src/cpu/sparc/vm/assembler_sparc.cpp

Thu, 21 Jul 2011 11:25:07 -0700

author
kvn
date
Thu, 21 Jul 2011 11:25:07 -0700
changeset 3037
3d42f82cd811
parent 2950
cba7b5c2d53f
child 3088
4fe626cbf0bf
child 3092
baf763f388e6
permissions
-rw-r--r--

7063628: Use cbcond on T4
Summary: Add new short branch instruction to Hotspot sparc assembler.
Reviewed-by: never, twisti, jrose

duke@435 1 /*
phh@2423 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@2399 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_sparc.inline.hpp"
stefank@2314 28 #include "gc_interface/collectedHeap.inline.hpp"
stefank@2314 29 #include "interpreter/interpreter.hpp"
stefank@2314 30 #include "memory/cardTableModRefBS.hpp"
stefank@2314 31 #include "memory/resourceArea.hpp"
stefank@2314 32 #include "prims/methodHandles.hpp"
stefank@2314 33 #include "runtime/biasedLocking.hpp"
stefank@2314 34 #include "runtime/interfaceSupport.hpp"
stefank@2314 35 #include "runtime/objectMonitor.hpp"
stefank@2314 36 #include "runtime/os.hpp"
stefank@2314 37 #include "runtime/sharedRuntime.hpp"
stefank@2314 38 #include "runtime/stubRoutines.hpp"
stefank@2314 39 #ifndef SERIALGC
stefank@2314 40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
stefank@2314 41 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
stefank@2314 42 #include "gc_implementation/g1/heapRegion.hpp"
stefank@2314 43 #endif
duke@435 44
never@2950 45 #ifdef PRODUCT
never@2950 46 #define BLOCK_COMMENT(str) /* nothing */
never@2950 47 #else
never@2950 48 #define BLOCK_COMMENT(str) block_comment(str)
never@2950 49 #endif
never@2950 50
twisti@1162 51 // Convert the raw encoding form into the form expected by the
twisti@1162 52 // constructor for Address.
twisti@1162 53 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
twisti@1162 54 assert(scale == 0, "not supported");
twisti@1162 55 RelocationHolder rspec;
twisti@1162 56 if (disp_is_oop) {
twisti@1162 57 rspec = Relocation::spec_simple(relocInfo::oop_type);
duke@435 58 }
twisti@1162 59
twisti@1162 60 Register rindex = as_Register(index);
twisti@1162 61 if (rindex != G0) {
twisti@1162 62 Address madr(as_Register(base), rindex);
twisti@1162 63 madr._rspec = rspec;
twisti@1162 64 return madr;
twisti@1162 65 } else {
twisti@1162 66 Address madr(as_Register(base), disp);
twisti@1162 67 madr._rspec = rspec;
twisti@1162 68 return madr;
twisti@1162 69 }
twisti@1162 70 }
twisti@1162 71
twisti@1162 72 Address Argument::address_in_frame() const {
twisti@1162 73 // Warning: In LP64 mode disp will occupy more than 10 bits, but
twisti@1162 74 // op codes such as ld or ldx, only access disp() to get
twisti@1162 75 // their simm13 argument.
twisti@1162 76 int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
twisti@1162 77 if (is_in())
twisti@1162 78 return Address(FP, disp); // In argument.
twisti@1162 79 else
twisti@1162 80 return Address(SP, disp); // Out argument.
duke@435 81 }
duke@435 82
duke@435 83 static const char* argumentNames[][2] = {
duke@435 84 {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
duke@435 85 {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
duke@435 86 {"A(n>9)","P(n>9)"}
duke@435 87 };
duke@435 88
duke@435 89 const char* Argument::name() const {
duke@435 90 int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
duke@435 91 int num = number();
duke@435 92 if (num >= nofArgs) num = nofArgs - 1;
duke@435 93 return argumentNames[num][is_in() ? 1 : 0];
duke@435 94 }
duke@435 95
duke@435 96 void Assembler::print_instruction(int inst) {
duke@435 97 const char* s;
duke@435 98 switch (inv_op(inst)) {
duke@435 99 default: s = "????"; break;
duke@435 100 case call_op: s = "call"; break;
duke@435 101 case branch_op:
duke@435 102 switch (inv_op2(inst)) {
duke@435 103 case fb_op2: s = "fb"; break;
duke@435 104 case fbp_op2: s = "fbp"; break;
duke@435 105 case br_op2: s = "br"; break;
duke@435 106 case bp_op2: s = "bp"; break;
duke@435 107 case cb_op2: s = "cb"; break;
kvn@3037 108 case bpr_op2: {
kvn@3037 109 if (is_cbcond(inst)) {
kvn@3037 110 s = is_cxb(inst) ? "cxb" : "cwb";
kvn@3037 111 } else {
kvn@3037 112 s = "bpr";
kvn@3037 113 }
kvn@3037 114 break;
kvn@3037 115 }
duke@435 116 default: s = "????"; break;
duke@435 117 }
duke@435 118 }
duke@435 119 ::tty->print("%s", s);
duke@435 120 }
duke@435 121
duke@435 122
duke@435 123 // Patch instruction inst at offset inst_pos to refer to dest_pos
duke@435 124 // and return the resulting instruction.
duke@435 125 // We should have pcs, not offsets, but since all is relative, it will work out
duke@435 126 // OK.
duke@435 127 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
duke@435 128
duke@435 129 int m; // mask for displacement field
duke@435 130 int v; // new value for displacement field
duke@435 131 const int word_aligned_ones = -4;
duke@435 132 switch (inv_op(inst)) {
duke@435 133 default: ShouldNotReachHere();
duke@435 134 case call_op: m = wdisp(word_aligned_ones, 0, 30); v = wdisp(dest_pos, inst_pos, 30); break;
duke@435 135 case branch_op:
duke@435 136 switch (inv_op2(inst)) {
duke@435 137 case fbp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
duke@435 138 case bp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
duke@435 139 case fb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 140 case br_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 141 case cb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
kvn@3037 142 case bpr_op2: {
kvn@3037 143 if (is_cbcond(inst)) {
kvn@3037 144 m = wdisp10(word_aligned_ones, 0);
kvn@3037 145 v = wdisp10(dest_pos, inst_pos);
kvn@3037 146 } else {
kvn@3037 147 m = wdisp16(word_aligned_ones, 0);
kvn@3037 148 v = wdisp16(dest_pos, inst_pos);
kvn@3037 149 }
kvn@3037 150 break;
kvn@3037 151 }
duke@435 152 default: ShouldNotReachHere();
duke@435 153 }
duke@435 154 }
duke@435 155 return inst & ~m | v;
duke@435 156 }
duke@435 157
duke@435 158 // Return the offset of the branch destionation of instruction inst
duke@435 159 // at offset pos.
duke@435 160 // Should have pcs, but since all is relative, it works out.
duke@435 161 int Assembler::branch_destination(int inst, int pos) {
duke@435 162 int r;
duke@435 163 switch (inv_op(inst)) {
duke@435 164 default: ShouldNotReachHere();
duke@435 165 case call_op: r = inv_wdisp(inst, pos, 30); break;
duke@435 166 case branch_op:
duke@435 167 switch (inv_op2(inst)) {
duke@435 168 case fbp_op2: r = inv_wdisp( inst, pos, 19); break;
duke@435 169 case bp_op2: r = inv_wdisp( inst, pos, 19); break;
duke@435 170 case fb_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 171 case br_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 172 case cb_op2: r = inv_wdisp( inst, pos, 22); break;
kvn@3037 173 case bpr_op2: {
kvn@3037 174 if (is_cbcond(inst)) {
kvn@3037 175 r = inv_wdisp10(inst, pos);
kvn@3037 176 } else {
kvn@3037 177 r = inv_wdisp16(inst, pos);
kvn@3037 178 }
kvn@3037 179 break;
kvn@3037 180 }
duke@435 181 default: ShouldNotReachHere();
duke@435 182 }
duke@435 183 }
duke@435 184 return r;
duke@435 185 }
duke@435 186
duke@435 187 int AbstractAssembler::code_fill_byte() {
duke@435 188 return 0x00; // illegal instruction 0x00000000
duke@435 189 }
duke@435 190
ysr@777 191 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
ysr@777 192 switch (in) {
ysr@777 193 case rc_z: return equal;
ysr@777 194 case rc_lez: return lessEqual;
ysr@777 195 case rc_lz: return less;
ysr@777 196 case rc_nz: return notEqual;
ysr@777 197 case rc_gz: return greater;
ysr@777 198 case rc_gez: return greaterEqual;
ysr@777 199 default:
ysr@777 200 ShouldNotReachHere();
ysr@777 201 }
ysr@777 202 return equal;
ysr@777 203 }
ysr@777 204
duke@435 205 // Generate a bunch 'o stuff (including v9's
duke@435 206 #ifndef PRODUCT
duke@435 207 void Assembler::test_v9() {
duke@435 208 add( G0, G1, G2 );
duke@435 209 add( G3, 0, G4 );
duke@435 210
duke@435 211 addcc( G5, G6, G7 );
duke@435 212 addcc( I0, 1, I1 );
duke@435 213 addc( I2, I3, I4 );
duke@435 214 addc( I5, -1, I6 );
duke@435 215 addccc( I7, L0, L1 );
duke@435 216 addccc( L2, (1 << 12) - 2, L3 );
duke@435 217
duke@435 218 Label lbl1, lbl2, lbl3;
duke@435 219
duke@435 220 bind(lbl1);
duke@435 221
duke@435 222 bpr( rc_z, true, pn, L4, pc(), relocInfo::oop_type );
duke@435 223 delayed()->nop();
duke@435 224 bpr( rc_lez, false, pt, L5, lbl1);
duke@435 225 delayed()->nop();
duke@435 226
duke@435 227 fb( f_never, true, pc() + 4, relocInfo::none);
duke@435 228 delayed()->nop();
duke@435 229 fb( f_notEqual, false, lbl2 );
duke@435 230 delayed()->nop();
duke@435 231
duke@435 232 fbp( f_notZero, true, fcc0, pn, pc() - 4, relocInfo::none);
duke@435 233 delayed()->nop();
duke@435 234 fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
duke@435 235 delayed()->nop();
duke@435 236
duke@435 237 br( equal, true, pc() + 1024, relocInfo::none);
duke@435 238 delayed()->nop();
duke@435 239 br( lessEqual, false, lbl1 );
duke@435 240 delayed()->nop();
duke@435 241 br( never, false, lbl1 );
duke@435 242 delayed()->nop();
duke@435 243
duke@435 244 bp( less, true, icc, pn, pc(), relocInfo::none);
duke@435 245 delayed()->nop();
duke@435 246 bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
duke@435 247 delayed()->nop();
duke@435 248
duke@435 249 call( pc(), relocInfo::none);
duke@435 250 delayed()->nop();
duke@435 251 call( lbl3 );
duke@435 252 delayed()->nop();
duke@435 253
duke@435 254
duke@435 255 casa( L6, L7, O0 );
duke@435 256 casxa( O1, O2, O3, 0 );
duke@435 257
duke@435 258 udiv( O4, O5, O7 );
duke@435 259 udiv( G0, (1 << 12) - 1, G1 );
duke@435 260 sdiv( G1, G2, G3 );
duke@435 261 sdiv( G4, -((1 << 12) - 1), G5 );
duke@435 262 udivcc( G6, G7, I0 );
duke@435 263 udivcc( I1, -((1 << 12) - 2), I2 );
duke@435 264 sdivcc( I3, I4, I5 );
duke@435 265 sdivcc( I6, -((1 << 12) - 0), I7 );
duke@435 266
duke@435 267 done();
duke@435 268 retry();
duke@435 269
duke@435 270 fadd( FloatRegisterImpl::S, F0, F1, F2 );
duke@435 271 fsub( FloatRegisterImpl::D, F34, F0, F62 );
duke@435 272
duke@435 273 fcmp( FloatRegisterImpl::Q, fcc0, F0, F60);
duke@435 274 fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
duke@435 275
duke@435 276 ftox( FloatRegisterImpl::D, F2, F4 );
duke@435 277 ftoi( FloatRegisterImpl::Q, F4, F8 );
duke@435 278
duke@435 279 ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
duke@435 280
duke@435 281 fxtof( FloatRegisterImpl::S, F4, F5 );
duke@435 282 fitof( FloatRegisterImpl::D, F6, F8 );
duke@435 283
duke@435 284 fmov( FloatRegisterImpl::Q, F16, F20 );
duke@435 285 fneg( FloatRegisterImpl::S, F6, F7 );
duke@435 286 fabs( FloatRegisterImpl::D, F10, F12 );
duke@435 287
duke@435 288 fmul( FloatRegisterImpl::Q, F24, F28, F32 );
duke@435 289 fmul( FloatRegisterImpl::S, FloatRegisterImpl::D, F8, F9, F14 );
duke@435 290 fdiv( FloatRegisterImpl::S, F10, F11, F12 );
duke@435 291
duke@435 292 fsqrt( FloatRegisterImpl::S, F13, F14 );
duke@435 293
duke@435 294 flush( L0, L1 );
duke@435 295 flush( L2, -1 );
duke@435 296
duke@435 297 flushw();
duke@435 298
duke@435 299 illtrap( (1 << 22) - 2);
duke@435 300
duke@435 301 impdep1( 17, (1 << 19) - 1 );
duke@435 302 impdep2( 3, 0 );
duke@435 303
duke@435 304 jmpl( L3, L4, L5 );
duke@435 305 delayed()->nop();
duke@435 306 jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
duke@435 307 delayed()->nop();
duke@435 308
duke@435 309
duke@435 310 ldf( FloatRegisterImpl::S, O0, O1, F15 );
duke@435 311 ldf( FloatRegisterImpl::D, O2, -1, F14 );
duke@435 312
duke@435 313
duke@435 314 ldfsr( O3, O4 );
duke@435 315 ldfsr( O5, -1 );
duke@435 316 ldxfsr( O6, O7 );
duke@435 317 ldxfsr( I0, -1 );
duke@435 318
duke@435 319 ldfa( FloatRegisterImpl::D, I1, I2, 1, F16 );
duke@435 320 ldfa( FloatRegisterImpl::Q, I3, -1, F36 );
duke@435 321
duke@435 322 ldsb( I4, I5, I6 );
duke@435 323 ldsb( I7, -1, G0 );
duke@435 324 ldsh( G1, G3, G4 );
duke@435 325 ldsh( G5, -1, G6 );
duke@435 326 ldsw( G7, L0, L1 );
duke@435 327 ldsw( L2, -1, L3 );
duke@435 328 ldub( L4, L5, L6 );
duke@435 329 ldub( L7, -1, O0 );
duke@435 330 lduh( O1, O2, O3 );
duke@435 331 lduh( O4, -1, O5 );
duke@435 332 lduw( O6, O7, G0 );
duke@435 333 lduw( G1, -1, G2 );
duke@435 334 ldx( G3, G4, G5 );
duke@435 335 ldx( G6, -1, G7 );
duke@435 336 ldd( I0, I1, I2 );
duke@435 337 ldd( I3, -1, I4 );
duke@435 338
duke@435 339 ldsba( I5, I6, 2, I7 );
duke@435 340 ldsba( L0, -1, L1 );
duke@435 341 ldsha( L2, L3, 3, L4 );
duke@435 342 ldsha( L5, -1, L6 );
duke@435 343 ldswa( L7, O0, (1 << 8) - 1, O1 );
duke@435 344 ldswa( O2, -1, O3 );
duke@435 345 lduba( O4, O5, 0, O6 );
duke@435 346 lduba( O7, -1, I0 );
duke@435 347 lduha( I1, I2, 1, I3 );
duke@435 348 lduha( I4, -1, I5 );
duke@435 349 lduwa( I6, I7, 2, L0 );
duke@435 350 lduwa( L1, -1, L2 );
duke@435 351 ldxa( L3, L4, 3, L5 );
duke@435 352 ldxa( L6, -1, L7 );
duke@435 353 ldda( G0, G1, 4, G2 );
duke@435 354 ldda( G3, -1, G4 );
duke@435 355
duke@435 356 ldstub( G5, G6, G7 );
duke@435 357 ldstub( O0, -1, O1 );
duke@435 358
duke@435 359 ldstuba( O2, O3, 5, O4 );
duke@435 360 ldstuba( O5, -1, O6 );
duke@435 361
duke@435 362 and3( I0, L0, O0 );
duke@435 363 and3( G7, -1, O7 );
duke@435 364 andcc( L2, I2, G2 );
duke@435 365 andcc( L4, -1, G4 );
duke@435 366 andn( I5, I6, I7 );
duke@435 367 andn( I6, -1, I7 );
duke@435 368 andncc( I5, I6, I7 );
duke@435 369 andncc( I7, -1, I6 );
duke@435 370 or3( I5, I6, I7 );
duke@435 371 or3( I7, -1, I6 );
duke@435 372 orcc( I5, I6, I7 );
duke@435 373 orcc( I7, -1, I6 );
duke@435 374 orn( I5, I6, I7 );
duke@435 375 orn( I7, -1, I6 );
duke@435 376 orncc( I5, I6, I7 );
duke@435 377 orncc( I7, -1, I6 );
duke@435 378 xor3( I5, I6, I7 );
duke@435 379 xor3( I7, -1, I6 );
duke@435 380 xorcc( I5, I6, I7 );
duke@435 381 xorcc( I7, -1, I6 );
duke@435 382 xnor( I5, I6, I7 );
duke@435 383 xnor( I7, -1, I6 );
duke@435 384 xnorcc( I5, I6, I7 );
duke@435 385 xnorcc( I7, -1, I6 );
duke@435 386
duke@435 387 membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
duke@435 388 membar( StoreStore );
duke@435 389 membar( LoadStore );
duke@435 390 membar( StoreLoad );
duke@435 391 membar( LoadLoad );
duke@435 392 membar( Sync );
duke@435 393 membar( MemIssue );
duke@435 394 membar( Lookaside );
duke@435 395
duke@435 396 fmov( FloatRegisterImpl::S, f_ordered, true, fcc2, F16, F17 );
duke@435 397 fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
duke@435 398
duke@435 399 movcc( overflowClear, false, icc, I6, L4 );
duke@435 400 movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
duke@435 401
duke@435 402 movr( rc_nz, I5, I6, I7 );
duke@435 403 movr( rc_gz, L1, -1, L2 );
duke@435 404
duke@435 405 mulx( I5, I6, I7 );
duke@435 406 mulx( I7, -1, I6 );
duke@435 407 sdivx( I5, I6, I7 );
duke@435 408 sdivx( I7, -1, I6 );
duke@435 409 udivx( I5, I6, I7 );
duke@435 410 udivx( I7, -1, I6 );
duke@435 411
duke@435 412 umul( I5, I6, I7 );
duke@435 413 umul( I7, -1, I6 );
duke@435 414 smul( I5, I6, I7 );
duke@435 415 smul( I7, -1, I6 );
duke@435 416 umulcc( I5, I6, I7 );
duke@435 417 umulcc( I7, -1, I6 );
duke@435 418 smulcc( I5, I6, I7 );
duke@435 419 smulcc( I7, -1, I6 );
duke@435 420
duke@435 421 mulscc( I5, I6, I7 );
duke@435 422 mulscc( I7, -1, I6 );
duke@435 423
duke@435 424 nop();
duke@435 425
duke@435 426
duke@435 427 popc( G0, G1);
duke@435 428 popc( -1, G2);
duke@435 429
duke@435 430 prefetch( L1, L2, severalReads );
duke@435 431 prefetch( L3, -1, oneRead );
duke@435 432 prefetcha( O3, O2, 6, severalWritesAndPossiblyReads );
duke@435 433 prefetcha( G2, -1, oneWrite );
duke@435 434
duke@435 435 rett( I7, I7);
duke@435 436 delayed()->nop();
duke@435 437 rett( G0, -1, relocInfo::none);
duke@435 438 delayed()->nop();
duke@435 439
duke@435 440 save( I5, I6, I7 );
duke@435 441 save( I7, -1, I6 );
duke@435 442 restore( I5, I6, I7 );
duke@435 443 restore( I7, -1, I6 );
duke@435 444
duke@435 445 saved();
duke@435 446 restored();
duke@435 447
duke@435 448 sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
duke@435 449
duke@435 450 sll( I5, I6, I7 );
duke@435 451 sll( I7, 31, I6 );
duke@435 452 srl( I5, I6, I7 );
duke@435 453 srl( I7, 0, I6 );
duke@435 454 sra( I5, I6, I7 );
duke@435 455 sra( I7, 30, I6 );
duke@435 456 sllx( I5, I6, I7 );
duke@435 457 sllx( I7, 63, I6 );
duke@435 458 srlx( I5, I6, I7 );
duke@435 459 srlx( I7, 0, I6 );
duke@435 460 srax( I5, I6, I7 );
duke@435 461 srax( I7, 62, I6 );
duke@435 462
duke@435 463 sir( -1 );
duke@435 464
duke@435 465 stbar();
duke@435 466
duke@435 467 stf( FloatRegisterImpl::Q, F40, G0, I7 );
duke@435 468 stf( FloatRegisterImpl::S, F18, I3, -1 );
duke@435 469
duke@435 470 stfsr( L1, L2 );
duke@435 471 stfsr( I7, -1 );
duke@435 472 stxfsr( I6, I5 );
duke@435 473 stxfsr( L4, -1 );
duke@435 474
duke@435 475 stfa( FloatRegisterImpl::D, F22, I6, I7, 7 );
duke@435 476 stfa( FloatRegisterImpl::Q, F44, G0, -1 );
duke@435 477
duke@435 478 stb( L5, O2, I7 );
duke@435 479 stb( I7, I6, -1 );
duke@435 480 sth( L5, O2, I7 );
duke@435 481 sth( I7, I6, -1 );
duke@435 482 stw( L5, O2, I7 );
duke@435 483 stw( I7, I6, -1 );
duke@435 484 stx( L5, O2, I7 );
duke@435 485 stx( I7, I6, -1 );
duke@435 486 std( L5, O2, I7 );
duke@435 487 std( I7, I6, -1 );
duke@435 488
duke@435 489 stba( L5, O2, I7, 8 );
duke@435 490 stba( I7, I6, -1 );
duke@435 491 stha( L5, O2, I7, 9 );
duke@435 492 stha( I7, I6, -1 );
duke@435 493 stwa( L5, O2, I7, 0 );
duke@435 494 stwa( I7, I6, -1 );
duke@435 495 stxa( L5, O2, I7, 11 );
duke@435 496 stxa( I7, I6, -1 );
duke@435 497 stda( L5, O2, I7, 12 );
duke@435 498 stda( I7, I6, -1 );
duke@435 499
duke@435 500 sub( I5, I6, I7 );
duke@435 501 sub( I7, -1, I6 );
duke@435 502 subcc( I5, I6, I7 );
duke@435 503 subcc( I7, -1, I6 );
duke@435 504 subc( I5, I6, I7 );
duke@435 505 subc( I7, -1, I6 );
duke@435 506 subccc( I5, I6, I7 );
duke@435 507 subccc( I7, -1, I6 );
duke@435 508
duke@435 509 swap( I5, I6, I7 );
duke@435 510 swap( I7, -1, I6 );
duke@435 511
duke@435 512 swapa( G0, G1, 13, G2 );
duke@435 513 swapa( I7, -1, I6 );
duke@435 514
duke@435 515 taddcc( I5, I6, I7 );
duke@435 516 taddcc( I7, -1, I6 );
duke@435 517 taddcctv( I5, I6, I7 );
duke@435 518 taddcctv( I7, -1, I6 );
duke@435 519
duke@435 520 tsubcc( I5, I6, I7 );
duke@435 521 tsubcc( I7, -1, I6 );
duke@435 522 tsubcctv( I5, I6, I7 );
duke@435 523 tsubcctv( I7, -1, I6 );
duke@435 524
duke@435 525 trap( overflowClear, xcc, G0, G1 );
duke@435 526 trap( lessEqual, icc, I7, 17 );
duke@435 527
duke@435 528 bind(lbl2);
duke@435 529 bind(lbl3);
duke@435 530
duke@435 531 code()->decode();
duke@435 532 }
duke@435 533
duke@435 534 // Generate a bunch 'o stuff unique to V8
duke@435 535 void Assembler::test_v8_onlys() {
duke@435 536 Label lbl1;
duke@435 537
duke@435 538 cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
duke@435 539 delayed()->nop();
duke@435 540 cb( cp_never, true, lbl1);
duke@435 541 delayed()->nop();
duke@435 542
duke@435 543 cpop1(1, 2, 3, 4);
duke@435 544 cpop2(5, 6, 7, 8);
duke@435 545
duke@435 546 ldc( I0, I1, 31);
duke@435 547 ldc( I2, -1, 0);
duke@435 548
duke@435 549 lddc( I4, I4, 30);
duke@435 550 lddc( I6, 0, 1 );
duke@435 551
duke@435 552 ldcsr( L0, L1, 0);
duke@435 553 ldcsr( L1, (1 << 12) - 1, 17 );
duke@435 554
duke@435 555 stc( 31, L4, L5);
duke@435 556 stc( 30, L6, -(1 << 12) );
duke@435 557
duke@435 558 stdc( 0, L7, G0);
duke@435 559 stdc( 1, G1, 0 );
duke@435 560
duke@435 561 stcsr( 16, G2, G3);
duke@435 562 stcsr( 17, G4, 1 );
duke@435 563
duke@435 564 stdcq( 4, G5, G6);
duke@435 565 stdcq( 5, G7, -1 );
duke@435 566
duke@435 567 bind(lbl1);
duke@435 568
duke@435 569 code()->decode();
duke@435 570 }
duke@435 571 #endif
duke@435 572
duke@435 573 // Implementation of MacroAssembler
duke@435 574
duke@435 575 void MacroAssembler::null_check(Register reg, int offset) {
duke@435 576 if (needs_explicit_null_check((intptr_t)offset)) {
duke@435 577 // provoke OS NULL exception if reg = NULL by
duke@435 578 // accessing M[reg] w/o changing any registers
duke@435 579 ld_ptr(reg, 0, G0);
duke@435 580 }
duke@435 581 else {
duke@435 582 // nothing to do, (later) access of M[reg + offset]
duke@435 583 // will provoke OS NULL exception if reg = NULL
duke@435 584 }
duke@435 585 }
duke@435 586
duke@435 587 // Ring buffer jumps
duke@435 588
duke@435 589 #ifndef PRODUCT
duke@435 590 void MacroAssembler::ret( bool trace ) { if (trace) {
duke@435 591 mov(I7, O7); // traceable register
duke@435 592 JMP(O7, 2 * BytesPerInstWord);
duke@435 593 } else {
duke@435 594 jmpl( I7, 2 * BytesPerInstWord, G0 );
duke@435 595 }
duke@435 596 }
duke@435 597
duke@435 598 void MacroAssembler::retl( bool trace ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
duke@435 599 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
duke@435 600 #endif /* PRODUCT */
duke@435 601
duke@435 602
duke@435 603 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
duke@435 604 assert_not_delayed();
duke@435 605 // This can only be traceable if r1 & r2 are visible after a window save
duke@435 606 if (TraceJumps) {
duke@435 607 #ifndef PRODUCT
duke@435 608 save_frame(0);
duke@435 609 verify_thread();
duke@435 610 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 611 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 612 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 613 add(O2, O1, O1);
duke@435 614
duke@435 615 add(r1->after_save(), r2->after_save(), O2);
duke@435 616 set((intptr_t)file, O3);
duke@435 617 set(line, O4);
duke@435 618 Label L;
duke@435 619 // get nearby pc, store jmp target
duke@435 620 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 621 delayed()->st(O2, O1, 0);
duke@435 622 bind(L);
duke@435 623
duke@435 624 // store nearby pc
duke@435 625 st(O7, O1, sizeof(intptr_t));
duke@435 626 // store file
duke@435 627 st(O3, O1, 2*sizeof(intptr_t));
duke@435 628 // store line
duke@435 629 st(O4, O1, 3*sizeof(intptr_t));
duke@435 630 add(O0, 1, O0);
duke@435 631 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 632 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 633 restore();
duke@435 634 #endif /* PRODUCT */
duke@435 635 }
duke@435 636 jmpl(r1, r2, G0);
duke@435 637 }
duke@435 638 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
duke@435 639 assert_not_delayed();
duke@435 640 // This can only be traceable if r1 is visible after a window save
duke@435 641 if (TraceJumps) {
duke@435 642 #ifndef PRODUCT
duke@435 643 save_frame(0);
duke@435 644 verify_thread();
duke@435 645 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 646 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 647 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 648 add(O2, O1, O1);
duke@435 649
duke@435 650 add(r1->after_save(), offset, O2);
duke@435 651 set((intptr_t)file, O3);
duke@435 652 set(line, O4);
duke@435 653 Label L;
duke@435 654 // get nearby pc, store jmp target
duke@435 655 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 656 delayed()->st(O2, O1, 0);
duke@435 657 bind(L);
duke@435 658
duke@435 659 // store nearby pc
duke@435 660 st(O7, O1, sizeof(intptr_t));
duke@435 661 // store file
duke@435 662 st(O3, O1, 2*sizeof(intptr_t));
duke@435 663 // store line
duke@435 664 st(O4, O1, 3*sizeof(intptr_t));
duke@435 665 add(O0, 1, O0);
duke@435 666 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 667 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 668 restore();
duke@435 669 #endif /* PRODUCT */
duke@435 670 }
duke@435 671 jmp(r1, offset);
duke@435 672 }
duke@435 673
duke@435 674 // This code sequence is relocatable to any address, even on LP64.
coleenp@2035 675 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
duke@435 676 assert_not_delayed();
duke@435 677 // Force fixed length sethi because NativeJump and NativeFarCall don't handle
duke@435 678 // variable length instruction streams.
twisti@1162 679 patchable_sethi(addrlit, temp);
twisti@1162 680 Address a(temp, addrlit.low10() + offset); // Add the offset to the displacement.
duke@435 681 if (TraceJumps) {
duke@435 682 #ifndef PRODUCT
duke@435 683 // Must do the add here so relocation can find the remainder of the
duke@435 684 // value to be relocated.
twisti@1162 685 add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
duke@435 686 save_frame(0);
duke@435 687 verify_thread();
duke@435 688 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 689 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 690 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 691 add(O2, O1, O1);
duke@435 692
duke@435 693 set((intptr_t)file, O3);
duke@435 694 set(line, O4);
duke@435 695 Label L;
duke@435 696
duke@435 697 // get nearby pc, store jmp target
duke@435 698 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 699 delayed()->st(a.base()->after_save(), O1, 0);
duke@435 700 bind(L);
duke@435 701
duke@435 702 // store nearby pc
duke@435 703 st(O7, O1, sizeof(intptr_t));
duke@435 704 // store file
duke@435 705 st(O3, O1, 2*sizeof(intptr_t));
duke@435 706 // store line
duke@435 707 st(O4, O1, 3*sizeof(intptr_t));
duke@435 708 add(O0, 1, O0);
duke@435 709 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 710 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 711 restore();
duke@435 712 jmpl(a.base(), G0, d);
duke@435 713 #else
twisti@1162 714 jmpl(a.base(), a.disp(), d);
duke@435 715 #endif /* PRODUCT */
duke@435 716 } else {
twisti@1162 717 jmpl(a.base(), a.disp(), d);
duke@435 718 }
duke@435 719 }
duke@435 720
coleenp@2035 721 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
twisti@1162 722 jumpl(addrlit, temp, G0, offset, file, line);
duke@435 723 }
duke@435 724
duke@435 725
duke@435 726 // Convert to C varargs format
duke@435 727 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
duke@435 728 // spill register-resident args to their memory slots
duke@435 729 // (SPARC calling convention requires callers to have already preallocated these)
duke@435 730 // Note that the inArg might in fact be an outgoing argument,
duke@435 731 // if a leaf routine or stub does some tricky argument shuffling.
duke@435 732 // This routine must work even though one of the saved arguments
duke@435 733 // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
duke@435 734 for (Argument savePtr = inArg;
duke@435 735 savePtr.is_register();
duke@435 736 savePtr = savePtr.successor()) {
duke@435 737 st_ptr(savePtr.as_register(), savePtr.address_in_frame());
duke@435 738 }
duke@435 739 // return the address of the first memory slot
twisti@1162 740 Address a = inArg.address_in_frame();
twisti@1162 741 add(a.base(), a.disp(), d);
duke@435 742 }
duke@435 743
duke@435 744 // Conditional breakpoint (for assertion checks in assembly code)
duke@435 745 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
duke@435 746 trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
duke@435 747 }
duke@435 748
duke@435 749 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
duke@435 750 void MacroAssembler::breakpoint_trap() {
duke@435 751 trap(ST_RESERVED_FOR_USER_0);
duke@435 752 }
duke@435 753
duke@435 754 // flush windows (except current) using flushw instruction if avail.
duke@435 755 void MacroAssembler::flush_windows() {
duke@435 756 if (VM_Version::v9_instructions_work()) flushw();
duke@435 757 else flush_windows_trap();
duke@435 758 }
duke@435 759
duke@435 760 // Write serialization page so VM thread can do a pseudo remote membar
duke@435 761 // We use the current thread pointer to calculate a thread specific
duke@435 762 // offset to write to within the page. This minimizes bus traffic
duke@435 763 // due to cache line collision.
duke@435 764 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
duke@435 765 srl(thread, os::get_serialize_page_shift_count(), tmp2);
duke@435 766 if (Assembler::is_simm13(os::vm_page_size())) {
duke@435 767 and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
duke@435 768 }
duke@435 769 else {
duke@435 770 set((os::vm_page_size() - sizeof(int)), tmp1);
duke@435 771 and3(tmp2, tmp1, tmp2);
duke@435 772 }
twisti@1162 773 set(os::get_memory_serialize_page(), tmp1);
duke@435 774 st(G0, tmp1, tmp2);
duke@435 775 }
duke@435 776
duke@435 777
duke@435 778
duke@435 779 void MacroAssembler::enter() {
duke@435 780 Unimplemented();
duke@435 781 }
duke@435 782
duke@435 783 void MacroAssembler::leave() {
duke@435 784 Unimplemented();
duke@435 785 }
duke@435 786
duke@435 787 void MacroAssembler::mult(Register s1, Register s2, Register d) {
duke@435 788 if(VM_Version::v9_instructions_work()) {
duke@435 789 mulx (s1, s2, d);
duke@435 790 } else {
duke@435 791 smul (s1, s2, d);
duke@435 792 }
duke@435 793 }
duke@435 794
duke@435 795 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
duke@435 796 if(VM_Version::v9_instructions_work()) {
duke@435 797 mulx (s1, simm13a, d);
duke@435 798 } else {
duke@435 799 smul (s1, simm13a, d);
duke@435 800 }
duke@435 801 }
duke@435 802
duke@435 803
duke@435 804 #ifdef ASSERT
duke@435 805 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
duke@435 806 const Register s1 = G3_scratch;
duke@435 807 const Register s2 = G4_scratch;
duke@435 808 Label get_psr_test;
duke@435 809 // Get the condition codes the V8 way.
duke@435 810 read_ccr_trap(s1);
duke@435 811 mov(ccr_save, s2);
duke@435 812 // This is a test of V8 which has icc but not xcc
duke@435 813 // so mask off the xcc bits
duke@435 814 and3(s2, 0xf, s2);
duke@435 815 // Compare condition codes from the V8 and V9 ways.
duke@435 816 subcc(s2, s1, G0);
duke@435 817 br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
duke@435 818 delayed()->breakpoint_trap();
duke@435 819 bind(get_psr_test);
duke@435 820 }
duke@435 821
duke@435 822 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
duke@435 823 const Register s1 = G3_scratch;
duke@435 824 const Register s2 = G4_scratch;
duke@435 825 Label set_psr_test;
duke@435 826 // Write out the saved condition codes the V8 way
duke@435 827 write_ccr_trap(ccr_save, s1, s2);
duke@435 828 // Read back the condition codes using the V9 instruction
duke@435 829 rdccr(s1);
duke@435 830 mov(ccr_save, s2);
duke@435 831 // This is a test of V8 which has icc but not xcc
duke@435 832 // so mask off the xcc bits
duke@435 833 and3(s2, 0xf, s2);
duke@435 834 and3(s1, 0xf, s1);
duke@435 835 // Compare the V8 way with the V9 way.
duke@435 836 subcc(s2, s1, G0);
duke@435 837 br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
duke@435 838 delayed()->breakpoint_trap();
duke@435 839 bind(set_psr_test);
duke@435 840 }
duke@435 841 #else
duke@435 842 #define read_ccr_v8_assert(x)
duke@435 843 #define write_ccr_v8_assert(x)
duke@435 844 #endif // ASSERT
duke@435 845
duke@435 846 void MacroAssembler::read_ccr(Register ccr_save) {
duke@435 847 if (VM_Version::v9_instructions_work()) {
duke@435 848 rdccr(ccr_save);
duke@435 849 // Test code sequence used on V8. Do not move above rdccr.
duke@435 850 read_ccr_v8_assert(ccr_save);
duke@435 851 } else {
duke@435 852 read_ccr_trap(ccr_save);
duke@435 853 }
duke@435 854 }
duke@435 855
duke@435 856 void MacroAssembler::write_ccr(Register ccr_save) {
duke@435 857 if (VM_Version::v9_instructions_work()) {
duke@435 858 // Test code sequence used on V8. Do not move below wrccr.
duke@435 859 write_ccr_v8_assert(ccr_save);
duke@435 860 wrccr(ccr_save);
duke@435 861 } else {
duke@435 862 const Register temp_reg1 = G3_scratch;
duke@435 863 const Register temp_reg2 = G4_scratch;
duke@435 864 write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
duke@435 865 }
duke@435 866 }
duke@435 867
duke@435 868
duke@435 869 // Calls to C land
duke@435 870
duke@435 871 #ifdef ASSERT
duke@435 872 // a hook for debugging
duke@435 873 static Thread* reinitialize_thread() {
duke@435 874 return ThreadLocalStorage::thread();
duke@435 875 }
duke@435 876 #else
duke@435 877 #define reinitialize_thread ThreadLocalStorage::thread
duke@435 878 #endif
duke@435 879
duke@435 880 #ifdef ASSERT
duke@435 881 address last_get_thread = NULL;
duke@435 882 #endif
duke@435 883
duke@435 884 // call this when G2_thread is not known to be valid
duke@435 885 void MacroAssembler::get_thread() {
duke@435 886 save_frame(0); // to avoid clobbering O0
duke@435 887 mov(G1, L0); // avoid clobbering G1
duke@435 888 mov(G5_method, L1); // avoid clobbering G5
duke@435 889 mov(G3, L2); // avoid clobbering G3 also
duke@435 890 mov(G4, L5); // avoid clobbering G4
duke@435 891 #ifdef ASSERT
twisti@1162 892 AddressLiteral last_get_thread_addrlit(&last_get_thread);
twisti@1162 893 set(last_get_thread_addrlit, L3);
duke@435 894 inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
twisti@1162 895 st_ptr(L4, L3, 0);
duke@435 896 #endif
duke@435 897 call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
duke@435 898 delayed()->nop();
duke@435 899 mov(L0, G1);
duke@435 900 mov(L1, G5_method);
duke@435 901 mov(L2, G3);
duke@435 902 mov(L5, G4);
duke@435 903 restore(O0, 0, G2_thread);
duke@435 904 }
duke@435 905
duke@435 906 static Thread* verify_thread_subroutine(Thread* gthread_value) {
duke@435 907 Thread* correct_value = ThreadLocalStorage::thread();
duke@435 908 guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
duke@435 909 return correct_value;
duke@435 910 }
duke@435 911
duke@435 912 void MacroAssembler::verify_thread() {
duke@435 913 if (VerifyThread) {
duke@435 914 // NOTE: this chops off the heads of the 64-bit O registers.
duke@435 915 #ifdef CC_INTERP
duke@435 916 save_frame(0);
duke@435 917 #else
duke@435 918 // make sure G2_thread contains the right value
duke@435 919 save_frame_and_mov(0, Lmethod, Lmethod); // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
duke@435 920 mov(G1, L1); // avoid clobbering G1
duke@435 921 // G2 saved below
duke@435 922 mov(G3, L3); // avoid clobbering G3
duke@435 923 mov(G4, L4); // avoid clobbering G4
duke@435 924 mov(G5_method, L5); // avoid clobbering G5_method
duke@435 925 #endif /* CC_INTERP */
duke@435 926 #if defined(COMPILER2) && !defined(_LP64)
duke@435 927 // Save & restore possible 64-bit Long arguments in G-regs
duke@435 928 srlx(G1,32,L0);
duke@435 929 srlx(G4,32,L6);
duke@435 930 #endif
duke@435 931 call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
duke@435 932 delayed()->mov(G2_thread, O0);
duke@435 933
duke@435 934 mov(L1, G1); // Restore G1
duke@435 935 // G2 restored below
duke@435 936 mov(L3, G3); // restore G3
duke@435 937 mov(L4, G4); // restore G4
duke@435 938 mov(L5, G5_method); // restore G5_method
duke@435 939 #if defined(COMPILER2) && !defined(_LP64)
duke@435 940 // Save & restore possible 64-bit Long arguments in G-regs
duke@435 941 sllx(L0,32,G2); // Move old high G1 bits high in G2
iveresov@2344 942 srl(G1, 0,G1); // Clear current high G1 bits
duke@435 943 or3 (G1,G2,G1); // Recover 64-bit G1
duke@435 944 sllx(L6,32,G2); // Move old high G4 bits high in G2
iveresov@2344 945 srl(G4, 0,G4); // Clear current high G4 bits
duke@435 946 or3 (G4,G2,G4); // Recover 64-bit G4
duke@435 947 #endif
duke@435 948 restore(O0, 0, G2_thread);
duke@435 949 }
duke@435 950 }
duke@435 951
duke@435 952
duke@435 953 void MacroAssembler::save_thread(const Register thread_cache) {
duke@435 954 verify_thread();
duke@435 955 if (thread_cache->is_valid()) {
duke@435 956 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
duke@435 957 mov(G2_thread, thread_cache);
duke@435 958 }
duke@435 959 if (VerifyThread) {
duke@435 960 // smash G2_thread, as if the VM were about to anyway
duke@435 961 set(0x67676767, G2_thread);
duke@435 962 }
duke@435 963 }
duke@435 964
duke@435 965
duke@435 966 void MacroAssembler::restore_thread(const Register thread_cache) {
duke@435 967 if (thread_cache->is_valid()) {
duke@435 968 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
duke@435 969 mov(thread_cache, G2_thread);
duke@435 970 verify_thread();
duke@435 971 } else {
duke@435 972 // do it the slow way
duke@435 973 get_thread();
duke@435 974 }
duke@435 975 }
duke@435 976
duke@435 977
duke@435 978 // %%% maybe get rid of [re]set_last_Java_frame
duke@435 979 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
duke@435 980 assert_not_delayed();
twisti@1162 981 Address flags(G2_thread, JavaThread::frame_anchor_offset() +
twisti@1162 982 JavaFrameAnchor::flags_offset());
twisti@1162 983 Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
duke@435 984
duke@435 985 // Always set last_Java_pc and flags first because once last_Java_sp is visible
duke@435 986 // has_last_Java_frame is true and users will look at the rest of the fields.
duke@435 987 // (Note: flags should always be zero before we get here so doesn't need to be set.)
duke@435 988
duke@435 989 #ifdef ASSERT
duke@435 990 // Verify that flags was zeroed on return to Java
duke@435 991 Label PcOk;
duke@435 992 save_frame(0); // to avoid clobbering O0
duke@435 993 ld_ptr(pc_addr, L0);
kvn@3037 994 br_null_short(L0, Assembler::pt, PcOk);
duke@435 995 stop("last_Java_pc not zeroed before leaving Java");
duke@435 996 bind(PcOk);
duke@435 997
duke@435 998 // Verify that flags was zeroed on return to Java
duke@435 999 Label FlagsOk;
duke@435 1000 ld(flags, L0);
duke@435 1001 tst(L0);
duke@435 1002 br(Assembler::zero, false, Assembler::pt, FlagsOk);
duke@435 1003 delayed() -> restore();
duke@435 1004 stop("flags not zeroed before leaving Java");
duke@435 1005 bind(FlagsOk);
duke@435 1006 #endif /* ASSERT */
duke@435 1007 //
duke@435 1008 // When returning from calling out from Java mode the frame anchor's last_Java_pc
duke@435 1009 // will always be set to NULL. It is set here so that if we are doing a call to
duke@435 1010 // native (not VM) that we capture the known pc and don't have to rely on the
duke@435 1011 // native call having a standard frame linkage where we can find the pc.
duke@435 1012
duke@435 1013 if (last_Java_pc->is_valid()) {
duke@435 1014 st_ptr(last_Java_pc, pc_addr);
duke@435 1015 }
duke@435 1016
duke@435 1017 #ifdef _LP64
duke@435 1018 #ifdef ASSERT
duke@435 1019 // Make sure that we have an odd stack
duke@435 1020 Label StackOk;
duke@435 1021 andcc(last_java_sp, 0x01, G0);
duke@435 1022 br(Assembler::notZero, false, Assembler::pt, StackOk);
kvn@3037 1023 delayed()->nop();
duke@435 1024 stop("Stack Not Biased in set_last_Java_frame");
duke@435 1025 bind(StackOk);
duke@435 1026 #endif // ASSERT
duke@435 1027 assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
duke@435 1028 add( last_java_sp, STACK_BIAS, G4_scratch );
twisti@1162 1029 st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
duke@435 1030 #else
twisti@1162 1031 st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
duke@435 1032 #endif // _LP64
duke@435 1033 }
duke@435 1034
duke@435 1035 void MacroAssembler::reset_last_Java_frame(void) {
duke@435 1036 assert_not_delayed();
duke@435 1037
twisti@1162 1038 Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
twisti@1162 1039 Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
twisti@1162 1040 Address flags (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
duke@435 1041
duke@435 1042 #ifdef ASSERT
duke@435 1043 // check that it WAS previously set
duke@435 1044 #ifdef CC_INTERP
duke@435 1045 save_frame(0);
duke@435 1046 #else
duke@435 1047 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod to helper frame for -Xprof
duke@435 1048 #endif /* CC_INTERP */
duke@435 1049 ld_ptr(sp_addr, L0);
duke@435 1050 tst(L0);
duke@435 1051 breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
duke@435 1052 restore();
duke@435 1053 #endif // ASSERT
duke@435 1054
duke@435 1055 st_ptr(G0, sp_addr);
duke@435 1056 // Always return last_Java_pc to zero
duke@435 1057 st_ptr(G0, pc_addr);
duke@435 1058 // Always null flags after return to Java
duke@435 1059 st(G0, flags);
duke@435 1060 }
duke@435 1061
duke@435 1062
duke@435 1063 void MacroAssembler::call_VM_base(
duke@435 1064 Register oop_result,
duke@435 1065 Register thread_cache,
duke@435 1066 Register last_java_sp,
duke@435 1067 address entry_point,
duke@435 1068 int number_of_arguments,
duke@435 1069 bool check_exceptions)
duke@435 1070 {
duke@435 1071 assert_not_delayed();
duke@435 1072
duke@435 1073 // determine last_java_sp register
duke@435 1074 if (!last_java_sp->is_valid()) {
duke@435 1075 last_java_sp = SP;
duke@435 1076 }
duke@435 1077 // debugging support
duke@435 1078 assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
duke@435 1079
duke@435 1080 // 64-bit last_java_sp is biased!
duke@435 1081 set_last_Java_frame(last_java_sp, noreg);
duke@435 1082 if (VerifyThread) mov(G2_thread, O0); // about to be smashed; pass early
duke@435 1083 save_thread(thread_cache);
duke@435 1084 // do the call
duke@435 1085 call(entry_point, relocInfo::runtime_call_type);
duke@435 1086 if (!VerifyThread)
duke@435 1087 delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 1088 else
duke@435 1089 delayed()->nop(); // (thread already passed)
duke@435 1090 restore_thread(thread_cache);
duke@435 1091 reset_last_Java_frame();
duke@435 1092
duke@435 1093 // check for pending exceptions. use Gtemp as scratch register.
duke@435 1094 if (check_exceptions) {
duke@435 1095 check_and_forward_exception(Gtemp);
duke@435 1096 }
duke@435 1097
never@2950 1098 #ifdef ASSERT
never@2950 1099 set(badHeapWordVal, G3);
never@2950 1100 set(badHeapWordVal, G4);
never@2950 1101 set(badHeapWordVal, G5);
never@2950 1102 #endif
never@2950 1103
duke@435 1104 // get oop result if there is one and reset the value in the thread
duke@435 1105 if (oop_result->is_valid()) {
duke@435 1106 get_vm_result(oop_result);
duke@435 1107 }
duke@435 1108 }
duke@435 1109
duke@435 1110 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
duke@435 1111 {
duke@435 1112 Label L;
duke@435 1113
duke@435 1114 check_and_handle_popframe(scratch_reg);
duke@435 1115 check_and_handle_earlyret(scratch_reg);
duke@435 1116
twisti@1162 1117 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 1118 ld_ptr(exception_addr, scratch_reg);
kvn@3037 1119 br_null_short(scratch_reg, pt, L);
duke@435 1120 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 1121 call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 1122 delayed()->nop();
duke@435 1123 bind(L);
duke@435 1124 }
duke@435 1125
duke@435 1126
duke@435 1127 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
duke@435 1128 }
duke@435 1129
duke@435 1130
duke@435 1131 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
duke@435 1132 }
duke@435 1133
duke@435 1134
duke@435 1135 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
duke@435 1136 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
duke@435 1137 }
duke@435 1138
duke@435 1139
duke@435 1140 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
duke@435 1141 // O0 is reserved for the thread
duke@435 1142 mov(arg_1, O1);
duke@435 1143 call_VM(oop_result, entry_point, 1, check_exceptions);
duke@435 1144 }
duke@435 1145
duke@435 1146
duke@435 1147 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
duke@435 1148 // O0 is reserved for the thread
duke@435 1149 mov(arg_1, O1);
duke@435 1150 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1151 call_VM(oop_result, entry_point, 2, check_exceptions);
duke@435 1152 }
duke@435 1153
duke@435 1154
duke@435 1155 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
duke@435 1156 // O0 is reserved for the thread
duke@435 1157 mov(arg_1, O1);
duke@435 1158 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1159 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
duke@435 1160 call_VM(oop_result, entry_point, 3, check_exceptions);
duke@435 1161 }
duke@435 1162
duke@435 1163
duke@435 1164
duke@435 1165 // Note: The following call_VM overloadings are useful when a "save"
duke@435 1166 // has already been performed by a stub, and the last Java frame is
duke@435 1167 // the previous one. In that case, last_java_sp must be passed as FP
duke@435 1168 // instead of SP.
duke@435 1169
duke@435 1170
duke@435 1171 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
duke@435 1172 call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
duke@435 1173 }
duke@435 1174
duke@435 1175
duke@435 1176 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
duke@435 1177 // O0 is reserved for the thread
duke@435 1178 mov(arg_1, O1);
duke@435 1179 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
duke@435 1180 }
duke@435 1181
duke@435 1182
duke@435 1183 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
duke@435 1184 // O0 is reserved for the thread
duke@435 1185 mov(arg_1, O1);
duke@435 1186 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1187 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
duke@435 1188 }
duke@435 1189
duke@435 1190
duke@435 1191 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
duke@435 1192 // O0 is reserved for the thread
duke@435 1193 mov(arg_1, O1);
duke@435 1194 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1195 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
duke@435 1196 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
duke@435 1197 }
duke@435 1198
duke@435 1199
duke@435 1200
duke@435 1201 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
duke@435 1202 assert_not_delayed();
duke@435 1203 save_thread(thread_cache);
duke@435 1204 // do the call
duke@435 1205 call(entry_point, relocInfo::runtime_call_type);
duke@435 1206 delayed()->nop();
duke@435 1207 restore_thread(thread_cache);
never@2950 1208 #ifdef ASSERT
never@2950 1209 set(badHeapWordVal, G3);
never@2950 1210 set(badHeapWordVal, G4);
never@2950 1211 set(badHeapWordVal, G5);
never@2950 1212 #endif
duke@435 1213 }
duke@435 1214
duke@435 1215
duke@435 1216 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
duke@435 1217 call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
duke@435 1218 }
duke@435 1219
duke@435 1220
duke@435 1221 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
duke@435 1222 mov(arg_1, O0);
duke@435 1223 call_VM_leaf(thread_cache, entry_point, 1);
duke@435 1224 }
duke@435 1225
duke@435 1226
duke@435 1227 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
duke@435 1228 mov(arg_1, O0);
duke@435 1229 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
duke@435 1230 call_VM_leaf(thread_cache, entry_point, 2);
duke@435 1231 }
duke@435 1232
duke@435 1233
duke@435 1234 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
duke@435 1235 mov(arg_1, O0);
duke@435 1236 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
duke@435 1237 mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
duke@435 1238 call_VM_leaf(thread_cache, entry_point, 3);
duke@435 1239 }
duke@435 1240
duke@435 1241
duke@435 1242 void MacroAssembler::get_vm_result(Register oop_result) {
duke@435 1243 verify_thread();
twisti@1162 1244 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
duke@435 1245 ld_ptr( vm_result_addr, oop_result);
duke@435 1246 st_ptr(G0, vm_result_addr);
duke@435 1247 verify_oop(oop_result);
duke@435 1248 }
duke@435 1249
duke@435 1250
duke@435 1251 void MacroAssembler::get_vm_result_2(Register oop_result) {
duke@435 1252 verify_thread();
twisti@1162 1253 Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
duke@435 1254 ld_ptr(vm_result_addr_2, oop_result);
duke@435 1255 st_ptr(G0, vm_result_addr_2);
duke@435 1256 verify_oop(oop_result);
duke@435 1257 }
duke@435 1258
duke@435 1259
duke@435 1260 // We require that C code which does not return a value in vm_result will
duke@435 1261 // leave it undisturbed.
duke@435 1262 void MacroAssembler::set_vm_result(Register oop_result) {
duke@435 1263 verify_thread();
twisti@1162 1264 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
duke@435 1265 verify_oop(oop_result);
duke@435 1266
duke@435 1267 # ifdef ASSERT
duke@435 1268 // Check that we are not overwriting any other oop.
duke@435 1269 #ifdef CC_INTERP
duke@435 1270 save_frame(0);
duke@435 1271 #else
duke@435 1272 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod for -Xprof
duke@435 1273 #endif /* CC_INTERP */
duke@435 1274 ld_ptr(vm_result_addr, L0);
duke@435 1275 tst(L0);
duke@435 1276 restore();
duke@435 1277 breakpoint_trap(notZero, Assembler::ptr_cc);
duke@435 1278 // }
duke@435 1279 # endif
duke@435 1280
duke@435 1281 st_ptr(oop_result, vm_result_addr);
duke@435 1282 }
duke@435 1283
duke@435 1284
ysr@777 1285 void MacroAssembler::card_table_write(jbyte* byte_map_base,
ysr@777 1286 Register tmp, Register obj) {
duke@435 1287 #ifdef _LP64
duke@435 1288 srlx(obj, CardTableModRefBS::card_shift, obj);
duke@435 1289 #else
duke@435 1290 srl(obj, CardTableModRefBS::card_shift, obj);
duke@435 1291 #endif
twisti@1162 1292 assert(tmp != obj, "need separate temp reg");
twisti@1162 1293 set((address) byte_map_base, tmp);
twisti@1162 1294 stb(G0, tmp, obj);
duke@435 1295 }
duke@435 1296
twisti@1162 1297
twisti@1162 1298 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
duke@435 1299 address save_pc;
duke@435 1300 int shiftcnt;
duke@435 1301 #ifdef _LP64
duke@435 1302 # ifdef CHECK_DELAY
twisti@1162 1303 assert_not_delayed((char*) "cannot put two instructions in delay slot");
duke@435 1304 # endif
duke@435 1305 v9_dep();
duke@435 1306 save_pc = pc();
twisti@1162 1307
twisti@1162 1308 int msb32 = (int) (addrlit.value() >> 32);
twisti@1162 1309 int lsb32 = (int) (addrlit.value());
twisti@1162 1310
twisti@1162 1311 if (msb32 == 0 && lsb32 >= 0) {
twisti@1162 1312 Assembler::sethi(lsb32, d, addrlit.rspec());
duke@435 1313 }
twisti@1162 1314 else if (msb32 == -1) {
twisti@1162 1315 Assembler::sethi(~lsb32, d, addrlit.rspec());
twisti@1162 1316 xor3(d, ~low10(~0), d);
duke@435 1317 }
duke@435 1318 else {
twisti@1162 1319 Assembler::sethi(msb32, d, addrlit.rspec()); // msb 22-bits
twisti@1162 1320 if (msb32 & 0x3ff) // Any bits?
twisti@1162 1321 or3(d, msb32 & 0x3ff, d); // msb 32-bits are now in lsb 32
twisti@1162 1322 if (lsb32 & 0xFFFFFC00) { // done?
twisti@1162 1323 if ((lsb32 >> 20) & 0xfff) { // Any bits set?
twisti@1162 1324 sllx(d, 12, d); // Make room for next 12 bits
twisti@1162 1325 or3(d, (lsb32 >> 20) & 0xfff, d); // Or in next 12
twisti@1162 1326 shiftcnt = 0; // We already shifted
duke@435 1327 }
duke@435 1328 else
duke@435 1329 shiftcnt = 12;
twisti@1162 1330 if ((lsb32 >> 10) & 0x3ff) {
twisti@1162 1331 sllx(d, shiftcnt + 10, d); // Make room for last 10 bits
twisti@1162 1332 or3(d, (lsb32 >> 10) & 0x3ff, d); // Or in next 10
duke@435 1333 shiftcnt = 0;
duke@435 1334 }
duke@435 1335 else
duke@435 1336 shiftcnt = 10;
twisti@1162 1337 sllx(d, shiftcnt + 10, d); // Shift leaving disp field 0'd
duke@435 1338 }
duke@435 1339 else
twisti@1162 1340 sllx(d, 32, d);
duke@435 1341 }
twisti@1162 1342 // Pad out the instruction sequence so it can be patched later.
twisti@1162 1343 if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
twisti@1162 1344 addrlit.rtype() != relocInfo::runtime_call_type)) {
twisti@1162 1345 while (pc() < (save_pc + (7 * BytesPerInstWord)))
duke@435 1346 nop();
duke@435 1347 }
duke@435 1348 #else
twisti@1162 1349 Assembler::sethi(addrlit.value(), d, addrlit.rspec());
duke@435 1350 #endif
duke@435 1351 }
duke@435 1352
twisti@1162 1353
twisti@1162 1354 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
twisti@1162 1355 internal_sethi(addrlit, d, false);
twisti@1162 1356 }
twisti@1162 1357
twisti@1162 1358
twisti@1162 1359 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
twisti@1162 1360 internal_sethi(addrlit, d, true);
twisti@1162 1361 }
twisti@1162 1362
twisti@1162 1363
twisti@2399 1364 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
duke@435 1365 #ifdef _LP64
twisti@2399 1366 if (worst_case) return 7;
twisti@2399 1367 intptr_t iaddr = (intptr_t) a;
twisti@2399 1368 int msb32 = (int) (iaddr >> 32);
twisti@2399 1369 int lsb32 = (int) (iaddr);
twisti@2399 1370 int count;
twisti@2399 1371 if (msb32 == 0 && lsb32 >= 0)
twisti@2399 1372 count = 1;
twisti@2399 1373 else if (msb32 == -1)
twisti@2399 1374 count = 2;
duke@435 1375 else {
twisti@2399 1376 count = 2;
twisti@2399 1377 if (msb32 & 0x3ff)
twisti@2399 1378 count++;
twisti@2399 1379 if (lsb32 & 0xFFFFFC00 ) {
twisti@2399 1380 if ((lsb32 >> 20) & 0xfff) count += 2;
twisti@2399 1381 if ((lsb32 >> 10) & 0x3ff) count += 2;
duke@435 1382 }
duke@435 1383 }
twisti@2399 1384 return count;
duke@435 1385 #else
twisti@2399 1386 return 1;
duke@435 1387 #endif
duke@435 1388 }
duke@435 1389
twisti@2399 1390 int MacroAssembler::worst_case_insts_for_set() {
twisti@2399 1391 return insts_for_sethi(NULL, true) + 1;
duke@435 1392 }
duke@435 1393
twisti@1162 1394
twisti@2399 1395 // Keep in sync with MacroAssembler::insts_for_internal_set
twisti@1162 1396 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
twisti@1162 1397 intptr_t value = addrlit.value();
twisti@1162 1398
twisti@1162 1399 if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
duke@435 1400 // can optimize
twisti@1162 1401 if (-4096 <= value && value <= 4095) {
duke@435 1402 or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
duke@435 1403 return;
duke@435 1404 }
duke@435 1405 if (inv_hi22(hi22(value)) == value) {
twisti@1162 1406 sethi(addrlit, d);
duke@435 1407 return;
duke@435 1408 }
duke@435 1409 }
twisti@1162 1410 assert_not_delayed((char*) "cannot put two instructions in delay slot");
twisti@1162 1411 internal_sethi(addrlit, d, ForceRelocatable);
twisti@1162 1412 if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
twisti@1162 1413 add(d, addrlit.low10(), d, addrlit.rspec());
duke@435 1414 }
duke@435 1415 }
duke@435 1416
twisti@2399 1417 // Keep in sync with MacroAssembler::internal_set
twisti@2399 1418 int MacroAssembler::insts_for_internal_set(intptr_t value) {
twisti@2399 1419 // can optimize
twisti@2399 1420 if (-4096 <= value && value <= 4095) {
twisti@2399 1421 return 1;
twisti@2399 1422 }
twisti@2399 1423 if (inv_hi22(hi22(value)) == value) {
twisti@2399 1424 return insts_for_sethi((address) value);
twisti@2399 1425 }
twisti@2399 1426 int count = insts_for_sethi((address) value);
twisti@2399 1427 AddressLiteral al(value);
twisti@2399 1428 if (al.low10() != 0) {
twisti@2399 1429 count++;
twisti@2399 1430 }
twisti@2399 1431 return count;
twisti@2399 1432 }
twisti@2399 1433
twisti@1162 1434 void MacroAssembler::set(const AddressLiteral& al, Register d) {
twisti@1162 1435 internal_set(al, d, false);
duke@435 1436 }
duke@435 1437
twisti@1162 1438 void MacroAssembler::set(intptr_t value, Register d) {
twisti@1162 1439 AddressLiteral al(value);
twisti@1162 1440 internal_set(al, d, false);
twisti@1162 1441 }
twisti@1162 1442
twisti@1162 1443 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
twisti@1162 1444 AddressLiteral al(addr, rspec);
twisti@1162 1445 internal_set(al, d, false);
twisti@1162 1446 }
twisti@1162 1447
twisti@1162 1448 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
twisti@1162 1449 internal_set(al, d, true);
twisti@1162 1450 }
twisti@1162 1451
twisti@1162 1452 void MacroAssembler::patchable_set(intptr_t value, Register d) {
twisti@1162 1453 AddressLiteral al(value);
twisti@1162 1454 internal_set(al, d, true);
twisti@1162 1455 }
duke@435 1456
duke@435 1457
duke@435 1458 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
duke@435 1459 assert_not_delayed();
duke@435 1460 v9_dep();
duke@435 1461
duke@435 1462 int hi = (int)(value >> 32);
duke@435 1463 int lo = (int)(value & ~0);
duke@435 1464 // (Matcher::isSimpleConstant64 knows about the following optimizations.)
duke@435 1465 if (Assembler::is_simm13(lo) && value == lo) {
duke@435 1466 or3(G0, lo, d);
duke@435 1467 } else if (hi == 0) {
duke@435 1468 Assembler::sethi(lo, d); // hardware version zero-extends to upper 32
duke@435 1469 if (low10(lo) != 0)
duke@435 1470 or3(d, low10(lo), d);
duke@435 1471 }
duke@435 1472 else if (hi == -1) {
duke@435 1473 Assembler::sethi(~lo, d); // hardware version zero-extends to upper 32
duke@435 1474 xor3(d, low10(lo) ^ ~low10(~0), d);
duke@435 1475 }
duke@435 1476 else if (lo == 0) {
duke@435 1477 if (Assembler::is_simm13(hi)) {
duke@435 1478 or3(G0, hi, d);
duke@435 1479 } else {
duke@435 1480 Assembler::sethi(hi, d); // hardware version zero-extends to upper 32
duke@435 1481 if (low10(hi) != 0)
duke@435 1482 or3(d, low10(hi), d);
duke@435 1483 }
duke@435 1484 sllx(d, 32, d);
duke@435 1485 }
duke@435 1486 else {
duke@435 1487 Assembler::sethi(hi, tmp);
duke@435 1488 Assembler::sethi(lo, d); // macro assembler version sign-extends
duke@435 1489 if (low10(hi) != 0)
duke@435 1490 or3 (tmp, low10(hi), tmp);
duke@435 1491 if (low10(lo) != 0)
duke@435 1492 or3 ( d, low10(lo), d);
duke@435 1493 sllx(tmp, 32, tmp);
duke@435 1494 or3 (d, tmp, d);
duke@435 1495 }
duke@435 1496 }
duke@435 1497
twisti@2399 1498 int MacroAssembler::insts_for_set64(jlong value) {
twisti@2350 1499 v9_dep();
twisti@2350 1500
twisti@2399 1501 int hi = (int) (value >> 32);
twisti@2399 1502 int lo = (int) (value & ~0);
twisti@2350 1503 int count = 0;
twisti@2350 1504
twisti@2350 1505 // (Matcher::isSimpleConstant64 knows about the following optimizations.)
twisti@2350 1506 if (Assembler::is_simm13(lo) && value == lo) {
twisti@2350 1507 count++;
twisti@2350 1508 } else if (hi == 0) {
twisti@2350 1509 count++;
twisti@2350 1510 if (low10(lo) != 0)
twisti@2350 1511 count++;
twisti@2350 1512 }
twisti@2350 1513 else if (hi == -1) {
twisti@2350 1514 count += 2;
twisti@2350 1515 }
twisti@2350 1516 else if (lo == 0) {
twisti@2350 1517 if (Assembler::is_simm13(hi)) {
twisti@2350 1518 count++;
twisti@2350 1519 } else {
twisti@2350 1520 count++;
twisti@2350 1521 if (low10(hi) != 0)
twisti@2350 1522 count++;
twisti@2350 1523 }
twisti@2350 1524 count++;
twisti@2350 1525 }
twisti@2350 1526 else {
twisti@2350 1527 count += 2;
twisti@2350 1528 if (low10(hi) != 0)
twisti@2350 1529 count++;
twisti@2350 1530 if (low10(lo) != 0)
twisti@2350 1531 count++;
twisti@2350 1532 count += 2;
twisti@2350 1533 }
twisti@2350 1534 return count;
twisti@2350 1535 }
twisti@2350 1536
duke@435 1537 // compute size in bytes of sparc frame, given
duke@435 1538 // number of extraWords
duke@435 1539 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
duke@435 1540
duke@435 1541 int nWords = frame::memory_parameter_word_sp_offset;
duke@435 1542
duke@435 1543 nWords += extraWords;
duke@435 1544
duke@435 1545 if (nWords & 1) ++nWords; // round up to double-word
duke@435 1546
duke@435 1547 return nWords * BytesPerWord;
duke@435 1548 }
duke@435 1549
duke@435 1550
duke@435 1551 // save_frame: given number of "extra" words in frame,
duke@435 1552 // issue approp. save instruction (p 200, v8 manual)
duke@435 1553
never@2950 1554 void MacroAssembler::save_frame(int extraWords) {
duke@435 1555 int delta = -total_frame_size_in_bytes(extraWords);
duke@435 1556 if (is_simm13(delta)) {
duke@435 1557 save(SP, delta, SP);
duke@435 1558 } else {
duke@435 1559 set(delta, G3_scratch);
duke@435 1560 save(SP, G3_scratch, SP);
duke@435 1561 }
duke@435 1562 }
duke@435 1563
duke@435 1564
duke@435 1565 void MacroAssembler::save_frame_c1(int size_in_bytes) {
duke@435 1566 if (is_simm13(-size_in_bytes)) {
duke@435 1567 save(SP, -size_in_bytes, SP);
duke@435 1568 } else {
duke@435 1569 set(-size_in_bytes, G3_scratch);
duke@435 1570 save(SP, G3_scratch, SP);
duke@435 1571 }
duke@435 1572 }
duke@435 1573
duke@435 1574
duke@435 1575 void MacroAssembler::save_frame_and_mov(int extraWords,
duke@435 1576 Register s1, Register d1,
duke@435 1577 Register s2, Register d2) {
duke@435 1578 assert_not_delayed();
duke@435 1579
duke@435 1580 // The trick here is to use precisely the same memory word
duke@435 1581 // that trap handlers also use to save the register.
duke@435 1582 // This word cannot be used for any other purpose, but
duke@435 1583 // it works fine to save the register's value, whether or not
duke@435 1584 // an interrupt flushes register windows at any given moment!
duke@435 1585 Address s1_addr;
duke@435 1586 if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
duke@435 1587 s1_addr = s1->address_in_saved_window();
duke@435 1588 st_ptr(s1, s1_addr);
duke@435 1589 }
duke@435 1590
duke@435 1591 Address s2_addr;
duke@435 1592 if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
duke@435 1593 s2_addr = s2->address_in_saved_window();
duke@435 1594 st_ptr(s2, s2_addr);
duke@435 1595 }
duke@435 1596
duke@435 1597 save_frame(extraWords);
duke@435 1598
duke@435 1599 if (s1_addr.base() == SP) {
duke@435 1600 ld_ptr(s1_addr.after_save(), d1);
duke@435 1601 } else if (s1->is_valid()) {
duke@435 1602 mov(s1->after_save(), d1);
duke@435 1603 }
duke@435 1604
duke@435 1605 if (s2_addr.base() == SP) {
duke@435 1606 ld_ptr(s2_addr.after_save(), d2);
duke@435 1607 } else if (s2->is_valid()) {
duke@435 1608 mov(s2->after_save(), d2);
duke@435 1609 }
duke@435 1610 }
duke@435 1611
duke@435 1612
twisti@1162 1613 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
duke@435 1614 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
duke@435 1615 int oop_index = oop_recorder()->allocate_index(obj);
twisti@1162 1616 return AddressLiteral(obj, oop_Relocation::spec(oop_index));
duke@435 1617 }
duke@435 1618
duke@435 1619
twisti@1162 1620 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
duke@435 1621 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
duke@435 1622 int oop_index = oop_recorder()->find_index(obj);
twisti@1162 1623 return AddressLiteral(obj, oop_Relocation::spec(oop_index));
duke@435 1624 }
duke@435 1625
kvn@599 1626 void MacroAssembler::set_narrow_oop(jobject obj, Register d) {
kvn@599 1627 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
kvn@599 1628 int oop_index = oop_recorder()->find_index(obj);
kvn@599 1629 RelocationHolder rspec = oop_Relocation::spec(oop_index);
kvn@599 1630
kvn@599 1631 assert_not_delayed();
kvn@599 1632 // Relocation with special format (see relocInfo_sparc.hpp).
kvn@599 1633 relocate(rspec, 1);
kvn@599 1634 // Assembler::sethi(0x3fffff, d);
kvn@599 1635 emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
kvn@599 1636 // Don't add relocation for 'add'. Do patching during 'sethi' processing.
kvn@599 1637 add(d, 0x3ff, d);
kvn@599 1638
kvn@599 1639 }
kvn@599 1640
duke@435 1641
duke@435 1642 void MacroAssembler::align(int modulus) {
duke@435 1643 while (offset() % modulus != 0) nop();
duke@435 1644 }
duke@435 1645
duke@435 1646
duke@435 1647 void MacroAssembler::safepoint() {
duke@435 1648 relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
duke@435 1649 }
duke@435 1650
duke@435 1651
duke@435 1652 void RegistersForDebugging::print(outputStream* s) {
duke@435 1653 int j;
duke@435 1654 for ( j = 0; j < 8; ++j )
duke@435 1655 if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
duke@435 1656 else s->print_cr( "fp = 0x%.16lx", i[j]);
duke@435 1657 s->cr();
duke@435 1658
duke@435 1659 for ( j = 0; j < 8; ++j )
duke@435 1660 s->print_cr("l%d = 0x%.16lx", j, l[j]);
duke@435 1661 s->cr();
duke@435 1662
duke@435 1663 for ( j = 0; j < 8; ++j )
duke@435 1664 if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
duke@435 1665 else s->print_cr( "sp = 0x%.16lx", o[j]);
duke@435 1666 s->cr();
duke@435 1667
duke@435 1668 for ( j = 0; j < 8; ++j )
duke@435 1669 s->print_cr("g%d = 0x%.16lx", j, g[j]);
duke@435 1670 s->cr();
duke@435 1671
duke@435 1672 // print out floats with compression
duke@435 1673 for (j = 0; j < 32; ) {
duke@435 1674 jfloat val = f[j];
duke@435 1675 int last = j;
duke@435 1676 for ( ; last+1 < 32; ++last ) {
duke@435 1677 char b1[1024], b2[1024];
duke@435 1678 sprintf(b1, "%f", val);
duke@435 1679 sprintf(b2, "%f", f[last+1]);
duke@435 1680 if (strcmp(b1, b2))
duke@435 1681 break;
duke@435 1682 }
duke@435 1683 s->print("f%d", j);
duke@435 1684 if ( j != last ) s->print(" - f%d", last);
duke@435 1685 s->print(" = %f", val);
duke@435 1686 s->fill_to(25);
duke@435 1687 s->print_cr(" (0x%x)", val);
duke@435 1688 j = last + 1;
duke@435 1689 }
duke@435 1690 s->cr();
duke@435 1691
duke@435 1692 // and doubles (evens only)
duke@435 1693 for (j = 0; j < 32; ) {
duke@435 1694 jdouble val = d[j];
duke@435 1695 int last = j;
duke@435 1696 for ( ; last+1 < 32; ++last ) {
duke@435 1697 char b1[1024], b2[1024];
duke@435 1698 sprintf(b1, "%f", val);
duke@435 1699 sprintf(b2, "%f", d[last+1]);
duke@435 1700 if (strcmp(b1, b2))
duke@435 1701 break;
duke@435 1702 }
duke@435 1703 s->print("d%d", 2 * j);
duke@435 1704 if ( j != last ) s->print(" - d%d", last);
duke@435 1705 s->print(" = %f", val);
duke@435 1706 s->fill_to(30);
duke@435 1707 s->print("(0x%x)", *(int*)&val);
duke@435 1708 s->fill_to(42);
duke@435 1709 s->print_cr("(0x%x)", *(1 + (int*)&val));
duke@435 1710 j = last + 1;
duke@435 1711 }
duke@435 1712 s->cr();
duke@435 1713 }
duke@435 1714
duke@435 1715 void RegistersForDebugging::save_registers(MacroAssembler* a) {
duke@435 1716 a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
duke@435 1717 a->flush_windows();
duke@435 1718 int i;
duke@435 1719 for (i = 0; i < 8; ++i) {
duke@435 1720 a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, i_offset(i));
duke@435 1721 a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, l_offset(i));
duke@435 1722 a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
duke@435 1723 a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
duke@435 1724 }
duke@435 1725 for (i = 0; i < 32; ++i) {
duke@435 1726 a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
duke@435 1727 }
duke@435 1728 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 1729 a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
duke@435 1730 }
duke@435 1731 }
duke@435 1732
duke@435 1733 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
duke@435 1734 for (int i = 1; i < 8; ++i) {
duke@435 1735 a->ld_ptr(r, g_offset(i), as_gRegister(i));
duke@435 1736 }
duke@435 1737 for (int j = 0; j < 32; ++j) {
duke@435 1738 a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
duke@435 1739 }
duke@435 1740 for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
duke@435 1741 a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
duke@435 1742 }
duke@435 1743 }
duke@435 1744
duke@435 1745
duke@435 1746 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 1747 void MacroAssembler::push_fTOS() {
duke@435 1748 // %%%%%% need to implement this
duke@435 1749 }
duke@435 1750
duke@435 1751 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 1752 void MacroAssembler::pop_fTOS() {
duke@435 1753 // %%%%%% need to implement this
duke@435 1754 }
duke@435 1755
duke@435 1756 void MacroAssembler::empty_FPU_stack() {
duke@435 1757 // %%%%%% need to implement this
duke@435 1758 }
duke@435 1759
duke@435 1760 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
duke@435 1761 // plausibility check for oops
duke@435 1762 if (!VerifyOops) return;
duke@435 1763
duke@435 1764 if (reg == G0) return; // always NULL, which is always an oop
duke@435 1765
never@2950 1766 BLOCK_COMMENT("verify_oop {");
ysr@777 1767 char buffer[64];
ysr@777 1768 #ifdef COMPILER1
ysr@777 1769 if (CommentedAssembly) {
ysr@777 1770 snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
ysr@777 1771 block_comment(buffer);
ysr@777 1772 }
ysr@777 1773 #endif
ysr@777 1774
ysr@777 1775 int len = strlen(file) + strlen(msg) + 1 + 4;
duke@435 1776 sprintf(buffer, "%d", line);
ysr@777 1777 len += strlen(buffer);
ysr@777 1778 sprintf(buffer, " at offset %d ", offset());
ysr@777 1779 len += strlen(buffer);
duke@435 1780 char * real_msg = new char[len];
ysr@777 1781 sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
duke@435 1782
duke@435 1783 // Call indirectly to solve generation ordering problem
twisti@1162 1784 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
duke@435 1785
duke@435 1786 // Make some space on stack above the current register window.
duke@435 1787 // Enough to hold 8 64-bit registers.
duke@435 1788 add(SP,-8*8,SP);
duke@435 1789
duke@435 1790 // Save some 64-bit registers; a normal 'save' chops the heads off
duke@435 1791 // of 64-bit longs in the 32-bit build.
duke@435 1792 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
duke@435 1793 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
duke@435 1794 mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
duke@435 1795 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
duke@435 1796
duke@435 1797 set((intptr_t)real_msg, O1);
duke@435 1798 // Load address to call to into O7
duke@435 1799 load_ptr_contents(a, O7);
duke@435 1800 // Register call to verify_oop_subroutine
duke@435 1801 callr(O7, G0);
duke@435 1802 delayed()->nop();
duke@435 1803 // recover frame size
duke@435 1804 add(SP, 8*8,SP);
never@2950 1805 BLOCK_COMMENT("} verify_oop");
duke@435 1806 }
duke@435 1807
duke@435 1808 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
duke@435 1809 // plausibility check for oops
duke@435 1810 if (!VerifyOops) return;
duke@435 1811
duke@435 1812 char buffer[64];
duke@435 1813 sprintf(buffer, "%d", line);
duke@435 1814 int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
duke@435 1815 sprintf(buffer, " at SP+%d ", addr.disp());
duke@435 1816 len += strlen(buffer);
duke@435 1817 char * real_msg = new char[len];
duke@435 1818 sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
duke@435 1819
duke@435 1820 // Call indirectly to solve generation ordering problem
twisti@1162 1821 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
duke@435 1822
duke@435 1823 // Make some space on stack above the current register window.
duke@435 1824 // Enough to hold 8 64-bit registers.
duke@435 1825 add(SP,-8*8,SP);
duke@435 1826
duke@435 1827 // Save some 64-bit registers; a normal 'save' chops the heads off
duke@435 1828 // of 64-bit longs in the 32-bit build.
duke@435 1829 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
duke@435 1830 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
duke@435 1831 ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
duke@435 1832 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
duke@435 1833
duke@435 1834 set((intptr_t)real_msg, O1);
duke@435 1835 // Load address to call to into O7
duke@435 1836 load_ptr_contents(a, O7);
duke@435 1837 // Register call to verify_oop_subroutine
duke@435 1838 callr(O7, G0);
duke@435 1839 delayed()->nop();
duke@435 1840 // recover frame size
duke@435 1841 add(SP, 8*8,SP);
duke@435 1842 }
duke@435 1843
duke@435 1844 // side-door communication with signalHandler in os_solaris.cpp
duke@435 1845 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
duke@435 1846
duke@435 1847 // This macro is expanded just once; it creates shared code. Contract:
duke@435 1848 // receives an oop in O0. Must restore O0 & O7 from TLS. Must not smash ANY
duke@435 1849 // registers, including flags. May not use a register 'save', as this blows
duke@435 1850 // the high bits of the O-regs if they contain Long values. Acts as a 'leaf'
duke@435 1851 // call.
duke@435 1852 void MacroAssembler::verify_oop_subroutine() {
duke@435 1853 assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
duke@435 1854
duke@435 1855 // Leaf call; no frame.
duke@435 1856 Label succeed, fail, null_or_fail;
duke@435 1857
duke@435 1858 // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
duke@435 1859 // O0 is now the oop to be checked. O7 is the return address.
duke@435 1860 Register O0_obj = O0;
duke@435 1861
duke@435 1862 // Save some more registers for temps.
duke@435 1863 stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
duke@435 1864 stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
duke@435 1865 stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
duke@435 1866 stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
duke@435 1867
duke@435 1868 // Save flags
duke@435 1869 Register O5_save_flags = O5;
duke@435 1870 rdccr( O5_save_flags );
duke@435 1871
duke@435 1872 { // count number of verifies
duke@435 1873 Register O2_adr = O2;
duke@435 1874 Register O3_accum = O3;
twisti@1162 1875 inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
duke@435 1876 }
duke@435 1877
duke@435 1878 Register O2_mask = O2;
duke@435 1879 Register O3_bits = O3;
duke@435 1880 Register O4_temp = O4;
duke@435 1881
duke@435 1882 // mark lower end of faulting range
duke@435 1883 assert(_verify_oop_implicit_branch[0] == NULL, "set once");
duke@435 1884 _verify_oop_implicit_branch[0] = pc();
duke@435 1885
duke@435 1886 // We can't check the mark oop because it could be in the process of
duke@435 1887 // locking or unlocking while this is running.
duke@435 1888 set(Universe::verify_oop_mask (), O2_mask);
duke@435 1889 set(Universe::verify_oop_bits (), O3_bits);
duke@435 1890
duke@435 1891 // assert((obj & oop_mask) == oop_bits);
duke@435 1892 and3(O0_obj, O2_mask, O4_temp);
kvn@3037 1893 cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
duke@435 1894
duke@435 1895 if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
duke@435 1896 // the null_or_fail case is useless; must test for null separately
kvn@3037 1897 br_null_short(O0_obj, pn, succeed);
duke@435 1898 }
duke@435 1899
duke@435 1900 // Check the klassOop of this object for being in the right area of memory.
duke@435 1901 // Cannot do the load in the delay above slot in case O0 is null
coleenp@548 1902 load_klass(O0_obj, O0_obj);
duke@435 1903 // assert((klass & klass_mask) == klass_bits);
duke@435 1904 if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
duke@435 1905 set(Universe::verify_klass_mask(), O2_mask);
duke@435 1906 if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
duke@435 1907 set(Universe::verify_klass_bits(), O3_bits);
duke@435 1908 and3(O0_obj, O2_mask, O4_temp);
kvn@3037 1909 cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, fail);
duke@435 1910 // Check the klass's klass
coleenp@548 1911 load_klass(O0_obj, O0_obj);
duke@435 1912 and3(O0_obj, O2_mask, O4_temp);
duke@435 1913 cmp(O4_temp, O3_bits);
duke@435 1914 brx(notEqual, false, pn, fail);
duke@435 1915 delayed()->wrccr( O5_save_flags ); // Restore CCR's
duke@435 1916
duke@435 1917 // mark upper end of faulting range
duke@435 1918 _verify_oop_implicit_branch[1] = pc();
duke@435 1919
duke@435 1920 //-----------------------
duke@435 1921 // all tests pass
duke@435 1922 bind(succeed);
duke@435 1923
duke@435 1924 // Restore prior 64-bit registers
duke@435 1925 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
duke@435 1926 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
duke@435 1927 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
duke@435 1928 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
duke@435 1929 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
duke@435 1930 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
duke@435 1931
duke@435 1932 retl(); // Leaf return; restore prior O7 in delay slot
duke@435 1933 delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
duke@435 1934
duke@435 1935 //-----------------------
duke@435 1936 bind(null_or_fail); // nulls are less common but OK
duke@435 1937 br_null(O0_obj, false, pt, succeed);
duke@435 1938 delayed()->wrccr( O5_save_flags ); // Restore CCR's
duke@435 1939
duke@435 1940 //-----------------------
duke@435 1941 // report failure:
duke@435 1942 bind(fail);
duke@435 1943 _verify_oop_implicit_branch[2] = pc();
duke@435 1944
duke@435 1945 wrccr( O5_save_flags ); // Restore CCR's
duke@435 1946
duke@435 1947 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1948
duke@435 1949 // stop_subroutine expects message pointer in I1.
duke@435 1950 mov(I1, O1);
duke@435 1951
duke@435 1952 // Restore prior 64-bit registers
duke@435 1953 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
duke@435 1954 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
duke@435 1955 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
duke@435 1956 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
duke@435 1957 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
duke@435 1958 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
duke@435 1959
duke@435 1960 // factor long stop-sequence into subroutine to save space
duke@435 1961 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
duke@435 1962
duke@435 1963 // call indirectly to solve generation ordering problem
twisti@1162 1964 AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
twisti@1162 1965 load_ptr_contents(al, O5);
duke@435 1966 jmpl(O5, 0, O7);
duke@435 1967 delayed()->nop();
duke@435 1968 }
duke@435 1969
duke@435 1970
duke@435 1971 void MacroAssembler::stop(const char* msg) {
duke@435 1972 // save frame first to get O7 for return address
duke@435 1973 // add one word to size in case struct is odd number of words long
duke@435 1974 // It must be doubleword-aligned for storing doubles into it.
duke@435 1975
duke@435 1976 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1977
duke@435 1978 // stop_subroutine expects message pointer in I1.
duke@435 1979 set((intptr_t)msg, O1);
duke@435 1980
duke@435 1981 // factor long stop-sequence into subroutine to save space
duke@435 1982 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
duke@435 1983
duke@435 1984 // call indirectly to solve generation ordering problem
twisti@1162 1985 AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
duke@435 1986 load_ptr_contents(a, O5);
duke@435 1987 jmpl(O5, 0, O7);
duke@435 1988 delayed()->nop();
duke@435 1989
duke@435 1990 breakpoint_trap(); // make stop actually stop rather than writing
duke@435 1991 // unnoticeable results in the output files.
duke@435 1992
duke@435 1993 // restore(); done in callee to save space!
duke@435 1994 }
duke@435 1995
duke@435 1996
duke@435 1997 void MacroAssembler::warn(const char* msg) {
duke@435 1998 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1999 RegistersForDebugging::save_registers(this);
duke@435 2000 mov(O0, L0);
duke@435 2001 set((intptr_t)msg, O0);
duke@435 2002 call( CAST_FROM_FN_PTR(address, warning) );
duke@435 2003 delayed()->nop();
duke@435 2004 // ret();
duke@435 2005 // delayed()->restore();
duke@435 2006 RegistersForDebugging::restore_registers(this, L0);
duke@435 2007 restore();
duke@435 2008 }
duke@435 2009
duke@435 2010
duke@435 2011 void MacroAssembler::untested(const char* what) {
duke@435 2012 // We must be able to turn interactive prompting off
duke@435 2013 // in order to run automated test scripts on the VM
duke@435 2014 // Use the flag ShowMessageBoxOnError
duke@435 2015
duke@435 2016 char* b = new char[1024];
duke@435 2017 sprintf(b, "untested: %s", what);
duke@435 2018
duke@435 2019 if ( ShowMessageBoxOnError ) stop(b);
duke@435 2020 else warn(b);
duke@435 2021 }
duke@435 2022
duke@435 2023
duke@435 2024 void MacroAssembler::stop_subroutine() {
duke@435 2025 RegistersForDebugging::save_registers(this);
duke@435 2026
duke@435 2027 // for the sake of the debugger, stick a PC on the current frame
duke@435 2028 // (this assumes that the caller has performed an extra "save")
duke@435 2029 mov(I7, L7);
duke@435 2030 add(O7, -7 * BytesPerInt, I7);
duke@435 2031
duke@435 2032 save_frame(); // one more save to free up another O7 register
duke@435 2033 mov(I0, O1); // addr of reg save area
duke@435 2034
duke@435 2035 // We expect pointer to message in I1. Caller must set it up in O1
duke@435 2036 mov(I1, O0); // get msg
duke@435 2037 call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
duke@435 2038 delayed()->nop();
duke@435 2039
duke@435 2040 restore();
duke@435 2041
duke@435 2042 RegistersForDebugging::restore_registers(this, O0);
duke@435 2043
duke@435 2044 save_frame(0);
duke@435 2045 call(CAST_FROM_FN_PTR(address,breakpoint));
duke@435 2046 delayed()->nop();
duke@435 2047 restore();
duke@435 2048
duke@435 2049 mov(L7, I7);
duke@435 2050 retl();
duke@435 2051 delayed()->restore(); // see stop above
duke@435 2052 }
duke@435 2053
duke@435 2054
duke@435 2055 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
duke@435 2056 if ( ShowMessageBoxOnError ) {
duke@435 2057 JavaThreadState saved_state = JavaThread::current()->thread_state();
duke@435 2058 JavaThread::current()->set_thread_state(_thread_in_vm);
duke@435 2059 {
duke@435 2060 // In order to get locks work, we need to fake a in_VM state
duke@435 2061 ttyLocker ttyl;
duke@435 2062 ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
duke@435 2063 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
duke@435 2064 ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
duke@435 2065 }
duke@435 2066 if (os::message_box(msg, "Execution stopped, print registers?"))
duke@435 2067 regs->print(::tty);
duke@435 2068 }
duke@435 2069 ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
duke@435 2070 }
duke@435 2071 else
duke@435 2072 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
never@2950 2073 assert(false, err_msg("DEBUG MESSAGE: %s", msg));
duke@435 2074 }
duke@435 2075
duke@435 2076
duke@435 2077 #ifndef PRODUCT
duke@435 2078 void MacroAssembler::test() {
duke@435 2079 ResourceMark rm;
duke@435 2080
duke@435 2081 CodeBuffer cb("test", 10000, 10000);
duke@435 2082 MacroAssembler* a = new MacroAssembler(&cb);
duke@435 2083 VM_Version::allow_all();
duke@435 2084 a->test_v9();
duke@435 2085 a->test_v8_onlys();
duke@435 2086 VM_Version::revert();
duke@435 2087
duke@435 2088 StubRoutines::Sparc::test_stop_entry()();
duke@435 2089 }
duke@435 2090 #endif
duke@435 2091
duke@435 2092
duke@435 2093 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
duke@435 2094 subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
duke@435 2095 Label no_extras;
duke@435 2096 br( negative, true, pt, no_extras ); // if neg, clear reg
twisti@1162 2097 delayed()->set(0, Rresult); // annuled, so only if taken
duke@435 2098 bind( no_extras );
duke@435 2099 }
duke@435 2100
duke@435 2101
duke@435 2102 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
duke@435 2103 #ifdef _LP64
duke@435 2104 add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
duke@435 2105 #else
duke@435 2106 add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
duke@435 2107 #endif
duke@435 2108 bclr(1, Rresult);
duke@435 2109 sll(Rresult, LogBytesPerWord, Rresult); // Rresult has total frame bytes
duke@435 2110 }
duke@435 2111
duke@435 2112
duke@435 2113 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
duke@435 2114 calc_frame_size(Rextra_words, Rresult);
duke@435 2115 neg(Rresult);
duke@435 2116 save(SP, Rresult, SP);
duke@435 2117 }
duke@435 2118
duke@435 2119
duke@435 2120 // ---------------------------------------------------------
duke@435 2121 Assembler::RCondition cond2rcond(Assembler::Condition c) {
duke@435 2122 switch (c) {
duke@435 2123 /*case zero: */
duke@435 2124 case Assembler::equal: return Assembler::rc_z;
duke@435 2125 case Assembler::lessEqual: return Assembler::rc_lez;
duke@435 2126 case Assembler::less: return Assembler::rc_lz;
duke@435 2127 /*case notZero:*/
duke@435 2128 case Assembler::notEqual: return Assembler::rc_nz;
duke@435 2129 case Assembler::greater: return Assembler::rc_gz;
duke@435 2130 case Assembler::greaterEqual: return Assembler::rc_gez;
duke@435 2131 }
duke@435 2132 ShouldNotReachHere();
duke@435 2133 return Assembler::rc_z;
duke@435 2134 }
duke@435 2135
kvn@3037 2136 // compares (32 bit) register with zero and branches. NOT FOR USE WITH 64-bit POINTERS
kvn@3037 2137 void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
duke@435 2138 tst(s1);
duke@435 2139 br (c, a, p, L);
duke@435 2140 }
duke@435 2141
duke@435 2142 // Compares a pointer register with zero and branches on null.
duke@435 2143 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
duke@435 2144 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
duke@435 2145 assert_not_delayed();
duke@435 2146 #ifdef _LP64
duke@435 2147 bpr( rc_z, a, p, s1, L );
duke@435 2148 #else
duke@435 2149 tst(s1);
duke@435 2150 br ( zero, a, p, L );
duke@435 2151 #endif
duke@435 2152 }
duke@435 2153
duke@435 2154 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
duke@435 2155 assert_not_delayed();
duke@435 2156 #ifdef _LP64
duke@435 2157 bpr( rc_nz, a, p, s1, L );
duke@435 2158 #else
duke@435 2159 tst(s1);
duke@435 2160 br ( notZero, a, p, L );
duke@435 2161 #endif
duke@435 2162 }
duke@435 2163
ysr@777 2164 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
ysr@777 2165 Register s1, address d,
ysr@777 2166 relocInfo::relocType rt ) {
kvn@3037 2167 assert_not_delayed();
ysr@777 2168 if (VM_Version::v9_instructions_work()) {
ysr@777 2169 bpr(rc, a, p, s1, d, rt);
ysr@777 2170 } else {
ysr@777 2171 tst(s1);
ysr@777 2172 br(reg_cond_to_cc_cond(rc), a, p, d, rt);
ysr@777 2173 }
ysr@777 2174 }
ysr@777 2175
ysr@777 2176 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
ysr@777 2177 Register s1, Label& L ) {
kvn@3037 2178 assert_not_delayed();
ysr@777 2179 if (VM_Version::v9_instructions_work()) {
ysr@777 2180 bpr(rc, a, p, s1, L);
ysr@777 2181 } else {
ysr@777 2182 tst(s1);
ysr@777 2183 br(reg_cond_to_cc_cond(rc), a, p, L);
ysr@777 2184 }
ysr@777 2185 }
ysr@777 2186
kvn@3037 2187 // Compare registers and branch with nop in delay slot or cbcond without delay slot.
kvn@3037 2188
kvn@3037 2189 // Compare integer (32 bit) values (icc only).
kvn@3037 2190 void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
kvn@3037 2191 Predict p, Label& L) {
kvn@3037 2192 assert_not_delayed();
kvn@3037 2193 if (use_cbcond(L)) {
kvn@3037 2194 Assembler::cbcond(c, icc, s1, s2, L);
kvn@3037 2195 } else {
kvn@3037 2196 cmp(s1, s2);
kvn@3037 2197 br(c, false, p, L);
kvn@3037 2198 delayed()->nop();
kvn@3037 2199 }
kvn@3037 2200 }
kvn@3037 2201
kvn@3037 2202 // Compare integer (32 bit) values (icc only).
kvn@3037 2203 void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
kvn@3037 2204 Predict p, Label& L) {
kvn@3037 2205 assert_not_delayed();
kvn@3037 2206 if (is_simm(simm13a,5) && use_cbcond(L)) {
kvn@3037 2207 Assembler::cbcond(c, icc, s1, simm13a, L);
kvn@3037 2208 } else {
kvn@3037 2209 cmp(s1, simm13a);
kvn@3037 2210 br(c, false, p, L);
kvn@3037 2211 delayed()->nop();
kvn@3037 2212 }
kvn@3037 2213 }
kvn@3037 2214
kvn@3037 2215 // Branch that tests xcc in LP64 and icc in !LP64
kvn@3037 2216 void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
kvn@3037 2217 Predict p, Label& L) {
kvn@3037 2218 assert_not_delayed();
kvn@3037 2219 if (use_cbcond(L)) {
kvn@3037 2220 Assembler::cbcond(c, ptr_cc, s1, s2, L);
kvn@3037 2221 } else {
kvn@3037 2222 cmp(s1, s2);
kvn@3037 2223 brx(c, false, p, L);
kvn@3037 2224 delayed()->nop();
kvn@3037 2225 }
kvn@3037 2226 }
kvn@3037 2227
kvn@3037 2228 // Branch that tests xcc in LP64 and icc in !LP64
kvn@3037 2229 void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
kvn@3037 2230 Predict p, Label& L) {
kvn@3037 2231 assert_not_delayed();
kvn@3037 2232 if (is_simm(simm13a,5) && use_cbcond(L)) {
kvn@3037 2233 Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
kvn@3037 2234 } else {
kvn@3037 2235 cmp(s1, simm13a);
kvn@3037 2236 brx(c, false, p, L);
kvn@3037 2237 delayed()->nop();
kvn@3037 2238 }
kvn@3037 2239 }
kvn@3037 2240
kvn@3037 2241 // Short branch version for compares a pointer with zero.
kvn@3037 2242
kvn@3037 2243 void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
kvn@3037 2244 assert_not_delayed();
kvn@3037 2245 if (use_cbcond(L)) {
kvn@3037 2246 Assembler::cbcond(zero, ptr_cc, s1, 0, L);
kvn@3037 2247 return;
kvn@3037 2248 }
kvn@3037 2249 br_null(s1, false, p, L);
kvn@3037 2250 delayed()->nop();
kvn@3037 2251 }
kvn@3037 2252
kvn@3037 2253 void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
kvn@3037 2254 assert_not_delayed();
kvn@3037 2255 if (use_cbcond(L)) {
kvn@3037 2256 Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
kvn@3037 2257 return;
kvn@3037 2258 }
kvn@3037 2259 br_notnull(s1, false, p, L);
kvn@3037 2260 delayed()->nop();
kvn@3037 2261 }
kvn@3037 2262
kvn@3037 2263 // Unconditional short branch
kvn@3037 2264 void MacroAssembler::ba_short(Label& L) {
kvn@3037 2265 if (use_cbcond(L)) {
kvn@3037 2266 Assembler::cbcond(equal, icc, G0, G0, L);
kvn@3037 2267 return;
kvn@3037 2268 }
kvn@3037 2269 br(always, false, pt, L);
kvn@3037 2270 delayed()->nop();
kvn@3037 2271 }
duke@435 2272
duke@435 2273 // instruction sequences factored across compiler & interpreter
duke@435 2274
duke@435 2275
duke@435 2276 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
duke@435 2277 Register Rb_hi, Register Rb_low,
duke@435 2278 Register Rresult) {
duke@435 2279
duke@435 2280 Label check_low_parts, done;
duke@435 2281
duke@435 2282 cmp(Ra_hi, Rb_hi ); // compare hi parts
duke@435 2283 br(equal, true, pt, check_low_parts);
duke@435 2284 delayed()->cmp(Ra_low, Rb_low); // test low parts
duke@435 2285
duke@435 2286 // And, with an unsigned comparison, it does not matter if the numbers
duke@435 2287 // are negative or not.
duke@435 2288 // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
duke@435 2289 // The second one is bigger (unsignedly).
duke@435 2290
duke@435 2291 // Other notes: The first move in each triplet can be unconditional
duke@435 2292 // (and therefore probably prefetchable).
duke@435 2293 // And the equals case for the high part does not need testing,
duke@435 2294 // since that triplet is reached only after finding the high halves differ.
duke@435 2295
duke@435 2296 if (VM_Version::v9_instructions_work()) {
kvn@3037 2297 mov(-1, Rresult);
kvn@3037 2298 ba(done); delayed()-> movcc(greater, false, icc, 1, Rresult);
kvn@3037 2299 } else {
duke@435 2300 br(less, true, pt, done); delayed()-> set(-1, Rresult);
duke@435 2301 br(greater, true, pt, done); delayed()-> set( 1, Rresult);
duke@435 2302 }
duke@435 2303
duke@435 2304 bind( check_low_parts );
duke@435 2305
duke@435 2306 if (VM_Version::v9_instructions_work()) {
duke@435 2307 mov( -1, Rresult);
duke@435 2308 movcc(equal, false, icc, 0, Rresult);
duke@435 2309 movcc(greaterUnsigned, false, icc, 1, Rresult);
kvn@3037 2310 } else {
kvn@3037 2311 set(-1, Rresult);
duke@435 2312 br(equal, true, pt, done); delayed()->set( 0, Rresult);
duke@435 2313 br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
duke@435 2314 }
duke@435 2315 bind( done );
duke@435 2316 }
duke@435 2317
duke@435 2318 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
duke@435 2319 subcc( G0, Rlow, Rlow );
duke@435 2320 subc( G0, Rhi, Rhi );
duke@435 2321 }
duke@435 2322
duke@435 2323 void MacroAssembler::lshl( Register Rin_high, Register Rin_low,
duke@435 2324 Register Rcount,
duke@435 2325 Register Rout_high, Register Rout_low,
duke@435 2326 Register Rtemp ) {
duke@435 2327
duke@435 2328
duke@435 2329 Register Ralt_count = Rtemp;
duke@435 2330 Register Rxfer_bits = Rtemp;
duke@435 2331
duke@435 2332 assert( Ralt_count != Rin_high
duke@435 2333 && Ralt_count != Rin_low
duke@435 2334 && Ralt_count != Rcount
duke@435 2335 && Rxfer_bits != Rin_low
duke@435 2336 && Rxfer_bits != Rin_high
duke@435 2337 && Rxfer_bits != Rcount
duke@435 2338 && Rxfer_bits != Rout_low
duke@435 2339 && Rout_low != Rin_high,
duke@435 2340 "register alias checks");
duke@435 2341
duke@435 2342 Label big_shift, done;
duke@435 2343
duke@435 2344 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2345 // Here we use the 32 bit shifts.
duke@435 2346
kvn@3037 2347 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
kvn@3037 2348 subcc(Rcount, 31, Ralt_count);
duke@435 2349 br(greater, true, pn, big_shift);
kvn@3037 2350 delayed()->dec(Ralt_count);
duke@435 2351
duke@435 2352 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2353
duke@435 2354 // We get the transfer bits by shifting right by 32-count the low
duke@435 2355 // register. This is done by shifting right by 31-count and then by one
duke@435 2356 // more to take care of the special (rare) case where count is zero
duke@435 2357 // (shifting by 32 would not work).
duke@435 2358
kvn@3037 2359 neg(Ralt_count);
duke@435 2360
duke@435 2361 // The order of the next two instructions is critical in the case where
duke@435 2362 // Rin and Rout are the same and should not be reversed.
duke@435 2363
kvn@3037 2364 srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
duke@435 2365 if (Rcount != Rout_low) {
kvn@3037 2366 sll(Rin_low, Rcount, Rout_low); // low half
duke@435 2367 }
kvn@3037 2368 sll(Rin_high, Rcount, Rout_high);
duke@435 2369 if (Rcount == Rout_low) {
kvn@3037 2370 sll(Rin_low, Rcount, Rout_low); // low half
duke@435 2371 }
kvn@3037 2372 srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
kvn@3037 2373 ba(done);
kvn@3037 2374 delayed()->or3(Rout_high, Rxfer_bits, Rout_high); // new hi value: or in shifted old hi part and xfer from low
duke@435 2375
duke@435 2376 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2377 bind(big_shift);
kvn@3037 2378 sll(Rin_low, Ralt_count, Rout_high );
kvn@3037 2379 clr(Rout_low);
duke@435 2380
duke@435 2381 bind(done);
duke@435 2382 }
duke@435 2383
duke@435 2384
duke@435 2385 void MacroAssembler::lshr( Register Rin_high, Register Rin_low,
duke@435 2386 Register Rcount,
duke@435 2387 Register Rout_high, Register Rout_low,
duke@435 2388 Register Rtemp ) {
duke@435 2389
duke@435 2390 Register Ralt_count = Rtemp;
duke@435 2391 Register Rxfer_bits = Rtemp;
duke@435 2392
duke@435 2393 assert( Ralt_count != Rin_high
duke@435 2394 && Ralt_count != Rin_low
duke@435 2395 && Ralt_count != Rcount
duke@435 2396 && Rxfer_bits != Rin_low
duke@435 2397 && Rxfer_bits != Rin_high
duke@435 2398 && Rxfer_bits != Rcount
duke@435 2399 && Rxfer_bits != Rout_high
duke@435 2400 && Rout_high != Rin_low,
duke@435 2401 "register alias checks");
duke@435 2402
duke@435 2403 Label big_shift, done;
duke@435 2404
duke@435 2405 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2406 // Here we use the 32 bit shifts.
duke@435 2407
kvn@3037 2408 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
kvn@3037 2409 subcc(Rcount, 31, Ralt_count);
duke@435 2410 br(greater, true, pn, big_shift);
duke@435 2411 delayed()->dec(Ralt_count);
duke@435 2412
duke@435 2413 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2414
duke@435 2415 // We get the transfer bits by shifting left by 32-count the high
duke@435 2416 // register. This is done by shifting left by 31-count and then by one
duke@435 2417 // more to take care of the special (rare) case where count is zero
duke@435 2418 // (shifting by 32 would not work).
duke@435 2419
kvn@3037 2420 neg(Ralt_count);
duke@435 2421 if (Rcount != Rout_low) {
kvn@3037 2422 srl(Rin_low, Rcount, Rout_low);
duke@435 2423 }
duke@435 2424
duke@435 2425 // The order of the next two instructions is critical in the case where
duke@435 2426 // Rin and Rout are the same and should not be reversed.
duke@435 2427
kvn@3037 2428 sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
kvn@3037 2429 sra(Rin_high, Rcount, Rout_high ); // high half
kvn@3037 2430 sll(Rxfer_bits, 1, Rxfer_bits); // shift left by one more
duke@435 2431 if (Rcount == Rout_low) {
kvn@3037 2432 srl(Rin_low, Rcount, Rout_low);
duke@435 2433 }
kvn@3037 2434 ba(done);
kvn@3037 2435 delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
duke@435 2436
duke@435 2437 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2438 bind(big_shift);
duke@435 2439
kvn@3037 2440 sra(Rin_high, Ralt_count, Rout_low);
kvn@3037 2441 sra(Rin_high, 31, Rout_high); // sign into hi
duke@435 2442
duke@435 2443 bind( done );
duke@435 2444 }
duke@435 2445
duke@435 2446
duke@435 2447
duke@435 2448 void MacroAssembler::lushr( Register Rin_high, Register Rin_low,
duke@435 2449 Register Rcount,
duke@435 2450 Register Rout_high, Register Rout_low,
duke@435 2451 Register Rtemp ) {
duke@435 2452
duke@435 2453 Register Ralt_count = Rtemp;
duke@435 2454 Register Rxfer_bits = Rtemp;
duke@435 2455
duke@435 2456 assert( Ralt_count != Rin_high
duke@435 2457 && Ralt_count != Rin_low
duke@435 2458 && Ralt_count != Rcount
duke@435 2459 && Rxfer_bits != Rin_low
duke@435 2460 && Rxfer_bits != Rin_high
duke@435 2461 && Rxfer_bits != Rcount
duke@435 2462 && Rxfer_bits != Rout_high
duke@435 2463 && Rout_high != Rin_low,
duke@435 2464 "register alias checks");
duke@435 2465
duke@435 2466 Label big_shift, done;
duke@435 2467
duke@435 2468 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2469 // Here we use the 32 bit shifts.
duke@435 2470
kvn@3037 2471 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
kvn@3037 2472 subcc(Rcount, 31, Ralt_count);
duke@435 2473 br(greater, true, pn, big_shift);
duke@435 2474 delayed()->dec(Ralt_count);
duke@435 2475
duke@435 2476 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2477
duke@435 2478 // We get the transfer bits by shifting left by 32-count the high
duke@435 2479 // register. This is done by shifting left by 31-count and then by one
duke@435 2480 // more to take care of the special (rare) case where count is zero
duke@435 2481 // (shifting by 32 would not work).
duke@435 2482
kvn@3037 2483 neg(Ralt_count);
duke@435 2484 if (Rcount != Rout_low) {
kvn@3037 2485 srl(Rin_low, Rcount, Rout_low);
duke@435 2486 }
duke@435 2487
duke@435 2488 // The order of the next two instructions is critical in the case where
duke@435 2489 // Rin and Rout are the same and should not be reversed.
duke@435 2490
kvn@3037 2491 sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
kvn@3037 2492 srl(Rin_high, Rcount, Rout_high ); // high half
kvn@3037 2493 sll(Rxfer_bits, 1, Rxfer_bits); // shift left by one more
duke@435 2494 if (Rcount == Rout_low) {
kvn@3037 2495 srl(Rin_low, Rcount, Rout_low);
duke@435 2496 }
kvn@3037 2497 ba(done);
kvn@3037 2498 delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
duke@435 2499
duke@435 2500 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2501 bind(big_shift);
duke@435 2502
kvn@3037 2503 srl(Rin_high, Ralt_count, Rout_low);
kvn@3037 2504 clr(Rout_high);
duke@435 2505
duke@435 2506 bind( done );
duke@435 2507 }
duke@435 2508
duke@435 2509 #ifdef _LP64
duke@435 2510 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
duke@435 2511 cmp(Ra, Rb);
kvn@3037 2512 mov(-1, Rresult);
duke@435 2513 movcc(equal, false, xcc, 0, Rresult);
duke@435 2514 movcc(greater, false, xcc, 1, Rresult);
duke@435 2515 }
duke@435 2516 #endif
duke@435 2517
duke@435 2518
twisti@2565 2519 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
twisti@1858 2520 switch (size_in_bytes) {
twisti@2565 2521 case 8: ld_long(src, dst); break;
twisti@2565 2522 case 4: ld( src, dst); break;
twisti@2565 2523 case 2: is_signed ? ldsh(src, dst) : lduh(src, dst); break;
twisti@2565 2524 case 1: is_signed ? ldsb(src, dst) : ldub(src, dst); break;
twisti@2565 2525 default: ShouldNotReachHere();
twisti@2565 2526 }
twisti@2565 2527 }
twisti@2565 2528
twisti@2565 2529 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
twisti@2565 2530 switch (size_in_bytes) {
twisti@2565 2531 case 8: st_long(src, dst); break;
twisti@2565 2532 case 4: st( src, dst); break;
twisti@2565 2533 case 2: sth( src, dst); break;
twisti@2565 2534 case 1: stb( src, dst); break;
twisti@2565 2535 default: ShouldNotReachHere();
twisti@1858 2536 }
twisti@1858 2537 }
twisti@1858 2538
twisti@1858 2539
duke@435 2540 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
duke@435 2541 FloatRegister Fa, FloatRegister Fb,
duke@435 2542 Register Rresult) {
duke@435 2543
duke@435 2544 fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
duke@435 2545
duke@435 2546 Condition lt = unordered_result == -1 ? f_unorderedOrLess : f_less;
duke@435 2547 Condition eq = f_equal;
duke@435 2548 Condition gt = unordered_result == 1 ? f_unorderedOrGreater : f_greater;
duke@435 2549
duke@435 2550 if (VM_Version::v9_instructions_work()) {
duke@435 2551
kvn@3037 2552 mov(-1, Rresult);
kvn@3037 2553 movcc(eq, true, fcc0, 0, Rresult);
kvn@3037 2554 movcc(gt, true, fcc0, 1, Rresult);
duke@435 2555
duke@435 2556 } else {
duke@435 2557 Label done;
duke@435 2558
kvn@3037 2559 set( -1, Rresult );
duke@435 2560 //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
duke@435 2561 fb( eq, true, pn, done); delayed()->set( 0, Rresult );
duke@435 2562 fb( gt, true, pn, done); delayed()->set( 1, Rresult );
duke@435 2563
duke@435 2564 bind (done);
duke@435 2565 }
duke@435 2566 }
duke@435 2567
duke@435 2568
duke@435 2569 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2570 {
duke@435 2571 if (VM_Version::v9_instructions_work()) {
duke@435 2572 Assembler::fneg(w, s, d);
duke@435 2573 } else {
duke@435 2574 if (w == FloatRegisterImpl::S) {
duke@435 2575 Assembler::fneg(w, s, d);
duke@435 2576 } else if (w == FloatRegisterImpl::D) {
duke@435 2577 // number() does a sanity check on the alignment.
duke@435 2578 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2579 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2580
duke@435 2581 Assembler::fneg(FloatRegisterImpl::S, s, d);
duke@435 2582 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2583 } else {
duke@435 2584 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2585
duke@435 2586 // number() does a sanity check on the alignment.
duke@435 2587 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2588 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2589
duke@435 2590 Assembler::fneg(FloatRegisterImpl::S, s, d);
duke@435 2591 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2592 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2593 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2594 }
duke@435 2595 }
duke@435 2596 }
duke@435 2597
duke@435 2598 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2599 {
duke@435 2600 if (VM_Version::v9_instructions_work()) {
duke@435 2601 Assembler::fmov(w, s, d);
duke@435 2602 } else {
duke@435 2603 if (w == FloatRegisterImpl::S) {
duke@435 2604 Assembler::fmov(w, s, d);
duke@435 2605 } else if (w == FloatRegisterImpl::D) {
duke@435 2606 // number() does a sanity check on the alignment.
duke@435 2607 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2608 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2609
duke@435 2610 Assembler::fmov(FloatRegisterImpl::S, s, d);
duke@435 2611 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2612 } else {
duke@435 2613 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2614
duke@435 2615 // number() does a sanity check on the alignment.
duke@435 2616 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2617 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2618
duke@435 2619 Assembler::fmov(FloatRegisterImpl::S, s, d);
duke@435 2620 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2621 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2622 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2623 }
duke@435 2624 }
duke@435 2625 }
duke@435 2626
duke@435 2627 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2628 {
duke@435 2629 if (VM_Version::v9_instructions_work()) {
duke@435 2630 Assembler::fabs(w, s, d);
duke@435 2631 } else {
duke@435 2632 if (w == FloatRegisterImpl::S) {
duke@435 2633 Assembler::fabs(w, s, d);
duke@435 2634 } else if (w == FloatRegisterImpl::D) {
duke@435 2635 // number() does a sanity check on the alignment.
duke@435 2636 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2637 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2638
duke@435 2639 Assembler::fabs(FloatRegisterImpl::S, s, d);
duke@435 2640 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2641 } else {
duke@435 2642 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2643
duke@435 2644 // number() does a sanity check on the alignment.
duke@435 2645 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2646 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2647
duke@435 2648 Assembler::fabs(FloatRegisterImpl::S, s, d);
duke@435 2649 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2650 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2651 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2652 }
duke@435 2653 }
duke@435 2654 }
duke@435 2655
duke@435 2656 void MacroAssembler::save_all_globals_into_locals() {
duke@435 2657 mov(G1,L1);
duke@435 2658 mov(G2,L2);
duke@435 2659 mov(G3,L3);
duke@435 2660 mov(G4,L4);
duke@435 2661 mov(G5,L5);
duke@435 2662 mov(G6,L6);
duke@435 2663 mov(G7,L7);
duke@435 2664 }
duke@435 2665
duke@435 2666 void MacroAssembler::restore_globals_from_locals() {
duke@435 2667 mov(L1,G1);
duke@435 2668 mov(L2,G2);
duke@435 2669 mov(L3,G3);
duke@435 2670 mov(L4,G4);
duke@435 2671 mov(L5,G5);
duke@435 2672 mov(L6,G6);
duke@435 2673 mov(L7,G7);
duke@435 2674 }
duke@435 2675
duke@435 2676 // Use for 64 bit operation.
duke@435 2677 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
duke@435 2678 {
duke@435 2679 // store ptr_reg as the new top value
duke@435 2680 #ifdef _LP64
duke@435 2681 casx(top_ptr_reg, top_reg, ptr_reg);
duke@435 2682 #else
duke@435 2683 cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
duke@435 2684 #endif // _LP64
duke@435 2685 }
duke@435 2686
duke@435 2687 // [RGV] This routine does not handle 64 bit operations.
duke@435 2688 // use casx_under_lock() or casx directly!!!
duke@435 2689 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
duke@435 2690 {
duke@435 2691 // store ptr_reg as the new top value
duke@435 2692 if (VM_Version::v9_instructions_work()) {
duke@435 2693 cas(top_ptr_reg, top_reg, ptr_reg);
duke@435 2694 } else {
duke@435 2695
duke@435 2696 // If the register is not an out nor global, it is not visible
duke@435 2697 // after the save. Allocate a register for it, save its
duke@435 2698 // value in the register save area (the save may not flush
duke@435 2699 // registers to the save area).
duke@435 2700
duke@435 2701 Register top_ptr_reg_after_save;
duke@435 2702 Register top_reg_after_save;
duke@435 2703 Register ptr_reg_after_save;
duke@435 2704
duke@435 2705 if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
duke@435 2706 top_ptr_reg_after_save = top_ptr_reg->after_save();
duke@435 2707 } else {
duke@435 2708 Address reg_save_addr = top_ptr_reg->address_in_saved_window();
duke@435 2709 top_ptr_reg_after_save = L0;
duke@435 2710 st(top_ptr_reg, reg_save_addr);
duke@435 2711 }
duke@435 2712
duke@435 2713 if (top_reg->is_out() || top_reg->is_global()) {
duke@435 2714 top_reg_after_save = top_reg->after_save();
duke@435 2715 } else {
duke@435 2716 Address reg_save_addr = top_reg->address_in_saved_window();
duke@435 2717 top_reg_after_save = L1;
duke@435 2718 st(top_reg, reg_save_addr);
duke@435 2719 }
duke@435 2720
duke@435 2721 if (ptr_reg->is_out() || ptr_reg->is_global()) {
duke@435 2722 ptr_reg_after_save = ptr_reg->after_save();
duke@435 2723 } else {
duke@435 2724 Address reg_save_addr = ptr_reg->address_in_saved_window();
duke@435 2725 ptr_reg_after_save = L2;
duke@435 2726 st(ptr_reg, reg_save_addr);
duke@435 2727 }
duke@435 2728
duke@435 2729 const Register& lock_reg = L3;
duke@435 2730 const Register& lock_ptr_reg = L4;
duke@435 2731 const Register& value_reg = L5;
duke@435 2732 const Register& yield_reg = L6;
duke@435 2733 const Register& yieldall_reg = L7;
duke@435 2734
duke@435 2735 save_frame();
duke@435 2736
duke@435 2737 if (top_ptr_reg_after_save == L0) {
duke@435 2738 ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
duke@435 2739 }
duke@435 2740
duke@435 2741 if (top_reg_after_save == L1) {
duke@435 2742 ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
duke@435 2743 }
duke@435 2744
duke@435 2745 if (ptr_reg_after_save == L2) {
duke@435 2746 ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
duke@435 2747 }
duke@435 2748
duke@435 2749 Label(retry_get_lock);
duke@435 2750 Label(not_same);
duke@435 2751 Label(dont_yield);
duke@435 2752
duke@435 2753 assert(lock_addr, "lock_address should be non null for v8");
duke@435 2754 set((intptr_t)lock_addr, lock_ptr_reg);
duke@435 2755 // Initialize yield counter
duke@435 2756 mov(G0,yield_reg);
duke@435 2757 mov(G0, yieldall_reg);
duke@435 2758 set(StubRoutines::Sparc::locked, lock_reg);
duke@435 2759
duke@435 2760 bind(retry_get_lock);
kvn@3037 2761 cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dont_yield);
duke@435 2762
duke@435 2763 if(use_call_vm) {
duke@435 2764 Untested("Need to verify global reg consistancy");
duke@435 2765 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
duke@435 2766 } else {
duke@435 2767 // Save the regs and make space for a C call
duke@435 2768 save(SP, -96, SP);
duke@435 2769 save_all_globals_into_locals();
duke@435 2770 call(CAST_FROM_FN_PTR(address,os::yield_all));
duke@435 2771 delayed()->mov(yieldall_reg, O0);
duke@435 2772 restore_globals_from_locals();
duke@435 2773 restore();
duke@435 2774 }
duke@435 2775
duke@435 2776 // reset the counter
duke@435 2777 mov(G0,yield_reg);
duke@435 2778 add(yieldall_reg, 1, yieldall_reg);
duke@435 2779
duke@435 2780 bind(dont_yield);
duke@435 2781 // try to get lock
duke@435 2782 swap(lock_ptr_reg, 0, lock_reg);
duke@435 2783
duke@435 2784 // did we get the lock?
duke@435 2785 cmp(lock_reg, StubRoutines::Sparc::unlocked);
duke@435 2786 br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
duke@435 2787 delayed()->add(yield_reg,1,yield_reg);
duke@435 2788
duke@435 2789 // yes, got lock. do we have the same top?
duke@435 2790 ld(top_ptr_reg_after_save, 0, value_reg);
kvn@3037 2791 cmp_and_br_short(value_reg, top_reg_after_save, Assembler::notEqual, Assembler::pn, not_same);
duke@435 2792
duke@435 2793 // yes, same top.
duke@435 2794 st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
duke@435 2795 membar(Assembler::StoreStore);
duke@435 2796
duke@435 2797 bind(not_same);
duke@435 2798 mov(value_reg, ptr_reg_after_save);
duke@435 2799 st(lock_reg, lock_ptr_reg, 0); // unlock
duke@435 2800
duke@435 2801 restore();
duke@435 2802 }
duke@435 2803 }
duke@435 2804
jrose@1100 2805 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
jrose@1100 2806 Register tmp,
jrose@1100 2807 int offset) {
jrose@1057 2808 intptr_t value = *delayed_value_addr;
jrose@1057 2809 if (value != 0)
jrose@1100 2810 return RegisterOrConstant(value + offset);
jrose@1057 2811
jrose@1057 2812 // load indirectly to solve generation ordering problem
twisti@1162 2813 AddressLiteral a(delayed_value_addr);
jrose@1057 2814 load_ptr_contents(a, tmp);
jrose@1057 2815
jrose@1057 2816 #ifdef ASSERT
jrose@1057 2817 tst(tmp);
jrose@1057 2818 breakpoint_trap(zero, xcc);
jrose@1057 2819 #endif
jrose@1057 2820
jrose@1057 2821 if (offset != 0)
jrose@1057 2822 add(tmp, offset, tmp);
jrose@1057 2823
jrose@1100 2824 return RegisterOrConstant(tmp);
jrose@1057 2825 }
jrose@1057 2826
jrose@1057 2827
twisti@1858 2828 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
twisti@1858 2829 assert(d.register_or_noreg() != G0, "lost side effect");
twisti@1858 2830 if ((s2.is_constant() && s2.as_constant() == 0) ||
twisti@1858 2831 (s2.is_register() && s2.as_register() == G0)) {
twisti@1858 2832 // Do nothing, just move value.
twisti@1858 2833 if (s1.is_register()) {
twisti@1858 2834 if (d.is_constant()) d = temp;
twisti@1858 2835 mov(s1.as_register(), d.as_register());
twisti@1858 2836 return d;
twisti@1858 2837 } else {
twisti@1858 2838 return s1;
twisti@1858 2839 }
twisti@1858 2840 }
twisti@1858 2841
twisti@1858 2842 if (s1.is_register()) {
twisti@1858 2843 assert_different_registers(s1.as_register(), temp);
twisti@1858 2844 if (d.is_constant()) d = temp;
twisti@1858 2845 andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
twisti@1858 2846 return d;
jrose@1058 2847 } else {
twisti@1858 2848 if (s2.is_register()) {
twisti@1858 2849 assert_different_registers(s2.as_register(), temp);
twisti@1858 2850 if (d.is_constant()) d = temp;
twisti@1858 2851 set(s1.as_constant(), temp);
twisti@1858 2852 andn(temp, s2.as_register(), d.as_register());
twisti@1858 2853 return d;
twisti@1858 2854 } else {
twisti@1858 2855 intptr_t res = s1.as_constant() & ~s2.as_constant();
twisti@1858 2856 return res;
twisti@1858 2857 }
jrose@1058 2858 }
jrose@1058 2859 }
jrose@1058 2860
twisti@1858 2861 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
twisti@1858 2862 assert(d.register_or_noreg() != G0, "lost side effect");
twisti@1858 2863 if ((s2.is_constant() && s2.as_constant() == 0) ||
twisti@1858 2864 (s2.is_register() && s2.as_register() == G0)) {
twisti@1858 2865 // Do nothing, just move value.
twisti@1858 2866 if (s1.is_register()) {
twisti@1858 2867 if (d.is_constant()) d = temp;
twisti@1858 2868 mov(s1.as_register(), d.as_register());
twisti@1858 2869 return d;
twisti@1858 2870 } else {
twisti@1858 2871 return s1;
twisti@1858 2872 }
twisti@1858 2873 }
twisti@1858 2874
twisti@1858 2875 if (s1.is_register()) {
twisti@1858 2876 assert_different_registers(s1.as_register(), temp);
twisti@1858 2877 if (d.is_constant()) d = temp;
twisti@1858 2878 add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
twisti@1858 2879 return d;
jrose@1058 2880 } else {
twisti@1858 2881 if (s2.is_register()) {
twisti@1858 2882 assert_different_registers(s2.as_register(), temp);
twisti@1858 2883 if (d.is_constant()) d = temp;
twisti@1858 2884 add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
twisti@1858 2885 return d;
twisti@1858 2886 } else {
twisti@1858 2887 intptr_t res = s1.as_constant() + s2.as_constant();
twisti@1858 2888 return res;
twisti@1858 2889 }
twisti@1858 2890 }
twisti@1858 2891 }
twisti@1858 2892
twisti@1858 2893 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
twisti@1858 2894 assert(d.register_or_noreg() != G0, "lost side effect");
twisti@1858 2895 if (!is_simm13(s2.constant_or_zero()))
twisti@1858 2896 s2 = (s2.as_constant() & 0xFF);
twisti@1858 2897 if ((s2.is_constant() && s2.as_constant() == 0) ||
twisti@1858 2898 (s2.is_register() && s2.as_register() == G0)) {
twisti@1858 2899 // Do nothing, just move value.
twisti@1858 2900 if (s1.is_register()) {
twisti@1858 2901 if (d.is_constant()) d = temp;
twisti@1858 2902 mov(s1.as_register(), d.as_register());
twisti@1858 2903 return d;
twisti@1858 2904 } else {
twisti@1858 2905 return s1;
twisti@1858 2906 }
twisti@1858 2907 }
twisti@1858 2908
twisti@1858 2909 if (s1.is_register()) {
twisti@1858 2910 assert_different_registers(s1.as_register(), temp);
twisti@1858 2911 if (d.is_constant()) d = temp;
twisti@1858 2912 sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
twisti@1858 2913 return d;
twisti@1858 2914 } else {
twisti@1858 2915 if (s2.is_register()) {
twisti@1858 2916 assert_different_registers(s2.as_register(), temp);
twisti@1858 2917 if (d.is_constant()) d = temp;
twisti@1858 2918 set(s1.as_constant(), temp);
twisti@1858 2919 sll_ptr(temp, s2.as_register(), d.as_register());
twisti@1858 2920 return d;
twisti@1858 2921 } else {
twisti@1858 2922 intptr_t res = s1.as_constant() << s2.as_constant();
twisti@1858 2923 return res;
twisti@1858 2924 }
jrose@1058 2925 }
jrose@1058 2926 }
jrose@1058 2927
jrose@1058 2928
jrose@1058 2929 // Look up the method for a megamorphic invokeinterface call.
jrose@1058 2930 // The target method is determined by <intf_klass, itable_index>.
jrose@1058 2931 // The receiver klass is in recv_klass.
jrose@1058 2932 // On success, the result will be in method_result, and execution falls through.
jrose@1058 2933 // On failure, execution transfers to the given label.
jrose@1058 2934 void MacroAssembler::lookup_interface_method(Register recv_klass,
jrose@1058 2935 Register intf_klass,
jrose@1100 2936 RegisterOrConstant itable_index,
jrose@1058 2937 Register method_result,
jrose@1058 2938 Register scan_temp,
jrose@1058 2939 Register sethi_temp,
jrose@1058 2940 Label& L_no_such_interface) {
jrose@1058 2941 assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
jrose@1058 2942 assert(itable_index.is_constant() || itable_index.as_register() == method_result,
jrose@1058 2943 "caller must use same register for non-constant itable index as for method");
jrose@1058 2944
jrose@1058 2945 // Compute start of first itableOffsetEntry (which is at the end of the vtable)
jrose@1058 2946 int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
jrose@1058 2947 int scan_step = itableOffsetEntry::size() * wordSize;
jrose@1058 2948 int vte_size = vtableEntry::size() * wordSize;
jrose@1058 2949
jrose@1058 2950 lduw(recv_klass, instanceKlass::vtable_length_offset() * wordSize, scan_temp);
jrose@1058 2951 // %%% We should store the aligned, prescaled offset in the klassoop.
jrose@1058 2952 // Then the next several instructions would fold away.
jrose@1058 2953
jrose@1058 2954 int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
jrose@1058 2955 int itb_offset = vtable_base;
jrose@1058 2956 if (round_to_unit != 0) {
jrose@1058 2957 // hoist first instruction of round_to(scan_temp, BytesPerLong):
jrose@1058 2958 itb_offset += round_to_unit - wordSize;
jrose@1058 2959 }
jrose@1058 2960 int itb_scale = exact_log2(vtableEntry::size() * wordSize);
jrose@1058 2961 sll(scan_temp, itb_scale, scan_temp);
jrose@1058 2962 add(scan_temp, itb_offset, scan_temp);
jrose@1058 2963 if (round_to_unit != 0) {
jrose@1058 2964 // Round up to align_object_offset boundary
jrose@1058 2965 // see code for instanceKlass::start_of_itable!
jrose@1058 2966 // Was: round_to(scan_temp, BytesPerLong);
jrose@1058 2967 // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
jrose@1058 2968 and3(scan_temp, -round_to_unit, scan_temp);
jrose@1058 2969 }
jrose@1058 2970 add(recv_klass, scan_temp, scan_temp);
jrose@1058 2971
jrose@1058 2972 // Adjust recv_klass by scaled itable_index, so we can free itable_index.
jrose@1100 2973 RegisterOrConstant itable_offset = itable_index;
twisti@1858 2974 itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
twisti@1858 2975 itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
twisti@1441 2976 add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
jrose@1058 2977
jrose@1058 2978 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
jrose@1058 2979 // if (scan->interface() == intf) {
jrose@1058 2980 // result = (klass + scan->offset() + itable_index);
jrose@1058 2981 // }
jrose@1058 2982 // }
jrose@1058 2983 Label search, found_method;
jrose@1058 2984
jrose@1058 2985 for (int peel = 1; peel >= 0; peel--) {
jrose@1058 2986 // %%%% Could load both offset and interface in one ldx, if they were
jrose@1058 2987 // in the opposite order. This would save a load.
jrose@1058 2988 ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
jrose@1058 2989
jrose@1058 2990 // Check that this entry is non-null. A null entry means that
jrose@1058 2991 // the receiver class doesn't implement the interface, and wasn't the
jrose@1058 2992 // same as when the caller was compiled.
jrose@1058 2993 bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
jrose@1058 2994 delayed()->cmp(method_result, intf_klass);
jrose@1058 2995
jrose@1058 2996 if (peel) {
jrose@1058 2997 brx(Assembler::equal, false, Assembler::pt, found_method);
jrose@1058 2998 } else {
jrose@1058 2999 brx(Assembler::notEqual, false, Assembler::pn, search);
jrose@1058 3000 // (invert the test to fall through to found_method...)
jrose@1058 3001 }
jrose@1058 3002 delayed()->add(scan_temp, scan_step, scan_temp);
jrose@1058 3003
jrose@1058 3004 if (!peel) break;
jrose@1058 3005
jrose@1058 3006 bind(search);
jrose@1058 3007 }
jrose@1058 3008
jrose@1058 3009 bind(found_method);
jrose@1058 3010
jrose@1058 3011 // Got a hit.
jrose@1058 3012 int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
jrose@1058 3013 // scan_temp[-scan_step] points to the vtable offset we need
jrose@1058 3014 ito_offset -= scan_step;
jrose@1058 3015 lduw(scan_temp, ito_offset, scan_temp);
jrose@1058 3016 ld_ptr(recv_klass, scan_temp, method_result);
jrose@1058 3017 }
jrose@1058 3018
jrose@1058 3019
jrose@1079 3020 void MacroAssembler::check_klass_subtype(Register sub_klass,
jrose@1079 3021 Register super_klass,
jrose@1079 3022 Register temp_reg,
jrose@1079 3023 Register temp2_reg,
jrose@1079 3024 Label& L_success) {
jrose@1079 3025 Label L_failure, L_pop_to_failure;
jrose@1079 3026 check_klass_subtype_fast_path(sub_klass, super_klass,
jrose@1079 3027 temp_reg, temp2_reg,
jrose@1079 3028 &L_success, &L_failure, NULL);
jrose@1079 3029 Register sub_2 = sub_klass;
jrose@1079 3030 Register sup_2 = super_klass;
jrose@1079 3031 if (!sub_2->is_global()) sub_2 = L0;
jrose@1079 3032 if (!sup_2->is_global()) sup_2 = L1;
jrose@1079 3033
jrose@1079 3034 save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
jrose@1079 3035 check_klass_subtype_slow_path(sub_2, sup_2,
jrose@1079 3036 L2, L3, L4, L5,
jrose@1079 3037 NULL, &L_pop_to_failure);
jrose@1079 3038
jrose@1079 3039 // on success:
jrose@1079 3040 restore();
kvn@3037 3041 ba_short(L_success);
jrose@1079 3042
jrose@1079 3043 // on failure:
jrose@1079 3044 bind(L_pop_to_failure);
jrose@1079 3045 restore();
jrose@1079 3046 bind(L_failure);
jrose@1079 3047 }
jrose@1079 3048
jrose@1079 3049
jrose@1079 3050 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
jrose@1079 3051 Register super_klass,
jrose@1079 3052 Register temp_reg,
jrose@1079 3053 Register temp2_reg,
jrose@1079 3054 Label* L_success,
jrose@1079 3055 Label* L_failure,
jrose@1079 3056 Label* L_slow_path,
kvn@3037 3057 RegisterOrConstant super_check_offset) {
jrose@1079 3058 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 3059 Klass::secondary_super_cache_offset_in_bytes());
jrose@1079 3060 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 3061 Klass::super_check_offset_offset_in_bytes());
jrose@1079 3062
jrose@1079 3063 bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
jrose@1079 3064 bool need_slow_path = (must_load_sco ||
jrose@1079 3065 super_check_offset.constant_or_zero() == sco_offset);
jrose@1079 3066
jrose@1079 3067 assert_different_registers(sub_klass, super_klass, temp_reg);
jrose@1079 3068 if (super_check_offset.is_register()) {
twisti@1858 3069 assert_different_registers(sub_klass, super_klass, temp_reg,
jrose@1079 3070 super_check_offset.as_register());
jrose@1079 3071 } else if (must_load_sco) {
jrose@1079 3072 assert(temp2_reg != noreg, "supply either a temp or a register offset");
jrose@1079 3073 }
jrose@1079 3074
jrose@1079 3075 Label L_fallthrough;
jrose@1079 3076 int label_nulls = 0;
jrose@1079 3077 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
jrose@1079 3078 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
jrose@1079 3079 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
kvn@3037 3080 assert(label_nulls <= 1 ||
jrose@1079 3081 (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
jrose@1079 3082 "at most one NULL in the batch, usually");
jrose@1079 3083
jrose@1079 3084 // If the pointers are equal, we are done (e.g., String[] elements).
jrose@1079 3085 // This self-check enables sharing of secondary supertype arrays among
jrose@1079 3086 // non-primary types such as array-of-interface. Otherwise, each such
jrose@1079 3087 // type would need its own customized SSA.
jrose@1079 3088 // We move this check to the front of the fast path because many
jrose@1079 3089 // type checks are in fact trivially successful in this manner,
jrose@1079 3090 // so we get a nicely predicted branch right at the start of the check.
jrose@1079 3091 cmp(super_klass, sub_klass);
kvn@3037 3092 brx(Assembler::equal, false, Assembler::pn, *L_success);
kvn@3037 3093 delayed()->nop();
jrose@1079 3094
jrose@1079 3095 // Check the supertype display:
jrose@1079 3096 if (must_load_sco) {
jrose@1079 3097 // The super check offset is always positive...
jrose@1079 3098 lduw(super_klass, sco_offset, temp2_reg);
jrose@1100 3099 super_check_offset = RegisterOrConstant(temp2_reg);
twisti@1858 3100 // super_check_offset is register.
twisti@1858 3101 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
jrose@1079 3102 }
jrose@1079 3103 ld_ptr(sub_klass, super_check_offset, temp_reg);
jrose@1079 3104 cmp(super_klass, temp_reg);
jrose@1079 3105
jrose@1079 3106 // This check has worked decisively for primary supers.
jrose@1079 3107 // Secondary supers are sought in the super_cache ('super_cache_addr').
jrose@1079 3108 // (Secondary supers are interfaces and very deeply nested subtypes.)
jrose@1079 3109 // This works in the same check above because of a tricky aliasing
jrose@1079 3110 // between the super_cache and the primary super display elements.
jrose@1079 3111 // (The 'super_check_addr' can address either, as the case requires.)
jrose@1079 3112 // Note that the cache is updated below if it does not help us find
jrose@1079 3113 // what we need immediately.
jrose@1079 3114 // So if it was a primary super, we can just fail immediately.
jrose@1079 3115 // Otherwise, it's the slow path for us (no success at this point).
jrose@1079 3116
kvn@3037 3117 // Hacked ba(), which may only be used just before L_fallthrough.
kvn@3037 3118 #define FINAL_JUMP(label) \
kvn@3037 3119 if (&(label) != &L_fallthrough) { \
kvn@3037 3120 ba(label); delayed()->nop(); \
kvn@3037 3121 }
kvn@3037 3122
jrose@1079 3123 if (super_check_offset.is_register()) {
kvn@3037 3124 brx(Assembler::equal, false, Assembler::pn, *L_success);
kvn@3037 3125 delayed()->cmp(super_check_offset.as_register(), sc_offset);
jrose@1079 3126
jrose@1079 3127 if (L_failure == &L_fallthrough) {
kvn@3037 3128 brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
jrose@1079 3129 delayed()->nop();
jrose@1079 3130 } else {
kvn@3037 3131 brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
kvn@3037 3132 delayed()->nop();
kvn@3037 3133 FINAL_JUMP(*L_slow_path);
jrose@1079 3134 }
jrose@1079 3135 } else if (super_check_offset.as_constant() == sc_offset) {
jrose@1079 3136 // Need a slow path; fast failure is impossible.
jrose@1079 3137 if (L_slow_path == &L_fallthrough) {
kvn@3037 3138 brx(Assembler::equal, false, Assembler::pt, *L_success);
kvn@3037 3139 delayed()->nop();
jrose@1079 3140 } else {
jrose@1079 3141 brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
jrose@1079 3142 delayed()->nop();
kvn@3037 3143 FINAL_JUMP(*L_success);
jrose@1079 3144 }
jrose@1079 3145 } else {
jrose@1079 3146 // No slow path; it's a fast decision.
jrose@1079 3147 if (L_failure == &L_fallthrough) {
kvn@3037 3148 brx(Assembler::equal, false, Assembler::pt, *L_success);
kvn@3037 3149 delayed()->nop();
jrose@1079 3150 } else {
kvn@3037 3151 brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
kvn@3037 3152 delayed()->nop();
kvn@3037 3153 FINAL_JUMP(*L_success);
jrose@1079 3154 }
jrose@1079 3155 }
jrose@1079 3156
jrose@1079 3157 bind(L_fallthrough);
jrose@1079 3158
kvn@3037 3159 #undef FINAL_JUMP
jrose@1079 3160 }
jrose@1079 3161
jrose@1079 3162
jrose@1079 3163 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
jrose@1079 3164 Register super_klass,
jrose@1079 3165 Register count_temp,
jrose@1079 3166 Register scan_temp,
jrose@1079 3167 Register scratch_reg,
jrose@1079 3168 Register coop_reg,
jrose@1079 3169 Label* L_success,
jrose@1079 3170 Label* L_failure) {
jrose@1079 3171 assert_different_registers(sub_klass, super_klass,
jrose@1079 3172 count_temp, scan_temp, scratch_reg, coop_reg);
jrose@1079 3173
jrose@1079 3174 Label L_fallthrough, L_loop;
jrose@1079 3175 int label_nulls = 0;
jrose@1079 3176 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
jrose@1079 3177 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
jrose@1079 3178 assert(label_nulls <= 1, "at most one NULL in the batch");
jrose@1079 3179
jrose@1079 3180 // a couple of useful fields in sub_klass:
jrose@1079 3181 int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 3182 Klass::secondary_supers_offset_in_bytes());
jrose@1079 3183 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 3184 Klass::secondary_super_cache_offset_in_bytes());
jrose@1079 3185
jrose@1079 3186 // Do a linear scan of the secondary super-klass chain.
jrose@1079 3187 // This code is rarely used, so simplicity is a virtue here.
jrose@1079 3188
jrose@1079 3189 #ifndef PRODUCT
jrose@1079 3190 int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
jrose@1079 3191 inc_counter((address) pst_counter, count_temp, scan_temp);
jrose@1079 3192 #endif
jrose@1079 3193
jrose@1079 3194 // We will consult the secondary-super array.
jrose@1079 3195 ld_ptr(sub_klass, ss_offset, scan_temp);
jrose@1079 3196
jrose@1079 3197 // Compress superclass if necessary.
jrose@1079 3198 Register search_key = super_klass;
jrose@1079 3199 bool decode_super_klass = false;
jrose@1079 3200 if (UseCompressedOops) {
jrose@1079 3201 if (coop_reg != noreg) {
jrose@1079 3202 encode_heap_oop_not_null(super_klass, coop_reg);
jrose@1079 3203 search_key = coop_reg;
jrose@1079 3204 } else {
jrose@1079 3205 encode_heap_oop_not_null(super_klass);
jrose@1079 3206 decode_super_klass = true; // scarce temps!
jrose@1079 3207 }
jrose@1079 3208 // The superclass is never null; it would be a basic system error if a null
jrose@1079 3209 // pointer were to sneak in here. Note that we have already loaded the
jrose@1079 3210 // Klass::super_check_offset from the super_klass in the fast path,
jrose@1079 3211 // so if there is a null in that register, we are already in the afterlife.
jrose@1079 3212 }
jrose@1079 3213
jrose@1079 3214 // Load the array length. (Positive movl does right thing on LP64.)
jrose@1079 3215 lduw(scan_temp, arrayOopDesc::length_offset_in_bytes(), count_temp);
jrose@1079 3216
jrose@1079 3217 // Check for empty secondary super list
jrose@1079 3218 tst(count_temp);
jrose@1079 3219
jrose@1079 3220 // Top of search loop
jrose@1079 3221 bind(L_loop);
jrose@1079 3222 br(Assembler::equal, false, Assembler::pn, *L_failure);
jrose@1079 3223 delayed()->add(scan_temp, heapOopSize, scan_temp);
jrose@1079 3224 assert(heapOopSize != 0, "heapOopSize should be initialized");
jrose@1079 3225
jrose@1079 3226 // Skip the array header in all array accesses.
jrose@1079 3227 int elem_offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
jrose@1079 3228 elem_offset -= heapOopSize; // the scan pointer was pre-incremented also
jrose@1079 3229
jrose@1079 3230 // Load next super to check
jrose@1079 3231 if (UseCompressedOops) {
jrose@1079 3232 // Don't use load_heap_oop; we don't want to decode the element.
jrose@1079 3233 lduw( scan_temp, elem_offset, scratch_reg );
jrose@1079 3234 } else {
jrose@1079 3235 ld_ptr( scan_temp, elem_offset, scratch_reg );
jrose@1079 3236 }
jrose@1079 3237
jrose@1079 3238 // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
jrose@1079 3239 cmp(scratch_reg, search_key);
jrose@1079 3240
jrose@1079 3241 // A miss means we are NOT a subtype and need to keep looping
jrose@1079 3242 brx(Assembler::notEqual, false, Assembler::pn, L_loop);
jrose@1079 3243 delayed()->deccc(count_temp); // decrement trip counter in delay slot
jrose@1079 3244
jrose@1079 3245 // Falling out the bottom means we found a hit; we ARE a subtype
jrose@1079 3246 if (decode_super_klass) decode_heap_oop(super_klass);
jrose@1079 3247
jrose@1079 3248 // Success. Cache the super we found and proceed in triumph.
jrose@1079 3249 st_ptr(super_klass, sub_klass, sc_offset);
jrose@1079 3250
jrose@1079 3251 if (L_success != &L_fallthrough) {
kvn@3037 3252 ba(*L_success);
jrose@1079 3253 delayed()->nop();
jrose@1079 3254 }
jrose@1079 3255
jrose@1079 3256 bind(L_fallthrough);
jrose@1079 3257 }
jrose@1079 3258
jrose@1079 3259
jrose@1145 3260 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
jrose@1145 3261 Register temp_reg,
jrose@1145 3262 Label& wrong_method_type) {
jrose@1145 3263 assert_different_registers(mtype_reg, mh_reg, temp_reg);
jrose@1145 3264 // compare method type against that of the receiver
jrose@2639 3265 RegisterOrConstant mhtype_offset = delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg);
twisti@2201 3266 load_heap_oop(mh_reg, mhtype_offset, temp_reg);
kvn@3037 3267 cmp_and_brx_short(temp_reg, mtype_reg, Assembler::notEqual, Assembler::pn, wrong_method_type);
jrose@1145 3268 }
jrose@1145 3269
jrose@1145 3270
twisti@1858 3271 // A method handle has a "vmslots" field which gives the size of its
twisti@1858 3272 // argument list in JVM stack slots. This field is either located directly
twisti@1858 3273 // in every method handle, or else is indirectly accessed through the
twisti@1858 3274 // method handle's MethodType. This macro hides the distinction.
twisti@1858 3275 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
twisti@1858 3276 Register temp_reg) {
twisti@1858 3277 assert_different_registers(vmslots_reg, mh_reg, temp_reg);
twisti@1858 3278 // load mh.type.form.vmslots
jrose@2639 3279 if (java_lang_invoke_MethodHandle::vmslots_offset_in_bytes() != 0) {
twisti@1858 3280 // hoist vmslots into every mh to avoid dependent load chain
jrose@2639 3281 ld( Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmslots_offset_in_bytes, temp_reg)), vmslots_reg);
twisti@1858 3282 } else {
twisti@1858 3283 Register temp2_reg = vmslots_reg;
jrose@2639 3284 load_heap_oop(Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)), temp2_reg);
jrose@2639 3285 load_heap_oop(Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)), temp2_reg);
jrose@2639 3286 ld( Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)), vmslots_reg);
twisti@1858 3287 }
twisti@1858 3288 }
twisti@1858 3289
twisti@1858 3290
twisti@1858 3291 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop) {
jrose@1145 3292 assert(mh_reg == G3_method_handle, "caller must put MH object in G3");
jrose@1145 3293 assert_different_registers(mh_reg, temp_reg);
jrose@1145 3294
jrose@1145 3295 // pick out the interpreted side of the handler
twisti@2201 3296 // NOTE: vmentry is not an oop!
jrose@2639 3297 ld_ptr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg), temp_reg);
jrose@1145 3298
jrose@1145 3299 // off we go...
jrose@1145 3300 ld_ptr(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes(), temp_reg);
jrose@1145 3301 jmp(temp_reg, 0);
jrose@1145 3302
jrose@1145 3303 // for the various stubs which take control at this point,
jrose@1145 3304 // see MethodHandles::generate_method_handle_stub
jrose@1145 3305
twisti@1858 3306 // Some callers can fill the delay slot.
twisti@1858 3307 if (emit_delayed_nop) {
twisti@1858 3308 delayed()->nop();
twisti@1858 3309 }
jrose@1145 3310 }
jrose@1145 3311
twisti@1858 3312
jrose@1145 3313 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
never@2950 3314 Register temp_reg,
jrose@1145 3315 int extra_slot_offset) {
jrose@1145 3316 // cf. TemplateTable::prepare_invoke(), if (load_receiver).
twisti@1861 3317 int stackElementSize = Interpreter::stackElementSize;
twisti@1858 3318 int offset = extra_slot_offset * stackElementSize;
jrose@1145 3319 if (arg_slot.is_constant()) {
jrose@1145 3320 offset += arg_slot.as_constant() * stackElementSize;
jrose@1145 3321 return offset;
jrose@1145 3322 } else {
never@2950 3323 assert(temp_reg != noreg, "must specify");
never@2950 3324 sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
jrose@1145 3325 if (offset != 0)
never@2950 3326 add(temp_reg, offset, temp_reg);
never@2950 3327 return temp_reg;
jrose@1145 3328 }
jrose@1145 3329 }
jrose@1145 3330
jrose@1145 3331
twisti@1858 3332 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
never@2950 3333 Register temp_reg,
twisti@1858 3334 int extra_slot_offset) {
never@2950 3335 return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
twisti@1858 3336 }
twisti@1858 3337
jrose@1145 3338
kvn@855 3339 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
kvn@855 3340 Register temp_reg,
duke@435 3341 Label& done, Label* slow_case,
duke@435 3342 BiasedLockingCounters* counters) {
duke@435 3343 assert(UseBiasedLocking, "why call this otherwise?");
duke@435 3344
duke@435 3345 if (PrintBiasedLockingStatistics) {
duke@435 3346 assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
duke@435 3347 if (counters == NULL)
duke@435 3348 counters = BiasedLocking::counters();
duke@435 3349 }
duke@435 3350
duke@435 3351 Label cas_label;
duke@435 3352
duke@435 3353 // Biased locking
duke@435 3354 // See whether the lock is currently biased toward our thread and
duke@435 3355 // whether the epoch is still valid
duke@435 3356 // Note that the runtime guarantees sufficient alignment of JavaThread
duke@435 3357 // pointers to allow age to be placed into low bits
duke@435 3358 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
duke@435 3359 and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
kvn@3037 3360 cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
coleenp@548 3361
coleenp@548 3362 load_klass(obj_reg, temp_reg);
twisti@1162 3363 ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
duke@435 3364 or3(G2_thread, temp_reg, temp_reg);
duke@435 3365 xor3(mark_reg, temp_reg, temp_reg);
duke@435 3366 andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
duke@435 3367 if (counters != NULL) {
duke@435 3368 cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3369 // Reload mark_reg as we may need it later
twisti@1162 3370 ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
duke@435 3371 }
duke@435 3372 brx(Assembler::equal, true, Assembler::pt, done);
duke@435 3373 delayed()->nop();
duke@435 3374
duke@435 3375 Label try_revoke_bias;
duke@435 3376 Label try_rebias;
twisti@1162 3377 Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 3378 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3379
duke@435 3380 // At this point we know that the header has the bias pattern and
duke@435 3381 // that we are not the bias owner in the current epoch. We need to
duke@435 3382 // figure out more details about the state of the header in order to
duke@435 3383 // know what operations can be legally performed on the object's
duke@435 3384 // header.
duke@435 3385
duke@435 3386 // If the low three bits in the xor result aren't clear, that means
duke@435 3387 // the prototype header is no longer biased and we have to revoke
duke@435 3388 // the bias on this object.
duke@435 3389 btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 3390 brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
duke@435 3391
duke@435 3392 // Biasing is still enabled for this data type. See whether the
duke@435 3393 // epoch of the current bias is still valid, meaning that the epoch
duke@435 3394 // bits of the mark word are equal to the epoch bits of the
duke@435 3395 // prototype header. (Note that the prototype header's epoch bits
duke@435 3396 // only change at a safepoint.) If not, attempt to rebias the object
duke@435 3397 // toward the current thread. Note that we must be absolutely sure
duke@435 3398 // that the current epoch is invalid in order to do this because
duke@435 3399 // otherwise the manipulations it performs on the mark word are
duke@435 3400 // illegal.
duke@435 3401 delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
duke@435 3402 brx(Assembler::notZero, false, Assembler::pn, try_rebias);
duke@435 3403
duke@435 3404 // The epoch of the current bias is still valid but we know nothing
duke@435 3405 // about the owner; it might be set or it might be clear. Try to
duke@435 3406 // acquire the bias of the object using an atomic operation. If this
duke@435 3407 // fails we will go in to the runtime to revoke the object's bias.
duke@435 3408 // Note that we first construct the presumed unbiased header so we
duke@435 3409 // don't accidentally blow away another thread's valid bias.
duke@435 3410 delayed()->and3(mark_reg,
duke@435 3411 markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
duke@435 3412 mark_reg);
duke@435 3413 or3(G2_thread, mark_reg, temp_reg);
kvn@855 3414 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3415 // If the biasing toward our thread failed, this means that
duke@435 3416 // another thread succeeded in biasing it toward itself and we
duke@435 3417 // need to revoke that bias. The revocation will occur in the
duke@435 3418 // interpreter runtime in the slow case.
duke@435 3419 cmp(mark_reg, temp_reg);
duke@435 3420 if (counters != NULL) {
duke@435 3421 cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3422 }
duke@435 3423 if (slow_case != NULL) {
duke@435 3424 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
duke@435 3425 delayed()->nop();
duke@435 3426 }
kvn@3037 3427 ba_short(done);
duke@435 3428
duke@435 3429 bind(try_rebias);
duke@435 3430 // At this point we know the epoch has expired, meaning that the
duke@435 3431 // current "bias owner", if any, is actually invalid. Under these
duke@435 3432 // circumstances _only_, we are allowed to use the current header's
duke@435 3433 // value as the comparison value when doing the cas to acquire the
duke@435 3434 // bias in the current epoch. In other words, we allow transfer of
duke@435 3435 // the bias from one thread to another directly in this situation.
duke@435 3436 //
duke@435 3437 // FIXME: due to a lack of registers we currently blow away the age
duke@435 3438 // bits in this situation. Should attempt to preserve them.
coleenp@548 3439 load_klass(obj_reg, temp_reg);
twisti@1162 3440 ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
duke@435 3441 or3(G2_thread, temp_reg, temp_reg);
kvn@855 3442 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3443 // If the biasing toward our thread failed, this means that
duke@435 3444 // another thread succeeded in biasing it toward itself and we
duke@435 3445 // need to revoke that bias. The revocation will occur in the
duke@435 3446 // interpreter runtime in the slow case.
duke@435 3447 cmp(mark_reg, temp_reg);
duke@435 3448 if (counters != NULL) {
duke@435 3449 cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3450 }
duke@435 3451 if (slow_case != NULL) {
duke@435 3452 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
duke@435 3453 delayed()->nop();
duke@435 3454 }
kvn@3037 3455 ba_short(done);
duke@435 3456
duke@435 3457 bind(try_revoke_bias);
duke@435 3458 // The prototype mark in the klass doesn't have the bias bit set any
duke@435 3459 // more, indicating that objects of this data type are not supposed
duke@435 3460 // to be biased any more. We are going to try to reset the mark of
duke@435 3461 // this object to the prototype value and fall through to the
duke@435 3462 // CAS-based locking scheme. Note that if our CAS fails, it means
duke@435 3463 // that another thread raced us for the privilege of revoking the
duke@435 3464 // bias of this particular object, so it's okay to continue in the
duke@435 3465 // normal locking code.
duke@435 3466 //
duke@435 3467 // FIXME: due to a lack of registers we currently blow away the age
duke@435 3468 // bits in this situation. Should attempt to preserve them.
coleenp@548 3469 load_klass(obj_reg, temp_reg);
twisti@1162 3470 ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
kvn@855 3471 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3472 // Fall through to the normal CAS-based lock, because no matter what
duke@435 3473 // the result of the above CAS, some thread must have succeeded in
duke@435 3474 // removing the bias bit from the object's header.
duke@435 3475 if (counters != NULL) {
duke@435 3476 cmp(mark_reg, temp_reg);
duke@435 3477 cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3478 }
duke@435 3479
duke@435 3480 bind(cas_label);
duke@435 3481 }
duke@435 3482
duke@435 3483 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
duke@435 3484 bool allow_delay_slot_filling) {
duke@435 3485 // Check for biased locking unlock case, which is a no-op
duke@435 3486 // Note: we do not have to check the thread ID for two reasons.
duke@435 3487 // First, the interpreter checks for IllegalMonitorStateException at
duke@435 3488 // a higher level. Second, if the bias was revoked while we held the
duke@435 3489 // lock, the object could not be rebiased toward another thread, so
duke@435 3490 // the bias bit would be clear.
duke@435 3491 ld_ptr(mark_addr, temp_reg);
duke@435 3492 and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 3493 cmp(temp_reg, markOopDesc::biased_lock_pattern);
duke@435 3494 brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
duke@435 3495 delayed();
duke@435 3496 if (!allow_delay_slot_filling) {
duke@435 3497 nop();
duke@435 3498 }
duke@435 3499 }
duke@435 3500
duke@435 3501
duke@435 3502 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
duke@435 3503 // Solaris/SPARC's "as". Another apt name would be cas_ptr()
duke@435 3504
duke@435 3505 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
kvn@3037 3506 casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 3507 }
duke@435 3508
duke@435 3509
duke@435 3510
duke@435 3511 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
duke@435 3512 // of i486.ad fast_lock() and fast_unlock(). See those methods for detailed comments.
duke@435 3513 // The code could be tightened up considerably.
duke@435 3514 //
duke@435 3515 // box->dhw disposition - post-conditions at DONE_LABEL.
duke@435 3516 // - Successful inflated lock: box->dhw != 0.
duke@435 3517 // Any non-zero value suffices.
duke@435 3518 // Consider G2_thread, rsp, boxReg, or unused_mark()
duke@435 3519 // - Successful Stack-lock: box->dhw == mark.
duke@435 3520 // box->dhw must contain the displaced mark word value
duke@435 3521 // - Failure -- icc.ZFlag == 0 and box->dhw is undefined.
duke@435 3522 // The slow-path fast_enter() and slow_enter() operators
duke@435 3523 // are responsible for setting box->dhw = NonZero (typically ::unused_mark).
duke@435 3524 // - Biased: box->dhw is undefined
duke@435 3525 //
duke@435 3526 // SPARC refworkload performance - specifically jetstream and scimark - are
duke@435 3527 // extremely sensitive to the size of the code emitted by compiler_lock_object
duke@435 3528 // and compiler_unlock_object. Critically, the key factor is code size, not path
duke@435 3529 // length. (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
duke@435 3530 // effect).
duke@435 3531
duke@435 3532
kvn@855 3533 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
kvn@855 3534 Register Rbox, Register Rscratch,
kvn@855 3535 BiasedLockingCounters* counters,
kvn@855 3536 bool try_bias) {
twisti@1162 3537 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
duke@435 3538
duke@435 3539 verify_oop(Roop);
duke@435 3540 Label done ;
duke@435 3541
duke@435 3542 if (counters != NULL) {
duke@435 3543 inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
duke@435 3544 }
duke@435 3545
duke@435 3546 if (EmitSync & 1) {
kvn@3037 3547 mov(3, Rscratch);
kvn@3037 3548 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
kvn@3037 3549 cmp(SP, G0);
duke@435 3550 return ;
duke@435 3551 }
duke@435 3552
duke@435 3553 if (EmitSync & 2) {
duke@435 3554
duke@435 3555 // Fetch object's markword
duke@435 3556 ld_ptr(mark_addr, Rmark);
duke@435 3557
kvn@855 3558 if (try_bias) {
duke@435 3559 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3560 }
duke@435 3561
duke@435 3562 // Save Rbox in Rscratch to be used for the cas operation
duke@435 3563 mov(Rbox, Rscratch);
duke@435 3564
duke@435 3565 // set Rmark to markOop | markOopDesc::unlocked_value
duke@435 3566 or3(Rmark, markOopDesc::unlocked_value, Rmark);
duke@435 3567
duke@435 3568 // Initialize the box. (Must happen before we update the object mark!)
duke@435 3569 st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3570
duke@435 3571 // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
duke@435 3572 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3573 casx_under_lock(mark_addr.base(), Rmark, Rscratch,
duke@435 3574 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 3575
duke@435 3576 // if compare/exchange succeeded we found an unlocked object and we now have locked it
duke@435 3577 // hence we are done
duke@435 3578 cmp(Rmark, Rscratch);
duke@435 3579 #ifdef _LP64
duke@435 3580 sub(Rscratch, STACK_BIAS, Rscratch);
duke@435 3581 #endif
duke@435 3582 brx(Assembler::equal, false, Assembler::pt, done);
duke@435 3583 delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot
duke@435 3584
duke@435 3585 // we did not find an unlocked object so see if this is a recursive case
duke@435 3586 // sub(Rscratch, SP, Rscratch);
duke@435 3587 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 3588 andcc(Rscratch, 0xfffff003, Rscratch);
duke@435 3589 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
kvn@3037 3590 bind (done);
duke@435 3591 return ;
duke@435 3592 }
duke@435 3593
duke@435 3594 Label Egress ;
duke@435 3595
duke@435 3596 if (EmitSync & 256) {
duke@435 3597 Label IsInflated ;
duke@435 3598
kvn@3037 3599 ld_ptr(mark_addr, Rmark); // fetch obj->mark
duke@435 3600 // Triage: biased, stack-locked, neutral, inflated
kvn@855 3601 if (try_bias) {
duke@435 3602 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3603 // Invariant: if control reaches this point in the emitted stream
duke@435 3604 // then Rmark has not been modified.
duke@435 3605 }
duke@435 3606
duke@435 3607 // Store mark into displaced mark field in the on-stack basic-lock "box"
duke@435 3608 // Critically, this must happen before the CAS
duke@435 3609 // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
kvn@3037 3610 st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
kvn@3037 3611 andcc(Rmark, 2, G0);
kvn@3037 3612 brx(Assembler::notZero, false, Assembler::pn, IsInflated);
kvn@3037 3613 delayed()->
duke@435 3614
duke@435 3615 // Try stack-lock acquisition.
duke@435 3616 // Beware: the 1st instruction is in a delay slot
kvn@3037 3617 mov(Rbox, Rscratch);
kvn@3037 3618 or3(Rmark, markOopDesc::unlocked_value, Rmark);
kvn@3037 3619 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
kvn@3037 3620 casn(mark_addr.base(), Rmark, Rscratch);
kvn@3037 3621 cmp(Rmark, Rscratch);
kvn@3037 3622 brx(Assembler::equal, false, Assembler::pt, done);
duke@435 3623 delayed()->sub(Rscratch, SP, Rscratch);
duke@435 3624
duke@435 3625 // Stack-lock attempt failed - check for recursive stack-lock.
duke@435 3626 // See the comments below about how we might remove this case.
duke@435 3627 #ifdef _LP64
kvn@3037 3628 sub(Rscratch, STACK_BIAS, Rscratch);
duke@435 3629 #endif
duke@435 3630 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
kvn@3037 3631 andcc(Rscratch, 0xfffff003, Rscratch);
kvn@3037 3632 br(Assembler::always, false, Assembler::pt, done);
kvn@3037 3633 delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
kvn@3037 3634
kvn@3037 3635 bind(IsInflated);
duke@435 3636 if (EmitSync & 64) {
duke@435 3637 // If m->owner != null goto IsLocked
duke@435 3638 // Pessimistic form: Test-and-CAS vs CAS
duke@435 3639 // The optimistic form avoids RTS->RTO cache line upgrades.
kvn@3037 3640 ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
kvn@3037 3641 andcc(Rscratch, Rscratch, G0);
kvn@3037 3642 brx(Assembler::notZero, false, Assembler::pn, done);
kvn@3037 3643 delayed()->nop();
duke@435 3644 // m->owner == null : it's unlocked.
duke@435 3645 }
duke@435 3646
duke@435 3647 // Try to CAS m->owner from null to Self
duke@435 3648 // Invariant: if we acquire the lock then _recursions should be 0.
kvn@3037 3649 add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
kvn@3037 3650 mov(G2_thread, Rscratch);
kvn@3037 3651 casn(Rmark, G0, Rscratch);
kvn@3037 3652 cmp(Rscratch, G0);
duke@435 3653 // Intentional fall-through into done
duke@435 3654 } else {
duke@435 3655 // Aggressively avoid the Store-before-CAS penalty
duke@435 3656 // Defer the store into box->dhw until after the CAS
duke@435 3657 Label IsInflated, Recursive ;
duke@435 3658
duke@435 3659 // Anticipate CAS -- Avoid RTS->RTO upgrade
kvn@3037 3660 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
kvn@3037 3661
kvn@3037 3662 ld_ptr(mark_addr, Rmark); // fetch obj->mark
duke@435 3663 // Triage: biased, stack-locked, neutral, inflated
duke@435 3664
kvn@855 3665 if (try_bias) {
duke@435 3666 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3667 // Invariant: if control reaches this point in the emitted stream
duke@435 3668 // then Rmark has not been modified.
duke@435 3669 }
kvn@3037 3670 andcc(Rmark, 2, G0);
kvn@3037 3671 brx(Assembler::notZero, false, Assembler::pn, IsInflated);
duke@435 3672 delayed()-> // Beware - dangling delay-slot
duke@435 3673
duke@435 3674 // Try stack-lock acquisition.
duke@435 3675 // Transiently install BUSY (0) encoding in the mark word.
duke@435 3676 // if the CAS of 0 into the mark was successful then we execute:
duke@435 3677 // ST box->dhw = mark -- save fetched mark in on-stack basiclock box
duke@435 3678 // ST obj->mark = box -- overwrite transient 0 value
duke@435 3679 // This presumes TSO, of course.
duke@435 3680
kvn@3037 3681 mov(0, Rscratch);
kvn@3037 3682 or3(Rmark, markOopDesc::unlocked_value, Rmark);
kvn@3037 3683 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
kvn@3037 3684 casn(mark_addr.base(), Rmark, Rscratch);
kvn@3037 3685 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
kvn@3037 3686 cmp(Rscratch, Rmark);
kvn@3037 3687 brx(Assembler::notZero, false, Assembler::pn, Recursive);
kvn@3037 3688 delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3689 if (counters != NULL) {
duke@435 3690 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
duke@435 3691 }
kvn@3037 3692 ba(done);
kvn@3037 3693 delayed()->st_ptr(Rbox, mark_addr);
kvn@3037 3694
kvn@3037 3695 bind(Recursive);
duke@435 3696 // Stack-lock attempt failed - check for recursive stack-lock.
duke@435 3697 // Tests show that we can remove the recursive case with no impact
duke@435 3698 // on refworkload 0.83. If we need to reduce the size of the code
duke@435 3699 // emitted by compiler_lock_object() the recursive case is perfect
duke@435 3700 // candidate.
duke@435 3701 //
duke@435 3702 // A more extreme idea is to always inflate on stack-lock recursion.
duke@435 3703 // This lets us eliminate the recursive checks in compiler_lock_object
duke@435 3704 // and compiler_unlock_object and the (box->dhw == 0) encoding.
duke@435 3705 // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
duke@435 3706 // and showed a performance *increase*. In the same experiment I eliminated
duke@435 3707 // the fast-path stack-lock code from the interpreter and always passed
duke@435 3708 // control to the "slow" operators in synchronizer.cpp.
duke@435 3709
duke@435 3710 // RScratch contains the fetched obj->mark value from the failed CASN.
duke@435 3711 #ifdef _LP64
kvn@3037 3712 sub(Rscratch, STACK_BIAS, Rscratch);
duke@435 3713 #endif
duke@435 3714 sub(Rscratch, SP, Rscratch);
duke@435 3715 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
kvn@3037 3716 andcc(Rscratch, 0xfffff003, Rscratch);
duke@435 3717 if (counters != NULL) {
duke@435 3718 // Accounting needs the Rscratch register
kvn@3037 3719 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3720 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
kvn@3037 3721 ba_short(done);
duke@435 3722 } else {
kvn@3037 3723 ba(done);
kvn@3037 3724 delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3725 }
duke@435 3726
kvn@3037 3727 bind (IsInflated);
duke@435 3728 if (EmitSync & 64) {
duke@435 3729 // If m->owner != null goto IsLocked
duke@435 3730 // Test-and-CAS vs CAS
duke@435 3731 // Pessimistic form avoids futile (doomed) CAS attempts
duke@435 3732 // The optimistic form avoids RTS->RTO cache line upgrades.
kvn@3037 3733 ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
kvn@3037 3734 andcc(Rscratch, Rscratch, G0);
kvn@3037 3735 brx(Assembler::notZero, false, Assembler::pn, done);
kvn@3037 3736 delayed()->nop();
duke@435 3737 // m->owner == null : it's unlocked.
duke@435 3738 }
duke@435 3739
duke@435 3740 // Try to CAS m->owner from null to Self
duke@435 3741 // Invariant: if we acquire the lock then _recursions should be 0.
kvn@3037 3742 add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
kvn@3037 3743 mov(G2_thread, Rscratch);
kvn@3037 3744 casn(Rmark, G0, Rscratch);
kvn@3037 3745 cmp(Rscratch, G0);
duke@435 3746 // ST box->displaced_header = NonZero.
duke@435 3747 // Any non-zero value suffices:
duke@435 3748 // unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
kvn@3037 3749 st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3750 // Intentional fall-through into done
duke@435 3751 }
duke@435 3752
kvn@3037 3753 bind (done);
duke@435 3754 }
duke@435 3755
kvn@855 3756 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
kvn@855 3757 Register Rbox, Register Rscratch,
kvn@855 3758 bool try_bias) {
twisti@1162 3759 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
duke@435 3760
duke@435 3761 Label done ;
duke@435 3762
duke@435 3763 if (EmitSync & 4) {
kvn@3037 3764 cmp(SP, G0);
duke@435 3765 return ;
duke@435 3766 }
duke@435 3767
duke@435 3768 if (EmitSync & 8) {
kvn@855 3769 if (try_bias) {
duke@435 3770 biased_locking_exit(mark_addr, Rscratch, done);
duke@435 3771 }
duke@435 3772
duke@435 3773 // Test first if it is a fast recursive unlock
duke@435 3774 ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
kvn@3037 3775 br_null_short(Rmark, Assembler::pt, done);
duke@435 3776
duke@435 3777 // Check if it is still a light weight lock, this is is true if we see
duke@435 3778 // the stack address of the basicLock in the markOop of the object
duke@435 3779 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3780 casx_under_lock(mark_addr.base(), Rbox, Rmark,
duke@435 3781 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
kvn@3037 3782 ba(done);
duke@435 3783 delayed()->cmp(Rbox, Rmark);
kvn@3037 3784 bind(done);
duke@435 3785 return ;
duke@435 3786 }
duke@435 3787
duke@435 3788 // Beware ... If the aggregate size of the code emitted by CLO and CUO is
duke@435 3789 // is too large performance rolls abruptly off a cliff.
duke@435 3790 // This could be related to inlining policies, code cache management, or
duke@435 3791 // I$ effects.
duke@435 3792 Label LStacked ;
duke@435 3793
kvn@855 3794 if (try_bias) {
duke@435 3795 // TODO: eliminate redundant LDs of obj->mark
duke@435 3796 biased_locking_exit(mark_addr, Rscratch, done);
duke@435 3797 }
duke@435 3798
kvn@3037 3799 ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
kvn@3037 3800 ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
kvn@3037 3801 andcc(Rscratch, Rscratch, G0);
kvn@3037 3802 brx(Assembler::zero, false, Assembler::pn, done);
kvn@3037 3803 delayed()->nop(); // consider: relocate fetch of mark, above, into this DS
kvn@3037 3804 andcc(Rmark, 2, G0);
kvn@3037 3805 brx(Assembler::zero, false, Assembler::pt, LStacked);
kvn@3037 3806 delayed()->nop();
duke@435 3807
duke@435 3808 // It's inflated
duke@435 3809 // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
duke@435 3810 // the ST of 0 into _owner which releases the lock. This prevents loads
duke@435 3811 // and stores within the critical section from reordering (floating)
duke@435 3812 // past the store that releases the lock. But TSO is a strong memory model
duke@435 3813 // and that particular flavor of barrier is a noop, so we can safely elide it.
duke@435 3814 // Note that we use 1-0 locking by default for the inflated case. We
duke@435 3815 // close the resultant (and rare) race by having contented threads in
duke@435 3816 // monitorenter periodically poll _owner.
kvn@3037 3817 ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
kvn@3037 3818 ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
kvn@3037 3819 xor3(Rscratch, G2_thread, Rscratch);
kvn@3037 3820 orcc(Rbox, Rscratch, Rbox);
kvn@3037 3821 brx(Assembler::notZero, false, Assembler::pn, done);
duke@435 3822 delayed()->
kvn@3037 3823 ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
kvn@3037 3824 ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
kvn@3037 3825 orcc(Rbox, Rscratch, G0);
duke@435 3826 if (EmitSync & 65536) {
duke@435 3827 Label LSucc ;
kvn@3037 3828 brx(Assembler::notZero, false, Assembler::pn, LSucc);
kvn@3037 3829 delayed()->nop();
kvn@3037 3830 ba(done);
kvn@3037 3831 delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
kvn@3037 3832
kvn@3037 3833 bind(LSucc);
kvn@3037 3834 st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
kvn@3037 3835 if (os::is_MP()) { membar (StoreLoad); }
kvn@3037 3836 ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
kvn@3037 3837 andcc(Rscratch, Rscratch, G0);
kvn@3037 3838 brx(Assembler::notZero, false, Assembler::pt, done);
kvn@3037 3839 delayed()->andcc(G0, G0, G0);
kvn@3037 3840 add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
kvn@3037 3841 mov(G2_thread, Rscratch);
kvn@3037 3842 casn(Rmark, G0, Rscratch);
duke@435 3843 // invert icc.zf and goto done
kvn@3037 3844 br_notnull(Rscratch, false, Assembler::pt, done);
kvn@3037 3845 delayed()->cmp(G0, G0);
kvn@3037 3846 ba(done);
kvn@3037 3847 delayed()->cmp(G0, 1);
duke@435 3848 } else {
kvn@3037 3849 brx(Assembler::notZero, false, Assembler::pn, done);
kvn@3037 3850 delayed()->nop();
kvn@3037 3851 ba(done);
kvn@3037 3852 delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
duke@435 3853 }
duke@435 3854
kvn@3037 3855 bind (LStacked);
duke@435 3856 // Consider: we could replace the expensive CAS in the exit
duke@435 3857 // path with a simple ST of the displaced mark value fetched from
duke@435 3858 // the on-stack basiclock box. That admits a race where a thread T2
duke@435 3859 // in the slow lock path -- inflating with monitor M -- could race a
duke@435 3860 // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
duke@435 3861 // More precisely T1 in the stack-lock unlock path could "stomp" the
duke@435 3862 // inflated mark value M installed by T2, resulting in an orphan
duke@435 3863 // object monitor M and T2 becoming stranded. We can remedy that situation
duke@435 3864 // by having T2 periodically poll the object's mark word using timed wait
duke@435 3865 // operations. If T2 discovers that a stomp has occurred it vacates
duke@435 3866 // the monitor M and wakes any other threads stranded on the now-orphan M.
duke@435 3867 // In addition the monitor scavenger, which performs deflation,
duke@435 3868 // would also need to check for orpan monitors and stranded threads.
duke@435 3869 //
duke@435 3870 // Finally, inflation is also used when T2 needs to assign a hashCode
duke@435 3871 // to O and O is stack-locked by T1. The "stomp" race could cause
duke@435 3872 // an assigned hashCode value to be lost. We can avoid that condition
duke@435 3873 // and provide the necessary hashCode stability invariants by ensuring
duke@435 3874 // that hashCode generation is idempotent between copying GCs.
duke@435 3875 // For example we could compute the hashCode of an object O as
duke@435 3876 // O's heap address XOR some high quality RNG value that is refreshed
duke@435 3877 // at GC-time. The monitor scavenger would install the hashCode
duke@435 3878 // found in any orphan monitors. Again, the mechanism admits a
duke@435 3879 // lost-update "stomp" WAW race but detects and recovers as needed.
duke@435 3880 //
duke@435 3881 // A prototype implementation showed excellent results, although
duke@435 3882 // the scavenger and timeout code was rather involved.
duke@435 3883
kvn@3037 3884 casn(mark_addr.base(), Rbox, Rscratch);
kvn@3037 3885 cmp(Rbox, Rscratch);
duke@435 3886 // Intentional fall through into done ...
duke@435 3887
kvn@3037 3888 bind(done);
duke@435 3889 }
duke@435 3890
duke@435 3891
duke@435 3892
duke@435 3893 void MacroAssembler::print_CPU_state() {
duke@435 3894 // %%%%% need to implement this
duke@435 3895 }
duke@435 3896
duke@435 3897 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
duke@435 3898 // %%%%% need to implement this
duke@435 3899 }
duke@435 3900
duke@435 3901 void MacroAssembler::push_IU_state() {
duke@435 3902 // %%%%% need to implement this
duke@435 3903 }
duke@435 3904
duke@435 3905
duke@435 3906 void MacroAssembler::pop_IU_state() {
duke@435 3907 // %%%%% need to implement this
duke@435 3908 }
duke@435 3909
duke@435 3910
duke@435 3911 void MacroAssembler::push_FPU_state() {
duke@435 3912 // %%%%% need to implement this
duke@435 3913 }
duke@435 3914
duke@435 3915
duke@435 3916 void MacroAssembler::pop_FPU_state() {
duke@435 3917 // %%%%% need to implement this
duke@435 3918 }
duke@435 3919
duke@435 3920
duke@435 3921 void MacroAssembler::push_CPU_state() {
duke@435 3922 // %%%%% need to implement this
duke@435 3923 }
duke@435 3924
duke@435 3925
duke@435 3926 void MacroAssembler::pop_CPU_state() {
duke@435 3927 // %%%%% need to implement this
duke@435 3928 }
duke@435 3929
duke@435 3930
duke@435 3931
duke@435 3932 void MacroAssembler::verify_tlab() {
duke@435 3933 #ifdef ASSERT
duke@435 3934 if (UseTLAB && VerifyOops) {
duke@435 3935 Label next, next2, ok;
duke@435 3936 Register t1 = L0;
duke@435 3937 Register t2 = L1;
duke@435 3938 Register t3 = L2;
duke@435 3939
duke@435 3940 save_frame(0);
duke@435 3941 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
duke@435 3942 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
duke@435 3943 or3(t1, t2, t3);
kvn@3037 3944 cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
duke@435 3945 stop("assert(top >= start)");
duke@435 3946 should_not_reach_here();
duke@435 3947
duke@435 3948 bind(next);
duke@435 3949 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
duke@435 3950 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
duke@435 3951 or3(t3, t2, t3);
kvn@3037 3952 cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
duke@435 3953 stop("assert(top <= end)");
duke@435 3954 should_not_reach_here();
duke@435 3955
duke@435 3956 bind(next2);
duke@435 3957 and3(t3, MinObjAlignmentInBytesMask, t3);
kvn@3037 3958 cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
duke@435 3959 stop("assert(aligned)");
duke@435 3960 should_not_reach_here();
duke@435 3961
duke@435 3962 bind(ok);
duke@435 3963 restore();
duke@435 3964 }
duke@435 3965 #endif
duke@435 3966 }
duke@435 3967
duke@435 3968
duke@435 3969 void MacroAssembler::eden_allocate(
duke@435 3970 Register obj, // result: pointer to object after successful allocation
duke@435 3971 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 3972 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 3973 Register t1, // temp register
duke@435 3974 Register t2, // temp register
duke@435 3975 Label& slow_case // continuation point if fast allocation fails
duke@435 3976 ){
duke@435 3977 // make sure arguments make sense
duke@435 3978 assert_different_registers(obj, var_size_in_bytes, t1, t2);
duke@435 3979 assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
duke@435 3980 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
duke@435 3981
ysr@777 3982 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
ysr@777 3983 // No allocation in the shared eden.
kvn@3037 3984 ba_short(slow_case);
ysr@777 3985 } else {
ysr@777 3986 // get eden boundaries
ysr@777 3987 // note: we need both top & top_addr!
ysr@777 3988 const Register top_addr = t1;
ysr@777 3989 const Register end = t2;
ysr@777 3990
ysr@777 3991 CollectedHeap* ch = Universe::heap();
ysr@777 3992 set((intx)ch->top_addr(), top_addr);
ysr@777 3993 intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
ysr@777 3994 ld_ptr(top_addr, delta, end);
ysr@777 3995 ld_ptr(top_addr, 0, obj);
ysr@777 3996
ysr@777 3997 // try to allocate
ysr@777 3998 Label retry;
ysr@777 3999 bind(retry);
duke@435 4000 #ifdef ASSERT
ysr@777 4001 // make sure eden top is properly aligned
ysr@777 4002 {
ysr@777 4003 Label L;
ysr@777 4004 btst(MinObjAlignmentInBytesMask, obj);
ysr@777 4005 br(Assembler::zero, false, Assembler::pt, L);
ysr@777 4006 delayed()->nop();
ysr@777 4007 stop("eden top is not properly aligned");
ysr@777 4008 bind(L);
ysr@777 4009 }
ysr@777 4010 #endif // ASSERT
ysr@777 4011 const Register free = end;
ysr@777 4012 sub(end, obj, free); // compute amount of free space
ysr@777 4013 if (var_size_in_bytes->is_valid()) {
ysr@777 4014 // size is unknown at compile time
ysr@777 4015 cmp(free, var_size_in_bytes);
ysr@777 4016 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
ysr@777 4017 delayed()->add(obj, var_size_in_bytes, end);
ysr@777 4018 } else {
ysr@777 4019 // size is known at compile time
ysr@777 4020 cmp(free, con_size_in_bytes);
ysr@777 4021 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
ysr@777 4022 delayed()->add(obj, con_size_in_bytes, end);
ysr@777 4023 }
ysr@777 4024 // Compare obj with the value at top_addr; if still equal, swap the value of
ysr@777 4025 // end with the value at top_addr. If not equal, read the value at top_addr
ysr@777 4026 // into end.
ysr@777 4027 casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
ysr@777 4028 // if someone beat us on the allocation, try again, otherwise continue
ysr@777 4029 cmp(obj, end);
ysr@777 4030 brx(Assembler::notEqual, false, Assembler::pn, retry);
ysr@777 4031 delayed()->mov(end, obj); // nop if successfull since obj == end
ysr@777 4032
ysr@777 4033 #ifdef ASSERT
ysr@777 4034 // make sure eden top is properly aligned
ysr@777 4035 {
ysr@777 4036 Label L;
ysr@777 4037 const Register top_addr = t1;
ysr@777 4038
ysr@777 4039 set((intx)ch->top_addr(), top_addr);
ysr@777 4040 ld_ptr(top_addr, 0, top_addr);
ysr@777 4041 btst(MinObjAlignmentInBytesMask, top_addr);
ysr@777 4042 br(Assembler::zero, false, Assembler::pt, L);
ysr@777 4043 delayed()->nop();
ysr@777 4044 stop("eden top is not properly aligned");
ysr@777 4045 bind(L);
ysr@777 4046 }
ysr@777 4047 #endif // ASSERT
duke@435 4048 }
duke@435 4049 }
duke@435 4050
duke@435 4051
duke@435 4052 void MacroAssembler::tlab_allocate(
duke@435 4053 Register obj, // result: pointer to object after successful allocation
duke@435 4054 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 4055 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 4056 Register t1, // temp register
duke@435 4057 Label& slow_case // continuation point if fast allocation fails
duke@435 4058 ){
duke@435 4059 // make sure arguments make sense
duke@435 4060 assert_different_registers(obj, var_size_in_bytes, t1);
duke@435 4061 assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
duke@435 4062 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
duke@435 4063
duke@435 4064 const Register free = t1;
duke@435 4065
duke@435 4066 verify_tlab();
duke@435 4067
duke@435 4068 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
duke@435 4069
duke@435 4070 // calculate amount of free space
duke@435 4071 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
duke@435 4072 sub(free, obj, free);
duke@435 4073
duke@435 4074 Label done;
duke@435 4075 if (var_size_in_bytes == noreg) {
duke@435 4076 cmp(free, con_size_in_bytes);
duke@435 4077 } else {
duke@435 4078 cmp(free, var_size_in_bytes);
duke@435 4079 }
duke@435 4080 br(Assembler::less, false, Assembler::pn, slow_case);
duke@435 4081 // calculate the new top pointer
duke@435 4082 if (var_size_in_bytes == noreg) {
duke@435 4083 delayed()->add(obj, con_size_in_bytes, free);
duke@435 4084 } else {
duke@435 4085 delayed()->add(obj, var_size_in_bytes, free);
duke@435 4086 }
duke@435 4087
duke@435 4088 bind(done);
duke@435 4089
duke@435 4090 #ifdef ASSERT
duke@435 4091 // make sure new free pointer is properly aligned
duke@435 4092 {
duke@435 4093 Label L;
duke@435 4094 btst(MinObjAlignmentInBytesMask, free);
duke@435 4095 br(Assembler::zero, false, Assembler::pt, L);
duke@435 4096 delayed()->nop();
duke@435 4097 stop("updated TLAB free is not properly aligned");
duke@435 4098 bind(L);
duke@435 4099 }
duke@435 4100 #endif // ASSERT
duke@435 4101
duke@435 4102 // update the tlab top pointer
duke@435 4103 st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
duke@435 4104 verify_tlab();
duke@435 4105 }
duke@435 4106
duke@435 4107
duke@435 4108 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
duke@435 4109 Register top = O0;
duke@435 4110 Register t1 = G1;
duke@435 4111 Register t2 = G3;
duke@435 4112 Register t3 = O1;
duke@435 4113 assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
duke@435 4114 Label do_refill, discard_tlab;
duke@435 4115
duke@435 4116 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
duke@435 4117 // No allocation in the shared eden.
kvn@3037 4118 ba_short(slow_case);
duke@435 4119 }
duke@435 4120
duke@435 4121 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
duke@435 4122 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
duke@435 4123 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
duke@435 4124
duke@435 4125 // calculate amount of free space
duke@435 4126 sub(t1, top, t1);
duke@435 4127 srl_ptr(t1, LogHeapWordSize, t1);
duke@435 4128
duke@435 4129 // Retain tlab and allocate object in shared space if
duke@435 4130 // the amount free in the tlab is too large to discard.
duke@435 4131 cmp(t1, t2);
duke@435 4132 brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
duke@435 4133
duke@435 4134 // increment waste limit to prevent getting stuck on this slow path
duke@435 4135 delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
duke@435 4136 st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
duke@435 4137 if (TLABStats) {
duke@435 4138 // increment number of slow_allocations
duke@435 4139 ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
duke@435 4140 add(t2, 1, t2);
duke@435 4141 stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
duke@435 4142 }
kvn@3037 4143 ba_short(try_eden);
duke@435 4144
duke@435 4145 bind(discard_tlab);
duke@435 4146 if (TLABStats) {
duke@435 4147 // increment number of refills
duke@435 4148 ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
duke@435 4149 add(t2, 1, t2);
duke@435 4150 stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
duke@435 4151 // accumulate wastage
duke@435 4152 ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
duke@435 4153 add(t2, t1, t2);
duke@435 4154 stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
duke@435 4155 }
duke@435 4156
duke@435 4157 // if tlab is currently allocated (top or end != null) then
duke@435 4158 // fill [top, end + alignment_reserve) with array object
kvn@3037 4159 br_null_short(top, Assembler::pn, do_refill);
duke@435 4160
duke@435 4161 set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
duke@435 4162 st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
duke@435 4163 // set klass to intArrayKlass
duke@435 4164 sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
duke@435 4165 add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
duke@435 4166 sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
duke@435 4167 st(t1, top, arrayOopDesc::length_offset_in_bytes());
coleenp@602 4168 set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
coleenp@602 4169 ld_ptr(t2, 0, t2);
coleenp@602 4170 // store klass last. concurrent gcs assumes klass length is valid if
coleenp@602 4171 // klass field is not null.
coleenp@602 4172 store_klass(t2, top);
duke@435 4173 verify_oop(top);
duke@435 4174
phh@2423 4175 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
phh@2423 4176 sub(top, t1, t1); // size of tlab's allocated portion
phh@2447 4177 incr_allocated_bytes(t1, t2, t3);
phh@2423 4178
duke@435 4179 // refill the tlab with an eden allocation
duke@435 4180 bind(do_refill);
duke@435 4181 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
duke@435 4182 sll_ptr(t1, LogHeapWordSize, t1);
phh@2423 4183 // allocate new tlab, address returned in top
duke@435 4184 eden_allocate(top, t1, 0, t2, t3, slow_case);
duke@435 4185
duke@435 4186 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
duke@435 4187 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
duke@435 4188 #ifdef ASSERT
duke@435 4189 // check that tlab_size (t1) is still valid
duke@435 4190 {
duke@435 4191 Label ok;
duke@435 4192 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
duke@435 4193 sll_ptr(t2, LogHeapWordSize, t2);
kvn@3037 4194 cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
duke@435 4195 stop("assert(t1 == tlab_size)");
duke@435 4196 should_not_reach_here();
duke@435 4197
duke@435 4198 bind(ok);
duke@435 4199 }
duke@435 4200 #endif // ASSERT
duke@435 4201 add(top, t1, top); // t1 is tlab_size
duke@435 4202 sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
duke@435 4203 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
duke@435 4204 verify_tlab();
kvn@3037 4205 ba_short(retry);
duke@435 4206 }
duke@435 4207
phh@2447 4208 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
phh@2447 4209 Register t1, Register t2) {
phh@2423 4210 // Bump total bytes allocated by this thread
phh@2423 4211 assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
phh@2447 4212 assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
phh@2423 4213 // v8 support has gone the way of the dodo
phh@2423 4214 ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
phh@2447 4215 add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
phh@2423 4216 stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
phh@2423 4217 }
phh@2423 4218
duke@435 4219 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
duke@435 4220 switch (cond) {
duke@435 4221 // Note some conditions are synonyms for others
duke@435 4222 case Assembler::never: return Assembler::always;
duke@435 4223 case Assembler::zero: return Assembler::notZero;
duke@435 4224 case Assembler::lessEqual: return Assembler::greater;
duke@435 4225 case Assembler::less: return Assembler::greaterEqual;
duke@435 4226 case Assembler::lessEqualUnsigned: return Assembler::greaterUnsigned;
duke@435 4227 case Assembler::lessUnsigned: return Assembler::greaterEqualUnsigned;
duke@435 4228 case Assembler::negative: return Assembler::positive;
duke@435 4229 case Assembler::overflowSet: return Assembler::overflowClear;
duke@435 4230 case Assembler::always: return Assembler::never;
duke@435 4231 case Assembler::notZero: return Assembler::zero;
duke@435 4232 case Assembler::greater: return Assembler::lessEqual;
duke@435 4233 case Assembler::greaterEqual: return Assembler::less;
duke@435 4234 case Assembler::greaterUnsigned: return Assembler::lessEqualUnsigned;
duke@435 4235 case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
duke@435 4236 case Assembler::positive: return Assembler::negative;
duke@435 4237 case Assembler::overflowClear: return Assembler::overflowSet;
duke@435 4238 }
duke@435 4239
duke@435 4240 ShouldNotReachHere(); return Assembler::overflowClear;
duke@435 4241 }
duke@435 4242
duke@435 4243 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
duke@435 4244 Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
duke@435 4245 Condition negated_cond = negate_condition(cond);
duke@435 4246 Label L;
duke@435 4247 brx(negated_cond, false, Assembler::pt, L);
duke@435 4248 delayed()->nop();
duke@435 4249 inc_counter(counter_ptr, Rtmp1, Rtmp2);
duke@435 4250 bind(L);
duke@435 4251 }
duke@435 4252
twisti@1162 4253 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
twisti@1162 4254 AddressLiteral addrlit(counter_addr);
twisti@1162 4255 sethi(addrlit, Rtmp1); // Move hi22 bits into temporary register.
twisti@1162 4256 Address addr(Rtmp1, addrlit.low10()); // Build an address with low10 bits.
twisti@1162 4257 ld(addr, Rtmp2);
duke@435 4258 inc(Rtmp2);
twisti@1162 4259 st(Rtmp2, addr);
twisti@1162 4260 }
twisti@1162 4261
twisti@1162 4262 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
twisti@1162 4263 inc_counter((address) counter_addr, Rtmp1, Rtmp2);
duke@435 4264 }
duke@435 4265
duke@435 4266 SkipIfEqual::SkipIfEqual(
duke@435 4267 MacroAssembler* masm, Register temp, const bool* flag_addr,
duke@435 4268 Assembler::Condition condition) {
duke@435 4269 _masm = masm;
twisti@1162 4270 AddressLiteral flag(flag_addr);
twisti@1162 4271 _masm->sethi(flag, temp);
twisti@1162 4272 _masm->ldub(temp, flag.low10(), temp);
duke@435 4273 _masm->tst(temp);
duke@435 4274 _masm->br(condition, false, Assembler::pt, _label);
duke@435 4275 _masm->delayed()->nop();
duke@435 4276 }
duke@435 4277
duke@435 4278 SkipIfEqual::~SkipIfEqual() {
duke@435 4279 _masm->bind(_label);
duke@435 4280 }
duke@435 4281
duke@435 4282
duke@435 4283 // Writes to stack successive pages until offset reached to check for
duke@435 4284 // stack overflow + shadow pages. This clobbers tsp and scratch.
duke@435 4285 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
duke@435 4286 Register Rscratch) {
duke@435 4287 // Use stack pointer in temp stack pointer
duke@435 4288 mov(SP, Rtsp);
duke@435 4289
duke@435 4290 // Bang stack for total size given plus stack shadow page size.
duke@435 4291 // Bang one page at a time because a large size can overflow yellow and
duke@435 4292 // red zones (the bang will fail but stack overflow handling can't tell that
duke@435 4293 // it was a stack overflow bang vs a regular segv).
duke@435 4294 int offset = os::vm_page_size();
duke@435 4295 Register Roffset = Rscratch;
duke@435 4296
duke@435 4297 Label loop;
duke@435 4298 bind(loop);
duke@435 4299 set((-offset)+STACK_BIAS, Rscratch);
duke@435 4300 st(G0, Rtsp, Rscratch);
duke@435 4301 set(offset, Roffset);
duke@435 4302 sub(Rsize, Roffset, Rsize);
duke@435 4303 cmp(Rsize, G0);
duke@435 4304 br(Assembler::greater, false, Assembler::pn, loop);
duke@435 4305 delayed()->sub(Rtsp, Roffset, Rtsp);
duke@435 4306
duke@435 4307 // Bang down shadow pages too.
duke@435 4308 // The -1 because we already subtracted 1 page.
duke@435 4309 for (int i = 0; i< StackShadowPages-1; i++) {
duke@435 4310 set((-i*offset)+STACK_BIAS, Rscratch);
duke@435 4311 st(G0, Rtsp, Rscratch);
duke@435 4312 }
duke@435 4313 }
coleenp@548 4314
ysr@777 4315 ///////////////////////////////////////////////////////////////////////////////////
ysr@777 4316 #ifndef SERIALGC
ysr@777 4317
johnc@2781 4318 static address satb_log_enqueue_with_frame = NULL;
johnc@2781 4319 static u_char* satb_log_enqueue_with_frame_end = NULL;
johnc@2781 4320
johnc@2781 4321 static address satb_log_enqueue_frameless = NULL;
johnc@2781 4322 static u_char* satb_log_enqueue_frameless_end = NULL;
ysr@777 4323
ysr@777 4324 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
ysr@777 4325
ysr@777 4326 static void generate_satb_log_enqueue(bool with_frame) {
ysr@777 4327 BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
twisti@2103 4328 CodeBuffer buf(bb);
ysr@777 4329 MacroAssembler masm(&buf);
kvn@3037 4330
kvn@3037 4331 #define __ masm.
kvn@3037 4332
kvn@3037 4333 address start = __ pc();
ysr@777 4334 Register pre_val;
ysr@777 4335
ysr@777 4336 Label refill, restart;
ysr@777 4337 if (with_frame) {
kvn@3037 4338 __ save_frame(0);
ysr@777 4339 pre_val = I0; // Was O0 before the save.
ysr@777 4340 } else {
ysr@777 4341 pre_val = O0;
ysr@777 4342 }
ysr@777 4343 int satb_q_index_byte_offset =
ysr@777 4344 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4345 PtrQueue::byte_offset_of_index());
ysr@777 4346 int satb_q_buf_byte_offset =
ysr@777 4347 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4348 PtrQueue::byte_offset_of_buf());
ysr@777 4349 assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
ysr@777 4350 in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
ysr@777 4351 "check sizes in assembly below");
ysr@777 4352
kvn@3037 4353 __ bind(restart);
kvn@3037 4354 __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
kvn@3037 4355
kvn@3037 4356 __ br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn, L0, refill);
ysr@777 4357 // If the branch is taken, no harm in executing this in the delay slot.
kvn@3037 4358 __ delayed()->ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
kvn@3037 4359 __ sub(L0, oopSize, L0);
kvn@3037 4360
kvn@3037 4361 __ st_ptr(pre_val, L1, L0); // [_buf + index] := I0
ysr@777 4362 if (!with_frame) {
ysr@777 4363 // Use return-from-leaf
kvn@3037 4364 __ retl();
kvn@3037 4365 __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
ysr@777 4366 } else {
ysr@777 4367 // Not delayed.
kvn@3037 4368 __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
ysr@777 4369 }
ysr@777 4370 if (with_frame) {
kvn@3037 4371 __ ret();
kvn@3037 4372 __ delayed()->restore();
ysr@777 4373 }
kvn@3037 4374 __ bind(refill);
ysr@777 4375
ysr@777 4376 address handle_zero =
ysr@777 4377 CAST_FROM_FN_PTR(address,
ysr@777 4378 &SATBMarkQueueSet::handle_zero_index_for_thread);
ysr@777 4379 // This should be rare enough that we can afford to save all the
ysr@777 4380 // scratch registers that the calling context might be using.
kvn@3037 4381 __ mov(G1_scratch, L0);
kvn@3037 4382 __ mov(G3_scratch, L1);
kvn@3037 4383 __ mov(G4, L2);
ysr@777 4384 // We need the value of O0 above (for the write into the buffer), so we
ysr@777 4385 // save and restore it.
kvn@3037 4386 __ mov(O0, L3);
ysr@777 4387 // Since the call will overwrite O7, we save and restore that, as well.
kvn@3037 4388 __ mov(O7, L4);
kvn@3037 4389 __ call_VM_leaf(L5, handle_zero, G2_thread);
kvn@3037 4390 __ mov(L0, G1_scratch);
kvn@3037 4391 __ mov(L1, G3_scratch);
kvn@3037 4392 __ mov(L2, G4);
kvn@3037 4393 __ mov(L3, O0);
kvn@3037 4394 __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
kvn@3037 4395 __ delayed()->mov(L4, O7);
ysr@777 4396
ysr@777 4397 if (with_frame) {
ysr@777 4398 satb_log_enqueue_with_frame = start;
kvn@3037 4399 satb_log_enqueue_with_frame_end = __ pc();
ysr@777 4400 } else {
ysr@777 4401 satb_log_enqueue_frameless = start;
kvn@3037 4402 satb_log_enqueue_frameless_end = __ pc();
ysr@777 4403 }
kvn@3037 4404
kvn@3037 4405 #undef __
ysr@777 4406 }
ysr@777 4407
ysr@777 4408 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
ysr@777 4409 if (with_frame) {
ysr@777 4410 if (satb_log_enqueue_with_frame == 0) {
ysr@777 4411 generate_satb_log_enqueue(with_frame);
ysr@777 4412 assert(satb_log_enqueue_with_frame != 0, "postcondition.");
ysr@777 4413 if (G1SATBPrintStubs) {
ysr@777 4414 tty->print_cr("Generated with-frame satb enqueue:");
ysr@777 4415 Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
ysr@777 4416 satb_log_enqueue_with_frame_end,
ysr@777 4417 tty);
ysr@777 4418 }
ysr@777 4419 }
ysr@777 4420 } else {
ysr@777 4421 if (satb_log_enqueue_frameless == 0) {
ysr@777 4422 generate_satb_log_enqueue(with_frame);
ysr@777 4423 assert(satb_log_enqueue_frameless != 0, "postcondition.");
ysr@777 4424 if (G1SATBPrintStubs) {
ysr@777 4425 tty->print_cr("Generated frameless satb enqueue:");
ysr@777 4426 Disassembler::decode((u_char*)satb_log_enqueue_frameless,
ysr@777 4427 satb_log_enqueue_frameless_end,
ysr@777 4428 tty);
ysr@777 4429 }
ysr@777 4430 }
ysr@777 4431 }
ysr@777 4432 }
ysr@777 4433
johnc@2781 4434 void MacroAssembler::g1_write_barrier_pre(Register obj,
johnc@2781 4435 Register index,
johnc@2781 4436 int offset,
johnc@2781 4437 Register pre_val,
johnc@2781 4438 Register tmp,
johnc@2781 4439 bool preserve_o_regs) {
ysr@777 4440 Label filtered;
johnc@2781 4441
johnc@2781 4442 if (obj == noreg) {
johnc@2781 4443 // We are not loading the previous value so make
johnc@2781 4444 // sure that we don't trash the value in pre_val
johnc@2781 4445 // with the code below.
johnc@2781 4446 assert_different_registers(pre_val, tmp);
johnc@2781 4447 } else {
johnc@2781 4448 // We will be loading the previous value
johnc@2781 4449 // in this code so...
johnc@2781 4450 assert(offset == 0 || index == noreg, "choose one");
johnc@2781 4451 assert(pre_val == noreg, "check this code");
johnc@2781 4452 }
johnc@2781 4453
johnc@2781 4454 // Is marking active?
ysr@777 4455 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
ysr@777 4456 ld(G2,
ysr@777 4457 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4458 PtrQueue::byte_offset_of_active()),
ysr@777 4459 tmp);
ysr@777 4460 } else {
ysr@777 4461 guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
ysr@777 4462 "Assumption");
ysr@777 4463 ldsb(G2,
ysr@777 4464 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4465 PtrQueue::byte_offset_of_active()),
ysr@777 4466 tmp);
ysr@777 4467 }
ysr@1280 4468
ysr@777 4469 // Check on whether to annul.
ysr@777 4470 br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
kvn@3037 4471 delayed()->nop();
ysr@777 4472
johnc@2781 4473 // Do we need to load the previous value?
johnc@2781 4474 if (obj != noreg) {
johnc@2781 4475 // Load the previous value...
johnc@2781 4476 if (index == noreg) {
johnc@2781 4477 if (Assembler::is_simm13(offset)) {
johnc@2781 4478 load_heap_oop(obj, offset, tmp);
johnc@2781 4479 } else {
johnc@2781 4480 set(offset, tmp);
johnc@2781 4481 load_heap_oop(obj, tmp, tmp);
johnc@2781 4482 }
ysr@777 4483 } else {
johnc@2781 4484 load_heap_oop(obj, index, tmp);
ysr@777 4485 }
johnc@2781 4486 // Previous value has been loaded into tmp
johnc@2781 4487 pre_val = tmp;
ysr@777 4488 }
ysr@777 4489
johnc@2781 4490 assert(pre_val != noreg, "must have a real register");
johnc@2781 4491
johnc@2781 4492 // Is the previous value null?
ysr@777 4493 // Check on whether to annul.
ysr@777 4494 br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, pre_val, filtered);
kvn@3037 4495 delayed()->nop();
ysr@777 4496
ysr@777 4497 // OK, it's not filtered, so we'll need to call enqueue. In the normal
johnc@2781 4498 // case, pre_val will be a scratch G-reg, but there are some cases in
johnc@2781 4499 // which it's an O-reg. In the first case, do a normal call. In the
johnc@2781 4500 // latter, do a save here and call the frameless version.
ysr@777 4501
ysr@777 4502 guarantee(pre_val->is_global() || pre_val->is_out(),
ysr@777 4503 "Or we need to think harder.");
johnc@2781 4504
ysr@777 4505 if (pre_val->is_global() && !preserve_o_regs) {
johnc@2781 4506 generate_satb_log_enqueue_if_necessary(true); // with frame
johnc@2781 4507
ysr@777 4508 call(satb_log_enqueue_with_frame);
ysr@777 4509 delayed()->mov(pre_val, O0);
ysr@777 4510 } else {
johnc@2781 4511 generate_satb_log_enqueue_if_necessary(false); // frameless
johnc@2781 4512
ysr@777 4513 save_frame(0);
ysr@777 4514 call(satb_log_enqueue_frameless);
ysr@777 4515 delayed()->mov(pre_val->after_save(), O0);
ysr@777 4516 restore();
ysr@777 4517 }
ysr@777 4518
ysr@777 4519 bind(filtered);
ysr@777 4520 }
ysr@777 4521
ysr@777 4522 static jint num_ct_writes = 0;
ysr@777 4523 static jint num_ct_writes_filtered_in_hr = 0;
ysr@777 4524 static jint num_ct_writes_filtered_null = 0;
ysr@777 4525 static G1CollectedHeap* g1 = NULL;
ysr@777 4526
ysr@777 4527 static Thread* count_ct_writes(void* filter_val, void* new_val) {
ysr@777 4528 Atomic::inc(&num_ct_writes);
ysr@777 4529 if (filter_val == NULL) {
ysr@777 4530 Atomic::inc(&num_ct_writes_filtered_in_hr);
ysr@777 4531 } else if (new_val == NULL) {
ysr@777 4532 Atomic::inc(&num_ct_writes_filtered_null);
ysr@777 4533 } else {
ysr@777 4534 if (g1 == NULL) {
ysr@777 4535 g1 = G1CollectedHeap::heap();
ysr@777 4536 }
ysr@777 4537 }
ysr@777 4538 if ((num_ct_writes % 1000000) == 0) {
ysr@777 4539 jint num_ct_writes_filtered =
ysr@777 4540 num_ct_writes_filtered_in_hr +
apetrusenko@1112 4541 num_ct_writes_filtered_null;
ysr@777 4542
ysr@777 4543 tty->print_cr("%d potential CT writes: %5.2f%% filtered\n"
apetrusenko@1112 4544 " (%5.2f%% intra-HR, %5.2f%% null).",
ysr@777 4545 num_ct_writes,
ysr@777 4546 100.0*(float)num_ct_writes_filtered/(float)num_ct_writes,
ysr@777 4547 100.0*(float)num_ct_writes_filtered_in_hr/
ysr@777 4548 (float)num_ct_writes,
ysr@777 4549 100.0*(float)num_ct_writes_filtered_null/
ysr@777 4550 (float)num_ct_writes);
ysr@777 4551 }
ysr@777 4552 return Thread::current();
ysr@777 4553 }
ysr@777 4554
ysr@777 4555 static address dirty_card_log_enqueue = 0;
ysr@777 4556 static u_char* dirty_card_log_enqueue_end = 0;
ysr@777 4557
ysr@777 4558 // This gets to assume that o0 contains the object address.
ysr@777 4559 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
ysr@777 4560 BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
twisti@2103 4561 CodeBuffer buf(bb);
ysr@777 4562 MacroAssembler masm(&buf);
kvn@3037 4563 #define __ masm.
kvn@3037 4564 address start = __ pc();
ysr@777 4565
ysr@777 4566 Label not_already_dirty, restart, refill;
ysr@777 4567
ysr@777 4568 #ifdef _LP64
kvn@3037 4569 __ srlx(O0, CardTableModRefBS::card_shift, O0);
ysr@777 4570 #else
kvn@3037 4571 __ srl(O0, CardTableModRefBS::card_shift, O0);
ysr@777 4572 #endif
twisti@1162 4573 AddressLiteral addrlit(byte_map_base);
kvn@3037 4574 __ set(addrlit, O1); // O1 := <card table base>
kvn@3037 4575 __ ldub(O0, O1, O2); // O2 := [O0 + O1]
kvn@3037 4576
kvn@3037 4577 __ br_on_reg_cond(Assembler::rc_nz, /*annul*/false, Assembler::pt,
ysr@777 4578 O2, not_already_dirty);
ysr@777 4579 // Get O1 + O2 into a reg by itself -- useful in the take-the-branch
ysr@777 4580 // case, harmless if not.
kvn@3037 4581 __ delayed()->add(O0, O1, O3);
ysr@777 4582
ysr@777 4583 // We didn't take the branch, so we're already dirty: return.
ysr@777 4584 // Use return-from-leaf
kvn@3037 4585 __ retl();
kvn@3037 4586 __ delayed()->nop();
ysr@777 4587
ysr@777 4588 // Not dirty.
kvn@3037 4589 __ bind(not_already_dirty);
ysr@777 4590 // First, dirty it.
kvn@3037 4591 __ stb(G0, O3, G0); // [cardPtr] := 0 (i.e., dirty).
ysr@777 4592 int dirty_card_q_index_byte_offset =
ysr@777 4593 in_bytes(JavaThread::dirty_card_queue_offset() +
ysr@777 4594 PtrQueue::byte_offset_of_index());
ysr@777 4595 int dirty_card_q_buf_byte_offset =
ysr@777 4596 in_bytes(JavaThread::dirty_card_queue_offset() +
ysr@777 4597 PtrQueue::byte_offset_of_buf());
kvn@3037 4598 __ bind(restart);
kvn@3037 4599 __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
kvn@3037 4600
kvn@3037 4601 __ br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn,
ysr@777 4602 L0, refill);
ysr@777 4603 // If the branch is taken, no harm in executing this in the delay slot.
kvn@3037 4604 __ delayed()->ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
kvn@3037 4605 __ sub(L0, oopSize, L0);
kvn@3037 4606
kvn@3037 4607 __ st_ptr(O3, L1, L0); // [_buf + index] := I0
ysr@777 4608 // Use return-from-leaf
kvn@3037 4609 __ retl();
kvn@3037 4610 __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
kvn@3037 4611
kvn@3037 4612 __ bind(refill);
ysr@777 4613 address handle_zero =
ysr@777 4614 CAST_FROM_FN_PTR(address,
ysr@777 4615 &DirtyCardQueueSet::handle_zero_index_for_thread);
ysr@777 4616 // This should be rare enough that we can afford to save all the
ysr@777 4617 // scratch registers that the calling context might be using.
kvn@3037 4618 __ mov(G1_scratch, L3);
kvn@3037 4619 __ mov(G3_scratch, L5);
ysr@777 4620 // We need the value of O3 above (for the write into the buffer), so we
ysr@777 4621 // save and restore it.
kvn@3037 4622 __ mov(O3, L6);
ysr@777 4623 // Since the call will overwrite O7, we save and restore that, as well.
kvn@3037 4624 __ mov(O7, L4);
kvn@3037 4625
kvn@3037 4626 __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
kvn@3037 4627 __ mov(L3, G1_scratch);
kvn@3037 4628 __ mov(L5, G3_scratch);
kvn@3037 4629 __ mov(L6, O3);
kvn@3037 4630 __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
kvn@3037 4631 __ delayed()->mov(L4, O7);
ysr@777 4632
ysr@777 4633 dirty_card_log_enqueue = start;
kvn@3037 4634 dirty_card_log_enqueue_end = __ pc();
ysr@777 4635 // XXX Should have a guarantee here about not going off the end!
ysr@777 4636 // Does it already do so? Do an experiment...
kvn@3037 4637
kvn@3037 4638 #undef __
kvn@3037 4639
ysr@777 4640 }
ysr@777 4641
ysr@777 4642 static inline void
ysr@777 4643 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
ysr@777 4644 if (dirty_card_log_enqueue == 0) {
ysr@777 4645 generate_dirty_card_log_enqueue(byte_map_base);
ysr@777 4646 assert(dirty_card_log_enqueue != 0, "postcondition.");
ysr@777 4647 if (G1SATBPrintStubs) {
ysr@777 4648 tty->print_cr("Generated dirty_card enqueue:");
ysr@777 4649 Disassembler::decode((u_char*)dirty_card_log_enqueue,
ysr@777 4650 dirty_card_log_enqueue_end,
ysr@777 4651 tty);
ysr@777 4652 }
ysr@777 4653 }
ysr@777 4654 }
ysr@777 4655
ysr@777 4656
ysr@777 4657 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
ysr@777 4658
ysr@777 4659 Label filtered;
ysr@777 4660 MacroAssembler* post_filter_masm = this;
ysr@777 4661
ysr@777 4662 if (new_val == G0) return;
ysr@777 4663
ysr@777 4664 G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
ysr@777 4665 assert(bs->kind() == BarrierSet::G1SATBCT ||
ysr@777 4666 bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
ysr@777 4667 if (G1RSBarrierRegionFilter) {
ysr@777 4668 xor3(store_addr, new_val, tmp);
ysr@777 4669 #ifdef _LP64
ysr@777 4670 srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
ysr@777 4671 #else
ysr@777 4672 srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
ysr@777 4673 #endif
johnc@2781 4674
ysr@777 4675 if (G1PrintCTFilterStats) {
ysr@777 4676 guarantee(tmp->is_global(), "Or stats won't work...");
ysr@777 4677 // This is a sleazy hack: I'm temporarily hijacking G2, which I
ysr@777 4678 // promise to restore.
ysr@777 4679 mov(new_val, G2);
ysr@777 4680 save_frame(0);
ysr@777 4681 mov(tmp, O0);
ysr@777 4682 mov(G2, O1);
ysr@777 4683 // Save G-regs that target may use.
ysr@777 4684 mov(G1, L1);
ysr@777 4685 mov(G2, L2);
ysr@777 4686 mov(G3, L3);
ysr@777 4687 mov(G4, L4);
ysr@777 4688 mov(G5, L5);
ysr@777 4689 call(CAST_FROM_FN_PTR(address, &count_ct_writes));
ysr@777 4690 delayed()->nop();
ysr@777 4691 mov(O0, G2);
ysr@777 4692 // Restore G-regs that target may have used.
ysr@777 4693 mov(L1, G1);
ysr@777 4694 mov(L3, G3);
ysr@777 4695 mov(L4, G4);
ysr@777 4696 mov(L5, G5);
ysr@777 4697 restore(G0, G0, G0);
ysr@777 4698 }
ysr@777 4699 // XXX Should I predict this taken or not? Does it mattern?
ysr@777 4700 br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
ysr@777 4701 delayed()->nop();
ysr@777 4702 }
ysr@777 4703
iveresov@1229 4704 // If the "store_addr" register is an "in" or "local" register, move it to
iveresov@1229 4705 // a scratch reg so we can pass it as an argument.
iveresov@1229 4706 bool use_scr = !(store_addr->is_global() || store_addr->is_out());
iveresov@1229 4707 // Pick a scratch register different from "tmp".
iveresov@1229 4708 Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
iveresov@1229 4709 // Make sure we use up the delay slot!
iveresov@1229 4710 if (use_scr) {
iveresov@1229 4711 post_filter_masm->mov(store_addr, scr);
ysr@777 4712 } else {
iveresov@1229 4713 post_filter_masm->nop();
ysr@777 4714 }
iveresov@1229 4715 generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
iveresov@1229 4716 save_frame(0);
iveresov@1229 4717 call(dirty_card_log_enqueue);
iveresov@1229 4718 if (use_scr) {
iveresov@1229 4719 delayed()->mov(scr, O0);
iveresov@1229 4720 } else {
iveresov@1229 4721 delayed()->mov(store_addr->after_save(), O0);
iveresov@1229 4722 }
iveresov@1229 4723 restore();
ysr@777 4724
ysr@777 4725 bind(filtered);
ysr@777 4726
ysr@777 4727 }
ysr@777 4728
ysr@777 4729 #endif // SERIALGC
ysr@777 4730 ///////////////////////////////////////////////////////////////////////////////////
ysr@777 4731
ysr@777 4732 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
ysr@777 4733 // If we're writing constant NULL, we can skip the write barrier.
ysr@777 4734 if (new_val == G0) return;
ysr@777 4735 CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
ysr@777 4736 assert(bs->kind() == BarrierSet::CardTableModRef ||
ysr@777 4737 bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
ysr@777 4738 card_table_write(bs->byte_map_base, tmp, store_addr);
ysr@777 4739 }
ysr@777 4740
kvn@599 4741 void MacroAssembler::load_klass(Register src_oop, Register klass) {
coleenp@548 4742 // The number of bytes in this code is used by
coleenp@548 4743 // MachCallDynamicJavaNode::ret_addr_offset()
coleenp@548 4744 // if this changes, change that.
coleenp@548 4745 if (UseCompressedOops) {
kvn@599 4746 lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
kvn@599 4747 decode_heap_oop_not_null(klass);
coleenp@548 4748 } else {
kvn@599 4749 ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
coleenp@548 4750 }
coleenp@548 4751 }
coleenp@548 4752
kvn@599 4753 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
coleenp@548 4754 if (UseCompressedOops) {
kvn@599 4755 assert(dst_oop != klass, "not enough registers");
kvn@599 4756 encode_heap_oop_not_null(klass);
coleenp@602 4757 st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
coleenp@548 4758 } else {
kvn@599 4759 st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
kvn@559 4760 }
kvn@559 4761 }
kvn@559 4762
coleenp@602 4763 void MacroAssembler::store_klass_gap(Register s, Register d) {
coleenp@602 4764 if (UseCompressedOops) {
coleenp@602 4765 assert(s != d, "not enough registers");
coleenp@602 4766 st(s, d, oopDesc::klass_gap_offset_in_bytes());
coleenp@548 4767 }
coleenp@548 4768 }
coleenp@548 4769
twisti@1162 4770 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
coleenp@548 4771 if (UseCompressedOops) {
twisti@1162 4772 lduw(s, d);
coleenp@548 4773 decode_heap_oop(d);
coleenp@548 4774 } else {
twisti@1162 4775 ld_ptr(s, d);
coleenp@548 4776 }
coleenp@548 4777 }
coleenp@548 4778
coleenp@548 4779 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
coleenp@548 4780 if (UseCompressedOops) {
coleenp@548 4781 lduw(s1, s2, d);
coleenp@548 4782 decode_heap_oop(d, d);
coleenp@548 4783 } else {
coleenp@548 4784 ld_ptr(s1, s2, d);
coleenp@548 4785 }
coleenp@548 4786 }
coleenp@548 4787
coleenp@548 4788 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
coleenp@548 4789 if (UseCompressedOops) {
coleenp@548 4790 lduw(s1, simm13a, d);
coleenp@548 4791 decode_heap_oop(d, d);
coleenp@548 4792 } else {
coleenp@548 4793 ld_ptr(s1, simm13a, d);
coleenp@548 4794 }
coleenp@548 4795 }
coleenp@548 4796
twisti@2201 4797 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
twisti@2201 4798 if (s2.is_constant()) load_heap_oop(s1, s2.as_constant(), d);
twisti@2201 4799 else load_heap_oop(s1, s2.as_register(), d);
twisti@2201 4800 }
twisti@2201 4801
coleenp@548 4802 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
coleenp@548 4803 if (UseCompressedOops) {
coleenp@548 4804 assert(s1 != d && s2 != d, "not enough registers");
coleenp@548 4805 encode_heap_oop(d);
coleenp@548 4806 st(d, s1, s2);
coleenp@548 4807 } else {
coleenp@548 4808 st_ptr(d, s1, s2);
coleenp@548 4809 }
coleenp@548 4810 }
coleenp@548 4811
coleenp@548 4812 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
coleenp@548 4813 if (UseCompressedOops) {
coleenp@548 4814 assert(s1 != d, "not enough registers");
coleenp@548 4815 encode_heap_oop(d);
coleenp@548 4816 st(d, s1, simm13a);
coleenp@548 4817 } else {
coleenp@548 4818 st_ptr(d, s1, simm13a);
coleenp@548 4819 }
coleenp@548 4820 }
coleenp@548 4821
coleenp@548 4822 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
coleenp@548 4823 if (UseCompressedOops) {
coleenp@548 4824 assert(a.base() != d, "not enough registers");
coleenp@548 4825 encode_heap_oop(d);
coleenp@548 4826 st(d, a, offset);
coleenp@548 4827 } else {
coleenp@548 4828 st_ptr(d, a, offset);
coleenp@548 4829 }
coleenp@548 4830 }
coleenp@548 4831
coleenp@548 4832
coleenp@548 4833 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
coleenp@548 4834 assert (UseCompressedOops, "must be compressed");
kvn@1077 4835 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4836 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4837 verify_oop(src);
kvn@1077 4838 if (Universe::narrow_oop_base() == NULL) {
kvn@1077 4839 srlx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4840 return;
kvn@1077 4841 }
coleenp@548 4842 Label done;
coleenp@548 4843 if (src == dst) {
coleenp@548 4844 // optimize for frequent case src == dst
coleenp@548 4845 bpr(rc_nz, true, Assembler::pt, src, done);
coleenp@548 4846 delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
coleenp@548 4847 bind(done);
coleenp@548 4848 srlx(src, LogMinObjAlignmentInBytes, dst);
coleenp@548 4849 } else {
coleenp@548 4850 bpr(rc_z, false, Assembler::pn, src, done);
coleenp@548 4851 delayed() -> mov(G0, dst);
coleenp@548 4852 // could be moved before branch, and annulate delay,
coleenp@548 4853 // but may add some unneeded work decoding null
coleenp@548 4854 sub(src, G6_heapbase, dst);
coleenp@548 4855 srlx(dst, LogMinObjAlignmentInBytes, dst);
coleenp@548 4856 bind(done);
coleenp@548 4857 }
coleenp@548 4858 }
coleenp@548 4859
coleenp@548 4860
coleenp@548 4861 void MacroAssembler::encode_heap_oop_not_null(Register r) {
coleenp@548 4862 assert (UseCompressedOops, "must be compressed");
kvn@1077 4863 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4864 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4865 verify_oop(r);
kvn@1077 4866 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4867 sub(r, G6_heapbase, r);
coleenp@548 4868 srlx(r, LogMinObjAlignmentInBytes, r);
coleenp@548 4869 }
coleenp@548 4870
kvn@559 4871 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
kvn@559 4872 assert (UseCompressedOops, "must be compressed");
kvn@1077 4873 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4874 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4875 verify_oop(src);
kvn@1077 4876 if (Universe::narrow_oop_base() == NULL) {
kvn@1077 4877 srlx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4878 } else {
kvn@1077 4879 sub(src, G6_heapbase, dst);
kvn@1077 4880 srlx(dst, LogMinObjAlignmentInBytes, dst);
kvn@1077 4881 }
kvn@559 4882 }
kvn@559 4883
coleenp@548 4884 // Same algorithm as oops.inline.hpp decode_heap_oop.
coleenp@548 4885 void MacroAssembler::decode_heap_oop(Register src, Register dst) {
coleenp@548 4886 assert (UseCompressedOops, "must be compressed");
kvn@1077 4887 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4888 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@548 4889 sllx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4890 if (Universe::narrow_oop_base() != NULL) {
kvn@1077 4891 Label done;
kvn@1077 4892 bpr(rc_nz, true, Assembler::pt, dst, done);
kvn@1077 4893 delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
kvn@1077 4894 bind(done);
kvn@1077 4895 }
coleenp@613 4896 verify_oop(dst);
coleenp@548 4897 }
coleenp@548 4898
coleenp@548 4899 void MacroAssembler::decode_heap_oop_not_null(Register r) {
coleenp@548 4900 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
coleenp@548 4901 // pd_code_size_limit.
coleenp@613 4902 // Also do not verify_oop as this is called by verify_oop.
coleenp@548 4903 assert (UseCompressedOops, "must be compressed");
kvn@1077 4904 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4905 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@548 4906 sllx(r, LogMinObjAlignmentInBytes, r);
kvn@1077 4907 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4908 add(r, G6_heapbase, r);
coleenp@548 4909 }
coleenp@548 4910
kvn@559 4911 void MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
kvn@559 4912 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
kvn@559 4913 // pd_code_size_limit.
coleenp@613 4914 // Also do not verify_oop as this is called by verify_oop.
kvn@559 4915 assert (UseCompressedOops, "must be compressed");
kvn@1077 4916 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4917 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
kvn@559 4918 sllx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4919 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4920 add(dst, G6_heapbase, dst);
kvn@559 4921 }
kvn@559 4922
coleenp@548 4923 void MacroAssembler::reinit_heapbase() {
coleenp@548 4924 if (UseCompressedOops) {
coleenp@548 4925 // call indirectly to solve generation ordering problem
twisti@1162 4926 AddressLiteral base(Universe::narrow_oop_base_addr());
coleenp@548 4927 load_ptr_contents(base, G6_heapbase);
coleenp@548 4928 }
coleenp@548 4929 }
kvn@1421 4930
kvn@1421 4931 // Compare char[] arrays aligned to 4 bytes.
kvn@1421 4932 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
kvn@1421 4933 Register limit, Register result,
kvn@1421 4934 Register chr1, Register chr2, Label& Ldone) {
kvn@1421 4935 Label Lvector, Lloop;
kvn@1421 4936 assert(chr1 == result, "should be the same");
kvn@1421 4937
kvn@1421 4938 // Note: limit contains number of bytes (2*char_elements) != 0.
kvn@1421 4939 andcc(limit, 0x2, chr1); // trailing character ?
kvn@1421 4940 br(Assembler::zero, false, Assembler::pt, Lvector);
kvn@1421 4941 delayed()->nop();
kvn@1421 4942
kvn@1421 4943 // compare the trailing char
kvn@1421 4944 sub(limit, sizeof(jchar), limit);
kvn@1421 4945 lduh(ary1, limit, chr1);
kvn@1421 4946 lduh(ary2, limit, chr2);
kvn@1421 4947 cmp(chr1, chr2);
kvn@1421 4948 br(Assembler::notEqual, true, Assembler::pt, Ldone);
kvn@1421 4949 delayed()->mov(G0, result); // not equal
kvn@1421 4950
kvn@1421 4951 // only one char ?
kvn@3037 4952 cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
kvn@1421 4953 delayed()->add(G0, 1, result); // zero-length arrays are equal
kvn@1421 4954
kvn@1421 4955 // word by word compare, dont't need alignment check
kvn@1421 4956 bind(Lvector);
kvn@1421 4957 // Shift ary1 and ary2 to the end of the arrays, negate limit
kvn@1421 4958 add(ary1, limit, ary1);
kvn@1421 4959 add(ary2, limit, ary2);
kvn@1421 4960 neg(limit, limit);
kvn@1421 4961
kvn@1421 4962 lduw(ary1, limit, chr1);
kvn@1421 4963 bind(Lloop);
kvn@1421 4964 lduw(ary2, limit, chr2);
kvn@1421 4965 cmp(chr1, chr2);
kvn@1421 4966 br(Assembler::notEqual, true, Assembler::pt, Ldone);
kvn@1421 4967 delayed()->mov(G0, result); // not equal
kvn@1421 4968 inccc(limit, 2*sizeof(jchar));
kvn@1421 4969 // annul LDUW if branch is not taken to prevent access past end of array
kvn@1421 4970 br(Assembler::notZero, true, Assembler::pt, Lloop);
kvn@1421 4971 delayed()->lduw(ary1, limit, chr1); // hoisted
kvn@1421 4972
kvn@1421 4973 // Caller should set it:
kvn@1421 4974 // add(G0, 1, result); // equals
kvn@1421 4975 }

mercurial