src/cpu/sparc/vm/assembler_sparc.cpp

Fri, 11 Mar 2011 22:34:57 -0800

author
jrose
date
Fri, 11 Mar 2011 22:34:57 -0800
changeset 2639
8033953d67ff
parent 2565
28bf941f445e
child 2781
e1162778c1c8
permissions
-rw-r--r--

7012648: move JSR 292 to package java.lang.invoke and adjust names
Summary: package and class renaming only; delete unused methods and classes
Reviewed-by: twisti

duke@435 1 /*
phh@2423 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@2399 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "assembler_sparc.inline.hpp"
stefank@2314 28 #include "gc_interface/collectedHeap.inline.hpp"
stefank@2314 29 #include "interpreter/interpreter.hpp"
stefank@2314 30 #include "memory/cardTableModRefBS.hpp"
stefank@2314 31 #include "memory/resourceArea.hpp"
stefank@2314 32 #include "prims/methodHandles.hpp"
stefank@2314 33 #include "runtime/biasedLocking.hpp"
stefank@2314 34 #include "runtime/interfaceSupport.hpp"
stefank@2314 35 #include "runtime/objectMonitor.hpp"
stefank@2314 36 #include "runtime/os.hpp"
stefank@2314 37 #include "runtime/sharedRuntime.hpp"
stefank@2314 38 #include "runtime/stubRoutines.hpp"
stefank@2314 39 #ifndef SERIALGC
stefank@2314 40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
stefank@2314 41 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
stefank@2314 42 #include "gc_implementation/g1/heapRegion.hpp"
stefank@2314 43 #endif
duke@435 44
twisti@1162 45 // Convert the raw encoding form into the form expected by the
twisti@1162 46 // constructor for Address.
twisti@1162 47 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
twisti@1162 48 assert(scale == 0, "not supported");
twisti@1162 49 RelocationHolder rspec;
twisti@1162 50 if (disp_is_oop) {
twisti@1162 51 rspec = Relocation::spec_simple(relocInfo::oop_type);
duke@435 52 }
twisti@1162 53
twisti@1162 54 Register rindex = as_Register(index);
twisti@1162 55 if (rindex != G0) {
twisti@1162 56 Address madr(as_Register(base), rindex);
twisti@1162 57 madr._rspec = rspec;
twisti@1162 58 return madr;
twisti@1162 59 } else {
twisti@1162 60 Address madr(as_Register(base), disp);
twisti@1162 61 madr._rspec = rspec;
twisti@1162 62 return madr;
twisti@1162 63 }
twisti@1162 64 }
twisti@1162 65
twisti@1162 66 Address Argument::address_in_frame() const {
twisti@1162 67 // Warning: In LP64 mode disp will occupy more than 10 bits, but
twisti@1162 68 // op codes such as ld or ldx, only access disp() to get
twisti@1162 69 // their simm13 argument.
twisti@1162 70 int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
twisti@1162 71 if (is_in())
twisti@1162 72 return Address(FP, disp); // In argument.
twisti@1162 73 else
twisti@1162 74 return Address(SP, disp); // Out argument.
duke@435 75 }
duke@435 76
duke@435 77 static const char* argumentNames[][2] = {
duke@435 78 {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
duke@435 79 {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
duke@435 80 {"A(n>9)","P(n>9)"}
duke@435 81 };
duke@435 82
duke@435 83 const char* Argument::name() const {
duke@435 84 int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
duke@435 85 int num = number();
duke@435 86 if (num >= nofArgs) num = nofArgs - 1;
duke@435 87 return argumentNames[num][is_in() ? 1 : 0];
duke@435 88 }
duke@435 89
duke@435 90 void Assembler::print_instruction(int inst) {
duke@435 91 const char* s;
duke@435 92 switch (inv_op(inst)) {
duke@435 93 default: s = "????"; break;
duke@435 94 case call_op: s = "call"; break;
duke@435 95 case branch_op:
duke@435 96 switch (inv_op2(inst)) {
duke@435 97 case bpr_op2: s = "bpr"; break;
duke@435 98 case fb_op2: s = "fb"; break;
duke@435 99 case fbp_op2: s = "fbp"; break;
duke@435 100 case br_op2: s = "br"; break;
duke@435 101 case bp_op2: s = "bp"; break;
duke@435 102 case cb_op2: s = "cb"; break;
duke@435 103 default: s = "????"; break;
duke@435 104 }
duke@435 105 }
duke@435 106 ::tty->print("%s", s);
duke@435 107 }
duke@435 108
duke@435 109
duke@435 110 // Patch instruction inst at offset inst_pos to refer to dest_pos
duke@435 111 // and return the resulting instruction.
duke@435 112 // We should have pcs, not offsets, but since all is relative, it will work out
duke@435 113 // OK.
duke@435 114 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
duke@435 115
duke@435 116 int m; // mask for displacement field
duke@435 117 int v; // new value for displacement field
duke@435 118 const int word_aligned_ones = -4;
duke@435 119 switch (inv_op(inst)) {
duke@435 120 default: ShouldNotReachHere();
duke@435 121 case call_op: m = wdisp(word_aligned_ones, 0, 30); v = wdisp(dest_pos, inst_pos, 30); break;
duke@435 122 case branch_op:
duke@435 123 switch (inv_op2(inst)) {
duke@435 124 case bpr_op2: m = wdisp16(word_aligned_ones, 0); v = wdisp16(dest_pos, inst_pos); break;
duke@435 125 case fbp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
duke@435 126 case bp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
duke@435 127 case fb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 128 case br_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 129 case cb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 130 default: ShouldNotReachHere();
duke@435 131 }
duke@435 132 }
duke@435 133 return inst & ~m | v;
duke@435 134 }
duke@435 135
duke@435 136 // Return the offset of the branch destionation of instruction inst
duke@435 137 // at offset pos.
duke@435 138 // Should have pcs, but since all is relative, it works out.
duke@435 139 int Assembler::branch_destination(int inst, int pos) {
duke@435 140 int r;
duke@435 141 switch (inv_op(inst)) {
duke@435 142 default: ShouldNotReachHere();
duke@435 143 case call_op: r = inv_wdisp(inst, pos, 30); break;
duke@435 144 case branch_op:
duke@435 145 switch (inv_op2(inst)) {
duke@435 146 case bpr_op2: r = inv_wdisp16(inst, pos); break;
duke@435 147 case fbp_op2: r = inv_wdisp( inst, pos, 19); break;
duke@435 148 case bp_op2: r = inv_wdisp( inst, pos, 19); break;
duke@435 149 case fb_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 150 case br_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 151 case cb_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 152 default: ShouldNotReachHere();
duke@435 153 }
duke@435 154 }
duke@435 155 return r;
duke@435 156 }
duke@435 157
duke@435 158 int AbstractAssembler::code_fill_byte() {
duke@435 159 return 0x00; // illegal instruction 0x00000000
duke@435 160 }
duke@435 161
ysr@777 162 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
ysr@777 163 switch (in) {
ysr@777 164 case rc_z: return equal;
ysr@777 165 case rc_lez: return lessEqual;
ysr@777 166 case rc_lz: return less;
ysr@777 167 case rc_nz: return notEqual;
ysr@777 168 case rc_gz: return greater;
ysr@777 169 case rc_gez: return greaterEqual;
ysr@777 170 default:
ysr@777 171 ShouldNotReachHere();
ysr@777 172 }
ysr@777 173 return equal;
ysr@777 174 }
ysr@777 175
duke@435 176 // Generate a bunch 'o stuff (including v9's
duke@435 177 #ifndef PRODUCT
duke@435 178 void Assembler::test_v9() {
duke@435 179 add( G0, G1, G2 );
duke@435 180 add( G3, 0, G4 );
duke@435 181
duke@435 182 addcc( G5, G6, G7 );
duke@435 183 addcc( I0, 1, I1 );
duke@435 184 addc( I2, I3, I4 );
duke@435 185 addc( I5, -1, I6 );
duke@435 186 addccc( I7, L0, L1 );
duke@435 187 addccc( L2, (1 << 12) - 2, L3 );
duke@435 188
duke@435 189 Label lbl1, lbl2, lbl3;
duke@435 190
duke@435 191 bind(lbl1);
duke@435 192
duke@435 193 bpr( rc_z, true, pn, L4, pc(), relocInfo::oop_type );
duke@435 194 delayed()->nop();
duke@435 195 bpr( rc_lez, false, pt, L5, lbl1);
duke@435 196 delayed()->nop();
duke@435 197
duke@435 198 fb( f_never, true, pc() + 4, relocInfo::none);
duke@435 199 delayed()->nop();
duke@435 200 fb( f_notEqual, false, lbl2 );
duke@435 201 delayed()->nop();
duke@435 202
duke@435 203 fbp( f_notZero, true, fcc0, pn, pc() - 4, relocInfo::none);
duke@435 204 delayed()->nop();
duke@435 205 fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
duke@435 206 delayed()->nop();
duke@435 207
duke@435 208 br( equal, true, pc() + 1024, relocInfo::none);
duke@435 209 delayed()->nop();
duke@435 210 br( lessEqual, false, lbl1 );
duke@435 211 delayed()->nop();
duke@435 212 br( never, false, lbl1 );
duke@435 213 delayed()->nop();
duke@435 214
duke@435 215 bp( less, true, icc, pn, pc(), relocInfo::none);
duke@435 216 delayed()->nop();
duke@435 217 bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
duke@435 218 delayed()->nop();
duke@435 219
duke@435 220 call( pc(), relocInfo::none);
duke@435 221 delayed()->nop();
duke@435 222 call( lbl3 );
duke@435 223 delayed()->nop();
duke@435 224
duke@435 225
duke@435 226 casa( L6, L7, O0 );
duke@435 227 casxa( O1, O2, O3, 0 );
duke@435 228
duke@435 229 udiv( O4, O5, O7 );
duke@435 230 udiv( G0, (1 << 12) - 1, G1 );
duke@435 231 sdiv( G1, G2, G3 );
duke@435 232 sdiv( G4, -((1 << 12) - 1), G5 );
duke@435 233 udivcc( G6, G7, I0 );
duke@435 234 udivcc( I1, -((1 << 12) - 2), I2 );
duke@435 235 sdivcc( I3, I4, I5 );
duke@435 236 sdivcc( I6, -((1 << 12) - 0), I7 );
duke@435 237
duke@435 238 done();
duke@435 239 retry();
duke@435 240
duke@435 241 fadd( FloatRegisterImpl::S, F0, F1, F2 );
duke@435 242 fsub( FloatRegisterImpl::D, F34, F0, F62 );
duke@435 243
duke@435 244 fcmp( FloatRegisterImpl::Q, fcc0, F0, F60);
duke@435 245 fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
duke@435 246
duke@435 247 ftox( FloatRegisterImpl::D, F2, F4 );
duke@435 248 ftoi( FloatRegisterImpl::Q, F4, F8 );
duke@435 249
duke@435 250 ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
duke@435 251
duke@435 252 fxtof( FloatRegisterImpl::S, F4, F5 );
duke@435 253 fitof( FloatRegisterImpl::D, F6, F8 );
duke@435 254
duke@435 255 fmov( FloatRegisterImpl::Q, F16, F20 );
duke@435 256 fneg( FloatRegisterImpl::S, F6, F7 );
duke@435 257 fabs( FloatRegisterImpl::D, F10, F12 );
duke@435 258
duke@435 259 fmul( FloatRegisterImpl::Q, F24, F28, F32 );
duke@435 260 fmul( FloatRegisterImpl::S, FloatRegisterImpl::D, F8, F9, F14 );
duke@435 261 fdiv( FloatRegisterImpl::S, F10, F11, F12 );
duke@435 262
duke@435 263 fsqrt( FloatRegisterImpl::S, F13, F14 );
duke@435 264
duke@435 265 flush( L0, L1 );
duke@435 266 flush( L2, -1 );
duke@435 267
duke@435 268 flushw();
duke@435 269
duke@435 270 illtrap( (1 << 22) - 2);
duke@435 271
duke@435 272 impdep1( 17, (1 << 19) - 1 );
duke@435 273 impdep2( 3, 0 );
duke@435 274
duke@435 275 jmpl( L3, L4, L5 );
duke@435 276 delayed()->nop();
duke@435 277 jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
duke@435 278 delayed()->nop();
duke@435 279
duke@435 280
duke@435 281 ldf( FloatRegisterImpl::S, O0, O1, F15 );
duke@435 282 ldf( FloatRegisterImpl::D, O2, -1, F14 );
duke@435 283
duke@435 284
duke@435 285 ldfsr( O3, O4 );
duke@435 286 ldfsr( O5, -1 );
duke@435 287 ldxfsr( O6, O7 );
duke@435 288 ldxfsr( I0, -1 );
duke@435 289
duke@435 290 ldfa( FloatRegisterImpl::D, I1, I2, 1, F16 );
duke@435 291 ldfa( FloatRegisterImpl::Q, I3, -1, F36 );
duke@435 292
duke@435 293 ldsb( I4, I5, I6 );
duke@435 294 ldsb( I7, -1, G0 );
duke@435 295 ldsh( G1, G3, G4 );
duke@435 296 ldsh( G5, -1, G6 );
duke@435 297 ldsw( G7, L0, L1 );
duke@435 298 ldsw( L2, -1, L3 );
duke@435 299 ldub( L4, L5, L6 );
duke@435 300 ldub( L7, -1, O0 );
duke@435 301 lduh( O1, O2, O3 );
duke@435 302 lduh( O4, -1, O5 );
duke@435 303 lduw( O6, O7, G0 );
duke@435 304 lduw( G1, -1, G2 );
duke@435 305 ldx( G3, G4, G5 );
duke@435 306 ldx( G6, -1, G7 );
duke@435 307 ldd( I0, I1, I2 );
duke@435 308 ldd( I3, -1, I4 );
duke@435 309
duke@435 310 ldsba( I5, I6, 2, I7 );
duke@435 311 ldsba( L0, -1, L1 );
duke@435 312 ldsha( L2, L3, 3, L4 );
duke@435 313 ldsha( L5, -1, L6 );
duke@435 314 ldswa( L7, O0, (1 << 8) - 1, O1 );
duke@435 315 ldswa( O2, -1, O3 );
duke@435 316 lduba( O4, O5, 0, O6 );
duke@435 317 lduba( O7, -1, I0 );
duke@435 318 lduha( I1, I2, 1, I3 );
duke@435 319 lduha( I4, -1, I5 );
duke@435 320 lduwa( I6, I7, 2, L0 );
duke@435 321 lduwa( L1, -1, L2 );
duke@435 322 ldxa( L3, L4, 3, L5 );
duke@435 323 ldxa( L6, -1, L7 );
duke@435 324 ldda( G0, G1, 4, G2 );
duke@435 325 ldda( G3, -1, G4 );
duke@435 326
duke@435 327 ldstub( G5, G6, G7 );
duke@435 328 ldstub( O0, -1, O1 );
duke@435 329
duke@435 330 ldstuba( O2, O3, 5, O4 );
duke@435 331 ldstuba( O5, -1, O6 );
duke@435 332
duke@435 333 and3( I0, L0, O0 );
duke@435 334 and3( G7, -1, O7 );
duke@435 335 andcc( L2, I2, G2 );
duke@435 336 andcc( L4, -1, G4 );
duke@435 337 andn( I5, I6, I7 );
duke@435 338 andn( I6, -1, I7 );
duke@435 339 andncc( I5, I6, I7 );
duke@435 340 andncc( I7, -1, I6 );
duke@435 341 or3( I5, I6, I7 );
duke@435 342 or3( I7, -1, I6 );
duke@435 343 orcc( I5, I6, I7 );
duke@435 344 orcc( I7, -1, I6 );
duke@435 345 orn( I5, I6, I7 );
duke@435 346 orn( I7, -1, I6 );
duke@435 347 orncc( I5, I6, I7 );
duke@435 348 orncc( I7, -1, I6 );
duke@435 349 xor3( I5, I6, I7 );
duke@435 350 xor3( I7, -1, I6 );
duke@435 351 xorcc( I5, I6, I7 );
duke@435 352 xorcc( I7, -1, I6 );
duke@435 353 xnor( I5, I6, I7 );
duke@435 354 xnor( I7, -1, I6 );
duke@435 355 xnorcc( I5, I6, I7 );
duke@435 356 xnorcc( I7, -1, I6 );
duke@435 357
duke@435 358 membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
duke@435 359 membar( StoreStore );
duke@435 360 membar( LoadStore );
duke@435 361 membar( StoreLoad );
duke@435 362 membar( LoadLoad );
duke@435 363 membar( Sync );
duke@435 364 membar( MemIssue );
duke@435 365 membar( Lookaside );
duke@435 366
duke@435 367 fmov( FloatRegisterImpl::S, f_ordered, true, fcc2, F16, F17 );
duke@435 368 fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
duke@435 369
duke@435 370 movcc( overflowClear, false, icc, I6, L4 );
duke@435 371 movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
duke@435 372
duke@435 373 movr( rc_nz, I5, I6, I7 );
duke@435 374 movr( rc_gz, L1, -1, L2 );
duke@435 375
duke@435 376 mulx( I5, I6, I7 );
duke@435 377 mulx( I7, -1, I6 );
duke@435 378 sdivx( I5, I6, I7 );
duke@435 379 sdivx( I7, -1, I6 );
duke@435 380 udivx( I5, I6, I7 );
duke@435 381 udivx( I7, -1, I6 );
duke@435 382
duke@435 383 umul( I5, I6, I7 );
duke@435 384 umul( I7, -1, I6 );
duke@435 385 smul( I5, I6, I7 );
duke@435 386 smul( I7, -1, I6 );
duke@435 387 umulcc( I5, I6, I7 );
duke@435 388 umulcc( I7, -1, I6 );
duke@435 389 smulcc( I5, I6, I7 );
duke@435 390 smulcc( I7, -1, I6 );
duke@435 391
duke@435 392 mulscc( I5, I6, I7 );
duke@435 393 mulscc( I7, -1, I6 );
duke@435 394
duke@435 395 nop();
duke@435 396
duke@435 397
duke@435 398 popc( G0, G1);
duke@435 399 popc( -1, G2);
duke@435 400
duke@435 401 prefetch( L1, L2, severalReads );
duke@435 402 prefetch( L3, -1, oneRead );
duke@435 403 prefetcha( O3, O2, 6, severalWritesAndPossiblyReads );
duke@435 404 prefetcha( G2, -1, oneWrite );
duke@435 405
duke@435 406 rett( I7, I7);
duke@435 407 delayed()->nop();
duke@435 408 rett( G0, -1, relocInfo::none);
duke@435 409 delayed()->nop();
duke@435 410
duke@435 411 save( I5, I6, I7 );
duke@435 412 save( I7, -1, I6 );
duke@435 413 restore( I5, I6, I7 );
duke@435 414 restore( I7, -1, I6 );
duke@435 415
duke@435 416 saved();
duke@435 417 restored();
duke@435 418
duke@435 419 sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
duke@435 420
duke@435 421 sll( I5, I6, I7 );
duke@435 422 sll( I7, 31, I6 );
duke@435 423 srl( I5, I6, I7 );
duke@435 424 srl( I7, 0, I6 );
duke@435 425 sra( I5, I6, I7 );
duke@435 426 sra( I7, 30, I6 );
duke@435 427 sllx( I5, I6, I7 );
duke@435 428 sllx( I7, 63, I6 );
duke@435 429 srlx( I5, I6, I7 );
duke@435 430 srlx( I7, 0, I6 );
duke@435 431 srax( I5, I6, I7 );
duke@435 432 srax( I7, 62, I6 );
duke@435 433
duke@435 434 sir( -1 );
duke@435 435
duke@435 436 stbar();
duke@435 437
duke@435 438 stf( FloatRegisterImpl::Q, F40, G0, I7 );
duke@435 439 stf( FloatRegisterImpl::S, F18, I3, -1 );
duke@435 440
duke@435 441 stfsr( L1, L2 );
duke@435 442 stfsr( I7, -1 );
duke@435 443 stxfsr( I6, I5 );
duke@435 444 stxfsr( L4, -1 );
duke@435 445
duke@435 446 stfa( FloatRegisterImpl::D, F22, I6, I7, 7 );
duke@435 447 stfa( FloatRegisterImpl::Q, F44, G0, -1 );
duke@435 448
duke@435 449 stb( L5, O2, I7 );
duke@435 450 stb( I7, I6, -1 );
duke@435 451 sth( L5, O2, I7 );
duke@435 452 sth( I7, I6, -1 );
duke@435 453 stw( L5, O2, I7 );
duke@435 454 stw( I7, I6, -1 );
duke@435 455 stx( L5, O2, I7 );
duke@435 456 stx( I7, I6, -1 );
duke@435 457 std( L5, O2, I7 );
duke@435 458 std( I7, I6, -1 );
duke@435 459
duke@435 460 stba( L5, O2, I7, 8 );
duke@435 461 stba( I7, I6, -1 );
duke@435 462 stha( L5, O2, I7, 9 );
duke@435 463 stha( I7, I6, -1 );
duke@435 464 stwa( L5, O2, I7, 0 );
duke@435 465 stwa( I7, I6, -1 );
duke@435 466 stxa( L5, O2, I7, 11 );
duke@435 467 stxa( I7, I6, -1 );
duke@435 468 stda( L5, O2, I7, 12 );
duke@435 469 stda( I7, I6, -1 );
duke@435 470
duke@435 471 sub( I5, I6, I7 );
duke@435 472 sub( I7, -1, I6 );
duke@435 473 subcc( I5, I6, I7 );
duke@435 474 subcc( I7, -1, I6 );
duke@435 475 subc( I5, I6, I7 );
duke@435 476 subc( I7, -1, I6 );
duke@435 477 subccc( I5, I6, I7 );
duke@435 478 subccc( I7, -1, I6 );
duke@435 479
duke@435 480 swap( I5, I6, I7 );
duke@435 481 swap( I7, -1, I6 );
duke@435 482
duke@435 483 swapa( G0, G1, 13, G2 );
duke@435 484 swapa( I7, -1, I6 );
duke@435 485
duke@435 486 taddcc( I5, I6, I7 );
duke@435 487 taddcc( I7, -1, I6 );
duke@435 488 taddcctv( I5, I6, I7 );
duke@435 489 taddcctv( I7, -1, I6 );
duke@435 490
duke@435 491 tsubcc( I5, I6, I7 );
duke@435 492 tsubcc( I7, -1, I6 );
duke@435 493 tsubcctv( I5, I6, I7 );
duke@435 494 tsubcctv( I7, -1, I6 );
duke@435 495
duke@435 496 trap( overflowClear, xcc, G0, G1 );
duke@435 497 trap( lessEqual, icc, I7, 17 );
duke@435 498
duke@435 499 bind(lbl2);
duke@435 500 bind(lbl3);
duke@435 501
duke@435 502 code()->decode();
duke@435 503 }
duke@435 504
duke@435 505 // Generate a bunch 'o stuff unique to V8
duke@435 506 void Assembler::test_v8_onlys() {
duke@435 507 Label lbl1;
duke@435 508
duke@435 509 cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
duke@435 510 delayed()->nop();
duke@435 511 cb( cp_never, true, lbl1);
duke@435 512 delayed()->nop();
duke@435 513
duke@435 514 cpop1(1, 2, 3, 4);
duke@435 515 cpop2(5, 6, 7, 8);
duke@435 516
duke@435 517 ldc( I0, I1, 31);
duke@435 518 ldc( I2, -1, 0);
duke@435 519
duke@435 520 lddc( I4, I4, 30);
duke@435 521 lddc( I6, 0, 1 );
duke@435 522
duke@435 523 ldcsr( L0, L1, 0);
duke@435 524 ldcsr( L1, (1 << 12) - 1, 17 );
duke@435 525
duke@435 526 stc( 31, L4, L5);
duke@435 527 stc( 30, L6, -(1 << 12) );
duke@435 528
duke@435 529 stdc( 0, L7, G0);
duke@435 530 stdc( 1, G1, 0 );
duke@435 531
duke@435 532 stcsr( 16, G2, G3);
duke@435 533 stcsr( 17, G4, 1 );
duke@435 534
duke@435 535 stdcq( 4, G5, G6);
duke@435 536 stdcq( 5, G7, -1 );
duke@435 537
duke@435 538 bind(lbl1);
duke@435 539
duke@435 540 code()->decode();
duke@435 541 }
duke@435 542 #endif
duke@435 543
duke@435 544 // Implementation of MacroAssembler
duke@435 545
duke@435 546 void MacroAssembler::null_check(Register reg, int offset) {
duke@435 547 if (needs_explicit_null_check((intptr_t)offset)) {
duke@435 548 // provoke OS NULL exception if reg = NULL by
duke@435 549 // accessing M[reg] w/o changing any registers
duke@435 550 ld_ptr(reg, 0, G0);
duke@435 551 }
duke@435 552 else {
duke@435 553 // nothing to do, (later) access of M[reg + offset]
duke@435 554 // will provoke OS NULL exception if reg = NULL
duke@435 555 }
duke@435 556 }
duke@435 557
duke@435 558 // Ring buffer jumps
duke@435 559
duke@435 560 #ifndef PRODUCT
duke@435 561 void MacroAssembler::ret( bool trace ) { if (trace) {
duke@435 562 mov(I7, O7); // traceable register
duke@435 563 JMP(O7, 2 * BytesPerInstWord);
duke@435 564 } else {
duke@435 565 jmpl( I7, 2 * BytesPerInstWord, G0 );
duke@435 566 }
duke@435 567 }
duke@435 568
duke@435 569 void MacroAssembler::retl( bool trace ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
duke@435 570 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
duke@435 571 #endif /* PRODUCT */
duke@435 572
duke@435 573
duke@435 574 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
duke@435 575 assert_not_delayed();
duke@435 576 // This can only be traceable if r1 & r2 are visible after a window save
duke@435 577 if (TraceJumps) {
duke@435 578 #ifndef PRODUCT
duke@435 579 save_frame(0);
duke@435 580 verify_thread();
duke@435 581 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 582 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 583 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 584 add(O2, O1, O1);
duke@435 585
duke@435 586 add(r1->after_save(), r2->after_save(), O2);
duke@435 587 set((intptr_t)file, O3);
duke@435 588 set(line, O4);
duke@435 589 Label L;
duke@435 590 // get nearby pc, store jmp target
duke@435 591 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 592 delayed()->st(O2, O1, 0);
duke@435 593 bind(L);
duke@435 594
duke@435 595 // store nearby pc
duke@435 596 st(O7, O1, sizeof(intptr_t));
duke@435 597 // store file
duke@435 598 st(O3, O1, 2*sizeof(intptr_t));
duke@435 599 // store line
duke@435 600 st(O4, O1, 3*sizeof(intptr_t));
duke@435 601 add(O0, 1, O0);
duke@435 602 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 603 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 604 restore();
duke@435 605 #endif /* PRODUCT */
duke@435 606 }
duke@435 607 jmpl(r1, r2, G0);
duke@435 608 }
duke@435 609 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
duke@435 610 assert_not_delayed();
duke@435 611 // This can only be traceable if r1 is visible after a window save
duke@435 612 if (TraceJumps) {
duke@435 613 #ifndef PRODUCT
duke@435 614 save_frame(0);
duke@435 615 verify_thread();
duke@435 616 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 617 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 618 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 619 add(O2, O1, O1);
duke@435 620
duke@435 621 add(r1->after_save(), offset, O2);
duke@435 622 set((intptr_t)file, O3);
duke@435 623 set(line, O4);
duke@435 624 Label L;
duke@435 625 // get nearby pc, store jmp target
duke@435 626 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 627 delayed()->st(O2, O1, 0);
duke@435 628 bind(L);
duke@435 629
duke@435 630 // store nearby pc
duke@435 631 st(O7, O1, sizeof(intptr_t));
duke@435 632 // store file
duke@435 633 st(O3, O1, 2*sizeof(intptr_t));
duke@435 634 // store line
duke@435 635 st(O4, O1, 3*sizeof(intptr_t));
duke@435 636 add(O0, 1, O0);
duke@435 637 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 638 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 639 restore();
duke@435 640 #endif /* PRODUCT */
duke@435 641 }
duke@435 642 jmp(r1, offset);
duke@435 643 }
duke@435 644
duke@435 645 // This code sequence is relocatable to any address, even on LP64.
coleenp@2035 646 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
duke@435 647 assert_not_delayed();
duke@435 648 // Force fixed length sethi because NativeJump and NativeFarCall don't handle
duke@435 649 // variable length instruction streams.
twisti@1162 650 patchable_sethi(addrlit, temp);
twisti@1162 651 Address a(temp, addrlit.low10() + offset); // Add the offset to the displacement.
duke@435 652 if (TraceJumps) {
duke@435 653 #ifndef PRODUCT
duke@435 654 // Must do the add here so relocation can find the remainder of the
duke@435 655 // value to be relocated.
twisti@1162 656 add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
duke@435 657 save_frame(0);
duke@435 658 verify_thread();
duke@435 659 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 660 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 661 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 662 add(O2, O1, O1);
duke@435 663
duke@435 664 set((intptr_t)file, O3);
duke@435 665 set(line, O4);
duke@435 666 Label L;
duke@435 667
duke@435 668 // get nearby pc, store jmp target
duke@435 669 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 670 delayed()->st(a.base()->after_save(), O1, 0);
duke@435 671 bind(L);
duke@435 672
duke@435 673 // store nearby pc
duke@435 674 st(O7, O1, sizeof(intptr_t));
duke@435 675 // store file
duke@435 676 st(O3, O1, 2*sizeof(intptr_t));
duke@435 677 // store line
duke@435 678 st(O4, O1, 3*sizeof(intptr_t));
duke@435 679 add(O0, 1, O0);
duke@435 680 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 681 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 682 restore();
duke@435 683 jmpl(a.base(), G0, d);
duke@435 684 #else
twisti@1162 685 jmpl(a.base(), a.disp(), d);
duke@435 686 #endif /* PRODUCT */
duke@435 687 } else {
twisti@1162 688 jmpl(a.base(), a.disp(), d);
duke@435 689 }
duke@435 690 }
duke@435 691
coleenp@2035 692 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
twisti@1162 693 jumpl(addrlit, temp, G0, offset, file, line);
duke@435 694 }
duke@435 695
duke@435 696
duke@435 697 // Convert to C varargs format
duke@435 698 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
duke@435 699 // spill register-resident args to their memory slots
duke@435 700 // (SPARC calling convention requires callers to have already preallocated these)
duke@435 701 // Note that the inArg might in fact be an outgoing argument,
duke@435 702 // if a leaf routine or stub does some tricky argument shuffling.
duke@435 703 // This routine must work even though one of the saved arguments
duke@435 704 // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
duke@435 705 for (Argument savePtr = inArg;
duke@435 706 savePtr.is_register();
duke@435 707 savePtr = savePtr.successor()) {
duke@435 708 st_ptr(savePtr.as_register(), savePtr.address_in_frame());
duke@435 709 }
duke@435 710 // return the address of the first memory slot
twisti@1162 711 Address a = inArg.address_in_frame();
twisti@1162 712 add(a.base(), a.disp(), d);
duke@435 713 }
duke@435 714
duke@435 715 // Conditional breakpoint (for assertion checks in assembly code)
duke@435 716 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
duke@435 717 trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
duke@435 718 }
duke@435 719
duke@435 720 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
duke@435 721 void MacroAssembler::breakpoint_trap() {
duke@435 722 trap(ST_RESERVED_FOR_USER_0);
duke@435 723 }
duke@435 724
duke@435 725 // flush windows (except current) using flushw instruction if avail.
duke@435 726 void MacroAssembler::flush_windows() {
duke@435 727 if (VM_Version::v9_instructions_work()) flushw();
duke@435 728 else flush_windows_trap();
duke@435 729 }
duke@435 730
duke@435 731 // Write serialization page so VM thread can do a pseudo remote membar
duke@435 732 // We use the current thread pointer to calculate a thread specific
duke@435 733 // offset to write to within the page. This minimizes bus traffic
duke@435 734 // due to cache line collision.
duke@435 735 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
duke@435 736 srl(thread, os::get_serialize_page_shift_count(), tmp2);
duke@435 737 if (Assembler::is_simm13(os::vm_page_size())) {
duke@435 738 and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
duke@435 739 }
duke@435 740 else {
duke@435 741 set((os::vm_page_size() - sizeof(int)), tmp1);
duke@435 742 and3(tmp2, tmp1, tmp2);
duke@435 743 }
twisti@1162 744 set(os::get_memory_serialize_page(), tmp1);
duke@435 745 st(G0, tmp1, tmp2);
duke@435 746 }
duke@435 747
duke@435 748
duke@435 749
duke@435 750 void MacroAssembler::enter() {
duke@435 751 Unimplemented();
duke@435 752 }
duke@435 753
duke@435 754 void MacroAssembler::leave() {
duke@435 755 Unimplemented();
duke@435 756 }
duke@435 757
duke@435 758 void MacroAssembler::mult(Register s1, Register s2, Register d) {
duke@435 759 if(VM_Version::v9_instructions_work()) {
duke@435 760 mulx (s1, s2, d);
duke@435 761 } else {
duke@435 762 smul (s1, s2, d);
duke@435 763 }
duke@435 764 }
duke@435 765
duke@435 766 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
duke@435 767 if(VM_Version::v9_instructions_work()) {
duke@435 768 mulx (s1, simm13a, d);
duke@435 769 } else {
duke@435 770 smul (s1, simm13a, d);
duke@435 771 }
duke@435 772 }
duke@435 773
duke@435 774
duke@435 775 #ifdef ASSERT
duke@435 776 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
duke@435 777 const Register s1 = G3_scratch;
duke@435 778 const Register s2 = G4_scratch;
duke@435 779 Label get_psr_test;
duke@435 780 // Get the condition codes the V8 way.
duke@435 781 read_ccr_trap(s1);
duke@435 782 mov(ccr_save, s2);
duke@435 783 // This is a test of V8 which has icc but not xcc
duke@435 784 // so mask off the xcc bits
duke@435 785 and3(s2, 0xf, s2);
duke@435 786 // Compare condition codes from the V8 and V9 ways.
duke@435 787 subcc(s2, s1, G0);
duke@435 788 br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
duke@435 789 delayed()->breakpoint_trap();
duke@435 790 bind(get_psr_test);
duke@435 791 }
duke@435 792
duke@435 793 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
duke@435 794 const Register s1 = G3_scratch;
duke@435 795 const Register s2 = G4_scratch;
duke@435 796 Label set_psr_test;
duke@435 797 // Write out the saved condition codes the V8 way
duke@435 798 write_ccr_trap(ccr_save, s1, s2);
duke@435 799 // Read back the condition codes using the V9 instruction
duke@435 800 rdccr(s1);
duke@435 801 mov(ccr_save, s2);
duke@435 802 // This is a test of V8 which has icc but not xcc
duke@435 803 // so mask off the xcc bits
duke@435 804 and3(s2, 0xf, s2);
duke@435 805 and3(s1, 0xf, s1);
duke@435 806 // Compare the V8 way with the V9 way.
duke@435 807 subcc(s2, s1, G0);
duke@435 808 br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
duke@435 809 delayed()->breakpoint_trap();
duke@435 810 bind(set_psr_test);
duke@435 811 }
duke@435 812 #else
duke@435 813 #define read_ccr_v8_assert(x)
duke@435 814 #define write_ccr_v8_assert(x)
duke@435 815 #endif // ASSERT
duke@435 816
duke@435 817 void MacroAssembler::read_ccr(Register ccr_save) {
duke@435 818 if (VM_Version::v9_instructions_work()) {
duke@435 819 rdccr(ccr_save);
duke@435 820 // Test code sequence used on V8. Do not move above rdccr.
duke@435 821 read_ccr_v8_assert(ccr_save);
duke@435 822 } else {
duke@435 823 read_ccr_trap(ccr_save);
duke@435 824 }
duke@435 825 }
duke@435 826
duke@435 827 void MacroAssembler::write_ccr(Register ccr_save) {
duke@435 828 if (VM_Version::v9_instructions_work()) {
duke@435 829 // Test code sequence used on V8. Do not move below wrccr.
duke@435 830 write_ccr_v8_assert(ccr_save);
duke@435 831 wrccr(ccr_save);
duke@435 832 } else {
duke@435 833 const Register temp_reg1 = G3_scratch;
duke@435 834 const Register temp_reg2 = G4_scratch;
duke@435 835 write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
duke@435 836 }
duke@435 837 }
duke@435 838
duke@435 839
duke@435 840 // Calls to C land
duke@435 841
duke@435 842 #ifdef ASSERT
duke@435 843 // a hook for debugging
duke@435 844 static Thread* reinitialize_thread() {
duke@435 845 return ThreadLocalStorage::thread();
duke@435 846 }
duke@435 847 #else
duke@435 848 #define reinitialize_thread ThreadLocalStorage::thread
duke@435 849 #endif
duke@435 850
duke@435 851 #ifdef ASSERT
duke@435 852 address last_get_thread = NULL;
duke@435 853 #endif
duke@435 854
duke@435 855 // call this when G2_thread is not known to be valid
duke@435 856 void MacroAssembler::get_thread() {
duke@435 857 save_frame(0); // to avoid clobbering O0
duke@435 858 mov(G1, L0); // avoid clobbering G1
duke@435 859 mov(G5_method, L1); // avoid clobbering G5
duke@435 860 mov(G3, L2); // avoid clobbering G3 also
duke@435 861 mov(G4, L5); // avoid clobbering G4
duke@435 862 #ifdef ASSERT
twisti@1162 863 AddressLiteral last_get_thread_addrlit(&last_get_thread);
twisti@1162 864 set(last_get_thread_addrlit, L3);
duke@435 865 inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
twisti@1162 866 st_ptr(L4, L3, 0);
duke@435 867 #endif
duke@435 868 call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
duke@435 869 delayed()->nop();
duke@435 870 mov(L0, G1);
duke@435 871 mov(L1, G5_method);
duke@435 872 mov(L2, G3);
duke@435 873 mov(L5, G4);
duke@435 874 restore(O0, 0, G2_thread);
duke@435 875 }
duke@435 876
duke@435 877 static Thread* verify_thread_subroutine(Thread* gthread_value) {
duke@435 878 Thread* correct_value = ThreadLocalStorage::thread();
duke@435 879 guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
duke@435 880 return correct_value;
duke@435 881 }
duke@435 882
duke@435 883 void MacroAssembler::verify_thread() {
duke@435 884 if (VerifyThread) {
duke@435 885 // NOTE: this chops off the heads of the 64-bit O registers.
duke@435 886 #ifdef CC_INTERP
duke@435 887 save_frame(0);
duke@435 888 #else
duke@435 889 // make sure G2_thread contains the right value
duke@435 890 save_frame_and_mov(0, Lmethod, Lmethod); // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
duke@435 891 mov(G1, L1); // avoid clobbering G1
duke@435 892 // G2 saved below
duke@435 893 mov(G3, L3); // avoid clobbering G3
duke@435 894 mov(G4, L4); // avoid clobbering G4
duke@435 895 mov(G5_method, L5); // avoid clobbering G5_method
duke@435 896 #endif /* CC_INTERP */
duke@435 897 #if defined(COMPILER2) && !defined(_LP64)
duke@435 898 // Save & restore possible 64-bit Long arguments in G-regs
duke@435 899 srlx(G1,32,L0);
duke@435 900 srlx(G4,32,L6);
duke@435 901 #endif
duke@435 902 call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
duke@435 903 delayed()->mov(G2_thread, O0);
duke@435 904
duke@435 905 mov(L1, G1); // Restore G1
duke@435 906 // G2 restored below
duke@435 907 mov(L3, G3); // restore G3
duke@435 908 mov(L4, G4); // restore G4
duke@435 909 mov(L5, G5_method); // restore G5_method
duke@435 910 #if defined(COMPILER2) && !defined(_LP64)
duke@435 911 // Save & restore possible 64-bit Long arguments in G-regs
duke@435 912 sllx(L0,32,G2); // Move old high G1 bits high in G2
iveresov@2344 913 srl(G1, 0,G1); // Clear current high G1 bits
duke@435 914 or3 (G1,G2,G1); // Recover 64-bit G1
duke@435 915 sllx(L6,32,G2); // Move old high G4 bits high in G2
iveresov@2344 916 srl(G4, 0,G4); // Clear current high G4 bits
duke@435 917 or3 (G4,G2,G4); // Recover 64-bit G4
duke@435 918 #endif
duke@435 919 restore(O0, 0, G2_thread);
duke@435 920 }
duke@435 921 }
duke@435 922
duke@435 923
duke@435 924 void MacroAssembler::save_thread(const Register thread_cache) {
duke@435 925 verify_thread();
duke@435 926 if (thread_cache->is_valid()) {
duke@435 927 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
duke@435 928 mov(G2_thread, thread_cache);
duke@435 929 }
duke@435 930 if (VerifyThread) {
duke@435 931 // smash G2_thread, as if the VM were about to anyway
duke@435 932 set(0x67676767, G2_thread);
duke@435 933 }
duke@435 934 }
duke@435 935
duke@435 936
duke@435 937 void MacroAssembler::restore_thread(const Register thread_cache) {
duke@435 938 if (thread_cache->is_valid()) {
duke@435 939 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
duke@435 940 mov(thread_cache, G2_thread);
duke@435 941 verify_thread();
duke@435 942 } else {
duke@435 943 // do it the slow way
duke@435 944 get_thread();
duke@435 945 }
duke@435 946 }
duke@435 947
duke@435 948
duke@435 949 // %%% maybe get rid of [re]set_last_Java_frame
duke@435 950 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
duke@435 951 assert_not_delayed();
twisti@1162 952 Address flags(G2_thread, JavaThread::frame_anchor_offset() +
twisti@1162 953 JavaFrameAnchor::flags_offset());
twisti@1162 954 Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
duke@435 955
duke@435 956 // Always set last_Java_pc and flags first because once last_Java_sp is visible
duke@435 957 // has_last_Java_frame is true and users will look at the rest of the fields.
duke@435 958 // (Note: flags should always be zero before we get here so doesn't need to be set.)
duke@435 959
duke@435 960 #ifdef ASSERT
duke@435 961 // Verify that flags was zeroed on return to Java
duke@435 962 Label PcOk;
duke@435 963 save_frame(0); // to avoid clobbering O0
duke@435 964 ld_ptr(pc_addr, L0);
duke@435 965 tst(L0);
duke@435 966 #ifdef _LP64
duke@435 967 brx(Assembler::zero, false, Assembler::pt, PcOk);
duke@435 968 #else
duke@435 969 br(Assembler::zero, false, Assembler::pt, PcOk);
duke@435 970 #endif // _LP64
duke@435 971 delayed() -> nop();
duke@435 972 stop("last_Java_pc not zeroed before leaving Java");
duke@435 973 bind(PcOk);
duke@435 974
duke@435 975 // Verify that flags was zeroed on return to Java
duke@435 976 Label FlagsOk;
duke@435 977 ld(flags, L0);
duke@435 978 tst(L0);
duke@435 979 br(Assembler::zero, false, Assembler::pt, FlagsOk);
duke@435 980 delayed() -> restore();
duke@435 981 stop("flags not zeroed before leaving Java");
duke@435 982 bind(FlagsOk);
duke@435 983 #endif /* ASSERT */
duke@435 984 //
duke@435 985 // When returning from calling out from Java mode the frame anchor's last_Java_pc
duke@435 986 // will always be set to NULL. It is set here so that if we are doing a call to
duke@435 987 // native (not VM) that we capture the known pc and don't have to rely on the
duke@435 988 // native call having a standard frame linkage where we can find the pc.
duke@435 989
duke@435 990 if (last_Java_pc->is_valid()) {
duke@435 991 st_ptr(last_Java_pc, pc_addr);
duke@435 992 }
duke@435 993
duke@435 994 #ifdef _LP64
duke@435 995 #ifdef ASSERT
duke@435 996 // Make sure that we have an odd stack
duke@435 997 Label StackOk;
duke@435 998 andcc(last_java_sp, 0x01, G0);
duke@435 999 br(Assembler::notZero, false, Assembler::pt, StackOk);
duke@435 1000 delayed() -> nop();
duke@435 1001 stop("Stack Not Biased in set_last_Java_frame");
duke@435 1002 bind(StackOk);
duke@435 1003 #endif // ASSERT
duke@435 1004 assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
duke@435 1005 add( last_java_sp, STACK_BIAS, G4_scratch );
twisti@1162 1006 st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
duke@435 1007 #else
twisti@1162 1008 st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
duke@435 1009 #endif // _LP64
duke@435 1010 }
duke@435 1011
duke@435 1012 void MacroAssembler::reset_last_Java_frame(void) {
duke@435 1013 assert_not_delayed();
duke@435 1014
twisti@1162 1015 Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
twisti@1162 1016 Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
twisti@1162 1017 Address flags (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
duke@435 1018
duke@435 1019 #ifdef ASSERT
duke@435 1020 // check that it WAS previously set
duke@435 1021 #ifdef CC_INTERP
duke@435 1022 save_frame(0);
duke@435 1023 #else
duke@435 1024 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod to helper frame for -Xprof
duke@435 1025 #endif /* CC_INTERP */
duke@435 1026 ld_ptr(sp_addr, L0);
duke@435 1027 tst(L0);
duke@435 1028 breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
duke@435 1029 restore();
duke@435 1030 #endif // ASSERT
duke@435 1031
duke@435 1032 st_ptr(G0, sp_addr);
duke@435 1033 // Always return last_Java_pc to zero
duke@435 1034 st_ptr(G0, pc_addr);
duke@435 1035 // Always null flags after return to Java
duke@435 1036 st(G0, flags);
duke@435 1037 }
duke@435 1038
duke@435 1039
duke@435 1040 void MacroAssembler::call_VM_base(
duke@435 1041 Register oop_result,
duke@435 1042 Register thread_cache,
duke@435 1043 Register last_java_sp,
duke@435 1044 address entry_point,
duke@435 1045 int number_of_arguments,
duke@435 1046 bool check_exceptions)
duke@435 1047 {
duke@435 1048 assert_not_delayed();
duke@435 1049
duke@435 1050 // determine last_java_sp register
duke@435 1051 if (!last_java_sp->is_valid()) {
duke@435 1052 last_java_sp = SP;
duke@435 1053 }
duke@435 1054 // debugging support
duke@435 1055 assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
duke@435 1056
duke@435 1057 // 64-bit last_java_sp is biased!
duke@435 1058 set_last_Java_frame(last_java_sp, noreg);
duke@435 1059 if (VerifyThread) mov(G2_thread, O0); // about to be smashed; pass early
duke@435 1060 save_thread(thread_cache);
duke@435 1061 // do the call
duke@435 1062 call(entry_point, relocInfo::runtime_call_type);
duke@435 1063 if (!VerifyThread)
duke@435 1064 delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 1065 else
duke@435 1066 delayed()->nop(); // (thread already passed)
duke@435 1067 restore_thread(thread_cache);
duke@435 1068 reset_last_Java_frame();
duke@435 1069
duke@435 1070 // check for pending exceptions. use Gtemp as scratch register.
duke@435 1071 if (check_exceptions) {
duke@435 1072 check_and_forward_exception(Gtemp);
duke@435 1073 }
duke@435 1074
duke@435 1075 // get oop result if there is one and reset the value in the thread
duke@435 1076 if (oop_result->is_valid()) {
duke@435 1077 get_vm_result(oop_result);
duke@435 1078 }
duke@435 1079 }
duke@435 1080
duke@435 1081 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
duke@435 1082 {
duke@435 1083 Label L;
duke@435 1084
duke@435 1085 check_and_handle_popframe(scratch_reg);
duke@435 1086 check_and_handle_earlyret(scratch_reg);
duke@435 1087
twisti@1162 1088 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 1089 ld_ptr(exception_addr, scratch_reg);
duke@435 1090 br_null(scratch_reg,false,pt,L);
duke@435 1091 delayed()->nop();
duke@435 1092 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 1093 call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 1094 delayed()->nop();
duke@435 1095 bind(L);
duke@435 1096 }
duke@435 1097
duke@435 1098
duke@435 1099 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
duke@435 1100 }
duke@435 1101
duke@435 1102
duke@435 1103 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
duke@435 1104 }
duke@435 1105
duke@435 1106
duke@435 1107 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
duke@435 1108 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
duke@435 1109 }
duke@435 1110
duke@435 1111
duke@435 1112 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
duke@435 1113 // O0 is reserved for the thread
duke@435 1114 mov(arg_1, O1);
duke@435 1115 call_VM(oop_result, entry_point, 1, check_exceptions);
duke@435 1116 }
duke@435 1117
duke@435 1118
duke@435 1119 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
duke@435 1120 // O0 is reserved for the thread
duke@435 1121 mov(arg_1, O1);
duke@435 1122 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1123 call_VM(oop_result, entry_point, 2, check_exceptions);
duke@435 1124 }
duke@435 1125
duke@435 1126
duke@435 1127 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
duke@435 1128 // O0 is reserved for the thread
duke@435 1129 mov(arg_1, O1);
duke@435 1130 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1131 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
duke@435 1132 call_VM(oop_result, entry_point, 3, check_exceptions);
duke@435 1133 }
duke@435 1134
duke@435 1135
duke@435 1136
duke@435 1137 // Note: The following call_VM overloadings are useful when a "save"
duke@435 1138 // has already been performed by a stub, and the last Java frame is
duke@435 1139 // the previous one. In that case, last_java_sp must be passed as FP
duke@435 1140 // instead of SP.
duke@435 1141
duke@435 1142
duke@435 1143 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
duke@435 1144 call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
duke@435 1145 }
duke@435 1146
duke@435 1147
duke@435 1148 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
duke@435 1149 // O0 is reserved for the thread
duke@435 1150 mov(arg_1, O1);
duke@435 1151 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
duke@435 1152 }
duke@435 1153
duke@435 1154
duke@435 1155 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
duke@435 1156 // O0 is reserved for the thread
duke@435 1157 mov(arg_1, O1);
duke@435 1158 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1159 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
duke@435 1160 }
duke@435 1161
duke@435 1162
duke@435 1163 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
duke@435 1164 // O0 is reserved for the thread
duke@435 1165 mov(arg_1, O1);
duke@435 1166 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1167 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
duke@435 1168 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
duke@435 1169 }
duke@435 1170
duke@435 1171
duke@435 1172
duke@435 1173 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
duke@435 1174 assert_not_delayed();
duke@435 1175 save_thread(thread_cache);
duke@435 1176 // do the call
duke@435 1177 call(entry_point, relocInfo::runtime_call_type);
duke@435 1178 delayed()->nop();
duke@435 1179 restore_thread(thread_cache);
duke@435 1180 }
duke@435 1181
duke@435 1182
duke@435 1183 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
duke@435 1184 call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
duke@435 1185 }
duke@435 1186
duke@435 1187
duke@435 1188 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
duke@435 1189 mov(arg_1, O0);
duke@435 1190 call_VM_leaf(thread_cache, entry_point, 1);
duke@435 1191 }
duke@435 1192
duke@435 1193
duke@435 1194 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
duke@435 1195 mov(arg_1, O0);
duke@435 1196 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
duke@435 1197 call_VM_leaf(thread_cache, entry_point, 2);
duke@435 1198 }
duke@435 1199
duke@435 1200
duke@435 1201 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
duke@435 1202 mov(arg_1, O0);
duke@435 1203 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
duke@435 1204 mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
duke@435 1205 call_VM_leaf(thread_cache, entry_point, 3);
duke@435 1206 }
duke@435 1207
duke@435 1208
duke@435 1209 void MacroAssembler::get_vm_result(Register oop_result) {
duke@435 1210 verify_thread();
twisti@1162 1211 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
duke@435 1212 ld_ptr( vm_result_addr, oop_result);
duke@435 1213 st_ptr(G0, vm_result_addr);
duke@435 1214 verify_oop(oop_result);
duke@435 1215 }
duke@435 1216
duke@435 1217
duke@435 1218 void MacroAssembler::get_vm_result_2(Register oop_result) {
duke@435 1219 verify_thread();
twisti@1162 1220 Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
duke@435 1221 ld_ptr(vm_result_addr_2, oop_result);
duke@435 1222 st_ptr(G0, vm_result_addr_2);
duke@435 1223 verify_oop(oop_result);
duke@435 1224 }
duke@435 1225
duke@435 1226
duke@435 1227 // We require that C code which does not return a value in vm_result will
duke@435 1228 // leave it undisturbed.
duke@435 1229 void MacroAssembler::set_vm_result(Register oop_result) {
duke@435 1230 verify_thread();
twisti@1162 1231 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
duke@435 1232 verify_oop(oop_result);
duke@435 1233
duke@435 1234 # ifdef ASSERT
duke@435 1235 // Check that we are not overwriting any other oop.
duke@435 1236 #ifdef CC_INTERP
duke@435 1237 save_frame(0);
duke@435 1238 #else
duke@435 1239 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod for -Xprof
duke@435 1240 #endif /* CC_INTERP */
duke@435 1241 ld_ptr(vm_result_addr, L0);
duke@435 1242 tst(L0);
duke@435 1243 restore();
duke@435 1244 breakpoint_trap(notZero, Assembler::ptr_cc);
duke@435 1245 // }
duke@435 1246 # endif
duke@435 1247
duke@435 1248 st_ptr(oop_result, vm_result_addr);
duke@435 1249 }
duke@435 1250
duke@435 1251
ysr@777 1252 void MacroAssembler::card_table_write(jbyte* byte_map_base,
ysr@777 1253 Register tmp, Register obj) {
duke@435 1254 #ifdef _LP64
duke@435 1255 srlx(obj, CardTableModRefBS::card_shift, obj);
duke@435 1256 #else
duke@435 1257 srl(obj, CardTableModRefBS::card_shift, obj);
duke@435 1258 #endif
twisti@1162 1259 assert(tmp != obj, "need separate temp reg");
twisti@1162 1260 set((address) byte_map_base, tmp);
twisti@1162 1261 stb(G0, tmp, obj);
duke@435 1262 }
duke@435 1263
twisti@1162 1264
twisti@1162 1265 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
duke@435 1266 address save_pc;
duke@435 1267 int shiftcnt;
duke@435 1268 #ifdef _LP64
duke@435 1269 # ifdef CHECK_DELAY
twisti@1162 1270 assert_not_delayed((char*) "cannot put two instructions in delay slot");
duke@435 1271 # endif
duke@435 1272 v9_dep();
duke@435 1273 save_pc = pc();
twisti@1162 1274
twisti@1162 1275 int msb32 = (int) (addrlit.value() >> 32);
twisti@1162 1276 int lsb32 = (int) (addrlit.value());
twisti@1162 1277
twisti@1162 1278 if (msb32 == 0 && lsb32 >= 0) {
twisti@1162 1279 Assembler::sethi(lsb32, d, addrlit.rspec());
duke@435 1280 }
twisti@1162 1281 else if (msb32 == -1) {
twisti@1162 1282 Assembler::sethi(~lsb32, d, addrlit.rspec());
twisti@1162 1283 xor3(d, ~low10(~0), d);
duke@435 1284 }
duke@435 1285 else {
twisti@1162 1286 Assembler::sethi(msb32, d, addrlit.rspec()); // msb 22-bits
twisti@1162 1287 if (msb32 & 0x3ff) // Any bits?
twisti@1162 1288 or3(d, msb32 & 0x3ff, d); // msb 32-bits are now in lsb 32
twisti@1162 1289 if (lsb32 & 0xFFFFFC00) { // done?
twisti@1162 1290 if ((lsb32 >> 20) & 0xfff) { // Any bits set?
twisti@1162 1291 sllx(d, 12, d); // Make room for next 12 bits
twisti@1162 1292 or3(d, (lsb32 >> 20) & 0xfff, d); // Or in next 12
twisti@1162 1293 shiftcnt = 0; // We already shifted
duke@435 1294 }
duke@435 1295 else
duke@435 1296 shiftcnt = 12;
twisti@1162 1297 if ((lsb32 >> 10) & 0x3ff) {
twisti@1162 1298 sllx(d, shiftcnt + 10, d); // Make room for last 10 bits
twisti@1162 1299 or3(d, (lsb32 >> 10) & 0x3ff, d); // Or in next 10
duke@435 1300 shiftcnt = 0;
duke@435 1301 }
duke@435 1302 else
duke@435 1303 shiftcnt = 10;
twisti@1162 1304 sllx(d, shiftcnt + 10, d); // Shift leaving disp field 0'd
duke@435 1305 }
duke@435 1306 else
twisti@1162 1307 sllx(d, 32, d);
duke@435 1308 }
twisti@1162 1309 // Pad out the instruction sequence so it can be patched later.
twisti@1162 1310 if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
twisti@1162 1311 addrlit.rtype() != relocInfo::runtime_call_type)) {
twisti@1162 1312 while (pc() < (save_pc + (7 * BytesPerInstWord)))
duke@435 1313 nop();
duke@435 1314 }
duke@435 1315 #else
twisti@1162 1316 Assembler::sethi(addrlit.value(), d, addrlit.rspec());
duke@435 1317 #endif
duke@435 1318 }
duke@435 1319
twisti@1162 1320
twisti@1162 1321 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
twisti@1162 1322 internal_sethi(addrlit, d, false);
twisti@1162 1323 }
twisti@1162 1324
twisti@1162 1325
twisti@1162 1326 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
twisti@1162 1327 internal_sethi(addrlit, d, true);
twisti@1162 1328 }
twisti@1162 1329
twisti@1162 1330
twisti@2399 1331 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
duke@435 1332 #ifdef _LP64
twisti@2399 1333 if (worst_case) return 7;
twisti@2399 1334 intptr_t iaddr = (intptr_t) a;
twisti@2399 1335 int msb32 = (int) (iaddr >> 32);
twisti@2399 1336 int lsb32 = (int) (iaddr);
twisti@2399 1337 int count;
twisti@2399 1338 if (msb32 == 0 && lsb32 >= 0)
twisti@2399 1339 count = 1;
twisti@2399 1340 else if (msb32 == -1)
twisti@2399 1341 count = 2;
duke@435 1342 else {
twisti@2399 1343 count = 2;
twisti@2399 1344 if (msb32 & 0x3ff)
twisti@2399 1345 count++;
twisti@2399 1346 if (lsb32 & 0xFFFFFC00 ) {
twisti@2399 1347 if ((lsb32 >> 20) & 0xfff) count += 2;
twisti@2399 1348 if ((lsb32 >> 10) & 0x3ff) count += 2;
duke@435 1349 }
duke@435 1350 }
twisti@2399 1351 return count;
duke@435 1352 #else
twisti@2399 1353 return 1;
duke@435 1354 #endif
duke@435 1355 }
duke@435 1356
twisti@2399 1357 int MacroAssembler::worst_case_insts_for_set() {
twisti@2399 1358 return insts_for_sethi(NULL, true) + 1;
duke@435 1359 }
duke@435 1360
twisti@1162 1361
twisti@2399 1362 // Keep in sync with MacroAssembler::insts_for_internal_set
twisti@1162 1363 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
twisti@1162 1364 intptr_t value = addrlit.value();
twisti@1162 1365
twisti@1162 1366 if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
duke@435 1367 // can optimize
twisti@1162 1368 if (-4096 <= value && value <= 4095) {
duke@435 1369 or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
duke@435 1370 return;
duke@435 1371 }
duke@435 1372 if (inv_hi22(hi22(value)) == value) {
twisti@1162 1373 sethi(addrlit, d);
duke@435 1374 return;
duke@435 1375 }
duke@435 1376 }
twisti@1162 1377 assert_not_delayed((char*) "cannot put two instructions in delay slot");
twisti@1162 1378 internal_sethi(addrlit, d, ForceRelocatable);
twisti@1162 1379 if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
twisti@1162 1380 add(d, addrlit.low10(), d, addrlit.rspec());
duke@435 1381 }
duke@435 1382 }
duke@435 1383
twisti@2399 1384 // Keep in sync with MacroAssembler::internal_set
twisti@2399 1385 int MacroAssembler::insts_for_internal_set(intptr_t value) {
twisti@2399 1386 // can optimize
twisti@2399 1387 if (-4096 <= value && value <= 4095) {
twisti@2399 1388 return 1;
twisti@2399 1389 }
twisti@2399 1390 if (inv_hi22(hi22(value)) == value) {
twisti@2399 1391 return insts_for_sethi((address) value);
twisti@2399 1392 }
twisti@2399 1393 int count = insts_for_sethi((address) value);
twisti@2399 1394 AddressLiteral al(value);
twisti@2399 1395 if (al.low10() != 0) {
twisti@2399 1396 count++;
twisti@2399 1397 }
twisti@2399 1398 return count;
twisti@2399 1399 }
twisti@2399 1400
twisti@1162 1401 void MacroAssembler::set(const AddressLiteral& al, Register d) {
twisti@1162 1402 internal_set(al, d, false);
duke@435 1403 }
duke@435 1404
twisti@1162 1405 void MacroAssembler::set(intptr_t value, Register d) {
twisti@1162 1406 AddressLiteral al(value);
twisti@1162 1407 internal_set(al, d, false);
twisti@1162 1408 }
twisti@1162 1409
twisti@1162 1410 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
twisti@1162 1411 AddressLiteral al(addr, rspec);
twisti@1162 1412 internal_set(al, d, false);
twisti@1162 1413 }
twisti@1162 1414
twisti@1162 1415 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
twisti@1162 1416 internal_set(al, d, true);
twisti@1162 1417 }
twisti@1162 1418
twisti@1162 1419 void MacroAssembler::patchable_set(intptr_t value, Register d) {
twisti@1162 1420 AddressLiteral al(value);
twisti@1162 1421 internal_set(al, d, true);
twisti@1162 1422 }
duke@435 1423
duke@435 1424
duke@435 1425 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
duke@435 1426 assert_not_delayed();
duke@435 1427 v9_dep();
duke@435 1428
duke@435 1429 int hi = (int)(value >> 32);
duke@435 1430 int lo = (int)(value & ~0);
duke@435 1431 // (Matcher::isSimpleConstant64 knows about the following optimizations.)
duke@435 1432 if (Assembler::is_simm13(lo) && value == lo) {
duke@435 1433 or3(G0, lo, d);
duke@435 1434 } else if (hi == 0) {
duke@435 1435 Assembler::sethi(lo, d); // hardware version zero-extends to upper 32
duke@435 1436 if (low10(lo) != 0)
duke@435 1437 or3(d, low10(lo), d);
duke@435 1438 }
duke@435 1439 else if (hi == -1) {
duke@435 1440 Assembler::sethi(~lo, d); // hardware version zero-extends to upper 32
duke@435 1441 xor3(d, low10(lo) ^ ~low10(~0), d);
duke@435 1442 }
duke@435 1443 else if (lo == 0) {
duke@435 1444 if (Assembler::is_simm13(hi)) {
duke@435 1445 or3(G0, hi, d);
duke@435 1446 } else {
duke@435 1447 Assembler::sethi(hi, d); // hardware version zero-extends to upper 32
duke@435 1448 if (low10(hi) != 0)
duke@435 1449 or3(d, low10(hi), d);
duke@435 1450 }
duke@435 1451 sllx(d, 32, d);
duke@435 1452 }
duke@435 1453 else {
duke@435 1454 Assembler::sethi(hi, tmp);
duke@435 1455 Assembler::sethi(lo, d); // macro assembler version sign-extends
duke@435 1456 if (low10(hi) != 0)
duke@435 1457 or3 (tmp, low10(hi), tmp);
duke@435 1458 if (low10(lo) != 0)
duke@435 1459 or3 ( d, low10(lo), d);
duke@435 1460 sllx(tmp, 32, tmp);
duke@435 1461 or3 (d, tmp, d);
duke@435 1462 }
duke@435 1463 }
duke@435 1464
twisti@2399 1465 int MacroAssembler::insts_for_set64(jlong value) {
twisti@2350 1466 v9_dep();
twisti@2350 1467
twisti@2399 1468 int hi = (int) (value >> 32);
twisti@2399 1469 int lo = (int) (value & ~0);
twisti@2350 1470 int count = 0;
twisti@2350 1471
twisti@2350 1472 // (Matcher::isSimpleConstant64 knows about the following optimizations.)
twisti@2350 1473 if (Assembler::is_simm13(lo) && value == lo) {
twisti@2350 1474 count++;
twisti@2350 1475 } else if (hi == 0) {
twisti@2350 1476 count++;
twisti@2350 1477 if (low10(lo) != 0)
twisti@2350 1478 count++;
twisti@2350 1479 }
twisti@2350 1480 else if (hi == -1) {
twisti@2350 1481 count += 2;
twisti@2350 1482 }
twisti@2350 1483 else if (lo == 0) {
twisti@2350 1484 if (Assembler::is_simm13(hi)) {
twisti@2350 1485 count++;
twisti@2350 1486 } else {
twisti@2350 1487 count++;
twisti@2350 1488 if (low10(hi) != 0)
twisti@2350 1489 count++;
twisti@2350 1490 }
twisti@2350 1491 count++;
twisti@2350 1492 }
twisti@2350 1493 else {
twisti@2350 1494 count += 2;
twisti@2350 1495 if (low10(hi) != 0)
twisti@2350 1496 count++;
twisti@2350 1497 if (low10(lo) != 0)
twisti@2350 1498 count++;
twisti@2350 1499 count += 2;
twisti@2350 1500 }
twisti@2350 1501 return count;
twisti@2350 1502 }
twisti@2350 1503
duke@435 1504 // compute size in bytes of sparc frame, given
duke@435 1505 // number of extraWords
duke@435 1506 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
duke@435 1507
duke@435 1508 int nWords = frame::memory_parameter_word_sp_offset;
duke@435 1509
duke@435 1510 nWords += extraWords;
duke@435 1511
duke@435 1512 if (nWords & 1) ++nWords; // round up to double-word
duke@435 1513
duke@435 1514 return nWords * BytesPerWord;
duke@435 1515 }
duke@435 1516
duke@435 1517
duke@435 1518 // save_frame: given number of "extra" words in frame,
duke@435 1519 // issue approp. save instruction (p 200, v8 manual)
duke@435 1520
duke@435 1521 void MacroAssembler::save_frame(int extraWords = 0) {
duke@435 1522 int delta = -total_frame_size_in_bytes(extraWords);
duke@435 1523 if (is_simm13(delta)) {
duke@435 1524 save(SP, delta, SP);
duke@435 1525 } else {
duke@435 1526 set(delta, G3_scratch);
duke@435 1527 save(SP, G3_scratch, SP);
duke@435 1528 }
duke@435 1529 }
duke@435 1530
duke@435 1531
duke@435 1532 void MacroAssembler::save_frame_c1(int size_in_bytes) {
duke@435 1533 if (is_simm13(-size_in_bytes)) {
duke@435 1534 save(SP, -size_in_bytes, SP);
duke@435 1535 } else {
duke@435 1536 set(-size_in_bytes, G3_scratch);
duke@435 1537 save(SP, G3_scratch, SP);
duke@435 1538 }
duke@435 1539 }
duke@435 1540
duke@435 1541
duke@435 1542 void MacroAssembler::save_frame_and_mov(int extraWords,
duke@435 1543 Register s1, Register d1,
duke@435 1544 Register s2, Register d2) {
duke@435 1545 assert_not_delayed();
duke@435 1546
duke@435 1547 // The trick here is to use precisely the same memory word
duke@435 1548 // that trap handlers also use to save the register.
duke@435 1549 // This word cannot be used for any other purpose, but
duke@435 1550 // it works fine to save the register's value, whether or not
duke@435 1551 // an interrupt flushes register windows at any given moment!
duke@435 1552 Address s1_addr;
duke@435 1553 if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
duke@435 1554 s1_addr = s1->address_in_saved_window();
duke@435 1555 st_ptr(s1, s1_addr);
duke@435 1556 }
duke@435 1557
duke@435 1558 Address s2_addr;
duke@435 1559 if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
duke@435 1560 s2_addr = s2->address_in_saved_window();
duke@435 1561 st_ptr(s2, s2_addr);
duke@435 1562 }
duke@435 1563
duke@435 1564 save_frame(extraWords);
duke@435 1565
duke@435 1566 if (s1_addr.base() == SP) {
duke@435 1567 ld_ptr(s1_addr.after_save(), d1);
duke@435 1568 } else if (s1->is_valid()) {
duke@435 1569 mov(s1->after_save(), d1);
duke@435 1570 }
duke@435 1571
duke@435 1572 if (s2_addr.base() == SP) {
duke@435 1573 ld_ptr(s2_addr.after_save(), d2);
duke@435 1574 } else if (s2->is_valid()) {
duke@435 1575 mov(s2->after_save(), d2);
duke@435 1576 }
duke@435 1577 }
duke@435 1578
duke@435 1579
twisti@1162 1580 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
duke@435 1581 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
duke@435 1582 int oop_index = oop_recorder()->allocate_index(obj);
twisti@1162 1583 return AddressLiteral(obj, oop_Relocation::spec(oop_index));
duke@435 1584 }
duke@435 1585
duke@435 1586
twisti@1162 1587 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
duke@435 1588 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
duke@435 1589 int oop_index = oop_recorder()->find_index(obj);
twisti@1162 1590 return AddressLiteral(obj, oop_Relocation::spec(oop_index));
duke@435 1591 }
duke@435 1592
kvn@599 1593 void MacroAssembler::set_narrow_oop(jobject obj, Register d) {
kvn@599 1594 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
kvn@599 1595 int oop_index = oop_recorder()->find_index(obj);
kvn@599 1596 RelocationHolder rspec = oop_Relocation::spec(oop_index);
kvn@599 1597
kvn@599 1598 assert_not_delayed();
kvn@599 1599 // Relocation with special format (see relocInfo_sparc.hpp).
kvn@599 1600 relocate(rspec, 1);
kvn@599 1601 // Assembler::sethi(0x3fffff, d);
kvn@599 1602 emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
kvn@599 1603 // Don't add relocation for 'add'. Do patching during 'sethi' processing.
kvn@599 1604 add(d, 0x3ff, d);
kvn@599 1605
kvn@599 1606 }
kvn@599 1607
duke@435 1608
duke@435 1609 void MacroAssembler::align(int modulus) {
duke@435 1610 while (offset() % modulus != 0) nop();
duke@435 1611 }
duke@435 1612
duke@435 1613
duke@435 1614 void MacroAssembler::safepoint() {
duke@435 1615 relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
duke@435 1616 }
duke@435 1617
duke@435 1618
duke@435 1619 void RegistersForDebugging::print(outputStream* s) {
duke@435 1620 int j;
duke@435 1621 for ( j = 0; j < 8; ++j )
duke@435 1622 if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
duke@435 1623 else s->print_cr( "fp = 0x%.16lx", i[j]);
duke@435 1624 s->cr();
duke@435 1625
duke@435 1626 for ( j = 0; j < 8; ++j )
duke@435 1627 s->print_cr("l%d = 0x%.16lx", j, l[j]);
duke@435 1628 s->cr();
duke@435 1629
duke@435 1630 for ( j = 0; j < 8; ++j )
duke@435 1631 if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
duke@435 1632 else s->print_cr( "sp = 0x%.16lx", o[j]);
duke@435 1633 s->cr();
duke@435 1634
duke@435 1635 for ( j = 0; j < 8; ++j )
duke@435 1636 s->print_cr("g%d = 0x%.16lx", j, g[j]);
duke@435 1637 s->cr();
duke@435 1638
duke@435 1639 // print out floats with compression
duke@435 1640 for (j = 0; j < 32; ) {
duke@435 1641 jfloat val = f[j];
duke@435 1642 int last = j;
duke@435 1643 for ( ; last+1 < 32; ++last ) {
duke@435 1644 char b1[1024], b2[1024];
duke@435 1645 sprintf(b1, "%f", val);
duke@435 1646 sprintf(b2, "%f", f[last+1]);
duke@435 1647 if (strcmp(b1, b2))
duke@435 1648 break;
duke@435 1649 }
duke@435 1650 s->print("f%d", j);
duke@435 1651 if ( j != last ) s->print(" - f%d", last);
duke@435 1652 s->print(" = %f", val);
duke@435 1653 s->fill_to(25);
duke@435 1654 s->print_cr(" (0x%x)", val);
duke@435 1655 j = last + 1;
duke@435 1656 }
duke@435 1657 s->cr();
duke@435 1658
duke@435 1659 // and doubles (evens only)
duke@435 1660 for (j = 0; j < 32; ) {
duke@435 1661 jdouble val = d[j];
duke@435 1662 int last = j;
duke@435 1663 for ( ; last+1 < 32; ++last ) {
duke@435 1664 char b1[1024], b2[1024];
duke@435 1665 sprintf(b1, "%f", val);
duke@435 1666 sprintf(b2, "%f", d[last+1]);
duke@435 1667 if (strcmp(b1, b2))
duke@435 1668 break;
duke@435 1669 }
duke@435 1670 s->print("d%d", 2 * j);
duke@435 1671 if ( j != last ) s->print(" - d%d", last);
duke@435 1672 s->print(" = %f", val);
duke@435 1673 s->fill_to(30);
duke@435 1674 s->print("(0x%x)", *(int*)&val);
duke@435 1675 s->fill_to(42);
duke@435 1676 s->print_cr("(0x%x)", *(1 + (int*)&val));
duke@435 1677 j = last + 1;
duke@435 1678 }
duke@435 1679 s->cr();
duke@435 1680 }
duke@435 1681
duke@435 1682 void RegistersForDebugging::save_registers(MacroAssembler* a) {
duke@435 1683 a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
duke@435 1684 a->flush_windows();
duke@435 1685 int i;
duke@435 1686 for (i = 0; i < 8; ++i) {
duke@435 1687 a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, i_offset(i));
duke@435 1688 a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, l_offset(i));
duke@435 1689 a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
duke@435 1690 a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
duke@435 1691 }
duke@435 1692 for (i = 0; i < 32; ++i) {
duke@435 1693 a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
duke@435 1694 }
duke@435 1695 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 1696 a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
duke@435 1697 }
duke@435 1698 }
duke@435 1699
duke@435 1700 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
duke@435 1701 for (int i = 1; i < 8; ++i) {
duke@435 1702 a->ld_ptr(r, g_offset(i), as_gRegister(i));
duke@435 1703 }
duke@435 1704 for (int j = 0; j < 32; ++j) {
duke@435 1705 a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
duke@435 1706 }
duke@435 1707 for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
duke@435 1708 a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
duke@435 1709 }
duke@435 1710 }
duke@435 1711
duke@435 1712
duke@435 1713 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 1714 void MacroAssembler::push_fTOS() {
duke@435 1715 // %%%%%% need to implement this
duke@435 1716 }
duke@435 1717
duke@435 1718 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 1719 void MacroAssembler::pop_fTOS() {
duke@435 1720 // %%%%%% need to implement this
duke@435 1721 }
duke@435 1722
duke@435 1723 void MacroAssembler::empty_FPU_stack() {
duke@435 1724 // %%%%%% need to implement this
duke@435 1725 }
duke@435 1726
duke@435 1727 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
duke@435 1728 // plausibility check for oops
duke@435 1729 if (!VerifyOops) return;
duke@435 1730
duke@435 1731 if (reg == G0) return; // always NULL, which is always an oop
duke@435 1732
ysr@777 1733 char buffer[64];
ysr@777 1734 #ifdef COMPILER1
ysr@777 1735 if (CommentedAssembly) {
ysr@777 1736 snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
ysr@777 1737 block_comment(buffer);
ysr@777 1738 }
ysr@777 1739 #endif
ysr@777 1740
ysr@777 1741 int len = strlen(file) + strlen(msg) + 1 + 4;
duke@435 1742 sprintf(buffer, "%d", line);
ysr@777 1743 len += strlen(buffer);
ysr@777 1744 sprintf(buffer, " at offset %d ", offset());
ysr@777 1745 len += strlen(buffer);
duke@435 1746 char * real_msg = new char[len];
ysr@777 1747 sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
duke@435 1748
duke@435 1749 // Call indirectly to solve generation ordering problem
twisti@1162 1750 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
duke@435 1751
duke@435 1752 // Make some space on stack above the current register window.
duke@435 1753 // Enough to hold 8 64-bit registers.
duke@435 1754 add(SP,-8*8,SP);
duke@435 1755
duke@435 1756 // Save some 64-bit registers; a normal 'save' chops the heads off
duke@435 1757 // of 64-bit longs in the 32-bit build.
duke@435 1758 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
duke@435 1759 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
duke@435 1760 mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
duke@435 1761 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
duke@435 1762
duke@435 1763 set((intptr_t)real_msg, O1);
duke@435 1764 // Load address to call to into O7
duke@435 1765 load_ptr_contents(a, O7);
duke@435 1766 // Register call to verify_oop_subroutine
duke@435 1767 callr(O7, G0);
duke@435 1768 delayed()->nop();
duke@435 1769 // recover frame size
duke@435 1770 add(SP, 8*8,SP);
duke@435 1771 }
duke@435 1772
duke@435 1773 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
duke@435 1774 // plausibility check for oops
duke@435 1775 if (!VerifyOops) return;
duke@435 1776
duke@435 1777 char buffer[64];
duke@435 1778 sprintf(buffer, "%d", line);
duke@435 1779 int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
duke@435 1780 sprintf(buffer, " at SP+%d ", addr.disp());
duke@435 1781 len += strlen(buffer);
duke@435 1782 char * real_msg = new char[len];
duke@435 1783 sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
duke@435 1784
duke@435 1785 // Call indirectly to solve generation ordering problem
twisti@1162 1786 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
duke@435 1787
duke@435 1788 // Make some space on stack above the current register window.
duke@435 1789 // Enough to hold 8 64-bit registers.
duke@435 1790 add(SP,-8*8,SP);
duke@435 1791
duke@435 1792 // Save some 64-bit registers; a normal 'save' chops the heads off
duke@435 1793 // of 64-bit longs in the 32-bit build.
duke@435 1794 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
duke@435 1795 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
duke@435 1796 ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
duke@435 1797 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
duke@435 1798
duke@435 1799 set((intptr_t)real_msg, O1);
duke@435 1800 // Load address to call to into O7
duke@435 1801 load_ptr_contents(a, O7);
duke@435 1802 // Register call to verify_oop_subroutine
duke@435 1803 callr(O7, G0);
duke@435 1804 delayed()->nop();
duke@435 1805 // recover frame size
duke@435 1806 add(SP, 8*8,SP);
duke@435 1807 }
duke@435 1808
duke@435 1809 // side-door communication with signalHandler in os_solaris.cpp
duke@435 1810 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
duke@435 1811
duke@435 1812 // This macro is expanded just once; it creates shared code. Contract:
duke@435 1813 // receives an oop in O0. Must restore O0 & O7 from TLS. Must not smash ANY
duke@435 1814 // registers, including flags. May not use a register 'save', as this blows
duke@435 1815 // the high bits of the O-regs if they contain Long values. Acts as a 'leaf'
duke@435 1816 // call.
duke@435 1817 void MacroAssembler::verify_oop_subroutine() {
duke@435 1818 assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
duke@435 1819
duke@435 1820 // Leaf call; no frame.
duke@435 1821 Label succeed, fail, null_or_fail;
duke@435 1822
duke@435 1823 // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
duke@435 1824 // O0 is now the oop to be checked. O7 is the return address.
duke@435 1825 Register O0_obj = O0;
duke@435 1826
duke@435 1827 // Save some more registers for temps.
duke@435 1828 stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
duke@435 1829 stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
duke@435 1830 stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
duke@435 1831 stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
duke@435 1832
duke@435 1833 // Save flags
duke@435 1834 Register O5_save_flags = O5;
duke@435 1835 rdccr( O5_save_flags );
duke@435 1836
duke@435 1837 { // count number of verifies
duke@435 1838 Register O2_adr = O2;
duke@435 1839 Register O3_accum = O3;
twisti@1162 1840 inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
duke@435 1841 }
duke@435 1842
duke@435 1843 Register O2_mask = O2;
duke@435 1844 Register O3_bits = O3;
duke@435 1845 Register O4_temp = O4;
duke@435 1846
duke@435 1847 // mark lower end of faulting range
duke@435 1848 assert(_verify_oop_implicit_branch[0] == NULL, "set once");
duke@435 1849 _verify_oop_implicit_branch[0] = pc();
duke@435 1850
duke@435 1851 // We can't check the mark oop because it could be in the process of
duke@435 1852 // locking or unlocking while this is running.
duke@435 1853 set(Universe::verify_oop_mask (), O2_mask);
duke@435 1854 set(Universe::verify_oop_bits (), O3_bits);
duke@435 1855
duke@435 1856 // assert((obj & oop_mask) == oop_bits);
duke@435 1857 and3(O0_obj, O2_mask, O4_temp);
duke@435 1858 cmp(O4_temp, O3_bits);
duke@435 1859 brx(notEqual, false, pn, null_or_fail);
duke@435 1860 delayed()->nop();
duke@435 1861
duke@435 1862 if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
duke@435 1863 // the null_or_fail case is useless; must test for null separately
duke@435 1864 br_null(O0_obj, false, pn, succeed);
duke@435 1865 delayed()->nop();
duke@435 1866 }
duke@435 1867
duke@435 1868 // Check the klassOop of this object for being in the right area of memory.
duke@435 1869 // Cannot do the load in the delay above slot in case O0 is null
coleenp@548 1870 load_klass(O0_obj, O0_obj);
duke@435 1871 // assert((klass & klass_mask) == klass_bits);
duke@435 1872 if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
duke@435 1873 set(Universe::verify_klass_mask(), O2_mask);
duke@435 1874 if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
duke@435 1875 set(Universe::verify_klass_bits(), O3_bits);
duke@435 1876 and3(O0_obj, O2_mask, O4_temp);
duke@435 1877 cmp(O4_temp, O3_bits);
duke@435 1878 brx(notEqual, false, pn, fail);
coleenp@548 1879 delayed()->nop();
duke@435 1880 // Check the klass's klass
coleenp@548 1881 load_klass(O0_obj, O0_obj);
duke@435 1882 and3(O0_obj, O2_mask, O4_temp);
duke@435 1883 cmp(O4_temp, O3_bits);
duke@435 1884 brx(notEqual, false, pn, fail);
duke@435 1885 delayed()->wrccr( O5_save_flags ); // Restore CCR's
duke@435 1886
duke@435 1887 // mark upper end of faulting range
duke@435 1888 _verify_oop_implicit_branch[1] = pc();
duke@435 1889
duke@435 1890 //-----------------------
duke@435 1891 // all tests pass
duke@435 1892 bind(succeed);
duke@435 1893
duke@435 1894 // Restore prior 64-bit registers
duke@435 1895 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
duke@435 1896 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
duke@435 1897 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
duke@435 1898 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
duke@435 1899 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
duke@435 1900 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
duke@435 1901
duke@435 1902 retl(); // Leaf return; restore prior O7 in delay slot
duke@435 1903 delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
duke@435 1904
duke@435 1905 //-----------------------
duke@435 1906 bind(null_or_fail); // nulls are less common but OK
duke@435 1907 br_null(O0_obj, false, pt, succeed);
duke@435 1908 delayed()->wrccr( O5_save_flags ); // Restore CCR's
duke@435 1909
duke@435 1910 //-----------------------
duke@435 1911 // report failure:
duke@435 1912 bind(fail);
duke@435 1913 _verify_oop_implicit_branch[2] = pc();
duke@435 1914
duke@435 1915 wrccr( O5_save_flags ); // Restore CCR's
duke@435 1916
duke@435 1917 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1918
duke@435 1919 // stop_subroutine expects message pointer in I1.
duke@435 1920 mov(I1, O1);
duke@435 1921
duke@435 1922 // Restore prior 64-bit registers
duke@435 1923 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
duke@435 1924 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
duke@435 1925 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
duke@435 1926 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
duke@435 1927 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
duke@435 1928 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
duke@435 1929
duke@435 1930 // factor long stop-sequence into subroutine to save space
duke@435 1931 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
duke@435 1932
duke@435 1933 // call indirectly to solve generation ordering problem
twisti@1162 1934 AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
twisti@1162 1935 load_ptr_contents(al, O5);
duke@435 1936 jmpl(O5, 0, O7);
duke@435 1937 delayed()->nop();
duke@435 1938 }
duke@435 1939
duke@435 1940
duke@435 1941 void MacroAssembler::stop(const char* msg) {
duke@435 1942 // save frame first to get O7 for return address
duke@435 1943 // add one word to size in case struct is odd number of words long
duke@435 1944 // It must be doubleword-aligned for storing doubles into it.
duke@435 1945
duke@435 1946 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1947
duke@435 1948 // stop_subroutine expects message pointer in I1.
duke@435 1949 set((intptr_t)msg, O1);
duke@435 1950
duke@435 1951 // factor long stop-sequence into subroutine to save space
duke@435 1952 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
duke@435 1953
duke@435 1954 // call indirectly to solve generation ordering problem
twisti@1162 1955 AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
duke@435 1956 load_ptr_contents(a, O5);
duke@435 1957 jmpl(O5, 0, O7);
duke@435 1958 delayed()->nop();
duke@435 1959
duke@435 1960 breakpoint_trap(); // make stop actually stop rather than writing
duke@435 1961 // unnoticeable results in the output files.
duke@435 1962
duke@435 1963 // restore(); done in callee to save space!
duke@435 1964 }
duke@435 1965
duke@435 1966
duke@435 1967 void MacroAssembler::warn(const char* msg) {
duke@435 1968 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1969 RegistersForDebugging::save_registers(this);
duke@435 1970 mov(O0, L0);
duke@435 1971 set((intptr_t)msg, O0);
duke@435 1972 call( CAST_FROM_FN_PTR(address, warning) );
duke@435 1973 delayed()->nop();
duke@435 1974 // ret();
duke@435 1975 // delayed()->restore();
duke@435 1976 RegistersForDebugging::restore_registers(this, L0);
duke@435 1977 restore();
duke@435 1978 }
duke@435 1979
duke@435 1980
duke@435 1981 void MacroAssembler::untested(const char* what) {
duke@435 1982 // We must be able to turn interactive prompting off
duke@435 1983 // in order to run automated test scripts on the VM
duke@435 1984 // Use the flag ShowMessageBoxOnError
duke@435 1985
duke@435 1986 char* b = new char[1024];
duke@435 1987 sprintf(b, "untested: %s", what);
duke@435 1988
duke@435 1989 if ( ShowMessageBoxOnError ) stop(b);
duke@435 1990 else warn(b);
duke@435 1991 }
duke@435 1992
duke@435 1993
duke@435 1994 void MacroAssembler::stop_subroutine() {
duke@435 1995 RegistersForDebugging::save_registers(this);
duke@435 1996
duke@435 1997 // for the sake of the debugger, stick a PC on the current frame
duke@435 1998 // (this assumes that the caller has performed an extra "save")
duke@435 1999 mov(I7, L7);
duke@435 2000 add(O7, -7 * BytesPerInt, I7);
duke@435 2001
duke@435 2002 save_frame(); // one more save to free up another O7 register
duke@435 2003 mov(I0, O1); // addr of reg save area
duke@435 2004
duke@435 2005 // We expect pointer to message in I1. Caller must set it up in O1
duke@435 2006 mov(I1, O0); // get msg
duke@435 2007 call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
duke@435 2008 delayed()->nop();
duke@435 2009
duke@435 2010 restore();
duke@435 2011
duke@435 2012 RegistersForDebugging::restore_registers(this, O0);
duke@435 2013
duke@435 2014 save_frame(0);
duke@435 2015 call(CAST_FROM_FN_PTR(address,breakpoint));
duke@435 2016 delayed()->nop();
duke@435 2017 restore();
duke@435 2018
duke@435 2019 mov(L7, I7);
duke@435 2020 retl();
duke@435 2021 delayed()->restore(); // see stop above
duke@435 2022 }
duke@435 2023
duke@435 2024
duke@435 2025 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
duke@435 2026 if ( ShowMessageBoxOnError ) {
duke@435 2027 JavaThreadState saved_state = JavaThread::current()->thread_state();
duke@435 2028 JavaThread::current()->set_thread_state(_thread_in_vm);
duke@435 2029 {
duke@435 2030 // In order to get locks work, we need to fake a in_VM state
duke@435 2031 ttyLocker ttyl;
duke@435 2032 ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
duke@435 2033 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
duke@435 2034 ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
duke@435 2035 }
duke@435 2036 if (os::message_box(msg, "Execution stopped, print registers?"))
duke@435 2037 regs->print(::tty);
duke@435 2038 }
duke@435 2039 ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
duke@435 2040 }
duke@435 2041 else
duke@435 2042 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
duke@435 2043 assert(false, "error");
duke@435 2044 }
duke@435 2045
duke@435 2046
duke@435 2047 #ifndef PRODUCT
duke@435 2048 void MacroAssembler::test() {
duke@435 2049 ResourceMark rm;
duke@435 2050
duke@435 2051 CodeBuffer cb("test", 10000, 10000);
duke@435 2052 MacroAssembler* a = new MacroAssembler(&cb);
duke@435 2053 VM_Version::allow_all();
duke@435 2054 a->test_v9();
duke@435 2055 a->test_v8_onlys();
duke@435 2056 VM_Version::revert();
duke@435 2057
duke@435 2058 StubRoutines::Sparc::test_stop_entry()();
duke@435 2059 }
duke@435 2060 #endif
duke@435 2061
duke@435 2062
duke@435 2063 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
duke@435 2064 subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
duke@435 2065 Label no_extras;
duke@435 2066 br( negative, true, pt, no_extras ); // if neg, clear reg
twisti@1162 2067 delayed()->set(0, Rresult); // annuled, so only if taken
duke@435 2068 bind( no_extras );
duke@435 2069 }
duke@435 2070
duke@435 2071
duke@435 2072 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
duke@435 2073 #ifdef _LP64
duke@435 2074 add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
duke@435 2075 #else
duke@435 2076 add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
duke@435 2077 #endif
duke@435 2078 bclr(1, Rresult);
duke@435 2079 sll(Rresult, LogBytesPerWord, Rresult); // Rresult has total frame bytes
duke@435 2080 }
duke@435 2081
duke@435 2082
duke@435 2083 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
duke@435 2084 calc_frame_size(Rextra_words, Rresult);
duke@435 2085 neg(Rresult);
duke@435 2086 save(SP, Rresult, SP);
duke@435 2087 }
duke@435 2088
duke@435 2089
duke@435 2090 // ---------------------------------------------------------
duke@435 2091 Assembler::RCondition cond2rcond(Assembler::Condition c) {
duke@435 2092 switch (c) {
duke@435 2093 /*case zero: */
duke@435 2094 case Assembler::equal: return Assembler::rc_z;
duke@435 2095 case Assembler::lessEqual: return Assembler::rc_lez;
duke@435 2096 case Assembler::less: return Assembler::rc_lz;
duke@435 2097 /*case notZero:*/
duke@435 2098 case Assembler::notEqual: return Assembler::rc_nz;
duke@435 2099 case Assembler::greater: return Assembler::rc_gz;
duke@435 2100 case Assembler::greaterEqual: return Assembler::rc_gez;
duke@435 2101 }
duke@435 2102 ShouldNotReachHere();
duke@435 2103 return Assembler::rc_z;
duke@435 2104 }
duke@435 2105
duke@435 2106 // compares register with zero and branches. NOT FOR USE WITH 64-bit POINTERS
duke@435 2107 void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
duke@435 2108 tst(s1);
duke@435 2109 br (c, a, p, L);
duke@435 2110 }
duke@435 2111
duke@435 2112
duke@435 2113 // Compares a pointer register with zero and branches on null.
duke@435 2114 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
duke@435 2115 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
duke@435 2116 assert_not_delayed();
duke@435 2117 #ifdef _LP64
duke@435 2118 bpr( rc_z, a, p, s1, L );
duke@435 2119 #else
duke@435 2120 tst(s1);
duke@435 2121 br ( zero, a, p, L );
duke@435 2122 #endif
duke@435 2123 }
duke@435 2124
duke@435 2125 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
duke@435 2126 assert_not_delayed();
duke@435 2127 #ifdef _LP64
duke@435 2128 bpr( rc_nz, a, p, s1, L );
duke@435 2129 #else
duke@435 2130 tst(s1);
duke@435 2131 br ( notZero, a, p, L );
duke@435 2132 #endif
duke@435 2133 }
duke@435 2134
ysr@777 2135 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
ysr@777 2136 Register s1, address d,
ysr@777 2137 relocInfo::relocType rt ) {
ysr@777 2138 if (VM_Version::v9_instructions_work()) {
ysr@777 2139 bpr(rc, a, p, s1, d, rt);
ysr@777 2140 } else {
ysr@777 2141 tst(s1);
ysr@777 2142 br(reg_cond_to_cc_cond(rc), a, p, d, rt);
ysr@777 2143 }
ysr@777 2144 }
ysr@777 2145
ysr@777 2146 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
ysr@777 2147 Register s1, Label& L ) {
ysr@777 2148 if (VM_Version::v9_instructions_work()) {
ysr@777 2149 bpr(rc, a, p, s1, L);
ysr@777 2150 } else {
ysr@777 2151 tst(s1);
ysr@777 2152 br(reg_cond_to_cc_cond(rc), a, p, L);
ysr@777 2153 }
ysr@777 2154 }
ysr@777 2155
duke@435 2156
duke@435 2157 // instruction sequences factored across compiler & interpreter
duke@435 2158
duke@435 2159
duke@435 2160 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
duke@435 2161 Register Rb_hi, Register Rb_low,
duke@435 2162 Register Rresult) {
duke@435 2163
duke@435 2164 Label check_low_parts, done;
duke@435 2165
duke@435 2166 cmp(Ra_hi, Rb_hi ); // compare hi parts
duke@435 2167 br(equal, true, pt, check_low_parts);
duke@435 2168 delayed()->cmp(Ra_low, Rb_low); // test low parts
duke@435 2169
duke@435 2170 // And, with an unsigned comparison, it does not matter if the numbers
duke@435 2171 // are negative or not.
duke@435 2172 // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
duke@435 2173 // The second one is bigger (unsignedly).
duke@435 2174
duke@435 2175 // Other notes: The first move in each triplet can be unconditional
duke@435 2176 // (and therefore probably prefetchable).
duke@435 2177 // And the equals case for the high part does not need testing,
duke@435 2178 // since that triplet is reached only after finding the high halves differ.
duke@435 2179
duke@435 2180 if (VM_Version::v9_instructions_work()) {
duke@435 2181
duke@435 2182 mov ( -1, Rresult);
duke@435 2183 ba( false, done ); delayed()-> movcc(greater, false, icc, 1, Rresult);
duke@435 2184 }
duke@435 2185 else {
duke@435 2186 br(less, true, pt, done); delayed()-> set(-1, Rresult);
duke@435 2187 br(greater, true, pt, done); delayed()-> set( 1, Rresult);
duke@435 2188 }
duke@435 2189
duke@435 2190 bind( check_low_parts );
duke@435 2191
duke@435 2192 if (VM_Version::v9_instructions_work()) {
duke@435 2193 mov( -1, Rresult);
duke@435 2194 movcc(equal, false, icc, 0, Rresult);
duke@435 2195 movcc(greaterUnsigned, false, icc, 1, Rresult);
duke@435 2196 }
duke@435 2197 else {
duke@435 2198 set(-1, Rresult);
duke@435 2199 br(equal, true, pt, done); delayed()->set( 0, Rresult);
duke@435 2200 br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
duke@435 2201 }
duke@435 2202 bind( done );
duke@435 2203 }
duke@435 2204
duke@435 2205 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
duke@435 2206 subcc( G0, Rlow, Rlow );
duke@435 2207 subc( G0, Rhi, Rhi );
duke@435 2208 }
duke@435 2209
duke@435 2210 void MacroAssembler::lshl( Register Rin_high, Register Rin_low,
duke@435 2211 Register Rcount,
duke@435 2212 Register Rout_high, Register Rout_low,
duke@435 2213 Register Rtemp ) {
duke@435 2214
duke@435 2215
duke@435 2216 Register Ralt_count = Rtemp;
duke@435 2217 Register Rxfer_bits = Rtemp;
duke@435 2218
duke@435 2219 assert( Ralt_count != Rin_high
duke@435 2220 && Ralt_count != Rin_low
duke@435 2221 && Ralt_count != Rcount
duke@435 2222 && Rxfer_bits != Rin_low
duke@435 2223 && Rxfer_bits != Rin_high
duke@435 2224 && Rxfer_bits != Rcount
duke@435 2225 && Rxfer_bits != Rout_low
duke@435 2226 && Rout_low != Rin_high,
duke@435 2227 "register alias checks");
duke@435 2228
duke@435 2229 Label big_shift, done;
duke@435 2230
duke@435 2231 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2232 // Here we use the 32 bit shifts.
duke@435 2233
duke@435 2234 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
duke@435 2235 subcc(Rcount, 31, Ralt_count);
duke@435 2236 br(greater, true, pn, big_shift);
duke@435 2237 delayed()->
duke@435 2238 dec(Ralt_count);
duke@435 2239
duke@435 2240 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2241
duke@435 2242 // We get the transfer bits by shifting right by 32-count the low
duke@435 2243 // register. This is done by shifting right by 31-count and then by one
duke@435 2244 // more to take care of the special (rare) case where count is zero
duke@435 2245 // (shifting by 32 would not work).
duke@435 2246
duke@435 2247 neg( Ralt_count );
duke@435 2248
duke@435 2249 // The order of the next two instructions is critical in the case where
duke@435 2250 // Rin and Rout are the same and should not be reversed.
duke@435 2251
duke@435 2252 srl( Rin_low, Ralt_count, Rxfer_bits ); // shift right by 31-count
duke@435 2253 if (Rcount != Rout_low) {
duke@435 2254 sll( Rin_low, Rcount, Rout_low ); // low half
duke@435 2255 }
duke@435 2256 sll( Rin_high, Rcount, Rout_high );
duke@435 2257 if (Rcount == Rout_low) {
duke@435 2258 sll( Rin_low, Rcount, Rout_low ); // low half
duke@435 2259 }
duke@435 2260 srl( Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
duke@435 2261 ba (false, done);
duke@435 2262 delayed()->
duke@435 2263 or3( Rout_high, Rxfer_bits, Rout_high); // new hi value: or in shifted old hi part and xfer from low
duke@435 2264
duke@435 2265 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2266 bind(big_shift);
duke@435 2267 sll( Rin_low, Ralt_count, Rout_high );
duke@435 2268 clr( Rout_low );
duke@435 2269
duke@435 2270 bind(done);
duke@435 2271 }
duke@435 2272
duke@435 2273
duke@435 2274 void MacroAssembler::lshr( Register Rin_high, Register Rin_low,
duke@435 2275 Register Rcount,
duke@435 2276 Register Rout_high, Register Rout_low,
duke@435 2277 Register Rtemp ) {
duke@435 2278
duke@435 2279 Register Ralt_count = Rtemp;
duke@435 2280 Register Rxfer_bits = Rtemp;
duke@435 2281
duke@435 2282 assert( Ralt_count != Rin_high
duke@435 2283 && Ralt_count != Rin_low
duke@435 2284 && Ralt_count != Rcount
duke@435 2285 && Rxfer_bits != Rin_low
duke@435 2286 && Rxfer_bits != Rin_high
duke@435 2287 && Rxfer_bits != Rcount
duke@435 2288 && Rxfer_bits != Rout_high
duke@435 2289 && Rout_high != Rin_low,
duke@435 2290 "register alias checks");
duke@435 2291
duke@435 2292 Label big_shift, done;
duke@435 2293
duke@435 2294 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2295 // Here we use the 32 bit shifts.
duke@435 2296
duke@435 2297 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
duke@435 2298 subcc(Rcount, 31, Ralt_count);
duke@435 2299 br(greater, true, pn, big_shift);
duke@435 2300 delayed()->dec(Ralt_count);
duke@435 2301
duke@435 2302 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2303
duke@435 2304 // We get the transfer bits by shifting left by 32-count the high
duke@435 2305 // register. This is done by shifting left by 31-count and then by one
duke@435 2306 // more to take care of the special (rare) case where count is zero
duke@435 2307 // (shifting by 32 would not work).
duke@435 2308
duke@435 2309 neg( Ralt_count );
duke@435 2310 if (Rcount != Rout_low) {
duke@435 2311 srl( Rin_low, Rcount, Rout_low );
duke@435 2312 }
duke@435 2313
duke@435 2314 // The order of the next two instructions is critical in the case where
duke@435 2315 // Rin and Rout are the same and should not be reversed.
duke@435 2316
duke@435 2317 sll( Rin_high, Ralt_count, Rxfer_bits ); // shift left by 31-count
duke@435 2318 sra( Rin_high, Rcount, Rout_high ); // high half
duke@435 2319 sll( Rxfer_bits, 1, Rxfer_bits ); // shift left by one more
duke@435 2320 if (Rcount == Rout_low) {
duke@435 2321 srl( Rin_low, Rcount, Rout_low );
duke@435 2322 }
duke@435 2323 ba (false, done);
duke@435 2324 delayed()->
duke@435 2325 or3( Rout_low, Rxfer_bits, Rout_low ); // new low value: or shifted old low part and xfer from high
duke@435 2326
duke@435 2327 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2328 bind(big_shift);
duke@435 2329
duke@435 2330 sra( Rin_high, Ralt_count, Rout_low );
duke@435 2331 sra( Rin_high, 31, Rout_high ); // sign into hi
duke@435 2332
duke@435 2333 bind( done );
duke@435 2334 }
duke@435 2335
duke@435 2336
duke@435 2337
duke@435 2338 void MacroAssembler::lushr( Register Rin_high, Register Rin_low,
duke@435 2339 Register Rcount,
duke@435 2340 Register Rout_high, Register Rout_low,
duke@435 2341 Register Rtemp ) {
duke@435 2342
duke@435 2343 Register Ralt_count = Rtemp;
duke@435 2344 Register Rxfer_bits = Rtemp;
duke@435 2345
duke@435 2346 assert( Ralt_count != Rin_high
duke@435 2347 && Ralt_count != Rin_low
duke@435 2348 && Ralt_count != Rcount
duke@435 2349 && Rxfer_bits != Rin_low
duke@435 2350 && Rxfer_bits != Rin_high
duke@435 2351 && Rxfer_bits != Rcount
duke@435 2352 && Rxfer_bits != Rout_high
duke@435 2353 && Rout_high != Rin_low,
duke@435 2354 "register alias checks");
duke@435 2355
duke@435 2356 Label big_shift, done;
duke@435 2357
duke@435 2358 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2359 // Here we use the 32 bit shifts.
duke@435 2360
duke@435 2361 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
duke@435 2362 subcc(Rcount, 31, Ralt_count);
duke@435 2363 br(greater, true, pn, big_shift);
duke@435 2364 delayed()->dec(Ralt_count);
duke@435 2365
duke@435 2366 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2367
duke@435 2368 // We get the transfer bits by shifting left by 32-count the high
duke@435 2369 // register. This is done by shifting left by 31-count and then by one
duke@435 2370 // more to take care of the special (rare) case where count is zero
duke@435 2371 // (shifting by 32 would not work).
duke@435 2372
duke@435 2373 neg( Ralt_count );
duke@435 2374 if (Rcount != Rout_low) {
duke@435 2375 srl( Rin_low, Rcount, Rout_low );
duke@435 2376 }
duke@435 2377
duke@435 2378 // The order of the next two instructions is critical in the case where
duke@435 2379 // Rin and Rout are the same and should not be reversed.
duke@435 2380
duke@435 2381 sll( Rin_high, Ralt_count, Rxfer_bits ); // shift left by 31-count
duke@435 2382 srl( Rin_high, Rcount, Rout_high ); // high half
duke@435 2383 sll( Rxfer_bits, 1, Rxfer_bits ); // shift left by one more
duke@435 2384 if (Rcount == Rout_low) {
duke@435 2385 srl( Rin_low, Rcount, Rout_low );
duke@435 2386 }
duke@435 2387 ba (false, done);
duke@435 2388 delayed()->
duke@435 2389 or3( Rout_low, Rxfer_bits, Rout_low ); // new low value: or shifted old low part and xfer from high
duke@435 2390
duke@435 2391 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2392 bind(big_shift);
duke@435 2393
duke@435 2394 srl( Rin_high, Ralt_count, Rout_low );
duke@435 2395 clr( Rout_high );
duke@435 2396
duke@435 2397 bind( done );
duke@435 2398 }
duke@435 2399
duke@435 2400 #ifdef _LP64
duke@435 2401 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
duke@435 2402 cmp(Ra, Rb);
duke@435 2403 mov( -1, Rresult);
duke@435 2404 movcc(equal, false, xcc, 0, Rresult);
duke@435 2405 movcc(greater, false, xcc, 1, Rresult);
duke@435 2406 }
duke@435 2407 #endif
duke@435 2408
duke@435 2409
twisti@2565 2410 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
twisti@1858 2411 switch (size_in_bytes) {
twisti@2565 2412 case 8: ld_long(src, dst); break;
twisti@2565 2413 case 4: ld( src, dst); break;
twisti@2565 2414 case 2: is_signed ? ldsh(src, dst) : lduh(src, dst); break;
twisti@2565 2415 case 1: is_signed ? ldsb(src, dst) : ldub(src, dst); break;
twisti@2565 2416 default: ShouldNotReachHere();
twisti@2565 2417 }
twisti@2565 2418 }
twisti@2565 2419
twisti@2565 2420 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
twisti@2565 2421 switch (size_in_bytes) {
twisti@2565 2422 case 8: st_long(src, dst); break;
twisti@2565 2423 case 4: st( src, dst); break;
twisti@2565 2424 case 2: sth( src, dst); break;
twisti@2565 2425 case 1: stb( src, dst); break;
twisti@2565 2426 default: ShouldNotReachHere();
twisti@1858 2427 }
twisti@1858 2428 }
twisti@1858 2429
twisti@1858 2430
duke@435 2431 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
duke@435 2432 FloatRegister Fa, FloatRegister Fb,
duke@435 2433 Register Rresult) {
duke@435 2434
duke@435 2435 fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
duke@435 2436
duke@435 2437 Condition lt = unordered_result == -1 ? f_unorderedOrLess : f_less;
duke@435 2438 Condition eq = f_equal;
duke@435 2439 Condition gt = unordered_result == 1 ? f_unorderedOrGreater : f_greater;
duke@435 2440
duke@435 2441 if (VM_Version::v9_instructions_work()) {
duke@435 2442
duke@435 2443 mov( -1, Rresult );
duke@435 2444 movcc( eq, true, fcc0, 0, Rresult );
duke@435 2445 movcc( gt, true, fcc0, 1, Rresult );
duke@435 2446
duke@435 2447 } else {
duke@435 2448 Label done;
duke@435 2449
duke@435 2450 set( -1, Rresult );
duke@435 2451 //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
duke@435 2452 fb( eq, true, pn, done); delayed()->set( 0, Rresult );
duke@435 2453 fb( gt, true, pn, done); delayed()->set( 1, Rresult );
duke@435 2454
duke@435 2455 bind (done);
duke@435 2456 }
duke@435 2457 }
duke@435 2458
duke@435 2459
duke@435 2460 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2461 {
duke@435 2462 if (VM_Version::v9_instructions_work()) {
duke@435 2463 Assembler::fneg(w, s, d);
duke@435 2464 } else {
duke@435 2465 if (w == FloatRegisterImpl::S) {
duke@435 2466 Assembler::fneg(w, s, d);
duke@435 2467 } else if (w == FloatRegisterImpl::D) {
duke@435 2468 // number() does a sanity check on the alignment.
duke@435 2469 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2470 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2471
duke@435 2472 Assembler::fneg(FloatRegisterImpl::S, s, d);
duke@435 2473 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2474 } else {
duke@435 2475 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2476
duke@435 2477 // number() does a sanity check on the alignment.
duke@435 2478 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2479 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2480
duke@435 2481 Assembler::fneg(FloatRegisterImpl::S, s, d);
duke@435 2482 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2483 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2484 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2485 }
duke@435 2486 }
duke@435 2487 }
duke@435 2488
duke@435 2489 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2490 {
duke@435 2491 if (VM_Version::v9_instructions_work()) {
duke@435 2492 Assembler::fmov(w, s, d);
duke@435 2493 } else {
duke@435 2494 if (w == FloatRegisterImpl::S) {
duke@435 2495 Assembler::fmov(w, s, d);
duke@435 2496 } else if (w == FloatRegisterImpl::D) {
duke@435 2497 // number() does a sanity check on the alignment.
duke@435 2498 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2499 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2500
duke@435 2501 Assembler::fmov(FloatRegisterImpl::S, s, d);
duke@435 2502 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2503 } else {
duke@435 2504 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2505
duke@435 2506 // number() does a sanity check on the alignment.
duke@435 2507 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2508 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2509
duke@435 2510 Assembler::fmov(FloatRegisterImpl::S, s, d);
duke@435 2511 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2512 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2513 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2514 }
duke@435 2515 }
duke@435 2516 }
duke@435 2517
duke@435 2518 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2519 {
duke@435 2520 if (VM_Version::v9_instructions_work()) {
duke@435 2521 Assembler::fabs(w, s, d);
duke@435 2522 } else {
duke@435 2523 if (w == FloatRegisterImpl::S) {
duke@435 2524 Assembler::fabs(w, s, d);
duke@435 2525 } else if (w == FloatRegisterImpl::D) {
duke@435 2526 // number() does a sanity check on the alignment.
duke@435 2527 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2528 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2529
duke@435 2530 Assembler::fabs(FloatRegisterImpl::S, s, d);
duke@435 2531 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2532 } else {
duke@435 2533 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2534
duke@435 2535 // number() does a sanity check on the alignment.
duke@435 2536 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2537 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2538
duke@435 2539 Assembler::fabs(FloatRegisterImpl::S, s, d);
duke@435 2540 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2541 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2542 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2543 }
duke@435 2544 }
duke@435 2545 }
duke@435 2546
duke@435 2547 void MacroAssembler::save_all_globals_into_locals() {
duke@435 2548 mov(G1,L1);
duke@435 2549 mov(G2,L2);
duke@435 2550 mov(G3,L3);
duke@435 2551 mov(G4,L4);
duke@435 2552 mov(G5,L5);
duke@435 2553 mov(G6,L6);
duke@435 2554 mov(G7,L7);
duke@435 2555 }
duke@435 2556
duke@435 2557 void MacroAssembler::restore_globals_from_locals() {
duke@435 2558 mov(L1,G1);
duke@435 2559 mov(L2,G2);
duke@435 2560 mov(L3,G3);
duke@435 2561 mov(L4,G4);
duke@435 2562 mov(L5,G5);
duke@435 2563 mov(L6,G6);
duke@435 2564 mov(L7,G7);
duke@435 2565 }
duke@435 2566
duke@435 2567 // Use for 64 bit operation.
duke@435 2568 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
duke@435 2569 {
duke@435 2570 // store ptr_reg as the new top value
duke@435 2571 #ifdef _LP64
duke@435 2572 casx(top_ptr_reg, top_reg, ptr_reg);
duke@435 2573 #else
duke@435 2574 cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
duke@435 2575 #endif // _LP64
duke@435 2576 }
duke@435 2577
duke@435 2578 // [RGV] This routine does not handle 64 bit operations.
duke@435 2579 // use casx_under_lock() or casx directly!!!
duke@435 2580 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
duke@435 2581 {
duke@435 2582 // store ptr_reg as the new top value
duke@435 2583 if (VM_Version::v9_instructions_work()) {
duke@435 2584 cas(top_ptr_reg, top_reg, ptr_reg);
duke@435 2585 } else {
duke@435 2586
duke@435 2587 // If the register is not an out nor global, it is not visible
duke@435 2588 // after the save. Allocate a register for it, save its
duke@435 2589 // value in the register save area (the save may not flush
duke@435 2590 // registers to the save area).
duke@435 2591
duke@435 2592 Register top_ptr_reg_after_save;
duke@435 2593 Register top_reg_after_save;
duke@435 2594 Register ptr_reg_after_save;
duke@435 2595
duke@435 2596 if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
duke@435 2597 top_ptr_reg_after_save = top_ptr_reg->after_save();
duke@435 2598 } else {
duke@435 2599 Address reg_save_addr = top_ptr_reg->address_in_saved_window();
duke@435 2600 top_ptr_reg_after_save = L0;
duke@435 2601 st(top_ptr_reg, reg_save_addr);
duke@435 2602 }
duke@435 2603
duke@435 2604 if (top_reg->is_out() || top_reg->is_global()) {
duke@435 2605 top_reg_after_save = top_reg->after_save();
duke@435 2606 } else {
duke@435 2607 Address reg_save_addr = top_reg->address_in_saved_window();
duke@435 2608 top_reg_after_save = L1;
duke@435 2609 st(top_reg, reg_save_addr);
duke@435 2610 }
duke@435 2611
duke@435 2612 if (ptr_reg->is_out() || ptr_reg->is_global()) {
duke@435 2613 ptr_reg_after_save = ptr_reg->after_save();
duke@435 2614 } else {
duke@435 2615 Address reg_save_addr = ptr_reg->address_in_saved_window();
duke@435 2616 ptr_reg_after_save = L2;
duke@435 2617 st(ptr_reg, reg_save_addr);
duke@435 2618 }
duke@435 2619
duke@435 2620 const Register& lock_reg = L3;
duke@435 2621 const Register& lock_ptr_reg = L4;
duke@435 2622 const Register& value_reg = L5;
duke@435 2623 const Register& yield_reg = L6;
duke@435 2624 const Register& yieldall_reg = L7;
duke@435 2625
duke@435 2626 save_frame();
duke@435 2627
duke@435 2628 if (top_ptr_reg_after_save == L0) {
duke@435 2629 ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
duke@435 2630 }
duke@435 2631
duke@435 2632 if (top_reg_after_save == L1) {
duke@435 2633 ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
duke@435 2634 }
duke@435 2635
duke@435 2636 if (ptr_reg_after_save == L2) {
duke@435 2637 ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
duke@435 2638 }
duke@435 2639
duke@435 2640 Label(retry_get_lock);
duke@435 2641 Label(not_same);
duke@435 2642 Label(dont_yield);
duke@435 2643
duke@435 2644 assert(lock_addr, "lock_address should be non null for v8");
duke@435 2645 set((intptr_t)lock_addr, lock_ptr_reg);
duke@435 2646 // Initialize yield counter
duke@435 2647 mov(G0,yield_reg);
duke@435 2648 mov(G0, yieldall_reg);
duke@435 2649 set(StubRoutines::Sparc::locked, lock_reg);
duke@435 2650
duke@435 2651 bind(retry_get_lock);
duke@435 2652 cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
duke@435 2653 br(Assembler::less, false, Assembler::pt, dont_yield);
duke@435 2654 delayed()->nop();
duke@435 2655
duke@435 2656 if(use_call_vm) {
duke@435 2657 Untested("Need to verify global reg consistancy");
duke@435 2658 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
duke@435 2659 } else {
duke@435 2660 // Save the regs and make space for a C call
duke@435 2661 save(SP, -96, SP);
duke@435 2662 save_all_globals_into_locals();
duke@435 2663 call(CAST_FROM_FN_PTR(address,os::yield_all));
duke@435 2664 delayed()->mov(yieldall_reg, O0);
duke@435 2665 restore_globals_from_locals();
duke@435 2666 restore();
duke@435 2667 }
duke@435 2668
duke@435 2669 // reset the counter
duke@435 2670 mov(G0,yield_reg);
duke@435 2671 add(yieldall_reg, 1, yieldall_reg);
duke@435 2672
duke@435 2673 bind(dont_yield);
duke@435 2674 // try to get lock
duke@435 2675 swap(lock_ptr_reg, 0, lock_reg);
duke@435 2676
duke@435 2677 // did we get the lock?
duke@435 2678 cmp(lock_reg, StubRoutines::Sparc::unlocked);
duke@435 2679 br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
duke@435 2680 delayed()->add(yield_reg,1,yield_reg);
duke@435 2681
duke@435 2682 // yes, got lock. do we have the same top?
duke@435 2683 ld(top_ptr_reg_after_save, 0, value_reg);
duke@435 2684 cmp(value_reg, top_reg_after_save);
duke@435 2685 br(Assembler::notEqual, false, Assembler::pn, not_same);
duke@435 2686 delayed()->nop();
duke@435 2687
duke@435 2688 // yes, same top.
duke@435 2689 st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
duke@435 2690 membar(Assembler::StoreStore);
duke@435 2691
duke@435 2692 bind(not_same);
duke@435 2693 mov(value_reg, ptr_reg_after_save);
duke@435 2694 st(lock_reg, lock_ptr_reg, 0); // unlock
duke@435 2695
duke@435 2696 restore();
duke@435 2697 }
duke@435 2698 }
duke@435 2699
jrose@1100 2700 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
jrose@1100 2701 Register tmp,
jrose@1100 2702 int offset) {
jrose@1057 2703 intptr_t value = *delayed_value_addr;
jrose@1057 2704 if (value != 0)
jrose@1100 2705 return RegisterOrConstant(value + offset);
jrose@1057 2706
jrose@1057 2707 // load indirectly to solve generation ordering problem
twisti@1162 2708 AddressLiteral a(delayed_value_addr);
jrose@1057 2709 load_ptr_contents(a, tmp);
jrose@1057 2710
jrose@1057 2711 #ifdef ASSERT
jrose@1057 2712 tst(tmp);
jrose@1057 2713 breakpoint_trap(zero, xcc);
jrose@1057 2714 #endif
jrose@1057 2715
jrose@1057 2716 if (offset != 0)
jrose@1057 2717 add(tmp, offset, tmp);
jrose@1057 2718
jrose@1100 2719 return RegisterOrConstant(tmp);
jrose@1057 2720 }
jrose@1057 2721
jrose@1057 2722
twisti@1858 2723 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
twisti@1858 2724 assert(d.register_or_noreg() != G0, "lost side effect");
twisti@1858 2725 if ((s2.is_constant() && s2.as_constant() == 0) ||
twisti@1858 2726 (s2.is_register() && s2.as_register() == G0)) {
twisti@1858 2727 // Do nothing, just move value.
twisti@1858 2728 if (s1.is_register()) {
twisti@1858 2729 if (d.is_constant()) d = temp;
twisti@1858 2730 mov(s1.as_register(), d.as_register());
twisti@1858 2731 return d;
twisti@1858 2732 } else {
twisti@1858 2733 return s1;
twisti@1858 2734 }
twisti@1858 2735 }
twisti@1858 2736
twisti@1858 2737 if (s1.is_register()) {
twisti@1858 2738 assert_different_registers(s1.as_register(), temp);
twisti@1858 2739 if (d.is_constant()) d = temp;
twisti@1858 2740 andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
twisti@1858 2741 return d;
jrose@1058 2742 } else {
twisti@1858 2743 if (s2.is_register()) {
twisti@1858 2744 assert_different_registers(s2.as_register(), temp);
twisti@1858 2745 if (d.is_constant()) d = temp;
twisti@1858 2746 set(s1.as_constant(), temp);
twisti@1858 2747 andn(temp, s2.as_register(), d.as_register());
twisti@1858 2748 return d;
twisti@1858 2749 } else {
twisti@1858 2750 intptr_t res = s1.as_constant() & ~s2.as_constant();
twisti@1858 2751 return res;
twisti@1858 2752 }
jrose@1058 2753 }
jrose@1058 2754 }
jrose@1058 2755
twisti@1858 2756 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
twisti@1858 2757 assert(d.register_or_noreg() != G0, "lost side effect");
twisti@1858 2758 if ((s2.is_constant() && s2.as_constant() == 0) ||
twisti@1858 2759 (s2.is_register() && s2.as_register() == G0)) {
twisti@1858 2760 // Do nothing, just move value.
twisti@1858 2761 if (s1.is_register()) {
twisti@1858 2762 if (d.is_constant()) d = temp;
twisti@1858 2763 mov(s1.as_register(), d.as_register());
twisti@1858 2764 return d;
twisti@1858 2765 } else {
twisti@1858 2766 return s1;
twisti@1858 2767 }
twisti@1858 2768 }
twisti@1858 2769
twisti@1858 2770 if (s1.is_register()) {
twisti@1858 2771 assert_different_registers(s1.as_register(), temp);
twisti@1858 2772 if (d.is_constant()) d = temp;
twisti@1858 2773 add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
twisti@1858 2774 return d;
jrose@1058 2775 } else {
twisti@1858 2776 if (s2.is_register()) {
twisti@1858 2777 assert_different_registers(s2.as_register(), temp);
twisti@1858 2778 if (d.is_constant()) d = temp;
twisti@1858 2779 add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
twisti@1858 2780 return d;
twisti@1858 2781 } else {
twisti@1858 2782 intptr_t res = s1.as_constant() + s2.as_constant();
twisti@1858 2783 return res;
twisti@1858 2784 }
twisti@1858 2785 }
twisti@1858 2786 }
twisti@1858 2787
twisti@1858 2788 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
twisti@1858 2789 assert(d.register_or_noreg() != G0, "lost side effect");
twisti@1858 2790 if (!is_simm13(s2.constant_or_zero()))
twisti@1858 2791 s2 = (s2.as_constant() & 0xFF);
twisti@1858 2792 if ((s2.is_constant() && s2.as_constant() == 0) ||
twisti@1858 2793 (s2.is_register() && s2.as_register() == G0)) {
twisti@1858 2794 // Do nothing, just move value.
twisti@1858 2795 if (s1.is_register()) {
twisti@1858 2796 if (d.is_constant()) d = temp;
twisti@1858 2797 mov(s1.as_register(), d.as_register());
twisti@1858 2798 return d;
twisti@1858 2799 } else {
twisti@1858 2800 return s1;
twisti@1858 2801 }
twisti@1858 2802 }
twisti@1858 2803
twisti@1858 2804 if (s1.is_register()) {
twisti@1858 2805 assert_different_registers(s1.as_register(), temp);
twisti@1858 2806 if (d.is_constant()) d = temp;
twisti@1858 2807 sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
twisti@1858 2808 return d;
twisti@1858 2809 } else {
twisti@1858 2810 if (s2.is_register()) {
twisti@1858 2811 assert_different_registers(s2.as_register(), temp);
twisti@1858 2812 if (d.is_constant()) d = temp;
twisti@1858 2813 set(s1.as_constant(), temp);
twisti@1858 2814 sll_ptr(temp, s2.as_register(), d.as_register());
twisti@1858 2815 return d;
twisti@1858 2816 } else {
twisti@1858 2817 intptr_t res = s1.as_constant() << s2.as_constant();
twisti@1858 2818 return res;
twisti@1858 2819 }
jrose@1058 2820 }
jrose@1058 2821 }
jrose@1058 2822
jrose@1058 2823
jrose@1058 2824 // Look up the method for a megamorphic invokeinterface call.
jrose@1058 2825 // The target method is determined by <intf_klass, itable_index>.
jrose@1058 2826 // The receiver klass is in recv_klass.
jrose@1058 2827 // On success, the result will be in method_result, and execution falls through.
jrose@1058 2828 // On failure, execution transfers to the given label.
jrose@1058 2829 void MacroAssembler::lookup_interface_method(Register recv_klass,
jrose@1058 2830 Register intf_klass,
jrose@1100 2831 RegisterOrConstant itable_index,
jrose@1058 2832 Register method_result,
jrose@1058 2833 Register scan_temp,
jrose@1058 2834 Register sethi_temp,
jrose@1058 2835 Label& L_no_such_interface) {
jrose@1058 2836 assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
jrose@1058 2837 assert(itable_index.is_constant() || itable_index.as_register() == method_result,
jrose@1058 2838 "caller must use same register for non-constant itable index as for method");
jrose@1058 2839
jrose@1058 2840 // Compute start of first itableOffsetEntry (which is at the end of the vtable)
jrose@1058 2841 int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
jrose@1058 2842 int scan_step = itableOffsetEntry::size() * wordSize;
jrose@1058 2843 int vte_size = vtableEntry::size() * wordSize;
jrose@1058 2844
jrose@1058 2845 lduw(recv_klass, instanceKlass::vtable_length_offset() * wordSize, scan_temp);
jrose@1058 2846 // %%% We should store the aligned, prescaled offset in the klassoop.
jrose@1058 2847 // Then the next several instructions would fold away.
jrose@1058 2848
jrose@1058 2849 int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
jrose@1058 2850 int itb_offset = vtable_base;
jrose@1058 2851 if (round_to_unit != 0) {
jrose@1058 2852 // hoist first instruction of round_to(scan_temp, BytesPerLong):
jrose@1058 2853 itb_offset += round_to_unit - wordSize;
jrose@1058 2854 }
jrose@1058 2855 int itb_scale = exact_log2(vtableEntry::size() * wordSize);
jrose@1058 2856 sll(scan_temp, itb_scale, scan_temp);
jrose@1058 2857 add(scan_temp, itb_offset, scan_temp);
jrose@1058 2858 if (round_to_unit != 0) {
jrose@1058 2859 // Round up to align_object_offset boundary
jrose@1058 2860 // see code for instanceKlass::start_of_itable!
jrose@1058 2861 // Was: round_to(scan_temp, BytesPerLong);
jrose@1058 2862 // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
jrose@1058 2863 and3(scan_temp, -round_to_unit, scan_temp);
jrose@1058 2864 }
jrose@1058 2865 add(recv_klass, scan_temp, scan_temp);
jrose@1058 2866
jrose@1058 2867 // Adjust recv_klass by scaled itable_index, so we can free itable_index.
jrose@1100 2868 RegisterOrConstant itable_offset = itable_index;
twisti@1858 2869 itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
twisti@1858 2870 itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
twisti@1441 2871 add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
jrose@1058 2872
jrose@1058 2873 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
jrose@1058 2874 // if (scan->interface() == intf) {
jrose@1058 2875 // result = (klass + scan->offset() + itable_index);
jrose@1058 2876 // }
jrose@1058 2877 // }
jrose@1058 2878 Label search, found_method;
jrose@1058 2879
jrose@1058 2880 for (int peel = 1; peel >= 0; peel--) {
jrose@1058 2881 // %%%% Could load both offset and interface in one ldx, if they were
jrose@1058 2882 // in the opposite order. This would save a load.
jrose@1058 2883 ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
jrose@1058 2884
jrose@1058 2885 // Check that this entry is non-null. A null entry means that
jrose@1058 2886 // the receiver class doesn't implement the interface, and wasn't the
jrose@1058 2887 // same as when the caller was compiled.
jrose@1058 2888 bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
jrose@1058 2889 delayed()->cmp(method_result, intf_klass);
jrose@1058 2890
jrose@1058 2891 if (peel) {
jrose@1058 2892 brx(Assembler::equal, false, Assembler::pt, found_method);
jrose@1058 2893 } else {
jrose@1058 2894 brx(Assembler::notEqual, false, Assembler::pn, search);
jrose@1058 2895 // (invert the test to fall through to found_method...)
jrose@1058 2896 }
jrose@1058 2897 delayed()->add(scan_temp, scan_step, scan_temp);
jrose@1058 2898
jrose@1058 2899 if (!peel) break;
jrose@1058 2900
jrose@1058 2901 bind(search);
jrose@1058 2902 }
jrose@1058 2903
jrose@1058 2904 bind(found_method);
jrose@1058 2905
jrose@1058 2906 // Got a hit.
jrose@1058 2907 int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
jrose@1058 2908 // scan_temp[-scan_step] points to the vtable offset we need
jrose@1058 2909 ito_offset -= scan_step;
jrose@1058 2910 lduw(scan_temp, ito_offset, scan_temp);
jrose@1058 2911 ld_ptr(recv_klass, scan_temp, method_result);
jrose@1058 2912 }
jrose@1058 2913
jrose@1058 2914
jrose@1079 2915 void MacroAssembler::check_klass_subtype(Register sub_klass,
jrose@1079 2916 Register super_klass,
jrose@1079 2917 Register temp_reg,
jrose@1079 2918 Register temp2_reg,
jrose@1079 2919 Label& L_success) {
jrose@1079 2920 Label L_failure, L_pop_to_failure;
jrose@1079 2921 check_klass_subtype_fast_path(sub_klass, super_klass,
jrose@1079 2922 temp_reg, temp2_reg,
jrose@1079 2923 &L_success, &L_failure, NULL);
jrose@1079 2924 Register sub_2 = sub_klass;
jrose@1079 2925 Register sup_2 = super_klass;
jrose@1079 2926 if (!sub_2->is_global()) sub_2 = L0;
jrose@1079 2927 if (!sup_2->is_global()) sup_2 = L1;
jrose@1079 2928
jrose@1079 2929 save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
jrose@1079 2930 check_klass_subtype_slow_path(sub_2, sup_2,
jrose@1079 2931 L2, L3, L4, L5,
jrose@1079 2932 NULL, &L_pop_to_failure);
jrose@1079 2933
jrose@1079 2934 // on success:
jrose@1079 2935 restore();
jrose@1079 2936 ba(false, L_success);
jrose@1079 2937 delayed()->nop();
jrose@1079 2938
jrose@1079 2939 // on failure:
jrose@1079 2940 bind(L_pop_to_failure);
jrose@1079 2941 restore();
jrose@1079 2942 bind(L_failure);
jrose@1079 2943 }
jrose@1079 2944
jrose@1079 2945
jrose@1079 2946 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
jrose@1079 2947 Register super_klass,
jrose@1079 2948 Register temp_reg,
jrose@1079 2949 Register temp2_reg,
jrose@1079 2950 Label* L_success,
jrose@1079 2951 Label* L_failure,
jrose@1079 2952 Label* L_slow_path,
jrose@1100 2953 RegisterOrConstant super_check_offset,
jrose@1079 2954 Register instanceof_hack) {
jrose@1079 2955 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 2956 Klass::secondary_super_cache_offset_in_bytes());
jrose@1079 2957 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 2958 Klass::super_check_offset_offset_in_bytes());
jrose@1079 2959
jrose@1079 2960 bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
jrose@1079 2961 bool need_slow_path = (must_load_sco ||
jrose@1079 2962 super_check_offset.constant_or_zero() == sco_offset);
jrose@1079 2963
jrose@1079 2964 assert_different_registers(sub_klass, super_klass, temp_reg);
jrose@1079 2965 if (super_check_offset.is_register()) {
twisti@1858 2966 assert_different_registers(sub_klass, super_klass, temp_reg,
jrose@1079 2967 super_check_offset.as_register());
jrose@1079 2968 } else if (must_load_sco) {
jrose@1079 2969 assert(temp2_reg != noreg, "supply either a temp or a register offset");
jrose@1079 2970 }
jrose@1079 2971
jrose@1079 2972 Label L_fallthrough;
jrose@1079 2973 int label_nulls = 0;
jrose@1079 2974 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
jrose@1079 2975 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
jrose@1079 2976 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
jrose@1079 2977 assert(label_nulls <= 1 || instanceof_hack != noreg ||
jrose@1079 2978 (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
jrose@1079 2979 "at most one NULL in the batch, usually");
jrose@1079 2980
jrose@1079 2981 // Support for the instanceof hack, which uses delay slots to
jrose@1079 2982 // set a destination register to zero or one.
jrose@1079 2983 bool do_bool_sets = (instanceof_hack != noreg);
jrose@1079 2984 #define BOOL_SET(bool_value) \
jrose@1079 2985 if (do_bool_sets && bool_value >= 0) \
jrose@1079 2986 set(bool_value, instanceof_hack)
jrose@1079 2987 #define DELAYED_BOOL_SET(bool_value) \
jrose@1079 2988 if (do_bool_sets && bool_value >= 0) \
jrose@1079 2989 delayed()->set(bool_value, instanceof_hack); \
jrose@1079 2990 else delayed()->nop()
jrose@1079 2991 // Hacked ba(), which may only be used just before L_fallthrough.
jrose@1079 2992 #define FINAL_JUMP(label, bool_value) \
jrose@1079 2993 if (&(label) == &L_fallthrough) { \
jrose@1079 2994 BOOL_SET(bool_value); \
jrose@1079 2995 } else { \
jrose@1079 2996 ba((do_bool_sets && bool_value >= 0), label); \
jrose@1079 2997 DELAYED_BOOL_SET(bool_value); \
jrose@1079 2998 }
jrose@1079 2999
jrose@1079 3000 // If the pointers are equal, we are done (e.g., String[] elements).
jrose@1079 3001 // This self-check enables sharing of secondary supertype arrays among
jrose@1079 3002 // non-primary types such as array-of-interface. Otherwise, each such
jrose@1079 3003 // type would need its own customized SSA.
jrose@1079 3004 // We move this check to the front of the fast path because many
jrose@1079 3005 // type checks are in fact trivially successful in this manner,
jrose@1079 3006 // so we get a nicely predicted branch right at the start of the check.
jrose@1079 3007 cmp(super_klass, sub_klass);
jrose@1079 3008 brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
jrose@1079 3009 DELAYED_BOOL_SET(1);
jrose@1079 3010
jrose@1079 3011 // Check the supertype display:
jrose@1079 3012 if (must_load_sco) {
jrose@1079 3013 // The super check offset is always positive...
jrose@1079 3014 lduw(super_klass, sco_offset, temp2_reg);
jrose@1100 3015 super_check_offset = RegisterOrConstant(temp2_reg);
twisti@1858 3016 // super_check_offset is register.
twisti@1858 3017 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
jrose@1079 3018 }
jrose@1079 3019 ld_ptr(sub_klass, super_check_offset, temp_reg);
jrose@1079 3020 cmp(super_klass, temp_reg);
jrose@1079 3021
jrose@1079 3022 // This check has worked decisively for primary supers.
jrose@1079 3023 // Secondary supers are sought in the super_cache ('super_cache_addr').
jrose@1079 3024 // (Secondary supers are interfaces and very deeply nested subtypes.)
jrose@1079 3025 // This works in the same check above because of a tricky aliasing
jrose@1079 3026 // between the super_cache and the primary super display elements.
jrose@1079 3027 // (The 'super_check_addr' can address either, as the case requires.)
jrose@1079 3028 // Note that the cache is updated below if it does not help us find
jrose@1079 3029 // what we need immediately.
jrose@1079 3030 // So if it was a primary super, we can just fail immediately.
jrose@1079 3031 // Otherwise, it's the slow path for us (no success at this point).
jrose@1079 3032
jrose@1079 3033 if (super_check_offset.is_register()) {
jrose@1079 3034 brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
jrose@1079 3035 delayed(); if (do_bool_sets) BOOL_SET(1);
jrose@1079 3036 // if !do_bool_sets, sneak the next cmp into the delay slot:
jrose@1079 3037 cmp(super_check_offset.as_register(), sc_offset);
jrose@1079 3038
jrose@1079 3039 if (L_failure == &L_fallthrough) {
jrose@1079 3040 brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_slow_path);
jrose@1079 3041 delayed()->nop();
jrose@1079 3042 BOOL_SET(0); // fallthrough on failure
jrose@1079 3043 } else {
jrose@1079 3044 brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
jrose@1079 3045 DELAYED_BOOL_SET(0);
jrose@1079 3046 FINAL_JUMP(*L_slow_path, -1); // -1 => vanilla delay slot
jrose@1079 3047 }
jrose@1079 3048 } else if (super_check_offset.as_constant() == sc_offset) {
jrose@1079 3049 // Need a slow path; fast failure is impossible.
jrose@1079 3050 if (L_slow_path == &L_fallthrough) {
jrose@1079 3051 brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
jrose@1079 3052 DELAYED_BOOL_SET(1);
jrose@1079 3053 } else {
jrose@1079 3054 brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
jrose@1079 3055 delayed()->nop();
jrose@1079 3056 FINAL_JUMP(*L_success, 1);
jrose@1079 3057 }
jrose@1079 3058 } else {
jrose@1079 3059 // No slow path; it's a fast decision.
jrose@1079 3060 if (L_failure == &L_fallthrough) {
jrose@1079 3061 brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
jrose@1079 3062 DELAYED_BOOL_SET(1);
jrose@1079 3063 BOOL_SET(0);
jrose@1079 3064 } else {
jrose@1079 3065 brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
jrose@1079 3066 DELAYED_BOOL_SET(0);
jrose@1079 3067 FINAL_JUMP(*L_success, 1);
jrose@1079 3068 }
jrose@1079 3069 }
jrose@1079 3070
jrose@1079 3071 bind(L_fallthrough);
jrose@1079 3072
jrose@1079 3073 #undef final_jump
jrose@1079 3074 #undef bool_set
jrose@1079 3075 #undef DELAYED_BOOL_SET
jrose@1079 3076 #undef final_jump
jrose@1079 3077 }
jrose@1079 3078
jrose@1079 3079
jrose@1079 3080 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
jrose@1079 3081 Register super_klass,
jrose@1079 3082 Register count_temp,
jrose@1079 3083 Register scan_temp,
jrose@1079 3084 Register scratch_reg,
jrose@1079 3085 Register coop_reg,
jrose@1079 3086 Label* L_success,
jrose@1079 3087 Label* L_failure) {
jrose@1079 3088 assert_different_registers(sub_klass, super_klass,
jrose@1079 3089 count_temp, scan_temp, scratch_reg, coop_reg);
jrose@1079 3090
jrose@1079 3091 Label L_fallthrough, L_loop;
jrose@1079 3092 int label_nulls = 0;
jrose@1079 3093 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
jrose@1079 3094 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
jrose@1079 3095 assert(label_nulls <= 1, "at most one NULL in the batch");
jrose@1079 3096
jrose@1079 3097 // a couple of useful fields in sub_klass:
jrose@1079 3098 int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 3099 Klass::secondary_supers_offset_in_bytes());
jrose@1079 3100 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 3101 Klass::secondary_super_cache_offset_in_bytes());
jrose@1079 3102
jrose@1079 3103 // Do a linear scan of the secondary super-klass chain.
jrose@1079 3104 // This code is rarely used, so simplicity is a virtue here.
jrose@1079 3105
jrose@1079 3106 #ifndef PRODUCT
jrose@1079 3107 int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
jrose@1079 3108 inc_counter((address) pst_counter, count_temp, scan_temp);
jrose@1079 3109 #endif
jrose@1079 3110
jrose@1079 3111 // We will consult the secondary-super array.
jrose@1079 3112 ld_ptr(sub_klass, ss_offset, scan_temp);
jrose@1079 3113
jrose@1079 3114 // Compress superclass if necessary.
jrose@1079 3115 Register search_key = super_klass;
jrose@1079 3116 bool decode_super_klass = false;
jrose@1079 3117 if (UseCompressedOops) {
jrose@1079 3118 if (coop_reg != noreg) {
jrose@1079 3119 encode_heap_oop_not_null(super_klass, coop_reg);
jrose@1079 3120 search_key = coop_reg;
jrose@1079 3121 } else {
jrose@1079 3122 encode_heap_oop_not_null(super_klass);
jrose@1079 3123 decode_super_klass = true; // scarce temps!
jrose@1079 3124 }
jrose@1079 3125 // The superclass is never null; it would be a basic system error if a null
jrose@1079 3126 // pointer were to sneak in here. Note that we have already loaded the
jrose@1079 3127 // Klass::super_check_offset from the super_klass in the fast path,
jrose@1079 3128 // so if there is a null in that register, we are already in the afterlife.
jrose@1079 3129 }
jrose@1079 3130
jrose@1079 3131 // Load the array length. (Positive movl does right thing on LP64.)
jrose@1079 3132 lduw(scan_temp, arrayOopDesc::length_offset_in_bytes(), count_temp);
jrose@1079 3133
jrose@1079 3134 // Check for empty secondary super list
jrose@1079 3135 tst(count_temp);
jrose@1079 3136
jrose@1079 3137 // Top of search loop
jrose@1079 3138 bind(L_loop);
jrose@1079 3139 br(Assembler::equal, false, Assembler::pn, *L_failure);
jrose@1079 3140 delayed()->add(scan_temp, heapOopSize, scan_temp);
jrose@1079 3141 assert(heapOopSize != 0, "heapOopSize should be initialized");
jrose@1079 3142
jrose@1079 3143 // Skip the array header in all array accesses.
jrose@1079 3144 int elem_offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
jrose@1079 3145 elem_offset -= heapOopSize; // the scan pointer was pre-incremented also
jrose@1079 3146
jrose@1079 3147 // Load next super to check
jrose@1079 3148 if (UseCompressedOops) {
jrose@1079 3149 // Don't use load_heap_oop; we don't want to decode the element.
jrose@1079 3150 lduw( scan_temp, elem_offset, scratch_reg );
jrose@1079 3151 } else {
jrose@1079 3152 ld_ptr( scan_temp, elem_offset, scratch_reg );
jrose@1079 3153 }
jrose@1079 3154
jrose@1079 3155 // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
jrose@1079 3156 cmp(scratch_reg, search_key);
jrose@1079 3157
jrose@1079 3158 // A miss means we are NOT a subtype and need to keep looping
jrose@1079 3159 brx(Assembler::notEqual, false, Assembler::pn, L_loop);
jrose@1079 3160 delayed()->deccc(count_temp); // decrement trip counter in delay slot
jrose@1079 3161
jrose@1079 3162 // Falling out the bottom means we found a hit; we ARE a subtype
jrose@1079 3163 if (decode_super_klass) decode_heap_oop(super_klass);
jrose@1079 3164
jrose@1079 3165 // Success. Cache the super we found and proceed in triumph.
jrose@1079 3166 st_ptr(super_klass, sub_klass, sc_offset);
jrose@1079 3167
jrose@1079 3168 if (L_success != &L_fallthrough) {
jrose@1079 3169 ba(false, *L_success);
jrose@1079 3170 delayed()->nop();
jrose@1079 3171 }
jrose@1079 3172
jrose@1079 3173 bind(L_fallthrough);
jrose@1079 3174 }
jrose@1079 3175
jrose@1079 3176
jrose@1145 3177 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
jrose@1145 3178 Register temp_reg,
jrose@1145 3179 Label& wrong_method_type) {
jrose@1145 3180 assert_different_registers(mtype_reg, mh_reg, temp_reg);
jrose@1145 3181 // compare method type against that of the receiver
jrose@2639 3182 RegisterOrConstant mhtype_offset = delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg);
twisti@2201 3183 load_heap_oop(mh_reg, mhtype_offset, temp_reg);
jrose@1145 3184 cmp(temp_reg, mtype_reg);
jrose@1145 3185 br(Assembler::notEqual, false, Assembler::pn, wrong_method_type);
jrose@1145 3186 delayed()->nop();
jrose@1145 3187 }
jrose@1145 3188
jrose@1145 3189
twisti@1858 3190 // A method handle has a "vmslots" field which gives the size of its
twisti@1858 3191 // argument list in JVM stack slots. This field is either located directly
twisti@1858 3192 // in every method handle, or else is indirectly accessed through the
twisti@1858 3193 // method handle's MethodType. This macro hides the distinction.
twisti@1858 3194 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
twisti@1858 3195 Register temp_reg) {
twisti@1858 3196 assert_different_registers(vmslots_reg, mh_reg, temp_reg);
twisti@1858 3197 // load mh.type.form.vmslots
jrose@2639 3198 if (java_lang_invoke_MethodHandle::vmslots_offset_in_bytes() != 0) {
twisti@1858 3199 // hoist vmslots into every mh to avoid dependent load chain
jrose@2639 3200 ld( Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmslots_offset_in_bytes, temp_reg)), vmslots_reg);
twisti@1858 3201 } else {
twisti@1858 3202 Register temp2_reg = vmslots_reg;
jrose@2639 3203 load_heap_oop(Address(mh_reg, delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)), temp2_reg);
jrose@2639 3204 load_heap_oop(Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)), temp2_reg);
jrose@2639 3205 ld( Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)), vmslots_reg);
twisti@1858 3206 }
twisti@1858 3207 }
twisti@1858 3208
twisti@1858 3209
twisti@1858 3210 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop) {
jrose@1145 3211 assert(mh_reg == G3_method_handle, "caller must put MH object in G3");
jrose@1145 3212 assert_different_registers(mh_reg, temp_reg);
jrose@1145 3213
jrose@1145 3214 // pick out the interpreted side of the handler
twisti@2201 3215 // NOTE: vmentry is not an oop!
jrose@2639 3216 ld_ptr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg), temp_reg);
jrose@1145 3217
jrose@1145 3218 // off we go...
jrose@1145 3219 ld_ptr(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes(), temp_reg);
jrose@1145 3220 jmp(temp_reg, 0);
jrose@1145 3221
jrose@1145 3222 // for the various stubs which take control at this point,
jrose@1145 3223 // see MethodHandles::generate_method_handle_stub
jrose@1145 3224
twisti@1858 3225 // Some callers can fill the delay slot.
twisti@1858 3226 if (emit_delayed_nop) {
twisti@1858 3227 delayed()->nop();
twisti@1858 3228 }
jrose@1145 3229 }
jrose@1145 3230
twisti@1858 3231
jrose@1145 3232 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
jrose@1145 3233 int extra_slot_offset) {
jrose@1145 3234 // cf. TemplateTable::prepare_invoke(), if (load_receiver).
twisti@1861 3235 int stackElementSize = Interpreter::stackElementSize;
twisti@1858 3236 int offset = extra_slot_offset * stackElementSize;
jrose@1145 3237 if (arg_slot.is_constant()) {
jrose@1145 3238 offset += arg_slot.as_constant() * stackElementSize;
jrose@1145 3239 return offset;
jrose@1145 3240 } else {
jrose@1145 3241 Register temp = arg_slot.as_register();
jrose@1145 3242 sll_ptr(temp, exact_log2(stackElementSize), temp);
jrose@1145 3243 if (offset != 0)
jrose@1145 3244 add(temp, offset, temp);
jrose@1145 3245 return temp;
jrose@1145 3246 }
jrose@1145 3247 }
jrose@1145 3248
jrose@1145 3249
twisti@1858 3250 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
twisti@1858 3251 int extra_slot_offset) {
twisti@1858 3252 return Address(Gargs, argument_offset(arg_slot, extra_slot_offset));
twisti@1858 3253 }
twisti@1858 3254
jrose@1145 3255
kvn@855 3256 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
kvn@855 3257 Register temp_reg,
duke@435 3258 Label& done, Label* slow_case,
duke@435 3259 BiasedLockingCounters* counters) {
duke@435 3260 assert(UseBiasedLocking, "why call this otherwise?");
duke@435 3261
duke@435 3262 if (PrintBiasedLockingStatistics) {
duke@435 3263 assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
duke@435 3264 if (counters == NULL)
duke@435 3265 counters = BiasedLocking::counters();
duke@435 3266 }
duke@435 3267
duke@435 3268 Label cas_label;
duke@435 3269
duke@435 3270 // Biased locking
duke@435 3271 // See whether the lock is currently biased toward our thread and
duke@435 3272 // whether the epoch is still valid
duke@435 3273 // Note that the runtime guarantees sufficient alignment of JavaThread
duke@435 3274 // pointers to allow age to be placed into low bits
duke@435 3275 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
duke@435 3276 and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 3277 cmp(temp_reg, markOopDesc::biased_lock_pattern);
duke@435 3278 brx(Assembler::notEqual, false, Assembler::pn, cas_label);
coleenp@548 3279 delayed()->nop();
coleenp@548 3280
coleenp@548 3281 load_klass(obj_reg, temp_reg);
twisti@1162 3282 ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
duke@435 3283 or3(G2_thread, temp_reg, temp_reg);
duke@435 3284 xor3(mark_reg, temp_reg, temp_reg);
duke@435 3285 andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
duke@435 3286 if (counters != NULL) {
duke@435 3287 cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3288 // Reload mark_reg as we may need it later
twisti@1162 3289 ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
duke@435 3290 }
duke@435 3291 brx(Assembler::equal, true, Assembler::pt, done);
duke@435 3292 delayed()->nop();
duke@435 3293
duke@435 3294 Label try_revoke_bias;
duke@435 3295 Label try_rebias;
twisti@1162 3296 Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 3297 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3298
duke@435 3299 // At this point we know that the header has the bias pattern and
duke@435 3300 // that we are not the bias owner in the current epoch. We need to
duke@435 3301 // figure out more details about the state of the header in order to
duke@435 3302 // know what operations can be legally performed on the object's
duke@435 3303 // header.
duke@435 3304
duke@435 3305 // If the low three bits in the xor result aren't clear, that means
duke@435 3306 // the prototype header is no longer biased and we have to revoke
duke@435 3307 // the bias on this object.
duke@435 3308 btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 3309 brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
duke@435 3310
duke@435 3311 // Biasing is still enabled for this data type. See whether the
duke@435 3312 // epoch of the current bias is still valid, meaning that the epoch
duke@435 3313 // bits of the mark word are equal to the epoch bits of the
duke@435 3314 // prototype header. (Note that the prototype header's epoch bits
duke@435 3315 // only change at a safepoint.) If not, attempt to rebias the object
duke@435 3316 // toward the current thread. Note that we must be absolutely sure
duke@435 3317 // that the current epoch is invalid in order to do this because
duke@435 3318 // otherwise the manipulations it performs on the mark word are
duke@435 3319 // illegal.
duke@435 3320 delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
duke@435 3321 brx(Assembler::notZero, false, Assembler::pn, try_rebias);
duke@435 3322
duke@435 3323 // The epoch of the current bias is still valid but we know nothing
duke@435 3324 // about the owner; it might be set or it might be clear. Try to
duke@435 3325 // acquire the bias of the object using an atomic operation. If this
duke@435 3326 // fails we will go in to the runtime to revoke the object's bias.
duke@435 3327 // Note that we first construct the presumed unbiased header so we
duke@435 3328 // don't accidentally blow away another thread's valid bias.
duke@435 3329 delayed()->and3(mark_reg,
duke@435 3330 markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
duke@435 3331 mark_reg);
duke@435 3332 or3(G2_thread, mark_reg, temp_reg);
kvn@855 3333 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3334 // If the biasing toward our thread failed, this means that
duke@435 3335 // another thread succeeded in biasing it toward itself and we
duke@435 3336 // need to revoke that bias. The revocation will occur in the
duke@435 3337 // interpreter runtime in the slow case.
duke@435 3338 cmp(mark_reg, temp_reg);
duke@435 3339 if (counters != NULL) {
duke@435 3340 cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3341 }
duke@435 3342 if (slow_case != NULL) {
duke@435 3343 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
duke@435 3344 delayed()->nop();
duke@435 3345 }
duke@435 3346 br(Assembler::always, false, Assembler::pt, done);
duke@435 3347 delayed()->nop();
duke@435 3348
duke@435 3349 bind(try_rebias);
duke@435 3350 // At this point we know the epoch has expired, meaning that the
duke@435 3351 // current "bias owner", if any, is actually invalid. Under these
duke@435 3352 // circumstances _only_, we are allowed to use the current header's
duke@435 3353 // value as the comparison value when doing the cas to acquire the
duke@435 3354 // bias in the current epoch. In other words, we allow transfer of
duke@435 3355 // the bias from one thread to another directly in this situation.
duke@435 3356 //
duke@435 3357 // FIXME: due to a lack of registers we currently blow away the age
duke@435 3358 // bits in this situation. Should attempt to preserve them.
coleenp@548 3359 load_klass(obj_reg, temp_reg);
twisti@1162 3360 ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
duke@435 3361 or3(G2_thread, temp_reg, temp_reg);
kvn@855 3362 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3363 // If the biasing toward our thread failed, this means that
duke@435 3364 // another thread succeeded in biasing it toward itself and we
duke@435 3365 // need to revoke that bias. The revocation will occur in the
duke@435 3366 // interpreter runtime in the slow case.
duke@435 3367 cmp(mark_reg, temp_reg);
duke@435 3368 if (counters != NULL) {
duke@435 3369 cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3370 }
duke@435 3371 if (slow_case != NULL) {
duke@435 3372 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
duke@435 3373 delayed()->nop();
duke@435 3374 }
duke@435 3375 br(Assembler::always, false, Assembler::pt, done);
duke@435 3376 delayed()->nop();
duke@435 3377
duke@435 3378 bind(try_revoke_bias);
duke@435 3379 // The prototype mark in the klass doesn't have the bias bit set any
duke@435 3380 // more, indicating that objects of this data type are not supposed
duke@435 3381 // to be biased any more. We are going to try to reset the mark of
duke@435 3382 // this object to the prototype value and fall through to the
duke@435 3383 // CAS-based locking scheme. Note that if our CAS fails, it means
duke@435 3384 // that another thread raced us for the privilege of revoking the
duke@435 3385 // bias of this particular object, so it's okay to continue in the
duke@435 3386 // normal locking code.
duke@435 3387 //
duke@435 3388 // FIXME: due to a lack of registers we currently blow away the age
duke@435 3389 // bits in this situation. Should attempt to preserve them.
coleenp@548 3390 load_klass(obj_reg, temp_reg);
twisti@1162 3391 ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
kvn@855 3392 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3393 // Fall through to the normal CAS-based lock, because no matter what
duke@435 3394 // the result of the above CAS, some thread must have succeeded in
duke@435 3395 // removing the bias bit from the object's header.
duke@435 3396 if (counters != NULL) {
duke@435 3397 cmp(mark_reg, temp_reg);
duke@435 3398 cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3399 }
duke@435 3400
duke@435 3401 bind(cas_label);
duke@435 3402 }
duke@435 3403
duke@435 3404 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
duke@435 3405 bool allow_delay_slot_filling) {
duke@435 3406 // Check for biased locking unlock case, which is a no-op
duke@435 3407 // Note: we do not have to check the thread ID for two reasons.
duke@435 3408 // First, the interpreter checks for IllegalMonitorStateException at
duke@435 3409 // a higher level. Second, if the bias was revoked while we held the
duke@435 3410 // lock, the object could not be rebiased toward another thread, so
duke@435 3411 // the bias bit would be clear.
duke@435 3412 ld_ptr(mark_addr, temp_reg);
duke@435 3413 and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 3414 cmp(temp_reg, markOopDesc::biased_lock_pattern);
duke@435 3415 brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
duke@435 3416 delayed();
duke@435 3417 if (!allow_delay_slot_filling) {
duke@435 3418 nop();
duke@435 3419 }
duke@435 3420 }
duke@435 3421
duke@435 3422
duke@435 3423 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
duke@435 3424 // Solaris/SPARC's "as". Another apt name would be cas_ptr()
duke@435 3425
duke@435 3426 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
duke@435 3427 casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
duke@435 3428 }
duke@435 3429
duke@435 3430
duke@435 3431
duke@435 3432 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
duke@435 3433 // of i486.ad fast_lock() and fast_unlock(). See those methods for detailed comments.
duke@435 3434 // The code could be tightened up considerably.
duke@435 3435 //
duke@435 3436 // box->dhw disposition - post-conditions at DONE_LABEL.
duke@435 3437 // - Successful inflated lock: box->dhw != 0.
duke@435 3438 // Any non-zero value suffices.
duke@435 3439 // Consider G2_thread, rsp, boxReg, or unused_mark()
duke@435 3440 // - Successful Stack-lock: box->dhw == mark.
duke@435 3441 // box->dhw must contain the displaced mark word value
duke@435 3442 // - Failure -- icc.ZFlag == 0 and box->dhw is undefined.
duke@435 3443 // The slow-path fast_enter() and slow_enter() operators
duke@435 3444 // are responsible for setting box->dhw = NonZero (typically ::unused_mark).
duke@435 3445 // - Biased: box->dhw is undefined
duke@435 3446 //
duke@435 3447 // SPARC refworkload performance - specifically jetstream and scimark - are
duke@435 3448 // extremely sensitive to the size of the code emitted by compiler_lock_object
duke@435 3449 // and compiler_unlock_object. Critically, the key factor is code size, not path
duke@435 3450 // length. (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
duke@435 3451 // effect).
duke@435 3452
duke@435 3453
kvn@855 3454 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
kvn@855 3455 Register Rbox, Register Rscratch,
kvn@855 3456 BiasedLockingCounters* counters,
kvn@855 3457 bool try_bias) {
twisti@1162 3458 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
duke@435 3459
duke@435 3460 verify_oop(Roop);
duke@435 3461 Label done ;
duke@435 3462
duke@435 3463 if (counters != NULL) {
duke@435 3464 inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
duke@435 3465 }
duke@435 3466
duke@435 3467 if (EmitSync & 1) {
duke@435 3468 mov (3, Rscratch) ;
duke@435 3469 st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3470 cmp (SP, G0) ;
duke@435 3471 return ;
duke@435 3472 }
duke@435 3473
duke@435 3474 if (EmitSync & 2) {
duke@435 3475
duke@435 3476 // Fetch object's markword
duke@435 3477 ld_ptr(mark_addr, Rmark);
duke@435 3478
kvn@855 3479 if (try_bias) {
duke@435 3480 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3481 }
duke@435 3482
duke@435 3483 // Save Rbox in Rscratch to be used for the cas operation
duke@435 3484 mov(Rbox, Rscratch);
duke@435 3485
duke@435 3486 // set Rmark to markOop | markOopDesc::unlocked_value
duke@435 3487 or3(Rmark, markOopDesc::unlocked_value, Rmark);
duke@435 3488
duke@435 3489 // Initialize the box. (Must happen before we update the object mark!)
duke@435 3490 st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3491
duke@435 3492 // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
duke@435 3493 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3494 casx_under_lock(mark_addr.base(), Rmark, Rscratch,
duke@435 3495 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 3496
duke@435 3497 // if compare/exchange succeeded we found an unlocked object and we now have locked it
duke@435 3498 // hence we are done
duke@435 3499 cmp(Rmark, Rscratch);
duke@435 3500 #ifdef _LP64
duke@435 3501 sub(Rscratch, STACK_BIAS, Rscratch);
duke@435 3502 #endif
duke@435 3503 brx(Assembler::equal, false, Assembler::pt, done);
duke@435 3504 delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot
duke@435 3505
duke@435 3506 // we did not find an unlocked object so see if this is a recursive case
duke@435 3507 // sub(Rscratch, SP, Rscratch);
duke@435 3508 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 3509 andcc(Rscratch, 0xfffff003, Rscratch);
duke@435 3510 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3511 bind (done) ;
duke@435 3512 return ;
duke@435 3513 }
duke@435 3514
duke@435 3515 Label Egress ;
duke@435 3516
duke@435 3517 if (EmitSync & 256) {
duke@435 3518 Label IsInflated ;
duke@435 3519
duke@435 3520 ld_ptr (mark_addr, Rmark); // fetch obj->mark
duke@435 3521 // Triage: biased, stack-locked, neutral, inflated
kvn@855 3522 if (try_bias) {
duke@435 3523 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3524 // Invariant: if control reaches this point in the emitted stream
duke@435 3525 // then Rmark has not been modified.
duke@435 3526 }
duke@435 3527
duke@435 3528 // Store mark into displaced mark field in the on-stack basic-lock "box"
duke@435 3529 // Critically, this must happen before the CAS
duke@435 3530 // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
duke@435 3531 st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3532 andcc (Rmark, 2, G0) ;
duke@435 3533 brx (Assembler::notZero, false, Assembler::pn, IsInflated) ;
duke@435 3534 delayed() ->
duke@435 3535
duke@435 3536 // Try stack-lock acquisition.
duke@435 3537 // Beware: the 1st instruction is in a delay slot
duke@435 3538 mov (Rbox, Rscratch);
duke@435 3539 or3 (Rmark, markOopDesc::unlocked_value, Rmark);
duke@435 3540 assert (mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3541 casn (mark_addr.base(), Rmark, Rscratch) ;
duke@435 3542 cmp (Rmark, Rscratch);
duke@435 3543 brx (Assembler::equal, false, Assembler::pt, done);
duke@435 3544 delayed()->sub(Rscratch, SP, Rscratch);
duke@435 3545
duke@435 3546 // Stack-lock attempt failed - check for recursive stack-lock.
duke@435 3547 // See the comments below about how we might remove this case.
duke@435 3548 #ifdef _LP64
duke@435 3549 sub (Rscratch, STACK_BIAS, Rscratch);
duke@435 3550 #endif
duke@435 3551 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 3552 andcc (Rscratch, 0xfffff003, Rscratch);
duke@435 3553 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3554 delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3555
duke@435 3556 bind (IsInflated) ;
duke@435 3557 if (EmitSync & 64) {
duke@435 3558 // If m->owner != null goto IsLocked
duke@435 3559 // Pessimistic form: Test-and-CAS vs CAS
duke@435 3560 // The optimistic form avoids RTS->RTO cache line upgrades.
twisti@1162 3561 ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
duke@435 3562 andcc (Rscratch, Rscratch, G0) ;
duke@435 3563 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 3564 delayed()->nop() ;
duke@435 3565 // m->owner == null : it's unlocked.
duke@435 3566 }
duke@435 3567
duke@435 3568 // Try to CAS m->owner from null to Self
duke@435 3569 // Invariant: if we acquire the lock then _recursions should be 0.
duke@435 3570 add (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
duke@435 3571 mov (G2_thread, Rscratch) ;
duke@435 3572 casn (Rmark, G0, Rscratch) ;
duke@435 3573 cmp (Rscratch, G0) ;
duke@435 3574 // Intentional fall-through into done
duke@435 3575 } else {
duke@435 3576 // Aggressively avoid the Store-before-CAS penalty
duke@435 3577 // Defer the store into box->dhw until after the CAS
duke@435 3578 Label IsInflated, Recursive ;
duke@435 3579
duke@435 3580 // Anticipate CAS -- Avoid RTS->RTO upgrade
duke@435 3581 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
duke@435 3582
duke@435 3583 ld_ptr (mark_addr, Rmark); // fetch obj->mark
duke@435 3584 // Triage: biased, stack-locked, neutral, inflated
duke@435 3585
kvn@855 3586 if (try_bias) {
duke@435 3587 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3588 // Invariant: if control reaches this point in the emitted stream
duke@435 3589 // then Rmark has not been modified.
duke@435 3590 }
duke@435 3591 andcc (Rmark, 2, G0) ;
duke@435 3592 brx (Assembler::notZero, false, Assembler::pn, IsInflated) ;
duke@435 3593 delayed()-> // Beware - dangling delay-slot
duke@435 3594
duke@435 3595 // Try stack-lock acquisition.
duke@435 3596 // Transiently install BUSY (0) encoding in the mark word.
duke@435 3597 // if the CAS of 0 into the mark was successful then we execute:
duke@435 3598 // ST box->dhw = mark -- save fetched mark in on-stack basiclock box
duke@435 3599 // ST obj->mark = box -- overwrite transient 0 value
duke@435 3600 // This presumes TSO, of course.
duke@435 3601
duke@435 3602 mov (0, Rscratch) ;
duke@435 3603 or3 (Rmark, markOopDesc::unlocked_value, Rmark);
duke@435 3604 assert (mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3605 casn (mark_addr.base(), Rmark, Rscratch) ;
duke@435 3606 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
duke@435 3607 cmp (Rscratch, Rmark) ;
duke@435 3608 brx (Assembler::notZero, false, Assembler::pn, Recursive) ;
duke@435 3609 delayed() ->
duke@435 3610 st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3611 if (counters != NULL) {
duke@435 3612 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
duke@435 3613 }
duke@435 3614 br (Assembler::always, false, Assembler::pt, done);
duke@435 3615 delayed() ->
duke@435 3616 st_ptr (Rbox, mark_addr) ;
duke@435 3617
duke@435 3618 bind (Recursive) ;
duke@435 3619 // Stack-lock attempt failed - check for recursive stack-lock.
duke@435 3620 // Tests show that we can remove the recursive case with no impact
duke@435 3621 // on refworkload 0.83. If we need to reduce the size of the code
duke@435 3622 // emitted by compiler_lock_object() the recursive case is perfect
duke@435 3623 // candidate.
duke@435 3624 //
duke@435 3625 // A more extreme idea is to always inflate on stack-lock recursion.
duke@435 3626 // This lets us eliminate the recursive checks in compiler_lock_object
duke@435 3627 // and compiler_unlock_object and the (box->dhw == 0) encoding.
duke@435 3628 // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
duke@435 3629 // and showed a performance *increase*. In the same experiment I eliminated
duke@435 3630 // the fast-path stack-lock code from the interpreter and always passed
duke@435 3631 // control to the "slow" operators in synchronizer.cpp.
duke@435 3632
duke@435 3633 // RScratch contains the fetched obj->mark value from the failed CASN.
duke@435 3634 #ifdef _LP64
duke@435 3635 sub (Rscratch, STACK_BIAS, Rscratch);
duke@435 3636 #endif
duke@435 3637 sub(Rscratch, SP, Rscratch);
duke@435 3638 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 3639 andcc (Rscratch, 0xfffff003, Rscratch);
duke@435 3640 if (counters != NULL) {
duke@435 3641 // Accounting needs the Rscratch register
duke@435 3642 st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3643 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
duke@435 3644 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3645 delayed()->nop() ;
duke@435 3646 } else {
duke@435 3647 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3648 delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3649 }
duke@435 3650
duke@435 3651 bind (IsInflated) ;
duke@435 3652 if (EmitSync & 64) {
duke@435 3653 // If m->owner != null goto IsLocked
duke@435 3654 // Test-and-CAS vs CAS
duke@435 3655 // Pessimistic form avoids futile (doomed) CAS attempts
duke@435 3656 // The optimistic form avoids RTS->RTO cache line upgrades.
twisti@1162 3657 ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
duke@435 3658 andcc (Rscratch, Rscratch, G0) ;
duke@435 3659 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 3660 delayed()->nop() ;
duke@435 3661 // m->owner == null : it's unlocked.
duke@435 3662 }
duke@435 3663
duke@435 3664 // Try to CAS m->owner from null to Self
duke@435 3665 // Invariant: if we acquire the lock then _recursions should be 0.
duke@435 3666 add (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
duke@435 3667 mov (G2_thread, Rscratch) ;
duke@435 3668 casn (Rmark, G0, Rscratch) ;
duke@435 3669 cmp (Rscratch, G0) ;
duke@435 3670 // ST box->displaced_header = NonZero.
duke@435 3671 // Any non-zero value suffices:
duke@435 3672 // unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
duke@435 3673 st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3674 // Intentional fall-through into done
duke@435 3675 }
duke@435 3676
duke@435 3677 bind (done) ;
duke@435 3678 }
duke@435 3679
kvn@855 3680 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
kvn@855 3681 Register Rbox, Register Rscratch,
kvn@855 3682 bool try_bias) {
twisti@1162 3683 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
duke@435 3684
duke@435 3685 Label done ;
duke@435 3686
duke@435 3687 if (EmitSync & 4) {
duke@435 3688 cmp (SP, G0) ;
duke@435 3689 return ;
duke@435 3690 }
duke@435 3691
duke@435 3692 if (EmitSync & 8) {
kvn@855 3693 if (try_bias) {
duke@435 3694 biased_locking_exit(mark_addr, Rscratch, done);
duke@435 3695 }
duke@435 3696
duke@435 3697 // Test first if it is a fast recursive unlock
duke@435 3698 ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
duke@435 3699 cmp(Rmark, G0);
duke@435 3700 brx(Assembler::equal, false, Assembler::pt, done);
duke@435 3701 delayed()->nop();
duke@435 3702
duke@435 3703 // Check if it is still a light weight lock, this is is true if we see
duke@435 3704 // the stack address of the basicLock in the markOop of the object
duke@435 3705 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3706 casx_under_lock(mark_addr.base(), Rbox, Rmark,
duke@435 3707 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 3708 br (Assembler::always, false, Assembler::pt, done);
duke@435 3709 delayed()->cmp(Rbox, Rmark);
duke@435 3710 bind (done) ;
duke@435 3711 return ;
duke@435 3712 }
duke@435 3713
duke@435 3714 // Beware ... If the aggregate size of the code emitted by CLO and CUO is
duke@435 3715 // is too large performance rolls abruptly off a cliff.
duke@435 3716 // This could be related to inlining policies, code cache management, or
duke@435 3717 // I$ effects.
duke@435 3718 Label LStacked ;
duke@435 3719
kvn@855 3720 if (try_bias) {
duke@435 3721 // TODO: eliminate redundant LDs of obj->mark
duke@435 3722 biased_locking_exit(mark_addr, Rscratch, done);
duke@435 3723 }
duke@435 3724
duke@435 3725 ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
duke@435 3726 ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
duke@435 3727 andcc (Rscratch, Rscratch, G0);
duke@435 3728 brx (Assembler::zero, false, Assembler::pn, done);
duke@435 3729 delayed()-> nop() ; // consider: relocate fetch of mark, above, into this DS
duke@435 3730 andcc (Rmark, 2, G0) ;
duke@435 3731 brx (Assembler::zero, false, Assembler::pt, LStacked) ;
duke@435 3732 delayed()-> nop() ;
duke@435 3733
duke@435 3734 // It's inflated
duke@435 3735 // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
duke@435 3736 // the ST of 0 into _owner which releases the lock. This prevents loads
duke@435 3737 // and stores within the critical section from reordering (floating)
duke@435 3738 // past the store that releases the lock. But TSO is a strong memory model
duke@435 3739 // and that particular flavor of barrier is a noop, so we can safely elide it.
duke@435 3740 // Note that we use 1-0 locking by default for the inflated case. We
duke@435 3741 // close the resultant (and rare) race by having contented threads in
duke@435 3742 // monitorenter periodically poll _owner.
twisti@1162 3743 ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
twisti@1162 3744 ld_ptr (Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
duke@435 3745 xor3 (Rscratch, G2_thread, Rscratch) ;
duke@435 3746 orcc (Rbox, Rscratch, Rbox) ;
duke@435 3747 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 3748 delayed()->
twisti@1162 3749 ld_ptr (Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
twisti@1162 3750 ld_ptr (Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
duke@435 3751 orcc (Rbox, Rscratch, G0) ;
duke@435 3752 if (EmitSync & 65536) {
duke@435 3753 Label LSucc ;
duke@435 3754 brx (Assembler::notZero, false, Assembler::pn, LSucc) ;
duke@435 3755 delayed()->nop() ;
duke@435 3756 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3757 delayed()->
twisti@1162 3758 st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
duke@435 3759
duke@435 3760 bind (LSucc) ;
twisti@1162 3761 st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
duke@435 3762 if (os::is_MP()) { membar (StoreLoad) ; }
twisti@1162 3763 ld_ptr (Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
duke@435 3764 andcc (Rscratch, Rscratch, G0) ;
duke@435 3765 brx (Assembler::notZero, false, Assembler::pt, done) ;
duke@435 3766 delayed()-> andcc (G0, G0, G0) ;
duke@435 3767 add (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
duke@435 3768 mov (G2_thread, Rscratch) ;
duke@435 3769 casn (Rmark, G0, Rscratch) ;
duke@435 3770 cmp (Rscratch, G0) ;
duke@435 3771 // invert icc.zf and goto done
duke@435 3772 brx (Assembler::notZero, false, Assembler::pt, done) ;
duke@435 3773 delayed() -> cmp (G0, G0) ;
duke@435 3774 br (Assembler::always, false, Assembler::pt, done);
duke@435 3775 delayed() -> cmp (G0, 1) ;
duke@435 3776 } else {
duke@435 3777 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 3778 delayed()->nop() ;
duke@435 3779 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3780 delayed()->
twisti@1162 3781 st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
duke@435 3782 }
duke@435 3783
duke@435 3784 bind (LStacked) ;
duke@435 3785 // Consider: we could replace the expensive CAS in the exit
duke@435 3786 // path with a simple ST of the displaced mark value fetched from
duke@435 3787 // the on-stack basiclock box. That admits a race where a thread T2
duke@435 3788 // in the slow lock path -- inflating with monitor M -- could race a
duke@435 3789 // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
duke@435 3790 // More precisely T1 in the stack-lock unlock path could "stomp" the
duke@435 3791 // inflated mark value M installed by T2, resulting in an orphan
duke@435 3792 // object monitor M and T2 becoming stranded. We can remedy that situation
duke@435 3793 // by having T2 periodically poll the object's mark word using timed wait
duke@435 3794 // operations. If T2 discovers that a stomp has occurred it vacates
duke@435 3795 // the monitor M and wakes any other threads stranded on the now-orphan M.
duke@435 3796 // In addition the monitor scavenger, which performs deflation,
duke@435 3797 // would also need to check for orpan monitors and stranded threads.
duke@435 3798 //
duke@435 3799 // Finally, inflation is also used when T2 needs to assign a hashCode
duke@435 3800 // to O and O is stack-locked by T1. The "stomp" race could cause
duke@435 3801 // an assigned hashCode value to be lost. We can avoid that condition
duke@435 3802 // and provide the necessary hashCode stability invariants by ensuring
duke@435 3803 // that hashCode generation is idempotent between copying GCs.
duke@435 3804 // For example we could compute the hashCode of an object O as
duke@435 3805 // O's heap address XOR some high quality RNG value that is refreshed
duke@435 3806 // at GC-time. The monitor scavenger would install the hashCode
duke@435 3807 // found in any orphan monitors. Again, the mechanism admits a
duke@435 3808 // lost-update "stomp" WAW race but detects and recovers as needed.
duke@435 3809 //
duke@435 3810 // A prototype implementation showed excellent results, although
duke@435 3811 // the scavenger and timeout code was rather involved.
duke@435 3812
duke@435 3813 casn (mark_addr.base(), Rbox, Rscratch) ;
duke@435 3814 cmp (Rbox, Rscratch);
duke@435 3815 // Intentional fall through into done ...
duke@435 3816
duke@435 3817 bind (done) ;
duke@435 3818 }
duke@435 3819
duke@435 3820
duke@435 3821
duke@435 3822 void MacroAssembler::print_CPU_state() {
duke@435 3823 // %%%%% need to implement this
duke@435 3824 }
duke@435 3825
duke@435 3826 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
duke@435 3827 // %%%%% need to implement this
duke@435 3828 }
duke@435 3829
duke@435 3830 void MacroAssembler::push_IU_state() {
duke@435 3831 // %%%%% need to implement this
duke@435 3832 }
duke@435 3833
duke@435 3834
duke@435 3835 void MacroAssembler::pop_IU_state() {
duke@435 3836 // %%%%% need to implement this
duke@435 3837 }
duke@435 3838
duke@435 3839
duke@435 3840 void MacroAssembler::push_FPU_state() {
duke@435 3841 // %%%%% need to implement this
duke@435 3842 }
duke@435 3843
duke@435 3844
duke@435 3845 void MacroAssembler::pop_FPU_state() {
duke@435 3846 // %%%%% need to implement this
duke@435 3847 }
duke@435 3848
duke@435 3849
duke@435 3850 void MacroAssembler::push_CPU_state() {
duke@435 3851 // %%%%% need to implement this
duke@435 3852 }
duke@435 3853
duke@435 3854
duke@435 3855 void MacroAssembler::pop_CPU_state() {
duke@435 3856 // %%%%% need to implement this
duke@435 3857 }
duke@435 3858
duke@435 3859
duke@435 3860
duke@435 3861 void MacroAssembler::verify_tlab() {
duke@435 3862 #ifdef ASSERT
duke@435 3863 if (UseTLAB && VerifyOops) {
duke@435 3864 Label next, next2, ok;
duke@435 3865 Register t1 = L0;
duke@435 3866 Register t2 = L1;
duke@435 3867 Register t3 = L2;
duke@435 3868
duke@435 3869 save_frame(0);
duke@435 3870 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
duke@435 3871 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
duke@435 3872 or3(t1, t2, t3);
duke@435 3873 cmp(t1, t2);
duke@435 3874 br(Assembler::greaterEqual, false, Assembler::pn, next);
duke@435 3875 delayed()->nop();
duke@435 3876 stop("assert(top >= start)");
duke@435 3877 should_not_reach_here();
duke@435 3878
duke@435 3879 bind(next);
duke@435 3880 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
duke@435 3881 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
duke@435 3882 or3(t3, t2, t3);
duke@435 3883 cmp(t1, t2);
duke@435 3884 br(Assembler::lessEqual, false, Assembler::pn, next2);
duke@435 3885 delayed()->nop();
duke@435 3886 stop("assert(top <= end)");
duke@435 3887 should_not_reach_here();
duke@435 3888
duke@435 3889 bind(next2);
duke@435 3890 and3(t3, MinObjAlignmentInBytesMask, t3);
duke@435 3891 cmp(t3, 0);
duke@435 3892 br(Assembler::lessEqual, false, Assembler::pn, ok);
duke@435 3893 delayed()->nop();
duke@435 3894 stop("assert(aligned)");
duke@435 3895 should_not_reach_here();
duke@435 3896
duke@435 3897 bind(ok);
duke@435 3898 restore();
duke@435 3899 }
duke@435 3900 #endif
duke@435 3901 }
duke@435 3902
duke@435 3903
duke@435 3904 void MacroAssembler::eden_allocate(
duke@435 3905 Register obj, // result: pointer to object after successful allocation
duke@435 3906 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 3907 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 3908 Register t1, // temp register
duke@435 3909 Register t2, // temp register
duke@435 3910 Label& slow_case // continuation point if fast allocation fails
duke@435 3911 ){
duke@435 3912 // make sure arguments make sense
duke@435 3913 assert_different_registers(obj, var_size_in_bytes, t1, t2);
duke@435 3914 assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
duke@435 3915 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
duke@435 3916
ysr@777 3917 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
ysr@777 3918 // No allocation in the shared eden.
ysr@777 3919 br(Assembler::always, false, Assembler::pt, slow_case);
ysr@777 3920 delayed()->nop();
ysr@777 3921 } else {
ysr@777 3922 // get eden boundaries
ysr@777 3923 // note: we need both top & top_addr!
ysr@777 3924 const Register top_addr = t1;
ysr@777 3925 const Register end = t2;
ysr@777 3926
ysr@777 3927 CollectedHeap* ch = Universe::heap();
ysr@777 3928 set((intx)ch->top_addr(), top_addr);
ysr@777 3929 intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
ysr@777 3930 ld_ptr(top_addr, delta, end);
ysr@777 3931 ld_ptr(top_addr, 0, obj);
ysr@777 3932
ysr@777 3933 // try to allocate
ysr@777 3934 Label retry;
ysr@777 3935 bind(retry);
duke@435 3936 #ifdef ASSERT
ysr@777 3937 // make sure eden top is properly aligned
ysr@777 3938 {
ysr@777 3939 Label L;
ysr@777 3940 btst(MinObjAlignmentInBytesMask, obj);
ysr@777 3941 br(Assembler::zero, false, Assembler::pt, L);
ysr@777 3942 delayed()->nop();
ysr@777 3943 stop("eden top is not properly aligned");
ysr@777 3944 bind(L);
ysr@777 3945 }
ysr@777 3946 #endif // ASSERT
ysr@777 3947 const Register free = end;
ysr@777 3948 sub(end, obj, free); // compute amount of free space
ysr@777 3949 if (var_size_in_bytes->is_valid()) {
ysr@777 3950 // size is unknown at compile time
ysr@777 3951 cmp(free, var_size_in_bytes);
ysr@777 3952 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
ysr@777 3953 delayed()->add(obj, var_size_in_bytes, end);
ysr@777 3954 } else {
ysr@777 3955 // size is known at compile time
ysr@777 3956 cmp(free, con_size_in_bytes);
ysr@777 3957 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
ysr@777 3958 delayed()->add(obj, con_size_in_bytes, end);
ysr@777 3959 }
ysr@777 3960 // Compare obj with the value at top_addr; if still equal, swap the value of
ysr@777 3961 // end with the value at top_addr. If not equal, read the value at top_addr
ysr@777 3962 // into end.
ysr@777 3963 casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
ysr@777 3964 // if someone beat us on the allocation, try again, otherwise continue
ysr@777 3965 cmp(obj, end);
ysr@777 3966 brx(Assembler::notEqual, false, Assembler::pn, retry);
ysr@777 3967 delayed()->mov(end, obj); // nop if successfull since obj == end
ysr@777 3968
ysr@777 3969 #ifdef ASSERT
ysr@777 3970 // make sure eden top is properly aligned
ysr@777 3971 {
ysr@777 3972 Label L;
ysr@777 3973 const Register top_addr = t1;
ysr@777 3974
ysr@777 3975 set((intx)ch->top_addr(), top_addr);
ysr@777 3976 ld_ptr(top_addr, 0, top_addr);
ysr@777 3977 btst(MinObjAlignmentInBytesMask, top_addr);
ysr@777 3978 br(Assembler::zero, false, Assembler::pt, L);
ysr@777 3979 delayed()->nop();
ysr@777 3980 stop("eden top is not properly aligned");
ysr@777 3981 bind(L);
ysr@777 3982 }
ysr@777 3983 #endif // ASSERT
duke@435 3984 }
duke@435 3985 }
duke@435 3986
duke@435 3987
duke@435 3988 void MacroAssembler::tlab_allocate(
duke@435 3989 Register obj, // result: pointer to object after successful allocation
duke@435 3990 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 3991 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 3992 Register t1, // temp register
duke@435 3993 Label& slow_case // continuation point if fast allocation fails
duke@435 3994 ){
duke@435 3995 // make sure arguments make sense
duke@435 3996 assert_different_registers(obj, var_size_in_bytes, t1);
duke@435 3997 assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
duke@435 3998 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
duke@435 3999
duke@435 4000 const Register free = t1;
duke@435 4001
duke@435 4002 verify_tlab();
duke@435 4003
duke@435 4004 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
duke@435 4005
duke@435 4006 // calculate amount of free space
duke@435 4007 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
duke@435 4008 sub(free, obj, free);
duke@435 4009
duke@435 4010 Label done;
duke@435 4011 if (var_size_in_bytes == noreg) {
duke@435 4012 cmp(free, con_size_in_bytes);
duke@435 4013 } else {
duke@435 4014 cmp(free, var_size_in_bytes);
duke@435 4015 }
duke@435 4016 br(Assembler::less, false, Assembler::pn, slow_case);
duke@435 4017 // calculate the new top pointer
duke@435 4018 if (var_size_in_bytes == noreg) {
duke@435 4019 delayed()->add(obj, con_size_in_bytes, free);
duke@435 4020 } else {
duke@435 4021 delayed()->add(obj, var_size_in_bytes, free);
duke@435 4022 }
duke@435 4023
duke@435 4024 bind(done);
duke@435 4025
duke@435 4026 #ifdef ASSERT
duke@435 4027 // make sure new free pointer is properly aligned
duke@435 4028 {
duke@435 4029 Label L;
duke@435 4030 btst(MinObjAlignmentInBytesMask, free);
duke@435 4031 br(Assembler::zero, false, Assembler::pt, L);
duke@435 4032 delayed()->nop();
duke@435 4033 stop("updated TLAB free is not properly aligned");
duke@435 4034 bind(L);
duke@435 4035 }
duke@435 4036 #endif // ASSERT
duke@435 4037
duke@435 4038 // update the tlab top pointer
duke@435 4039 st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
duke@435 4040 verify_tlab();
duke@435 4041 }
duke@435 4042
duke@435 4043
duke@435 4044 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
duke@435 4045 Register top = O0;
duke@435 4046 Register t1 = G1;
duke@435 4047 Register t2 = G3;
duke@435 4048 Register t3 = O1;
duke@435 4049 assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
duke@435 4050 Label do_refill, discard_tlab;
duke@435 4051
duke@435 4052 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
duke@435 4053 // No allocation in the shared eden.
duke@435 4054 br(Assembler::always, false, Assembler::pt, slow_case);
duke@435 4055 delayed()->nop();
duke@435 4056 }
duke@435 4057
duke@435 4058 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
duke@435 4059 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
duke@435 4060 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
duke@435 4061
duke@435 4062 // calculate amount of free space
duke@435 4063 sub(t1, top, t1);
duke@435 4064 srl_ptr(t1, LogHeapWordSize, t1);
duke@435 4065
duke@435 4066 // Retain tlab and allocate object in shared space if
duke@435 4067 // the amount free in the tlab is too large to discard.
duke@435 4068 cmp(t1, t2);
duke@435 4069 brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
duke@435 4070
duke@435 4071 // increment waste limit to prevent getting stuck on this slow path
duke@435 4072 delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
duke@435 4073 st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
duke@435 4074 if (TLABStats) {
duke@435 4075 // increment number of slow_allocations
duke@435 4076 ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
duke@435 4077 add(t2, 1, t2);
duke@435 4078 stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
duke@435 4079 }
duke@435 4080 br(Assembler::always, false, Assembler::pt, try_eden);
duke@435 4081 delayed()->nop();
duke@435 4082
duke@435 4083 bind(discard_tlab);
duke@435 4084 if (TLABStats) {
duke@435 4085 // increment number of refills
duke@435 4086 ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
duke@435 4087 add(t2, 1, t2);
duke@435 4088 stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
duke@435 4089 // accumulate wastage
duke@435 4090 ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
duke@435 4091 add(t2, t1, t2);
duke@435 4092 stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
duke@435 4093 }
duke@435 4094
duke@435 4095 // if tlab is currently allocated (top or end != null) then
duke@435 4096 // fill [top, end + alignment_reserve) with array object
duke@435 4097 br_null(top, false, Assembler::pn, do_refill);
duke@435 4098 delayed()->nop();
duke@435 4099
duke@435 4100 set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
duke@435 4101 st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
duke@435 4102 // set klass to intArrayKlass
duke@435 4103 sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
duke@435 4104 add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
duke@435 4105 sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
duke@435 4106 st(t1, top, arrayOopDesc::length_offset_in_bytes());
coleenp@602 4107 set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
coleenp@602 4108 ld_ptr(t2, 0, t2);
coleenp@602 4109 // store klass last. concurrent gcs assumes klass length is valid if
coleenp@602 4110 // klass field is not null.
coleenp@602 4111 store_klass(t2, top);
duke@435 4112 verify_oop(top);
duke@435 4113
phh@2423 4114 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
phh@2423 4115 sub(top, t1, t1); // size of tlab's allocated portion
phh@2447 4116 incr_allocated_bytes(t1, t2, t3);
phh@2423 4117
duke@435 4118 // refill the tlab with an eden allocation
duke@435 4119 bind(do_refill);
duke@435 4120 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
duke@435 4121 sll_ptr(t1, LogHeapWordSize, t1);
phh@2423 4122 // allocate new tlab, address returned in top
duke@435 4123 eden_allocate(top, t1, 0, t2, t3, slow_case);
duke@435 4124
duke@435 4125 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
duke@435 4126 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
duke@435 4127 #ifdef ASSERT
duke@435 4128 // check that tlab_size (t1) is still valid
duke@435 4129 {
duke@435 4130 Label ok;
duke@435 4131 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
duke@435 4132 sll_ptr(t2, LogHeapWordSize, t2);
duke@435 4133 cmp(t1, t2);
duke@435 4134 br(Assembler::equal, false, Assembler::pt, ok);
duke@435 4135 delayed()->nop();
duke@435 4136 stop("assert(t1 == tlab_size)");
duke@435 4137 should_not_reach_here();
duke@435 4138
duke@435 4139 bind(ok);
duke@435 4140 }
duke@435 4141 #endif // ASSERT
duke@435 4142 add(top, t1, top); // t1 is tlab_size
duke@435 4143 sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
duke@435 4144 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
duke@435 4145 verify_tlab();
duke@435 4146 br(Assembler::always, false, Assembler::pt, retry);
duke@435 4147 delayed()->nop();
duke@435 4148 }
duke@435 4149
phh@2447 4150 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
phh@2447 4151 Register t1, Register t2) {
phh@2423 4152 // Bump total bytes allocated by this thread
phh@2423 4153 assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
phh@2447 4154 assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
phh@2423 4155 // v8 support has gone the way of the dodo
phh@2423 4156 ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
phh@2447 4157 add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
phh@2423 4158 stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
phh@2423 4159 }
phh@2423 4160
duke@435 4161 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
duke@435 4162 switch (cond) {
duke@435 4163 // Note some conditions are synonyms for others
duke@435 4164 case Assembler::never: return Assembler::always;
duke@435 4165 case Assembler::zero: return Assembler::notZero;
duke@435 4166 case Assembler::lessEqual: return Assembler::greater;
duke@435 4167 case Assembler::less: return Assembler::greaterEqual;
duke@435 4168 case Assembler::lessEqualUnsigned: return Assembler::greaterUnsigned;
duke@435 4169 case Assembler::lessUnsigned: return Assembler::greaterEqualUnsigned;
duke@435 4170 case Assembler::negative: return Assembler::positive;
duke@435 4171 case Assembler::overflowSet: return Assembler::overflowClear;
duke@435 4172 case Assembler::always: return Assembler::never;
duke@435 4173 case Assembler::notZero: return Assembler::zero;
duke@435 4174 case Assembler::greater: return Assembler::lessEqual;
duke@435 4175 case Assembler::greaterEqual: return Assembler::less;
duke@435 4176 case Assembler::greaterUnsigned: return Assembler::lessEqualUnsigned;
duke@435 4177 case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
duke@435 4178 case Assembler::positive: return Assembler::negative;
duke@435 4179 case Assembler::overflowClear: return Assembler::overflowSet;
duke@435 4180 }
duke@435 4181
duke@435 4182 ShouldNotReachHere(); return Assembler::overflowClear;
duke@435 4183 }
duke@435 4184
duke@435 4185 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
duke@435 4186 Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
duke@435 4187 Condition negated_cond = negate_condition(cond);
duke@435 4188 Label L;
duke@435 4189 brx(negated_cond, false, Assembler::pt, L);
duke@435 4190 delayed()->nop();
duke@435 4191 inc_counter(counter_ptr, Rtmp1, Rtmp2);
duke@435 4192 bind(L);
duke@435 4193 }
duke@435 4194
twisti@1162 4195 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
twisti@1162 4196 AddressLiteral addrlit(counter_addr);
twisti@1162 4197 sethi(addrlit, Rtmp1); // Move hi22 bits into temporary register.
twisti@1162 4198 Address addr(Rtmp1, addrlit.low10()); // Build an address with low10 bits.
twisti@1162 4199 ld(addr, Rtmp2);
duke@435 4200 inc(Rtmp2);
twisti@1162 4201 st(Rtmp2, addr);
twisti@1162 4202 }
twisti@1162 4203
twisti@1162 4204 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
twisti@1162 4205 inc_counter((address) counter_addr, Rtmp1, Rtmp2);
duke@435 4206 }
duke@435 4207
duke@435 4208 SkipIfEqual::SkipIfEqual(
duke@435 4209 MacroAssembler* masm, Register temp, const bool* flag_addr,
duke@435 4210 Assembler::Condition condition) {
duke@435 4211 _masm = masm;
twisti@1162 4212 AddressLiteral flag(flag_addr);
twisti@1162 4213 _masm->sethi(flag, temp);
twisti@1162 4214 _masm->ldub(temp, flag.low10(), temp);
duke@435 4215 _masm->tst(temp);
duke@435 4216 _masm->br(condition, false, Assembler::pt, _label);
duke@435 4217 _masm->delayed()->nop();
duke@435 4218 }
duke@435 4219
duke@435 4220 SkipIfEqual::~SkipIfEqual() {
duke@435 4221 _masm->bind(_label);
duke@435 4222 }
duke@435 4223
duke@435 4224
duke@435 4225 // Writes to stack successive pages until offset reached to check for
duke@435 4226 // stack overflow + shadow pages. This clobbers tsp and scratch.
duke@435 4227 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
duke@435 4228 Register Rscratch) {
duke@435 4229 // Use stack pointer in temp stack pointer
duke@435 4230 mov(SP, Rtsp);
duke@435 4231
duke@435 4232 // Bang stack for total size given plus stack shadow page size.
duke@435 4233 // Bang one page at a time because a large size can overflow yellow and
duke@435 4234 // red zones (the bang will fail but stack overflow handling can't tell that
duke@435 4235 // it was a stack overflow bang vs a regular segv).
duke@435 4236 int offset = os::vm_page_size();
duke@435 4237 Register Roffset = Rscratch;
duke@435 4238
duke@435 4239 Label loop;
duke@435 4240 bind(loop);
duke@435 4241 set((-offset)+STACK_BIAS, Rscratch);
duke@435 4242 st(G0, Rtsp, Rscratch);
duke@435 4243 set(offset, Roffset);
duke@435 4244 sub(Rsize, Roffset, Rsize);
duke@435 4245 cmp(Rsize, G0);
duke@435 4246 br(Assembler::greater, false, Assembler::pn, loop);
duke@435 4247 delayed()->sub(Rtsp, Roffset, Rtsp);
duke@435 4248
duke@435 4249 // Bang down shadow pages too.
duke@435 4250 // The -1 because we already subtracted 1 page.
duke@435 4251 for (int i = 0; i< StackShadowPages-1; i++) {
duke@435 4252 set((-i*offset)+STACK_BIAS, Rscratch);
duke@435 4253 st(G0, Rtsp, Rscratch);
duke@435 4254 }
duke@435 4255 }
coleenp@548 4256
ysr@777 4257 ///////////////////////////////////////////////////////////////////////////////////
ysr@777 4258 #ifndef SERIALGC
ysr@777 4259
ysr@777 4260 static uint num_stores = 0;
ysr@777 4261 static uint num_null_pre_stores = 0;
ysr@777 4262
ysr@777 4263 static void count_null_pre_vals(void* pre_val) {
ysr@777 4264 num_stores++;
ysr@777 4265 if (pre_val == NULL) num_null_pre_stores++;
ysr@777 4266 if ((num_stores % 1000000) == 0) {
ysr@777 4267 tty->print_cr(UINT32_FORMAT " stores, " UINT32_FORMAT " (%5.2f%%) with null pre-vals.",
ysr@777 4268 num_stores, num_null_pre_stores,
ysr@777 4269 100.0*(float)num_null_pre_stores/(float)num_stores);
ysr@777 4270 }
ysr@777 4271 }
ysr@777 4272
ysr@777 4273 static address satb_log_enqueue_with_frame = 0;
ysr@777 4274 static u_char* satb_log_enqueue_with_frame_end = 0;
ysr@777 4275
ysr@777 4276 static address satb_log_enqueue_frameless = 0;
ysr@777 4277 static u_char* satb_log_enqueue_frameless_end = 0;
ysr@777 4278
ysr@777 4279 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
ysr@777 4280
ysr@777 4281 // The calls to this don't work. We'd need to do a fair amount of work to
ysr@777 4282 // make it work.
ysr@777 4283 static void check_index(int ind) {
ysr@777 4284 assert(0 <= ind && ind <= 64*K && ((ind % oopSize) == 0),
jcoomes@1844 4285 "Invariants.");
ysr@777 4286 }
ysr@777 4287
ysr@777 4288 static void generate_satb_log_enqueue(bool with_frame) {
ysr@777 4289 BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
twisti@2103 4290 CodeBuffer buf(bb);
ysr@777 4291 MacroAssembler masm(&buf);
ysr@777 4292 address start = masm.pc();
ysr@777 4293 Register pre_val;
ysr@777 4294
ysr@777 4295 Label refill, restart;
ysr@777 4296 if (with_frame) {
ysr@777 4297 masm.save_frame(0);
ysr@777 4298 pre_val = I0; // Was O0 before the save.
ysr@777 4299 } else {
ysr@777 4300 pre_val = O0;
ysr@777 4301 }
ysr@777 4302 int satb_q_index_byte_offset =
ysr@777 4303 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4304 PtrQueue::byte_offset_of_index());
ysr@777 4305 int satb_q_buf_byte_offset =
ysr@777 4306 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4307 PtrQueue::byte_offset_of_buf());
ysr@777 4308 assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
ysr@777 4309 in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
ysr@777 4310 "check sizes in assembly below");
ysr@777 4311
ysr@777 4312 masm.bind(restart);
ysr@777 4313 masm.ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
ysr@777 4314
ysr@777 4315 masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn, L0, refill);
ysr@777 4316 // If the branch is taken, no harm in executing this in the delay slot.
ysr@777 4317 masm.delayed()->ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
ysr@777 4318 masm.sub(L0, oopSize, L0);
ysr@777 4319
ysr@777 4320 masm.st_ptr(pre_val, L1, L0); // [_buf + index] := I0
ysr@777 4321 if (!with_frame) {
ysr@777 4322 // Use return-from-leaf
ysr@777 4323 masm.retl();
ysr@777 4324 masm.delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
ysr@777 4325 } else {
ysr@777 4326 // Not delayed.
ysr@777 4327 masm.st_ptr(L0, G2_thread, satb_q_index_byte_offset);
ysr@777 4328 }
ysr@777 4329 if (with_frame) {
ysr@777 4330 masm.ret();
ysr@777 4331 masm.delayed()->restore();
ysr@777 4332 }
ysr@777 4333 masm.bind(refill);
ysr@777 4334
ysr@777 4335 address handle_zero =
ysr@777 4336 CAST_FROM_FN_PTR(address,
ysr@777 4337 &SATBMarkQueueSet::handle_zero_index_for_thread);
ysr@777 4338 // This should be rare enough that we can afford to save all the
ysr@777 4339 // scratch registers that the calling context might be using.
ysr@777 4340 masm.mov(G1_scratch, L0);
ysr@777 4341 masm.mov(G3_scratch, L1);
ysr@777 4342 masm.mov(G4, L2);
ysr@777 4343 // We need the value of O0 above (for the write into the buffer), so we
ysr@777 4344 // save and restore it.
ysr@777 4345 masm.mov(O0, L3);
ysr@777 4346 // Since the call will overwrite O7, we save and restore that, as well.
ysr@777 4347 masm.mov(O7, L4);
ysr@777 4348 masm.call_VM_leaf(L5, handle_zero, G2_thread);
ysr@777 4349 masm.mov(L0, G1_scratch);
ysr@777 4350 masm.mov(L1, G3_scratch);
ysr@777 4351 masm.mov(L2, G4);
ysr@777 4352 masm.mov(L3, O0);
ysr@777 4353 masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
ysr@777 4354 masm.delayed()->mov(L4, O7);
ysr@777 4355
ysr@777 4356 if (with_frame) {
ysr@777 4357 satb_log_enqueue_with_frame = start;
ysr@777 4358 satb_log_enqueue_with_frame_end = masm.pc();
ysr@777 4359 } else {
ysr@777 4360 satb_log_enqueue_frameless = start;
ysr@777 4361 satb_log_enqueue_frameless_end = masm.pc();
ysr@777 4362 }
ysr@777 4363 }
ysr@777 4364
ysr@777 4365 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
ysr@777 4366 if (with_frame) {
ysr@777 4367 if (satb_log_enqueue_with_frame == 0) {
ysr@777 4368 generate_satb_log_enqueue(with_frame);
ysr@777 4369 assert(satb_log_enqueue_with_frame != 0, "postcondition.");
ysr@777 4370 if (G1SATBPrintStubs) {
ysr@777 4371 tty->print_cr("Generated with-frame satb enqueue:");
ysr@777 4372 Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
ysr@777 4373 satb_log_enqueue_with_frame_end,
ysr@777 4374 tty);
ysr@777 4375 }
ysr@777 4376 }
ysr@777 4377 } else {
ysr@777 4378 if (satb_log_enqueue_frameless == 0) {
ysr@777 4379 generate_satb_log_enqueue(with_frame);
ysr@777 4380 assert(satb_log_enqueue_frameless != 0, "postcondition.");
ysr@777 4381 if (G1SATBPrintStubs) {
ysr@777 4382 tty->print_cr("Generated frameless satb enqueue:");
ysr@777 4383 Disassembler::decode((u_char*)satb_log_enqueue_frameless,
ysr@777 4384 satb_log_enqueue_frameless_end,
ysr@777 4385 tty);
ysr@777 4386 }
ysr@777 4387 }
ysr@777 4388 }
ysr@777 4389 }
ysr@777 4390
ysr@777 4391 void MacroAssembler::g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs) {
ysr@777 4392 assert(offset == 0 || index == noreg, "choose one");
ysr@777 4393
ysr@777 4394 if (G1DisablePreBarrier) return;
ysr@777 4395 // satb_log_barrier(tmp, obj, offset, preserve_o_regs);
ysr@777 4396 Label filtered;
ysr@777 4397 // satb_log_barrier_work0(tmp, filtered);
ysr@777 4398 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
ysr@777 4399 ld(G2,
ysr@777 4400 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4401 PtrQueue::byte_offset_of_active()),
ysr@777 4402 tmp);
ysr@777 4403 } else {
ysr@777 4404 guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
ysr@777 4405 "Assumption");
ysr@777 4406 ldsb(G2,
ysr@777 4407 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4408 PtrQueue::byte_offset_of_active()),
ysr@777 4409 tmp);
ysr@777 4410 }
ysr@1280 4411
ysr@777 4412 // Check on whether to annul.
ysr@777 4413 br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
ysr@777 4414 delayed() -> nop();
ysr@777 4415
ysr@777 4416 // satb_log_barrier_work1(tmp, offset);
ysr@777 4417 if (index == noreg) {
ysr@777 4418 if (Assembler::is_simm13(offset)) {
ysr@1280 4419 load_heap_oop(obj, offset, tmp);
ysr@777 4420 } else {
ysr@777 4421 set(offset, tmp);
ysr@1280 4422 load_heap_oop(obj, tmp, tmp);
ysr@777 4423 }
ysr@777 4424 } else {
ysr@1280 4425 load_heap_oop(obj, index, tmp);
ysr@777 4426 }
ysr@777 4427
ysr@777 4428 // satb_log_barrier_work2(obj, tmp, offset);
ysr@777 4429
ysr@777 4430 // satb_log_barrier_work3(tmp, filtered, preserve_o_regs);
ysr@777 4431
ysr@777 4432 const Register pre_val = tmp;
ysr@777 4433
ysr@777 4434 if (G1SATBBarrierPrintNullPreVals) {
ysr@777 4435 save_frame(0);
ysr@777 4436 mov(pre_val, O0);
ysr@777 4437 // Save G-regs that target may use.
ysr@777 4438 mov(G1, L1);
ysr@777 4439 mov(G2, L2);
ysr@777 4440 mov(G3, L3);
ysr@777 4441 mov(G4, L4);
ysr@777 4442 mov(G5, L5);
ysr@777 4443 call(CAST_FROM_FN_PTR(address, &count_null_pre_vals));
ysr@777 4444 delayed()->nop();
ysr@777 4445 // Restore G-regs that target may have used.
ysr@777 4446 mov(L1, G1);
ysr@777 4447 mov(L2, G2);
ysr@777 4448 mov(L3, G3);
ysr@777 4449 mov(L4, G4);
ysr@777 4450 mov(L5, G5);
ysr@777 4451 restore(G0, G0, G0);
ysr@777 4452 }
ysr@777 4453
ysr@777 4454 // Check on whether to annul.
ysr@777 4455 br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, pre_val, filtered);
ysr@777 4456 delayed() -> nop();
ysr@777 4457
ysr@777 4458 // OK, it's not filtered, so we'll need to call enqueue. In the normal
ysr@777 4459 // case, pre_val will be a scratch G-reg, but there's some cases in which
ysr@777 4460 // it's an O-reg. In the first case, do a normal call. In the latter,
ysr@777 4461 // do a save here and call the frameless version.
ysr@777 4462
ysr@777 4463 guarantee(pre_val->is_global() || pre_val->is_out(),
ysr@777 4464 "Or we need to think harder.");
ysr@777 4465 if (pre_val->is_global() && !preserve_o_regs) {
ysr@777 4466 generate_satb_log_enqueue_if_necessary(true); // with frame.
ysr@777 4467 call(satb_log_enqueue_with_frame);
ysr@777 4468 delayed()->mov(pre_val, O0);
ysr@777 4469 } else {
ysr@777 4470 generate_satb_log_enqueue_if_necessary(false); // with frameless.
ysr@777 4471 save_frame(0);
ysr@777 4472 call(satb_log_enqueue_frameless);
ysr@777 4473 delayed()->mov(pre_val->after_save(), O0);
ysr@777 4474 restore();
ysr@777 4475 }
ysr@777 4476
ysr@777 4477 bind(filtered);
ysr@777 4478 }
ysr@777 4479
ysr@777 4480 static jint num_ct_writes = 0;
ysr@777 4481 static jint num_ct_writes_filtered_in_hr = 0;
ysr@777 4482 static jint num_ct_writes_filtered_null = 0;
ysr@777 4483 static G1CollectedHeap* g1 = NULL;
ysr@777 4484
ysr@777 4485 static Thread* count_ct_writes(void* filter_val, void* new_val) {
ysr@777 4486 Atomic::inc(&num_ct_writes);
ysr@777 4487 if (filter_val == NULL) {
ysr@777 4488 Atomic::inc(&num_ct_writes_filtered_in_hr);
ysr@777 4489 } else if (new_val == NULL) {
ysr@777 4490 Atomic::inc(&num_ct_writes_filtered_null);
ysr@777 4491 } else {
ysr@777 4492 if (g1 == NULL) {
ysr@777 4493 g1 = G1CollectedHeap::heap();
ysr@777 4494 }
ysr@777 4495 }
ysr@777 4496 if ((num_ct_writes % 1000000) == 0) {
ysr@777 4497 jint num_ct_writes_filtered =
ysr@777 4498 num_ct_writes_filtered_in_hr +
apetrusenko@1112 4499 num_ct_writes_filtered_null;
ysr@777 4500
ysr@777 4501 tty->print_cr("%d potential CT writes: %5.2f%% filtered\n"
apetrusenko@1112 4502 " (%5.2f%% intra-HR, %5.2f%% null).",
ysr@777 4503 num_ct_writes,
ysr@777 4504 100.0*(float)num_ct_writes_filtered/(float)num_ct_writes,
ysr@777 4505 100.0*(float)num_ct_writes_filtered_in_hr/
ysr@777 4506 (float)num_ct_writes,
ysr@777 4507 100.0*(float)num_ct_writes_filtered_null/
ysr@777 4508 (float)num_ct_writes);
ysr@777 4509 }
ysr@777 4510 return Thread::current();
ysr@777 4511 }
ysr@777 4512
ysr@777 4513 static address dirty_card_log_enqueue = 0;
ysr@777 4514 static u_char* dirty_card_log_enqueue_end = 0;
ysr@777 4515
ysr@777 4516 // This gets to assume that o0 contains the object address.
ysr@777 4517 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
ysr@777 4518 BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
twisti@2103 4519 CodeBuffer buf(bb);
ysr@777 4520 MacroAssembler masm(&buf);
ysr@777 4521 address start = masm.pc();
ysr@777 4522
ysr@777 4523 Label not_already_dirty, restart, refill;
ysr@777 4524
ysr@777 4525 #ifdef _LP64
ysr@777 4526 masm.srlx(O0, CardTableModRefBS::card_shift, O0);
ysr@777 4527 #else
ysr@777 4528 masm.srl(O0, CardTableModRefBS::card_shift, O0);
ysr@777 4529 #endif
twisti@1162 4530 AddressLiteral addrlit(byte_map_base);
twisti@1162 4531 masm.set(addrlit, O1); // O1 := <card table base>
ysr@777 4532 masm.ldub(O0, O1, O2); // O2 := [O0 + O1]
ysr@777 4533
ysr@777 4534 masm.br_on_reg_cond(Assembler::rc_nz, /*annul*/false, Assembler::pt,
ysr@777 4535 O2, not_already_dirty);
ysr@777 4536 // Get O1 + O2 into a reg by itself -- useful in the take-the-branch
ysr@777 4537 // case, harmless if not.
ysr@777 4538 masm.delayed()->add(O0, O1, O3);
ysr@777 4539
ysr@777 4540 // We didn't take the branch, so we're already dirty: return.
ysr@777 4541 // Use return-from-leaf
ysr@777 4542 masm.retl();
ysr@777 4543 masm.delayed()->nop();
ysr@777 4544
ysr@777 4545 // Not dirty.
ysr@777 4546 masm.bind(not_already_dirty);
ysr@777 4547 // First, dirty it.
ysr@777 4548 masm.stb(G0, O3, G0); // [cardPtr] := 0 (i.e., dirty).
ysr@777 4549 int dirty_card_q_index_byte_offset =
ysr@777 4550 in_bytes(JavaThread::dirty_card_queue_offset() +
ysr@777 4551 PtrQueue::byte_offset_of_index());
ysr@777 4552 int dirty_card_q_buf_byte_offset =
ysr@777 4553 in_bytes(JavaThread::dirty_card_queue_offset() +
ysr@777 4554 PtrQueue::byte_offset_of_buf());
ysr@777 4555 masm.bind(restart);
ysr@777 4556 masm.ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
ysr@777 4557
ysr@777 4558 masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn,
ysr@777 4559 L0, refill);
ysr@777 4560 // If the branch is taken, no harm in executing this in the delay slot.
ysr@777 4561 masm.delayed()->ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
ysr@777 4562 masm.sub(L0, oopSize, L0);
ysr@777 4563
ysr@777 4564 masm.st_ptr(O3, L1, L0); // [_buf + index] := I0
ysr@777 4565 // Use return-from-leaf
ysr@777 4566 masm.retl();
ysr@777 4567 masm.delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
ysr@777 4568
ysr@777 4569 masm.bind(refill);
ysr@777 4570 address handle_zero =
ysr@777 4571 CAST_FROM_FN_PTR(address,
ysr@777 4572 &DirtyCardQueueSet::handle_zero_index_for_thread);
ysr@777 4573 // This should be rare enough that we can afford to save all the
ysr@777 4574 // scratch registers that the calling context might be using.
ysr@777 4575 masm.mov(G1_scratch, L3);
ysr@777 4576 masm.mov(G3_scratch, L5);
ysr@777 4577 // We need the value of O3 above (for the write into the buffer), so we
ysr@777 4578 // save and restore it.
ysr@777 4579 masm.mov(O3, L6);
ysr@777 4580 // Since the call will overwrite O7, we save and restore that, as well.
ysr@777 4581 masm.mov(O7, L4);
ysr@777 4582
ysr@777 4583 masm.call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
ysr@777 4584 masm.mov(L3, G1_scratch);
ysr@777 4585 masm.mov(L5, G3_scratch);
ysr@777 4586 masm.mov(L6, O3);
ysr@777 4587 masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
ysr@777 4588 masm.delayed()->mov(L4, O7);
ysr@777 4589
ysr@777 4590 dirty_card_log_enqueue = start;
ysr@777 4591 dirty_card_log_enqueue_end = masm.pc();
ysr@777 4592 // XXX Should have a guarantee here about not going off the end!
ysr@777 4593 // Does it already do so? Do an experiment...
ysr@777 4594 }
ysr@777 4595
ysr@777 4596 static inline void
ysr@777 4597 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
ysr@777 4598 if (dirty_card_log_enqueue == 0) {
ysr@777 4599 generate_dirty_card_log_enqueue(byte_map_base);
ysr@777 4600 assert(dirty_card_log_enqueue != 0, "postcondition.");
ysr@777 4601 if (G1SATBPrintStubs) {
ysr@777 4602 tty->print_cr("Generated dirty_card enqueue:");
ysr@777 4603 Disassembler::decode((u_char*)dirty_card_log_enqueue,
ysr@777 4604 dirty_card_log_enqueue_end,
ysr@777 4605 tty);
ysr@777 4606 }
ysr@777 4607 }
ysr@777 4608 }
ysr@777 4609
ysr@777 4610
ysr@777 4611 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
ysr@777 4612
ysr@777 4613 Label filtered;
ysr@777 4614 MacroAssembler* post_filter_masm = this;
ysr@777 4615
ysr@777 4616 if (new_val == G0) return;
ysr@777 4617 if (G1DisablePostBarrier) return;
ysr@777 4618
ysr@777 4619 G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
ysr@777 4620 assert(bs->kind() == BarrierSet::G1SATBCT ||
ysr@777 4621 bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
ysr@777 4622 if (G1RSBarrierRegionFilter) {
ysr@777 4623 xor3(store_addr, new_val, tmp);
ysr@777 4624 #ifdef _LP64
ysr@777 4625 srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
ysr@777 4626 #else
ysr@777 4627 srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
ysr@777 4628 #endif
ysr@777 4629 if (G1PrintCTFilterStats) {
ysr@777 4630 guarantee(tmp->is_global(), "Or stats won't work...");
ysr@777 4631 // This is a sleazy hack: I'm temporarily hijacking G2, which I
ysr@777 4632 // promise to restore.
ysr@777 4633 mov(new_val, G2);
ysr@777 4634 save_frame(0);
ysr@777 4635 mov(tmp, O0);
ysr@777 4636 mov(G2, O1);
ysr@777 4637 // Save G-regs that target may use.
ysr@777 4638 mov(G1, L1);
ysr@777 4639 mov(G2, L2);
ysr@777 4640 mov(G3, L3);
ysr@777 4641 mov(G4, L4);
ysr@777 4642 mov(G5, L5);
ysr@777 4643 call(CAST_FROM_FN_PTR(address, &count_ct_writes));
ysr@777 4644 delayed()->nop();
ysr@777 4645 mov(O0, G2);
ysr@777 4646 // Restore G-regs that target may have used.
ysr@777 4647 mov(L1, G1);
ysr@777 4648 mov(L3, G3);
ysr@777 4649 mov(L4, G4);
ysr@777 4650 mov(L5, G5);
ysr@777 4651 restore(G0, G0, G0);
ysr@777 4652 }
ysr@777 4653 // XXX Should I predict this taken or not? Does it mattern?
ysr@777 4654 br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
ysr@777 4655 delayed()->nop();
ysr@777 4656 }
ysr@777 4657
iveresov@1229 4658 // If the "store_addr" register is an "in" or "local" register, move it to
iveresov@1229 4659 // a scratch reg so we can pass it as an argument.
iveresov@1229 4660 bool use_scr = !(store_addr->is_global() || store_addr->is_out());
iveresov@1229 4661 // Pick a scratch register different from "tmp".
iveresov@1229 4662 Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
iveresov@1229 4663 // Make sure we use up the delay slot!
iveresov@1229 4664 if (use_scr) {
iveresov@1229 4665 post_filter_masm->mov(store_addr, scr);
ysr@777 4666 } else {
iveresov@1229 4667 post_filter_masm->nop();
ysr@777 4668 }
iveresov@1229 4669 generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
iveresov@1229 4670 save_frame(0);
iveresov@1229 4671 call(dirty_card_log_enqueue);
iveresov@1229 4672 if (use_scr) {
iveresov@1229 4673 delayed()->mov(scr, O0);
iveresov@1229 4674 } else {
iveresov@1229 4675 delayed()->mov(store_addr->after_save(), O0);
iveresov@1229 4676 }
iveresov@1229 4677 restore();
ysr@777 4678
ysr@777 4679 bind(filtered);
ysr@777 4680
ysr@777 4681 }
ysr@777 4682
ysr@777 4683 #endif // SERIALGC
ysr@777 4684 ///////////////////////////////////////////////////////////////////////////////////
ysr@777 4685
ysr@777 4686 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
ysr@777 4687 // If we're writing constant NULL, we can skip the write barrier.
ysr@777 4688 if (new_val == G0) return;
ysr@777 4689 CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
ysr@777 4690 assert(bs->kind() == BarrierSet::CardTableModRef ||
ysr@777 4691 bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
ysr@777 4692 card_table_write(bs->byte_map_base, tmp, store_addr);
ysr@777 4693 }
ysr@777 4694
kvn@599 4695 void MacroAssembler::load_klass(Register src_oop, Register klass) {
coleenp@548 4696 // The number of bytes in this code is used by
coleenp@548 4697 // MachCallDynamicJavaNode::ret_addr_offset()
coleenp@548 4698 // if this changes, change that.
coleenp@548 4699 if (UseCompressedOops) {
kvn@599 4700 lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
kvn@599 4701 decode_heap_oop_not_null(klass);
coleenp@548 4702 } else {
kvn@599 4703 ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
coleenp@548 4704 }
coleenp@548 4705 }
coleenp@548 4706
kvn@599 4707 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
coleenp@548 4708 if (UseCompressedOops) {
kvn@599 4709 assert(dst_oop != klass, "not enough registers");
kvn@599 4710 encode_heap_oop_not_null(klass);
coleenp@602 4711 st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
coleenp@548 4712 } else {
kvn@599 4713 st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
kvn@559 4714 }
kvn@559 4715 }
kvn@559 4716
coleenp@602 4717 void MacroAssembler::store_klass_gap(Register s, Register d) {
coleenp@602 4718 if (UseCompressedOops) {
coleenp@602 4719 assert(s != d, "not enough registers");
coleenp@602 4720 st(s, d, oopDesc::klass_gap_offset_in_bytes());
coleenp@548 4721 }
coleenp@548 4722 }
coleenp@548 4723
twisti@1162 4724 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
coleenp@548 4725 if (UseCompressedOops) {
twisti@1162 4726 lduw(s, d);
coleenp@548 4727 decode_heap_oop(d);
coleenp@548 4728 } else {
twisti@1162 4729 ld_ptr(s, d);
coleenp@548 4730 }
coleenp@548 4731 }
coleenp@548 4732
coleenp@548 4733 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
coleenp@548 4734 if (UseCompressedOops) {
coleenp@548 4735 lduw(s1, s2, d);
coleenp@548 4736 decode_heap_oop(d, d);
coleenp@548 4737 } else {
coleenp@548 4738 ld_ptr(s1, s2, d);
coleenp@548 4739 }
coleenp@548 4740 }
coleenp@548 4741
coleenp@548 4742 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
coleenp@548 4743 if (UseCompressedOops) {
coleenp@548 4744 lduw(s1, simm13a, d);
coleenp@548 4745 decode_heap_oop(d, d);
coleenp@548 4746 } else {
coleenp@548 4747 ld_ptr(s1, simm13a, d);
coleenp@548 4748 }
coleenp@548 4749 }
coleenp@548 4750
twisti@2201 4751 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
twisti@2201 4752 if (s2.is_constant()) load_heap_oop(s1, s2.as_constant(), d);
twisti@2201 4753 else load_heap_oop(s1, s2.as_register(), d);
twisti@2201 4754 }
twisti@2201 4755
coleenp@548 4756 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
coleenp@548 4757 if (UseCompressedOops) {
coleenp@548 4758 assert(s1 != d && s2 != d, "not enough registers");
coleenp@548 4759 encode_heap_oop(d);
coleenp@548 4760 st(d, s1, s2);
coleenp@548 4761 } else {
coleenp@548 4762 st_ptr(d, s1, s2);
coleenp@548 4763 }
coleenp@548 4764 }
coleenp@548 4765
coleenp@548 4766 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
coleenp@548 4767 if (UseCompressedOops) {
coleenp@548 4768 assert(s1 != d, "not enough registers");
coleenp@548 4769 encode_heap_oop(d);
coleenp@548 4770 st(d, s1, simm13a);
coleenp@548 4771 } else {
coleenp@548 4772 st_ptr(d, s1, simm13a);
coleenp@548 4773 }
coleenp@548 4774 }
coleenp@548 4775
coleenp@548 4776 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
coleenp@548 4777 if (UseCompressedOops) {
coleenp@548 4778 assert(a.base() != d, "not enough registers");
coleenp@548 4779 encode_heap_oop(d);
coleenp@548 4780 st(d, a, offset);
coleenp@548 4781 } else {
coleenp@548 4782 st_ptr(d, a, offset);
coleenp@548 4783 }
coleenp@548 4784 }
coleenp@548 4785
coleenp@548 4786
coleenp@548 4787 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
coleenp@548 4788 assert (UseCompressedOops, "must be compressed");
kvn@1077 4789 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4790 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4791 verify_oop(src);
kvn@1077 4792 if (Universe::narrow_oop_base() == NULL) {
kvn@1077 4793 srlx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4794 return;
kvn@1077 4795 }
coleenp@548 4796 Label done;
coleenp@548 4797 if (src == dst) {
coleenp@548 4798 // optimize for frequent case src == dst
coleenp@548 4799 bpr(rc_nz, true, Assembler::pt, src, done);
coleenp@548 4800 delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
coleenp@548 4801 bind(done);
coleenp@548 4802 srlx(src, LogMinObjAlignmentInBytes, dst);
coleenp@548 4803 } else {
coleenp@548 4804 bpr(rc_z, false, Assembler::pn, src, done);
coleenp@548 4805 delayed() -> mov(G0, dst);
coleenp@548 4806 // could be moved before branch, and annulate delay,
coleenp@548 4807 // but may add some unneeded work decoding null
coleenp@548 4808 sub(src, G6_heapbase, dst);
coleenp@548 4809 srlx(dst, LogMinObjAlignmentInBytes, dst);
coleenp@548 4810 bind(done);
coleenp@548 4811 }
coleenp@548 4812 }
coleenp@548 4813
coleenp@548 4814
coleenp@548 4815 void MacroAssembler::encode_heap_oop_not_null(Register r) {
coleenp@548 4816 assert (UseCompressedOops, "must be compressed");
kvn@1077 4817 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4818 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4819 verify_oop(r);
kvn@1077 4820 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4821 sub(r, G6_heapbase, r);
coleenp@548 4822 srlx(r, LogMinObjAlignmentInBytes, r);
coleenp@548 4823 }
coleenp@548 4824
kvn@559 4825 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
kvn@559 4826 assert (UseCompressedOops, "must be compressed");
kvn@1077 4827 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4828 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4829 verify_oop(src);
kvn@1077 4830 if (Universe::narrow_oop_base() == NULL) {
kvn@1077 4831 srlx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4832 } else {
kvn@1077 4833 sub(src, G6_heapbase, dst);
kvn@1077 4834 srlx(dst, LogMinObjAlignmentInBytes, dst);
kvn@1077 4835 }
kvn@559 4836 }
kvn@559 4837
coleenp@548 4838 // Same algorithm as oops.inline.hpp decode_heap_oop.
coleenp@548 4839 void MacroAssembler::decode_heap_oop(Register src, Register dst) {
coleenp@548 4840 assert (UseCompressedOops, "must be compressed");
kvn@1077 4841 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4842 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@548 4843 sllx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4844 if (Universe::narrow_oop_base() != NULL) {
kvn@1077 4845 Label done;
kvn@1077 4846 bpr(rc_nz, true, Assembler::pt, dst, done);
kvn@1077 4847 delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
kvn@1077 4848 bind(done);
kvn@1077 4849 }
coleenp@613 4850 verify_oop(dst);
coleenp@548 4851 }
coleenp@548 4852
coleenp@548 4853 void MacroAssembler::decode_heap_oop_not_null(Register r) {
coleenp@548 4854 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
coleenp@548 4855 // pd_code_size_limit.
coleenp@613 4856 // Also do not verify_oop as this is called by verify_oop.
coleenp@548 4857 assert (UseCompressedOops, "must be compressed");
kvn@1077 4858 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4859 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@548 4860 sllx(r, LogMinObjAlignmentInBytes, r);
kvn@1077 4861 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4862 add(r, G6_heapbase, r);
coleenp@548 4863 }
coleenp@548 4864
kvn@559 4865 void MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
kvn@559 4866 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
kvn@559 4867 // pd_code_size_limit.
coleenp@613 4868 // Also do not verify_oop as this is called by verify_oop.
kvn@559 4869 assert (UseCompressedOops, "must be compressed");
kvn@1077 4870 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4871 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
kvn@559 4872 sllx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4873 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4874 add(dst, G6_heapbase, dst);
kvn@559 4875 }
kvn@559 4876
coleenp@548 4877 void MacroAssembler::reinit_heapbase() {
coleenp@548 4878 if (UseCompressedOops) {
coleenp@548 4879 // call indirectly to solve generation ordering problem
twisti@1162 4880 AddressLiteral base(Universe::narrow_oop_base_addr());
coleenp@548 4881 load_ptr_contents(base, G6_heapbase);
coleenp@548 4882 }
coleenp@548 4883 }
kvn@1421 4884
kvn@1421 4885 // Compare char[] arrays aligned to 4 bytes.
kvn@1421 4886 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
kvn@1421 4887 Register limit, Register result,
kvn@1421 4888 Register chr1, Register chr2, Label& Ldone) {
kvn@1421 4889 Label Lvector, Lloop;
kvn@1421 4890 assert(chr1 == result, "should be the same");
kvn@1421 4891
kvn@1421 4892 // Note: limit contains number of bytes (2*char_elements) != 0.
kvn@1421 4893 andcc(limit, 0x2, chr1); // trailing character ?
kvn@1421 4894 br(Assembler::zero, false, Assembler::pt, Lvector);
kvn@1421 4895 delayed()->nop();
kvn@1421 4896
kvn@1421 4897 // compare the trailing char
kvn@1421 4898 sub(limit, sizeof(jchar), limit);
kvn@1421 4899 lduh(ary1, limit, chr1);
kvn@1421 4900 lduh(ary2, limit, chr2);
kvn@1421 4901 cmp(chr1, chr2);
kvn@1421 4902 br(Assembler::notEqual, true, Assembler::pt, Ldone);
kvn@1421 4903 delayed()->mov(G0, result); // not equal
kvn@1421 4904
kvn@1421 4905 // only one char ?
kvn@1421 4906 br_on_reg_cond(rc_z, true, Assembler::pn, limit, Ldone);
kvn@1421 4907 delayed()->add(G0, 1, result); // zero-length arrays are equal
kvn@1421 4908
kvn@1421 4909 // word by word compare, dont't need alignment check
kvn@1421 4910 bind(Lvector);
kvn@1421 4911 // Shift ary1 and ary2 to the end of the arrays, negate limit
kvn@1421 4912 add(ary1, limit, ary1);
kvn@1421 4913 add(ary2, limit, ary2);
kvn@1421 4914 neg(limit, limit);
kvn@1421 4915
kvn@1421 4916 lduw(ary1, limit, chr1);
kvn@1421 4917 bind(Lloop);
kvn@1421 4918 lduw(ary2, limit, chr2);
kvn@1421 4919 cmp(chr1, chr2);
kvn@1421 4920 br(Assembler::notEqual, true, Assembler::pt, Ldone);
kvn@1421 4921 delayed()->mov(G0, result); // not equal
kvn@1421 4922 inccc(limit, 2*sizeof(jchar));
kvn@1421 4923 // annul LDUW if branch is not taken to prevent access past end of array
kvn@1421 4924 br(Assembler::notZero, true, Assembler::pt, Lloop);
kvn@1421 4925 delayed()->lduw(ary1, limit, chr1); // hoisted
kvn@1421 4926
kvn@1421 4927 // Caller should set it:
kvn@1421 4928 // add(G0, 1, result); // equals
kvn@1421 4929 }
kvn@1421 4930

mercurial