
duke@435 1023 void MacroAssembler::call_VM_base(
duke@435 1024 Register oop_result,
duke@435 1025 Register thread_cache,
duke@435 1026 Register last_java_sp,
duke@435 1027 address entry_point,
duke@435 1028 int number_of_arguments,
duke@435 1029 bool check_exceptions)
duke@435 1030 {
duke@435 1031 assert_not_delayed();
duke@435 1032
duke@435 1033 // determine last_java_sp register
duke@435 1034 if (!last_java_sp->is_valid()) {
duke@435 1035 last_java_sp = SP;
duke@435 1036 }
duke@435 1037 // debugging support
duke@435 1038 assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
duke@435 1039
duke@435 1040 // 64-bit last_java_sp is biased!
duke@435 1041 set_last_Java_frame(last_java_sp, noreg);
duke@435 1042 if (VerifyThread) mov(G2_thread, O0); // about to be smashed; pass early
duke@435 1043 save_thread(thread_cache);
duke@435 1044 // do the call
duke@435 1045 call(entry_point, relocInfo::runtime_call_type);
duke@435 1046 if (!VerifyThread)
duke@435 1047 delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 1048 else
duke@435 1049 delayed()->nop(); // (thread already passed)
duke@435 1050 restore_thread(thread_cache);
duke@435 1051 reset_last_Java_frame();
duke@435 1052
duke@435 1053 // check for pending exceptions. use Gtemp as scratch register.
duke@435 1054 if (check_exceptions) {
duke@435 1055 check_and_forward_exception(Gtemp);
duke@435 1056 }
duke@435 1057
duke@435 1058 // get oop result if there is one and reset the value in the thread
duke@435 1059 if (oop_result->is_valid()) {
duke@435 1060 get_vm_result(oop_result);
duke@435 1061 }
duke@435 1062 }
duke@435 1063
duke@435 1064 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
duke@435 1065 {
duke@435 1066 Label L;
duke@435 1067
duke@435 1068 check_and_handle_popframe(scratch_reg);
duke@435 1069 check_and_handle_earlyret(scratch_reg);
duke@435 1070
twisti@1162 1071 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 1072 ld_ptr(exception_addr, scratch_reg);
duke@435 1073 br_null(scratch_reg,false,pt,L);
duke@435 1074 delayed()->nop();
duke@435 1075 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 1076 call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 1077 delayed()->nop();
duke@435 1078 bind(L);
duke@435 1079 }
duke@435 1080
duke@435 1081
duke@435 1082 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
duke@435 1083 }
duke@435 1084
duke@435 1085
duke@435 1086 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
duke@435 1087 }
duke@435 1088
duke@435 1089
duke@435 1090 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
duke@435 1091 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
duke@435 1092 }
duke@435 1093
duke@435 1094
duke@435 1095 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
duke@435 1096 // O0 is reserved for the thread
duke@435 1097 mov(arg_1, O1);
duke@435 1098 call_VM(oop_result, entry_point, 1, check_exceptions);
duke@435 1099 }
duke@435 1100
duke@435 1101
duke@435 1102 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
duke@435 1103 // O0 is reserved for the thread
duke@435 1104 mov(arg_1, O1);
duke@435 1105 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1106 call_VM(oop_result, entry_point, 2, check_exceptions);
duke@435 1107 }
duke@435 1108
duke@435 1109
duke@435 1110 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
duke@435 1111 // O0 is reserved for the thread
duke@435 1112 mov(arg_1, O1);
duke@435 1113 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1114 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
duke@435 1115 call_VM(oop_result, entry_point, 3, check_exceptions);
duke@435 1116 }
duke@435 1117
duke@435 1118
duke@435 1119
duke@435 1120 // Note: The following call_VM overloadings are useful when a "save"
duke@435 1121 // has already been performed by a stub, and the last Java frame is
duke@435 1122 // the previous one. In that case, last_java_sp must be passed as FP
duke@435 1123 // instead of SP.
duke@435 1124
duke@435 1125
duke@435 1126 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
duke@435 1127 call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
duke@435 1128 }
duke@435 1129
duke@435 1130
duke@435 1131 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
duke@435 1132 // O0 is reserved for the thread
duke@435 1133 mov(arg_1, O1);
duke@435 1134 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
duke@435 1135 }
duke@435 1136
duke@435 1137
duke@435 1138 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
duke@435 1139 // O0 is reserved for the thread
duke@435 1140 mov(arg_1, O1);
duke@435 1141 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1142 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
duke@435 1143 }
duke@435 1144
duke@435 1145
duke@435 1146 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
duke@435 1147 // O0 is reserved for the thread
duke@435 1148 mov(arg_1, O1);
duke@435 1149 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1150 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
duke@435 1151 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
duke@435 1152 }
duke@435 1153
duke@435 1154
duke@435 1155
duke@435 1156 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
duke@435 1157 assert_not_delayed();
duke@435 1158 save_thread(thread_cache);
duke@435 1159 // do the call
duke@435 1160 call(entry_point, relocInfo::runtime_call_type);
duke@435 1161 delayed()->nop();
duke@435 1162 restore_thread(thread_cache);
duke@435 1163 }
duke@435 1164
duke@435 1165
duke@435 1166 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
duke@435 1167 call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
duke@435 1168 }
duke@435 1169
duke@435 1170
duke@435 1171 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
duke@435 1172 mov(arg_1, O0);
duke@435 1173 call_VM_leaf(thread_cache, entry_point, 1);
duke@435 1174 }
duke@435 1175
duke@435 1176
duke@435 1177 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
duke@435 1178 mov(arg_1, O0);
duke@435 1179 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
duke@435 1180 call_VM_leaf(thread_cache, entry_point, 2);
duke@435 1181 }
duke@435 1182
duke@435 1183
duke@435 1184 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
duke@435 1185 mov(arg_1, O0);
duke@435 1186 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
duke@435 1187 mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
duke@435 1188 call_VM_leaf(thread_cache, entry_point, 3);
duke@435 1189 }
duke@435 1190
duke@435 1191
duke@435 1192 void MacroAssembler::get_vm_result(Register oop_result) {
duke@435 1193 verify_thread();
twisti@1162 1194 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
duke@435 1195 ld_ptr( vm_result_addr, oop_result);
duke@435 1196 st_ptr(G0, vm_result_addr);
duke@435 1197 verify_oop(oop_result);
duke@435 1198 }
duke@435 1199
duke@435 1200
duke@435 1201 void MacroAssembler::get_vm_result_2(Register oop_result) {
duke@435 1202 verify_thread();
twisti@1162 1203 Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
duke@435 1204 ld_ptr(vm_result_addr_2, oop_result);
duke@435 1205 st_ptr(G0, vm_result_addr_2);
duke@435 1206 verify_oop(oop_result);
duke@435 1207 }
duke@435 1208
duke@435 1209
duke@435 1210 // We require that C code which does not return a value in vm_result will
duke@435 1211 // leave it undisturbed.
duke@435 1212 void MacroAssembler::set_vm_result(Register oop_result) {
duke@435 1213 verify_thread();
twisti@1162 1214 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
duke@435 1215 verify_oop(oop_result);
duke@435 1216
duke@435 1217 # ifdef ASSERT
duke@435 1218 // Check that we are not overwriting any other oop.
duke@435 1219 #ifdef CC_INTERP
duke@435 1220 save_frame(0);
duke@435 1221 #else
duke@435 1222 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod for -Xprof
duke@435 1223 #endif /* CC_INTERP */
duke@435 1224 ld_ptr(vm_result_addr, L0);
duke@435 1225 tst(L0);
duke@435 1226 restore();
duke@435 1227 breakpoint_trap(notZero, Assembler::ptr_cc);
duke@435 1228 // }
duke@435 1229 # endif
duke@435 1230
duke@435 1231 st_ptr(oop_result, vm_result_addr);
duke@435 1232 }
duke@435 1233
duke@435 1234
ysr@777 1235 void MacroAssembler::card_table_write(jbyte* byte_map_base,
ysr@777 1236 Register tmp, Register obj) {
duke@435 1237 #ifdef _LP64
duke@435 1238 srlx(obj, CardTableModRefBS::card_shift, obj);
duke@435 1239 #else
duke@435 1240 srl(obj, CardTableModRefBS::card_shift, obj);
duke@435 1241 #endif
twisti@1162 1242 assert(tmp != obj, "need separate temp reg");
twisti@1162 1243 set((address) byte_map_base, tmp);
twisti@1162 1244 stb(G0, tmp, obj);
duke@435 1245 }
duke@435 1246
twisti@1162 1247
twisti@1162 1248 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
duke@435 1249 address save_pc;
duke@435 1250 int shiftcnt;
duke@435 1251 #ifdef _LP64
duke@435 1252 # ifdef CHECK_DELAY
twisti@1162 1253 assert_not_delayed((char*) "cannot put two instructions in delay slot");
duke@435 1254 # endif
duke@435 1255 v9_dep();
duke@435 1256 save_pc = pc();
twisti@1162 1257
twisti@1162 1258 int msb32 = (int) (addrlit.value() >> 32);
twisti@1162 1259 int lsb32 = (int) (addrlit.value());
twisti@1162 1260
twisti@1162 1261 if (msb32 == 0 && lsb32 >= 0) {
twisti@1162 1262 Assembler::sethi(lsb32, d, addrlit.rspec());
duke@435 1263 }
twisti@1162 1264 else if (msb32 == -1) {
twisti@1162 1265 Assembler::sethi(~lsb32, d, addrlit.rspec());
twisti@1162 1266 xor3(d, ~low10(~0), d);
duke@435 1267 }
duke@435 1268 else {
twisti@1162 1269 Assembler::sethi(msb32, d, addrlit.rspec()); // msb 22-bits
twisti@1162 1270 if (msb32 & 0x3ff) // Any bits?
twisti@1162 1271 or3(d, msb32 & 0x3ff, d); // msb 32-bits are now in lsb 32
twisti@1162 1272 if (lsb32 & 0xFFFFFC00) { // done?
twisti@1162 1273 if ((lsb32 >> 20) & 0xfff) { // Any bits set?
twisti@1162 1274 sllx(d, 12, d); // Make room for next 12 bits
twisti@1162 1275 or3(d, (lsb32 >> 20) & 0xfff, d); // Or in next 12
twisti@1162 1276 shiftcnt = 0; // We already shifted
duke@435 1277 }
duke@435 1278 else
duke@435 1279 shiftcnt = 12;
twisti@1162 1280 if ((lsb32 >> 10) & 0x3ff) {
twisti@1162 1281 sllx(d, shiftcnt + 10, d); // Make room for last 10 bits
twisti@1162 1282 or3(d, (lsb32 >> 10) & 0x3ff, d); // Or in next 10
duke@435 1283 shiftcnt = 0;
duke@435 1284 }
duke@435 1285 else
duke@435 1286 shiftcnt = 10;
twisti@1162 1287 sllx(d, shiftcnt + 10, d); // Shift leaving disp field 0'd
duke@435 1288 }
duke@435 1289 else
twisti@1162 1290 sllx(d, 32, d);
duke@435 1291 }
twisti@1162 1292 // Pad out the instruction sequence so it can be patched later.
twisti@1162 1293 if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
twisti@1162 1294 addrlit.rtype() != relocInfo::runtime_call_type)) {
twisti@1162 1295 while (pc() < (save_pc + (7 * BytesPerInstWord)))
duke@435 1296 nop();
duke@435 1297 }
duke@435 1298 #else
twisti@1162 1299 Assembler::sethi(addrlit.value(), d, addrlit.rspec());
duke@435 1300 #endif
duke@435 1301 }
duke@435 1302
twisti@1162 1303
twisti@1162 1304 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
twisti@1162 1305 internal_sethi(addrlit, d, false);
twisti@1162 1306 }
twisti@1162 1307
twisti@1162 1308
twisti@1162 1309 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
twisti@1162 1310 internal_sethi(addrlit, d, true);
twisti@1162 1311 }
twisti@1162 1312
twisti@1162 1313
duke@435 1314 int MacroAssembler::size_of_sethi(address a, bool worst_case) {
duke@435 1315 #ifdef _LP64
duke@435 1316 if (worst_case) return 7;
duke@435 1317 intptr_t iaddr = (intptr_t)a;
duke@435 1318 int hi32 = (int)(iaddr >> 32);
duke@435 1319 int lo32 = (int)(iaddr);
duke@435 1320 int inst_count;
duke@435 1321 if (hi32 == 0 && lo32 >= 0)
duke@435 1322 inst_count = 1;
duke@435 1323 else if (hi32 == -1)
duke@435 1324 inst_count = 2;
duke@435 1325 else {
duke@435 1326 inst_count = 2;
duke@435 1327 if ( hi32 & 0x3ff )
duke@435 1328 inst_count++;
duke@435 1329 if ( lo32 & 0xFFFFFC00 ) {
duke@435 1330 if( (lo32 >> 20) & 0xfff ) inst_count += 2;
duke@435 1331 if( (lo32 >> 10) & 0x3ff ) inst_count += 2;
duke@435 1332 }
duke@435 1333 }
duke@435 1334 return BytesPerInstWord * inst_count;
duke@435 1335 #else
duke@435 1336 return BytesPerInstWord;
duke@435 1337 #endif
duke@435 1338 }
duke@435 1339
duke@435 1340 int MacroAssembler::worst_case_size_of_set() {
duke@435 1341 return size_of_sethi(NULL, true) + 1;
duke@435 1342 }
duke@435 1343
twisti@1162 1344
twisti@1162 1345 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
twisti@1162 1346 intptr_t value = addrlit.value();
twisti@1162 1347
twisti@1162 1348 if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
duke@435 1349 // can optimize
twisti@1162 1350 if (-4096 <= value && value <= 4095) {
duke@435 1351 or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
duke@435 1352 return;
duke@435 1353 }
duke@435 1354 if (inv_hi22(hi22(value)) == value) {
twisti@1162 1355 sethi(addrlit, d);
duke@435 1356 return;
duke@435 1357 }
duke@435 1358 }
twisti@1162 1359 assert_not_delayed((char*) "cannot put two instructions in delay slot");
twisti@1162 1360 internal_sethi(addrlit, d, ForceRelocatable);
twisti@1162 1361 if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
twisti@1162 1362 add(d, addrlit.low10(), d, addrlit.rspec());
duke@435 1363 }
duke@435 1364 }
duke@435 1365
twisti@1162 1366 void MacroAssembler::set(const AddressLiteral& al, Register d) {
twisti@1162 1367 internal_set(al, d, false);
duke@435 1368 }
duke@435 1369
twisti@1162 1370 void MacroAssembler::set(intptr_t value, Register d) {
twisti@1162 1371 AddressLiteral al(value);
twisti@1162 1372 internal_set(al, d, false);
twisti@1162 1373 }
twisti@1162 1374
twisti@1162 1375 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
twisti@1162 1376 AddressLiteral al(addr, rspec);
twisti@1162 1377 internal_set(al, d, false);
twisti@1162 1378 }
twisti@1162 1379
twisti@1162 1380 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
twisti@1162 1381 internal_set(al, d, true);
twisti@1162 1382 }
twisti@1162 1383
twisti@1162 1384 void MacroAssembler::patchable_set(intptr_t value, Register d) {
twisti@1162 1385 AddressLiteral al(value);
twisti@1162 1386 internal_set(al, d, true);
twisti@1162 1387 }
duke@435 1388
duke@435 1389
duke@435 1390 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
duke@435 1391 assert_not_delayed();
duke@435 1392 v9_dep();
duke@435 1393
duke@435 1394 int hi = (int)(value >> 32);
duke@435 1395 int lo = (int)(value & ~0);
duke@435 1396 // (Matcher::isSimpleConstant64 knows about the following optimizations.)
duke@435 1397 if (Assembler::is_simm13(lo) && value == lo) {
duke@435 1398 or3(G0, lo, d);
duke@435 1399 } else if (hi == 0) {
duke@435 1400 Assembler::sethi(lo, d); // hardware version zero-extends to upper 32
duke@435 1401 if (low10(lo) != 0)
duke@435 1402 or3(d, low10(lo), d);
duke@435 1403 }
duke@435 1404 else if (hi == -1) {
duke@435 1405 Assembler::sethi(~lo, d); // hardware version zero-extends to upper 32
duke@435 1406 xor3(d, low10(lo) ^ ~low10(~0), d);
duke@435 1407 }
duke@435 1408 else if (lo == 0) {
duke@435 1409 if (Assembler::is_simm13(hi)) {
duke@435 1410 or3(G0, hi, d);
duke@435 1411 } else {
duke@435 1412 Assembler::sethi(hi, d); // hardware version zero-extends to upper 32
duke@435 1413 if (low10(hi) != 0)
duke@435 1414 or3(d, low10(hi), d);
duke@435 1415 }
duke@435 1416 sllx(d, 32, d);
duke@435 1417 }
duke@435 1418 else {
duke@435 1419 Assembler::sethi(hi, tmp);
duke@435 1420 Assembler::sethi(lo, d); // macro assembler version sign-extends
duke@435 1421 if (low10(hi) != 0)
duke@435 1422 or3 (tmp, low10(hi), tmp);
duke@435 1423 if (low10(lo) != 0)
duke@435 1424 or3 ( d, low10(lo), d);
duke@435 1425 sllx(tmp, 32, tmp);
duke@435 1426 or3 (d, tmp, d);
duke@435 1427 }
duke@435 1428 }
duke@435 1429
duke@435 1430 // compute size in bytes of sparc frame, given
duke@435 1431 // number of extraWords
duke@435 1432 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
duke@435 1433
duke@435 1434 int nWords = frame::memory_parameter_word_sp_offset;
duke@435 1435
duke@435 1436 nWords += extraWords;
duke@435 1437
duke@435 1438 if (nWords & 1) ++nWords; // round up to double-word
duke@435 1439
duke@435 1440 return nWords * BytesPerWord;
duke@435 1441 }
duke@435 1442
duke@435 1443
duke@435 1444 // save_frame: given number of "extra" words in frame,
duke@435 1445 // issue approp. save instruction (p 200, v8 manual)
duke@435 1446
duke@435 1447 void MacroAssembler::save_frame(int extraWords = 0) {
duke@435 1448 int delta = -total_frame_size_in_bytes(extraWords);
duke@435 1449 if (is_simm13(delta)) {
duke@435 1450 save(SP, delta, SP);
duke@435 1451 } else {
duke@435 1452 set(delta, G3_scratch);
duke@435 1453 save(SP, G3_scratch, SP);
duke@435 1454 }
duke@435 1455 }
duke@435 1456
duke@435 1457
duke@435 1458 void MacroAssembler::save_frame_c1(int size_in_bytes) {
duke@435 1459 if (is_simm13(-size_in_bytes)) {
duke@435 1460 save(SP, -size_in_bytes, SP);
duke@435 1461 } else {
duke@435 1462 set(-size_in_bytes, G3_scratch);
duke@435 1463 save(SP, G3_scratch, SP);
duke@435 1464 }
duke@435 1465 }
duke@435 1466
duke@435 1467
duke@435 1468 void MacroAssembler::save_frame_and_mov(int extraWords,
duke@435 1469 Register s1, Register d1,
duke@435 1470 Register s2, Register d2) {
duke@435 1471 assert_not_delayed();
duke@435 1472
duke@435 1473 // The trick here is to use precisely the same memory word
duke@435 1474 // that trap handlers also use to save the register.
duke@435 1475 // This word cannot be used for any other purpose, but
duke@435 1476 // it works fine to save the register's value, whether or not
duke@435 1477 // an interrupt flushes register windows at any given moment!
duke@435 1478 Address s1_addr;
duke@435 1479 if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
duke@435 1480 s1_addr = s1->address_in_saved_window();
duke@435 1481 st_ptr(s1, s1_addr);
duke@435 1482 }
duke@435 1483
duke@435 1484 Address s2_addr;
duke@435 1485 if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
duke@435 1486 s2_addr = s2->address_in_saved_window();
duke@435 1487 st_ptr(s2, s2_addr);
duke@435 1488 }
duke@435 1489
duke@435 1490 save_frame(extraWords);
duke@435 1491
duke@435 1492 if (s1_addr.base() == SP) {
duke@435 1493 ld_ptr(s1_addr.after_save(), d1);
duke@435 1494 } else if (s1->is_valid()) {
duke@435 1495 mov(s1->after_save(), d1);
duke@435 1496 }
duke@435 1497
duke@435 1498 if (s2_addr.base() == SP) {
duke@435 1499 ld_ptr(s2_addr.after_save(), d2);
duke@435 1500 } else if (s2->is_valid()) {
duke@435 1501 mov(s2->after_save(), d2);
duke@435 1502 }
duke@435 1503 }
duke@435 1504
duke@435 1505
twisti@1162 1506 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
duke@435 1507 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
duke@435 1508 int oop_index = oop_recorder()->allocate_index(obj);
twisti@1162 1509 return AddressLiteral(obj, oop_Relocation::spec(oop_index));
duke@435 1510 }
duke@435 1511
duke@435 1512
twisti@1162 1513 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
duke@435 1514 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
duke@435 1515 int oop_index = oop_recorder()->find_index(obj);
twisti@1162 1516 return AddressLiteral(obj, oop_Relocation::spec(oop_index));
duke@435 1517 }
duke@435 1518
kvn@599 1519 void MacroAssembler::set_narrow_oop(jobject obj, Register d) {
kvn@599 1520 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
kvn@599 1521 int oop_index = oop_recorder()->find_index(obj);
kvn@599 1522 RelocationHolder rspec = oop_Relocation::spec(oop_index);
kvn@599 1523
kvn@599 1524 assert_not_delayed();
kvn@599 1525 // Relocation with special format (see relocInfo_sparc.hpp).
kvn@599 1526 relocate(rspec, 1);
kvn@599 1527 // Assembler::sethi(0x3fffff, d);
kvn@599 1528 emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
kvn@599 1529 // Don't add relocation for 'add'. Do patching during 'sethi' processing.
kvn@599 1530 add(d, 0x3ff, d);
kvn@599 1531
kvn@599 1532 }
kvn@599 1533
duke@435 1534
duke@435 1535 void MacroAssembler::align(int modulus) {
duke@435 1536 while (offset() % modulus != 0) nop();
duke@435 1537 }
duke@435 1538
duke@435 1539
duke@435 1540 void MacroAssembler::safepoint() {
duke@435 1541 relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
duke@435 1542 }
duke@435 1543
duke@435 1544
duke@435 1545 void RegistersForDebugging::print(outputStream* s) {
duke@435 1546 int j;
duke@435 1547 for ( j = 0; j < 8; ++j )
duke@435 1548 if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
duke@435 1549 else s->print_cr( "fp = 0x%.16lx", i[j]);
duke@435 1550 s->cr();
duke@435 1551
duke@435 1552 for ( j = 0; j < 8; ++j )
duke@435 1553 s->print_cr("l%d = 0x%.16lx", j, l[j]);
duke@435 1554 s->cr();
duke@435 1555
duke@435 1556 for ( j = 0; j < 8; ++j )
duke@435 1557 if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
duke@435 1558 else s->print_cr( "sp = 0x%.16lx", o[j]);
duke@435 1559 s->cr();
duke@435 1560
duke@435 1561 for ( j = 0; j < 8; ++j )
duke@435 1562 s->print_cr("g%d = 0x%.16lx", j, g[j]);
duke@435 1563 s->cr();
duke@435 1564
duke@435 1565 // print out floats with compression
duke@435 1566 for (j = 0; j < 32; ) {
duke@435 1567 jfloat val = f[j];
duke@435 1568 int last = j;
duke@435 1569 for ( ; last+1 < 32; ++last ) {
duke@435 1570 char b1[1024], b2[1024];
duke@435 1571 sprintf(b1, "%f", val);
duke@435 1572 sprintf(b2, "%f", f[last+1]);
duke@435 1573 if (strcmp(b1, b2))
duke@435 1574 break;
duke@435 1575 }
duke@435 1576 s->print("f%d", j);
duke@435 1577 if ( j != last ) s->print(" - f%d", last);
duke@435 1578 s->print(" = %f", val);
duke@435 1579 s->fill_to(25);
duke@435 1580 s->print_cr(" (0x%x)", val);
duke@435 1581 j = last + 1;
duke@435 1582 }
duke@435 1583 s->cr();
duke@435 1584
duke@435 1585 // and doubles (evens only)
duke@435 1586 for (j = 0; j < 32; ) {
duke@435 1587 jdouble val = d[j];
duke@435 1588 int last = j;
duke@435 1589 for ( ; last+1 < 32; ++last ) {
duke@435 1590 char b1[1024], b2[1024];
duke@435 1591 sprintf(b1, "%f", val);
duke@435 1592 sprintf(b2, "%f", d[last+1]);
duke@435 1593 if (strcmp(b1, b2))
duke@435 1594 break;
duke@435 1595 }
duke@435 1596 s->print("d%d", 2 * j);
duke@435 1597 if ( j != last ) s->print(" - d%d", last);
duke@435 1598 s->print(" = %f", val);
duke@435 1599 s->fill_to(30);
duke@435 1600 s->print("(0x%x)", *(int*)&val);
duke@435 1601 s->fill_to(42);
duke@435 1602 s->print_cr("(0x%x)", *(1 + (int*)&val));
duke@435 1603 j = last + 1;
duke@435 1604 }
duke@435 1605 s->cr();
duke@435 1606 }
duke@435 1607
duke@435 1608 void RegistersForDebugging::save_registers(MacroAssembler* a) {
duke@435 1609 a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
duke@435 1610 a->flush_windows();
duke@435 1611 int i;
duke@435 1612 for (i = 0; i < 8; ++i) {
duke@435 1613 a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, i_offset(i));
duke@435 1614 a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, l_offset(i));
duke@435 1615 a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
duke@435 1616 a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
duke@435 1617 }
duke@435 1618 for (i = 0; i < 32; ++i) {
duke@435 1619 a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
duke@435 1620 }
duke@435 1621 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 1622 a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
duke@435 1623 }
duke@435 1624 }
duke@435 1625
duke@435 1626 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
duke@435 1627 for (int i = 1; i < 8; ++i) {
duke@435 1628 a->ld_ptr(r, g_offset(i), as_gRegister(i));
duke@435 1629 }
duke@435 1630 for (int j = 0; j < 32; ++j) {
duke@435 1631 a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
duke@435 1632 }
duke@435 1633 for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
duke@435 1634 a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
duke@435 1635 }
duke@435 1636 }
duke@435 1637
duke@435 1638
duke@435 1639 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 1640 void MacroAssembler::push_fTOS() {
duke@435 1641 // %%%%%% need to implement this
duke@435 1642 }
duke@435 1643
duke@435 1644 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 1645 void MacroAssembler::pop_fTOS() {
duke@435 1646 // %%%%%% need to implement this
duke@435 1647 }
duke@435 1648
duke@435 1649 void MacroAssembler::empty_FPU_stack() {
duke@435 1650 // %%%%%% need to implement this
duke@435 1651 }
duke@435 1652
duke@435 1653 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
duke@435 1654 // plausibility check for oops
duke@435 1655 if (!VerifyOops) return;
duke@435 1656
duke@435 1657 if (reg == G0) return; // always NULL, which is always an oop
duke@435 1658
ysr@777 1659 char buffer[64];
ysr@777 1660 #ifdef COMPILER1
ysr@777 1661 if (CommentedAssembly) {
ysr@777 1662 snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
ysr@777 1663 block_comment(buffer);
ysr@777 1664 }
ysr@777 1665 #endif
ysr@777 1666
ysr@777 1667 int len = strlen(file) + strlen(msg) + 1 + 4;
duke@435 1668 sprintf(buffer, "%d", line);
ysr@777 1669 len += strlen(buffer);
ysr@777 1670 sprintf(buffer, " at offset %d ", offset());
ysr@777 1671 len += strlen(buffer);
duke@435 1672 char * real_msg = new char[len];
ysr@777 1673 sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
duke@435 1674
duke@435 1675 // Call indirectly to solve generation ordering problem
twisti@1162 1676 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
duke@435 1677
duke@435 1678 // Make some space on stack above the current register window.
duke@435 1679 // Enough to hold 8 64-bit registers.
duke@435 1680 add(SP,-8*8,SP);
duke@435 1681
duke@435 1682 // Save some 64-bit registers; a normal 'save' chops the heads off
duke@435 1683 // of 64-bit longs in the 32-bit build.
duke@435 1684 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
duke@435 1685 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
duke@435 1686 mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
duke@435 1687 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
duke@435 1688
duke@435 1689 set((intptr_t)real_msg, O1);
duke@435 1690 // Load address to call to into O7
duke@435 1691 load_ptr_contents(a, O7);
duke@435 1692 // Register call to verify_oop_subroutine
duke@435 1693 callr(O7, G0);
duke@435 1694 delayed()->nop();
duke@435 1695 // recover frame size
duke@435 1696 add(SP, 8*8,SP);
duke@435 1697 }
duke@435 1698
duke@435 1699 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
duke@435 1700 // plausibility check for oops
duke@435 1701 if (!VerifyOops) return;
duke@435 1702
duke@435 1703 char buffer[64];
duke@435 1704 sprintf(buffer, "%d", line);
duke@435 1705 int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
duke@435 1706 sprintf(buffer, " at SP+%d ", addr.disp());
duke@435 1707 len += strlen(buffer);
duke@435 1708 char * real_msg = new char[len];
duke@435 1709 sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
duke@435 1710
duke@435 1711 // Call indirectly to solve generation ordering problem
twisti@1162 1712 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
duke@435 1713
duke@435 1714 // Make some space on stack above the current register window.
duke@435 1715 // Enough to hold 8 64-bit registers.
duke@435 1716 add(SP,-8*8,SP);
duke@435 1717
duke@435 1718 // Save some 64-bit registers; a normal 'save' chops the heads off
duke@435 1719 // of 64-bit longs in the 32-bit build.
duke@435 1720 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
duke@435 1721 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
duke@435 1722 ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
duke@435 1723 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
duke@435 1724
duke@435 1725 set((intptr_t)real_msg, O1);
duke@435 1726 // Load address to call to into O7
duke@435 1727 load_ptr_contents(a, O7);
duke@435 1728 // Register call to verify_oop_subroutine
duke@435 1729 callr(O7, G0);
duke@435 1730 delayed()->nop();
duke@435 1731 // recover frame size
duke@435 1732 add(SP, 8*8,SP);
duke@435 1733 }
duke@435 1734
duke@435 1735 // side-door communication with signalHandler in os_solaris.cpp
duke@435 1736 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
duke@435 1737
duke@435 1738 // This macro is expanded just once; it creates shared code. Contract:
duke@435 1739 // receives an oop in O0. Must restore O0 & O7 from TLS. Must not smash ANY
duke@435 1740 // registers, including flags. May not use a register 'save', as this blows
duke@435 1741 // the high bits of the O-regs if they contain Long values. Acts as a 'leaf'
duke@435 1742 // call.
duke@435 1743 void MacroAssembler::verify_oop_subroutine() {
duke@435 1744 assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
duke@435 1745
duke@435 1746 // Leaf call; no frame.
duke@435 1747 Label succeed, fail, null_or_fail;
duke@435 1748
duke@435 1749 // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
duke@435 1750 // O0 is now the oop to be checked. O7 is the return address.
duke@435 1751 Register O0_obj = O0;
duke@435 1752
duke@435 1753 // Save some more registers for temps.
duke@435 1754 stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
duke@435 1755 stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
duke@435 1756 stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
duke@435 1757 stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
duke@435 1758
duke@435 1759 // Save flags
duke@435 1760 Register O5_save_flags = O5;
duke@435 1761 rdccr( O5_save_flags );
duke@435 1762
duke@435 1763 { // count number of verifies
duke@435 1764 Register O2_adr = O2;
duke@435 1765 Register O3_accum = O3;
twisti@1162 1766 inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
duke@435 1767 }
duke@435 1768
duke@435 1769 Register O2_mask = O2;
duke@435 1770 Register O3_bits = O3;
duke@435 1771 Register O4_temp = O4;
duke@435 1772
duke@435 1773 // mark lower end of faulting range
duke@435 1774 assert(_verify_oop_implicit_branch[0] == NULL, "set once");
duke@435 1775 _verify_oop_implicit_branch[0] = pc();
duke@435 1776
duke@435 1777 // We can't check the mark oop because it could be in the process of
duke@435 1778 // locking or unlocking while this is running.
duke@435 1779 set(Universe::verify_oop_mask (), O2_mask);
duke@435 1780 set(Universe::verify_oop_bits (), O3_bits);
duke@435 1781
duke@435 1782 // assert((obj & oop_mask) == oop_bits);
duke@435 1783 and3(O0_obj, O2_mask, O4_temp);
duke@435 1784 cmp(O4_temp, O3_bits);
duke@435 1785 brx(notEqual, false, pn, null_or_fail);
duke@435 1786 delayed()->nop();
duke@435 1787
duke@435 1788 if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
duke@435 1789 // the null_or_fail case is useless; must test for null separately
duke@435 1790 br_null(O0_obj, false, pn, succeed);
duke@435 1791 delayed()->nop();
duke@435 1792 }
duke@435 1793
duke@435 1794 // Check the klassOop of this object for being in the right area of memory.
duke@435 1795 // Cannot do the load in the delay above slot in case O0 is null
coleenp@548 1796 load_klass(O0_obj, O0_obj);
duke@435 1797 // assert((klass & klass_mask) == klass_bits);
duke@435 1798 if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
duke@435 1799 set(Universe::verify_klass_mask(), O2_mask);
duke@435 1800 if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
duke@435 1801 set(Universe::verify_klass_bits(), O3_bits);
duke@435 1802 and3(O0_obj, O2_mask, O4_temp);
duke@435 1803 cmp(O4_temp, O3_bits);
duke@435 1804 brx(notEqual, false, pn, fail);
coleenp@548 1805 delayed()->nop();
duke@435 1806 // Check the klass's klass
coleenp@548 1807 load_klass(O0_obj, O0_obj);
duke@435 1808 and3(O0_obj, O2_mask, O4_temp);
duke@435 1809 cmp(O4_temp, O3_bits);
duke@435 1810 brx(notEqual, false, pn, fail);
duke@435 1811 delayed()->wrccr( O5_save_flags ); // Restore CCR's
duke@435 1812
duke@435 1813 // mark upper end of faulting range
duke@435 1814 _verify_oop_implicit_branch[1] = pc();
duke@435 1815
duke@435 1816 //-----------------------
duke@435 1817 // all tests pass
duke@435 1818 bind(succeed);
duke@435 1819
duke@435 1820 // Restore prior 64-bit registers
duke@435 1821 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
duke@435 1822 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
duke@435 1823 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
duke@435 1824 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
duke@435 1825 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
duke@435 1826 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
duke@435 1827
duke@435 1828 retl(); // Leaf return; restore prior O7 in delay slot
duke@435 1829 delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
duke@435 1830
duke@435 1831 //-----------------------
duke@435 1832 bind(null_or_fail); // nulls are less common but OK
duke@435 1833 br_null(O0_obj, false, pt, succeed);
duke@435 1834 delayed()->wrccr( O5_save_flags ); // Restore CCR's
duke@435 1835
duke@435 1836 //-----------------------
duke@435 1837 // report failure:
duke@435 1838 bind(fail);
duke@435 1839 _verify_oop_implicit_branch[2] = pc();
duke@435 1840
duke@435 1841 wrccr( O5_save_flags ); // Restore CCR's
duke@435 1842
duke@435 1843 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1844
duke@435 1845 // stop_subroutine expects message pointer in I1.
duke@435 1846 mov(I1, O1);
duke@435 1847
duke@435 1848 // Restore prior 64-bit registers
duke@435 1849 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
duke@435 1850 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
duke@435 1851 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
duke@435 1852 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
duke@435 1853 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
duke@435 1854 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
duke@435 1855
duke@435 1856 // factor long stop-sequence into subroutine to save space
duke@435 1857 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
duke@435 1858
duke@435 1859 // call indirectly to solve generation ordering problem
twisti@1162 1860 AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
twisti@1162 1861 load_ptr_contents(al, O5);
duke@435 1862 jmpl(O5, 0, O7);
duke@435 1863 delayed()->nop();
duke@435 1864 }
duke@435 1865
duke@435 1866
duke@435 1867 void MacroAssembler::stop(const char* msg) {
duke@435 1868 // save frame first to get O7 for return address
duke@435 1869 // add one word to size in case struct is odd number of words long
duke@435 1870 // It must be doubleword-aligned for storing doubles into it.
duke@435 1871
duke@435 1872 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1873
duke@435 1874 // stop_subroutine expects message pointer in I1.
duke@435 1875 set((intptr_t)msg, O1);
duke@435 1876
duke@435 1877 // factor long stop-sequence into subroutine to save space
duke@435 1878 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
duke@435 1879
duke@435 1880 // call indirectly to solve generation ordering problem
twisti@1162 1881 AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
duke@435 1882 load_ptr_contents(a, O5);
duke@435 1883 jmpl(O5, 0, O7);
duke@435 1884 delayed()->nop();
duke@435 1885
duke@435 1886 breakpoint_trap(); // make stop actually stop rather than writing
duke@435 1887 // unnoticeable results in the output files.
duke@435 1888
duke@435 1889 // restore(); done in callee to save space!
duke@435 1890 }
duke@435 1891
duke@435 1892
duke@435 1893 void MacroAssembler::warn(const char* msg) {
duke@435 1894 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1895 RegistersForDebugging::save_registers(this);
duke@435 1896 mov(O0, L0);
duke@435 1897 set((intptr_t)msg, O0);
duke@435 1898 call( CAST_FROM_FN_PTR(address, warning) );
duke@435 1899 delayed()->nop();
duke@435 1900 // ret();
duke@435 1901 // delayed()->restore();
duke@435 1902 RegistersForDebugging::restore_registers(this, L0);
duke@435 1903 restore();
duke@435 1904 }
duke@435 1905
duke@435 1906
duke@435 1907 void MacroAssembler::untested(const char* what) {
duke@435 1908 // We must be able to turn interactive prompting off
duke@435 1909 // in order to run automated test scripts on the VM
duke@435 1910 // Use the flag ShowMessageBoxOnError
duke@435 1911
duke@435 1912 char* b = new char[1024];
duke@435 1913 sprintf(b, "untested: %s", what);
duke@435 1914
duke@435 1915 if ( ShowMessageBoxOnError ) stop(b);
duke@435 1916 else warn(b);
duke@435 1917 }
duke@435 1918
duke@435 1919
duke@435 1920 void MacroAssembler::stop_subroutine() {
duke@435 1921 RegistersForDebugging::save_registers(this);
duke@435 1922
duke@435 1923 // for the sake of the debugger, stick a PC on the current frame
duke@435 1924 // (this assumes that the caller has performed an extra "save")
duke@435 1925 mov(I7, L7);
duke@435 1926 add(O7, -7 * BytesPerInt, I7);
duke@435 1927
duke@435 1928 save_frame(); // one more save to free up another O7 register
duke@435 1929 mov(I0, O1); // addr of reg save area
duke@435 1930
duke@435 1931 // We expect pointer to message in I1. Caller must set it up in O1
duke@435 1932 mov(I1, O0); // get msg
duke@435 1933 call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
duke@435 1934 delayed()->nop();
duke@435 1935
duke@435 1936 restore();
duke@435 1937
duke@435 1938 RegistersForDebugging::restore_registers(this, O0);
duke@435 1939
duke@435 1940 save_frame(0);
duke@435 1941 call(CAST_FROM_FN_PTR(address,breakpoint));
duke@435 1942 delayed()->nop();
duke@435 1943 restore();
duke@435 1944
duke@435 1945 mov(L7, I7);
duke@435 1946 retl();
duke@435 1947 delayed()->restore(); // see stop above
duke@435 1948 }
duke@435 1949
duke@435 1950
duke@435 1951 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
duke@435 1952 if ( ShowMessageBoxOnError ) {
duke@435 1953 JavaThreadState saved_state = JavaThread::current()->thread_state();
duke@435 1954 JavaThread::current()->set_thread_state(_thread_in_vm);
duke@435 1955 {
duke@435 1956 // In order to get locks work, we need to fake a in_VM state
duke@435 1957 ttyLocker ttyl;
duke@435 1958 ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
duke@435 1959 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
duke@435 1960 ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
duke@435 1961 }
duke@435 1962 if (os::message_box(msg, "Execution stopped, print registers?"))
duke@435 1963 regs->print(::tty);
duke@435 1964 }
duke@435 1965 ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
duke@435 1966 }
duke@435 1967 else
duke@435 1968 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
duke@435 1969 assert(false, "error");
duke@435 1970 }
duke@435 1971
duke@435 1972
duke@435 1973 #ifndef PRODUCT
duke@435 1974 void MacroAssembler::test() {
duke@435 1975 ResourceMark rm;
duke@435 1976
duke@435 1977 CodeBuffer cb("test", 10000, 10000);
duke@435 1978 MacroAssembler* a = new MacroAssembler(&cb);
duke@435 1979 VM_Version::allow_all();
duke@435 1980 a->test_v9();
duke@435 1981 a->test_v8_onlys();
duke@435 1982 VM_Version::revert();
duke@435 1983
duke@435 1984 StubRoutines::Sparc::test_stop_entry()();
duke@435 1985 }
duke@435 1986 #endif
duke@435 1987
duke@435 1988
duke@435 1989 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
duke@435 1990 subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
duke@435 1991 Label no_extras;
duke@435 1992 br( negative, true, pt, no_extras ); // if neg, clear reg
twisti@1162 1993 delayed()->set(0, Rresult); // annuled, so only if taken
duke@435 1994 bind( no_extras );
duke@435 1995 }
duke@435 1996
duke@435 1997
duke@435 1998 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
duke@435 1999 #ifdef _LP64
duke@435 2000 add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
duke@435 2001 #else
duke@435 2002 add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
duke@435 2003 #endif
duke@435 2004 bclr(1, Rresult);
duke@435 2005 sll(Rresult, LogBytesPerWord, Rresult); // Rresult has total frame bytes
duke@435 2006 }
duke@435 2007
duke@435 2008
duke@435 2009 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
duke@435 2010 calc_frame_size(Rextra_words, Rresult);
duke@435 2011 neg(Rresult);
duke@435 2012 save(SP, Rresult, SP);
duke@435 2013 }
duke@435 2014
duke@435 2015
duke@435 2016 // ---------------------------------------------------------
duke@435 2017 Assembler::RCondition cond2rcond(Assembler::Condition c) {
duke@435 2018 switch (c) {
duke@435 2019 /*case zero: */
duke@435 2020 case Assembler::equal: return Assembler::rc_z;
duke@435 2021 case Assembler::lessEqual: return Assembler::rc_lez;
duke@435 2022 case Assembler::less: return Assembler::rc_lz;
duke@435 2023 /*case notZero:*/
duke@435 2024 case Assembler::notEqual: return Assembler::rc_nz;
duke@435 2025 case Assembler::greater: return Assembler::rc_gz;
duke@435 2026 case Assembler::greaterEqual: return Assembler::rc_gez;
duke@435 2027 }
duke@435 2028 ShouldNotReachHere();
duke@435 2029 return Assembler::rc_z;
duke@435 2030 }
duke@435 2031
duke@435 2032 // compares register with zero and branches. NOT FOR USE WITH 64-bit POINTERS
duke@435 2033 void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
duke@435 2034 tst(s1);
duke@435 2035 br (c, a, p, L);
duke@435 2036 }
duke@435 2037
duke@435 2038
duke@435 2039 // Compares a pointer register with zero and branches on null.
duke@435 2040 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
duke@435 2041 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
duke@435 2042 assert_not_delayed();
duke@435 2043 #ifdef _LP64
duke@435 2044 bpr( rc_z, a, p, s1, L );
duke@435 2045 #else
duke@435 2046 tst(s1);
duke@435 2047 br ( zero, a, p, L );
duke@435 2048 #endif
duke@435 2049 }
duke@435 2050
duke@435 2051 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
duke@435 2052 assert_not_delayed();
duke@435 2053 #ifdef _LP64
duke@435 2054 bpr( rc_nz, a, p, s1, L );
duke@435 2055 #else
duke@435 2056 tst(s1);
duke@435 2057 br ( notZero, a, p, L );
duke@435 2058 #endif
duke@435 2059 }
duke@435 2060
ysr@777 2061 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
ysr@777 2062 Register s1, address d,
ysr@777 2063 relocInfo::relocType rt ) {
ysr@777 2064 if (VM_Version::v9_instructions_work()) {
ysr@777 2065 bpr(rc, a, p, s1, d, rt);
ysr@777 2066 } else {
ysr@777 2067 tst(s1);
ysr@777 2068 br(reg_cond_to_cc_cond(rc), a, p, d, rt);
ysr@777 2069 }
ysr@777 2070 }
ysr@777 2071
ysr@777 2072 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
ysr@777 2073 Register s1, Label& L ) {
ysr@777 2074 if (VM_Version::v9_instructions_work()) {
ysr@777 2075 bpr(rc, a, p, s1, L);
ysr@777 2076 } else {
ysr@777 2077 tst(s1);
ysr@777 2078 br(reg_cond_to_cc_cond(rc), a, p, L);
ysr@777 2079 }
ysr@777 2080 }
ysr@777 2081
duke@435 2082
duke@435 2083 // instruction sequences factored across compiler & interpreter
duke@435 2084
duke@435 2085
duke@435 2086 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
duke@435 2087 Register Rb_hi, Register Rb_low,
duke@435 2088 Register Rresult) {
duke@435 2089
duke@435 2090 Label check_low_parts, done;
duke@435 2091
duke@435 2092 cmp(Ra_hi, Rb_hi ); // compare hi parts
duke@435 2093 br(equal, true, pt, check_low_parts);
duke@435 2094 delayed()->cmp(Ra_low, Rb_low); // test low parts
duke@435 2095
duke@435 2096 // And, with an unsigned comparison, it does not matter if the numbers
duke@435 2097 // are negative or not.
duke@435 2098 // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
duke@435 2099 // The second one is bigger (unsignedly).
duke@435 2100
duke@435 2101 // Other notes: The first move in each triplet can be unconditional
duke@435 2102 // (and therefore probably prefetchable).
duke@435 2103 // And the equals case for the high part does not need testing,
duke@435 2104 // since that triplet is reached only after finding the high halves differ.
duke@435 2105
duke@435 2106 if (VM_Version::v9_instructions_work()) {
duke@435 2107
duke@435 2108 mov ( -1, Rresult);
duke@435 2109 ba( false, done ); delayed()-> movcc(greater, false, icc, 1, Rresult);
duke@435 2110 }
duke@435 2111 else {
duke@435 2112 br(less, true, pt, done); delayed()-> set(-1, Rresult);
duke@435 2113 br(greater, true, pt, done); delayed()-> set( 1, Rresult);
duke@435 2114 }
duke@435 2115
duke@435 2116 bind( check_low_parts );
duke@435 2117
duke@435 2118 if (VM_Version::v9_instructions_work()) {
duke@435 2119 mov( -1, Rresult);
duke@435 2120 movcc(equal, false, icc, 0, Rresult);
duke@435 2121 movcc(greaterUnsigned, false, icc, 1, Rresult);
duke@435 2122 }
duke@435 2123 else {
duke@435 2124 set(-1, Rresult);
duke@435 2125 br(equal, true, pt, done); delayed()->set( 0, Rresult);
duke@435 2126 br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
duke@435 2127 }
duke@435 2128 bind( done );
duke@435 2129 }
duke@435 2130
duke@435 2131 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
duke@435 2132 subcc( G0, Rlow, Rlow );
duke@435 2133 subc( G0, Rhi, Rhi );
duke@435 2134 }
duke@435 2135
duke@435 2136 void MacroAssembler::lshl( Register Rin_high, Register Rin_low,
duke@435 2137 Register Rcount,
duke@435 2138 Register Rout_high, Register Rout_low,
duke@435 2139 Register Rtemp ) {
duke@435 2140
duke@435 2141
duke@435 2142 Register Ralt_count = Rtemp;
duke@435 2143 Register Rxfer_bits = Rtemp;
duke@435 2144
duke@435 2145 assert( Ralt_count != Rin_high
duke@435 2146 && Ralt_count != Rin_low
duke@435 2147 && Ralt_count != Rcount
duke@435 2148 && Rxfer_bits != Rin_low
duke@435 2149 && Rxfer_bits != Rin_high
duke@435 2150 && Rxfer_bits != Rcount
duke@435 2151 && Rxfer_bits != Rout_low
duke@435 2152 && Rout_low != Rin_high,
duke@435 2153 "register alias checks");
duke@435 2154
duke@435 2155 Label big_shift, done;
duke@435 2156
duke@435 2157 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2158 // Here we use the 32 bit shifts.
duke@435 2159
duke@435 2160 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
duke@435 2161 subcc(Rcount, 31, Ralt_count);
duke@435 2162 br(greater, true, pn, big_shift);
duke@435 2163 delayed()->
duke@435 2164 dec(Ralt_count);
duke@435 2165
duke@435 2166 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2167
duke@435 2168 // We get the transfer bits by shifting right by 32-count the low
duke@435 2169 // register. This is done by shifting right by 31-count and then by one
duke@435 2170 // more to take care of the special (rare) case where count is zero
duke@435 2171 // (shifting by 32 would not work).
duke@435 2172
duke@435 2173 neg( Ralt_count );
duke@435 2174
duke@435 2175 // The order of the next two instructions is critical in the case where
duke@435 2176 // Rin and Rout are the same and should not be reversed.
duke@435 2177
duke@435 2178 srl( Rin_low, Ralt_count, Rxfer_bits ); // shift right by 31-count
duke@435 2179 if (Rcount != Rout_low) {
duke@435 2180 sll( Rin_low, Rcount, Rout_low ); // low half
duke@435 2181 }
duke@435 2182 sll( Rin_high, Rcount, Rout_high );
duke@435 2183 if (Rcount == Rout_low) {
duke@435 2184 sll( Rin_low, Rcount, Rout_low ); // low half
duke@435 2185 }
duke@435 2186 srl( Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
duke@435 2187 ba (false, done);
duke@435 2188 delayed()->
duke@435 2189 or3( Rout_high, Rxfer_bits, Rout_high); // new hi value: or in shifted old hi part and xfer from low
duke@435 2190
duke@435 2191 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2192 bind(big_shift);
duke@435 2193 sll( Rin_low, Ralt_count, Rout_high );
duke@435 2194 clr( Rout_low );
duke@435 2195
duke@435 2196 bind(done);
duke@435 2197 }
duke@435 2198
duke@435 2199
duke@435 2200 void MacroAssembler::lshr( Register Rin_high, Register Rin_low,
duke@435 2201 Register Rcount,
duke@435 2202 Register Rout_high, Register Rout_low,
duke@435 2203 Register Rtemp ) {
duke@435 2204
duke@435 2205 Register Ralt_count = Rtemp;
duke@435 2206 Register Rxfer_bits = Rtemp;
duke@435 2207
duke@435 2208 assert( Ralt_count != Rin_high
duke@435 2209 && Ralt_count != Rin_low
duke@435 2210 && Ralt_count != Rcount
duke@435 2211 && Rxfer_bits != Rin_low
duke@435 2212 && Rxfer_bits != Rin_high
duke@435 2213 && Rxfer_bits != Rcount
duke@435 2214 && Rxfer_bits != Rout_high
duke@435 2215 && Rout_high != Rin_low,
duke@435 2216 "register alias checks");
duke@435 2217
duke@435 2218 Label big_shift, done;
duke@435 2219
duke@435 2220 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2221 // Here we use the 32 bit shifts.
duke@435 2222
duke@435 2223 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
duke@435 2224 subcc(Rcount, 31, Ralt_count);
duke@435 2225 br(greater, true, pn, big_shift);
duke@435 2226 delayed()->dec(Ralt_count);
duke@435 2227
duke@435 2228 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2229
duke@435 2230 // We get the transfer bits by shifting left by 32-count the high
duke@435 2231 // register. This is done by shifting left by 31-count and then by one
duke@435 2232 // more to take care of the special (rare) case where count is zero
duke@435 2233 // (shifting by 32 would not work).
duke@435 2234
duke@435 2235 neg( Ralt_count );
duke@435 2236 if (Rcount != Rout_low) {
duke@435 2237 srl( Rin_low, Rcount, Rout_low );
duke@435 2238 }
duke@435 2239
duke@435 2240 // The order of the next two instructions is critical in the case where
duke@435 2241 // Rin and Rout are the same and should not be reversed.
duke@435 2242
duke@435 2243 sll( Rin_high, Ralt_count, Rxfer_bits ); // shift left by 31-count
duke@435 2244 sra( Rin_high, Rcount, Rout_high ); // high half
duke@435 2245 sll( Rxfer_bits, 1, Rxfer_bits ); // shift left by one more
duke@435 2246 if (Rcount == Rout_low) {
duke@435 2247 srl( Rin_low, Rcount, Rout_low );
duke@435 2248 }
duke@435 2249 ba (false, done);
duke@435 2250 delayed()->
duke@435 2251 or3( Rout_low, Rxfer_bits, Rout_low ); // new low value: or shifted old low part and xfer from high
duke@435 2252
duke@435 2253 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2254 bind(big_shift);
duke@435 2255
duke@435 2256 sra( Rin_high, Ralt_count, Rout_low );
duke@435 2257 sra( Rin_high, 31, Rout_high ); // sign into hi
duke@435 2258
duke@435 2259 bind( done );
duke@435 2260 }
duke@435 2261
duke@435 2262
duke@435 2263
duke@435 2264 void MacroAssembler::lushr( Register Rin_high, Register Rin_low,
duke@435 2265 Register Rcount,
duke@435 2266 Register Rout_high, Register Rout_low,
duke@435 2267 Register Rtemp ) {
duke@435 2268
duke@435 2269 Register Ralt_count = Rtemp;
duke@435 2270 Register Rxfer_bits = Rtemp;
duke@435 2271
duke@435 2272 assert( Ralt_count != Rin_high
duke@435 2273 && Ralt_count != Rin_low
duke@435 2274 && Ralt_count != Rcount
duke@435 2275 && Rxfer_bits != Rin_low
duke@435 2276 && Rxfer_bits != Rin_high
duke@435 2277 && Rxfer_bits != Rcount
duke@435 2278 && Rxfer_bits != Rout_high
duke@435 2279 && Rout_high != Rin_low,
duke@435 2280 "register alias checks");
duke@435 2281
duke@435 2282 Label big_shift, done;
duke@435 2283
duke@435 2284 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2285 // Here we use the 32 bit shifts.
duke@435 2286
duke@435 2287 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
duke@435 2288 subcc(Rcount, 31, Ralt_count);
duke@435 2289 br(greater, true, pn, big_shift);
duke@435 2290 delayed()->dec(Ralt_count);
duke@435 2291
duke@435 2292 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2293
duke@435 2294 // We get the transfer bits by shifting left by 32-count the high
duke@435 2295 // register. This is done by shifting left by 31-count and then by one
duke@435 2296 // more to take care of the special (rare) case where count is zero
duke@435 2297 // (shifting by 32 would not work).
duke@435 2298
duke@435 2299 neg( Ralt_count );
duke@435 2300 if (Rcount != Rout_low) {
duke@435 2301 srl( Rin_low, Rcount, Rout_low );
duke@435 2302 }
duke@435 2303
duke@435 2304 // The order of the next two instructions is critical in the case where
duke@435 2305 // Rin and Rout are the same and should not be reversed.
duke@435 2306
duke@435 2307 sll( Rin_high, Ralt_count, Rxfer_bits ); // shift left by 31-count
duke@435 2308 srl( Rin_high, Rcount, Rout_high ); // high half
duke@435 2309 sll( Rxfer_bits, 1, Rxfer_bits ); // shift left by one more
duke@435 2310 if (Rcount == Rout_low) {
duke@435 2311 srl( Rin_low, Rcount, Rout_low );
duke@435 2312 }
duke@435 2313 ba (false, done);
duke@435 2314 delayed()->
duke@435 2315 or3( Rout_low, Rxfer_bits, Rout_low ); // new low value: or shifted old low part and xfer from high
duke@435 2316
duke@435 2317 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2318 bind(big_shift);
duke@435 2319
duke@435 2320 srl( Rin_high, Ralt_count, Rout_low );
duke@435 2321 clr( Rout_high );
duke@435 2322
duke@435 2323 bind( done );
duke@435 2324 }
duke@435 2325
duke@435 2326 #ifdef _LP64
duke@435 2327 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
duke@435 2328 cmp(Ra, Rb);
duke@435 2329 mov( -1, Rresult);
duke@435 2330 movcc(equal, false, xcc, 0, Rresult);
duke@435 2331 movcc(greater, false, xcc, 1, Rresult);
duke@435 2332 }
duke@435 2333 #endif
duke@435 2334
duke@435 2335
duke@435 2336 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
duke@435 2337 FloatRegister Fa, FloatRegister Fb,
duke@435 2338 Register Rresult) {
duke@435 2339
duke@435 2340 fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
duke@435 2341
duke@435 2342 Condition lt = unordered_result == -1 ? f_unorderedOrLess : f_less;
duke@435 2343 Condition eq = f_equal;
duke@435 2344 Condition gt = unordered_result == 1 ? f_unorderedOrGreater : f_greater;
duke@435 2345
duke@435 2346 if (VM_Version::v9_instructions_work()) {
duke@435 2347
duke@435 2348 mov( -1, Rresult );
duke@435 2349 movcc( eq, true, fcc0, 0, Rresult );
duke@435 2350 movcc( gt, true, fcc0, 1, Rresult );
duke@435 2351
duke@435 2352 } else {
duke@435 2353 Label done;
duke@435 2354
duke@435 2355 set( -1, Rresult );
duke@435 2356 //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
duke@435 2357 fb( eq, true, pn, done); delayed()->set( 0, Rresult );
duke@435 2358 fb( gt, true, pn, done); delayed()->set( 1, Rresult );
duke@435 2359
duke@435 2360 bind (done);
duke@435 2361 }
duke@435 2362 }
duke@435 2363
duke@435 2364
duke@435 2365 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2366 {
duke@435 2367 if (VM_Version::v9_instructions_work()) {
duke@435 2368 Assembler::fneg(w, s, d);
duke@435 2369 } else {
duke@435 2370 if (w == FloatRegisterImpl::S) {
duke@435 2371 Assembler::fneg(w, s, d);
duke@435 2372 } else if (w == FloatRegisterImpl::D) {
duke@435 2373 // number() does a sanity check on the alignment.
duke@435 2374 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2375 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2376
duke@435 2377 Assembler::fneg(FloatRegisterImpl::S, s, d);
duke@435 2378 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2379 } else {
duke@435 2380 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2381
duke@435 2382 // number() does a sanity check on the alignment.
duke@435 2383 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2384 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2385
duke@435 2386 Assembler::fneg(FloatRegisterImpl::S, s, d);
duke@435 2387 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2388 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2389 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2390 }
duke@435 2391 }
duke@435 2392 }
duke@435 2393
duke@435 2394 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2395 {
duke@435 2396 if (VM_Version::v9_instructions_work()) {
duke@435 2397 Assembler::fmov(w, s, d);
duke@435 2398 } else {
duke@435 2399 if (w == FloatRegisterImpl::S) {
duke@435 2400 Assembler::fmov(w, s, d);
duke@435 2401 } else if (w == FloatRegisterImpl::D) {
duke@435 2402 // number() does a sanity check on the alignment.
duke@435 2403 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2404 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2405
duke@435 2406 Assembler::fmov(FloatRegisterImpl::S, s, d);
duke@435 2407 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2408 } else {
duke@435 2409 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2410
duke@435 2411 // number() does a sanity check on the alignment.
duke@435 2412 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2413 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2414
duke@435 2415 Assembler::fmov(FloatRegisterImpl::S, s, d);
duke@435 2416 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2417 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2418 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2419 }
duke@435 2420 }
duke@435 2421 }
duke@435 2422
duke@435 2423 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2424 {
duke@435 2425 if (VM_Version::v9_instructions_work()) {
duke@435 2426 Assembler::fabs(w, s, d);
duke@435 2427 } else {
duke@435 2428 if (w == FloatRegisterImpl::S) {
duke@435 2429 Assembler::fabs(w, s, d);
duke@435 2430 } else if (w == FloatRegisterImpl::D) {
duke@435 2431 // number() does a sanity check on the alignment.
duke@435 2432 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2433 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2434
duke@435 2435 Assembler::fabs(FloatRegisterImpl::S, s, d);
duke@435 2436 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2437 } else {
duke@435 2438 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2439
duke@435 2440 // number() does a sanity check on the alignment.
duke@435 2441 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2442 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2443
duke@435 2444 Assembler::fabs(FloatRegisterImpl::S, s, d);
duke@435 2445 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2446 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2447 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2448 }
duke@435 2449 }
duke@435 2450 }
duke@435 2451
duke@435 2452 void MacroAssembler::save_all_globals_into_locals() {
duke@435 2453 mov(G1,L1);
duke@435 2454 mov(G2,L2);
duke@435 2455 mov(G3,L3);
duke@435 2456 mov(G4,L4);
duke@435 2457 mov(G5,L5);
duke@435 2458 mov(G6,L6);
duke@435 2459 mov(G7,L7);
duke@435 2460 }
duke@435 2461
duke@435 2462 void MacroAssembler::restore_globals_from_locals() {
duke@435 2463 mov(L1,G1);
duke@435 2464 mov(L2,G2);
duke@435 2465 mov(L3,G3);
duke@435 2466 mov(L4,G4);
duke@435 2467 mov(L5,G5);
duke@435 2468 mov(L6,G6);
duke@435 2469 mov(L7,G7);
duke@435 2470 }
duke@435 2471
duke@435 2472 // Use for 64 bit operation.
duke@435 2473 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
duke@435 2474 {
duke@435 2475 // store ptr_reg as the new top value
duke@435 2476 #ifdef _LP64
duke@435 2477 casx(top_ptr_reg, top_reg, ptr_reg);
duke@435 2478 #else
duke@435 2479 cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
duke@435 2480 #endif // _LP64
duke@435 2481 }
duke@435 2482
duke@435 2483 // [RGV] This routine does not handle 64 bit operations.
duke@435 2484 // use casx_under_lock() or casx directly!!!
duke@435 2485 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
duke@435 2486 {
duke@435 2487 // store ptr_reg as the new top value
duke@435 2488 if (VM_Version::v9_instructions_work()) {
duke@435 2489 cas(top_ptr_reg, top_reg, ptr_reg);
duke@435 2490 } else {
duke@435 2491
duke@435 2492 // If the register is not an out nor global, it is not visible
duke@435 2493 // after the save. Allocate a register for it, save its
duke@435 2494 // value in the register save area (the save may not flush
duke@435 2495 // registers to the save area).
duke@435 2496
duke@435 2497 Register top_ptr_reg_after_save;
duke@435 2498 Register top_reg_after_save;
duke@435 2499 Register ptr_reg_after_save;
duke@435 2500
duke@435 2501 if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
duke@435 2502 top_ptr_reg_after_save = top_ptr_reg->after_save();
duke@435 2503 } else {
duke@435 2504 Address reg_save_addr = top_ptr_reg->address_in_saved_window();
duke@435 2505 top_ptr_reg_after_save = L0;
duke@435 2506 st(top_ptr_reg, reg_save_addr);
duke@435 2507 }
duke@435 2508
duke@435 2509 if (top_reg->is_out() || top_reg->is_global()) {
duke@435 2510 top_reg_after_save = top_reg->after_save();
duke@435 2511 } else {
duke@435 2512 Address reg_save_addr = top_reg->address_in_saved_window();
duke@435 2513 top_reg_after_save = L1;
duke@435 2514 st(top_reg, reg_save_addr);
duke@435 2515 }
duke@435 2516
duke@435 2517 if (ptr_reg->is_out() || ptr_reg->is_global()) {
duke@435 2518 ptr_reg_after_save = ptr_reg->after_save();
duke@435 2519 } else {
duke@435 2520 Address reg_save_addr = ptr_reg->address_in_saved_window();
duke@435 2521 ptr_reg_after_save = L2;
duke@435 2522 st(ptr_reg, reg_save_addr);
duke@435 2523 }
duke@435 2524
duke@435 2525 const Register& lock_reg = L3;
duke@435 2526 const Register& lock_ptr_reg = L4;
duke@435 2527 const Register& value_reg = L5;
duke@435 2528 const Register& yield_reg = L6;
duke@435 2529 const Register& yieldall_reg = L7;
duke@435 2530
duke@435 2531 save_frame();
duke@435 2532
duke@435 2533 if (top_ptr_reg_after_save == L0) {
duke@435 2534 ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
duke@435 2535 }
duke@435 2536
duke@435 2537 if (top_reg_after_save == L1) {
duke@435 2538 ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
duke@435 2539 }
duke@435 2540
duke@435 2541 if (ptr_reg_after_save == L2) {
duke@435 2542 ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
duke@435 2543 }
duke@435 2544
duke@435 2545 Label(retry_get_lock);
duke@435 2546 Label(not_same);
duke@435 2547 Label(dont_yield);
duke@435 2548
duke@435 2549 assert(lock_addr, "lock_address should be non null for v8");
duke@435 2550 set((intptr_t)lock_addr, lock_ptr_reg);
duke@435 2551 // Initialize yield counter
duke@435 2552 mov(G0,yield_reg);
duke@435 2553 mov(G0, yieldall_reg);
duke@435 2554 set(StubRoutines::Sparc::locked, lock_reg);
duke@435 2555
duke@435 2556 bind(retry_get_lock);
duke@435 2557 cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
duke@435 2558 br(Assembler::less, false, Assembler::pt, dont_yield);
duke@435 2559 delayed()->nop();
duke@435 2560
duke@435 2561 if(use_call_vm) {
duke@435 2562 Untested("Need to verify global reg consistancy");
duke@435 2563 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
duke@435 2564 } else {
duke@435 2565 // Save the regs and make space for a C call
duke@435 2566 save(SP, -96, SP);
duke@435 2567 save_all_globals_into_locals();
duke@435 2568 call(CAST_FROM_FN_PTR(address,os::yield_all));
duke@435 2569 delayed()->mov(yieldall_reg, O0);
duke@435 2570 restore_globals_from_locals();
duke@435 2571 restore();
duke@435 2572 }
duke@435 2573
duke@435 2574 // reset the counter
duke@435 2575 mov(G0,yield_reg);
duke@435 2576 add(yieldall_reg, 1, yieldall_reg);
duke@435 2577
duke@435 2578 bind(dont_yield);
duke@435 2579 // try to get lock
duke@435 2580 swap(lock_ptr_reg, 0, lock_reg);
duke@435 2581
duke@435 2582 // did we get the lock?
duke@435 2583 cmp(lock_reg, StubRoutines::Sparc::unlocked);
duke@435 2584 br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
duke@435 2585 delayed()->add(yield_reg,1,yield_reg);
duke@435 2586
duke@435 2587 // yes, got lock. do we have the same top?
duke@435 2588 ld(top_ptr_reg_after_save, 0, value_reg);
duke@435 2589 cmp(value_reg, top_reg_after_save);
duke@435 2590 br(Assembler::notEqual, false, Assembler::pn, not_same);
duke@435 2591 delayed()->nop();
duke@435 2592
duke@435 2593 // yes, same top.
duke@435 2594 st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
duke@435 2595 membar(Assembler::StoreStore);
duke@435 2596
duke@435 2597 bind(not_same);
duke@435 2598 mov(value_reg, ptr_reg_after_save);
duke@435 2599 st(lock_reg, lock_ptr_reg, 0); // unlock
duke@435 2600
duke@435 2601 restore();
duke@435 2602 }
duke@435 2603 }
duke@435 2604
jrose@1100 2605 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
jrose@1100 2606 Register tmp,
jrose@1100 2607 int offset) {
jrose@1057 2608 intptr_t value = *delayed_value_addr;
jrose@1057 2609 if (value != 0)
jrose@1100 2610 return RegisterOrConstant(value + offset);
jrose@1057 2611
jrose@1057 2612 // load indirectly to solve generation ordering problem
twisti@1162 2613 AddressLiteral a(delayed_value_addr);
jrose@1057 2614 load_ptr_contents(a, tmp);
jrose@1057 2615
jrose@1057 2616 #ifdef ASSERT
jrose@1057 2617 tst(tmp);
jrose@1057 2618 breakpoint_trap(zero, xcc);
jrose@1057 2619 #endif
jrose@1057 2620
jrose@1057 2621 if (offset != 0)
jrose@1057 2622 add(tmp, offset, tmp);
jrose@1057 2623
jrose@1100 2624 return RegisterOrConstant(tmp);
jrose@1057 2625 }
jrose@1057 2626
jrose@1057 2627
jrose@1100 2628 void MacroAssembler::regcon_inc_ptr( RegisterOrConstant& dest, RegisterOrConstant src, Register temp ) {
jrose@1058 2629 assert(dest.register_or_noreg() != G0, "lost side effect");
jrose@1058 2630 if ((src.is_constant() && src.as_constant() == 0) ||
jrose@1058 2631 (src.is_register() && src.as_register() == G0)) {
jrose@1058 2632 // do nothing
jrose@1058 2633 } else if (dest.is_register()) {
jrose@1058 2634 add(dest.as_register(), ensure_rs2(src, temp), dest.as_register());
jrose@1058 2635 } else if (src.is_constant()) {
jrose@1058 2636 intptr_t res = dest.as_constant() + src.as_constant();
jrose@1100 2637 dest = RegisterOrConstant(res); // side effect seen by caller
jrose@1058 2638 } else {
jrose@1058 2639 assert(temp != noreg, "cannot handle constant += register");
jrose@1058 2640 add(src.as_register(), ensure_rs2(dest, temp), temp);
jrose@1100 2641 dest = RegisterOrConstant(temp); // side effect seen by caller
jrose@1058 2642 }
jrose@1058 2643 }
jrose@1058 2644
jrose@1100 2645 void MacroAssembler::regcon_sll_ptr( RegisterOrConstant& dest, RegisterOrConstant src, Register temp ) {
jrose@1058 2646 assert(dest.register_or_noreg() != G0, "lost side effect");
jrose@1058 2647 if (!is_simm13(src.constant_or_zero()))
jrose@1058 2648 src = (src.as_constant() & 0xFF);
jrose@1058 2649 if ((src.is_constant() && src.as_constant() == 0) ||
jrose@1058 2650 (src.is_register() && src.as_register() == G0)) {
jrose@1058 2651 // do nothing
jrose@1058 2652 } else if (dest.is_register()) {
jrose@1058 2653 sll_ptr(dest.as_register(), src, dest.as_register());
jrose@1058 2654 } else if (src.is_constant()) {
jrose@1058 2655 intptr_t res = dest.as_constant() << src.as_constant();
jrose@1100 2656 dest = RegisterOrConstant(res); // side effect seen by caller
jrose@1058 2657 } else {
jrose@1058 2658 assert(temp != noreg, "cannot handle constant <<= register");
jrose@1058 2659 set(dest.as_constant(), temp);
jrose@1058 2660 sll_ptr(temp, src, temp);
jrose@1100 2661 dest = RegisterOrConstant(temp); // side effect seen by caller
jrose@1058 2662 }
jrose@1058 2663 }
jrose@1058 2664
jrose@1058 2665
jrose@1058 2666 // Look up the method for a megamorphic invokeinterface call.
jrose@1058 2667 // The target method is determined by <intf_klass, itable_index>.
jrose@1058 2668 // The receiver klass is in recv_klass.
jrose@1058 2669 // On success, the result will be in method_result, and execution falls through.
jrose@1058 2670 // On failure, execution transfers to the given label.
jrose@1058 2671 void MacroAssembler::lookup_interface_method(Register recv_klass,
jrose@1058 2672 Register intf_klass,
jrose@1100 2673 RegisterOrConstant itable_index,
jrose@1058 2674 Register method_result,
jrose@1058 2675 Register scan_temp,
jrose@1058 2676 Register sethi_temp,
jrose@1058 2677 Label& L_no_such_interface) {
jrose@1058 2678 assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
jrose@1058 2679 assert(itable_index.is_constant() || itable_index.as_register() == method_result,
jrose@1058 2680 "caller must use same register for non-constant itable index as for method");
jrose@1058 2681
jrose@1058 2682 // Compute start of first itableOffsetEntry (which is at the end of the vtable)
jrose@1058 2683 int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
jrose@1058 2684 int scan_step = itableOffsetEntry::size() * wordSize;
jrose@1058 2685 int vte_size = vtableEntry::size() * wordSize;
jrose@1058 2686
jrose@1058 2687 lduw(recv_klass, instanceKlass::vtable_length_offset() * wordSize, scan_temp);
jrose@1058 2688 // %%% We should store the aligned, prescaled offset in the klassoop.
jrose@1058 2689 // Then the next several instructions would fold away.
jrose@1058 2690
jrose@1058 2691 int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
jrose@1058 2692 int itb_offset = vtable_base;
jrose@1058 2693 if (round_to_unit != 0) {
jrose@1058 2694 // hoist first instruction of round_to(scan_temp, BytesPerLong):
jrose@1058 2695 itb_offset += round_to_unit - wordSize;
jrose@1058 2696 }
jrose@1058 2697 int itb_scale = exact_log2(vtableEntry::size() * wordSize);
jrose@1058 2698 sll(scan_temp, itb_scale, scan_temp);
jrose@1058 2699 add(scan_temp, itb_offset, scan_temp);
jrose@1058 2700 if (round_to_unit != 0) {
jrose@1058 2701 // Round up to align_object_offset boundary
jrose@1058 2702 // see code for instanceKlass::start_of_itable!
jrose@1058 2703 // Was: round_to(scan_temp, BytesPerLong);
jrose@1058 2704 // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
jrose@1058 2705 and3(scan_temp, -round_to_unit, scan_temp);
jrose@1058 2706 }
jrose@1058 2707 add(recv_klass, scan_temp, scan_temp);
jrose@1058 2708
jrose@1058 2709 // Adjust recv_klass by scaled itable_index, so we can free itable_index.
jrose@1100 2710 RegisterOrConstant itable_offset = itable_index;
jrose@1058 2711 regcon_sll_ptr(itable_offset, exact_log2(itableMethodEntry::size() * wordSize));
jrose@1058 2712 regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes());
jrose@1058 2713 add(recv_klass, ensure_rs2(itable_offset, sethi_temp), recv_klass);
jrose@1058 2714
jrose@1058 2715 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
jrose@1058 2716 // if (scan->interface() == intf) {
jrose@1058 2717 // result = (klass + scan->offset() + itable_index);
jrose@1058 2718 // }
jrose@1058 2719 // }
jrose@1058 2720 Label search, found_method;
jrose@1058 2721
jrose@1058 2722 for (int peel = 1; peel >= 0; peel--) {
jrose@1058 2723 // %%%% Could load both offset and interface in one ldx, if they were
jrose@1058 2724 // in the opposite order. This would save a load.
jrose@1058 2725 ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
jrose@1058 2726
jrose@1058 2727 // Check that this entry is non-null. A null entry means that
jrose@1058 2728 // the receiver class doesn't implement the interface, and wasn't the
jrose@1058 2729 // same as when the caller was compiled.
jrose@1058 2730 bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
jrose@1058 2731 delayed()->cmp(method_result, intf_klass);
jrose@1058 2732
jrose@1058 2733 if (peel) {
jrose@1058 2734 brx(Assembler::equal, false, Assembler::pt, found_method);
jrose@1058 2735 } else {
jrose@1058 2736 brx(Assembler::notEqual, false, Assembler::pn, search);
jrose@1058 2737 // (invert the test to fall through to found_method...)
jrose@1058 2738 }
jrose@1058 2739 delayed()->add(scan_temp, scan_step, scan_temp);
jrose@1058 2740
jrose@1058 2741 if (!peel) break;
jrose@1058 2742
jrose@1058 2743 bind(search);
jrose@1058 2744 }
jrose@1058 2745
jrose@1058 2746 bind(found_method);
jrose@1058 2747
jrose@1058 2748 // Got a hit.
jrose@1058 2749 int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
jrose@1058 2750 // scan_temp[-scan_step] points to the vtable offset we need
jrose@1058 2751 ito_offset -= scan_step;
jrose@1058 2752 lduw(scan_temp, ito_offset, scan_temp);
jrose@1058 2753 ld_ptr(recv_klass, scan_temp, method_result);
jrose@1058 2754 }
jrose@1058 2755
jrose@1058 2756
jrose@1079 2757 void MacroAssembler::check_klass_subtype(Register sub_klass,
jrose@1079 2758 Register super_klass,
jrose@1079 2759 Register temp_reg,
jrose@1079 2760 Register temp2_reg,
jrose@1079 2761 Label& L_success) {
jrose@1079 2762 Label L_failure, L_pop_to_failure;
jrose@1079 2763 check_klass_subtype_fast_path(sub_klass, super_klass,
jrose@1079 2764 temp_reg, temp2_reg,
jrose@1079 2765 &L_success, &L_failure, NULL);
jrose@1079 2766 Register sub_2 = sub_klass;
jrose@1079 2767 Register sup_2 = super_klass;
jrose@1079 2768 if (!sub_2->is_global()) sub_2 = L0;
jrose@1079 2769 if (!sup_2->is_global()) sup_2 = L1;
jrose@1079 2770
jrose@1079 2771 save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
jrose@1079 2772 check_klass_subtype_slow_path(sub_2, sup_2,
jrose@1079 2773 L2, L3, L4, L5,
jrose@1079 2774 NULL, &L_pop_to_failure);
jrose@1079 2775
jrose@1079 2776 // on success:
jrose@1079 2777 restore();
jrose@1079 2778 ba(false, L_success);
jrose@1079 2779 delayed()->nop();
jrose@1079 2780
jrose@1079 2781 // on failure:
jrose@1079 2782 bind(L_pop_to_failure);
jrose@1079 2783 restore();
jrose@1079 2784 bind(L_failure);
jrose@1079 2785 }
jrose@1079 2786
jrose@1079 2787
jrose@1079 2788 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
jrose@1079 2789 Register super_klass,
jrose@1079 2790 Register temp_reg,
jrose@1079 2791 Register temp2_reg,
jrose@1079 2792 Label* L_success,
jrose@1079 2793 Label* L_failure,
jrose@1079 2794 Label* L_slow_path,
jrose@1100 2795 RegisterOrConstant super_check_offset,
jrose@1079 2796 Register instanceof_hack) {
jrose@1079 2797 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 2798 Klass::secondary_super_cache_offset_in_bytes());
jrose@1079 2799 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 2800 Klass::super_check_offset_offset_in_bytes());
jrose@1079 2801
jrose@1079 2802 bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
jrose@1079 2803 bool need_slow_path = (must_load_sco ||
jrose@1079 2804 super_check_offset.constant_or_zero() == sco_offset);
jrose@1079 2805
jrose@1079 2806 assert_different_registers(sub_klass, super_klass, temp_reg);
jrose@1079 2807 if (super_check_offset.is_register()) {
jrose@1079 2808 assert_different_registers(sub_klass, super_klass,
jrose@1079 2809 super_check_offset.as_register());
jrose@1079 2810 } else if (must_load_sco) {
jrose@1079 2811 assert(temp2_reg != noreg, "supply either a temp or a register offset");
jrose@1079 2812 }
jrose@1079 2813
jrose@1079 2814 Label L_fallthrough;
jrose@1079 2815 int label_nulls = 0;
jrose@1079 2816 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
jrose@1079 2817 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
jrose@1079 2818 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
jrose@1079 2819 assert(label_nulls <= 1 || instanceof_hack != noreg ||
jrose@1079 2820 (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
jrose@1079 2821 "at most one NULL in the batch, usually");
jrose@1079 2822
jrose@1079 2823 // Support for the instanceof hack, which uses delay slots to
jrose@1079 2824 // set a destination register to zero or one.
jrose@1079 2825 bool do_bool_sets = (instanceof_hack != noreg);
jrose@1079 2826 #define BOOL_SET(bool_value) \
jrose@1079 2827 if (do_bool_sets && bool_value >= 0) \
jrose@1079 2828 set(bool_value, instanceof_hack)
jrose@1079 2829 #define DELAYED_BOOL_SET(bool_value) \
jrose@1079 2830 if (do_bool_sets && bool_value >= 0) \
jrose@1079 2831 delayed()->set(bool_value, instanceof_hack); \
jrose@1079 2832 else delayed()->nop()
jrose@1079 2833 // Hacked ba(), which may only be used just before L_fallthrough.
jrose@1079 2834 #define FINAL_JUMP(label, bool_value) \
jrose@1079 2835 if (&(label) == &L_fallthrough) { \
jrose@1079 2836 BOOL_SET(bool_value); \
jrose@1079 2837 } else { \
jrose@1079 2838 ba((do_bool_sets && bool_value >= 0), label); \
jrose@1079 2839 DELAYED_BOOL_SET(bool_value); \
jrose@1079 2840 }
jrose@1079 2841
jrose@1079 2842 // If the pointers are equal, we are done (e.g., String[] elements).
jrose@1079 2843 // This self-check enables sharing of secondary supertype arrays among
jrose@1079 2844 // non-primary types such as array-of-interface. Otherwise, each such
jrose@1079 2845 // type would need its own customized SSA.
jrose@1079 2846 // We move this check to the front of the fast path because many
jrose@1079 2847 // type checks are in fact trivially successful in this manner,
jrose@1079 2848 // so we get a nicely predicted branch right at the start of the check.
jrose@1079 2849 cmp(super_klass, sub_klass);
jrose@1079 2850 brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
jrose@1079 2851 DELAYED_BOOL_SET(1);
jrose@1079 2852
jrose@1079 2853 // Check the supertype display:
jrose@1079 2854 if (must_load_sco) {
jrose@1079 2855 // The super check offset is always positive...
jrose@1079 2856 lduw(super_klass, sco_offset, temp2_reg);
jrose@1100 2857 super_check_offset = RegisterOrConstant(temp2_reg);
jrose@1079 2858 }
jrose@1079 2859 ld_ptr(sub_klass, super_check_offset, temp_reg);
jrose@1079 2860 cmp(super_klass, temp_reg);
jrose@1079 2861
jrose@1079 2862 // This check has worked decisively for primary supers.
jrose@1079 2863 // Secondary supers are sought in the super_cache ('super_cache_addr').
jrose@1079 2864 // (Secondary supers are interfaces and very deeply nested subtypes.)
jrose@1079 2865 // This works in the same check above because of a tricky aliasing
jrose@1079 2866 // between the super_cache and the primary super display elements.
jrose@1079 2867 // (The 'super_check_addr' can address either, as the case requires.)
jrose@1079 2868 // Note that the cache is updated below if it does not help us find
jrose@1079 2869 // what we need immediately.
jrose@1079 2870 // So if it was a primary super, we can just fail immediately.
jrose@1079 2871 // Otherwise, it's the slow path for us (no success at this point).
jrose@1079 2872
jrose@1079 2873 if (super_check_offset.is_register()) {
jrose@1079 2874 brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
jrose@1079 2875 delayed(); if (do_bool_sets) BOOL_SET(1);
jrose@1079 2876 // if !do_bool_sets, sneak the next cmp into the delay slot:
jrose@1079 2877 cmp(super_check_offset.as_register(), sc_offset);
jrose@1079 2878
jrose@1079 2879 if (L_failure == &L_fallthrough) {
jrose@1079 2880 brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_slow_path);
jrose@1079 2881 delayed()->nop();
jrose@1079 2882 BOOL_SET(0); // fallthrough on failure
jrose@1079 2883 } else {
jrose@1079 2884 brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
jrose@1079 2885 DELAYED_BOOL_SET(0);
jrose@1079 2886 FINAL_JUMP(*L_slow_path, -1); // -1 => vanilla delay slot
jrose@1079 2887 }
jrose@1079 2888 } else if (super_check_offset.as_constant() == sc_offset) {
jrose@1079 2889 // Need a slow path; fast failure is impossible.
jrose@1079 2890 if (L_slow_path == &L_fallthrough) {
jrose@1079 2891 brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
jrose@1079 2892 DELAYED_BOOL_SET(1);
jrose@1079 2893 } else {
jrose@1079 2894 brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
jrose@1079 2895 delayed()->nop();
jrose@1079 2896 FINAL_JUMP(*L_success, 1);
jrose@1079 2897 }
jrose@1079 2898 } else {
jrose@1079 2899 // No slow path; it's a fast decision.
jrose@1079 2900 if (L_failure == &L_fallthrough) {
jrose@1079 2901 brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
jrose@1079 2902 DELAYED_BOOL_SET(1);
jrose@1079 2903 BOOL_SET(0);
jrose@1079 2904 } else {
jrose@1079 2905 brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
jrose@1079 2906 DELAYED_BOOL_SET(0);
jrose@1079 2907 FINAL_JUMP(*L_success, 1);
jrose@1079 2908 }
jrose@1079 2909 }
jrose@1079 2910
jrose@1079 2911 bind(L_fallthrough);
jrose@1079 2912
jrose@1079 2913 #undef final_jump
jrose@1079 2914 #undef bool_set
jrose@1079 2915 #undef DELAYED_BOOL_SET
jrose@1079 2916 #undef final_jump
jrose@1079 2917 }
jrose@1079 2918
jrose@1079 2919
jrose@1079 2920 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
jrose@1079 2921 Register super_klass,
jrose@1079 2922 Register count_temp,
jrose@1079 2923 Register scan_temp,
jrose@1079 2924 Register scratch_reg,
jrose@1079 2925 Register coop_reg,
jrose@1079 2926 Label* L_success,
jrose@1079 2927 Label* L_failure) {
jrose@1079 2928 assert_different_registers(sub_klass, super_klass,
jrose@1079 2929 count_temp, scan_temp, scratch_reg, coop_reg);
jrose@1079 2930
jrose@1079 2931 Label L_fallthrough, L_loop;
jrose@1079 2932 int label_nulls = 0;
jrose@1079 2933 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
jrose@1079 2934 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
jrose@1079 2935 assert(label_nulls <= 1, "at most one NULL in the batch");
jrose@1079 2936
jrose@1079 2937 // a couple of useful fields in sub_klass:
jrose@1079 2938 int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 2939 Klass::secondary_supers_offset_in_bytes());
jrose@1079 2940 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 2941 Klass::secondary_super_cache_offset_in_bytes());
jrose@1079 2942
jrose@1079 2943 // Do a linear scan of the secondary super-klass chain.
jrose@1079 2944 // This code is rarely used, so simplicity is a virtue here.
jrose@1079 2945
jrose@1079 2946 #ifndef PRODUCT
jrose@1079 2947 int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
jrose@1079 2948 inc_counter((address) pst_counter, count_temp, scan_temp);
jrose@1079 2949 #endif
jrose@1079 2950
jrose@1079 2951 // We will consult the secondary-super array.
jrose@1079 2952 ld_ptr(sub_klass, ss_offset, scan_temp);
jrose@1079 2953
jrose@1079 2954 // Compress superclass if necessary.
jrose@1079 2955 Register search_key = super_klass;
jrose@1079 2956 bool decode_super_klass = false;
jrose@1079 2957 if (UseCompressedOops) {
jrose@1079 2958 if (coop_reg != noreg) {
jrose@1079 2959 encode_heap_oop_not_null(super_klass, coop_reg);
jrose@1079 2960 search_key = coop_reg;
jrose@1079 2961 } else {
jrose@1079 2962 encode_heap_oop_not_null(super_klass);
jrose@1079 2963 decode_super_klass = true; // scarce temps!
jrose@1079 2964 }
jrose@1079 2965 // The superclass is never null; it would be a basic system error if a null
jrose@1079 2966 // pointer were to sneak in here. Note that we have already loaded the
jrose@1079 2967 // Klass::super_check_offset from the super_klass in the fast path,
jrose@1079 2968 // so if there is a null in that register, we are already in the afterlife.
jrose@1079 2969 }
jrose@1079 2970
jrose@1079 2971 // Load the array length. (Positive movl does right thing on LP64.)
jrose@1079 2972 lduw(scan_temp, arrayOopDesc::length_offset_in_bytes(), count_temp);
jrose@1079 2973
jrose@1079 2974 // Check for empty secondary super list
jrose@1079 2975 tst(count_temp);
jrose@1079 2976
jrose@1079 2977 // Top of search loop
jrose@1079 2978 bind(L_loop);
jrose@1079 2979 br(Assembler::equal, false, Assembler::pn, *L_failure);
jrose@1079 2980 delayed()->add(scan_temp, heapOopSize, scan_temp);
jrose@1079 2981 assert(heapOopSize != 0, "heapOopSize should be initialized");
jrose@1079 2982
jrose@1079 2983 // Skip the array header in all array accesses.
jrose@1079 2984 int elem_offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
jrose@1079 2985 elem_offset -= heapOopSize; // the scan pointer was pre-incremented also
jrose@1079 2986
jrose@1079 2987 // Load next super to check
jrose@1079 2988 if (UseCompressedOops) {
jrose@1079 2989 // Don't use load_heap_oop; we don't want to decode the element.
jrose@1079 2990 lduw( scan_temp, elem_offset, scratch_reg );
jrose@1079 2991 } else {
jrose@1079 2992 ld_ptr( scan_temp, elem_offset, scratch_reg );
jrose@1079 2993 }
jrose@1079 2994
jrose@1079 2995 // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
jrose@1079 2996 cmp(scratch_reg, search_key);
jrose@1079 2997
jrose@1079 2998 // A miss means we are NOT a subtype and need to keep looping
jrose@1079 2999 brx(Assembler::notEqual, false, Assembler::pn, L_loop);
jrose@1079 3000 delayed()->deccc(count_temp); // decrement trip counter in delay slot
jrose@1079 3001
jrose@1079 3002 // Falling out the bottom means we found a hit; we ARE a subtype
jrose@1079 3003 if (decode_super_klass) decode_heap_oop(super_klass);
jrose@1079 3004
jrose@1079 3005 // Success. Cache the super we found and proceed in triumph.
jrose@1079 3006 st_ptr(super_klass, sub_klass, sc_offset);
jrose@1079 3007
jrose@1079 3008 if (L_success != &L_fallthrough) {
jrose@1079 3009 ba(false, *L_success);
jrose@1079 3010 delayed()->nop();
jrose@1079 3011 }
jrose@1079 3012
jrose@1079 3013 bind(L_fallthrough);
jrose@1079 3014 }
jrose@1079 3015
jrose@1079 3016
jrose@1079 3017
jrose@1079 3018
jrose@1145 3019 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
jrose@1145 3020 Register temp_reg,
jrose@1145 3021 Label& wrong_method_type) {
jrose@1145 3022 assert_different_registers(mtype_reg, mh_reg, temp_reg);
jrose@1145 3023 // compare method type against that of the receiver
jrose@1145 3024 RegisterOrConstant mhtype_offset = delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg);
jrose@1145 3025 ld_ptr(mh_reg, mhtype_offset, temp_reg);
jrose@1145 3026 cmp(temp_reg, mtype_reg);
jrose@1145 3027 br(Assembler::notEqual, false, Assembler::pn, wrong_method_type);
jrose@1145 3028 delayed()->nop();
jrose@1145 3029 }
jrose@1145 3030
jrose@1145 3031
jrose@1145 3032 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
jrose@1145 3033 assert(mh_reg == G3_method_handle, "caller must put MH object in G3");
jrose@1145 3034 assert_different_registers(mh_reg, temp_reg);
jrose@1145 3035
jrose@1145 3036 // pick out the interpreted side of the handler
jrose@1145 3037 ld_ptr(mh_reg, delayed_value(java_dyn_MethodHandle::vmentry_offset_in_bytes, temp_reg), temp_reg);
jrose@1145 3038
jrose@1145 3039 // off we go...
jrose@1145 3040 ld_ptr(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes(), temp_reg);
jrose@1145 3041 jmp(temp_reg, 0);
jrose@1145 3042
jrose@1145 3043 // for the various stubs which take control at this point,
jrose@1145 3044 // see MethodHandles::generate_method_handle_stub
jrose@1145 3045
jrose@1145 3046 // (Can any caller use this delay slot? If so, add an option for supression.)
jrose@1145 3047 delayed()->nop();
jrose@1145 3048 }
jrose@1145 3049
jrose@1145 3050 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
jrose@1145 3051 int extra_slot_offset) {
jrose@1145 3052 // cf. TemplateTable::prepare_invoke(), if (load_receiver).
jrose@1145 3053 int stackElementSize = Interpreter::stackElementWords() * wordSize;
jrose@1145 3054 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
jrose@1145 3055 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
jrose@1145 3056 assert(offset1 - offset == stackElementSize, "correct arithmetic");
jrose@1145 3057 if (arg_slot.is_constant()) {
jrose@1145 3058 offset += arg_slot.as_constant() * stackElementSize;
jrose@1145 3059 return offset;
jrose@1145 3060 } else {
jrose@1145 3061 Register temp = arg_slot.as_register();
jrose@1145 3062 sll_ptr(temp, exact_log2(stackElementSize), temp);
jrose@1145 3063 if (offset != 0)
jrose@1145 3064 add(temp, offset, temp);
jrose@1145 3065 return temp;
jrose@1145 3066 }
jrose@1145 3067 }
jrose@1145 3068
jrose@1145 3069
jrose@1145 3070
kvn@855 3071 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
kvn@855 3072 Register temp_reg,
duke@435 3073 Label& done, Label* slow_case,
duke@435 3074 BiasedLockingCounters* counters) {
duke@435 3075 assert(UseBiasedLocking, "why call this otherwise?");
duke@435 3076
duke@435 3077 if (PrintBiasedLockingStatistics) {
duke@435 3078 assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
duke@435 3079 if (counters == NULL)
duke@435 3080 counters = BiasedLocking::counters();
duke@435 3081 }
duke@435 3082
duke@435 3083 Label cas_label;
duke@435 3084
duke@435 3085 // Biased locking
duke@435 3086 // See whether the lock is currently biased toward our thread and
duke@435 3087 // whether the epoch is still valid
duke@435 3088 // Note that the runtime guarantees sufficient alignment of JavaThread
duke@435 3089 // pointers to allow age to be placed into low bits
duke@435 3090 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
duke@435 3091 and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 3092 cmp(temp_reg, markOopDesc::biased_lock_pattern);
duke@435 3093 brx(Assembler::notEqual, false, Assembler::pn, cas_label);
coleenp@548 3094 delayed()->nop();
coleenp@548 3095
coleenp@548 3096 load_klass(obj_reg, temp_reg);
twisti@1162 3097 ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
duke@435 3098 or3(G2_thread, temp_reg, temp_reg);
duke@435 3099 xor3(mark_reg, temp_reg, temp_reg);
duke@435 3100 andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
duke@435 3101 if (counters != NULL) {
duke@435 3102 cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3103 // Reload mark_reg as we may need it later
twisti@1162 3104 ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
duke@435 3105 }
duke@435 3106 brx(Assembler::equal, true, Assembler::pt, done);
duke@435 3107 delayed()->nop();
duke@435 3108
duke@435 3109 Label try_revoke_bias;
duke@435 3110 Label try_rebias;
twisti@1162 3111 Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 3112 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3113
duke@435 3114 // At this point we know that the header has the bias pattern and
duke@435 3115 // that we are not the bias owner in the current epoch. We need to
duke@435 3116 // figure out more details about the state of the header in order to
duke@435 3117 // know what operations can be legally performed on the object's
duke@435 3118 // header.
duke@435 3119
duke@435 3120 // If the low three bits in the xor result aren't clear, that means
duke@435 3121 // the prototype header is no longer biased and we have to revoke
duke@435 3122 // the bias on this object.
duke@435 3123 btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 3124 brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
duke@435 3125
duke@435 3126 // Biasing is still enabled for this data type. See whether the
duke@435 3127 // epoch of the current bias is still valid, meaning that the epoch
duke@435 3128 // bits of the mark word are equal to the epoch bits of the
duke@435 3129 // prototype header. (Note that the prototype header's epoch bits
duke@435 3130 // only change at a safepoint.) If not, attempt to rebias the object
duke@435 3131 // toward the current thread. Note that we must be absolutely sure
duke@435 3132 // that the current epoch is invalid in order to do this because
duke@435 3133 // otherwise the manipulations it performs on the mark word are
duke@435 3134 // illegal.
duke@435 3135 delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
duke@435 3136 brx(Assembler::notZero, false, Assembler::pn, try_rebias);
duke@435 3137
duke@435 3138 // The epoch of the current bias is still valid but we know nothing
duke@435 3139 // about the owner; it might be set or it might be clear. Try to
duke@435 3140 // acquire the bias of the object using an atomic operation. If this
duke@435 3141 // fails we will go in to the runtime to revoke the object's bias.
duke@435 3142 // Note that we first construct the presumed unbiased header so we
duke@435 3143 // don't accidentally blow away another thread's valid bias.
duke@435 3144 delayed()->and3(mark_reg,
duke@435 3145 markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
duke@435 3146 mark_reg);
duke@435 3147 or3(G2_thread, mark_reg, temp_reg);
kvn@855 3148 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3149 // If the biasing toward our thread failed, this means that
duke@435 3150 // another thread succeeded in biasing it toward itself and we
duke@435 3151 // need to revoke that bias. The revocation will occur in the
duke@435 3152 // interpreter runtime in the slow case.
duke@435 3153 cmp(mark_reg, temp_reg);
duke@435 3154 if (counters != NULL) {
duke@435 3155 cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3156 }
duke@435 3157 if (slow_case != NULL) {
duke@435 3158 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
duke@435 3159 delayed()->nop();
duke@435 3160 }
duke@435 3161 br(Assembler::always, false, Assembler::pt, done);
duke@435 3162 delayed()->nop();
duke@435 3163
duke@435 3164 bind(try_rebias);
duke@435 3165 // At this point we know the epoch has expired, meaning that the
duke@435 3166 // current "bias owner", if any, is actually invalid. Under these
duke@435 3167 // circumstances _only_, we are allowed to use the current header's
duke@435 3168 // value as the comparison value when doing the cas to acquire the
duke@435 3169 // bias in the current epoch. In other words, we allow transfer of
duke@435 3170 // the bias from one thread to another directly in this situation.
duke@435 3171 //
duke@435 3172 // FIXME: due to a lack of registers we currently blow away the age
duke@435 3173 // bits in this situation. Should attempt to preserve them.
coleenp@548 3174 load_klass(obj_reg, temp_reg);
twisti@1162 3175 ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
duke@435 3176 or3(G2_thread, temp_reg, temp_reg);
kvn@855 3177 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3178 // If the biasing toward our thread failed, this means that
duke@435 3179 // another thread succeeded in biasing it toward itself and we
duke@435 3180 // need to revoke that bias. The revocation will occur in the
duke@435 3181 // interpreter runtime in the slow case.
duke@435 3182 cmp(mark_reg, temp_reg);
duke@435 3183 if (counters != NULL) {
duke@435 3184 cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3185 }
duke@435 3186 if (slow_case != NULL) {
duke@435 3187 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
duke@435 3188 delayed()->nop();
duke@435 3189 }
duke@435 3190 br(Assembler::always, false, Assembler::pt, done);
duke@435 3191 delayed()->nop();
duke@435 3192
duke@435 3193 bind(try_revoke_bias);
duke@435 3194 // The prototype mark in the klass doesn't have the bias bit set any
duke@435 3195 // more, indicating that objects of this data type are not supposed
duke@435 3196 // to be biased any more. We are going to try to reset the mark of
duke@435 3197 // this object to the prototype value and fall through to the
duke@435 3198 // CAS-based locking scheme. Note that if our CAS fails, it means
duke@435 3199 // that another thread raced us for the privilege of revoking the
duke@435 3200 // bias of this particular object, so it's okay to continue in the
duke@435 3201 // normal locking code.
duke@435 3202 //
duke@435 3203 // FIXME: due to a lack of registers we currently blow away the age
duke@435 3204 // bits in this situation. Should attempt to preserve them.
coleenp@548 3205 load_klass(obj_reg, temp_reg);
twisti@1162 3206 ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
kvn@855 3207 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3208 // Fall through to the normal CAS-based lock, because no matter what
duke@435 3209 // the result of the above CAS, some thread must have succeeded in
duke@435 3210 // removing the bias bit from the object's header.
duke@435 3211 if (counters != NULL) {
duke@435 3212 cmp(mark_reg, temp_reg);
duke@435 3213 cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3214 }
duke@435 3215
duke@435 3216 bind(cas_label);
duke@435 3217 }
duke@435 3218
duke@435 3219 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
duke@435 3220 bool allow_delay_slot_filling) {
duke@435 3221 // Check for biased locking unlock case, which is a no-op
duke@435 3222 // Note: we do not have to check the thread ID for two reasons.
duke@435 3223 // First, the interpreter checks for IllegalMonitorStateException at
duke@435 3224 // a higher level. Second, if the bias was revoked while we held the
duke@435 3225 // lock, the object could not be rebiased toward another thread, so
duke@435 3226 // the bias bit would be clear.
duke@435 3227 ld_ptr(mark_addr, temp_reg);
duke@435 3228 and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 3229 cmp(temp_reg, markOopDesc::biased_lock_pattern);
duke@435 3230 brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
duke@435 3231 delayed();
duke@435 3232 if (!allow_delay_slot_filling) {
duke@435 3233 nop();
duke@435 3234 }
duke@435 3235 }
duke@435 3236
duke@435 3237
duke@435 3238 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
duke@435 3239 // Solaris/SPARC's "as". Another apt name would be cas_ptr()
duke@435 3240
duke@435 3241 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
duke@435 3242 casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
duke@435 3243 }
duke@435 3244
duke@435 3245
duke@435 3246
duke@435 3247 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
duke@435 3248 // of i486.ad fast_lock() and fast_unlock(). See those methods for detailed comments.
duke@435 3249 // The code could be tightened up considerably.
duke@435 3250 //
duke@435 3251 // box->dhw disposition - post-conditions at DONE_LABEL.
duke@435 3252 // - Successful inflated lock: box->dhw != 0.
duke@435 3253 // Any non-zero value suffices.
duke@435 3254 // Consider G2_thread, rsp, boxReg, or unused_mark()
duke@435 3255 // - Successful Stack-lock: box->dhw == mark.
duke@435 3256 // box->dhw must contain the displaced mark word value
duke@435 3257 // - Failure -- icc.ZFlag == 0 and box->dhw is undefined.
duke@435 3258 // The slow-path fast_enter() and slow_enter() operators
duke@435 3259 // are responsible for setting box->dhw = NonZero (typically ::unused_mark).
duke@435 3260 // - Biased: box->dhw is undefined
duke@435 3261 //
duke@435 3262 // SPARC refworkload performance - specifically jetstream and scimark - are
duke@435 3263 // extremely sensitive to the size of the code emitted by compiler_lock_object
duke@435 3264 // and compiler_unlock_object. Critically, the key factor is code size, not path
duke@435 3265 // length. (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
duke@435 3266 // effect).
duke@435 3267
duke@435 3268
kvn@855 3269 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
kvn@855 3270 Register Rbox, Register Rscratch,
kvn@855 3271 BiasedLockingCounters* counters,
kvn@855 3272 bool try_bias) {
twisti@1162 3273 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
duke@435 3274
duke@435 3275 verify_oop(Roop);
duke@435 3276 Label done ;
duke@435 3277
duke@435 3278 if (counters != NULL) {
duke@435 3279 inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
duke@435 3280 }
duke@435 3281
duke@435 3282 if (EmitSync & 1) {
duke@435 3283 mov (3, Rscratch) ;
duke@435 3284 st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3285 cmp (SP, G0) ;
duke@435 3286 return ;
duke@435 3287 }
duke@435 3288
duke@435 3289 if (EmitSync & 2) {
duke@435 3290
duke@435 3291 // Fetch object's markword
duke@435 3292 ld_ptr(mark_addr, Rmark);
duke@435 3293
kvn@855 3294 if (try_bias) {
duke@435 3295 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3296 }
duke@435 3297
duke@435 3298 // Save Rbox in Rscratch to be used for the cas operation
duke@435 3299 mov(Rbox, Rscratch);
duke@435 3300
duke@435 3301 // set Rmark to markOop | markOopDesc::unlocked_value
duke@435 3302 or3(Rmark, markOopDesc::unlocked_value, Rmark);
duke@435 3303
duke@435 3304 // Initialize the box. (Must happen before we update the object mark!)
duke@435 3305 st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3306
duke@435 3307 // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
duke@435 3308 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3309 casx_under_lock(mark_addr.base(), Rmark, Rscratch,
duke@435 3310 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 3311
duke@435 3312 // if compare/exchange succeeded we found an unlocked object and we now have locked it
duke@435 3313 // hence we are done
duke@435 3314 cmp(Rmark, Rscratch);
duke@435 3315 #ifdef _LP64
duke@435 3316 sub(Rscratch, STACK_BIAS, Rscratch);
duke@435 3317 #endif
duke@435 3318 brx(Assembler::equal, false, Assembler::pt, done);
duke@435 3319 delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot
duke@435 3320
duke@435 3321 // we did not find an unlocked object so see if this is a recursive case
duke@435 3322 // sub(Rscratch, SP, Rscratch);
duke@435 3323 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 3324 andcc(Rscratch, 0xfffff003, Rscratch);
duke@435 3325 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3326 bind (done) ;
duke@435 3327 return ;
duke@435 3328 }
duke@435 3329
duke@435 3330 Label Egress ;
duke@435 3331
duke@435 3332 if (EmitSync & 256) {
duke@435 3333 Label IsInflated ;
duke@435 3334
duke@435 3335 ld_ptr (mark_addr, Rmark); // fetch obj->mark
duke@435 3336 // Triage: biased, stack-locked, neutral, inflated
kvn@855 3337 if (try_bias) {
duke@435 3338 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3339 // Invariant: if control reaches this point in the emitted stream
duke@435 3340 // then Rmark has not been modified.
duke@435 3341 }
duke@435 3342
duke@435 3343 // Store mark into displaced mark field in the on-stack basic-lock "box"
duke@435 3344 // Critically, this must happen before the CAS
duke@435 3345 // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
duke@435 3346 st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3347 andcc (Rmark, 2, G0) ;
duke@435 3348 brx (Assembler::notZero, false, Assembler::pn, IsInflated) ;
duke@435 3349 delayed() ->
duke@435 3350
duke@435 3351 // Try stack-lock acquisition.
duke@435 3352 // Beware: the 1st instruction is in a delay slot
duke@435 3353 mov (Rbox, Rscratch);
duke@435 3354 or3 (Rmark, markOopDesc::unlocked_value, Rmark);
duke@435 3355 assert (mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3356 casn (mark_addr.base(), Rmark, Rscratch) ;
duke@435 3357 cmp (Rmark, Rscratch);
duke@435 3358 brx (Assembler::equal, false, Assembler::pt, done);
duke@435 3359 delayed()->sub(Rscratch, SP, Rscratch);
duke@435 3360
duke@435 3361 // Stack-lock attempt failed - check for recursive stack-lock.
duke@435 3362 // See the comments below about how we might remove this case.
duke@435 3363 #ifdef _LP64
duke@435 3364 sub (Rscratch, STACK_BIAS, Rscratch);
duke@435 3365 #endif
duke@435 3366 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 3367 andcc (Rscratch, 0xfffff003, Rscratch);
duke@435 3368 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3369 delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3370
duke@435 3371 bind (IsInflated) ;
duke@435 3372 if (EmitSync & 64) {
duke@435 3373 // If m->owner != null goto IsLocked
duke@435 3374 // Pessimistic form: Test-and-CAS vs CAS
duke@435 3375 // The optimistic form avoids RTS->RTO cache line upgrades.
twisti@1162 3376 ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
duke@435 3377 andcc (Rscratch, Rscratch, G0) ;
duke@435 3378 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 3379 delayed()->nop() ;
duke@435 3380 // m->owner == null : it's unlocked.
duke@435 3381 }
duke@435 3382
duke@435 3383 // Try to CAS m->owner from null to Self
duke@435 3384 // Invariant: if we acquire the lock then _recursions should be 0.
duke@435 3385 add (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
duke@435 3386 mov (G2_thread, Rscratch) ;
duke@435 3387 casn (Rmark, G0, Rscratch) ;
duke@435 3388 cmp (Rscratch, G0) ;
duke@435 3389 // Intentional fall-through into done
duke@435 3390 } else {
duke@435 3391 // Aggressively avoid the Store-before-CAS penalty
duke@435 3392 // Defer the store into box->dhw until after the CAS
duke@435 3393 Label IsInflated, Recursive ;
duke@435 3394
duke@435 3395 // Anticipate CAS -- Avoid RTS->RTO upgrade
duke@435 3396 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
duke@435 3397
duke@435 3398 ld_ptr (mark_addr, Rmark); // fetch obj->mark
duke@435 3399 // Triage: biased, stack-locked, neutral, inflated
duke@435 3400
kvn@855 3401 if (try_bias) {
duke@435 3402 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3403 // Invariant: if control reaches this point in the emitted stream
duke@435 3404 // then Rmark has not been modified.
duke@435 3405 }
duke@435 3406 andcc (Rmark, 2, G0) ;
duke@435 3407 brx (Assembler::notZero, false, Assembler::pn, IsInflated) ;
duke@435 3408 delayed()-> // Beware - dangling delay-slot
duke@435 3409
duke@435 3410 // Try stack-lock acquisition.
duke@435 3411 // Transiently install BUSY (0) encoding in the mark word.
duke@435 3412 // if the CAS of 0 into the mark was successful then we execute:
duke@435 3413 // ST box->dhw = mark -- save fetched mark in on-stack basiclock box
duke@435 3414 // ST obj->mark = box -- overwrite transient 0 value
duke@435 3415 // This presumes TSO, of course.
duke@435 3416
duke@435 3417 mov (0, Rscratch) ;
duke@435 3418 or3 (Rmark, markOopDesc::unlocked_value, Rmark);
duke@435 3419 assert (mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3420 casn (mark_addr.base(), Rmark, Rscratch) ;
duke@435 3421 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
duke@435 3422 cmp (Rscratch, Rmark) ;
duke@435 3423 brx (Assembler::notZero, false, Assembler::pn, Recursive) ;
duke@435 3424 delayed() ->
duke@435 3425 st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3426 if (counters != NULL) {
duke@435 3427 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
duke@435 3428 }
duke@435 3429 br (Assembler::always, false, Assembler::pt, done);
duke@435 3430 delayed() ->
duke@435 3431 st_ptr (Rbox, mark_addr) ;
duke@435 3432
duke@435 3433 bind (Recursive) ;
duke@435 3434 // Stack-lock attempt failed - check for recursive stack-lock.
duke@435 3435 // Tests show that we can remove the recursive case with no impact
duke@435 3436 // on refworkload 0.83. If we need to reduce the size of the code
duke@435 3437 // emitted by compiler_lock_object() the recursive case is perfect
duke@435 3438 // candidate.
duke@435 3439 //
duke@435 3440 // A more extreme idea is to always inflate on stack-lock recursion.
duke@435 3441 // This lets us eliminate the recursive checks in compiler_lock_object
duke@435 3442 // and compiler_unlock_object and the (box->dhw == 0) encoding.
duke@435 3443 // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
duke@435 3444 // and showed a performance *increase*. In the same experiment I eliminated
duke@435 3445 // the fast-path stack-lock code from the interpreter and always passed
duke@435 3446 // control to the "slow" operators in synchronizer.cpp.
duke@435 3447
duke@435 3448 // RScratch contains the fetched obj->mark value from the failed CASN.
duke@435 3449 #ifdef _LP64
duke@435 3450 sub (Rscratch, STACK_BIAS, Rscratch);
duke@435 3451 #endif
duke@435 3452 sub(Rscratch, SP, Rscratch);
duke@435 3453 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 3454 andcc (Rscratch, 0xfffff003, Rscratch);
duke@435 3455 if (counters != NULL) {
duke@435 3456 // Accounting needs the Rscratch register
duke@435 3457 st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3458 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
duke@435 3459 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3460 delayed()->nop() ;
duke@435 3461 } else {
duke@435 3462 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3463 delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3464 }
duke@435 3465
duke@435 3466 bind (IsInflated) ;
duke@435 3467 if (EmitSync & 64) {
duke@435 3468 // If m->owner != null goto IsLocked
duke@435 3469 // Test-and-CAS vs CAS
duke@435 3470 // Pessimistic form avoids futile (doomed) CAS attempts
duke@435 3471 // The optimistic form avoids RTS->RTO cache line upgrades.
twisti@1162 3472 ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
duke@435 3473 andcc (Rscratch, Rscratch, G0) ;
duke@435 3474 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 3475 delayed()->nop() ;
duke@435 3476 // m->owner == null : it's unlocked.
duke@435 3477 }
duke@435 3478
duke@435 3479 // Try to CAS m->owner from null to Self
duke@435 3480 // Invariant: if we acquire the lock then _recursions should be 0.
duke@435 3481 add (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
duke@435 3482 mov (G2_thread, Rscratch) ;
duke@435 3483 casn (Rmark, G0, Rscratch) ;
duke@435 3484 cmp (Rscratch, G0) ;
duke@435 3485 // ST box->displaced_header = NonZero.
duke@435 3486 // Any non-zero value suffices:
duke@435 3487 // unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
duke@435 3488 st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3489 // Intentional fall-through into done
duke@435 3490 }
duke@435 3491
duke@435 3492 bind (done) ;
duke@435 3493 }
duke@435 3494
kvn@855 3495 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
kvn@855 3496 Register Rbox, Register Rscratch,
kvn@855 3497 bool try_bias) {
twisti@1162 3498 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
duke@435 3499
duke@435 3500 Label done ;
duke@435 3501
duke@435 3502 if (EmitSync & 4) {
duke@435 3503 cmp (SP, G0) ;
duke@435 3504 return ;
duke@435 3505 }
duke@435 3506
duke@435 3507 if (EmitSync & 8) {
kvn@855 3508 if (try_bias) {
duke@435 3509 biased_locking_exit(mark_addr, Rscratch, done);
duke@435 3510 }
duke@435 3511
duke@435 3512 // Test first if it is a fast recursive unlock
duke@435 3513 ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
duke@435 3514 cmp(Rmark, G0);
duke@435 3515 brx(Assembler::equal, false, Assembler::pt, done);
duke@435 3516 delayed()->nop();
duke@435 3517
duke@435 3518 // Check if it is still a light weight lock, this is is true if we see
duke@435 3519 // the stack address of the basicLock in the markOop of the object
duke@435 3520 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3521 casx_under_lock(mark_addr.base(), Rbox, Rmark,
duke@435 3522 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 3523 br (Assembler::always, false, Assembler::pt, done);
duke@435 3524 delayed()->cmp(Rbox, Rmark);
duke@435 3525 bind (done) ;
duke@435 3526 return ;
duke@435 3527 }
duke@435 3528
duke@435 3529 // Beware ... If the aggregate size of the code emitted by CLO and CUO is
duke@435 3530 // is too large performance rolls abruptly off a cliff.
duke@435 3531 // This could be related to inlining policies, code cache management, or
duke@435 3532 // I$ effects.
duke@435 3533 Label LStacked ;
duke@435 3534
kvn@855 3535 if (try_bias) {
duke@435 3536 // TODO: eliminate redundant LDs of obj->mark
duke@435 3537 biased_locking_exit(mark_addr, Rscratch, done);
duke@435 3538 }
duke@435 3539
duke@435 3540 ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
duke@435 3541 ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
duke@435 3542 andcc (Rscratch, Rscratch, G0);
duke@435 3543 brx (Assembler::zero, false, Assembler::pn, done);
duke@435 3544 delayed()-> nop() ; // consider: relocate fetch of mark, above, into this DS
duke@435 3545 andcc (Rmark, 2, G0) ;
duke@435 3546 brx (Assembler::zero, false, Assembler::pt, LStacked) ;
duke@435 3547 delayed()-> nop() ;
duke@435 3548
duke@435 3549 // It's inflated
duke@435 3550 // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
duke@435 3551 // the ST of 0 into _owner which releases the lock. This prevents loads
duke@435 3552 // and stores within the critical section from reordering (floating)
duke@435 3553 // past the store that releases the lock. But TSO is a strong memory model
duke@435 3554 // and that particular flavor of barrier is a noop, so we can safely elide it.
duke@435 3555 // Note that we use 1-0 locking by default for the inflated case. We
duke@435 3556 // close the resultant (and rare) race by having contented threads in
duke@435 3557 // monitorenter periodically poll _owner.
twisti@1162 3558 ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
twisti@1162 3559 ld_ptr (Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
duke@435 3560 xor3 (Rscratch, G2_thread, Rscratch) ;
duke@435 3561 orcc (Rbox, Rscratch, Rbox) ;
duke@435 3562 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 3563 delayed()->
twisti@1162 3564 ld_ptr (Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
twisti@1162 3565 ld_ptr (Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
duke@435 3566 orcc (Rbox, Rscratch, G0) ;
duke@435 3567 if (EmitSync & 65536) {
duke@435 3568 Label LSucc ;
duke@435 3569 brx (Assembler::notZero, false, Assembler::pn, LSucc) ;
duke@435 3570 delayed()->nop() ;
duke@435 3571 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3572 delayed()->
twisti@1162 3573 st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
duke@435 3574
duke@435 3575 bind (LSucc) ;
twisti@1162 3576 st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
duke@435 3577 if (os::is_MP()) { membar (StoreLoad) ; }
twisti@1162 3578 ld_ptr (Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
duke@435 3579 andcc (Rscratch, Rscratch, G0) ;
duke@435 3580 brx (Assembler::notZero, false, Assembler::pt, done) ;
duke@435 3581 delayed()-> andcc (G0, G0, G0) ;
duke@435 3582 add (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
duke@435 3583 mov (G2_thread, Rscratch) ;
duke@435 3584 casn (Rmark, G0, Rscratch) ;
duke@435 3585 cmp (Rscratch, G0) ;
duke@435 3586 // invert icc.zf and goto done
duke@435 3587 brx (Assembler::notZero, false, Assembler::pt, done) ;
duke@435 3588 delayed() -> cmp (G0, G0) ;
duke@435 3589 br (Assembler::always, false, Assembler::pt, done);
duke@435 3590 delayed() -> cmp (G0, 1) ;
duke@435 3591 } else {
duke@435 3592 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 3593 delayed()->nop() ;
duke@435 3594 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3595 delayed()->
twisti@1162 3596 st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
duke@435 3597 }
duke@435 3598
duke@435 3599 bind (LStacked) ;
duke@435 3600 // Consider: we could replace the expensive CAS in the exit
duke@435 3601 // path with a simple ST of the displaced mark value fetched from
duke@435 3602 // the on-stack basiclock box. That admits a race where a thread T2
duke@435 3603 // in the slow lock path -- inflating with monitor M -- could race a
duke@435 3604 // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
duke@435 3605 // More precisely T1 in the stack-lock unlock path could "stomp" the
duke@435 3606 // inflated mark value M installed by T2, resulting in an orphan
duke@435 3607 // object monitor M and T2 becoming stranded. We can remedy that situation
duke@435 3608 // by having T2 periodically poll the object's mark word using timed wait
duke@435 3609 // operations. If T2 discovers that a stomp has occurred it vacates
duke@435 3610 // the monitor M and wakes any other threads stranded on the now-orphan M.
duke@435 3611 // In addition the monitor scavenger, which performs deflation,
duke@435 3612 // would also need to check for orpan monitors and stranded threads.
duke@435 3613 //
duke@435 3614 // Finally, inflation is also used when T2 needs to assign a hashCode
duke@435 3615 // to O and O is stack-locked by T1. The "stomp" race could cause
duke@435 3616 // an assigned hashCode value to be lost. We can avoid that condition
duke@435 3617 // and provide the necessary hashCode stability invariants by ensuring
duke@435 3618 // that hashCode generation is idempotent between copying GCs.
duke@435 3619 // For example we could compute the hashCode of an object O as
duke@435 3620 // O's heap address XOR some high quality RNG value that is refreshed
duke@435 3621 // at GC-time. The monitor scavenger would install the hashCode
duke@435 3622 // found in any orphan monitors. Again, the mechanism admits a
duke@435 3623 // lost-update "stomp" WAW race but detects and recovers as needed.
duke@435 3624 //
duke@435 3625 // A prototype implementation showed excellent results, although
duke@435 3626 // the scavenger and timeout code was rather involved.
duke@435 3627
duke@435 3628 casn (mark_addr.base(), Rbox, Rscratch) ;
duke@435 3629 cmp (Rbox, Rscratch);
duke@435 3630 // Intentional fall through into done ...
duke@435 3631
duke@435 3632 bind (done) ;
duke@435 3633 }
duke@435 3634
duke@435 3635
duke@435 3636
duke@435 3637 void MacroAssembler::print_CPU_state() {
duke@435 3638 // %%%%% need to implement this
duke@435 3639 }
duke@435 3640
duke@435 3641 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
duke@435 3642 // %%%%% need to implement this
duke@435 3643 }
duke@435 3644
duke@435 3645 void MacroAssembler::push_IU_state() {
duke@435 3646 // %%%%% need to implement this
duke@435 3647 }
duke@435 3648
duke@435 3649
duke@435 3650 void MacroAssembler::pop_IU_state() {
duke@435 3651 // %%%%% need to implement this
duke@435 3652 }
duke@435 3653
duke@435 3654
duke@435 3655 void MacroAssembler::push_FPU_state() {
duke@435 3656 // %%%%% need to implement this
duke@435 3657 }
duke@435 3658
duke@435 3659
duke@435 3660 void MacroAssembler::pop_FPU_state() {
duke@435 3661 // %%%%% need to implement this
duke@435 3662 }
duke@435 3663
duke@435 3664
duke@435 3665 void MacroAssembler::push_CPU_state() {
duke@435 3666 // %%%%% need to implement this
duke@435 3667 }
duke@435 3668
duke@435 3669
duke@435 3670 void MacroAssembler::pop_CPU_state() {
duke@435 3671 // %%%%% need to implement this
duke@435 3672 }
duke@435 3673
duke@435 3674
duke@435 3675
duke@435 3676 void MacroAssembler::verify_tlab() {
duke@435 3677 #ifdef ASSERT
duke@435 3678 if (UseTLAB && VerifyOops) {
duke@435 3679 Label next, next2, ok;
duke@435 3680 Register t1 = L0;
duke@435 3681 Register t2 = L1;
duke@435 3682 Register t3 = L2;
duke@435 3683
duke@435 3684 save_frame(0);
duke@435 3685 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
duke@435 3686 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
duke@435 3687 or3(t1, t2, t3);
duke@435 3688 cmp(t1, t2);
duke@435 3689 br(Assembler::greaterEqual, false, Assembler::pn, next);
duke@435 3690 delayed()->nop();
duke@435 3691 stop("assert(top >= start)");
duke@435 3692 should_not_reach_here();
duke@435 3693
duke@435 3694 bind(next);
duke@435 3695 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
duke@435 3696 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
duke@435 3697 or3(t3, t2, t3);
duke@435 3698 cmp(t1, t2);
duke@435 3699 br(Assembler::lessEqual, false, Assembler::pn, next2);
duke@435 3700 delayed()->nop();
duke@435 3701 stop("assert(top <= end)");
duke@435 3702 should_not_reach_here();
duke@435 3703
duke@435 3704 bind(next2);
duke@435 3705 and3(t3, MinObjAlignmentInBytesMask, t3);
duke@435 3706 cmp(t3, 0);
duke@435 3707 br(Assembler::lessEqual, false, Assembler::pn, ok);
duke@435 3708 delayed()->nop();
duke@435 3709 stop("assert(aligned)");
duke@435 3710 should_not_reach_here();
duke@435 3711
duke@435 3712 bind(ok);
duke@435 3713 restore();
duke@435 3714 }
duke@435 3715 #endif
duke@435 3716 }
duke@435 3717
duke@435 3718
duke@435 3719 void MacroAssembler::eden_allocate(
duke@435 3720 Register obj, // result: pointer to object after successful allocation
duke@435 3721 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 3722 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 3723 Register t1, // temp register
duke@435 3724 Register t2, // temp register
duke@435 3725 Label& slow_case // continuation point if fast allocation fails
duke@435 3726 ){
duke@435 3727 // make sure arguments make sense
duke@435 3728 assert_different_registers(obj, var_size_in_bytes, t1, t2);
duke@435 3729 assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
duke@435 3730 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
duke@435 3731
ysr@777 3732 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
ysr@777 3733 // No allocation in the shared eden.
ysr@777 3734 br(Assembler::always, false, Assembler::pt, slow_case);
ysr@777 3735 delayed()->nop();
ysr@777 3736 } else {
ysr@777 3737 // get eden boundaries
ysr@777 3738 // note: we need both top & top_addr!
ysr@777 3739 const Register top_addr = t1;
ysr@777 3740 const Register end = t2;
ysr@777 3741
ysr@777 3742 CollectedHeap* ch = Universe::heap();
ysr@777 3743 set((intx)ch->top_addr(), top_addr);
ysr@777 3744 intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
ysr@777 3745 ld_ptr(top_addr, delta, end);
ysr@777 3746 ld_ptr(top_addr, 0, obj);
ysr@777 3747
ysr@777 3748 // try to allocate
ysr@777 3749 Label retry;
ysr@777 3750 bind(retry);
duke@435 3751 #ifdef ASSERT
ysr@777 3752 // make sure eden top is properly aligned
ysr@777 3753 {
ysr@777 3754 Label L;
ysr@777 3755 btst(MinObjAlignmentInBytesMask, obj);
ysr@777 3756 br(Assembler::zero, false, Assembler::pt, L);
ysr@777 3757 delayed()->nop();
ysr@777 3758 stop("eden top is not properly aligned");
ysr@777 3759 bind(L);
ysr@777 3760 }
ysr@777 3761 #endif // ASSERT
ysr@777 3762 const Register free = end;
ysr@777 3763 sub(end, obj, free); // compute amount of free space
ysr@777 3764 if (var_size_in_bytes->is_valid()) {
ysr@777 3765 // size is unknown at compile time
ysr@777 3766 cmp(free, var_size_in_bytes);
ysr@777 3767 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
ysr@777 3768 delayed()->add(obj, var_size_in_bytes, end);
ysr@777 3769 } else {
ysr@777 3770 // size is known at compile time
ysr@777 3771 cmp(free, con_size_in_bytes);
ysr@777 3772 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
ysr@777 3773 delayed()->add(obj, con_size_in_bytes, end);
ysr@777 3774 }
ysr@777 3775 // Compare obj with the value at top_addr; if still equal, swap the value of
ysr@777 3776 // end with the value at top_addr. If not equal, read the value at top_addr
ysr@777 3777 // into end.
ysr@777 3778 casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
ysr@777 3779 // if someone beat us on the allocation, try again, otherwise continue
ysr@777 3780 cmp(obj, end);
ysr@777 3781 brx(Assembler::notEqual, false, Assembler::pn, retry);
ysr@777 3782 delayed()->mov(end, obj); // nop if successfull since obj == end
ysr@777 3783
ysr@777 3784 #ifdef ASSERT
ysr@777 3785 // make sure eden top is properly aligned
ysr@777 3786 {
ysr@777 3787 Label L;
ysr@777 3788 const Register top_addr = t1;
ysr@777 3789
ysr@777 3790 set((intx)ch->top_addr(), top_addr);
ysr@777 3791 ld_ptr(top_addr, 0, top_addr);
ysr@777 3792 btst(MinObjAlignmentInBytesMask, top_addr);
ysr@777 3793 br(Assembler::zero, false, Assembler::pt, L);
ysr@777 3794 delayed()->nop();
ysr@777 3795 stop("eden top is not properly aligned");
ysr@777 3796 bind(L);
ysr@777 3797 }
ysr@777 3798 #endif // ASSERT
duke@435 3799 }
duke@435 3800 }
duke@435 3801
duke@435 3802
duke@435 3803 void MacroAssembler::tlab_allocate(
duke@435 3804 Register obj, // result: pointer to object after successful allocation
duke@435 3805 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 3806 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 3807 Register t1, // temp register
duke@435 3808 Label& slow_case // continuation point if fast allocation fails
duke@435 3809 ){
duke@435 3810 // make sure arguments make sense
duke@435 3811 assert_different_registers(obj, var_size_in_bytes, t1);
duke@435 3812 assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
duke@435 3813 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
duke@435 3814
duke@435 3815 const Register free = t1;
duke@435 3816
duke@435 3817 verify_tlab();
duke@435 3818
duke@435 3819 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
duke@435 3820
duke@435 3821 // calculate amount of free space
duke@435 3822 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
duke@435 3823 sub(free, obj, free);
duke@435 3824
duke@435 3825 Label done;
duke@435 3826 if (var_size_in_bytes == noreg) {
duke@435 3827 cmp(free, con_size_in_bytes);
duke@435 3828 } else {
duke@435 3829 cmp(free, var_size_in_bytes);
duke@435 3830 }
duke@435 3831 br(Assembler::less, false, Assembler::pn, slow_case);
duke@435 3832 // calculate the new top pointer
duke@435 3833 if (var_size_in_bytes == noreg) {
duke@435 3834 delayed()->add(obj, con_size_in_bytes, free);
duke@435 3835 } else {
duke@435 3836 delayed()->add(obj, var_size_in_bytes, free);
duke@435 3837 }
duke@435 3838
duke@435 3839 bind(done);
duke@435 3840
duke@435 3841 #ifdef ASSERT
duke@435 3842 // make sure new free pointer is properly aligned
duke@435 3843 {
duke@435 3844 Label L;
duke@435 3845 btst(MinObjAlignmentInBytesMask, free);
duke@435 3846 br(Assembler::zero, false, Assembler::pt, L);
duke@435 3847 delayed()->nop();
duke@435 3848 stop("updated TLAB free is not properly aligned");
duke@435 3849 bind(L);
duke@435 3850 }
duke@435 3851 #endif // ASSERT
duke@435 3852
duke@435 3853 // update the tlab top pointer
duke@435 3854 st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
duke@435 3855 verify_tlab();
duke@435 3856 }
duke@435 3857
duke@435 3858
duke@435 3859 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
duke@435 3860 Register top = O0;
duke@435 3861 Register t1 = G1;
duke@435 3862 Register t2 = G3;
duke@435 3863 Register t3 = O1;
duke@435 3864 assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
duke@435 3865 Label do_refill, discard_tlab;
duke@435 3866
duke@435 3867 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
duke@435 3868 // No allocation in the shared eden.
duke@435 3869 br(Assembler::always, false, Assembler::pt, slow_case);
duke@435 3870 delayed()->nop();
duke@435 3871 }
duke@435 3872
duke@435 3873 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
duke@435 3874 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
duke@435 3875 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
duke@435 3876
duke@435 3877 // calculate amount of free space
duke@435 3878 sub(t1, top, t1);
duke@435 3879 srl_ptr(t1, LogHeapWordSize, t1);
duke@435 3880
duke@435 3881 // Retain tlab and allocate object in shared space if
duke@435 3882 // the amount free in the tlab is too large to discard.
duke@435 3883 cmp(t1, t2);
duke@435 3884 brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
duke@435 3885
duke@435 3886 // increment waste limit to prevent getting stuck on this slow path
duke@435 3887 delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
duke@435 3888 st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
duke@435 3889 if (TLABStats) {
duke@435 3890 // increment number of slow_allocations
duke@435 3891 ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
duke@435 3892 add(t2, 1, t2);
duke@435 3893 stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
duke@435 3894 }
duke@435 3895 br(Assembler::always, false, Assembler::pt, try_eden);
duke@435 3896 delayed()->nop();
duke@435 3897
duke@435 3898 bind(discard_tlab);
duke@435 3899 if (TLABStats) {
duke@435 3900 // increment number of refills
duke@435 3901 ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
duke@435 3902 add(t2, 1, t2);
duke@435 3903 stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
duke@435 3904 // accumulate wastage
duke@435 3905 ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
duke@435 3906 add(t2, t1, t2);
duke@435 3907 stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
duke@435 3908 }
duke@435 3909
duke@435 3910 // if tlab is currently allocated (top or end != null) then
duke@435 3911 // fill [top, end + alignment_reserve) with array object
duke@435 3912 br_null(top, false, Assembler::pn, do_refill);
duke@435 3913 delayed()->nop();
duke@435 3914
duke@435 3915 set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
duke@435 3916 st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
duke@435 3917 // set klass to intArrayKlass
duke@435 3918 sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
duke@435 3919 add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
duke@435 3920 sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
duke@435 3921 st(t1, top, arrayOopDesc::length_offset_in_bytes());
coleenp@602 3922 set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
coleenp@602 3923 ld_ptr(t2, 0, t2);
coleenp@602 3924 // store klass last. concurrent gcs assumes klass length is valid if
coleenp@602 3925 // klass field is not null.
coleenp@602 3926 store_klass(t2, top);
duke@435 3927 verify_oop(top);
duke@435 3928
duke@435 3929 // refill the tlab with an eden allocation
duke@435 3930 bind(do_refill);
duke@435 3931 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
duke@435 3932 sll_ptr(t1, LogHeapWordSize, t1);
duke@435 3933 // add object_size ??
duke@435 3934 eden_allocate(top, t1, 0, t2, t3, slow_case);
duke@435 3935
duke@435 3936 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
duke@435 3937 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
duke@435 3938 #ifdef ASSERT
duke@435 3939 // check that tlab_size (t1) is still valid
duke@435 3940 {
duke@435 3941 Label ok;
duke@435 3942 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
duke@435 3943 sll_ptr(t2, LogHeapWordSize, t2);
duke@435 3944 cmp(t1, t2);
duke@435 3945 br(Assembler::equal, false, Assembler::pt, ok);
duke@435 3946 delayed()->nop();
duke@435 3947 stop("assert(t1 == tlab_size)");
duke@435 3948 should_not_reach_here();
duke@435 3949
duke@435 3950 bind(ok);
duke@435 3951 }
duke@435 3952 #endif // ASSERT
duke@435 3953 add(top, t1, top); // t1 is tlab_size
duke@435 3954 sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
duke@435 3955 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
duke@435 3956 verify_tlab();
duke@435 3957 br(Assembler::always, false, Assembler::pt, retry);
duke@435 3958 delayed()->nop();
duke@435 3959 }
duke@435 3960
duke@435 3961 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
duke@435 3962 switch (cond) {
duke@435 3963 // Note some conditions are synonyms for others
duke@435 3964 case Assembler::never: return Assembler::always;
duke@435 3965 case Assembler::zero: return Assembler::notZero;
duke@435 3966 case Assembler::lessEqual: return Assembler::greater;
duke@435 3967 case Assembler::less: return Assembler::greaterEqual;
duke@435 3968 case Assembler::lessEqualUnsigned: return Assembler::greaterUnsigned;
duke@435 3969 case Assembler::lessUnsigned: return Assembler::greaterEqualUnsigned;
duke@435 3970 case Assembler::negative: return Assembler::positive;
duke@435 3971 case Assembler::overflowSet: return Assembler::overflowClear;
duke@435 3972 case Assembler::always: return Assembler::never;
duke@435 3973 case Assembler::notZero: return Assembler::zero;
duke@435 3974 case Assembler::greater: return Assembler::lessEqual;
duke@435 3975 case Assembler::greaterEqual: return Assembler::less;
duke@435 3976 case Assembler::greaterUnsigned: return Assembler::lessEqualUnsigned;
duke@435 3977 case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
duke@435 3978 case Assembler::positive: return Assembler::negative;
duke@435 3979 case Assembler::overflowClear: return Assembler::overflowSet;
duke@435 3980 }
duke@435 3981
duke@435 3982 ShouldNotReachHere(); return Assembler::overflowClear;
duke@435 3983 }
duke@435 3984
duke@435 3985 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
duke@435 3986 Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
duke@435 3987 Condition negated_cond = negate_condition(cond);
duke@435 3988 Label L;
duke@435 3989 brx(negated_cond, false, Assembler::pt, L);
duke@435 3990 delayed()->nop();
duke@435 3991 inc_counter(counter_ptr, Rtmp1, Rtmp2);
duke@435 3992 bind(L);
duke@435 3993 }
duke@435 3994
twisti@1162 3995 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
twisti@1162 3996 AddressLiteral addrlit(counter_addr);
twisti@1162 3997 sethi(addrlit, Rtmp1); // Move hi22 bits into temporary register.
twisti@1162 3998 Address addr(Rtmp1, addrlit.low10()); // Build an address with low10 bits.
twisti@1162 3999 ld(addr, Rtmp2);
duke@435 4000 inc(Rtmp2);
twisti@1162 4001 st(Rtmp2, addr);
twisti@1162 4002 }
twisti@1162 4003
twisti@1162 4004 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
twisti@1162 4005 inc_counter((address) counter_addr, Rtmp1, Rtmp2);
duke@435 4006 }
duke@435 4007
duke@435 4008 SkipIfEqual::SkipIfEqual(
duke@435 4009 MacroAssembler* masm, Register temp, const bool* flag_addr,
duke@435 4010 Assembler::Condition condition) {
duke@435 4011 _masm = masm;
twisti@1162 4012 AddressLiteral flag(flag_addr);
twisti@1162 4013 _masm->sethi(flag, temp);
twisti@1162 4014 _masm->ldub(temp, flag.low10(), temp);
duke@435 4015 _masm->tst(temp);
duke@435 4016 _masm->br(condition, false, Assembler::pt, _label);
duke@435 4017 _masm->delayed()->nop();
duke@435 4018 }
duke@435 4019
duke@435 4020 SkipIfEqual::~SkipIfEqual() {
duke@435 4021 _masm->bind(_label);
duke@435 4022 }
duke@435 4023
duke@435 4024
duke@435 4025 // Writes to stack successive pages until offset reached to check for
duke@435 4026 // stack overflow + shadow pages. This clobbers tsp and scratch.
duke@435 4027 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
duke@435 4028 Register Rscratch) {
duke@435 4029 // Use stack pointer in temp stack pointer
duke@435 4030 mov(SP, Rtsp);
duke@435 4031
duke@435 4032 // Bang stack for total size given plus stack shadow page size.
duke@435 4033 // Bang one page at a time because a large size can overflow yellow and
duke@435 4034 // red zones (the bang will fail but stack overflow handling can't tell that
duke@435 4035 // it was a stack overflow bang vs a regular segv).
duke@435 4036 int offset = os::vm_page_size();
duke@435 4037 Register Roffset = Rscratch;
duke@435 4038
duke@435 4039 Label loop;
duke@435 4040 bind(loop);
duke@435 4041 set((-offset)+STACK_BIAS, Rscratch);
duke@435 4042 st(G0, Rtsp, Rscratch);
duke@435 4043 set(offset, Roffset);
duke@435 4044 sub(Rsize, Roffset, Rsize);
duke@435 4045 cmp(Rsize, G0);
duke@435 4046 br(Assembler::greater, false, Assembler::pn, loop);
duke@435 4047 delayed()->sub(Rtsp, Roffset, Rtsp);
duke@435 4048
duke@435 4049 // Bang down shadow pages too.
duke@435 4050 // The -1 because we already subtracted 1 page.
duke@435 4051 for (int i = 0; i< StackShadowPages-1; i++) {
duke@435 4052 set((-i*offset)+STACK_BIAS, Rscratch);
duke@435 4053 st(G0, Rtsp, Rscratch);
duke@435 4054 }
duke@435 4055 }
coleenp@548 4056
ysr@777 4057 ///////////////////////////////////////////////////////////////////////////////////
ysr@777 4058 #ifndef SERIALGC
ysr@777 4059
ysr@777 4060 static uint num_stores = 0;
ysr@777 4061 static uint num_null_pre_stores = 0;
ysr@777 4062
ysr@777 4063 static void count_null_pre_vals(void* pre_val) {
ysr@777 4064 num_stores++;
ysr@777 4065 if (pre_val == NULL) num_null_pre_stores++;
ysr@777 4066 if ((num_stores % 1000000) == 0) {
ysr@777 4067 tty->print_cr(UINT32_FORMAT " stores, " UINT32_FORMAT " (%5.2f%%) with null pre-vals.",
ysr@777 4068 num_stores, num_null_pre_stores,
ysr@777 4069 100.0*(float)num_null_pre_stores/(float)num_stores);
ysr@777 4070 }
ysr@777 4071 }
ysr@777 4072
ysr@777 4073 static address satb_log_enqueue_with_frame = 0;
ysr@777 4074 static u_char* satb_log_enqueue_with_frame_end = 0;
ysr@777 4075
ysr@777 4076 static address satb_log_enqueue_frameless = 0;
ysr@777 4077 static u_char* satb_log_enqueue_frameless_end = 0;
ysr@777 4078
ysr@777 4079 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
ysr@777 4080
ysr@777 4081 // The calls to this don't work. We'd need to do a fair amount of work to
ysr@777 4082 // make it work.
ysr@777 4083 static void check_index(int ind) {
ysr@777 4084 assert(0 <= ind && ind <= 64*K && ((ind % oopSize) == 0),
ysr@777 4085 "Invariants.")
ysr@777 4086 }
ysr@777 4087
ysr@777 4088 static void generate_satb_log_enqueue(bool with_frame) {
ysr@777 4089 BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
ysr@777 4090 CodeBuffer buf(bb->instructions_begin(), bb->instructions_size());
ysr@777 4091 MacroAssembler masm(&buf);
ysr@777 4092 address start = masm.pc();
ysr@777 4093 Register pre_val;
ysr@777 4094
ysr@777 4095 Label refill, restart;
ysr@777 4096 if (with_frame) {
ysr@777 4097 masm.save_frame(0);
ysr@777 4098 pre_val = I0; // Was O0 before the save.
ysr@777 4099 } else {
ysr@777 4100 pre_val = O0;
ysr@777 4101 }
ysr@777 4102 int satb_q_index_byte_offset =
ysr@777 4103 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4104 PtrQueue::byte_offset_of_index());
ysr@777 4105 int satb_q_buf_byte_offset =
ysr@777 4106 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4107 PtrQueue::byte_offset_of_buf());
ysr@777 4108 assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
ysr@777 4109 in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
ysr@777 4110 "check sizes in assembly below");
ysr@777 4111
ysr@777 4112 masm.bind(restart);
ysr@777 4113 masm.ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
ysr@777 4114
ysr@777 4115 masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn, L0, refill);
ysr@777 4116 // If the branch is taken, no harm in executing this in the delay slot.
ysr@777 4117 masm.delayed()->ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
ysr@777 4118 masm.sub(L0, oopSize, L0);
ysr@777 4119
ysr@777 4120 masm.st_ptr(pre_val, L1, L0); // [_buf + index] := I0
ysr@777 4121 if (!with_frame) {
ysr@777 4122 // Use return-from-leaf
ysr@777 4123 masm.retl();
ysr@777 4124 masm.delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
ysr@777 4125 } else {
ysr@777 4126 // Not delayed.
ysr@777 4127 masm.st_ptr(L0, G2_thread, satb_q_index_byte_offset);
ysr@777 4128 }
ysr@777 4129 if (with_frame) {
ysr@777 4130 masm.ret();
ysr@777 4131 masm.delayed()->restore();
ysr@777 4132 }
ysr@777 4133 masm.bind(refill);
ysr@777 4134
ysr@777 4135 address handle_zero =
ysr@777 4136 CAST_FROM_FN_PTR(address,
ysr@777 4137 &SATBMarkQueueSet::handle_zero_index_for_thread);
ysr@777 4138 // This should be rare enough that we can afford to save all the
ysr@777 4139 // scratch registers that the calling context might be using.
ysr@777 4140 masm.mov(G1_scratch, L0);
ysr@777 4141 masm.mov(G3_scratch, L1);
ysr@777 4142 masm.mov(G4, L2);
ysr@777 4143 // We need the value of O0 above (for the write into the buffer), so we
ysr@777 4144 // save and restore it.
ysr@777 4145 masm.mov(O0, L3);
ysr@777 4146 // Since the call will overwrite O7, we save and restore that, as well.
ysr@777 4147 masm.mov(O7, L4);
ysr@777 4148 masm.call_VM_leaf(L5, handle_zero, G2_thread);
ysr@777 4149 masm.mov(L0, G1_scratch);
ysr@777 4150 masm.mov(L1, G3_scratch);
ysr@777 4151 masm.mov(L2, G4);
ysr@777 4152 masm.mov(L3, O0);
ysr@777 4153 masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
ysr@777 4154 masm.delayed()->mov(L4, O7);
ysr@777 4155
ysr@777 4156 if (with_frame) {
ysr@777 4157 satb_log_enqueue_with_frame = start;
ysr@777 4158 satb_log_enqueue_with_frame_end = masm.pc();
ysr@777 4159 } else {
ysr@777 4160 satb_log_enqueue_frameless = start;
ysr@777 4161 satb_log_enqueue_frameless_end = masm.pc();
ysr@777 4162 }
ysr@777 4163 }
ysr@777 4164
ysr@777 4165 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
ysr@777 4166 if (with_frame) {
ysr@777 4167 if (satb_log_enqueue_with_frame == 0) {
ysr@777 4168 generate_satb_log_enqueue(with_frame);
ysr@777 4169 assert(satb_log_enqueue_with_frame != 0, "postcondition.");
ysr@777 4170 if (G1SATBPrintStubs) {
ysr@777 4171 tty->print_cr("Generated with-frame satb enqueue:");
ysr@777 4172 Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
ysr@777 4173 satb_log_enqueue_with_frame_end,
ysr@777 4174 tty);
ysr@777 4175 }
ysr@777 4176 }
ysr@777 4177 } else {
ysr@777 4178 if (satb_log_enqueue_frameless == 0) {
ysr@777 4179 generate_satb_log_enqueue(with_frame);
ysr@777 4180 assert(satb_log_enqueue_frameless != 0, "postcondition.");
ysr@777 4181 if (G1SATBPrintStubs) {
ysr@777 4182 tty->print_cr("Generated frameless satb enqueue:");
ysr@777 4183 Disassembler::decode((u_char*)satb_log_enqueue_frameless,
ysr@777 4184 satb_log_enqueue_frameless_end,
ysr@777 4185 tty);
ysr@777 4186 }
ysr@777 4187 }
ysr@777 4188 }
ysr@777 4189 }
ysr@777 4190
ysr@777 4191 void MacroAssembler::g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs) {
ysr@777 4192 assert(offset == 0 || index == noreg, "choose one");
ysr@777 4193
ysr@777 4194 if (G1DisablePreBarrier) return;
ysr@777 4195 // satb_log_barrier(tmp, obj, offset, preserve_o_regs);
ysr@777 4196 Label filtered;
ysr@777 4197 // satb_log_barrier_work0(tmp, filtered);
ysr@777 4198 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
ysr@777 4199 ld(G2,
ysr@777 4200 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4201 PtrQueue::byte_offset_of_active()),
ysr@777 4202 tmp);
ysr@777 4203 } else {
ysr@777 4204 guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
ysr@777 4205 "Assumption");
ysr@777 4206 ldsb(G2,
ysr@777 4207 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4208 PtrQueue::byte_offset_of_active()),
ysr@777 4209 tmp);
ysr@777 4210 }
ysr@1280 4211
ysr@777 4212 // Check on whether to annul.
ysr@777 4213 br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
ysr@777 4214 delayed() -> nop();
ysr@777 4215
ysr@777 4216 // satb_log_barrier_work1(tmp, offset);
ysr@777 4217 if (index == noreg) {
ysr@777 4218 if (Assembler::is_simm13(offset)) {
ysr@1280 4219 load_heap_oop(obj, offset, tmp);
ysr@777 4220 } else {
ysr@777 4221 set(offset, tmp);
ysr@1280 4222 load_heap_oop(obj, tmp, tmp);
ysr@777 4223 }
ysr@777 4224 } else {
ysr@1280 4225 load_heap_oop(obj, index, tmp);
ysr@777 4226 }
ysr@777 4227
ysr@777 4228 // satb_log_barrier_work2(obj, tmp, offset);
ysr@777 4229
ysr@777 4230 // satb_log_barrier_work3(tmp, filtered, preserve_o_regs);
ysr@777 4231
ysr@777 4232 const Register pre_val = tmp;
ysr@777 4233
ysr@777 4234 if (G1SATBBarrierPrintNullPreVals) {
ysr@777 4235 save_frame(0);
ysr@777 4236 mov(pre_val, O0);
ysr@777 4237 // Save G-regs that target may use.
ysr@777 4238 mov(G1, L1);
ysr@777 4239 mov(G2, L2);
ysr@777 4240 mov(G3, L3);
ysr@777 4241 mov(G4, L4);
ysr@777 4242 mov(G5, L5);
ysr@777 4243 call(CAST_FROM_FN_PTR(address, &count_null_pre_vals));
ysr@777 4244 delayed()->nop();
ysr@777 4245 // Restore G-regs that target may have used.
ysr@777 4246 mov(L1, G1);
ysr@777 4247 mov(L2, G2);
ysr@777 4248 mov(L3, G3);
ysr@777 4249 mov(L4, G4);
ysr@777 4250 mov(L5, G5);
ysr@777 4251 restore(G0, G0, G0);
ysr@777 4252 }
ysr@777 4253
ysr@777 4254 // Check on whether to annul.
ysr@777 4255 br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, pre_val, filtered);
ysr@777 4256 delayed() -> nop();
ysr@777 4257
ysr@777 4258 // OK, it's not filtered, so we'll need to call enqueue. In the normal
ysr@777 4259 // case, pre_val will be a scratch G-reg, but there's some cases in which
ysr@777 4260 // it's an O-reg. In the first case, do a normal call. In the latter,
ysr@777 4261 // do a save here and call the frameless version.
ysr@777 4262
ysr@777 4263 guarantee(pre_val->is_global() || pre_val->is_out(),
ysr@777 4264 "Or we need to think harder.");
ysr@777 4265 if (pre_val->is_global() && !preserve_o_regs) {
ysr@777 4266 generate_satb_log_enqueue_if_necessary(true); // with frame.
ysr@777 4267 call(satb_log_enqueue_with_frame);
ysr@777 4268 delayed()->mov(pre_val, O0);
ysr@777 4269 } else {
ysr@777 4270 generate_satb_log_enqueue_if_necessary(false); // with frameless.
ysr@777 4271 save_frame(0);
ysr@777 4272 call(satb_log_enqueue_frameless);
ysr@777 4273 delayed()->mov(pre_val->after_save(), O0);
ysr@777 4274 restore();
ysr@777 4275 }
ysr@777 4276
ysr@777 4277 bind(filtered);
ysr@777 4278 }
ysr@777 4279
ysr@777 4280 static jint num_ct_writes = 0;
ysr@777 4281 static jint num_ct_writes_filtered_in_hr = 0;
ysr@777 4282 static jint num_ct_writes_filtered_null = 0;
ysr@777 4283 static G1CollectedHeap* g1 = NULL;
ysr@777 4284
ysr@777 4285 static Thread* count_ct_writes(void* filter_val, void* new_val) {
ysr@777 4286 Atomic::inc(&num_ct_writes);
ysr@777 4287 if (filter_val == NULL) {
ysr@777 4288 Atomic::inc(&num_ct_writes_filtered_in_hr);
ysr@777 4289 } else if (new_val == NULL) {
ysr@777 4290 Atomic::inc(&num_ct_writes_filtered_null);
ysr@777 4291 } else {
ysr@777 4292 if (g1 == NULL) {
ysr@777 4293 g1 = G1CollectedHeap::heap();
ysr@777 4294 }
ysr@777 4295 }
ysr@777 4296 if ((num_ct_writes % 1000000) == 0) {
ysr@777 4297 jint num_ct_writes_filtered =
ysr@777 4298 num_ct_writes_filtered_in_hr +
apetrusenko@1112 4299 num_ct_writes_filtered_null;
ysr@777 4300
ysr@777 4301 tty->print_cr("%d potential CT writes: %5.2f%% filtered\n"
apetrusenko@1112 4302 " (%5.2f%% intra-HR, %5.2f%% null).",
ysr@777 4303 num_ct_writes,
ysr@777 4304 100.0*(float)num_ct_writes_filtered/(float)num_ct_writes,
ysr@777 4305 100.0*(float)num_ct_writes_filtered_in_hr/
ysr@777 4306 (float)num_ct_writes,
ysr@777 4307 100.0*(float)num_ct_writes_filtered_null/
ysr@777 4308 (float)num_ct_writes);
ysr@777 4309 }
ysr@777 4310 return Thread::current();
ysr@777 4311 }
ysr@777 4312
ysr@777 4313 static address dirty_card_log_enqueue = 0;
ysr@777 4314 static u_char* dirty_card_log_enqueue_end = 0;
ysr@777 4315
ysr@777 4316 // This gets to assume that o0 contains the object address.
ysr@777 4317 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
ysr@777 4318 BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
ysr@777 4319 CodeBuffer buf(bb->instructions_begin(), bb->instructions_size());
ysr@777 4320 MacroAssembler masm(&buf);
ysr@777 4321 address start = masm.pc();
ysr@777 4322
ysr@777 4323 Label not_already_dirty, restart, refill;
ysr@777 4324
ysr@777 4325 #ifdef _LP64
ysr@777 4326 masm.srlx(O0, CardTableModRefBS::card_shift, O0);
ysr@777 4327 #else
ysr@777 4328 masm.srl(O0, CardTableModRefBS::card_shift, O0);
ysr@777 4329 #endif
twisti@1162 4330 AddressLiteral addrlit(byte_map_base);
twisti@1162 4331 masm.set(addrlit, O1); // O1 := <card table base>
ysr@777 4332 masm.ldub(O0, O1, O2); // O2 := [O0 + O1]
ysr@777 4333
ysr@777 4334 masm.br_on_reg_cond(Assembler::rc_nz, /*annul*/false, Assembler::pt,
ysr@777 4335 O2, not_already_dirty);
ysr@777 4336 // Get O1 + O2 into a reg by itself -- useful in the take-the-branch
ysr@777 4337 // case, harmless if not.
ysr@777 4338 masm.delayed()->add(O0, O1, O3);
ysr@777 4339
ysr@777 4340 // We didn't take the branch, so we're already dirty: return.
ysr@777 4341 // Use return-from-leaf
ysr@777 4342 masm.retl();
ysr@777 4343 masm.delayed()->nop();
ysr@777 4344
ysr@777 4345 // Not dirty.
ysr@777 4346 masm.bind(not_already_dirty);
ysr@777 4347 // First, dirty it.
ysr@777 4348 masm.stb(G0, O3, G0); // [cardPtr] := 0 (i.e., dirty).
ysr@777 4349 int dirty_card_q_index_byte_offset =
ysr@777 4350 in_bytes(JavaThread::dirty_card_queue_offset() +
ysr@777 4351 PtrQueue::byte_offset_of_index());
ysr@777 4352 int dirty_card_q_buf_byte_offset =
ysr@777 4353 in_bytes(JavaThread::dirty_card_queue_offset() +
ysr@777 4354 PtrQueue::byte_offset_of_buf());
ysr@777 4355 masm.bind(restart);
ysr@777 4356 masm.ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
ysr@777 4357
ysr@777 4358 masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn,
ysr@777 4359 L0, refill);
ysr@777 4360 // If the branch is taken, no harm in executing this in the delay slot.
ysr@777 4361 masm.delayed()->ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
ysr@777 4362 masm.sub(L0, oopSize, L0);
ysr@777 4363
ysr@777 4364 masm.st_ptr(O3, L1, L0); // [_buf + index] := I0
ysr@777 4365 // Use return-from-leaf
ysr@777 4366 masm.retl();
ysr@777 4367 masm.delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
ysr@777 4368
ysr@777 4369 masm.bind(refill);
ysr@777 4370 address handle_zero =
ysr@777 4371 CAST_FROM_FN_PTR(address,
ysr@777 4372 &DirtyCardQueueSet::handle_zero_index_for_thread);
ysr@777 4373 // This should be rare enough that we can afford to save all the
ysr@777 4374 // scratch registers that the calling context might be using.
ysr@777 4375 masm.mov(G1_scratch, L3);
ysr@777 4376 masm.mov(G3_scratch, L5);
ysr@777 4377 // We need the value of O3 above (for the write into the buffer), so we
ysr@777 4378 // save and restore it.
ysr@777 4379 masm.mov(O3, L6);
ysr@777 4380 // Since the call will overwrite O7, we save and restore that, as well.
ysr@777 4381 masm.mov(O7, L4);
ysr@777 4382
ysr@777 4383 masm.call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
ysr@777 4384 masm.mov(L3, G1_scratch);
ysr@777 4385 masm.mov(L5, G3_scratch);
ysr@777 4386 masm.mov(L6, O3);
ysr@777 4387 masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
ysr@777 4388 masm.delayed()->mov(L4, O7);
ysr@777 4389
ysr@777 4390 dirty_card_log_enqueue = start;
ysr@777 4391 dirty_card_log_enqueue_end = masm.pc();
ysr@777 4392 // XXX Should have a guarantee here about not going off the end!
ysr@777 4393 // Does it already do so? Do an experiment...
ysr@777 4394 }
ysr@777 4395
ysr@777 4396 static inline void
ysr@777 4397 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
ysr@777 4398 if (dirty_card_log_enqueue == 0) {
ysr@777 4399 generate_dirty_card_log_enqueue(byte_map_base);
ysr@777 4400 assert(dirty_card_log_enqueue != 0, "postcondition.");
ysr@777 4401 if (G1SATBPrintStubs) {
ysr@777 4402 tty->print_cr("Generated dirty_card enqueue:");
ysr@777 4403 Disassembler::decode((u_char*)dirty_card_log_enqueue,
ysr@777 4404 dirty_card_log_enqueue_end,
ysr@777 4405 tty);
ysr@777 4406 }
ysr@777 4407 }
ysr@777 4408 }
ysr@777 4409
ysr@777 4410
ysr@777 4411 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
ysr@777 4412
ysr@777 4413 Label filtered;
ysr@777 4414 MacroAssembler* post_filter_masm = this;
ysr@777 4415
ysr@777 4416 if (new_val == G0) return;
ysr@777 4417 if (G1DisablePostBarrier) return;
ysr@777 4418
ysr@777 4419 G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
ysr@777 4420 assert(bs->kind() == BarrierSet::G1SATBCT ||
ysr@777 4421 bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
ysr@777 4422 if (G1RSBarrierRegionFilter) {
ysr@777 4423 xor3(store_addr, new_val, tmp);
ysr@777 4424 #ifdef _LP64
ysr@777 4425 srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
ysr@777 4426 #else
ysr@777 4427 srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
ysr@777 4428 #endif
ysr@777 4429 if (G1PrintCTFilterStats) {
ysr@777 4430 guarantee(tmp->is_global(), "Or stats won't work...");
ysr@777 4431 // This is a sleazy hack: I'm temporarily hijacking G2, which I
ysr@777 4432 // promise to restore.
ysr@777 4433 mov(new_val, G2);
ysr@777 4434 save_frame(0);
ysr@777 4435 mov(tmp, O0);
ysr@777 4436 mov(G2, O1);
ysr@777 4437 // Save G-regs that target may use.
ysr@777 4438 mov(G1, L1);
ysr@777 4439 mov(G2, L2);
ysr@777 4440 mov(G3, L3);
ysr@777 4441 mov(G4, L4);
ysr@777 4442 mov(G5, L5);
ysr@777 4443 call(CAST_FROM_FN_PTR(address, &count_ct_writes));
ysr@777 4444 delayed()->nop();
ysr@777 4445 mov(O0, G2);
ysr@777 4446 // Restore G-regs that target may have used.
ysr@777 4447 mov(L1, G1);
ysr@777 4448 mov(L3, G3);
ysr@777 4449 mov(L4, G4);
ysr@777 4450 mov(L5, G5);
ysr@777 4451 restore(G0, G0, G0);
ysr@777 4452 }
ysr@777 4453 // XXX Should I predict this taken or not? Does it mattern?
ysr@777 4454 br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
ysr@777 4455 delayed()->nop();
ysr@777 4456 }
ysr@777 4457
iveresov@1229 4458 // If the "store_addr" register is an "in" or "local" register, move it to
iveresov@1229 4459 // a scratch reg so we can pass it as an argument.
iveresov@1229 4460 bool use_scr = !(store_addr->is_global() || store_addr->is_out());
iveresov@1229 4461 // Pick a scratch register different from "tmp".
iveresov@1229 4462 Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
iveresov@1229 4463 // Make sure we use up the delay slot!
iveresov@1229 4464 if (use_scr) {
iveresov@1229 4465 post_filter_masm->mov(store_addr, scr);
ysr@777 4466 } else {
iveresov@1229 4467 post_filter_masm->nop();
ysr@777 4468 }
iveresov@1229 4469 generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
iveresov@1229 4470 save_frame(0);
iveresov@1229 4471 call(dirty_card_log_enqueue);
iveresov@1229 4472 if (use_scr) {
iveresov@1229 4473 delayed()->mov(scr, O0);
iveresov@1229 4474 } else {
iveresov@1229 4475 delayed()->mov(store_addr->after_save(), O0);
iveresov@1229 4476 }
iveresov@1229 4477 restore();
ysr@777 4478
ysr@777 4479 bind(filtered);
ysr@777 4480
ysr@777 4481 }
ysr@777 4482
ysr@777 4483 #endif // SERIALGC
ysr@777 4484 ///////////////////////////////////////////////////////////////////////////////////
ysr@777 4485
ysr@777 4486 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
ysr@777 4487 // If we're writing constant NULL, we can skip the write barrier.
ysr@777 4488 if (new_val == G0) return;
ysr@777 4489 CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
ysr@777 4490 assert(bs->kind() == BarrierSet::CardTableModRef ||
ysr@777 4491 bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
ysr@777 4492 card_table_write(bs->byte_map_base, tmp, store_addr);
ysr@777 4493 }
ysr@777 4494
kvn@599 4495 void MacroAssembler::load_klass(Register src_oop, Register klass) {
coleenp@548 4496 // The number of bytes in this code is used by
coleenp@548 4497 // MachCallDynamicJavaNode::ret_addr_offset()
coleenp@548 4498 // if this changes, change that.
coleenp@548 4499 if (UseCompressedOops) {
kvn@599 4500 lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
kvn@599 4501 decode_heap_oop_not_null(klass);
coleenp@548 4502 } else {
kvn@599 4503 ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
coleenp@548 4504 }
coleenp@548 4505 }
coleenp@548 4506
kvn@599 4507 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
coleenp@548 4508 if (UseCompressedOops) {
kvn@599 4509 assert(dst_oop != klass, "not enough registers");
kvn@599 4510 encode_heap_oop_not_null(klass);
coleenp@602 4511 st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
coleenp@548 4512 } else {
kvn@599 4513 st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
kvn@559 4514 }
kvn@559 4515 }
kvn@559 4516
coleenp@602 4517 void MacroAssembler::store_klass_gap(Register s, Register d) {
coleenp@602 4518 if (UseCompressedOops) {
coleenp@602 4519 assert(s != d, "not enough registers");
coleenp@602 4520 st(s, d, oopDesc::klass_gap_offset_in_bytes());
coleenp@548 4521 }
coleenp@548 4522 }
coleenp@548 4523
twisti@1162 4524 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
coleenp@548 4525 if (UseCompressedOops) {
twisti@1162 4526 lduw(s, d);
coleenp@548 4527 decode_heap_oop(d);
coleenp@548 4528 } else {
twisti@1162 4529 ld_ptr(s, d);
coleenp@548 4530 }
coleenp@548 4531 }
coleenp@548 4532
coleenp@548 4533 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
coleenp@548 4534 if (UseCompressedOops) {
coleenp@548 4535 lduw(s1, s2, d);
coleenp@548 4536 decode_heap_oop(d, d);
coleenp@548 4537 } else {
coleenp@548 4538 ld_ptr(s1, s2, d);
coleenp@548 4539 }
coleenp@548 4540 }
coleenp@548 4541
coleenp@548 4542 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
coleenp@548 4543 if (UseCompressedOops) {
coleenp@548 4544 lduw(s1, simm13a, d);
coleenp@548 4545 decode_heap_oop(d, d);
coleenp@548 4546 } else {
coleenp@548 4547 ld_ptr(s1, simm13a, d);
coleenp@548 4548 }
coleenp@548 4549 }
coleenp@548 4550
coleenp@548 4551 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
coleenp@548 4552 if (UseCompressedOops) {
coleenp@548 4553 assert(s1 != d && s2 != d, "not enough registers");
coleenp@548 4554 encode_heap_oop(d);
coleenp@548 4555 st(d, s1, s2);
coleenp@548 4556 } else {
coleenp@548 4557 st_ptr(d, s1, s2);
coleenp@548 4558 }
coleenp@548 4559 }
coleenp@548 4560
coleenp@548 4561 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
coleenp@548 4562 if (UseCompressedOops) {
coleenp@548 4563 assert(s1 != d, "not enough registers");
coleenp@548 4564 encode_heap_oop(d);
coleenp@548 4565 st(d, s1, simm13a);
coleenp@548 4566 } else {
coleenp@548 4567 st_ptr(d, s1, simm13a);
coleenp@548 4568 }
coleenp@548 4569 }
coleenp@548 4570
coleenp@548 4571 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
coleenp@548 4572 if (UseCompressedOops) {
coleenp@548 4573 assert(a.base() != d, "not enough registers");
coleenp@548 4574 encode_heap_oop(d);
coleenp@548 4575 st(d, a, offset);
coleenp@548 4576 } else {
coleenp@548 4577 st_ptr(d, a, offset);
coleenp@548 4578 }
coleenp@548 4579 }
coleenp@548 4580
coleenp@548 4581
coleenp@548 4582 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
coleenp@548 4583 assert (UseCompressedOops, "must be compressed");
kvn@1077 4584 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4585 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4586 verify_oop(src);
kvn@1077 4587 if (Universe::narrow_oop_base() == NULL) {
kvn@1077 4588 srlx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4589 return;
kvn@1077 4590 }
coleenp@548 4591 Label done;
coleenp@548 4592 if (src == dst) {
coleenp@548 4593 // optimize for frequent case src == dst
coleenp@548 4594 bpr(rc_nz, true, Assembler::pt, src, done);
coleenp@548 4595 delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
coleenp@548 4596 bind(done);
coleenp@548 4597 srlx(src, LogMinObjAlignmentInBytes, dst);
coleenp@548 4598 } else {
coleenp@548 4599 bpr(rc_z, false, Assembler::pn, src, done);
coleenp@548 4600 delayed() -> mov(G0, dst);
coleenp@548 4601 // could be moved before branch, and annulate delay,
coleenp@548 4602 // but may add some unneeded work decoding null
coleenp@548 4603 sub(src, G6_heapbase, dst);
coleenp@548 4604 srlx(dst, LogMinObjAlignmentInBytes, dst);
coleenp@548 4605 bind(done);
coleenp@548 4606 }
coleenp@548 4607 }
coleenp@548 4608
coleenp@548 4609
coleenp@548 4610 void MacroAssembler::encode_heap_oop_not_null(Register r) {
coleenp@548 4611 assert (UseCompressedOops, "must be compressed");
kvn@1077 4612 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4613 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4614 verify_oop(r);
kvn@1077 4615 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4616 sub(r, G6_heapbase, r);
coleenp@548 4617 srlx(r, LogMinObjAlignmentInBytes, r);
coleenp@548 4618 }
coleenp@548 4619
kvn@559 4620 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
kvn@559 4621 assert (UseCompressedOops, "must be compressed");
kvn@1077 4622 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4623 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4624 verify_oop(src);
kvn@1077 4625 if (Universe::narrow_oop_base() == NULL) {
kvn@1077 4626 srlx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4627 } else {
kvn@1077 4628 sub(src, G6_heapbase, dst);
kvn@1077 4629 srlx(dst, LogMinObjAlignmentInBytes, dst);
kvn@1077 4630 }
kvn@559 4631 }
kvn@559 4632
coleenp@548 4633 // Same algorithm as oops.inline.hpp decode_heap_oop.
coleenp@548 4634 void MacroAssembler::decode_heap_oop(Register src, Register dst) {
coleenp@548 4635 assert (UseCompressedOops, "must be compressed");
kvn@1077 4636 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4637 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@548 4638 sllx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4639 if (Universe::narrow_oop_base() != NULL) {
kvn@1077 4640 Label done;
kvn@1077 4641 bpr(rc_nz, true, Assembler::pt, dst, done);
kvn@1077 4642 delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
kvn@1077 4643 bind(done);
kvn@1077 4644 }
coleenp@613 4645 verify_oop(dst);
coleenp@548 4646 }
coleenp@548 4647
coleenp@548 4648 void MacroAssembler::decode_heap_oop_not_null(Register r) {
coleenp@548 4649 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
coleenp@548 4650 // pd_code_size_limit.
coleenp@613 4651 // Also do not verify_oop as this is called by verify_oop.
coleenp@548 4652 assert (UseCompressedOops, "must be compressed");
kvn@1077 4653 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4654 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@548 4655 sllx(r, LogMinObjAlignmentInBytes, r);
kvn@1077 4656 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4657 add(r, G6_heapbase, r);
coleenp@548 4658 }
coleenp@548 4659
kvn@559 4660 void MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
kvn@559 4661 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
kvn@559 4662 // pd_code_size_limit.
coleenp@613 4663 // Also do not verify_oop as this is called by verify_oop.
kvn@559 4664 assert (UseCompressedOops, "must be compressed");
kvn@1077 4665 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4666 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
kvn@559 4667 sllx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4668 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4669 add(dst, G6_heapbase, dst);
kvn@559 4670 }
kvn@559 4671
coleenp@548 4672 void MacroAssembler::reinit_heapbase() {
coleenp@548 4673 if (UseCompressedOops) {
coleenp@548 4674 // call indirectly to solve generation ordering problem
twisti@1162 4675 AddressLiteral base(Universe::narrow_oop_base_addr());
coleenp@548 4676 load_ptr_contents(base, G6_heapbase);
coleenp@548 4677 }
coleenp@548 4678 }
kvn@1421 4679
kvn@1421 4680 // Compare char[] arrays aligned to 4 bytes.
kvn@1421 4681 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
kvn@1421 4682 Register limit, Register result,
kvn@1421 4683 Register chr1, Register chr2, Label& Ldone) {
kvn@1421 4684 Label Lvector, Lloop;
kvn@1421 4685 assert(chr1 == result, "should be the same");
kvn@1421 4686
kvn@1421 4687 // Note: limit contains number of bytes (2*char_elements) != 0.
kvn@1421 4688 andcc(limit, 0x2, chr1); // trailing character ?
kvn@1421 4689 br(Assembler::zero, false, Assembler::pt, Lvector);
kvn@1421 4690 delayed()->nop();
kvn@1421 4691
kvn@1421 4692 // compare the trailing char
kvn@1421 4693 sub(limit, sizeof(jchar), limit);
kvn@1421 4694 lduh(ary1, limit, chr1);
kvn@1421 4695 lduh(ary2, limit, chr2);
kvn@1421 4696 cmp(chr1, chr2);
kvn@1421 4697 br(Assembler::notEqual, true, Assembler::pt, Ldone);
kvn@1421 4698 delayed()->mov(G0, result); // not equal
kvn@1421 4699
kvn@1421 4700 // only one char ?
kvn@1421 4701 br_on_reg_cond(rc_z, true, Assembler::pn, limit, Ldone);
kvn@1421 4702 delayed()->add(G0, 1, result); // zero-length arrays are equal
kvn@1421 4703
kvn@1421 4704 // word by word compare, dont't need alignment check
kvn@1421 4705 bind(Lvector);
kvn@1421 4706 // Shift ary1 and ary2 to the end of the arrays, negate limit
kvn@1421 4707 add(ary1, limit, ary1);
kvn@1421 4708 add(ary2, limit, ary2);
kvn@1421 4709 neg(limit, limit);
kvn@1421 4710
kvn@1421 4711 lduw(ary1, limit, chr1);
kvn@1421 4712 bind(Lloop);
kvn@1421 4713 lduw(ary2, limit, chr2);
kvn@1421 4714 cmp(chr1, chr2);
kvn@1421 4715 br(Assembler::notEqual, true, Assembler::pt, Ldone);
kvn@1421 4716 delayed()->mov(G0, result); // not equal
kvn@1421 4717 inccc(limit, 2*sizeof(jchar));
kvn@1421 4718 // annul LDUW if branch is not taken to prevent access past end of array
kvn@1421 4719 br(Assembler::notZero, true, Assembler::pt, Lloop);
kvn@1421 4720 delayed()->lduw(ary1, limit, chr1); // hoisted
kvn@1421 4721
kvn@1421 4722 // Caller should set it:
kvn@1421 4723 // add(G0, 1, result); // equals
kvn@1421 4724 }
kvn@1421 4725

mercurial