src/cpu/sparc/vm/assembler_sparc.cpp

Fri, 30 Apr 2010 08:37:24 -0700

author
twisti
date
Fri, 30 Apr 2010 08:37:24 -0700
changeset 1861
2338d41fbd81
parent 1858
c640000b7cc1
child 1868
df736661d0c8
permissions
-rw-r--r--

6943304: remove tagged stack interpreter
Reviewed-by: coleenp, never, gbenson

duke@435 1 /*
twisti@1858 2 * Copyright 1997-2010 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_assembler_sparc.cpp.incl"
duke@435 27
twisti@1162 28 // Convert the raw encoding form into the form expected by the
twisti@1162 29 // constructor for Address.
twisti@1162 30 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
twisti@1162 31 assert(scale == 0, "not supported");
twisti@1162 32 RelocationHolder rspec;
twisti@1162 33 if (disp_is_oop) {
twisti@1162 34 rspec = Relocation::spec_simple(relocInfo::oop_type);
duke@435 35 }
twisti@1162 36
twisti@1162 37 Register rindex = as_Register(index);
twisti@1162 38 if (rindex != G0) {
twisti@1162 39 Address madr(as_Register(base), rindex);
twisti@1162 40 madr._rspec = rspec;
twisti@1162 41 return madr;
twisti@1162 42 } else {
twisti@1162 43 Address madr(as_Register(base), disp);
twisti@1162 44 madr._rspec = rspec;
twisti@1162 45 return madr;
twisti@1162 46 }
twisti@1162 47 }
twisti@1162 48
twisti@1162 49 Address Argument::address_in_frame() const {
twisti@1162 50 // Warning: In LP64 mode disp will occupy more than 10 bits, but
twisti@1162 51 // op codes such as ld or ldx, only access disp() to get
twisti@1162 52 // their simm13 argument.
twisti@1162 53 int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
twisti@1162 54 if (is_in())
twisti@1162 55 return Address(FP, disp); // In argument.
twisti@1162 56 else
twisti@1162 57 return Address(SP, disp); // Out argument.
duke@435 58 }
duke@435 59
duke@435 60 static const char* argumentNames[][2] = {
duke@435 61 {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
duke@435 62 {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
duke@435 63 {"A(n>9)","P(n>9)"}
duke@435 64 };
duke@435 65
duke@435 66 const char* Argument::name() const {
duke@435 67 int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
duke@435 68 int num = number();
duke@435 69 if (num >= nofArgs) num = nofArgs - 1;
duke@435 70 return argumentNames[num][is_in() ? 1 : 0];
duke@435 71 }
duke@435 72
duke@435 73 void Assembler::print_instruction(int inst) {
duke@435 74 const char* s;
duke@435 75 switch (inv_op(inst)) {
duke@435 76 default: s = "????"; break;
duke@435 77 case call_op: s = "call"; break;
duke@435 78 case branch_op:
duke@435 79 switch (inv_op2(inst)) {
duke@435 80 case bpr_op2: s = "bpr"; break;
duke@435 81 case fb_op2: s = "fb"; break;
duke@435 82 case fbp_op2: s = "fbp"; break;
duke@435 83 case br_op2: s = "br"; break;
duke@435 84 case bp_op2: s = "bp"; break;
duke@435 85 case cb_op2: s = "cb"; break;
duke@435 86 default: s = "????"; break;
duke@435 87 }
duke@435 88 }
duke@435 89 ::tty->print("%s", s);
duke@435 90 }
duke@435 91
duke@435 92
duke@435 93 // Patch instruction inst at offset inst_pos to refer to dest_pos
duke@435 94 // and return the resulting instruction.
duke@435 95 // We should have pcs, not offsets, but since all is relative, it will work out
duke@435 96 // OK.
duke@435 97 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
duke@435 98
duke@435 99 int m; // mask for displacement field
duke@435 100 int v; // new value for displacement field
duke@435 101 const int word_aligned_ones = -4;
duke@435 102 switch (inv_op(inst)) {
duke@435 103 default: ShouldNotReachHere();
duke@435 104 case call_op: m = wdisp(word_aligned_ones, 0, 30); v = wdisp(dest_pos, inst_pos, 30); break;
duke@435 105 case branch_op:
duke@435 106 switch (inv_op2(inst)) {
duke@435 107 case bpr_op2: m = wdisp16(word_aligned_ones, 0); v = wdisp16(dest_pos, inst_pos); break;
duke@435 108 case fbp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
duke@435 109 case bp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
duke@435 110 case fb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 111 case br_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 112 case cb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 113 default: ShouldNotReachHere();
duke@435 114 }
duke@435 115 }
duke@435 116 return inst & ~m | v;
duke@435 117 }
duke@435 118
duke@435 119 // Return the offset of the branch destionation of instruction inst
duke@435 120 // at offset pos.
duke@435 121 // Should have pcs, but since all is relative, it works out.
duke@435 122 int Assembler::branch_destination(int inst, int pos) {
duke@435 123 int r;
duke@435 124 switch (inv_op(inst)) {
duke@435 125 default: ShouldNotReachHere();
duke@435 126 case call_op: r = inv_wdisp(inst, pos, 30); break;
duke@435 127 case branch_op:
duke@435 128 switch (inv_op2(inst)) {
duke@435 129 case bpr_op2: r = inv_wdisp16(inst, pos); break;
duke@435 130 case fbp_op2: r = inv_wdisp( inst, pos, 19); break;
duke@435 131 case bp_op2: r = inv_wdisp( inst, pos, 19); break;
duke@435 132 case fb_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 133 case br_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 134 case cb_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 135 default: ShouldNotReachHere();
duke@435 136 }
duke@435 137 }
duke@435 138 return r;
duke@435 139 }
duke@435 140
duke@435 141 int AbstractAssembler::code_fill_byte() {
duke@435 142 return 0x00; // illegal instruction 0x00000000
duke@435 143 }
duke@435 144
ysr@777 145 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
ysr@777 146 switch (in) {
ysr@777 147 case rc_z: return equal;
ysr@777 148 case rc_lez: return lessEqual;
ysr@777 149 case rc_lz: return less;
ysr@777 150 case rc_nz: return notEqual;
ysr@777 151 case rc_gz: return greater;
ysr@777 152 case rc_gez: return greaterEqual;
ysr@777 153 default:
ysr@777 154 ShouldNotReachHere();
ysr@777 155 }
ysr@777 156 return equal;
ysr@777 157 }
ysr@777 158
duke@435 159 // Generate a bunch 'o stuff (including v9's
duke@435 160 #ifndef PRODUCT
duke@435 161 void Assembler::test_v9() {
duke@435 162 add( G0, G1, G2 );
duke@435 163 add( G3, 0, G4 );
duke@435 164
duke@435 165 addcc( G5, G6, G7 );
duke@435 166 addcc( I0, 1, I1 );
duke@435 167 addc( I2, I3, I4 );
duke@435 168 addc( I5, -1, I6 );
duke@435 169 addccc( I7, L0, L1 );
duke@435 170 addccc( L2, (1 << 12) - 2, L3 );
duke@435 171
duke@435 172 Label lbl1, lbl2, lbl3;
duke@435 173
duke@435 174 bind(lbl1);
duke@435 175
duke@435 176 bpr( rc_z, true, pn, L4, pc(), relocInfo::oop_type );
duke@435 177 delayed()->nop();
duke@435 178 bpr( rc_lez, false, pt, L5, lbl1);
duke@435 179 delayed()->nop();
duke@435 180
duke@435 181 fb( f_never, true, pc() + 4, relocInfo::none);
duke@435 182 delayed()->nop();
duke@435 183 fb( f_notEqual, false, lbl2 );
duke@435 184 delayed()->nop();
duke@435 185
duke@435 186 fbp( f_notZero, true, fcc0, pn, pc() - 4, relocInfo::none);
duke@435 187 delayed()->nop();
duke@435 188 fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
duke@435 189 delayed()->nop();
duke@435 190
duke@435 191 br( equal, true, pc() + 1024, relocInfo::none);
duke@435 192 delayed()->nop();
duke@435 193 br( lessEqual, false, lbl1 );
duke@435 194 delayed()->nop();
duke@435 195 br( never, false, lbl1 );
duke@435 196 delayed()->nop();
duke@435 197
duke@435 198 bp( less, true, icc, pn, pc(), relocInfo::none);
duke@435 199 delayed()->nop();
duke@435 200 bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
duke@435 201 delayed()->nop();
duke@435 202
duke@435 203 call( pc(), relocInfo::none);
duke@435 204 delayed()->nop();
duke@435 205 call( lbl3 );
duke@435 206 delayed()->nop();
duke@435 207
duke@435 208
duke@435 209 casa( L6, L7, O0 );
duke@435 210 casxa( O1, O2, O3, 0 );
duke@435 211
duke@435 212 udiv( O4, O5, O7 );
duke@435 213 udiv( G0, (1 << 12) - 1, G1 );
duke@435 214 sdiv( G1, G2, G3 );
duke@435 215 sdiv( G4, -((1 << 12) - 1), G5 );
duke@435 216 udivcc( G6, G7, I0 );
duke@435 217 udivcc( I1, -((1 << 12) - 2), I2 );
duke@435 218 sdivcc( I3, I4, I5 );
duke@435 219 sdivcc( I6, -((1 << 12) - 0), I7 );
duke@435 220
duke@435 221 done();
duke@435 222 retry();
duke@435 223
duke@435 224 fadd( FloatRegisterImpl::S, F0, F1, F2 );
duke@435 225 fsub( FloatRegisterImpl::D, F34, F0, F62 );
duke@435 226
duke@435 227 fcmp( FloatRegisterImpl::Q, fcc0, F0, F60);
duke@435 228 fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
duke@435 229
duke@435 230 ftox( FloatRegisterImpl::D, F2, F4 );
duke@435 231 ftoi( FloatRegisterImpl::Q, F4, F8 );
duke@435 232
duke@435 233 ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
duke@435 234
duke@435 235 fxtof( FloatRegisterImpl::S, F4, F5 );
duke@435 236 fitof( FloatRegisterImpl::D, F6, F8 );
duke@435 237
duke@435 238 fmov( FloatRegisterImpl::Q, F16, F20 );
duke@435 239 fneg( FloatRegisterImpl::S, F6, F7 );
duke@435 240 fabs( FloatRegisterImpl::D, F10, F12 );
duke@435 241
duke@435 242 fmul( FloatRegisterImpl::Q, F24, F28, F32 );
duke@435 243 fmul( FloatRegisterImpl::S, FloatRegisterImpl::D, F8, F9, F14 );
duke@435 244 fdiv( FloatRegisterImpl::S, F10, F11, F12 );
duke@435 245
duke@435 246 fsqrt( FloatRegisterImpl::S, F13, F14 );
duke@435 247
duke@435 248 flush( L0, L1 );
duke@435 249 flush( L2, -1 );
duke@435 250
duke@435 251 flushw();
duke@435 252
duke@435 253 illtrap( (1 << 22) - 2);
duke@435 254
duke@435 255 impdep1( 17, (1 << 19) - 1 );
duke@435 256 impdep2( 3, 0 );
duke@435 257
duke@435 258 jmpl( L3, L4, L5 );
duke@435 259 delayed()->nop();
duke@435 260 jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
duke@435 261 delayed()->nop();
duke@435 262
duke@435 263
duke@435 264 ldf( FloatRegisterImpl::S, O0, O1, F15 );
duke@435 265 ldf( FloatRegisterImpl::D, O2, -1, F14 );
duke@435 266
duke@435 267
duke@435 268 ldfsr( O3, O4 );
duke@435 269 ldfsr( O5, -1 );
duke@435 270 ldxfsr( O6, O7 );
duke@435 271 ldxfsr( I0, -1 );
duke@435 272
duke@435 273 ldfa( FloatRegisterImpl::D, I1, I2, 1, F16 );
duke@435 274 ldfa( FloatRegisterImpl::Q, I3, -1, F36 );
duke@435 275
duke@435 276 ldsb( I4, I5, I6 );
duke@435 277 ldsb( I7, -1, G0 );
duke@435 278 ldsh( G1, G3, G4 );
duke@435 279 ldsh( G5, -1, G6 );
duke@435 280 ldsw( G7, L0, L1 );
duke@435 281 ldsw( L2, -1, L3 );
duke@435 282 ldub( L4, L5, L6 );
duke@435 283 ldub( L7, -1, O0 );
duke@435 284 lduh( O1, O2, O3 );
duke@435 285 lduh( O4, -1, O5 );
duke@435 286 lduw( O6, O7, G0 );
duke@435 287 lduw( G1, -1, G2 );
duke@435 288 ldx( G3, G4, G5 );
duke@435 289 ldx( G6, -1, G7 );
duke@435 290 ldd( I0, I1, I2 );
duke@435 291 ldd( I3, -1, I4 );
duke@435 292
duke@435 293 ldsba( I5, I6, 2, I7 );
duke@435 294 ldsba( L0, -1, L1 );
duke@435 295 ldsha( L2, L3, 3, L4 );
duke@435 296 ldsha( L5, -1, L6 );
duke@435 297 ldswa( L7, O0, (1 << 8) - 1, O1 );
duke@435 298 ldswa( O2, -1, O3 );
duke@435 299 lduba( O4, O5, 0, O6 );
duke@435 300 lduba( O7, -1, I0 );
duke@435 301 lduha( I1, I2, 1, I3 );
duke@435 302 lduha( I4, -1, I5 );
duke@435 303 lduwa( I6, I7, 2, L0 );
duke@435 304 lduwa( L1, -1, L2 );
duke@435 305 ldxa( L3, L4, 3, L5 );
duke@435 306 ldxa( L6, -1, L7 );
duke@435 307 ldda( G0, G1, 4, G2 );
duke@435 308 ldda( G3, -1, G4 );
duke@435 309
duke@435 310 ldstub( G5, G6, G7 );
duke@435 311 ldstub( O0, -1, O1 );
duke@435 312
duke@435 313 ldstuba( O2, O3, 5, O4 );
duke@435 314 ldstuba( O5, -1, O6 );
duke@435 315
duke@435 316 and3( I0, L0, O0 );
duke@435 317 and3( G7, -1, O7 );
duke@435 318 andcc( L2, I2, G2 );
duke@435 319 andcc( L4, -1, G4 );
duke@435 320 andn( I5, I6, I7 );
duke@435 321 andn( I6, -1, I7 );
duke@435 322 andncc( I5, I6, I7 );
duke@435 323 andncc( I7, -1, I6 );
duke@435 324 or3( I5, I6, I7 );
duke@435 325 or3( I7, -1, I6 );
duke@435 326 orcc( I5, I6, I7 );
duke@435 327 orcc( I7, -1, I6 );
duke@435 328 orn( I5, I6, I7 );
duke@435 329 orn( I7, -1, I6 );
duke@435 330 orncc( I5, I6, I7 );
duke@435 331 orncc( I7, -1, I6 );
duke@435 332 xor3( I5, I6, I7 );
duke@435 333 xor3( I7, -1, I6 );
duke@435 334 xorcc( I5, I6, I7 );
duke@435 335 xorcc( I7, -1, I6 );
duke@435 336 xnor( I5, I6, I7 );
duke@435 337 xnor( I7, -1, I6 );
duke@435 338 xnorcc( I5, I6, I7 );
duke@435 339 xnorcc( I7, -1, I6 );
duke@435 340
duke@435 341 membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
duke@435 342 membar( StoreStore );
duke@435 343 membar( LoadStore );
duke@435 344 membar( StoreLoad );
duke@435 345 membar( LoadLoad );
duke@435 346 membar( Sync );
duke@435 347 membar( MemIssue );
duke@435 348 membar( Lookaside );
duke@435 349
duke@435 350 fmov( FloatRegisterImpl::S, f_ordered, true, fcc2, F16, F17 );
duke@435 351 fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
duke@435 352
duke@435 353 movcc( overflowClear, false, icc, I6, L4 );
duke@435 354 movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
duke@435 355
duke@435 356 movr( rc_nz, I5, I6, I7 );
duke@435 357 movr( rc_gz, L1, -1, L2 );
duke@435 358
duke@435 359 mulx( I5, I6, I7 );
duke@435 360 mulx( I7, -1, I6 );
duke@435 361 sdivx( I5, I6, I7 );
duke@435 362 sdivx( I7, -1, I6 );
duke@435 363 udivx( I5, I6, I7 );
duke@435 364 udivx( I7, -1, I6 );
duke@435 365
duke@435 366 umul( I5, I6, I7 );
duke@435 367 umul( I7, -1, I6 );
duke@435 368 smul( I5, I6, I7 );
duke@435 369 smul( I7, -1, I6 );
duke@435 370 umulcc( I5, I6, I7 );
duke@435 371 umulcc( I7, -1, I6 );
duke@435 372 smulcc( I5, I6, I7 );
duke@435 373 smulcc( I7, -1, I6 );
duke@435 374
duke@435 375 mulscc( I5, I6, I7 );
duke@435 376 mulscc( I7, -1, I6 );
duke@435 377
duke@435 378 nop();
duke@435 379
duke@435 380
duke@435 381 popc( G0, G1);
duke@435 382 popc( -1, G2);
duke@435 383
duke@435 384 prefetch( L1, L2, severalReads );
duke@435 385 prefetch( L3, -1, oneRead );
duke@435 386 prefetcha( O3, O2, 6, severalWritesAndPossiblyReads );
duke@435 387 prefetcha( G2, -1, oneWrite );
duke@435 388
duke@435 389 rett( I7, I7);
duke@435 390 delayed()->nop();
duke@435 391 rett( G0, -1, relocInfo::none);
duke@435 392 delayed()->nop();
duke@435 393
duke@435 394 save( I5, I6, I7 );
duke@435 395 save( I7, -1, I6 );
duke@435 396 restore( I5, I6, I7 );
duke@435 397 restore( I7, -1, I6 );
duke@435 398
duke@435 399 saved();
duke@435 400 restored();
duke@435 401
duke@435 402 sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
duke@435 403
duke@435 404 sll( I5, I6, I7 );
duke@435 405 sll( I7, 31, I6 );
duke@435 406 srl( I5, I6, I7 );
duke@435 407 srl( I7, 0, I6 );
duke@435 408 sra( I5, I6, I7 );
duke@435 409 sra( I7, 30, I6 );
duke@435 410 sllx( I5, I6, I7 );
duke@435 411 sllx( I7, 63, I6 );
duke@435 412 srlx( I5, I6, I7 );
duke@435 413 srlx( I7, 0, I6 );
duke@435 414 srax( I5, I6, I7 );
duke@435 415 srax( I7, 62, I6 );
duke@435 416
duke@435 417 sir( -1 );
duke@435 418
duke@435 419 stbar();
duke@435 420
duke@435 421 stf( FloatRegisterImpl::Q, F40, G0, I7 );
duke@435 422 stf( FloatRegisterImpl::S, F18, I3, -1 );
duke@435 423
duke@435 424 stfsr( L1, L2 );
duke@435 425 stfsr( I7, -1 );
duke@435 426 stxfsr( I6, I5 );
duke@435 427 stxfsr( L4, -1 );
duke@435 428
duke@435 429 stfa( FloatRegisterImpl::D, F22, I6, I7, 7 );
duke@435 430 stfa( FloatRegisterImpl::Q, F44, G0, -1 );
duke@435 431
duke@435 432 stb( L5, O2, I7 );
duke@435 433 stb( I7, I6, -1 );
duke@435 434 sth( L5, O2, I7 );
duke@435 435 sth( I7, I6, -1 );
duke@435 436 stw( L5, O2, I7 );
duke@435 437 stw( I7, I6, -1 );
duke@435 438 stx( L5, O2, I7 );
duke@435 439 stx( I7, I6, -1 );
duke@435 440 std( L5, O2, I7 );
duke@435 441 std( I7, I6, -1 );
duke@435 442
duke@435 443 stba( L5, O2, I7, 8 );
duke@435 444 stba( I7, I6, -1 );
duke@435 445 stha( L5, O2, I7, 9 );
duke@435 446 stha( I7, I6, -1 );
duke@435 447 stwa( L5, O2, I7, 0 );
duke@435 448 stwa( I7, I6, -1 );
duke@435 449 stxa( L5, O2, I7, 11 );
duke@435 450 stxa( I7, I6, -1 );
duke@435 451 stda( L5, O2, I7, 12 );
duke@435 452 stda( I7, I6, -1 );
duke@435 453
duke@435 454 sub( I5, I6, I7 );
duke@435 455 sub( I7, -1, I6 );
duke@435 456 subcc( I5, I6, I7 );
duke@435 457 subcc( I7, -1, I6 );
duke@435 458 subc( I5, I6, I7 );
duke@435 459 subc( I7, -1, I6 );
duke@435 460 subccc( I5, I6, I7 );
duke@435 461 subccc( I7, -1, I6 );
duke@435 462
duke@435 463 swap( I5, I6, I7 );
duke@435 464 swap( I7, -1, I6 );
duke@435 465
duke@435 466 swapa( G0, G1, 13, G2 );
duke@435 467 swapa( I7, -1, I6 );
duke@435 468
duke@435 469 taddcc( I5, I6, I7 );
duke@435 470 taddcc( I7, -1, I6 );
duke@435 471 taddcctv( I5, I6, I7 );
duke@435 472 taddcctv( I7, -1, I6 );
duke@435 473
duke@435 474 tsubcc( I5, I6, I7 );
duke@435 475 tsubcc( I7, -1, I6 );
duke@435 476 tsubcctv( I5, I6, I7 );
duke@435 477 tsubcctv( I7, -1, I6 );
duke@435 478
duke@435 479 trap( overflowClear, xcc, G0, G1 );
duke@435 480 trap( lessEqual, icc, I7, 17 );
duke@435 481
duke@435 482 bind(lbl2);
duke@435 483 bind(lbl3);
duke@435 484
duke@435 485 code()->decode();
duke@435 486 }
duke@435 487
duke@435 488 // Generate a bunch 'o stuff unique to V8
duke@435 489 void Assembler::test_v8_onlys() {
duke@435 490 Label lbl1;
duke@435 491
duke@435 492 cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
duke@435 493 delayed()->nop();
duke@435 494 cb( cp_never, true, lbl1);
duke@435 495 delayed()->nop();
duke@435 496
duke@435 497 cpop1(1, 2, 3, 4);
duke@435 498 cpop2(5, 6, 7, 8);
duke@435 499
duke@435 500 ldc( I0, I1, 31);
duke@435 501 ldc( I2, -1, 0);
duke@435 502
duke@435 503 lddc( I4, I4, 30);
duke@435 504 lddc( I6, 0, 1 );
duke@435 505
duke@435 506 ldcsr( L0, L1, 0);
duke@435 507 ldcsr( L1, (1 << 12) - 1, 17 );
duke@435 508
duke@435 509 stc( 31, L4, L5);
duke@435 510 stc( 30, L6, -(1 << 12) );
duke@435 511
duke@435 512 stdc( 0, L7, G0);
duke@435 513 stdc( 1, G1, 0 );
duke@435 514
duke@435 515 stcsr( 16, G2, G3);
duke@435 516 stcsr( 17, G4, 1 );
duke@435 517
duke@435 518 stdcq( 4, G5, G6);
duke@435 519 stdcq( 5, G7, -1 );
duke@435 520
duke@435 521 bind(lbl1);
duke@435 522
duke@435 523 code()->decode();
duke@435 524 }
duke@435 525 #endif
duke@435 526
duke@435 527 // Implementation of MacroAssembler
duke@435 528
duke@435 529 void MacroAssembler::null_check(Register reg, int offset) {
duke@435 530 if (needs_explicit_null_check((intptr_t)offset)) {
duke@435 531 // provoke OS NULL exception if reg = NULL by
duke@435 532 // accessing M[reg] w/o changing any registers
duke@435 533 ld_ptr(reg, 0, G0);
duke@435 534 }
duke@435 535 else {
duke@435 536 // nothing to do, (later) access of M[reg + offset]
duke@435 537 // will provoke OS NULL exception if reg = NULL
duke@435 538 }
duke@435 539 }
duke@435 540
duke@435 541 // Ring buffer jumps
duke@435 542
duke@435 543 #ifndef PRODUCT
duke@435 544 void MacroAssembler::ret( bool trace ) { if (trace) {
duke@435 545 mov(I7, O7); // traceable register
duke@435 546 JMP(O7, 2 * BytesPerInstWord);
duke@435 547 } else {
duke@435 548 jmpl( I7, 2 * BytesPerInstWord, G0 );
duke@435 549 }
duke@435 550 }
duke@435 551
duke@435 552 void MacroAssembler::retl( bool trace ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
duke@435 553 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
duke@435 554 #endif /* PRODUCT */
duke@435 555
duke@435 556
duke@435 557 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
duke@435 558 assert_not_delayed();
duke@435 559 // This can only be traceable if r1 & r2 are visible after a window save
duke@435 560 if (TraceJumps) {
duke@435 561 #ifndef PRODUCT
duke@435 562 save_frame(0);
duke@435 563 verify_thread();
duke@435 564 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 565 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 566 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 567 add(O2, O1, O1);
duke@435 568
duke@435 569 add(r1->after_save(), r2->after_save(), O2);
duke@435 570 set((intptr_t)file, O3);
duke@435 571 set(line, O4);
duke@435 572 Label L;
duke@435 573 // get nearby pc, store jmp target
duke@435 574 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 575 delayed()->st(O2, O1, 0);
duke@435 576 bind(L);
duke@435 577
duke@435 578 // store nearby pc
duke@435 579 st(O7, O1, sizeof(intptr_t));
duke@435 580 // store file
duke@435 581 st(O3, O1, 2*sizeof(intptr_t));
duke@435 582 // store line
duke@435 583 st(O4, O1, 3*sizeof(intptr_t));
duke@435 584 add(O0, 1, O0);
duke@435 585 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 586 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 587 restore();
duke@435 588 #endif /* PRODUCT */
duke@435 589 }
duke@435 590 jmpl(r1, r2, G0);
duke@435 591 }
duke@435 592 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
duke@435 593 assert_not_delayed();
duke@435 594 // This can only be traceable if r1 is visible after a window save
duke@435 595 if (TraceJumps) {
duke@435 596 #ifndef PRODUCT
duke@435 597 save_frame(0);
duke@435 598 verify_thread();
duke@435 599 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 600 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 601 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 602 add(O2, O1, O1);
duke@435 603
duke@435 604 add(r1->after_save(), offset, O2);
duke@435 605 set((intptr_t)file, O3);
duke@435 606 set(line, O4);
duke@435 607 Label L;
duke@435 608 // get nearby pc, store jmp target
duke@435 609 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 610 delayed()->st(O2, O1, 0);
duke@435 611 bind(L);
duke@435 612
duke@435 613 // store nearby pc
duke@435 614 st(O7, O1, sizeof(intptr_t));
duke@435 615 // store file
duke@435 616 st(O3, O1, 2*sizeof(intptr_t));
duke@435 617 // store line
duke@435 618 st(O4, O1, 3*sizeof(intptr_t));
duke@435 619 add(O0, 1, O0);
duke@435 620 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 621 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 622 restore();
duke@435 623 #endif /* PRODUCT */
duke@435 624 }
duke@435 625 jmp(r1, offset);
duke@435 626 }
duke@435 627
duke@435 628 // This code sequence is relocatable to any address, even on LP64.
twisti@1162 629 void MacroAssembler::jumpl(AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
duke@435 630 assert_not_delayed();
duke@435 631 // Force fixed length sethi because NativeJump and NativeFarCall don't handle
duke@435 632 // variable length instruction streams.
twisti@1162 633 patchable_sethi(addrlit, temp);
twisti@1162 634 Address a(temp, addrlit.low10() + offset); // Add the offset to the displacement.
duke@435 635 if (TraceJumps) {
duke@435 636 #ifndef PRODUCT
duke@435 637 // Must do the add here so relocation can find the remainder of the
duke@435 638 // value to be relocated.
twisti@1162 639 add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
duke@435 640 save_frame(0);
duke@435 641 verify_thread();
duke@435 642 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 643 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 644 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 645 add(O2, O1, O1);
duke@435 646
duke@435 647 set((intptr_t)file, O3);
duke@435 648 set(line, O4);
duke@435 649 Label L;
duke@435 650
duke@435 651 // get nearby pc, store jmp target
duke@435 652 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 653 delayed()->st(a.base()->after_save(), O1, 0);
duke@435 654 bind(L);
duke@435 655
duke@435 656 // store nearby pc
duke@435 657 st(O7, O1, sizeof(intptr_t));
duke@435 658 // store file
duke@435 659 st(O3, O1, 2*sizeof(intptr_t));
duke@435 660 // store line
duke@435 661 st(O4, O1, 3*sizeof(intptr_t));
duke@435 662 add(O0, 1, O0);
duke@435 663 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 664 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 665 restore();
duke@435 666 jmpl(a.base(), G0, d);
duke@435 667 #else
twisti@1162 668 jmpl(a.base(), a.disp(), d);
duke@435 669 #endif /* PRODUCT */
duke@435 670 } else {
twisti@1162 671 jmpl(a.base(), a.disp(), d);
duke@435 672 }
duke@435 673 }
duke@435 674
twisti@1162 675 void MacroAssembler::jump(AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
twisti@1162 676 jumpl(addrlit, temp, G0, offset, file, line);
duke@435 677 }
duke@435 678
duke@435 679
duke@435 680 // Convert to C varargs format
duke@435 681 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
duke@435 682 // spill register-resident args to their memory slots
duke@435 683 // (SPARC calling convention requires callers to have already preallocated these)
duke@435 684 // Note that the inArg might in fact be an outgoing argument,
duke@435 685 // if a leaf routine or stub does some tricky argument shuffling.
duke@435 686 // This routine must work even though one of the saved arguments
duke@435 687 // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
duke@435 688 for (Argument savePtr = inArg;
duke@435 689 savePtr.is_register();
duke@435 690 savePtr = savePtr.successor()) {
duke@435 691 st_ptr(savePtr.as_register(), savePtr.address_in_frame());
duke@435 692 }
duke@435 693 // return the address of the first memory slot
twisti@1162 694 Address a = inArg.address_in_frame();
twisti@1162 695 add(a.base(), a.disp(), d);
duke@435 696 }
duke@435 697
duke@435 698 // Conditional breakpoint (for assertion checks in assembly code)
duke@435 699 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
duke@435 700 trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
duke@435 701 }
duke@435 702
duke@435 703 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
duke@435 704 void MacroAssembler::breakpoint_trap() {
duke@435 705 trap(ST_RESERVED_FOR_USER_0);
duke@435 706 }
duke@435 707
duke@435 708 // flush windows (except current) using flushw instruction if avail.
duke@435 709 void MacroAssembler::flush_windows() {
duke@435 710 if (VM_Version::v9_instructions_work()) flushw();
duke@435 711 else flush_windows_trap();
duke@435 712 }
duke@435 713
duke@435 714 // Write serialization page so VM thread can do a pseudo remote membar
duke@435 715 // We use the current thread pointer to calculate a thread specific
duke@435 716 // offset to write to within the page. This minimizes bus traffic
duke@435 717 // due to cache line collision.
duke@435 718 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
duke@435 719 srl(thread, os::get_serialize_page_shift_count(), tmp2);
duke@435 720 if (Assembler::is_simm13(os::vm_page_size())) {
duke@435 721 and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
duke@435 722 }
duke@435 723 else {
duke@435 724 set((os::vm_page_size() - sizeof(int)), tmp1);
duke@435 725 and3(tmp2, tmp1, tmp2);
duke@435 726 }
twisti@1162 727 set(os::get_memory_serialize_page(), tmp1);
duke@435 728 st(G0, tmp1, tmp2);
duke@435 729 }
duke@435 730
duke@435 731
duke@435 732
duke@435 733 void MacroAssembler::enter() {
duke@435 734 Unimplemented();
duke@435 735 }
duke@435 736
duke@435 737 void MacroAssembler::leave() {
duke@435 738 Unimplemented();
duke@435 739 }
duke@435 740
duke@435 741 void MacroAssembler::mult(Register s1, Register s2, Register d) {
duke@435 742 if(VM_Version::v9_instructions_work()) {
duke@435 743 mulx (s1, s2, d);
duke@435 744 } else {
duke@435 745 smul (s1, s2, d);
duke@435 746 }
duke@435 747 }
duke@435 748
duke@435 749 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
duke@435 750 if(VM_Version::v9_instructions_work()) {
duke@435 751 mulx (s1, simm13a, d);
duke@435 752 } else {
duke@435 753 smul (s1, simm13a, d);
duke@435 754 }
duke@435 755 }
duke@435 756
duke@435 757
duke@435 758 #ifdef ASSERT
duke@435 759 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
duke@435 760 const Register s1 = G3_scratch;
duke@435 761 const Register s2 = G4_scratch;
duke@435 762 Label get_psr_test;
duke@435 763 // Get the condition codes the V8 way.
duke@435 764 read_ccr_trap(s1);
duke@435 765 mov(ccr_save, s2);
duke@435 766 // This is a test of V8 which has icc but not xcc
duke@435 767 // so mask off the xcc bits
duke@435 768 and3(s2, 0xf, s2);
duke@435 769 // Compare condition codes from the V8 and V9 ways.
duke@435 770 subcc(s2, s1, G0);
duke@435 771 br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
duke@435 772 delayed()->breakpoint_trap();
duke@435 773 bind(get_psr_test);
duke@435 774 }
duke@435 775
duke@435 776 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
duke@435 777 const Register s1 = G3_scratch;
duke@435 778 const Register s2 = G4_scratch;
duke@435 779 Label set_psr_test;
duke@435 780 // Write out the saved condition codes the V8 way
duke@435 781 write_ccr_trap(ccr_save, s1, s2);
duke@435 782 // Read back the condition codes using the V9 instruction
duke@435 783 rdccr(s1);
duke@435 784 mov(ccr_save, s2);
duke@435 785 // This is a test of V8 which has icc but not xcc
duke@435 786 // so mask off the xcc bits
duke@435 787 and3(s2, 0xf, s2);
duke@435 788 and3(s1, 0xf, s1);
duke@435 789 // Compare the V8 way with the V9 way.
duke@435 790 subcc(s2, s1, G0);
duke@435 791 br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
duke@435 792 delayed()->breakpoint_trap();
duke@435 793 bind(set_psr_test);
duke@435 794 }
duke@435 795 #else
duke@435 796 #define read_ccr_v8_assert(x)
duke@435 797 #define write_ccr_v8_assert(x)
duke@435 798 #endif // ASSERT
duke@435 799
duke@435 800 void MacroAssembler::read_ccr(Register ccr_save) {
duke@435 801 if (VM_Version::v9_instructions_work()) {
duke@435 802 rdccr(ccr_save);
duke@435 803 // Test code sequence used on V8. Do not move above rdccr.
duke@435 804 read_ccr_v8_assert(ccr_save);
duke@435 805 } else {
duke@435 806 read_ccr_trap(ccr_save);
duke@435 807 }
duke@435 808 }
duke@435 809
duke@435 810 void MacroAssembler::write_ccr(Register ccr_save) {
duke@435 811 if (VM_Version::v9_instructions_work()) {
duke@435 812 // Test code sequence used on V8. Do not move below wrccr.
duke@435 813 write_ccr_v8_assert(ccr_save);
duke@435 814 wrccr(ccr_save);
duke@435 815 } else {
duke@435 816 const Register temp_reg1 = G3_scratch;
duke@435 817 const Register temp_reg2 = G4_scratch;
duke@435 818 write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
duke@435 819 }
duke@435 820 }
duke@435 821
duke@435 822
duke@435 823 // Calls to C land
duke@435 824
duke@435 825 #ifdef ASSERT
duke@435 826 // a hook for debugging
duke@435 827 static Thread* reinitialize_thread() {
duke@435 828 return ThreadLocalStorage::thread();
duke@435 829 }
duke@435 830 #else
duke@435 831 #define reinitialize_thread ThreadLocalStorage::thread
duke@435 832 #endif
duke@435 833
duke@435 834 #ifdef ASSERT
duke@435 835 address last_get_thread = NULL;
duke@435 836 #endif
duke@435 837
duke@435 838 // call this when G2_thread is not known to be valid
duke@435 839 void MacroAssembler::get_thread() {
duke@435 840 save_frame(0); // to avoid clobbering O0
duke@435 841 mov(G1, L0); // avoid clobbering G1
duke@435 842 mov(G5_method, L1); // avoid clobbering G5
duke@435 843 mov(G3, L2); // avoid clobbering G3 also
duke@435 844 mov(G4, L5); // avoid clobbering G4
duke@435 845 #ifdef ASSERT
twisti@1162 846 AddressLiteral last_get_thread_addrlit(&last_get_thread);
twisti@1162 847 set(last_get_thread_addrlit, L3);
duke@435 848 inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
twisti@1162 849 st_ptr(L4, L3, 0);
duke@435 850 #endif
duke@435 851 call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
duke@435 852 delayed()->nop();
duke@435 853 mov(L0, G1);
duke@435 854 mov(L1, G5_method);
duke@435 855 mov(L2, G3);
duke@435 856 mov(L5, G4);
duke@435 857 restore(O0, 0, G2_thread);
duke@435 858 }
duke@435 859
duke@435 860 static Thread* verify_thread_subroutine(Thread* gthread_value) {
duke@435 861 Thread* correct_value = ThreadLocalStorage::thread();
duke@435 862 guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
duke@435 863 return correct_value;
duke@435 864 }
duke@435 865
duke@435 866 void MacroAssembler::verify_thread() {
duke@435 867 if (VerifyThread) {
duke@435 868 // NOTE: this chops off the heads of the 64-bit O registers.
duke@435 869 #ifdef CC_INTERP
duke@435 870 save_frame(0);
duke@435 871 #else
duke@435 872 // make sure G2_thread contains the right value
duke@435 873 save_frame_and_mov(0, Lmethod, Lmethod); // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
duke@435 874 mov(G1, L1); // avoid clobbering G1
duke@435 875 // G2 saved below
duke@435 876 mov(G3, L3); // avoid clobbering G3
duke@435 877 mov(G4, L4); // avoid clobbering G4
duke@435 878 mov(G5_method, L5); // avoid clobbering G5_method
duke@435 879 #endif /* CC_INTERP */
duke@435 880 #if defined(COMPILER2) && !defined(_LP64)
duke@435 881 // Save & restore possible 64-bit Long arguments in G-regs
duke@435 882 srlx(G1,32,L0);
duke@435 883 srlx(G4,32,L6);
duke@435 884 #endif
duke@435 885 call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
duke@435 886 delayed()->mov(G2_thread, O0);
duke@435 887
duke@435 888 mov(L1, G1); // Restore G1
duke@435 889 // G2 restored below
duke@435 890 mov(L3, G3); // restore G3
duke@435 891 mov(L4, G4); // restore G4
duke@435 892 mov(L5, G5_method); // restore G5_method
duke@435 893 #if defined(COMPILER2) && !defined(_LP64)
duke@435 894 // Save & restore possible 64-bit Long arguments in G-regs
duke@435 895 sllx(L0,32,G2); // Move old high G1 bits high in G2
duke@435 896 sllx(G1, 0,G1); // Clear current high G1 bits
duke@435 897 or3 (G1,G2,G1); // Recover 64-bit G1
duke@435 898 sllx(L6,32,G2); // Move old high G4 bits high in G2
duke@435 899 sllx(G4, 0,G4); // Clear current high G4 bits
duke@435 900 or3 (G4,G2,G4); // Recover 64-bit G4
duke@435 901 #endif
duke@435 902 restore(O0, 0, G2_thread);
duke@435 903 }
duke@435 904 }
duke@435 905
duke@435 906
duke@435 907 void MacroAssembler::save_thread(const Register thread_cache) {
duke@435 908 verify_thread();
duke@435 909 if (thread_cache->is_valid()) {
duke@435 910 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
duke@435 911 mov(G2_thread, thread_cache);
duke@435 912 }
duke@435 913 if (VerifyThread) {
duke@435 914 // smash G2_thread, as if the VM were about to anyway
duke@435 915 set(0x67676767, G2_thread);
duke@435 916 }
duke@435 917 }
duke@435 918
duke@435 919
duke@435 920 void MacroAssembler::restore_thread(const Register thread_cache) {
duke@435 921 if (thread_cache->is_valid()) {
duke@435 922 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
duke@435 923 mov(thread_cache, G2_thread);
duke@435 924 verify_thread();
duke@435 925 } else {
duke@435 926 // do it the slow way
duke@435 927 get_thread();
duke@435 928 }
duke@435 929 }
duke@435 930
duke@435 931
duke@435 932 // %%% maybe get rid of [re]set_last_Java_frame
duke@435 933 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
duke@435 934 assert_not_delayed();
twisti@1162 935 Address flags(G2_thread, JavaThread::frame_anchor_offset() +
twisti@1162 936 JavaFrameAnchor::flags_offset());
twisti@1162 937 Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
duke@435 938
duke@435 939 // Always set last_Java_pc and flags first because once last_Java_sp is visible
duke@435 940 // has_last_Java_frame is true and users will look at the rest of the fields.
duke@435 941 // (Note: flags should always be zero before we get here so doesn't need to be set.)
duke@435 942
duke@435 943 #ifdef ASSERT
duke@435 944 // Verify that flags was zeroed on return to Java
duke@435 945 Label PcOk;
duke@435 946 save_frame(0); // to avoid clobbering O0
duke@435 947 ld_ptr(pc_addr, L0);
duke@435 948 tst(L0);
duke@435 949 #ifdef _LP64
duke@435 950 brx(Assembler::zero, false, Assembler::pt, PcOk);
duke@435 951 #else
duke@435 952 br(Assembler::zero, false, Assembler::pt, PcOk);
duke@435 953 #endif // _LP64
duke@435 954 delayed() -> nop();
duke@435 955 stop("last_Java_pc not zeroed before leaving Java");
duke@435 956 bind(PcOk);
duke@435 957
duke@435 958 // Verify that flags was zeroed on return to Java
duke@435 959 Label FlagsOk;
duke@435 960 ld(flags, L0);
duke@435 961 tst(L0);
duke@435 962 br(Assembler::zero, false, Assembler::pt, FlagsOk);
duke@435 963 delayed() -> restore();
duke@435 964 stop("flags not zeroed before leaving Java");
duke@435 965 bind(FlagsOk);
duke@435 966 #endif /* ASSERT */
duke@435 967 //
duke@435 968 // When returning from calling out from Java mode the frame anchor's last_Java_pc
duke@435 969 // will always be set to NULL. It is set here so that if we are doing a call to
duke@435 970 // native (not VM) that we capture the known pc and don't have to rely on the
duke@435 971 // native call having a standard frame linkage where we can find the pc.
duke@435 972
duke@435 973 if (last_Java_pc->is_valid()) {
duke@435 974 st_ptr(last_Java_pc, pc_addr);
duke@435 975 }
duke@435 976
duke@435 977 #ifdef _LP64
duke@435 978 #ifdef ASSERT
duke@435 979 // Make sure that we have an odd stack
duke@435 980 Label StackOk;
duke@435 981 andcc(last_java_sp, 0x01, G0);
duke@435 982 br(Assembler::notZero, false, Assembler::pt, StackOk);
duke@435 983 delayed() -> nop();
duke@435 984 stop("Stack Not Biased in set_last_Java_frame");
duke@435 985 bind(StackOk);
duke@435 986 #endif // ASSERT
duke@435 987 assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
duke@435 988 add( last_java_sp, STACK_BIAS, G4_scratch );
twisti@1162 989 st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
duke@435 990 #else
twisti@1162 991 st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
duke@435 992 #endif // _LP64
duke@435 993 }
duke@435 994
duke@435 995 void MacroAssembler::reset_last_Java_frame(void) {
duke@435 996 assert_not_delayed();
duke@435 997
twisti@1162 998 Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
twisti@1162 999 Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
twisti@1162 1000 Address flags (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
duke@435 1001
duke@435 1002 #ifdef ASSERT
duke@435 1003 // check that it WAS previously set
duke@435 1004 #ifdef CC_INTERP
duke@435 1005 save_frame(0);
duke@435 1006 #else
duke@435 1007 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod to helper frame for -Xprof
duke@435 1008 #endif /* CC_INTERP */
duke@435 1009 ld_ptr(sp_addr, L0);
duke@435 1010 tst(L0);
duke@435 1011 breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
duke@435 1012 restore();
duke@435 1013 #endif // ASSERT
duke@435 1014
duke@435 1015 st_ptr(G0, sp_addr);
duke@435 1016 // Always return last_Java_pc to zero
duke@435 1017 st_ptr(G0, pc_addr);
duke@435 1018 // Always null flags after return to Java
duke@435 1019 st(G0, flags);
duke@435 1020 }
duke@435 1021
duke@435 1022
duke@435 1023 void MacroAssembler::call_VM_base(
duke@435 1024 Register oop_result,
duke@435 1025 Register thread_cache,
duke@435 1026 Register last_java_sp,
duke@435 1027 address entry_point,
duke@435 1028 int number_of_arguments,
duke@435 1029 bool check_exceptions)
duke@435 1030 {
duke@435 1031 assert_not_delayed();
duke@435 1032
duke@435 1033 // determine last_java_sp register
duke@435 1034 if (!last_java_sp->is_valid()) {
duke@435 1035 last_java_sp = SP;
duke@435 1036 }
duke@435 1037 // debugging support
duke@435 1038 assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
duke@435 1039
duke@435 1040 // 64-bit last_java_sp is biased!
duke@435 1041 set_last_Java_frame(last_java_sp, noreg);
duke@435 1042 if (VerifyThread) mov(G2_thread, O0); // about to be smashed; pass early
duke@435 1043 save_thread(thread_cache);
duke@435 1044 // do the call
duke@435 1045 call(entry_point, relocInfo::runtime_call_type);
duke@435 1046 if (!VerifyThread)
duke@435 1047 delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 1048 else
duke@435 1049 delayed()->nop(); // (thread already passed)
duke@435 1050 restore_thread(thread_cache);
duke@435 1051 reset_last_Java_frame();
duke@435 1052
duke@435 1053 // check for pending exceptions. use Gtemp as scratch register.
duke@435 1054 if (check_exceptions) {
duke@435 1055 check_and_forward_exception(Gtemp);
duke@435 1056 }
duke@435 1057
duke@435 1058 // get oop result if there is one and reset the value in the thread
duke@435 1059 if (oop_result->is_valid()) {
duke@435 1060 get_vm_result(oop_result);
duke@435 1061 }
duke@435 1062 }
duke@435 1063
duke@435 1064 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
duke@435 1065 {
duke@435 1066 Label L;
duke@435 1067
duke@435 1068 check_and_handle_popframe(scratch_reg);
duke@435 1069 check_and_handle_earlyret(scratch_reg);
duke@435 1070
twisti@1162 1071 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 1072 ld_ptr(exception_addr, scratch_reg);
duke@435 1073 br_null(scratch_reg,false,pt,L);
duke@435 1074 delayed()->nop();
duke@435 1075 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 1076 call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 1077 delayed()->nop();
duke@435 1078 bind(L);
duke@435 1079 }
duke@435 1080
duke@435 1081
duke@435 1082 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
duke@435 1083 }
duke@435 1084
duke@435 1085
duke@435 1086 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
duke@435 1087 }
duke@435 1088
duke@435 1089
duke@435 1090 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
duke@435 1091 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
duke@435 1092 }
duke@435 1093
duke@435 1094
duke@435 1095 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
duke@435 1096 // O0 is reserved for the thread
duke@435 1097 mov(arg_1, O1);
duke@435 1098 call_VM(oop_result, entry_point, 1, check_exceptions);
duke@435 1099 }
duke@435 1100
duke@435 1101
duke@435 1102 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
duke@435 1103 // O0 is reserved for the thread
duke@435 1104 mov(arg_1, O1);
duke@435 1105 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1106 call_VM(oop_result, entry_point, 2, check_exceptions);
duke@435 1107 }
duke@435 1108
duke@435 1109
duke@435 1110 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
duke@435 1111 // O0 is reserved for the thread
duke@435 1112 mov(arg_1, O1);
duke@435 1113 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1114 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
duke@435 1115 call_VM(oop_result, entry_point, 3, check_exceptions);
duke@435 1116 }
duke@435 1117
duke@435 1118
duke@435 1119
duke@435 1120 // Note: The following call_VM overloadings are useful when a "save"
duke@435 1121 // has already been performed by a stub, and the last Java frame is
duke@435 1122 // the previous one. In that case, last_java_sp must be passed as FP
duke@435 1123 // instead of SP.
duke@435 1124
duke@435 1125
duke@435 1126 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
duke@435 1127 call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
duke@435 1128 }
duke@435 1129
duke@435 1130
duke@435 1131 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
duke@435 1132 // O0 is reserved for the thread
duke@435 1133 mov(arg_1, O1);
duke@435 1134 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
duke@435 1135 }
duke@435 1136
duke@435 1137
duke@435 1138 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
duke@435 1139 // O0 is reserved for the thread
duke@435 1140 mov(arg_1, O1);
duke@435 1141 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1142 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
duke@435 1143 }
duke@435 1144
duke@435 1145
duke@435 1146 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
duke@435 1147 // O0 is reserved for the thread
duke@435 1148 mov(arg_1, O1);
duke@435 1149 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1150 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
duke@435 1151 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
duke@435 1152 }
duke@435 1153
duke@435 1154
duke@435 1155
duke@435 1156 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
duke@435 1157 assert_not_delayed();
duke@435 1158 save_thread(thread_cache);
duke@435 1159 // do the call
duke@435 1160 call(entry_point, relocInfo::runtime_call_type);
duke@435 1161 delayed()->nop();
duke@435 1162 restore_thread(thread_cache);
duke@435 1163 }
duke@435 1164
duke@435 1165
duke@435 1166 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
duke@435 1167 call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
duke@435 1168 }
duke@435 1169
duke@435 1170
duke@435 1171 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
duke@435 1172 mov(arg_1, O0);
duke@435 1173 call_VM_leaf(thread_cache, entry_point, 1);
duke@435 1174 }
duke@435 1175
duke@435 1176
duke@435 1177 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
duke@435 1178 mov(arg_1, O0);
duke@435 1179 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
duke@435 1180 call_VM_leaf(thread_cache, entry_point, 2);
duke@435 1181 }
duke@435 1182
duke@435 1183
duke@435 1184 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
duke@435 1185 mov(arg_1, O0);
duke@435 1186 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
duke@435 1187 mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
duke@435 1188 call_VM_leaf(thread_cache, entry_point, 3);
duke@435 1189 }
duke@435 1190
duke@435 1191
duke@435 1192 void MacroAssembler::get_vm_result(Register oop_result) {
duke@435 1193 verify_thread();
twisti@1162 1194 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
duke@435 1195 ld_ptr( vm_result_addr, oop_result);
duke@435 1196 st_ptr(G0, vm_result_addr);
duke@435 1197 verify_oop(oop_result);
duke@435 1198 }
duke@435 1199
duke@435 1200
duke@435 1201 void MacroAssembler::get_vm_result_2(Register oop_result) {
duke@435 1202 verify_thread();
twisti@1162 1203 Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
duke@435 1204 ld_ptr(vm_result_addr_2, oop_result);
duke@435 1205 st_ptr(G0, vm_result_addr_2);
duke@435 1206 verify_oop(oop_result);
duke@435 1207 }
duke@435 1208
duke@435 1209
duke@435 1210 // We require that C code which does not return a value in vm_result will
duke@435 1211 // leave it undisturbed.
duke@435 1212 void MacroAssembler::set_vm_result(Register oop_result) {
duke@435 1213 verify_thread();
twisti@1162 1214 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
duke@435 1215 verify_oop(oop_result);
duke@435 1216
duke@435 1217 # ifdef ASSERT
duke@435 1218 // Check that we are not overwriting any other oop.
duke@435 1219 #ifdef CC_INTERP
duke@435 1220 save_frame(0);
duke@435 1221 #else
duke@435 1222 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod for -Xprof
duke@435 1223 #endif /* CC_INTERP */
duke@435 1224 ld_ptr(vm_result_addr, L0);
duke@435 1225 tst(L0);
duke@435 1226 restore();
duke@435 1227 breakpoint_trap(notZero, Assembler::ptr_cc);
duke@435 1228 // }
duke@435 1229 # endif
duke@435 1230
duke@435 1231 st_ptr(oop_result, vm_result_addr);
duke@435 1232 }
duke@435 1233
duke@435 1234
ysr@777 1235 void MacroAssembler::card_table_write(jbyte* byte_map_base,
ysr@777 1236 Register tmp, Register obj) {
duke@435 1237 #ifdef _LP64
duke@435 1238 srlx(obj, CardTableModRefBS::card_shift, obj);
duke@435 1239 #else
duke@435 1240 srl(obj, CardTableModRefBS::card_shift, obj);
duke@435 1241 #endif
twisti@1162 1242 assert(tmp != obj, "need separate temp reg");
twisti@1162 1243 set((address) byte_map_base, tmp);
twisti@1162 1244 stb(G0, tmp, obj);
duke@435 1245 }
duke@435 1246
twisti@1162 1247
twisti@1162 1248 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
duke@435 1249 address save_pc;
duke@435 1250 int shiftcnt;
duke@435 1251 #ifdef _LP64
duke@435 1252 # ifdef CHECK_DELAY
twisti@1162 1253 assert_not_delayed((char*) "cannot put two instructions in delay slot");
duke@435 1254 # endif
duke@435 1255 v9_dep();
duke@435 1256 save_pc = pc();
twisti@1162 1257
twisti@1162 1258 int msb32 = (int) (addrlit.value() >> 32);
twisti@1162 1259 int lsb32 = (int) (addrlit.value());
twisti@1162 1260
twisti@1162 1261 if (msb32 == 0 && lsb32 >= 0) {
twisti@1162 1262 Assembler::sethi(lsb32, d, addrlit.rspec());
duke@435 1263 }
twisti@1162 1264 else if (msb32 == -1) {
twisti@1162 1265 Assembler::sethi(~lsb32, d, addrlit.rspec());
twisti@1162 1266 xor3(d, ~low10(~0), d);
duke@435 1267 }
duke@435 1268 else {
twisti@1162 1269 Assembler::sethi(msb32, d, addrlit.rspec()); // msb 22-bits
twisti@1162 1270 if (msb32 & 0x3ff) // Any bits?
twisti@1162 1271 or3(d, msb32 & 0x3ff, d); // msb 32-bits are now in lsb 32
twisti@1162 1272 if (lsb32 & 0xFFFFFC00) { // done?
twisti@1162 1273 if ((lsb32 >> 20) & 0xfff) { // Any bits set?
twisti@1162 1274 sllx(d, 12, d); // Make room for next 12 bits
twisti@1162 1275 or3(d, (lsb32 >> 20) & 0xfff, d); // Or in next 12
twisti@1162 1276 shiftcnt = 0; // We already shifted
duke@435 1277 }
duke@435 1278 else
duke@435 1279 shiftcnt = 12;
twisti@1162 1280 if ((lsb32 >> 10) & 0x3ff) {
twisti@1162 1281 sllx(d, shiftcnt + 10, d); // Make room for last 10 bits
twisti@1162 1282 or3(d, (lsb32 >> 10) & 0x3ff, d); // Or in next 10
duke@435 1283 shiftcnt = 0;
duke@435 1284 }
duke@435 1285 else
duke@435 1286 shiftcnt = 10;
twisti@1162 1287 sllx(d, shiftcnt + 10, d); // Shift leaving disp field 0'd
duke@435 1288 }
duke@435 1289 else
twisti@1162 1290 sllx(d, 32, d);
duke@435 1291 }
twisti@1162 1292 // Pad out the instruction sequence so it can be patched later.
twisti@1162 1293 if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
twisti@1162 1294 addrlit.rtype() != relocInfo::runtime_call_type)) {
twisti@1162 1295 while (pc() < (save_pc + (7 * BytesPerInstWord)))
duke@435 1296 nop();
duke@435 1297 }
duke@435 1298 #else
twisti@1162 1299 Assembler::sethi(addrlit.value(), d, addrlit.rspec());
duke@435 1300 #endif
duke@435 1301 }
duke@435 1302
twisti@1162 1303
twisti@1162 1304 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
twisti@1162 1305 internal_sethi(addrlit, d, false);
twisti@1162 1306 }
twisti@1162 1307
twisti@1162 1308
twisti@1162 1309 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
twisti@1162 1310 internal_sethi(addrlit, d, true);
twisti@1162 1311 }
twisti@1162 1312
twisti@1162 1313
duke@435 1314 int MacroAssembler::size_of_sethi(address a, bool worst_case) {
duke@435 1315 #ifdef _LP64
duke@435 1316 if (worst_case) return 7;
duke@435 1317 intptr_t iaddr = (intptr_t)a;
duke@435 1318 int hi32 = (int)(iaddr >> 32);
duke@435 1319 int lo32 = (int)(iaddr);
duke@435 1320 int inst_count;
duke@435 1321 if (hi32 == 0 && lo32 >= 0)
duke@435 1322 inst_count = 1;
duke@435 1323 else if (hi32 == -1)
duke@435 1324 inst_count = 2;
duke@435 1325 else {
duke@435 1326 inst_count = 2;
duke@435 1327 if ( hi32 & 0x3ff )
duke@435 1328 inst_count++;
duke@435 1329 if ( lo32 & 0xFFFFFC00 ) {
duke@435 1330 if( (lo32 >> 20) & 0xfff ) inst_count += 2;
duke@435 1331 if( (lo32 >> 10) & 0x3ff ) inst_count += 2;
duke@435 1332 }
duke@435 1333 }
duke@435 1334 return BytesPerInstWord * inst_count;
duke@435 1335 #else
duke@435 1336 return BytesPerInstWord;
duke@435 1337 #endif
duke@435 1338 }
duke@435 1339
duke@435 1340 int MacroAssembler::worst_case_size_of_set() {
duke@435 1341 return size_of_sethi(NULL, true) + 1;
duke@435 1342 }
duke@435 1343
twisti@1162 1344
twisti@1162 1345 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
twisti@1162 1346 intptr_t value = addrlit.value();
twisti@1162 1347
twisti@1162 1348 if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
duke@435 1349 // can optimize
twisti@1162 1350 if (-4096 <= value && value <= 4095) {
duke@435 1351 or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
duke@435 1352 return;
duke@435 1353 }
duke@435 1354 if (inv_hi22(hi22(value)) == value) {
twisti@1162 1355 sethi(addrlit, d);
duke@435 1356 return;
duke@435 1357 }
duke@435 1358 }
twisti@1162 1359 assert_not_delayed((char*) "cannot put two instructions in delay slot");
twisti@1162 1360 internal_sethi(addrlit, d, ForceRelocatable);
twisti@1162 1361 if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
twisti@1162 1362 add(d, addrlit.low10(), d, addrlit.rspec());
duke@435 1363 }
duke@435 1364 }
duke@435 1365
twisti@1162 1366 void MacroAssembler::set(const AddressLiteral& al, Register d) {
twisti@1162 1367 internal_set(al, d, false);
duke@435 1368 }
duke@435 1369
twisti@1162 1370 void MacroAssembler::set(intptr_t value, Register d) {
twisti@1162 1371 AddressLiteral al(value);
twisti@1162 1372 internal_set(al, d, false);
twisti@1162 1373 }
twisti@1162 1374
twisti@1162 1375 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
twisti@1162 1376 AddressLiteral al(addr, rspec);
twisti@1162 1377 internal_set(al, d, false);
twisti@1162 1378 }
twisti@1162 1379
twisti@1162 1380 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
twisti@1162 1381 internal_set(al, d, true);
twisti@1162 1382 }
twisti@1162 1383
twisti@1162 1384 void MacroAssembler::patchable_set(intptr_t value, Register d) {
twisti@1162 1385 AddressLiteral al(value);
twisti@1162 1386 internal_set(al, d, true);
twisti@1162 1387 }
duke@435 1388
duke@435 1389
duke@435 1390 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
duke@435 1391 assert_not_delayed();
duke@435 1392 v9_dep();
duke@435 1393
duke@435 1394 int hi = (int)(value >> 32);
duke@435 1395 int lo = (int)(value & ~0);
duke@435 1396 // (Matcher::isSimpleConstant64 knows about the following optimizations.)
duke@435 1397 if (Assembler::is_simm13(lo) && value == lo) {
duke@435 1398 or3(G0, lo, d);
duke@435 1399 } else if (hi == 0) {
duke@435 1400 Assembler::sethi(lo, d); // hardware version zero-extends to upper 32
duke@435 1401 if (low10(lo) != 0)
duke@435 1402 or3(d, low10(lo), d);
duke@435 1403 }
duke@435 1404 else if (hi == -1) {
duke@435 1405 Assembler::sethi(~lo, d); // hardware version zero-extends to upper 32
duke@435 1406 xor3(d, low10(lo) ^ ~low10(~0), d);
duke@435 1407 }
duke@435 1408 else if (lo == 0) {
duke@435 1409 if (Assembler::is_simm13(hi)) {
duke@435 1410 or3(G0, hi, d);
duke@435 1411 } else {
duke@435 1412 Assembler::sethi(hi, d); // hardware version zero-extends to upper 32
duke@435 1413 if (low10(hi) != 0)
duke@435 1414 or3(d, low10(hi), d);
duke@435 1415 }
duke@435 1416 sllx(d, 32, d);
duke@435 1417 }
duke@435 1418 else {
duke@435 1419 Assembler::sethi(hi, tmp);
duke@435 1420 Assembler::sethi(lo, d); // macro assembler version sign-extends
duke@435 1421 if (low10(hi) != 0)
duke@435 1422 or3 (tmp, low10(hi), tmp);
duke@435 1423 if (low10(lo) != 0)
duke@435 1424 or3 ( d, low10(lo), d);
duke@435 1425 sllx(tmp, 32, tmp);
duke@435 1426 or3 (d, tmp, d);
duke@435 1427 }
duke@435 1428 }
duke@435 1429
duke@435 1430 // compute size in bytes of sparc frame, given
duke@435 1431 // number of extraWords
duke@435 1432 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
duke@435 1433
duke@435 1434 int nWords = frame::memory_parameter_word_sp_offset;
duke@435 1435
duke@435 1436 nWords += extraWords;
duke@435 1437
duke@435 1438 if (nWords & 1) ++nWords; // round up to double-word
duke@435 1439
duke@435 1440 return nWords * BytesPerWord;
duke@435 1441 }
duke@435 1442
duke@435 1443
duke@435 1444 // save_frame: given number of "extra" words in frame,
duke@435 1445 // issue approp. save instruction (p 200, v8 manual)
duke@435 1446
duke@435 1447 void MacroAssembler::save_frame(int extraWords = 0) {
duke@435 1448 int delta = -total_frame_size_in_bytes(extraWords);
duke@435 1449 if (is_simm13(delta)) {
duke@435 1450 save(SP, delta, SP);
duke@435 1451 } else {
duke@435 1452 set(delta, G3_scratch);
duke@435 1453 save(SP, G3_scratch, SP);
duke@435 1454 }
duke@435 1455 }
duke@435 1456
duke@435 1457
duke@435 1458 void MacroAssembler::save_frame_c1(int size_in_bytes) {
duke@435 1459 if (is_simm13(-size_in_bytes)) {
duke@435 1460 save(SP, -size_in_bytes, SP);
duke@435 1461 } else {
duke@435 1462 set(-size_in_bytes, G3_scratch);
duke@435 1463 save(SP, G3_scratch, SP);
duke@435 1464 }
duke@435 1465 }
duke@435 1466
duke@435 1467
duke@435 1468 void MacroAssembler::save_frame_and_mov(int extraWords,
duke@435 1469 Register s1, Register d1,
duke@435 1470 Register s2, Register d2) {
duke@435 1471 assert_not_delayed();
duke@435 1472
duke@435 1473 // The trick here is to use precisely the same memory word
duke@435 1474 // that trap handlers also use to save the register.
duke@435 1475 // This word cannot be used for any other purpose, but
duke@435 1476 // it works fine to save the register's value, whether or not
duke@435 1477 // an interrupt flushes register windows at any given moment!
duke@435 1478 Address s1_addr;
duke@435 1479 if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
duke@435 1480 s1_addr = s1->address_in_saved_window();
duke@435 1481 st_ptr(s1, s1_addr);
duke@435 1482 }
duke@435 1483
duke@435 1484 Address s2_addr;
duke@435 1485 if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
duke@435 1486 s2_addr = s2->address_in_saved_window();
duke@435 1487 st_ptr(s2, s2_addr);
duke@435 1488 }
duke@435 1489
duke@435 1490 save_frame(extraWords);
duke@435 1491
duke@435 1492 if (s1_addr.base() == SP) {
duke@435 1493 ld_ptr(s1_addr.after_save(), d1);
duke@435 1494 } else if (s1->is_valid()) {
duke@435 1495 mov(s1->after_save(), d1);
duke@435 1496 }
duke@435 1497
duke@435 1498 if (s2_addr.base() == SP) {
duke@435 1499 ld_ptr(s2_addr.after_save(), d2);
duke@435 1500 } else if (s2->is_valid()) {
duke@435 1501 mov(s2->after_save(), d2);
duke@435 1502 }
duke@435 1503 }
duke@435 1504
duke@435 1505
twisti@1162 1506 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
duke@435 1507 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
duke@435 1508 int oop_index = oop_recorder()->allocate_index(obj);
twisti@1162 1509 return AddressLiteral(obj, oop_Relocation::spec(oop_index));
duke@435 1510 }
duke@435 1511
duke@435 1512
twisti@1162 1513 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
duke@435 1514 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
duke@435 1515 int oop_index = oop_recorder()->find_index(obj);
twisti@1162 1516 return AddressLiteral(obj, oop_Relocation::spec(oop_index));
duke@435 1517 }
duke@435 1518
kvn@599 1519 void MacroAssembler::set_narrow_oop(jobject obj, Register d) {
kvn@599 1520 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
kvn@599 1521 int oop_index = oop_recorder()->find_index(obj);
kvn@599 1522 RelocationHolder rspec = oop_Relocation::spec(oop_index);
kvn@599 1523
kvn@599 1524 assert_not_delayed();
kvn@599 1525 // Relocation with special format (see relocInfo_sparc.hpp).
kvn@599 1526 relocate(rspec, 1);
kvn@599 1527 // Assembler::sethi(0x3fffff, d);
kvn@599 1528 emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
kvn@599 1529 // Don't add relocation for 'add'. Do patching during 'sethi' processing.
kvn@599 1530 add(d, 0x3ff, d);
kvn@599 1531
kvn@599 1532 }
kvn@599 1533
duke@435 1534
duke@435 1535 void MacroAssembler::align(int modulus) {
duke@435 1536 while (offset() % modulus != 0) nop();
duke@435 1537 }
duke@435 1538
duke@435 1539
duke@435 1540 void MacroAssembler::safepoint() {
duke@435 1541 relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
duke@435 1542 }
duke@435 1543
duke@435 1544
duke@435 1545 void RegistersForDebugging::print(outputStream* s) {
duke@435 1546 int j;
duke@435 1547 for ( j = 0; j < 8; ++j )
duke@435 1548 if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
duke@435 1549 else s->print_cr( "fp = 0x%.16lx", i[j]);
duke@435 1550 s->cr();
duke@435 1551
duke@435 1552 for ( j = 0; j < 8; ++j )
duke@435 1553 s->print_cr("l%d = 0x%.16lx", j, l[j]);
duke@435 1554 s->cr();
duke@435 1555
duke@435 1556 for ( j = 0; j < 8; ++j )
duke@435 1557 if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
duke@435 1558 else s->print_cr( "sp = 0x%.16lx", o[j]);
duke@435 1559 s->cr();
duke@435 1560
duke@435 1561 for ( j = 0; j < 8; ++j )
duke@435 1562 s->print_cr("g%d = 0x%.16lx", j, g[j]);
duke@435 1563 s->cr();
duke@435 1564
duke@435 1565 // print out floats with compression
duke@435 1566 for (j = 0; j < 32; ) {
duke@435 1567 jfloat val = f[j];
duke@435 1568 int last = j;
duke@435 1569 for ( ; last+1 < 32; ++last ) {
duke@435 1570 char b1[1024], b2[1024];
duke@435 1571 sprintf(b1, "%f", val);
duke@435 1572 sprintf(b2, "%f", f[last+1]);
duke@435 1573 if (strcmp(b1, b2))
duke@435 1574 break;
duke@435 1575 }
duke@435 1576 s->print("f%d", j);
duke@435 1577 if ( j != last ) s->print(" - f%d", last);
duke@435 1578 s->print(" = %f", val);
duke@435 1579 s->fill_to(25);
duke@435 1580 s->print_cr(" (0x%x)", val);
duke@435 1581 j = last + 1;
duke@435 1582 }
duke@435 1583 s->cr();
duke@435 1584
duke@435 1585 // and doubles (evens only)
duke@435 1586 for (j = 0; j < 32; ) {
duke@435 1587 jdouble val = d[j];
duke@435 1588 int last = j;
duke@435 1589 for ( ; last+1 < 32; ++last ) {
duke@435 1590 char b1[1024], b2[1024];
duke@435 1591 sprintf(b1, "%f", val);
duke@435 1592 sprintf(b2, "%f", d[last+1]);
duke@435 1593 if (strcmp(b1, b2))
duke@435 1594 break;
duke@435 1595 }
duke@435 1596 s->print("d%d", 2 * j);
duke@435 1597 if ( j != last ) s->print(" - d%d", last);
duke@435 1598 s->print(" = %f", val);
duke@435 1599 s->fill_to(30);
duke@435 1600 s->print("(0x%x)", *(int*)&val);
duke@435 1601 s->fill_to(42);
duke@435 1602 s->print_cr("(0x%x)", *(1 + (int*)&val));
duke@435 1603 j = last + 1;
duke@435 1604 }
duke@435 1605 s->cr();
duke@435 1606 }
duke@435 1607
duke@435 1608 void RegistersForDebugging::save_registers(MacroAssembler* a) {
duke@435 1609 a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
duke@435 1610 a->flush_windows();
duke@435 1611 int i;
duke@435 1612 for (i = 0; i < 8; ++i) {
duke@435 1613 a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, i_offset(i));
duke@435 1614 a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, l_offset(i));
duke@435 1615 a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
duke@435 1616 a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
duke@435 1617 }
duke@435 1618 for (i = 0; i < 32; ++i) {
duke@435 1619 a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
duke@435 1620 }
duke@435 1621 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 1622 a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
duke@435 1623 }
duke@435 1624 }
duke@435 1625
duke@435 1626 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
duke@435 1627 for (int i = 1; i < 8; ++i) {
duke@435 1628 a->ld_ptr(r, g_offset(i), as_gRegister(i));
duke@435 1629 }
duke@435 1630 for (int j = 0; j < 32; ++j) {
duke@435 1631 a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
duke@435 1632 }
duke@435 1633 for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
duke@435 1634 a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
duke@435 1635 }
duke@435 1636 }
duke@435 1637
duke@435 1638
duke@435 1639 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 1640 void MacroAssembler::push_fTOS() {
duke@435 1641 // %%%%%% need to implement this
duke@435 1642 }
duke@435 1643
duke@435 1644 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 1645 void MacroAssembler::pop_fTOS() {
duke@435 1646 // %%%%%% need to implement this
duke@435 1647 }
duke@435 1648
duke@435 1649 void MacroAssembler::empty_FPU_stack() {
duke@435 1650 // %%%%%% need to implement this
duke@435 1651 }
duke@435 1652
duke@435 1653 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
duke@435 1654 // plausibility check for oops
duke@435 1655 if (!VerifyOops) return;
duke@435 1656
duke@435 1657 if (reg == G0) return; // always NULL, which is always an oop
duke@435 1658
ysr@777 1659 char buffer[64];
ysr@777 1660 #ifdef COMPILER1
ysr@777 1661 if (CommentedAssembly) {
ysr@777 1662 snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
ysr@777 1663 block_comment(buffer);
ysr@777 1664 }
ysr@777 1665 #endif
ysr@777 1666
ysr@777 1667 int len = strlen(file) + strlen(msg) + 1 + 4;
duke@435 1668 sprintf(buffer, "%d", line);
ysr@777 1669 len += strlen(buffer);
ysr@777 1670 sprintf(buffer, " at offset %d ", offset());
ysr@777 1671 len += strlen(buffer);
duke@435 1672 char * real_msg = new char[len];
ysr@777 1673 sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
duke@435 1674
duke@435 1675 // Call indirectly to solve generation ordering problem
twisti@1162 1676 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
duke@435 1677
duke@435 1678 // Make some space on stack above the current register window.
duke@435 1679 // Enough to hold 8 64-bit registers.
duke@435 1680 add(SP,-8*8,SP);
duke@435 1681
duke@435 1682 // Save some 64-bit registers; a normal 'save' chops the heads off
duke@435 1683 // of 64-bit longs in the 32-bit build.
duke@435 1684 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
duke@435 1685 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
duke@435 1686 mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
duke@435 1687 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
duke@435 1688
duke@435 1689 set((intptr_t)real_msg, O1);
duke@435 1690 // Load address to call to into O7
duke@435 1691 load_ptr_contents(a, O7);
duke@435 1692 // Register call to verify_oop_subroutine
duke@435 1693 callr(O7, G0);
duke@435 1694 delayed()->nop();
duke@435 1695 // recover frame size
duke@435 1696 add(SP, 8*8,SP);
duke@435 1697 }
duke@435 1698
duke@435 1699 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
duke@435 1700 // plausibility check for oops
duke@435 1701 if (!VerifyOops) return;
duke@435 1702
duke@435 1703 char buffer[64];
duke@435 1704 sprintf(buffer, "%d", line);
duke@435 1705 int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
duke@435 1706 sprintf(buffer, " at SP+%d ", addr.disp());
duke@435 1707 len += strlen(buffer);
duke@435 1708 char * real_msg = new char[len];
duke@435 1709 sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
duke@435 1710
duke@435 1711 // Call indirectly to solve generation ordering problem
twisti@1162 1712 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
duke@435 1713
duke@435 1714 // Make some space on stack above the current register window.
duke@435 1715 // Enough to hold 8 64-bit registers.
duke@435 1716 add(SP,-8*8,SP);
duke@435 1717
duke@435 1718 // Save some 64-bit registers; a normal 'save' chops the heads off
duke@435 1719 // of 64-bit longs in the 32-bit build.
duke@435 1720 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
duke@435 1721 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
duke@435 1722 ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
duke@435 1723 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
duke@435 1724
duke@435 1725 set((intptr_t)real_msg, O1);
duke@435 1726 // Load address to call to into O7
duke@435 1727 load_ptr_contents(a, O7);
duke@435 1728 // Register call to verify_oop_subroutine
duke@435 1729 callr(O7, G0);
duke@435 1730 delayed()->nop();
duke@435 1731 // recover frame size
duke@435 1732 add(SP, 8*8,SP);
duke@435 1733 }
duke@435 1734
duke@435 1735 // side-door communication with signalHandler in os_solaris.cpp
duke@435 1736 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
duke@435 1737
duke@435 1738 // This macro is expanded just once; it creates shared code. Contract:
duke@435 1739 // receives an oop in O0. Must restore O0 & O7 from TLS. Must not smash ANY
duke@435 1740 // registers, including flags. May not use a register 'save', as this blows
duke@435 1741 // the high bits of the O-regs if they contain Long values. Acts as a 'leaf'
duke@435 1742 // call.
duke@435 1743 void MacroAssembler::verify_oop_subroutine() {
duke@435 1744 assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
duke@435 1745
duke@435 1746 // Leaf call; no frame.
duke@435 1747 Label succeed, fail, null_or_fail;
duke@435 1748
duke@435 1749 // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
duke@435 1750 // O0 is now the oop to be checked. O7 is the return address.
duke@435 1751 Register O0_obj = O0;
duke@435 1752
duke@435 1753 // Save some more registers for temps.
duke@435 1754 stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
duke@435 1755 stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
duke@435 1756 stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
duke@435 1757 stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
duke@435 1758
duke@435 1759 // Save flags
duke@435 1760 Register O5_save_flags = O5;
duke@435 1761 rdccr( O5_save_flags );
duke@435 1762
duke@435 1763 { // count number of verifies
duke@435 1764 Register O2_adr = O2;
duke@435 1765 Register O3_accum = O3;
twisti@1162 1766 inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
duke@435 1767 }
duke@435 1768
duke@435 1769 Register O2_mask = O2;
duke@435 1770 Register O3_bits = O3;
duke@435 1771 Register O4_temp = O4;
duke@435 1772
duke@435 1773 // mark lower end of faulting range
duke@435 1774 assert(_verify_oop_implicit_branch[0] == NULL, "set once");
duke@435 1775 _verify_oop_implicit_branch[0] = pc();
duke@435 1776
duke@435 1777 // We can't check the mark oop because it could be in the process of
duke@435 1778 // locking or unlocking while this is running.
duke@435 1779 set(Universe::verify_oop_mask (), O2_mask);
duke@435 1780 set(Universe::verify_oop_bits (), O3_bits);
duke@435 1781
duke@435 1782 // assert((obj & oop_mask) == oop_bits);
duke@435 1783 and3(O0_obj, O2_mask, O4_temp);
duke@435 1784 cmp(O4_temp, O3_bits);
duke@435 1785 brx(notEqual, false, pn, null_or_fail);
duke@435 1786 delayed()->nop();
duke@435 1787
duke@435 1788 if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
duke@435 1789 // the null_or_fail case is useless; must test for null separately
duke@435 1790 br_null(O0_obj, false, pn, succeed);
duke@435 1791 delayed()->nop();
duke@435 1792 }
duke@435 1793
duke@435 1794 // Check the klassOop of this object for being in the right area of memory.
duke@435 1795 // Cannot do the load in the delay above slot in case O0 is null
coleenp@548 1796 load_klass(O0_obj, O0_obj);
duke@435 1797 // assert((klass & klass_mask) == klass_bits);
duke@435 1798 if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
duke@435 1799 set(Universe::verify_klass_mask(), O2_mask);
duke@435 1800 if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
duke@435 1801 set(Universe::verify_klass_bits(), O3_bits);
duke@435 1802 and3(O0_obj, O2_mask, O4_temp);
duke@435 1803 cmp(O4_temp, O3_bits);
duke@435 1804 brx(notEqual, false, pn, fail);
coleenp@548 1805 delayed()->nop();
duke@435 1806 // Check the klass's klass
coleenp@548 1807 load_klass(O0_obj, O0_obj);
duke@435 1808 and3(O0_obj, O2_mask, O4_temp);
duke@435 1809 cmp(O4_temp, O3_bits);
duke@435 1810 brx(notEqual, false, pn, fail);
duke@435 1811 delayed()->wrccr( O5_save_flags ); // Restore CCR's
duke@435 1812
duke@435 1813 // mark upper end of faulting range
duke@435 1814 _verify_oop_implicit_branch[1] = pc();
duke@435 1815
duke@435 1816 //-----------------------
duke@435 1817 // all tests pass
duke@435 1818 bind(succeed);
duke@435 1819
duke@435 1820 // Restore prior 64-bit registers
duke@435 1821 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
duke@435 1822 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
duke@435 1823 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
duke@435 1824 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
duke@435 1825 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
duke@435 1826 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
duke@435 1827
duke@435 1828 retl(); // Leaf return; restore prior O7 in delay slot
duke@435 1829 delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
duke@435 1830
duke@435 1831 //-----------------------
duke@435 1832 bind(null_or_fail); // nulls are less common but OK
duke@435 1833 br_null(O0_obj, false, pt, succeed);
duke@435 1834 delayed()->wrccr( O5_save_flags ); // Restore CCR's
duke@435 1835
duke@435 1836 //-----------------------
duke@435 1837 // report failure:
duke@435 1838 bind(fail);
duke@435 1839 _verify_oop_implicit_branch[2] = pc();
duke@435 1840
duke@435 1841 wrccr( O5_save_flags ); // Restore CCR's
duke@435 1842
duke@435 1843 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1844
duke@435 1845 // stop_subroutine expects message pointer in I1.
duke@435 1846 mov(I1, O1);
duke@435 1847
duke@435 1848 // Restore prior 64-bit registers
duke@435 1849 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
duke@435 1850 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
duke@435 1851 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
duke@435 1852 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
duke@435 1853 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
duke@435 1854 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
duke@435 1855
duke@435 1856 // factor long stop-sequence into subroutine to save space
duke@435 1857 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
duke@435 1858
duke@435 1859 // call indirectly to solve generation ordering problem
twisti@1162 1860 AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
twisti@1162 1861 load_ptr_contents(al, O5);
duke@435 1862 jmpl(O5, 0, O7);
duke@435 1863 delayed()->nop();
duke@435 1864 }
duke@435 1865
duke@435 1866
duke@435 1867 void MacroAssembler::stop(const char* msg) {
duke@435 1868 // save frame first to get O7 for return address
duke@435 1869 // add one word to size in case struct is odd number of words long
duke@435 1870 // It must be doubleword-aligned for storing doubles into it.
duke@435 1871
duke@435 1872 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1873
duke@435 1874 // stop_subroutine expects message pointer in I1.
duke@435 1875 set((intptr_t)msg, O1);
duke@435 1876
duke@435 1877 // factor long stop-sequence into subroutine to save space
duke@435 1878 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
duke@435 1879
duke@435 1880 // call indirectly to solve generation ordering problem
twisti@1162 1881 AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
duke@435 1882 load_ptr_contents(a, O5);
duke@435 1883 jmpl(O5, 0, O7);
duke@435 1884 delayed()->nop();
duke@435 1885
duke@435 1886 breakpoint_trap(); // make stop actually stop rather than writing
duke@435 1887 // unnoticeable results in the output files.
duke@435 1888
duke@435 1889 // restore(); done in callee to save space!
duke@435 1890 }
duke@435 1891
duke@435 1892
duke@435 1893 void MacroAssembler::warn(const char* msg) {
duke@435 1894 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1895 RegistersForDebugging::save_registers(this);
duke@435 1896 mov(O0, L0);
duke@435 1897 set((intptr_t)msg, O0);
duke@435 1898 call( CAST_FROM_FN_PTR(address, warning) );
duke@435 1899 delayed()->nop();
duke@435 1900 // ret();
duke@435 1901 // delayed()->restore();
duke@435 1902 RegistersForDebugging::restore_registers(this, L0);
duke@435 1903 restore();
duke@435 1904 }
duke@435 1905
duke@435 1906
duke@435 1907 void MacroAssembler::untested(const char* what) {
duke@435 1908 // We must be able to turn interactive prompting off
duke@435 1909 // in order to run automated test scripts on the VM
duke@435 1910 // Use the flag ShowMessageBoxOnError
duke@435 1911
duke@435 1912 char* b = new char[1024];
duke@435 1913 sprintf(b, "untested: %s", what);
duke@435 1914
duke@435 1915 if ( ShowMessageBoxOnError ) stop(b);
duke@435 1916 else warn(b);
duke@435 1917 }
duke@435 1918
duke@435 1919
duke@435 1920 void MacroAssembler::stop_subroutine() {
duke@435 1921 RegistersForDebugging::save_registers(this);
duke@435 1922
duke@435 1923 // for the sake of the debugger, stick a PC on the current frame
duke@435 1924 // (this assumes that the caller has performed an extra "save")
duke@435 1925 mov(I7, L7);
duke@435 1926 add(O7, -7 * BytesPerInt, I7);
duke@435 1927
duke@435 1928 save_frame(); // one more save to free up another O7 register
duke@435 1929 mov(I0, O1); // addr of reg save area
duke@435 1930
duke@435 1931 // We expect pointer to message in I1. Caller must set it up in O1
duke@435 1932 mov(I1, O0); // get msg
duke@435 1933 call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
duke@435 1934 delayed()->nop();
duke@435 1935
duke@435 1936 restore();
duke@435 1937
duke@435 1938 RegistersForDebugging::restore_registers(this, O0);
duke@435 1939
duke@435 1940 save_frame(0);
duke@435 1941 call(CAST_FROM_FN_PTR(address,breakpoint));
duke@435 1942 delayed()->nop();
duke@435 1943 restore();
duke@435 1944
duke@435 1945 mov(L7, I7);
duke@435 1946 retl();
duke@435 1947 delayed()->restore(); // see stop above
duke@435 1948 }
duke@435 1949
duke@435 1950
duke@435 1951 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
duke@435 1952 if ( ShowMessageBoxOnError ) {
duke@435 1953 JavaThreadState saved_state = JavaThread::current()->thread_state();
duke@435 1954 JavaThread::current()->set_thread_state(_thread_in_vm);
duke@435 1955 {
duke@435 1956 // In order to get locks work, we need to fake a in_VM state
duke@435 1957 ttyLocker ttyl;
duke@435 1958 ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
duke@435 1959 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
duke@435 1960 ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
duke@435 1961 }
duke@435 1962 if (os::message_box(msg, "Execution stopped, print registers?"))
duke@435 1963 regs->print(::tty);
duke@435 1964 }
duke@435 1965 ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
duke@435 1966 }
duke@435 1967 else
duke@435 1968 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
duke@435 1969 assert(false, "error");
duke@435 1970 }
duke@435 1971
duke@435 1972
duke@435 1973 #ifndef PRODUCT
duke@435 1974 void MacroAssembler::test() {
duke@435 1975 ResourceMark rm;
duke@435 1976
duke@435 1977 CodeBuffer cb("test", 10000, 10000);
duke@435 1978 MacroAssembler* a = new MacroAssembler(&cb);
duke@435 1979 VM_Version::allow_all();
duke@435 1980 a->test_v9();
duke@435 1981 a->test_v8_onlys();
duke@435 1982 VM_Version::revert();
duke@435 1983
duke@435 1984 StubRoutines::Sparc::test_stop_entry()();
duke@435 1985 }
duke@435 1986 #endif
duke@435 1987
duke@435 1988
duke@435 1989 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
duke@435 1990 subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
duke@435 1991 Label no_extras;
duke@435 1992 br( negative, true, pt, no_extras ); // if neg, clear reg
twisti@1162 1993 delayed()->set(0, Rresult); // annuled, so only if taken
duke@435 1994 bind( no_extras );
duke@435 1995 }
duke@435 1996
duke@435 1997
duke@435 1998 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
duke@435 1999 #ifdef _LP64
duke@435 2000 add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
duke@435 2001 #else
duke@435 2002 add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
duke@435 2003 #endif
duke@435 2004 bclr(1, Rresult);
duke@435 2005 sll(Rresult, LogBytesPerWord, Rresult); // Rresult has total frame bytes
duke@435 2006 }
duke@435 2007
duke@435 2008
duke@435 2009 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
duke@435 2010 calc_frame_size(Rextra_words, Rresult);
duke@435 2011 neg(Rresult);
duke@435 2012 save(SP, Rresult, SP);
duke@435 2013 }
duke@435 2014
duke@435 2015
duke@435 2016 // ---------------------------------------------------------
duke@435 2017 Assembler::RCondition cond2rcond(Assembler::Condition c) {
duke@435 2018 switch (c) {
duke@435 2019 /*case zero: */
duke@435 2020 case Assembler::equal: return Assembler::rc_z;
duke@435 2021 case Assembler::lessEqual: return Assembler::rc_lez;
duke@435 2022 case Assembler::less: return Assembler::rc_lz;
duke@435 2023 /*case notZero:*/
duke@435 2024 case Assembler::notEqual: return Assembler::rc_nz;
duke@435 2025 case Assembler::greater: return Assembler::rc_gz;
duke@435 2026 case Assembler::greaterEqual: return Assembler::rc_gez;
duke@435 2027 }
duke@435 2028 ShouldNotReachHere();
duke@435 2029 return Assembler::rc_z;
duke@435 2030 }
duke@435 2031
duke@435 2032 // compares register with zero and branches. NOT FOR USE WITH 64-bit POINTERS
duke@435 2033 void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
duke@435 2034 tst(s1);
duke@435 2035 br (c, a, p, L);
duke@435 2036 }
duke@435 2037
duke@435 2038
duke@435 2039 // Compares a pointer register with zero and branches on null.
duke@435 2040 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
duke@435 2041 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
duke@435 2042 assert_not_delayed();
duke@435 2043 #ifdef _LP64
duke@435 2044 bpr( rc_z, a, p, s1, L );
duke@435 2045 #else
duke@435 2046 tst(s1);
duke@435 2047 br ( zero, a, p, L );
duke@435 2048 #endif
duke@435 2049 }
duke@435 2050
duke@435 2051 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
duke@435 2052 assert_not_delayed();
duke@435 2053 #ifdef _LP64
duke@435 2054 bpr( rc_nz, a, p, s1, L );
duke@435 2055 #else
duke@435 2056 tst(s1);
duke@435 2057 br ( notZero, a, p, L );
duke@435 2058 #endif
duke@435 2059 }
duke@435 2060
ysr@777 2061 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
ysr@777 2062 Register s1, address d,
ysr@777 2063 relocInfo::relocType rt ) {
ysr@777 2064 if (VM_Version::v9_instructions_work()) {
ysr@777 2065 bpr(rc, a, p, s1, d, rt);
ysr@777 2066 } else {
ysr@777 2067 tst(s1);
ysr@777 2068 br(reg_cond_to_cc_cond(rc), a, p, d, rt);
ysr@777 2069 }
ysr@777 2070 }
ysr@777 2071
ysr@777 2072 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
ysr@777 2073 Register s1, Label& L ) {
ysr@777 2074 if (VM_Version::v9_instructions_work()) {
ysr@777 2075 bpr(rc, a, p, s1, L);
ysr@777 2076 } else {
ysr@777 2077 tst(s1);
ysr@777 2078 br(reg_cond_to_cc_cond(rc), a, p, L);
ysr@777 2079 }
ysr@777 2080 }
ysr@777 2081
duke@435 2082
duke@435 2083 // instruction sequences factored across compiler & interpreter
duke@435 2084
duke@435 2085
duke@435 2086 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
duke@435 2087 Register Rb_hi, Register Rb_low,
duke@435 2088 Register Rresult) {
duke@435 2089
duke@435 2090 Label check_low_parts, done;
duke@435 2091
duke@435 2092 cmp(Ra_hi, Rb_hi ); // compare hi parts
duke@435 2093 br(equal, true, pt, check_low_parts);
duke@435 2094 delayed()->cmp(Ra_low, Rb_low); // test low parts
duke@435 2095
duke@435 2096 // And, with an unsigned comparison, it does not matter if the numbers
duke@435 2097 // are negative or not.
duke@435 2098 // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
duke@435 2099 // The second one is bigger (unsignedly).
duke@435 2100
duke@435 2101 // Other notes: The first move in each triplet can be unconditional
duke@435 2102 // (and therefore probably prefetchable).
duke@435 2103 // And the equals case for the high part does not need testing,
duke@435 2104 // since that triplet is reached only after finding the high halves differ.
duke@435 2105
duke@435 2106 if (VM_Version::v9_instructions_work()) {
duke@435 2107
duke@435 2108 mov ( -1, Rresult);
duke@435 2109 ba( false, done ); delayed()-> movcc(greater, false, icc, 1, Rresult);
duke@435 2110 }
duke@435 2111 else {
duke@435 2112 br(less, true, pt, done); delayed()-> set(-1, Rresult);
duke@435 2113 br(greater, true, pt, done); delayed()-> set( 1, Rresult);
duke@435 2114 }
duke@435 2115
duke@435 2116 bind( check_low_parts );
duke@435 2117
duke@435 2118 if (VM_Version::v9_instructions_work()) {
duke@435 2119 mov( -1, Rresult);
duke@435 2120 movcc(equal, false, icc, 0, Rresult);
duke@435 2121 movcc(greaterUnsigned, false, icc, 1, Rresult);
duke@435 2122 }
duke@435 2123 else {
duke@435 2124 set(-1, Rresult);
duke@435 2125 br(equal, true, pt, done); delayed()->set( 0, Rresult);
duke@435 2126 br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
duke@435 2127 }
duke@435 2128 bind( done );
duke@435 2129 }
duke@435 2130
duke@435 2131 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
duke@435 2132 subcc( G0, Rlow, Rlow );
duke@435 2133 subc( G0, Rhi, Rhi );
duke@435 2134 }
duke@435 2135
duke@435 2136 void MacroAssembler::lshl( Register Rin_high, Register Rin_low,
duke@435 2137 Register Rcount,
duke@435 2138 Register Rout_high, Register Rout_low,
duke@435 2139 Register Rtemp ) {
duke@435 2140
duke@435 2141
duke@435 2142 Register Ralt_count = Rtemp;
duke@435 2143 Register Rxfer_bits = Rtemp;
duke@435 2144
duke@435 2145 assert( Ralt_count != Rin_high
duke@435 2146 && Ralt_count != Rin_low
duke@435 2147 && Ralt_count != Rcount
duke@435 2148 && Rxfer_bits != Rin_low
duke@435 2149 && Rxfer_bits != Rin_high
duke@435 2150 && Rxfer_bits != Rcount
duke@435 2151 && Rxfer_bits != Rout_low
duke@435 2152 && Rout_low != Rin_high,
duke@435 2153 "register alias checks");
duke@435 2154
duke@435 2155 Label big_shift, done;
duke@435 2156
duke@435 2157 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2158 // Here we use the 32 bit shifts.
duke@435 2159
duke@435 2160 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
duke@435 2161 subcc(Rcount, 31, Ralt_count);
duke@435 2162 br(greater, true, pn, big_shift);
duke@435 2163 delayed()->
duke@435 2164 dec(Ralt_count);
duke@435 2165
duke@435 2166 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2167
duke@435 2168 // We get the transfer bits by shifting right by 32-count the low
duke@435 2169 // register. This is done by shifting right by 31-count and then by one
duke@435 2170 // more to take care of the special (rare) case where count is zero
duke@435 2171 // (shifting by 32 would not work).
duke@435 2172
duke@435 2173 neg( Ralt_count );
duke@435 2174
duke@435 2175 // The order of the next two instructions is critical in the case where
duke@435 2176 // Rin and Rout are the same and should not be reversed.
duke@435 2177
duke@435 2178 srl( Rin_low, Ralt_count, Rxfer_bits ); // shift right by 31-count
duke@435 2179 if (Rcount != Rout_low) {
duke@435 2180 sll( Rin_low, Rcount, Rout_low ); // low half
duke@435 2181 }
duke@435 2182 sll( Rin_high, Rcount, Rout_high );
duke@435 2183 if (Rcount == Rout_low) {
duke@435 2184 sll( Rin_low, Rcount, Rout_low ); // low half
duke@435 2185 }
duke@435 2186 srl( Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
duke@435 2187 ba (false, done);
duke@435 2188 delayed()->
duke@435 2189 or3( Rout_high, Rxfer_bits, Rout_high); // new hi value: or in shifted old hi part and xfer from low
duke@435 2190
duke@435 2191 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2192 bind(big_shift);
duke@435 2193 sll( Rin_low, Ralt_count, Rout_high );
duke@435 2194 clr( Rout_low );
duke@435 2195
duke@435 2196 bind(done);
duke@435 2197 }
duke@435 2198
duke@435 2199
duke@435 2200 void MacroAssembler::lshr( Register Rin_high, Register Rin_low,
duke@435 2201 Register Rcount,
duke@435 2202 Register Rout_high, Register Rout_low,
duke@435 2203 Register Rtemp ) {
duke@435 2204
duke@435 2205 Register Ralt_count = Rtemp;
duke@435 2206 Register Rxfer_bits = Rtemp;
duke@435 2207
duke@435 2208 assert( Ralt_count != Rin_high
duke@435 2209 && Ralt_count != Rin_low
duke@435 2210 && Ralt_count != Rcount
duke@435 2211 && Rxfer_bits != Rin_low
duke@435 2212 && Rxfer_bits != Rin_high
duke@435 2213 && Rxfer_bits != Rcount
duke@435 2214 && Rxfer_bits != Rout_high
duke@435 2215 && Rout_high != Rin_low,
duke@435 2216 "register alias checks");
duke@435 2217
duke@435 2218 Label big_shift, done;
duke@435 2219
duke@435 2220 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2221 // Here we use the 32 bit shifts.
duke@435 2222
duke@435 2223 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
duke@435 2224 subcc(Rcount, 31, Ralt_count);
duke@435 2225 br(greater, true, pn, big_shift);
duke@435 2226 delayed()->dec(Ralt_count);
duke@435 2227
duke@435 2228 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2229
duke@435 2230 // We get the transfer bits by shifting left by 32-count the high
duke@435 2231 // register. This is done by shifting left by 31-count and then by one
duke@435 2232 // more to take care of the special (rare) case where count is zero
duke@435 2233 // (shifting by 32 would not work).
duke@435 2234
duke@435 2235 neg( Ralt_count );
duke@435 2236 if (Rcount != Rout_low) {
duke@435 2237 srl( Rin_low, Rcount, Rout_low );
duke@435 2238 }
duke@435 2239
duke@435 2240 // The order of the next two instructions is critical in the case where
duke@435 2241 // Rin and Rout are the same and should not be reversed.
duke@435 2242
duke@435 2243 sll( Rin_high, Ralt_count, Rxfer_bits ); // shift left by 31-count
duke@435 2244 sra( Rin_high, Rcount, Rout_high ); // high half
duke@435 2245 sll( Rxfer_bits, 1, Rxfer_bits ); // shift left by one more
duke@435 2246 if (Rcount == Rout_low) {
duke@435 2247 srl( Rin_low, Rcount, Rout_low );
duke@435 2248 }
duke@435 2249 ba (false, done);
duke@435 2250 delayed()->
duke@435 2251 or3( Rout_low, Rxfer_bits, Rout_low ); // new low value: or shifted old low part and xfer from high
duke@435 2252
duke@435 2253 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2254 bind(big_shift);
duke@435 2255
duke@435 2256 sra( Rin_high, Ralt_count, Rout_low );
duke@435 2257 sra( Rin_high, 31, Rout_high ); // sign into hi
duke@435 2258
duke@435 2259 bind( done );
duke@435 2260 }
duke@435 2261
duke@435 2262
duke@435 2263
duke@435 2264 void MacroAssembler::lushr( Register Rin_high, Register Rin_low,
duke@435 2265 Register Rcount,
duke@435 2266 Register Rout_high, Register Rout_low,
duke@435 2267 Register Rtemp ) {
duke@435 2268
duke@435 2269 Register Ralt_count = Rtemp;
duke@435 2270 Register Rxfer_bits = Rtemp;
duke@435 2271
duke@435 2272 assert( Ralt_count != Rin_high
duke@435 2273 && Ralt_count != Rin_low
duke@435 2274 && Ralt_count != Rcount
duke@435 2275 && Rxfer_bits != Rin_low
duke@435 2276 && Rxfer_bits != Rin_high
duke@435 2277 && Rxfer_bits != Rcount
duke@435 2278 && Rxfer_bits != Rout_high
duke@435 2279 && Rout_high != Rin_low,
duke@435 2280 "register alias checks");
duke@435 2281
duke@435 2282 Label big_shift, done;
duke@435 2283
duke@435 2284 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2285 // Here we use the 32 bit shifts.
duke@435 2286
duke@435 2287 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
duke@435 2288 subcc(Rcount, 31, Ralt_count);
duke@435 2289 br(greater, true, pn, big_shift);
duke@435 2290 delayed()->dec(Ralt_count);
duke@435 2291
duke@435 2292 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2293
duke@435 2294 // We get the transfer bits by shifting left by 32-count the high
duke@435 2295 // register. This is done by shifting left by 31-count and then by one
duke@435 2296 // more to take care of the special (rare) case where count is zero
duke@435 2297 // (shifting by 32 would not work).
duke@435 2298
duke@435 2299 neg( Ralt_count );
duke@435 2300 if (Rcount != Rout_low) {
duke@435 2301 srl( Rin_low, Rcount, Rout_low );
duke@435 2302 }
duke@435 2303
duke@435 2304 // The order of the next two instructions is critical in the case where
duke@435 2305 // Rin and Rout are the same and should not be reversed.
duke@435 2306
duke@435 2307 sll( Rin_high, Ralt_count, Rxfer_bits ); // shift left by 31-count
duke@435 2308 srl( Rin_high, Rcount, Rout_high ); // high half
duke@435 2309 sll( Rxfer_bits, 1, Rxfer_bits ); // shift left by one more
duke@435 2310 if (Rcount == Rout_low) {
duke@435 2311 srl( Rin_low, Rcount, Rout_low );
duke@435 2312 }
duke@435 2313 ba (false, done);
duke@435 2314 delayed()->
duke@435 2315 or3( Rout_low, Rxfer_bits, Rout_low ); // new low value: or shifted old low part and xfer from high
duke@435 2316
duke@435 2317 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2318 bind(big_shift);
duke@435 2319
duke@435 2320 srl( Rin_high, Ralt_count, Rout_low );
duke@435 2321 clr( Rout_high );
duke@435 2322
duke@435 2323 bind( done );
duke@435 2324 }
duke@435 2325
duke@435 2326 #ifdef _LP64
duke@435 2327 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
duke@435 2328 cmp(Ra, Rb);
duke@435 2329 mov( -1, Rresult);
duke@435 2330 movcc(equal, false, xcc, 0, Rresult);
duke@435 2331 movcc(greater, false, xcc, 1, Rresult);
duke@435 2332 }
duke@435 2333 #endif
duke@435 2334
duke@435 2335
twisti@1858 2336 void MacroAssembler::load_sized_value(Address src, Register dst,
twisti@1858 2337 size_t size_in_bytes, bool is_signed) {
twisti@1858 2338 switch (size_in_bytes) {
twisti@1858 2339 case 8: ldx(src, dst); break;
twisti@1858 2340 case 4: ld( src, dst); break;
twisti@1858 2341 case 2: is_signed ? ldsh(src, dst) : lduh(src, dst); break;
twisti@1858 2342 case 1: is_signed ? ldsb(src, dst) : ldub(src, dst); break;
twisti@1858 2343 default: ShouldNotReachHere();
twisti@1858 2344 }
twisti@1858 2345 }
twisti@1858 2346
twisti@1858 2347
duke@435 2348 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
duke@435 2349 FloatRegister Fa, FloatRegister Fb,
duke@435 2350 Register Rresult) {
duke@435 2351
duke@435 2352 fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
duke@435 2353
duke@435 2354 Condition lt = unordered_result == -1 ? f_unorderedOrLess : f_less;
duke@435 2355 Condition eq = f_equal;
duke@435 2356 Condition gt = unordered_result == 1 ? f_unorderedOrGreater : f_greater;
duke@435 2357
duke@435 2358 if (VM_Version::v9_instructions_work()) {
duke@435 2359
duke@435 2360 mov( -1, Rresult );
duke@435 2361 movcc( eq, true, fcc0, 0, Rresult );
duke@435 2362 movcc( gt, true, fcc0, 1, Rresult );
duke@435 2363
duke@435 2364 } else {
duke@435 2365 Label done;
duke@435 2366
duke@435 2367 set( -1, Rresult );
duke@435 2368 //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
duke@435 2369 fb( eq, true, pn, done); delayed()->set( 0, Rresult );
duke@435 2370 fb( gt, true, pn, done); delayed()->set( 1, Rresult );
duke@435 2371
duke@435 2372 bind (done);
duke@435 2373 }
duke@435 2374 }
duke@435 2375
duke@435 2376
duke@435 2377 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2378 {
duke@435 2379 if (VM_Version::v9_instructions_work()) {
duke@435 2380 Assembler::fneg(w, s, d);
duke@435 2381 } else {
duke@435 2382 if (w == FloatRegisterImpl::S) {
duke@435 2383 Assembler::fneg(w, s, d);
duke@435 2384 } else if (w == FloatRegisterImpl::D) {
duke@435 2385 // number() does a sanity check on the alignment.
duke@435 2386 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2387 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2388
duke@435 2389 Assembler::fneg(FloatRegisterImpl::S, s, d);
duke@435 2390 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2391 } else {
duke@435 2392 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2393
duke@435 2394 // number() does a sanity check on the alignment.
duke@435 2395 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2396 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2397
duke@435 2398 Assembler::fneg(FloatRegisterImpl::S, s, d);
duke@435 2399 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2400 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2401 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2402 }
duke@435 2403 }
duke@435 2404 }
duke@435 2405
duke@435 2406 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2407 {
duke@435 2408 if (VM_Version::v9_instructions_work()) {
duke@435 2409 Assembler::fmov(w, s, d);
duke@435 2410 } else {
duke@435 2411 if (w == FloatRegisterImpl::S) {
duke@435 2412 Assembler::fmov(w, s, d);
duke@435 2413 } else if (w == FloatRegisterImpl::D) {
duke@435 2414 // number() does a sanity check on the alignment.
duke@435 2415 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2416 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2417
duke@435 2418 Assembler::fmov(FloatRegisterImpl::S, s, d);
duke@435 2419 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2420 } else {
duke@435 2421 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2422
duke@435 2423 // number() does a sanity check on the alignment.
duke@435 2424 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2425 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2426
duke@435 2427 Assembler::fmov(FloatRegisterImpl::S, s, d);
duke@435 2428 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2429 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2430 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2431 }
duke@435 2432 }
duke@435 2433 }
duke@435 2434
duke@435 2435 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2436 {
duke@435 2437 if (VM_Version::v9_instructions_work()) {
duke@435 2438 Assembler::fabs(w, s, d);
duke@435 2439 } else {
duke@435 2440 if (w == FloatRegisterImpl::S) {
duke@435 2441 Assembler::fabs(w, s, d);
duke@435 2442 } else if (w == FloatRegisterImpl::D) {
duke@435 2443 // number() does a sanity check on the alignment.
duke@435 2444 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2445 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2446
duke@435 2447 Assembler::fabs(FloatRegisterImpl::S, s, d);
duke@435 2448 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2449 } else {
duke@435 2450 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2451
duke@435 2452 // number() does a sanity check on the alignment.
duke@435 2453 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2454 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2455
duke@435 2456 Assembler::fabs(FloatRegisterImpl::S, s, d);
duke@435 2457 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2458 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2459 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2460 }
duke@435 2461 }
duke@435 2462 }
duke@435 2463
duke@435 2464 void MacroAssembler::save_all_globals_into_locals() {
duke@435 2465 mov(G1,L1);
duke@435 2466 mov(G2,L2);
duke@435 2467 mov(G3,L3);
duke@435 2468 mov(G4,L4);
duke@435 2469 mov(G5,L5);
duke@435 2470 mov(G6,L6);
duke@435 2471 mov(G7,L7);
duke@435 2472 }
duke@435 2473
duke@435 2474 void MacroAssembler::restore_globals_from_locals() {
duke@435 2475 mov(L1,G1);
duke@435 2476 mov(L2,G2);
duke@435 2477 mov(L3,G3);
duke@435 2478 mov(L4,G4);
duke@435 2479 mov(L5,G5);
duke@435 2480 mov(L6,G6);
duke@435 2481 mov(L7,G7);
duke@435 2482 }
duke@435 2483
duke@435 2484 // Use for 64 bit operation.
duke@435 2485 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
duke@435 2486 {
duke@435 2487 // store ptr_reg as the new top value
duke@435 2488 #ifdef _LP64
duke@435 2489 casx(top_ptr_reg, top_reg, ptr_reg);
duke@435 2490 #else
duke@435 2491 cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
duke@435 2492 #endif // _LP64
duke@435 2493 }
duke@435 2494
duke@435 2495 // [RGV] This routine does not handle 64 bit operations.
duke@435 2496 // use casx_under_lock() or casx directly!!!
duke@435 2497 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
duke@435 2498 {
duke@435 2499 // store ptr_reg as the new top value
duke@435 2500 if (VM_Version::v9_instructions_work()) {
duke@435 2501 cas(top_ptr_reg, top_reg, ptr_reg);
duke@435 2502 } else {
duke@435 2503
duke@435 2504 // If the register is not an out nor global, it is not visible
duke@435 2505 // after the save. Allocate a register for it, save its
duke@435 2506 // value in the register save area (the save may not flush
duke@435 2507 // registers to the save area).
duke@435 2508
duke@435 2509 Register top_ptr_reg_after_save;
duke@435 2510 Register top_reg_after_save;
duke@435 2511 Register ptr_reg_after_save;
duke@435 2512
duke@435 2513 if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
duke@435 2514 top_ptr_reg_after_save = top_ptr_reg->after_save();
duke@435 2515 } else {
duke@435 2516 Address reg_save_addr = top_ptr_reg->address_in_saved_window();
duke@435 2517 top_ptr_reg_after_save = L0;
duke@435 2518 st(top_ptr_reg, reg_save_addr);
duke@435 2519 }
duke@435 2520
duke@435 2521 if (top_reg->is_out() || top_reg->is_global()) {
duke@435 2522 top_reg_after_save = top_reg->after_save();
duke@435 2523 } else {
duke@435 2524 Address reg_save_addr = top_reg->address_in_saved_window();
duke@435 2525 top_reg_after_save = L1;
duke@435 2526 st(top_reg, reg_save_addr);
duke@435 2527 }
duke@435 2528
duke@435 2529 if (ptr_reg->is_out() || ptr_reg->is_global()) {
duke@435 2530 ptr_reg_after_save = ptr_reg->after_save();
duke@435 2531 } else {
duke@435 2532 Address reg_save_addr = ptr_reg->address_in_saved_window();
duke@435 2533 ptr_reg_after_save = L2;
duke@435 2534 st(ptr_reg, reg_save_addr);
duke@435 2535 }
duke@435 2536
duke@435 2537 const Register& lock_reg = L3;
duke@435 2538 const Register& lock_ptr_reg = L4;
duke@435 2539 const Register& value_reg = L5;
duke@435 2540 const Register& yield_reg = L6;
duke@435 2541 const Register& yieldall_reg = L7;
duke@435 2542
duke@435 2543 save_frame();
duke@435 2544
duke@435 2545 if (top_ptr_reg_after_save == L0) {
duke@435 2546 ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
duke@435 2547 }
duke@435 2548
duke@435 2549 if (top_reg_after_save == L1) {
duke@435 2550 ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
duke@435 2551 }
duke@435 2552
duke@435 2553 if (ptr_reg_after_save == L2) {
duke@435 2554 ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
duke@435 2555 }
duke@435 2556
duke@435 2557 Label(retry_get_lock);
duke@435 2558 Label(not_same);
duke@435 2559 Label(dont_yield);
duke@435 2560
duke@435 2561 assert(lock_addr, "lock_address should be non null for v8");
duke@435 2562 set((intptr_t)lock_addr, lock_ptr_reg);
duke@435 2563 // Initialize yield counter
duke@435 2564 mov(G0,yield_reg);
duke@435 2565 mov(G0, yieldall_reg);
duke@435 2566 set(StubRoutines::Sparc::locked, lock_reg);
duke@435 2567
duke@435 2568 bind(retry_get_lock);
duke@435 2569 cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
duke@435 2570 br(Assembler::less, false, Assembler::pt, dont_yield);
duke@435 2571 delayed()->nop();
duke@435 2572
duke@435 2573 if(use_call_vm) {
duke@435 2574 Untested("Need to verify global reg consistancy");
duke@435 2575 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
duke@435 2576 } else {
duke@435 2577 // Save the regs and make space for a C call
duke@435 2578 save(SP, -96, SP);
duke@435 2579 save_all_globals_into_locals();
duke@435 2580 call(CAST_FROM_FN_PTR(address,os::yield_all));
duke@435 2581 delayed()->mov(yieldall_reg, O0);
duke@435 2582 restore_globals_from_locals();
duke@435 2583 restore();
duke@435 2584 }
duke@435 2585
duke@435 2586 // reset the counter
duke@435 2587 mov(G0,yield_reg);
duke@435 2588 add(yieldall_reg, 1, yieldall_reg);
duke@435 2589
duke@435 2590 bind(dont_yield);
duke@435 2591 // try to get lock
duke@435 2592 swap(lock_ptr_reg, 0, lock_reg);
duke@435 2593
duke@435 2594 // did we get the lock?
duke@435 2595 cmp(lock_reg, StubRoutines::Sparc::unlocked);
duke@435 2596 br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
duke@435 2597 delayed()->add(yield_reg,1,yield_reg);
duke@435 2598
duke@435 2599 // yes, got lock. do we have the same top?
duke@435 2600 ld(top_ptr_reg_after_save, 0, value_reg);
duke@435 2601 cmp(value_reg, top_reg_after_save);
duke@435 2602 br(Assembler::notEqual, false, Assembler::pn, not_same);
duke@435 2603 delayed()->nop();
duke@435 2604
duke@435 2605 // yes, same top.
duke@435 2606 st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
duke@435 2607 membar(Assembler::StoreStore);
duke@435 2608
duke@435 2609 bind(not_same);
duke@435 2610 mov(value_reg, ptr_reg_after_save);
duke@435 2611 st(lock_reg, lock_ptr_reg, 0); // unlock
duke@435 2612
duke@435 2613 restore();
duke@435 2614 }
duke@435 2615 }
duke@435 2616
jrose@1100 2617 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
jrose@1100 2618 Register tmp,
jrose@1100 2619 int offset) {
jrose@1057 2620 intptr_t value = *delayed_value_addr;
jrose@1057 2621 if (value != 0)
jrose@1100 2622 return RegisterOrConstant(value + offset);
jrose@1057 2623
jrose@1057 2624 // load indirectly to solve generation ordering problem
twisti@1162 2625 AddressLiteral a(delayed_value_addr);
jrose@1057 2626 load_ptr_contents(a, tmp);
jrose@1057 2627
jrose@1057 2628 #ifdef ASSERT
jrose@1057 2629 tst(tmp);
jrose@1057 2630 breakpoint_trap(zero, xcc);
jrose@1057 2631 #endif
jrose@1057 2632
jrose@1057 2633 if (offset != 0)
jrose@1057 2634 add(tmp, offset, tmp);
jrose@1057 2635
jrose@1100 2636 return RegisterOrConstant(tmp);
jrose@1057 2637 }
jrose@1057 2638
jrose@1057 2639
twisti@1858 2640 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
twisti@1858 2641 assert(d.register_or_noreg() != G0, "lost side effect");
twisti@1858 2642 if ((s2.is_constant() && s2.as_constant() == 0) ||
twisti@1858 2643 (s2.is_register() && s2.as_register() == G0)) {
twisti@1858 2644 // Do nothing, just move value.
twisti@1858 2645 if (s1.is_register()) {
twisti@1858 2646 if (d.is_constant()) d = temp;
twisti@1858 2647 mov(s1.as_register(), d.as_register());
twisti@1858 2648 return d;
twisti@1858 2649 } else {
twisti@1858 2650 return s1;
twisti@1858 2651 }
twisti@1858 2652 }
twisti@1858 2653
twisti@1858 2654 if (s1.is_register()) {
twisti@1858 2655 assert_different_registers(s1.as_register(), temp);
twisti@1858 2656 if (d.is_constant()) d = temp;
twisti@1858 2657 andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
twisti@1858 2658 return d;
jrose@1058 2659 } else {
twisti@1858 2660 if (s2.is_register()) {
twisti@1858 2661 assert_different_registers(s2.as_register(), temp);
twisti@1858 2662 if (d.is_constant()) d = temp;
twisti@1858 2663 set(s1.as_constant(), temp);
twisti@1858 2664 andn(temp, s2.as_register(), d.as_register());
twisti@1858 2665 return d;
twisti@1858 2666 } else {
twisti@1858 2667 intptr_t res = s1.as_constant() & ~s2.as_constant();
twisti@1858 2668 return res;
twisti@1858 2669 }
jrose@1058 2670 }
jrose@1058 2671 }
jrose@1058 2672
twisti@1858 2673 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
twisti@1858 2674 assert(d.register_or_noreg() != G0, "lost side effect");
twisti@1858 2675 if ((s2.is_constant() && s2.as_constant() == 0) ||
twisti@1858 2676 (s2.is_register() && s2.as_register() == G0)) {
twisti@1858 2677 // Do nothing, just move value.
twisti@1858 2678 if (s1.is_register()) {
twisti@1858 2679 if (d.is_constant()) d = temp;
twisti@1858 2680 mov(s1.as_register(), d.as_register());
twisti@1858 2681 return d;
twisti@1858 2682 } else {
twisti@1858 2683 return s1;
twisti@1858 2684 }
twisti@1858 2685 }
twisti@1858 2686
twisti@1858 2687 if (s1.is_register()) {
twisti@1858 2688 assert_different_registers(s1.as_register(), temp);
twisti@1858 2689 if (d.is_constant()) d = temp;
twisti@1858 2690 add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
twisti@1858 2691 return d;
jrose@1058 2692 } else {
twisti@1858 2693 if (s2.is_register()) {
twisti@1858 2694 assert_different_registers(s2.as_register(), temp);
twisti@1858 2695 if (d.is_constant()) d = temp;
twisti@1858 2696 add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
twisti@1858 2697 return d;
twisti@1858 2698 } else {
twisti@1858 2699 intptr_t res = s1.as_constant() + s2.as_constant();
twisti@1858 2700 return res;
twisti@1858 2701 }
twisti@1858 2702 }
twisti@1858 2703 }
twisti@1858 2704
twisti@1858 2705 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
twisti@1858 2706 assert(d.register_or_noreg() != G0, "lost side effect");
twisti@1858 2707 if (!is_simm13(s2.constant_or_zero()))
twisti@1858 2708 s2 = (s2.as_constant() & 0xFF);
twisti@1858 2709 if ((s2.is_constant() && s2.as_constant() == 0) ||
twisti@1858 2710 (s2.is_register() && s2.as_register() == G0)) {
twisti@1858 2711 // Do nothing, just move value.
twisti@1858 2712 if (s1.is_register()) {
twisti@1858 2713 if (d.is_constant()) d = temp;
twisti@1858 2714 mov(s1.as_register(), d.as_register());
twisti@1858 2715 return d;
twisti@1858 2716 } else {
twisti@1858 2717 return s1;
twisti@1858 2718 }
twisti@1858 2719 }
twisti@1858 2720
twisti@1858 2721 if (s1.is_register()) {
twisti@1858 2722 assert_different_registers(s1.as_register(), temp);
twisti@1858 2723 if (d.is_constant()) d = temp;
twisti@1858 2724 sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
twisti@1858 2725 return d;
twisti@1858 2726 } else {
twisti@1858 2727 if (s2.is_register()) {
twisti@1858 2728 assert_different_registers(s2.as_register(), temp);
twisti@1858 2729 if (d.is_constant()) d = temp;
twisti@1858 2730 set(s1.as_constant(), temp);
twisti@1858 2731 sll_ptr(temp, s2.as_register(), d.as_register());
twisti@1858 2732 return d;
twisti@1858 2733 } else {
twisti@1858 2734 intptr_t res = s1.as_constant() << s2.as_constant();
twisti@1858 2735 return res;
twisti@1858 2736 }
jrose@1058 2737 }
jrose@1058 2738 }
jrose@1058 2739
jrose@1058 2740
jrose@1058 2741 // Look up the method for a megamorphic invokeinterface call.
jrose@1058 2742 // The target method is determined by <intf_klass, itable_index>.
jrose@1058 2743 // The receiver klass is in recv_klass.
jrose@1058 2744 // On success, the result will be in method_result, and execution falls through.
jrose@1058 2745 // On failure, execution transfers to the given label.
jrose@1058 2746 void MacroAssembler::lookup_interface_method(Register recv_klass,
jrose@1058 2747 Register intf_klass,
jrose@1100 2748 RegisterOrConstant itable_index,
jrose@1058 2749 Register method_result,
jrose@1058 2750 Register scan_temp,
jrose@1058 2751 Register sethi_temp,
jrose@1058 2752 Label& L_no_such_interface) {
jrose@1058 2753 assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
jrose@1058 2754 assert(itable_index.is_constant() || itable_index.as_register() == method_result,
jrose@1058 2755 "caller must use same register for non-constant itable index as for method");
jrose@1058 2756
jrose@1058 2757 // Compute start of first itableOffsetEntry (which is at the end of the vtable)
jrose@1058 2758 int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
jrose@1058 2759 int scan_step = itableOffsetEntry::size() * wordSize;
jrose@1058 2760 int vte_size = vtableEntry::size() * wordSize;
jrose@1058 2761
jrose@1058 2762 lduw(recv_klass, instanceKlass::vtable_length_offset() * wordSize, scan_temp);
jrose@1058 2763 // %%% We should store the aligned, prescaled offset in the klassoop.
jrose@1058 2764 // Then the next several instructions would fold away.
jrose@1058 2765
jrose@1058 2766 int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
jrose@1058 2767 int itb_offset = vtable_base;
jrose@1058 2768 if (round_to_unit != 0) {
jrose@1058 2769 // hoist first instruction of round_to(scan_temp, BytesPerLong):
jrose@1058 2770 itb_offset += round_to_unit - wordSize;
jrose@1058 2771 }
jrose@1058 2772 int itb_scale = exact_log2(vtableEntry::size() * wordSize);
jrose@1058 2773 sll(scan_temp, itb_scale, scan_temp);
jrose@1058 2774 add(scan_temp, itb_offset, scan_temp);
jrose@1058 2775 if (round_to_unit != 0) {
jrose@1058 2776 // Round up to align_object_offset boundary
jrose@1058 2777 // see code for instanceKlass::start_of_itable!
jrose@1058 2778 // Was: round_to(scan_temp, BytesPerLong);
jrose@1058 2779 // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
jrose@1058 2780 and3(scan_temp, -round_to_unit, scan_temp);
jrose@1058 2781 }
jrose@1058 2782 add(recv_klass, scan_temp, scan_temp);
jrose@1058 2783
jrose@1058 2784 // Adjust recv_klass by scaled itable_index, so we can free itable_index.
jrose@1100 2785 RegisterOrConstant itable_offset = itable_index;
twisti@1858 2786 itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
twisti@1858 2787 itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
twisti@1441 2788 add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
jrose@1058 2789
jrose@1058 2790 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
jrose@1058 2791 // if (scan->interface() == intf) {
jrose@1058 2792 // result = (klass + scan->offset() + itable_index);
jrose@1058 2793 // }
jrose@1058 2794 // }
jrose@1058 2795 Label search, found_method;
jrose@1058 2796
jrose@1058 2797 for (int peel = 1; peel >= 0; peel--) {
jrose@1058 2798 // %%%% Could load both offset and interface in one ldx, if they were
jrose@1058 2799 // in the opposite order. This would save a load.
jrose@1058 2800 ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
jrose@1058 2801
jrose@1058 2802 // Check that this entry is non-null. A null entry means that
jrose@1058 2803 // the receiver class doesn't implement the interface, and wasn't the
jrose@1058 2804 // same as when the caller was compiled.
jrose@1058 2805 bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
jrose@1058 2806 delayed()->cmp(method_result, intf_klass);
jrose@1058 2807
jrose@1058 2808 if (peel) {
jrose@1058 2809 brx(Assembler::equal, false, Assembler::pt, found_method);
jrose@1058 2810 } else {
jrose@1058 2811 brx(Assembler::notEqual, false, Assembler::pn, search);
jrose@1058 2812 // (invert the test to fall through to found_method...)
jrose@1058 2813 }
jrose@1058 2814 delayed()->add(scan_temp, scan_step, scan_temp);
jrose@1058 2815
jrose@1058 2816 if (!peel) break;
jrose@1058 2817
jrose@1058 2818 bind(search);
jrose@1058 2819 }
jrose@1058 2820
jrose@1058 2821 bind(found_method);
jrose@1058 2822
jrose@1058 2823 // Got a hit.
jrose@1058 2824 int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
jrose@1058 2825 // scan_temp[-scan_step] points to the vtable offset we need
jrose@1058 2826 ito_offset -= scan_step;
jrose@1058 2827 lduw(scan_temp, ito_offset, scan_temp);
jrose@1058 2828 ld_ptr(recv_klass, scan_temp, method_result);
jrose@1058 2829 }
jrose@1058 2830
jrose@1058 2831
jrose@1079 2832 void MacroAssembler::check_klass_subtype(Register sub_klass,
jrose@1079 2833 Register super_klass,
jrose@1079 2834 Register temp_reg,
jrose@1079 2835 Register temp2_reg,
jrose@1079 2836 Label& L_success) {
jrose@1079 2837 Label L_failure, L_pop_to_failure;
jrose@1079 2838 check_klass_subtype_fast_path(sub_klass, super_klass,
jrose@1079 2839 temp_reg, temp2_reg,
jrose@1079 2840 &L_success, &L_failure, NULL);
jrose@1079 2841 Register sub_2 = sub_klass;
jrose@1079 2842 Register sup_2 = super_klass;
jrose@1079 2843 if (!sub_2->is_global()) sub_2 = L0;
jrose@1079 2844 if (!sup_2->is_global()) sup_2 = L1;
jrose@1079 2845
jrose@1079 2846 save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
jrose@1079 2847 check_klass_subtype_slow_path(sub_2, sup_2,
jrose@1079 2848 L2, L3, L4, L5,
jrose@1079 2849 NULL, &L_pop_to_failure);
jrose@1079 2850
jrose@1079 2851 // on success:
jrose@1079 2852 restore();
jrose@1079 2853 ba(false, L_success);
jrose@1079 2854 delayed()->nop();
jrose@1079 2855
jrose@1079 2856 // on failure:
jrose@1079 2857 bind(L_pop_to_failure);
jrose@1079 2858 restore();
jrose@1079 2859 bind(L_failure);
jrose@1079 2860 }
jrose@1079 2861
jrose@1079 2862
jrose@1079 2863 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
jrose@1079 2864 Register super_klass,
jrose@1079 2865 Register temp_reg,
jrose@1079 2866 Register temp2_reg,
jrose@1079 2867 Label* L_success,
jrose@1079 2868 Label* L_failure,
jrose@1079 2869 Label* L_slow_path,
jrose@1100 2870 RegisterOrConstant super_check_offset,
jrose@1079 2871 Register instanceof_hack) {
jrose@1079 2872 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 2873 Klass::secondary_super_cache_offset_in_bytes());
jrose@1079 2874 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 2875 Klass::super_check_offset_offset_in_bytes());
jrose@1079 2876
jrose@1079 2877 bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
jrose@1079 2878 bool need_slow_path = (must_load_sco ||
jrose@1079 2879 super_check_offset.constant_or_zero() == sco_offset);
jrose@1079 2880
jrose@1079 2881 assert_different_registers(sub_klass, super_klass, temp_reg);
jrose@1079 2882 if (super_check_offset.is_register()) {
twisti@1858 2883 assert_different_registers(sub_klass, super_klass, temp_reg,
jrose@1079 2884 super_check_offset.as_register());
jrose@1079 2885 } else if (must_load_sco) {
jrose@1079 2886 assert(temp2_reg != noreg, "supply either a temp or a register offset");
jrose@1079 2887 }
jrose@1079 2888
jrose@1079 2889 Label L_fallthrough;
jrose@1079 2890 int label_nulls = 0;
jrose@1079 2891 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
jrose@1079 2892 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
jrose@1079 2893 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
jrose@1079 2894 assert(label_nulls <= 1 || instanceof_hack != noreg ||
jrose@1079 2895 (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
jrose@1079 2896 "at most one NULL in the batch, usually");
jrose@1079 2897
jrose@1079 2898 // Support for the instanceof hack, which uses delay slots to
jrose@1079 2899 // set a destination register to zero or one.
jrose@1079 2900 bool do_bool_sets = (instanceof_hack != noreg);
jrose@1079 2901 #define BOOL_SET(bool_value) \
jrose@1079 2902 if (do_bool_sets && bool_value >= 0) \
jrose@1079 2903 set(bool_value, instanceof_hack)
jrose@1079 2904 #define DELAYED_BOOL_SET(bool_value) \
jrose@1079 2905 if (do_bool_sets && bool_value >= 0) \
jrose@1079 2906 delayed()->set(bool_value, instanceof_hack); \
jrose@1079 2907 else delayed()->nop()
jrose@1079 2908 // Hacked ba(), which may only be used just before L_fallthrough.
jrose@1079 2909 #define FINAL_JUMP(label, bool_value) \
jrose@1079 2910 if (&(label) == &L_fallthrough) { \
jrose@1079 2911 BOOL_SET(bool_value); \
jrose@1079 2912 } else { \
jrose@1079 2913 ba((do_bool_sets && bool_value >= 0), label); \
jrose@1079 2914 DELAYED_BOOL_SET(bool_value); \
jrose@1079 2915 }
jrose@1079 2916
jrose@1079 2917 // If the pointers are equal, we are done (e.g., String[] elements).
jrose@1079 2918 // This self-check enables sharing of secondary supertype arrays among
jrose@1079 2919 // non-primary types such as array-of-interface. Otherwise, each such
jrose@1079 2920 // type would need its own customized SSA.
jrose@1079 2921 // We move this check to the front of the fast path because many
jrose@1079 2922 // type checks are in fact trivially successful in this manner,
jrose@1079 2923 // so we get a nicely predicted branch right at the start of the check.
jrose@1079 2924 cmp(super_klass, sub_klass);
jrose@1079 2925 brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
jrose@1079 2926 DELAYED_BOOL_SET(1);
jrose@1079 2927
jrose@1079 2928 // Check the supertype display:
jrose@1079 2929 if (must_load_sco) {
jrose@1079 2930 // The super check offset is always positive...
jrose@1079 2931 lduw(super_klass, sco_offset, temp2_reg);
jrose@1100 2932 super_check_offset = RegisterOrConstant(temp2_reg);
twisti@1858 2933 // super_check_offset is register.
twisti@1858 2934 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
jrose@1079 2935 }
jrose@1079 2936 ld_ptr(sub_klass, super_check_offset, temp_reg);
jrose@1079 2937 cmp(super_klass, temp_reg);
jrose@1079 2938
jrose@1079 2939 // This check has worked decisively for primary supers.
jrose@1079 2940 // Secondary supers are sought in the super_cache ('super_cache_addr').
jrose@1079 2941 // (Secondary supers are interfaces and very deeply nested subtypes.)
jrose@1079 2942 // This works in the same check above because of a tricky aliasing
jrose@1079 2943 // between the super_cache and the primary super display elements.
jrose@1079 2944 // (The 'super_check_addr' can address either, as the case requires.)
jrose@1079 2945 // Note that the cache is updated below if it does not help us find
jrose@1079 2946 // what we need immediately.
jrose@1079 2947 // So if it was a primary super, we can just fail immediately.
jrose@1079 2948 // Otherwise, it's the slow path for us (no success at this point).
jrose@1079 2949
jrose@1079 2950 if (super_check_offset.is_register()) {
jrose@1079 2951 brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
jrose@1079 2952 delayed(); if (do_bool_sets) BOOL_SET(1);
jrose@1079 2953 // if !do_bool_sets, sneak the next cmp into the delay slot:
jrose@1079 2954 cmp(super_check_offset.as_register(), sc_offset);
jrose@1079 2955
jrose@1079 2956 if (L_failure == &L_fallthrough) {
jrose@1079 2957 brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_slow_path);
jrose@1079 2958 delayed()->nop();
jrose@1079 2959 BOOL_SET(0); // fallthrough on failure
jrose@1079 2960 } else {
jrose@1079 2961 brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
jrose@1079 2962 DELAYED_BOOL_SET(0);
jrose@1079 2963 FINAL_JUMP(*L_slow_path, -1); // -1 => vanilla delay slot
jrose@1079 2964 }
jrose@1079 2965 } else if (super_check_offset.as_constant() == sc_offset) {
jrose@1079 2966 // Need a slow path; fast failure is impossible.
jrose@1079 2967 if (L_slow_path == &L_fallthrough) {
jrose@1079 2968 brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
jrose@1079 2969 DELAYED_BOOL_SET(1);
jrose@1079 2970 } else {
jrose@1079 2971 brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
jrose@1079 2972 delayed()->nop();
jrose@1079 2973 FINAL_JUMP(*L_success, 1);
jrose@1079 2974 }
jrose@1079 2975 } else {
jrose@1079 2976 // No slow path; it's a fast decision.
jrose@1079 2977 if (L_failure == &L_fallthrough) {
jrose@1079 2978 brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
jrose@1079 2979 DELAYED_BOOL_SET(1);
jrose@1079 2980 BOOL_SET(0);
jrose@1079 2981 } else {
jrose@1079 2982 brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
jrose@1079 2983 DELAYED_BOOL_SET(0);
jrose@1079 2984 FINAL_JUMP(*L_success, 1);
jrose@1079 2985 }
jrose@1079 2986 }
jrose@1079 2987
jrose@1079 2988 bind(L_fallthrough);
jrose@1079 2989
jrose@1079 2990 #undef final_jump
jrose@1079 2991 #undef bool_set
jrose@1079 2992 #undef DELAYED_BOOL_SET
jrose@1079 2993 #undef final_jump
jrose@1079 2994 }
jrose@1079 2995
jrose@1079 2996
jrose@1079 2997 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
jrose@1079 2998 Register super_klass,
jrose@1079 2999 Register count_temp,
jrose@1079 3000 Register scan_temp,
jrose@1079 3001 Register scratch_reg,
jrose@1079 3002 Register coop_reg,
jrose@1079 3003 Label* L_success,
jrose@1079 3004 Label* L_failure) {
jrose@1079 3005 assert_different_registers(sub_klass, super_klass,
jrose@1079 3006 count_temp, scan_temp, scratch_reg, coop_reg);
jrose@1079 3007
jrose@1079 3008 Label L_fallthrough, L_loop;
jrose@1079 3009 int label_nulls = 0;
jrose@1079 3010 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
jrose@1079 3011 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
jrose@1079 3012 assert(label_nulls <= 1, "at most one NULL in the batch");
jrose@1079 3013
jrose@1079 3014 // a couple of useful fields in sub_klass:
jrose@1079 3015 int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 3016 Klass::secondary_supers_offset_in_bytes());
jrose@1079 3017 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 3018 Klass::secondary_super_cache_offset_in_bytes());
jrose@1079 3019
jrose@1079 3020 // Do a linear scan of the secondary super-klass chain.
jrose@1079 3021 // This code is rarely used, so simplicity is a virtue here.
jrose@1079 3022
jrose@1079 3023 #ifndef PRODUCT
jrose@1079 3024 int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
jrose@1079 3025 inc_counter((address) pst_counter, count_temp, scan_temp);
jrose@1079 3026 #endif
jrose@1079 3027
jrose@1079 3028 // We will consult the secondary-super array.
jrose@1079 3029 ld_ptr(sub_klass, ss_offset, scan_temp);
jrose@1079 3030
jrose@1079 3031 // Compress superclass if necessary.
jrose@1079 3032 Register search_key = super_klass;
jrose@1079 3033 bool decode_super_klass = false;
jrose@1079 3034 if (UseCompressedOops) {
jrose@1079 3035 if (coop_reg != noreg) {
jrose@1079 3036 encode_heap_oop_not_null(super_klass, coop_reg);
jrose@1079 3037 search_key = coop_reg;
jrose@1079 3038 } else {
jrose@1079 3039 encode_heap_oop_not_null(super_klass);
jrose@1079 3040 decode_super_klass = true; // scarce temps!
jrose@1079 3041 }
jrose@1079 3042 // The superclass is never null; it would be a basic system error if a null
jrose@1079 3043 // pointer were to sneak in here. Note that we have already loaded the
jrose@1079 3044 // Klass::super_check_offset from the super_klass in the fast path,
jrose@1079 3045 // so if there is a null in that register, we are already in the afterlife.
jrose@1079 3046 }
jrose@1079 3047
jrose@1079 3048 // Load the array length. (Positive movl does right thing on LP64.)
jrose@1079 3049 lduw(scan_temp, arrayOopDesc::length_offset_in_bytes(), count_temp);
jrose@1079 3050
jrose@1079 3051 // Check for empty secondary super list
jrose@1079 3052 tst(count_temp);
jrose@1079 3053
jrose@1079 3054 // Top of search loop
jrose@1079 3055 bind(L_loop);
jrose@1079 3056 br(Assembler::equal, false, Assembler::pn, *L_failure);
jrose@1079 3057 delayed()->add(scan_temp, heapOopSize, scan_temp);
jrose@1079 3058 assert(heapOopSize != 0, "heapOopSize should be initialized");
jrose@1079 3059
jrose@1079 3060 // Skip the array header in all array accesses.
jrose@1079 3061 int elem_offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
jrose@1079 3062 elem_offset -= heapOopSize; // the scan pointer was pre-incremented also
jrose@1079 3063
jrose@1079 3064 // Load next super to check
jrose@1079 3065 if (UseCompressedOops) {
jrose@1079 3066 // Don't use load_heap_oop; we don't want to decode the element.
jrose@1079 3067 lduw( scan_temp, elem_offset, scratch_reg );
jrose@1079 3068 } else {
jrose@1079 3069 ld_ptr( scan_temp, elem_offset, scratch_reg );
jrose@1079 3070 }
jrose@1079 3071
jrose@1079 3072 // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
jrose@1079 3073 cmp(scratch_reg, search_key);
jrose@1079 3074
jrose@1079 3075 // A miss means we are NOT a subtype and need to keep looping
jrose@1079 3076 brx(Assembler::notEqual, false, Assembler::pn, L_loop);
jrose@1079 3077 delayed()->deccc(count_temp); // decrement trip counter in delay slot
jrose@1079 3078
jrose@1079 3079 // Falling out the bottom means we found a hit; we ARE a subtype
jrose@1079 3080 if (decode_super_klass) decode_heap_oop(super_klass);
jrose@1079 3081
jrose@1079 3082 // Success. Cache the super we found and proceed in triumph.
jrose@1079 3083 st_ptr(super_klass, sub_klass, sc_offset);
jrose@1079 3084
jrose@1079 3085 if (L_success != &L_fallthrough) {
jrose@1079 3086 ba(false, *L_success);
jrose@1079 3087 delayed()->nop();
jrose@1079 3088 }
jrose@1079 3089
jrose@1079 3090 bind(L_fallthrough);
jrose@1079 3091 }
jrose@1079 3092
jrose@1079 3093
jrose@1145 3094 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
jrose@1145 3095 Register temp_reg,
jrose@1145 3096 Label& wrong_method_type) {
twisti@1858 3097 if (UseCompressedOops) unimplemented("coop"); // field accesses must decode
jrose@1145 3098 assert_different_registers(mtype_reg, mh_reg, temp_reg);
jrose@1145 3099 // compare method type against that of the receiver
jrose@1145 3100 RegisterOrConstant mhtype_offset = delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg);
jrose@1145 3101 ld_ptr(mh_reg, mhtype_offset, temp_reg);
jrose@1145 3102 cmp(temp_reg, mtype_reg);
jrose@1145 3103 br(Assembler::notEqual, false, Assembler::pn, wrong_method_type);
jrose@1145 3104 delayed()->nop();
jrose@1145 3105 }
jrose@1145 3106
jrose@1145 3107
twisti@1858 3108 // A method handle has a "vmslots" field which gives the size of its
twisti@1858 3109 // argument list in JVM stack slots. This field is either located directly
twisti@1858 3110 // in every method handle, or else is indirectly accessed through the
twisti@1858 3111 // method handle's MethodType. This macro hides the distinction.
twisti@1858 3112 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
twisti@1858 3113 Register temp_reg) {
twisti@1858 3114 assert_different_registers(vmslots_reg, mh_reg, temp_reg);
twisti@1858 3115 if (UseCompressedOops) unimplemented("coop"); // field accesses must decode
twisti@1858 3116 // load mh.type.form.vmslots
twisti@1858 3117 if (java_dyn_MethodHandle::vmslots_offset_in_bytes() != 0) {
twisti@1858 3118 // hoist vmslots into every mh to avoid dependent load chain
twisti@1858 3119 ld( Address(mh_reg, delayed_value(java_dyn_MethodHandle::vmslots_offset_in_bytes, temp_reg)), vmslots_reg);
twisti@1858 3120 } else {
twisti@1858 3121 Register temp2_reg = vmslots_reg;
twisti@1858 3122 ld_ptr(Address(mh_reg, delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg)), temp2_reg);
twisti@1858 3123 ld_ptr(Address(temp2_reg, delayed_value(java_dyn_MethodType::form_offset_in_bytes, temp_reg)), temp2_reg);
twisti@1858 3124 ld( Address(temp2_reg, delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)), vmslots_reg);
twisti@1858 3125 }
twisti@1858 3126 }
twisti@1858 3127
twisti@1858 3128
twisti@1858 3129 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop) {
jrose@1145 3130 assert(mh_reg == G3_method_handle, "caller must put MH object in G3");
jrose@1145 3131 assert_different_registers(mh_reg, temp_reg);
jrose@1145 3132
twisti@1858 3133 if (UseCompressedOops) unimplemented("coop"); // field accesses must decode
twisti@1858 3134
jrose@1145 3135 // pick out the interpreted side of the handler
jrose@1145 3136 ld_ptr(mh_reg, delayed_value(java_dyn_MethodHandle::vmentry_offset_in_bytes, temp_reg), temp_reg);
jrose@1145 3137
jrose@1145 3138 // off we go...
jrose@1145 3139 ld_ptr(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes(), temp_reg);
jrose@1145 3140 jmp(temp_reg, 0);
jrose@1145 3141
jrose@1145 3142 // for the various stubs which take control at this point,
jrose@1145 3143 // see MethodHandles::generate_method_handle_stub
jrose@1145 3144
twisti@1858 3145 // Some callers can fill the delay slot.
twisti@1858 3146 if (emit_delayed_nop) {
twisti@1858 3147 delayed()->nop();
twisti@1858 3148 }
jrose@1145 3149 }
jrose@1145 3150
twisti@1858 3151
jrose@1145 3152 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
jrose@1145 3153 int extra_slot_offset) {
jrose@1145 3154 // cf. TemplateTable::prepare_invoke(), if (load_receiver).
twisti@1861 3155 int stackElementSize = Interpreter::stackElementSize;
twisti@1858 3156 int offset = extra_slot_offset * stackElementSize;
jrose@1145 3157 if (arg_slot.is_constant()) {
jrose@1145 3158 offset += arg_slot.as_constant() * stackElementSize;
jrose@1145 3159 return offset;
jrose@1145 3160 } else {
jrose@1145 3161 Register temp = arg_slot.as_register();
jrose@1145 3162 sll_ptr(temp, exact_log2(stackElementSize), temp);
jrose@1145 3163 if (offset != 0)
jrose@1145 3164 add(temp, offset, temp);
jrose@1145 3165 return temp;
jrose@1145 3166 }
jrose@1145 3167 }
jrose@1145 3168
jrose@1145 3169
twisti@1858 3170 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
twisti@1858 3171 int extra_slot_offset) {
twisti@1858 3172 return Address(Gargs, argument_offset(arg_slot, extra_slot_offset));
twisti@1858 3173 }
twisti@1858 3174
jrose@1145 3175
kvn@855 3176 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
kvn@855 3177 Register temp_reg,
duke@435 3178 Label& done, Label* slow_case,
duke@435 3179 BiasedLockingCounters* counters) {
duke@435 3180 assert(UseBiasedLocking, "why call this otherwise?");
duke@435 3181
duke@435 3182 if (PrintBiasedLockingStatistics) {
duke@435 3183 assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
duke@435 3184 if (counters == NULL)
duke@435 3185 counters = BiasedLocking::counters();
duke@435 3186 }
duke@435 3187
duke@435 3188 Label cas_label;
duke@435 3189
duke@435 3190 // Biased locking
duke@435 3191 // See whether the lock is currently biased toward our thread and
duke@435 3192 // whether the epoch is still valid
duke@435 3193 // Note that the runtime guarantees sufficient alignment of JavaThread
duke@435 3194 // pointers to allow age to be placed into low bits
duke@435 3195 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
duke@435 3196 and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 3197 cmp(temp_reg, markOopDesc::biased_lock_pattern);
duke@435 3198 brx(Assembler::notEqual, false, Assembler::pn, cas_label);
coleenp@548 3199 delayed()->nop();
coleenp@548 3200
coleenp@548 3201 load_klass(obj_reg, temp_reg);
twisti@1162 3202 ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
duke@435 3203 or3(G2_thread, temp_reg, temp_reg);
duke@435 3204 xor3(mark_reg, temp_reg, temp_reg);
duke@435 3205 andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
duke@435 3206 if (counters != NULL) {
duke@435 3207 cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3208 // Reload mark_reg as we may need it later
twisti@1162 3209 ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
duke@435 3210 }
duke@435 3211 brx(Assembler::equal, true, Assembler::pt, done);
duke@435 3212 delayed()->nop();
duke@435 3213
duke@435 3214 Label try_revoke_bias;
duke@435 3215 Label try_rebias;
twisti@1162 3216 Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 3217 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3218
duke@435 3219 // At this point we know that the header has the bias pattern and
duke@435 3220 // that we are not the bias owner in the current epoch. We need to
duke@435 3221 // figure out more details about the state of the header in order to
duke@435 3222 // know what operations can be legally performed on the object's
duke@435 3223 // header.
duke@435 3224
duke@435 3225 // If the low three bits in the xor result aren't clear, that means
duke@435 3226 // the prototype header is no longer biased and we have to revoke
duke@435 3227 // the bias on this object.
duke@435 3228 btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 3229 brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
duke@435 3230
duke@435 3231 // Biasing is still enabled for this data type. See whether the
duke@435 3232 // epoch of the current bias is still valid, meaning that the epoch
duke@435 3233 // bits of the mark word are equal to the epoch bits of the
duke@435 3234 // prototype header. (Note that the prototype header's epoch bits
duke@435 3235 // only change at a safepoint.) If not, attempt to rebias the object
duke@435 3236 // toward the current thread. Note that we must be absolutely sure
duke@435 3237 // that the current epoch is invalid in order to do this because
duke@435 3238 // otherwise the manipulations it performs on the mark word are
duke@435 3239 // illegal.
duke@435 3240 delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
duke@435 3241 brx(Assembler::notZero, false, Assembler::pn, try_rebias);
duke@435 3242
duke@435 3243 // The epoch of the current bias is still valid but we know nothing
duke@435 3244 // about the owner; it might be set or it might be clear. Try to
duke@435 3245 // acquire the bias of the object using an atomic operation. If this
duke@435 3246 // fails we will go in to the runtime to revoke the object's bias.
duke@435 3247 // Note that we first construct the presumed unbiased header so we
duke@435 3248 // don't accidentally blow away another thread's valid bias.
duke@435 3249 delayed()->and3(mark_reg,
duke@435 3250 markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
duke@435 3251 mark_reg);
duke@435 3252 or3(G2_thread, mark_reg, temp_reg);
kvn@855 3253 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3254 // If the biasing toward our thread failed, this means that
duke@435 3255 // another thread succeeded in biasing it toward itself and we
duke@435 3256 // need to revoke that bias. The revocation will occur in the
duke@435 3257 // interpreter runtime in the slow case.
duke@435 3258 cmp(mark_reg, temp_reg);
duke@435 3259 if (counters != NULL) {
duke@435 3260 cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3261 }
duke@435 3262 if (slow_case != NULL) {
duke@435 3263 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
duke@435 3264 delayed()->nop();
duke@435 3265 }
duke@435 3266 br(Assembler::always, false, Assembler::pt, done);
duke@435 3267 delayed()->nop();
duke@435 3268
duke@435 3269 bind(try_rebias);
duke@435 3270 // At this point we know the epoch has expired, meaning that the
duke@435 3271 // current "bias owner", if any, is actually invalid. Under these
duke@435 3272 // circumstances _only_, we are allowed to use the current header's
duke@435 3273 // value as the comparison value when doing the cas to acquire the
duke@435 3274 // bias in the current epoch. In other words, we allow transfer of
duke@435 3275 // the bias from one thread to another directly in this situation.
duke@435 3276 //
duke@435 3277 // FIXME: due to a lack of registers we currently blow away the age
duke@435 3278 // bits in this situation. Should attempt to preserve them.
coleenp@548 3279 load_klass(obj_reg, temp_reg);
twisti@1162 3280 ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
duke@435 3281 or3(G2_thread, temp_reg, temp_reg);
kvn@855 3282 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3283 // If the biasing toward our thread failed, this means that
duke@435 3284 // another thread succeeded in biasing it toward itself and we
duke@435 3285 // need to revoke that bias. The revocation will occur in the
duke@435 3286 // interpreter runtime in the slow case.
duke@435 3287 cmp(mark_reg, temp_reg);
duke@435 3288 if (counters != NULL) {
duke@435 3289 cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3290 }
duke@435 3291 if (slow_case != NULL) {
duke@435 3292 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
duke@435 3293 delayed()->nop();
duke@435 3294 }
duke@435 3295 br(Assembler::always, false, Assembler::pt, done);
duke@435 3296 delayed()->nop();
duke@435 3297
duke@435 3298 bind(try_revoke_bias);
duke@435 3299 // The prototype mark in the klass doesn't have the bias bit set any
duke@435 3300 // more, indicating that objects of this data type are not supposed
duke@435 3301 // to be biased any more. We are going to try to reset the mark of
duke@435 3302 // this object to the prototype value and fall through to the
duke@435 3303 // CAS-based locking scheme. Note that if our CAS fails, it means
duke@435 3304 // that another thread raced us for the privilege of revoking the
duke@435 3305 // bias of this particular object, so it's okay to continue in the
duke@435 3306 // normal locking code.
duke@435 3307 //
duke@435 3308 // FIXME: due to a lack of registers we currently blow away the age
duke@435 3309 // bits in this situation. Should attempt to preserve them.
coleenp@548 3310 load_klass(obj_reg, temp_reg);
twisti@1162 3311 ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
kvn@855 3312 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3313 // Fall through to the normal CAS-based lock, because no matter what
duke@435 3314 // the result of the above CAS, some thread must have succeeded in
duke@435 3315 // removing the bias bit from the object's header.
duke@435 3316 if (counters != NULL) {
duke@435 3317 cmp(mark_reg, temp_reg);
duke@435 3318 cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3319 }
duke@435 3320
duke@435 3321 bind(cas_label);
duke@435 3322 }
duke@435 3323
duke@435 3324 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
duke@435 3325 bool allow_delay_slot_filling) {
duke@435 3326 // Check for biased locking unlock case, which is a no-op
duke@435 3327 // Note: we do not have to check the thread ID for two reasons.
duke@435 3328 // First, the interpreter checks for IllegalMonitorStateException at
duke@435 3329 // a higher level. Second, if the bias was revoked while we held the
duke@435 3330 // lock, the object could not be rebiased toward another thread, so
duke@435 3331 // the bias bit would be clear.
duke@435 3332 ld_ptr(mark_addr, temp_reg);
duke@435 3333 and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 3334 cmp(temp_reg, markOopDesc::biased_lock_pattern);
duke@435 3335 brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
duke@435 3336 delayed();
duke@435 3337 if (!allow_delay_slot_filling) {
duke@435 3338 nop();
duke@435 3339 }
duke@435 3340 }
duke@435 3341
duke@435 3342
duke@435 3343 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
duke@435 3344 // Solaris/SPARC's "as". Another apt name would be cas_ptr()
duke@435 3345
duke@435 3346 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
duke@435 3347 casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
duke@435 3348 }
duke@435 3349
duke@435 3350
duke@435 3351
duke@435 3352 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
duke@435 3353 // of i486.ad fast_lock() and fast_unlock(). See those methods for detailed comments.
duke@435 3354 // The code could be tightened up considerably.
duke@435 3355 //
duke@435 3356 // box->dhw disposition - post-conditions at DONE_LABEL.
duke@435 3357 // - Successful inflated lock: box->dhw != 0.
duke@435 3358 // Any non-zero value suffices.
duke@435 3359 // Consider G2_thread, rsp, boxReg, or unused_mark()
duke@435 3360 // - Successful Stack-lock: box->dhw == mark.
duke@435 3361 // box->dhw must contain the displaced mark word value
duke@435 3362 // - Failure -- icc.ZFlag == 0 and box->dhw is undefined.
duke@435 3363 // The slow-path fast_enter() and slow_enter() operators
duke@435 3364 // are responsible for setting box->dhw = NonZero (typically ::unused_mark).
duke@435 3365 // - Biased: box->dhw is undefined
duke@435 3366 //
duke@435 3367 // SPARC refworkload performance - specifically jetstream and scimark - are
duke@435 3368 // extremely sensitive to the size of the code emitted by compiler_lock_object
duke@435 3369 // and compiler_unlock_object. Critically, the key factor is code size, not path
duke@435 3370 // length. (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
duke@435 3371 // effect).
duke@435 3372
duke@435 3373
kvn@855 3374 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
kvn@855 3375 Register Rbox, Register Rscratch,
kvn@855 3376 BiasedLockingCounters* counters,
kvn@855 3377 bool try_bias) {
twisti@1162 3378 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
duke@435 3379
duke@435 3380 verify_oop(Roop);
duke@435 3381 Label done ;
duke@435 3382
duke@435 3383 if (counters != NULL) {
duke@435 3384 inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
duke@435 3385 }
duke@435 3386
duke@435 3387 if (EmitSync & 1) {
duke@435 3388 mov (3, Rscratch) ;
duke@435 3389 st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3390 cmp (SP, G0) ;
duke@435 3391 return ;
duke@435 3392 }
duke@435 3393
duke@435 3394 if (EmitSync & 2) {
duke@435 3395
duke@435 3396 // Fetch object's markword
duke@435 3397 ld_ptr(mark_addr, Rmark);
duke@435 3398
kvn@855 3399 if (try_bias) {
duke@435 3400 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3401 }
duke@435 3402
duke@435 3403 // Save Rbox in Rscratch to be used for the cas operation
duke@435 3404 mov(Rbox, Rscratch);
duke@435 3405
duke@435 3406 // set Rmark to markOop | markOopDesc::unlocked_value
duke@435 3407 or3(Rmark, markOopDesc::unlocked_value, Rmark);
duke@435 3408
duke@435 3409 // Initialize the box. (Must happen before we update the object mark!)
duke@435 3410 st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3411
duke@435 3412 // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
duke@435 3413 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3414 casx_under_lock(mark_addr.base(), Rmark, Rscratch,
duke@435 3415 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 3416
duke@435 3417 // if compare/exchange succeeded we found an unlocked object and we now have locked it
duke@435 3418 // hence we are done
duke@435 3419 cmp(Rmark, Rscratch);
duke@435 3420 #ifdef _LP64
duke@435 3421 sub(Rscratch, STACK_BIAS, Rscratch);
duke@435 3422 #endif
duke@435 3423 brx(Assembler::equal, false, Assembler::pt, done);
duke@435 3424 delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot
duke@435 3425
duke@435 3426 // we did not find an unlocked object so see if this is a recursive case
duke@435 3427 // sub(Rscratch, SP, Rscratch);
duke@435 3428 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 3429 andcc(Rscratch, 0xfffff003, Rscratch);
duke@435 3430 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3431 bind (done) ;
duke@435 3432 return ;
duke@435 3433 }
duke@435 3434
duke@435 3435 Label Egress ;
duke@435 3436
duke@435 3437 if (EmitSync & 256) {
duke@435 3438 Label IsInflated ;
duke@435 3439
duke@435 3440 ld_ptr (mark_addr, Rmark); // fetch obj->mark
duke@435 3441 // Triage: biased, stack-locked, neutral, inflated
kvn@855 3442 if (try_bias) {
duke@435 3443 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3444 // Invariant: if control reaches this point in the emitted stream
duke@435 3445 // then Rmark has not been modified.
duke@435 3446 }
duke@435 3447
duke@435 3448 // Store mark into displaced mark field in the on-stack basic-lock "box"
duke@435 3449 // Critically, this must happen before the CAS
duke@435 3450 // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
duke@435 3451 st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3452 andcc (Rmark, 2, G0) ;
duke@435 3453 brx (Assembler::notZero, false, Assembler::pn, IsInflated) ;
duke@435 3454 delayed() ->
duke@435 3455
duke@435 3456 // Try stack-lock acquisition.
duke@435 3457 // Beware: the 1st instruction is in a delay slot
duke@435 3458 mov (Rbox, Rscratch);
duke@435 3459 or3 (Rmark, markOopDesc::unlocked_value, Rmark);
duke@435 3460 assert (mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3461 casn (mark_addr.base(), Rmark, Rscratch) ;
duke@435 3462 cmp (Rmark, Rscratch);
duke@435 3463 brx (Assembler::equal, false, Assembler::pt, done);
duke@435 3464 delayed()->sub(Rscratch, SP, Rscratch);
duke@435 3465
duke@435 3466 // Stack-lock attempt failed - check for recursive stack-lock.
duke@435 3467 // See the comments below about how we might remove this case.
duke@435 3468 #ifdef _LP64
duke@435 3469 sub (Rscratch, STACK_BIAS, Rscratch);
duke@435 3470 #endif
duke@435 3471 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 3472 andcc (Rscratch, 0xfffff003, Rscratch);
duke@435 3473 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3474 delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3475
duke@435 3476 bind (IsInflated) ;
duke@435 3477 if (EmitSync & 64) {
duke@435 3478 // If m->owner != null goto IsLocked
duke@435 3479 // Pessimistic form: Test-and-CAS vs CAS
duke@435 3480 // The optimistic form avoids RTS->RTO cache line upgrades.
twisti@1162 3481 ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
duke@435 3482 andcc (Rscratch, Rscratch, G0) ;
duke@435 3483 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 3484 delayed()->nop() ;
duke@435 3485 // m->owner == null : it's unlocked.
duke@435 3486 }
duke@435 3487
duke@435 3488 // Try to CAS m->owner from null to Self
duke@435 3489 // Invariant: if we acquire the lock then _recursions should be 0.
duke@435 3490 add (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
duke@435 3491 mov (G2_thread, Rscratch) ;
duke@435 3492 casn (Rmark, G0, Rscratch) ;
duke@435 3493 cmp (Rscratch, G0) ;
duke@435 3494 // Intentional fall-through into done
duke@435 3495 } else {
duke@435 3496 // Aggressively avoid the Store-before-CAS penalty
duke@435 3497 // Defer the store into box->dhw until after the CAS
duke@435 3498 Label IsInflated, Recursive ;
duke@435 3499
duke@435 3500 // Anticipate CAS -- Avoid RTS->RTO upgrade
duke@435 3501 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
duke@435 3502
duke@435 3503 ld_ptr (mark_addr, Rmark); // fetch obj->mark
duke@435 3504 // Triage: biased, stack-locked, neutral, inflated
duke@435 3505
kvn@855 3506 if (try_bias) {
duke@435 3507 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3508 // Invariant: if control reaches this point in the emitted stream
duke@435 3509 // then Rmark has not been modified.
duke@435 3510 }
duke@435 3511 andcc (Rmark, 2, G0) ;
duke@435 3512 brx (Assembler::notZero, false, Assembler::pn, IsInflated) ;
duke@435 3513 delayed()-> // Beware - dangling delay-slot
duke@435 3514
duke@435 3515 // Try stack-lock acquisition.
duke@435 3516 // Transiently install BUSY (0) encoding in the mark word.
duke@435 3517 // if the CAS of 0 into the mark was successful then we execute:
duke@435 3518 // ST box->dhw = mark -- save fetched mark in on-stack basiclock box
duke@435 3519 // ST obj->mark = box -- overwrite transient 0 value
duke@435 3520 // This presumes TSO, of course.
duke@435 3521
duke@435 3522 mov (0, Rscratch) ;
duke@435 3523 or3 (Rmark, markOopDesc::unlocked_value, Rmark);
duke@435 3524 assert (mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3525 casn (mark_addr.base(), Rmark, Rscratch) ;
duke@435 3526 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
duke@435 3527 cmp (Rscratch, Rmark) ;
duke@435 3528 brx (Assembler::notZero, false, Assembler::pn, Recursive) ;
duke@435 3529 delayed() ->
duke@435 3530 st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3531 if (counters != NULL) {
duke@435 3532 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
duke@435 3533 }
duke@435 3534 br (Assembler::always, false, Assembler::pt, done);
duke@435 3535 delayed() ->
duke@435 3536 st_ptr (Rbox, mark_addr) ;
duke@435 3537
duke@435 3538 bind (Recursive) ;
duke@435 3539 // Stack-lock attempt failed - check for recursive stack-lock.
duke@435 3540 // Tests show that we can remove the recursive case with no impact
duke@435 3541 // on refworkload 0.83. If we need to reduce the size of the code
duke@435 3542 // emitted by compiler_lock_object() the recursive case is perfect
duke@435 3543 // candidate.
duke@435 3544 //
duke@435 3545 // A more extreme idea is to always inflate on stack-lock recursion.
duke@435 3546 // This lets us eliminate the recursive checks in compiler_lock_object
duke@435 3547 // and compiler_unlock_object and the (box->dhw == 0) encoding.
duke@435 3548 // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
duke@435 3549 // and showed a performance *increase*. In the same experiment I eliminated
duke@435 3550 // the fast-path stack-lock code from the interpreter and always passed
duke@435 3551 // control to the "slow" operators in synchronizer.cpp.
duke@435 3552
duke@435 3553 // RScratch contains the fetched obj->mark value from the failed CASN.
duke@435 3554 #ifdef _LP64
duke@435 3555 sub (Rscratch, STACK_BIAS, Rscratch);
duke@435 3556 #endif
duke@435 3557 sub(Rscratch, SP, Rscratch);
duke@435 3558 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 3559 andcc (Rscratch, 0xfffff003, Rscratch);
duke@435 3560 if (counters != NULL) {
duke@435 3561 // Accounting needs the Rscratch register
duke@435 3562 st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3563 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
duke@435 3564 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3565 delayed()->nop() ;
duke@435 3566 } else {
duke@435 3567 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3568 delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3569 }
duke@435 3570
duke@435 3571 bind (IsInflated) ;
duke@435 3572 if (EmitSync & 64) {
duke@435 3573 // If m->owner != null goto IsLocked
duke@435 3574 // Test-and-CAS vs CAS
duke@435 3575 // Pessimistic form avoids futile (doomed) CAS attempts
duke@435 3576 // The optimistic form avoids RTS->RTO cache line upgrades.
twisti@1162 3577 ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
duke@435 3578 andcc (Rscratch, Rscratch, G0) ;
duke@435 3579 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 3580 delayed()->nop() ;
duke@435 3581 // m->owner == null : it's unlocked.
duke@435 3582 }
duke@435 3583
duke@435 3584 // Try to CAS m->owner from null to Self
duke@435 3585 // Invariant: if we acquire the lock then _recursions should be 0.
duke@435 3586 add (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
duke@435 3587 mov (G2_thread, Rscratch) ;
duke@435 3588 casn (Rmark, G0, Rscratch) ;
duke@435 3589 cmp (Rscratch, G0) ;
duke@435 3590 // ST box->displaced_header = NonZero.
duke@435 3591 // Any non-zero value suffices:
duke@435 3592 // unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
duke@435 3593 st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3594 // Intentional fall-through into done
duke@435 3595 }
duke@435 3596
duke@435 3597 bind (done) ;
duke@435 3598 }
duke@435 3599
kvn@855 3600 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
kvn@855 3601 Register Rbox, Register Rscratch,
kvn@855 3602 bool try_bias) {
twisti@1162 3603 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
duke@435 3604
duke@435 3605 Label done ;
duke@435 3606
duke@435 3607 if (EmitSync & 4) {
duke@435 3608 cmp (SP, G0) ;
duke@435 3609 return ;
duke@435 3610 }
duke@435 3611
duke@435 3612 if (EmitSync & 8) {
kvn@855 3613 if (try_bias) {
duke@435 3614 biased_locking_exit(mark_addr, Rscratch, done);
duke@435 3615 }
duke@435 3616
duke@435 3617 // Test first if it is a fast recursive unlock
duke@435 3618 ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
duke@435 3619 cmp(Rmark, G0);
duke@435 3620 brx(Assembler::equal, false, Assembler::pt, done);
duke@435 3621 delayed()->nop();
duke@435 3622
duke@435 3623 // Check if it is still a light weight lock, this is is true if we see
duke@435 3624 // the stack address of the basicLock in the markOop of the object
duke@435 3625 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3626 casx_under_lock(mark_addr.base(), Rbox, Rmark,
duke@435 3627 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 3628 br (Assembler::always, false, Assembler::pt, done);
duke@435 3629 delayed()->cmp(Rbox, Rmark);
duke@435 3630 bind (done) ;
duke@435 3631 return ;
duke@435 3632 }
duke@435 3633
duke@435 3634 // Beware ... If the aggregate size of the code emitted by CLO and CUO is
duke@435 3635 // is too large performance rolls abruptly off a cliff.
duke@435 3636 // This could be related to inlining policies, code cache management, or
duke@435 3637 // I$ effects.
duke@435 3638 Label LStacked ;
duke@435 3639
kvn@855 3640 if (try_bias) {
duke@435 3641 // TODO: eliminate redundant LDs of obj->mark
duke@435 3642 biased_locking_exit(mark_addr, Rscratch, done);
duke@435 3643 }
duke@435 3644
duke@435 3645 ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
duke@435 3646 ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
duke@435 3647 andcc (Rscratch, Rscratch, G0);
duke@435 3648 brx (Assembler::zero, false, Assembler::pn, done);
duke@435 3649 delayed()-> nop() ; // consider: relocate fetch of mark, above, into this DS
duke@435 3650 andcc (Rmark, 2, G0) ;
duke@435 3651 brx (Assembler::zero, false, Assembler::pt, LStacked) ;
duke@435 3652 delayed()-> nop() ;
duke@435 3653
duke@435 3654 // It's inflated
duke@435 3655 // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
duke@435 3656 // the ST of 0 into _owner which releases the lock. This prevents loads
duke@435 3657 // and stores within the critical section from reordering (floating)
duke@435 3658 // past the store that releases the lock. But TSO is a strong memory model
duke@435 3659 // and that particular flavor of barrier is a noop, so we can safely elide it.
duke@435 3660 // Note that we use 1-0 locking by default for the inflated case. We
duke@435 3661 // close the resultant (and rare) race by having contented threads in
duke@435 3662 // monitorenter periodically poll _owner.
twisti@1162 3663 ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
twisti@1162 3664 ld_ptr (Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
duke@435 3665 xor3 (Rscratch, G2_thread, Rscratch) ;
duke@435 3666 orcc (Rbox, Rscratch, Rbox) ;
duke@435 3667 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 3668 delayed()->
twisti@1162 3669 ld_ptr (Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
twisti@1162 3670 ld_ptr (Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
duke@435 3671 orcc (Rbox, Rscratch, G0) ;
duke@435 3672 if (EmitSync & 65536) {
duke@435 3673 Label LSucc ;
duke@435 3674 brx (Assembler::notZero, false, Assembler::pn, LSucc) ;
duke@435 3675 delayed()->nop() ;
duke@435 3676 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3677 delayed()->
twisti@1162 3678 st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
duke@435 3679
duke@435 3680 bind (LSucc) ;
twisti@1162 3681 st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
duke@435 3682 if (os::is_MP()) { membar (StoreLoad) ; }
twisti@1162 3683 ld_ptr (Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
duke@435 3684 andcc (Rscratch, Rscratch, G0) ;
duke@435 3685 brx (Assembler::notZero, false, Assembler::pt, done) ;
duke@435 3686 delayed()-> andcc (G0, G0, G0) ;
duke@435 3687 add (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
duke@435 3688 mov (G2_thread, Rscratch) ;
duke@435 3689 casn (Rmark, G0, Rscratch) ;
duke@435 3690 cmp (Rscratch, G0) ;
duke@435 3691 // invert icc.zf and goto done
duke@435 3692 brx (Assembler::notZero, false, Assembler::pt, done) ;
duke@435 3693 delayed() -> cmp (G0, G0) ;
duke@435 3694 br (Assembler::always, false, Assembler::pt, done);
duke@435 3695 delayed() -> cmp (G0, 1) ;
duke@435 3696 } else {
duke@435 3697 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 3698 delayed()->nop() ;
duke@435 3699 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3700 delayed()->
twisti@1162 3701 st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
duke@435 3702 }
duke@435 3703
duke@435 3704 bind (LStacked) ;
duke@435 3705 // Consider: we could replace the expensive CAS in the exit
duke@435 3706 // path with a simple ST of the displaced mark value fetched from
duke@435 3707 // the on-stack basiclock box. That admits a race where a thread T2
duke@435 3708 // in the slow lock path -- inflating with monitor M -- could race a
duke@435 3709 // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
duke@435 3710 // More precisely T1 in the stack-lock unlock path could "stomp" the
duke@435 3711 // inflated mark value M installed by T2, resulting in an orphan
duke@435 3712 // object monitor M and T2 becoming stranded. We can remedy that situation
duke@435 3713 // by having T2 periodically poll the object's mark word using timed wait
duke@435 3714 // operations. If T2 discovers that a stomp has occurred it vacates
duke@435 3715 // the monitor M and wakes any other threads stranded on the now-orphan M.
duke@435 3716 // In addition the monitor scavenger, which performs deflation,
duke@435 3717 // would also need to check for orpan monitors and stranded threads.
duke@435 3718 //
duke@435 3719 // Finally, inflation is also used when T2 needs to assign a hashCode
duke@435 3720 // to O and O is stack-locked by T1. The "stomp" race could cause
duke@435 3721 // an assigned hashCode value to be lost. We can avoid that condition
duke@435 3722 // and provide the necessary hashCode stability invariants by ensuring
duke@435 3723 // that hashCode generation is idempotent between copying GCs.
duke@435 3724 // For example we could compute the hashCode of an object O as
duke@435 3725 // O's heap address XOR some high quality RNG value that is refreshed
duke@435 3726 // at GC-time. The monitor scavenger would install the hashCode
duke@435 3727 // found in any orphan monitors. Again, the mechanism admits a
duke@435 3728 // lost-update "stomp" WAW race but detects and recovers as needed.
duke@435 3729 //
duke@435 3730 // A prototype implementation showed excellent results, although
duke@435 3731 // the scavenger and timeout code was rather involved.
duke@435 3732
duke@435 3733 casn (mark_addr.base(), Rbox, Rscratch) ;
duke@435 3734 cmp (Rbox, Rscratch);
duke@435 3735 // Intentional fall through into done ...
duke@435 3736
duke@435 3737 bind (done) ;
duke@435 3738 }
duke@435 3739
duke@435 3740
duke@435 3741
duke@435 3742 void MacroAssembler::print_CPU_state() {
duke@435 3743 // %%%%% need to implement this
duke@435 3744 }
duke@435 3745
duke@435 3746 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
duke@435 3747 // %%%%% need to implement this
duke@435 3748 }
duke@435 3749
duke@435 3750 void MacroAssembler::push_IU_state() {
duke@435 3751 // %%%%% need to implement this
duke@435 3752 }
duke@435 3753
duke@435 3754
duke@435 3755 void MacroAssembler::pop_IU_state() {
duke@435 3756 // %%%%% need to implement this
duke@435 3757 }
duke@435 3758
duke@435 3759
duke@435 3760 void MacroAssembler::push_FPU_state() {
duke@435 3761 // %%%%% need to implement this
duke@435 3762 }
duke@435 3763
duke@435 3764
duke@435 3765 void MacroAssembler::pop_FPU_state() {
duke@435 3766 // %%%%% need to implement this
duke@435 3767 }
duke@435 3768
duke@435 3769
duke@435 3770 void MacroAssembler::push_CPU_state() {
duke@435 3771 // %%%%% need to implement this
duke@435 3772 }
duke@435 3773
duke@435 3774
duke@435 3775 void MacroAssembler::pop_CPU_state() {
duke@435 3776 // %%%%% need to implement this
duke@435 3777 }
duke@435 3778
duke@435 3779
duke@435 3780
duke@435 3781 void MacroAssembler::verify_tlab() {
duke@435 3782 #ifdef ASSERT
duke@435 3783 if (UseTLAB && VerifyOops) {
duke@435 3784 Label next, next2, ok;
duke@435 3785 Register t1 = L0;
duke@435 3786 Register t2 = L1;
duke@435 3787 Register t3 = L2;
duke@435 3788
duke@435 3789 save_frame(0);
duke@435 3790 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
duke@435 3791 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
duke@435 3792 or3(t1, t2, t3);
duke@435 3793 cmp(t1, t2);
duke@435 3794 br(Assembler::greaterEqual, false, Assembler::pn, next);
duke@435 3795 delayed()->nop();
duke@435 3796 stop("assert(top >= start)");
duke@435 3797 should_not_reach_here();
duke@435 3798
duke@435 3799 bind(next);
duke@435 3800 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
duke@435 3801 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
duke@435 3802 or3(t3, t2, t3);
duke@435 3803 cmp(t1, t2);
duke@435 3804 br(Assembler::lessEqual, false, Assembler::pn, next2);
duke@435 3805 delayed()->nop();
duke@435 3806 stop("assert(top <= end)");
duke@435 3807 should_not_reach_here();
duke@435 3808
duke@435 3809 bind(next2);
duke@435 3810 and3(t3, MinObjAlignmentInBytesMask, t3);
duke@435 3811 cmp(t3, 0);
duke@435 3812 br(Assembler::lessEqual, false, Assembler::pn, ok);
duke@435 3813 delayed()->nop();
duke@435 3814 stop("assert(aligned)");
duke@435 3815 should_not_reach_here();
duke@435 3816
duke@435 3817 bind(ok);
duke@435 3818 restore();
duke@435 3819 }
duke@435 3820 #endif
duke@435 3821 }
duke@435 3822
duke@435 3823
duke@435 3824 void MacroAssembler::eden_allocate(
duke@435 3825 Register obj, // result: pointer to object after successful allocation
duke@435 3826 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 3827 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 3828 Register t1, // temp register
duke@435 3829 Register t2, // temp register
duke@435 3830 Label& slow_case // continuation point if fast allocation fails
duke@435 3831 ){
duke@435 3832 // make sure arguments make sense
duke@435 3833 assert_different_registers(obj, var_size_in_bytes, t1, t2);
duke@435 3834 assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
duke@435 3835 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
duke@435 3836
ysr@777 3837 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
ysr@777 3838 // No allocation in the shared eden.
ysr@777 3839 br(Assembler::always, false, Assembler::pt, slow_case);
ysr@777 3840 delayed()->nop();
ysr@777 3841 } else {
ysr@777 3842 // get eden boundaries
ysr@777 3843 // note: we need both top & top_addr!
ysr@777 3844 const Register top_addr = t1;
ysr@777 3845 const Register end = t2;
ysr@777 3846
ysr@777 3847 CollectedHeap* ch = Universe::heap();
ysr@777 3848 set((intx)ch->top_addr(), top_addr);
ysr@777 3849 intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
ysr@777 3850 ld_ptr(top_addr, delta, end);
ysr@777 3851 ld_ptr(top_addr, 0, obj);
ysr@777 3852
ysr@777 3853 // try to allocate
ysr@777 3854 Label retry;
ysr@777 3855 bind(retry);
duke@435 3856 #ifdef ASSERT
ysr@777 3857 // make sure eden top is properly aligned
ysr@777 3858 {
ysr@777 3859 Label L;
ysr@777 3860 btst(MinObjAlignmentInBytesMask, obj);
ysr@777 3861 br(Assembler::zero, false, Assembler::pt, L);
ysr@777 3862 delayed()->nop();
ysr@777 3863 stop("eden top is not properly aligned");
ysr@777 3864 bind(L);
ysr@777 3865 }
ysr@777 3866 #endif // ASSERT
ysr@777 3867 const Register free = end;
ysr@777 3868 sub(end, obj, free); // compute amount of free space
ysr@777 3869 if (var_size_in_bytes->is_valid()) {
ysr@777 3870 // size is unknown at compile time
ysr@777 3871 cmp(free, var_size_in_bytes);
ysr@777 3872 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
ysr@777 3873 delayed()->add(obj, var_size_in_bytes, end);
ysr@777 3874 } else {
ysr@777 3875 // size is known at compile time
ysr@777 3876 cmp(free, con_size_in_bytes);
ysr@777 3877 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
ysr@777 3878 delayed()->add(obj, con_size_in_bytes, end);
ysr@777 3879 }
ysr@777 3880 // Compare obj with the value at top_addr; if still equal, swap the value of
ysr@777 3881 // end with the value at top_addr. If not equal, read the value at top_addr
ysr@777 3882 // into end.
ysr@777 3883 casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
ysr@777 3884 // if someone beat us on the allocation, try again, otherwise continue
ysr@777 3885 cmp(obj, end);
ysr@777 3886 brx(Assembler::notEqual, false, Assembler::pn, retry);
ysr@777 3887 delayed()->mov(end, obj); // nop if successfull since obj == end
ysr@777 3888
ysr@777 3889 #ifdef ASSERT
ysr@777 3890 // make sure eden top is properly aligned
ysr@777 3891 {
ysr@777 3892 Label L;
ysr@777 3893 const Register top_addr = t1;
ysr@777 3894
ysr@777 3895 set((intx)ch->top_addr(), top_addr);
ysr@777 3896 ld_ptr(top_addr, 0, top_addr);
ysr@777 3897 btst(MinObjAlignmentInBytesMask, top_addr);
ysr@777 3898 br(Assembler::zero, false, Assembler::pt, L);
ysr@777 3899 delayed()->nop();
ysr@777 3900 stop("eden top is not properly aligned");
ysr@777 3901 bind(L);
ysr@777 3902 }
ysr@777 3903 #endif // ASSERT
duke@435 3904 }
duke@435 3905 }
duke@435 3906
duke@435 3907
duke@435 3908 void MacroAssembler::tlab_allocate(
duke@435 3909 Register obj, // result: pointer to object after successful allocation
duke@435 3910 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 3911 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 3912 Register t1, // temp register
duke@435 3913 Label& slow_case // continuation point if fast allocation fails
duke@435 3914 ){
duke@435 3915 // make sure arguments make sense
duke@435 3916 assert_different_registers(obj, var_size_in_bytes, t1);
duke@435 3917 assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
duke@435 3918 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
duke@435 3919
duke@435 3920 const Register free = t1;
duke@435 3921
duke@435 3922 verify_tlab();
duke@435 3923
duke@435 3924 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
duke@435 3925
duke@435 3926 // calculate amount of free space
duke@435 3927 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
duke@435 3928 sub(free, obj, free);
duke@435 3929
duke@435 3930 Label done;
duke@435 3931 if (var_size_in_bytes == noreg) {
duke@435 3932 cmp(free, con_size_in_bytes);
duke@435 3933 } else {
duke@435 3934 cmp(free, var_size_in_bytes);
duke@435 3935 }
duke@435 3936 br(Assembler::less, false, Assembler::pn, slow_case);
duke@435 3937 // calculate the new top pointer
duke@435 3938 if (var_size_in_bytes == noreg) {
duke@435 3939 delayed()->add(obj, con_size_in_bytes, free);
duke@435 3940 } else {
duke@435 3941 delayed()->add(obj, var_size_in_bytes, free);
duke@435 3942 }
duke@435 3943
duke@435 3944 bind(done);
duke@435 3945
duke@435 3946 #ifdef ASSERT
duke@435 3947 // make sure new free pointer is properly aligned
duke@435 3948 {
duke@435 3949 Label L;
duke@435 3950 btst(MinObjAlignmentInBytesMask, free);
duke@435 3951 br(Assembler::zero, false, Assembler::pt, L);
duke@435 3952 delayed()->nop();
duke@435 3953 stop("updated TLAB free is not properly aligned");
duke@435 3954 bind(L);
duke@435 3955 }
duke@435 3956 #endif // ASSERT
duke@435 3957
duke@435 3958 // update the tlab top pointer
duke@435 3959 st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
duke@435 3960 verify_tlab();
duke@435 3961 }
duke@435 3962
duke@435 3963
duke@435 3964 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
duke@435 3965 Register top = O0;
duke@435 3966 Register t1 = G1;
duke@435 3967 Register t2 = G3;
duke@435 3968 Register t3 = O1;
duke@435 3969 assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
duke@435 3970 Label do_refill, discard_tlab;
duke@435 3971
duke@435 3972 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
duke@435 3973 // No allocation in the shared eden.
duke@435 3974 br(Assembler::always, false, Assembler::pt, slow_case);
duke@435 3975 delayed()->nop();
duke@435 3976 }
duke@435 3977
duke@435 3978 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
duke@435 3979 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
duke@435 3980 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
duke@435 3981
duke@435 3982 // calculate amount of free space
duke@435 3983 sub(t1, top, t1);
duke@435 3984 srl_ptr(t1, LogHeapWordSize, t1);
duke@435 3985
duke@435 3986 // Retain tlab and allocate object in shared space if
duke@435 3987 // the amount free in the tlab is too large to discard.
duke@435 3988 cmp(t1, t2);
duke@435 3989 brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
duke@435 3990
duke@435 3991 // increment waste limit to prevent getting stuck on this slow path
duke@435 3992 delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
duke@435 3993 st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
duke@435 3994 if (TLABStats) {
duke@435 3995 // increment number of slow_allocations
duke@435 3996 ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
duke@435 3997 add(t2, 1, t2);
duke@435 3998 stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
duke@435 3999 }
duke@435 4000 br(Assembler::always, false, Assembler::pt, try_eden);
duke@435 4001 delayed()->nop();
duke@435 4002
duke@435 4003 bind(discard_tlab);
duke@435 4004 if (TLABStats) {
duke@435 4005 // increment number of refills
duke@435 4006 ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
duke@435 4007 add(t2, 1, t2);
duke@435 4008 stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
duke@435 4009 // accumulate wastage
duke@435 4010 ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
duke@435 4011 add(t2, t1, t2);
duke@435 4012 stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
duke@435 4013 }
duke@435 4014
duke@435 4015 // if tlab is currently allocated (top or end != null) then
duke@435 4016 // fill [top, end + alignment_reserve) with array object
duke@435 4017 br_null(top, false, Assembler::pn, do_refill);
duke@435 4018 delayed()->nop();
duke@435 4019
duke@435 4020 set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
duke@435 4021 st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
duke@435 4022 // set klass to intArrayKlass
duke@435 4023 sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
duke@435 4024 add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
duke@435 4025 sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
duke@435 4026 st(t1, top, arrayOopDesc::length_offset_in_bytes());
coleenp@602 4027 set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
coleenp@602 4028 ld_ptr(t2, 0, t2);
coleenp@602 4029 // store klass last. concurrent gcs assumes klass length is valid if
coleenp@602 4030 // klass field is not null.
coleenp@602 4031 store_klass(t2, top);
duke@435 4032 verify_oop(top);
duke@435 4033
duke@435 4034 // refill the tlab with an eden allocation
duke@435 4035 bind(do_refill);
duke@435 4036 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
duke@435 4037 sll_ptr(t1, LogHeapWordSize, t1);
duke@435 4038 // add object_size ??
duke@435 4039 eden_allocate(top, t1, 0, t2, t3, slow_case);
duke@435 4040
duke@435 4041 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
duke@435 4042 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
duke@435 4043 #ifdef ASSERT
duke@435 4044 // check that tlab_size (t1) is still valid
duke@435 4045 {
duke@435 4046 Label ok;
duke@435 4047 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
duke@435 4048 sll_ptr(t2, LogHeapWordSize, t2);
duke@435 4049 cmp(t1, t2);
duke@435 4050 br(Assembler::equal, false, Assembler::pt, ok);
duke@435 4051 delayed()->nop();
duke@435 4052 stop("assert(t1 == tlab_size)");
duke@435 4053 should_not_reach_here();
duke@435 4054
duke@435 4055 bind(ok);
duke@435 4056 }
duke@435 4057 #endif // ASSERT
duke@435 4058 add(top, t1, top); // t1 is tlab_size
duke@435 4059 sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
duke@435 4060 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
duke@435 4061 verify_tlab();
duke@435 4062 br(Assembler::always, false, Assembler::pt, retry);
duke@435 4063 delayed()->nop();
duke@435 4064 }
duke@435 4065
duke@435 4066 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
duke@435 4067 switch (cond) {
duke@435 4068 // Note some conditions are synonyms for others
duke@435 4069 case Assembler::never: return Assembler::always;
duke@435 4070 case Assembler::zero: return Assembler::notZero;
duke@435 4071 case Assembler::lessEqual: return Assembler::greater;
duke@435 4072 case Assembler::less: return Assembler::greaterEqual;
duke@435 4073 case Assembler::lessEqualUnsigned: return Assembler::greaterUnsigned;
duke@435 4074 case Assembler::lessUnsigned: return Assembler::greaterEqualUnsigned;
duke@435 4075 case Assembler::negative: return Assembler::positive;
duke@435 4076 case Assembler::overflowSet: return Assembler::overflowClear;
duke@435 4077 case Assembler::always: return Assembler::never;
duke@435 4078 case Assembler::notZero: return Assembler::zero;
duke@435 4079 case Assembler::greater: return Assembler::lessEqual;
duke@435 4080 case Assembler::greaterEqual: return Assembler::less;
duke@435 4081 case Assembler::greaterUnsigned: return Assembler::lessEqualUnsigned;
duke@435 4082 case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
duke@435 4083 case Assembler::positive: return Assembler::negative;
duke@435 4084 case Assembler::overflowClear: return Assembler::overflowSet;
duke@435 4085 }
duke@435 4086
duke@435 4087 ShouldNotReachHere(); return Assembler::overflowClear;
duke@435 4088 }
duke@435 4089
duke@435 4090 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
duke@435 4091 Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
duke@435 4092 Condition negated_cond = negate_condition(cond);
duke@435 4093 Label L;
duke@435 4094 brx(negated_cond, false, Assembler::pt, L);
duke@435 4095 delayed()->nop();
duke@435 4096 inc_counter(counter_ptr, Rtmp1, Rtmp2);
duke@435 4097 bind(L);
duke@435 4098 }
duke@435 4099
twisti@1162 4100 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
twisti@1162 4101 AddressLiteral addrlit(counter_addr);
twisti@1162 4102 sethi(addrlit, Rtmp1); // Move hi22 bits into temporary register.
twisti@1162 4103 Address addr(Rtmp1, addrlit.low10()); // Build an address with low10 bits.
twisti@1162 4104 ld(addr, Rtmp2);
duke@435 4105 inc(Rtmp2);
twisti@1162 4106 st(Rtmp2, addr);
twisti@1162 4107 }
twisti@1162 4108
twisti@1162 4109 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
twisti@1162 4110 inc_counter((address) counter_addr, Rtmp1, Rtmp2);
duke@435 4111 }
duke@435 4112
duke@435 4113 SkipIfEqual::SkipIfEqual(
duke@435 4114 MacroAssembler* masm, Register temp, const bool* flag_addr,
duke@435 4115 Assembler::Condition condition) {
duke@435 4116 _masm = masm;
twisti@1162 4117 AddressLiteral flag(flag_addr);
twisti@1162 4118 _masm->sethi(flag, temp);
twisti@1162 4119 _masm->ldub(temp, flag.low10(), temp);
duke@435 4120 _masm->tst(temp);
duke@435 4121 _masm->br(condition, false, Assembler::pt, _label);
duke@435 4122 _masm->delayed()->nop();
duke@435 4123 }
duke@435 4124
duke@435 4125 SkipIfEqual::~SkipIfEqual() {
duke@435 4126 _masm->bind(_label);
duke@435 4127 }
duke@435 4128
duke@435 4129
duke@435 4130 // Writes to stack successive pages until offset reached to check for
duke@435 4131 // stack overflow + shadow pages. This clobbers tsp and scratch.
duke@435 4132 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
duke@435 4133 Register Rscratch) {
duke@435 4134 // Use stack pointer in temp stack pointer
duke@435 4135 mov(SP, Rtsp);
duke@435 4136
duke@435 4137 // Bang stack for total size given plus stack shadow page size.
duke@435 4138 // Bang one page at a time because a large size can overflow yellow and
duke@435 4139 // red zones (the bang will fail but stack overflow handling can't tell that
duke@435 4140 // it was a stack overflow bang vs a regular segv).
duke@435 4141 int offset = os::vm_page_size();
duke@435 4142 Register Roffset = Rscratch;
duke@435 4143
duke@435 4144 Label loop;
duke@435 4145 bind(loop);
duke@435 4146 set((-offset)+STACK_BIAS, Rscratch);
duke@435 4147 st(G0, Rtsp, Rscratch);
duke@435 4148 set(offset, Roffset);
duke@435 4149 sub(Rsize, Roffset, Rsize);
duke@435 4150 cmp(Rsize, G0);
duke@435 4151 br(Assembler::greater, false, Assembler::pn, loop);
duke@435 4152 delayed()->sub(Rtsp, Roffset, Rtsp);
duke@435 4153
duke@435 4154 // Bang down shadow pages too.
duke@435 4155 // The -1 because we already subtracted 1 page.
duke@435 4156 for (int i = 0; i< StackShadowPages-1; i++) {
duke@435 4157 set((-i*offset)+STACK_BIAS, Rscratch);
duke@435 4158 st(G0, Rtsp, Rscratch);
duke@435 4159 }
duke@435 4160 }
coleenp@548 4161
ysr@777 4162 ///////////////////////////////////////////////////////////////////////////////////
ysr@777 4163 #ifndef SERIALGC
ysr@777 4164
ysr@777 4165 static uint num_stores = 0;
ysr@777 4166 static uint num_null_pre_stores = 0;
ysr@777 4167
ysr@777 4168 static void count_null_pre_vals(void* pre_val) {
ysr@777 4169 num_stores++;
ysr@777 4170 if (pre_val == NULL) num_null_pre_stores++;
ysr@777 4171 if ((num_stores % 1000000) == 0) {
ysr@777 4172 tty->print_cr(UINT32_FORMAT " stores, " UINT32_FORMAT " (%5.2f%%) with null pre-vals.",
ysr@777 4173 num_stores, num_null_pre_stores,
ysr@777 4174 100.0*(float)num_null_pre_stores/(float)num_stores);
ysr@777 4175 }
ysr@777 4176 }
ysr@777 4177
ysr@777 4178 static address satb_log_enqueue_with_frame = 0;
ysr@777 4179 static u_char* satb_log_enqueue_with_frame_end = 0;
ysr@777 4180
ysr@777 4181 static address satb_log_enqueue_frameless = 0;
ysr@777 4182 static u_char* satb_log_enqueue_frameless_end = 0;
ysr@777 4183
ysr@777 4184 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
ysr@777 4185
ysr@777 4186 // The calls to this don't work. We'd need to do a fair amount of work to
ysr@777 4187 // make it work.
ysr@777 4188 static void check_index(int ind) {
ysr@777 4189 assert(0 <= ind && ind <= 64*K && ((ind % oopSize) == 0),
ysr@777 4190 "Invariants.")
ysr@777 4191 }
ysr@777 4192
ysr@777 4193 static void generate_satb_log_enqueue(bool with_frame) {
ysr@777 4194 BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
ysr@777 4195 CodeBuffer buf(bb->instructions_begin(), bb->instructions_size());
ysr@777 4196 MacroAssembler masm(&buf);
ysr@777 4197 address start = masm.pc();
ysr@777 4198 Register pre_val;
ysr@777 4199
ysr@777 4200 Label refill, restart;
ysr@777 4201 if (with_frame) {
ysr@777 4202 masm.save_frame(0);
ysr@777 4203 pre_val = I0; // Was O0 before the save.
ysr@777 4204 } else {
ysr@777 4205 pre_val = O0;
ysr@777 4206 }
ysr@777 4207 int satb_q_index_byte_offset =
ysr@777 4208 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4209 PtrQueue::byte_offset_of_index());
ysr@777 4210 int satb_q_buf_byte_offset =
ysr@777 4211 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4212 PtrQueue::byte_offset_of_buf());
ysr@777 4213 assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
ysr@777 4214 in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
ysr@777 4215 "check sizes in assembly below");
ysr@777 4216
ysr@777 4217 masm.bind(restart);
ysr@777 4218 masm.ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
ysr@777 4219
ysr@777 4220 masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn, L0, refill);
ysr@777 4221 // If the branch is taken, no harm in executing this in the delay slot.
ysr@777 4222 masm.delayed()->ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
ysr@777 4223 masm.sub(L0, oopSize, L0);
ysr@777 4224
ysr@777 4225 masm.st_ptr(pre_val, L1, L0); // [_buf + index] := I0
ysr@777 4226 if (!with_frame) {
ysr@777 4227 // Use return-from-leaf
ysr@777 4228 masm.retl();
ysr@777 4229 masm.delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
ysr@777 4230 } else {
ysr@777 4231 // Not delayed.
ysr@777 4232 masm.st_ptr(L0, G2_thread, satb_q_index_byte_offset);
ysr@777 4233 }
ysr@777 4234 if (with_frame) {
ysr@777 4235 masm.ret();
ysr@777 4236 masm.delayed()->restore();
ysr@777 4237 }
ysr@777 4238 masm.bind(refill);
ysr@777 4239
ysr@777 4240 address handle_zero =
ysr@777 4241 CAST_FROM_FN_PTR(address,
ysr@777 4242 &SATBMarkQueueSet::handle_zero_index_for_thread);
ysr@777 4243 // This should be rare enough that we can afford to save all the
ysr@777 4244 // scratch registers that the calling context might be using.
ysr@777 4245 masm.mov(G1_scratch, L0);
ysr@777 4246 masm.mov(G3_scratch, L1);
ysr@777 4247 masm.mov(G4, L2);
ysr@777 4248 // We need the value of O0 above (for the write into the buffer), so we
ysr@777 4249 // save and restore it.
ysr@777 4250 masm.mov(O0, L3);
ysr@777 4251 // Since the call will overwrite O7, we save and restore that, as well.
ysr@777 4252 masm.mov(O7, L4);
ysr@777 4253 masm.call_VM_leaf(L5, handle_zero, G2_thread);
ysr@777 4254 masm.mov(L0, G1_scratch);
ysr@777 4255 masm.mov(L1, G3_scratch);
ysr@777 4256 masm.mov(L2, G4);
ysr@777 4257 masm.mov(L3, O0);
ysr@777 4258 masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
ysr@777 4259 masm.delayed()->mov(L4, O7);
ysr@777 4260
ysr@777 4261 if (with_frame) {
ysr@777 4262 satb_log_enqueue_with_frame = start;
ysr@777 4263 satb_log_enqueue_with_frame_end = masm.pc();
ysr@777 4264 } else {
ysr@777 4265 satb_log_enqueue_frameless = start;
ysr@777 4266 satb_log_enqueue_frameless_end = masm.pc();
ysr@777 4267 }
ysr@777 4268 }
ysr@777 4269
ysr@777 4270 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
ysr@777 4271 if (with_frame) {
ysr@777 4272 if (satb_log_enqueue_with_frame == 0) {
ysr@777 4273 generate_satb_log_enqueue(with_frame);
ysr@777 4274 assert(satb_log_enqueue_with_frame != 0, "postcondition.");
ysr@777 4275 if (G1SATBPrintStubs) {
ysr@777 4276 tty->print_cr("Generated with-frame satb enqueue:");
ysr@777 4277 Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
ysr@777 4278 satb_log_enqueue_with_frame_end,
ysr@777 4279 tty);
ysr@777 4280 }
ysr@777 4281 }
ysr@777 4282 } else {
ysr@777 4283 if (satb_log_enqueue_frameless == 0) {
ysr@777 4284 generate_satb_log_enqueue(with_frame);
ysr@777 4285 assert(satb_log_enqueue_frameless != 0, "postcondition.");
ysr@777 4286 if (G1SATBPrintStubs) {
ysr@777 4287 tty->print_cr("Generated frameless satb enqueue:");
ysr@777 4288 Disassembler::decode((u_char*)satb_log_enqueue_frameless,
ysr@777 4289 satb_log_enqueue_frameless_end,
ysr@777 4290 tty);
ysr@777 4291 }
ysr@777 4292 }
ysr@777 4293 }
ysr@777 4294 }
ysr@777 4295
ysr@777 4296 void MacroAssembler::g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs) {
ysr@777 4297 assert(offset == 0 || index == noreg, "choose one");
ysr@777 4298
ysr@777 4299 if (G1DisablePreBarrier) return;
ysr@777 4300 // satb_log_barrier(tmp, obj, offset, preserve_o_regs);
ysr@777 4301 Label filtered;
ysr@777 4302 // satb_log_barrier_work0(tmp, filtered);
ysr@777 4303 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
ysr@777 4304 ld(G2,
ysr@777 4305 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4306 PtrQueue::byte_offset_of_active()),
ysr@777 4307 tmp);
ysr@777 4308 } else {
ysr@777 4309 guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
ysr@777 4310 "Assumption");
ysr@777 4311 ldsb(G2,
ysr@777 4312 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4313 PtrQueue::byte_offset_of_active()),
ysr@777 4314 tmp);
ysr@777 4315 }
ysr@1280 4316
ysr@777 4317 // Check on whether to annul.
ysr@777 4318 br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
ysr@777 4319 delayed() -> nop();
ysr@777 4320
ysr@777 4321 // satb_log_barrier_work1(tmp, offset);
ysr@777 4322 if (index == noreg) {
ysr@777 4323 if (Assembler::is_simm13(offset)) {
ysr@1280 4324 load_heap_oop(obj, offset, tmp);
ysr@777 4325 } else {
ysr@777 4326 set(offset, tmp);
ysr@1280 4327 load_heap_oop(obj, tmp, tmp);
ysr@777 4328 }
ysr@777 4329 } else {
ysr@1280 4330 load_heap_oop(obj, index, tmp);
ysr@777 4331 }
ysr@777 4332
ysr@777 4333 // satb_log_barrier_work2(obj, tmp, offset);
ysr@777 4334
ysr@777 4335 // satb_log_barrier_work3(tmp, filtered, preserve_o_regs);
ysr@777 4336
ysr@777 4337 const Register pre_val = tmp;
ysr@777 4338
ysr@777 4339 if (G1SATBBarrierPrintNullPreVals) {
ysr@777 4340 save_frame(0);
ysr@777 4341 mov(pre_val, O0);
ysr@777 4342 // Save G-regs that target may use.
ysr@777 4343 mov(G1, L1);
ysr@777 4344 mov(G2, L2);
ysr@777 4345 mov(G3, L3);
ysr@777 4346 mov(G4, L4);
ysr@777 4347 mov(G5, L5);
ysr@777 4348 call(CAST_FROM_FN_PTR(address, &count_null_pre_vals));
ysr@777 4349 delayed()->nop();
ysr@777 4350 // Restore G-regs that target may have used.
ysr@777 4351 mov(L1, G1);
ysr@777 4352 mov(L2, G2);
ysr@777 4353 mov(L3, G3);
ysr@777 4354 mov(L4, G4);
ysr@777 4355 mov(L5, G5);
ysr@777 4356 restore(G0, G0, G0);
ysr@777 4357 }
ysr@777 4358
ysr@777 4359 // Check on whether to annul.
ysr@777 4360 br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, pre_val, filtered);
ysr@777 4361 delayed() -> nop();
ysr@777 4362
ysr@777 4363 // OK, it's not filtered, so we'll need to call enqueue. In the normal
ysr@777 4364 // case, pre_val will be a scratch G-reg, but there's some cases in which
ysr@777 4365 // it's an O-reg. In the first case, do a normal call. In the latter,
ysr@777 4366 // do a save here and call the frameless version.
ysr@777 4367
ysr@777 4368 guarantee(pre_val->is_global() || pre_val->is_out(),
ysr@777 4369 "Or we need to think harder.");
ysr@777 4370 if (pre_val->is_global() && !preserve_o_regs) {
ysr@777 4371 generate_satb_log_enqueue_if_necessary(true); // with frame.
ysr@777 4372 call(satb_log_enqueue_with_frame);
ysr@777 4373 delayed()->mov(pre_val, O0);
ysr@777 4374 } else {
ysr@777 4375 generate_satb_log_enqueue_if_necessary(false); // with frameless.
ysr@777 4376 save_frame(0);
ysr@777 4377 call(satb_log_enqueue_frameless);
ysr@777 4378 delayed()->mov(pre_val->after_save(), O0);
ysr@777 4379 restore();
ysr@777 4380 }
ysr@777 4381
ysr@777 4382 bind(filtered);
ysr@777 4383 }
ysr@777 4384
ysr@777 4385 static jint num_ct_writes = 0;
ysr@777 4386 static jint num_ct_writes_filtered_in_hr = 0;
ysr@777 4387 static jint num_ct_writes_filtered_null = 0;
ysr@777 4388 static G1CollectedHeap* g1 = NULL;
ysr@777 4389
ysr@777 4390 static Thread* count_ct_writes(void* filter_val, void* new_val) {
ysr@777 4391 Atomic::inc(&num_ct_writes);
ysr@777 4392 if (filter_val == NULL) {
ysr@777 4393 Atomic::inc(&num_ct_writes_filtered_in_hr);
ysr@777 4394 } else if (new_val == NULL) {
ysr@777 4395 Atomic::inc(&num_ct_writes_filtered_null);
ysr@777 4396 } else {
ysr@777 4397 if (g1 == NULL) {
ysr@777 4398 g1 = G1CollectedHeap::heap();
ysr@777 4399 }
ysr@777 4400 }
ysr@777 4401 if ((num_ct_writes % 1000000) == 0) {
ysr@777 4402 jint num_ct_writes_filtered =
ysr@777 4403 num_ct_writes_filtered_in_hr +
apetrusenko@1112 4404 num_ct_writes_filtered_null;
ysr@777 4405
ysr@777 4406 tty->print_cr("%d potential CT writes: %5.2f%% filtered\n"
apetrusenko@1112 4407 " (%5.2f%% intra-HR, %5.2f%% null).",
ysr@777 4408 num_ct_writes,
ysr@777 4409 100.0*(float)num_ct_writes_filtered/(float)num_ct_writes,
ysr@777 4410 100.0*(float)num_ct_writes_filtered_in_hr/
ysr@777 4411 (float)num_ct_writes,
ysr@777 4412 100.0*(float)num_ct_writes_filtered_null/
ysr@777 4413 (float)num_ct_writes);
ysr@777 4414 }
ysr@777 4415 return Thread::current();
ysr@777 4416 }
ysr@777 4417
ysr@777 4418 static address dirty_card_log_enqueue = 0;
ysr@777 4419 static u_char* dirty_card_log_enqueue_end = 0;
ysr@777 4420
ysr@777 4421 // This gets to assume that o0 contains the object address.
ysr@777 4422 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
ysr@777 4423 BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
ysr@777 4424 CodeBuffer buf(bb->instructions_begin(), bb->instructions_size());
ysr@777 4425 MacroAssembler masm(&buf);
ysr@777 4426 address start = masm.pc();
ysr@777 4427
ysr@777 4428 Label not_already_dirty, restart, refill;
ysr@777 4429
ysr@777 4430 #ifdef _LP64
ysr@777 4431 masm.srlx(O0, CardTableModRefBS::card_shift, O0);
ysr@777 4432 #else
ysr@777 4433 masm.srl(O0, CardTableModRefBS::card_shift, O0);
ysr@777 4434 #endif
twisti@1162 4435 AddressLiteral addrlit(byte_map_base);
twisti@1162 4436 masm.set(addrlit, O1); // O1 := <card table base>
ysr@777 4437 masm.ldub(O0, O1, O2); // O2 := [O0 + O1]
ysr@777 4438
ysr@777 4439 masm.br_on_reg_cond(Assembler::rc_nz, /*annul*/false, Assembler::pt,
ysr@777 4440 O2, not_already_dirty);
ysr@777 4441 // Get O1 + O2 into a reg by itself -- useful in the take-the-branch
ysr@777 4442 // case, harmless if not.
ysr@777 4443 masm.delayed()->add(O0, O1, O3);
ysr@777 4444
ysr@777 4445 // We didn't take the branch, so we're already dirty: return.
ysr@777 4446 // Use return-from-leaf
ysr@777 4447 masm.retl();
ysr@777 4448 masm.delayed()->nop();
ysr@777 4449
ysr@777 4450 // Not dirty.
ysr@777 4451 masm.bind(not_already_dirty);
ysr@777 4452 // First, dirty it.
ysr@777 4453 masm.stb(G0, O3, G0); // [cardPtr] := 0 (i.e., dirty).
ysr@777 4454 int dirty_card_q_index_byte_offset =
ysr@777 4455 in_bytes(JavaThread::dirty_card_queue_offset() +
ysr@777 4456 PtrQueue::byte_offset_of_index());
ysr@777 4457 int dirty_card_q_buf_byte_offset =
ysr@777 4458 in_bytes(JavaThread::dirty_card_queue_offset() +
ysr@777 4459 PtrQueue::byte_offset_of_buf());
ysr@777 4460 masm.bind(restart);
ysr@777 4461 masm.ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
ysr@777 4462
ysr@777 4463 masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn,
ysr@777 4464 L0, refill);
ysr@777 4465 // If the branch is taken, no harm in executing this in the delay slot.
ysr@777 4466 masm.delayed()->ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
ysr@777 4467 masm.sub(L0, oopSize, L0);
ysr@777 4468
ysr@777 4469 masm.st_ptr(O3, L1, L0); // [_buf + index] := I0
ysr@777 4470 // Use return-from-leaf
ysr@777 4471 masm.retl();
ysr@777 4472 masm.delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
ysr@777 4473
ysr@777 4474 masm.bind(refill);
ysr@777 4475 address handle_zero =
ysr@777 4476 CAST_FROM_FN_PTR(address,
ysr@777 4477 &DirtyCardQueueSet::handle_zero_index_for_thread);
ysr@777 4478 // This should be rare enough that we can afford to save all the
ysr@777 4479 // scratch registers that the calling context might be using.
ysr@777 4480 masm.mov(G1_scratch, L3);
ysr@777 4481 masm.mov(G3_scratch, L5);
ysr@777 4482 // We need the value of O3 above (for the write into the buffer), so we
ysr@777 4483 // save and restore it.
ysr@777 4484 masm.mov(O3, L6);
ysr@777 4485 // Since the call will overwrite O7, we save and restore that, as well.
ysr@777 4486 masm.mov(O7, L4);
ysr@777 4487
ysr@777 4488 masm.call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
ysr@777 4489 masm.mov(L3, G1_scratch);
ysr@777 4490 masm.mov(L5, G3_scratch);
ysr@777 4491 masm.mov(L6, O3);
ysr@777 4492 masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
ysr@777 4493 masm.delayed()->mov(L4, O7);
ysr@777 4494
ysr@777 4495 dirty_card_log_enqueue = start;
ysr@777 4496 dirty_card_log_enqueue_end = masm.pc();
ysr@777 4497 // XXX Should have a guarantee here about not going off the end!
ysr@777 4498 // Does it already do so? Do an experiment...
ysr@777 4499 }
ysr@777 4500
ysr@777 4501 static inline void
ysr@777 4502 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
ysr@777 4503 if (dirty_card_log_enqueue == 0) {
ysr@777 4504 generate_dirty_card_log_enqueue(byte_map_base);
ysr@777 4505 assert(dirty_card_log_enqueue != 0, "postcondition.");
ysr@777 4506 if (G1SATBPrintStubs) {
ysr@777 4507 tty->print_cr("Generated dirty_card enqueue:");
ysr@777 4508 Disassembler::decode((u_char*)dirty_card_log_enqueue,
ysr@777 4509 dirty_card_log_enqueue_end,
ysr@777 4510 tty);
ysr@777 4511 }
ysr@777 4512 }
ysr@777 4513 }
ysr@777 4514
ysr@777 4515
ysr@777 4516 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
ysr@777 4517
ysr@777 4518 Label filtered;
ysr@777 4519 MacroAssembler* post_filter_masm = this;
ysr@777 4520
ysr@777 4521 if (new_val == G0) return;
ysr@777 4522 if (G1DisablePostBarrier) return;
ysr@777 4523
ysr@777 4524 G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
ysr@777 4525 assert(bs->kind() == BarrierSet::G1SATBCT ||
ysr@777 4526 bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
ysr@777 4527 if (G1RSBarrierRegionFilter) {
ysr@777 4528 xor3(store_addr, new_val, tmp);
ysr@777 4529 #ifdef _LP64
ysr@777 4530 srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
ysr@777 4531 #else
ysr@777 4532 srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
ysr@777 4533 #endif
ysr@777 4534 if (G1PrintCTFilterStats) {
ysr@777 4535 guarantee(tmp->is_global(), "Or stats won't work...");
ysr@777 4536 // This is a sleazy hack: I'm temporarily hijacking G2, which I
ysr@777 4537 // promise to restore.
ysr@777 4538 mov(new_val, G2);
ysr@777 4539 save_frame(0);
ysr@777 4540 mov(tmp, O0);
ysr@777 4541 mov(G2, O1);
ysr@777 4542 // Save G-regs that target may use.
ysr@777 4543 mov(G1, L1);
ysr@777 4544 mov(G2, L2);
ysr@777 4545 mov(G3, L3);
ysr@777 4546 mov(G4, L4);
ysr@777 4547 mov(G5, L5);
ysr@777 4548 call(CAST_FROM_FN_PTR(address, &count_ct_writes));
ysr@777 4549 delayed()->nop();
ysr@777 4550 mov(O0, G2);
ysr@777 4551 // Restore G-regs that target may have used.
ysr@777 4552 mov(L1, G1);
ysr@777 4553 mov(L3, G3);
ysr@777 4554 mov(L4, G4);
ysr@777 4555 mov(L5, G5);
ysr@777 4556 restore(G0, G0, G0);
ysr@777 4557 }
ysr@777 4558 // XXX Should I predict this taken or not? Does it mattern?
ysr@777 4559 br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
ysr@777 4560 delayed()->nop();
ysr@777 4561 }
ysr@777 4562
iveresov@1229 4563 // If the "store_addr" register is an "in" or "local" register, move it to
iveresov@1229 4564 // a scratch reg so we can pass it as an argument.
iveresov@1229 4565 bool use_scr = !(store_addr->is_global() || store_addr->is_out());
iveresov@1229 4566 // Pick a scratch register different from "tmp".
iveresov@1229 4567 Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
iveresov@1229 4568 // Make sure we use up the delay slot!
iveresov@1229 4569 if (use_scr) {
iveresov@1229 4570 post_filter_masm->mov(store_addr, scr);
ysr@777 4571 } else {
iveresov@1229 4572 post_filter_masm->nop();
ysr@777 4573 }
iveresov@1229 4574 generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
iveresov@1229 4575 save_frame(0);
iveresov@1229 4576 call(dirty_card_log_enqueue);
iveresov@1229 4577 if (use_scr) {
iveresov@1229 4578 delayed()->mov(scr, O0);
iveresov@1229 4579 } else {
iveresov@1229 4580 delayed()->mov(store_addr->after_save(), O0);
iveresov@1229 4581 }
iveresov@1229 4582 restore();
ysr@777 4583
ysr@777 4584 bind(filtered);
ysr@777 4585
ysr@777 4586 }
ysr@777 4587
ysr@777 4588 #endif // SERIALGC
ysr@777 4589 ///////////////////////////////////////////////////////////////////////////////////
ysr@777 4590
ysr@777 4591 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
ysr@777 4592 // If we're writing constant NULL, we can skip the write barrier.
ysr@777 4593 if (new_val == G0) return;
ysr@777 4594 CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
ysr@777 4595 assert(bs->kind() == BarrierSet::CardTableModRef ||
ysr@777 4596 bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
ysr@777 4597 card_table_write(bs->byte_map_base, tmp, store_addr);
ysr@777 4598 }
ysr@777 4599
kvn@599 4600 void MacroAssembler::load_klass(Register src_oop, Register klass) {
coleenp@548 4601 // The number of bytes in this code is used by
coleenp@548 4602 // MachCallDynamicJavaNode::ret_addr_offset()
coleenp@548 4603 // if this changes, change that.
coleenp@548 4604 if (UseCompressedOops) {
kvn@599 4605 lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
kvn@599 4606 decode_heap_oop_not_null(klass);
coleenp@548 4607 } else {
kvn@599 4608 ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
coleenp@548 4609 }
coleenp@548 4610 }
coleenp@548 4611
kvn@599 4612 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
coleenp@548 4613 if (UseCompressedOops) {
kvn@599 4614 assert(dst_oop != klass, "not enough registers");
kvn@599 4615 encode_heap_oop_not_null(klass);
coleenp@602 4616 st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
coleenp@548 4617 } else {
kvn@599 4618 st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
kvn@559 4619 }
kvn@559 4620 }
kvn@559 4621
coleenp@602 4622 void MacroAssembler::store_klass_gap(Register s, Register d) {
coleenp@602 4623 if (UseCompressedOops) {
coleenp@602 4624 assert(s != d, "not enough registers");
coleenp@602 4625 st(s, d, oopDesc::klass_gap_offset_in_bytes());
coleenp@548 4626 }
coleenp@548 4627 }
coleenp@548 4628
twisti@1162 4629 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
coleenp@548 4630 if (UseCompressedOops) {
twisti@1162 4631 lduw(s, d);
coleenp@548 4632 decode_heap_oop(d);
coleenp@548 4633 } else {
twisti@1162 4634 ld_ptr(s, d);
coleenp@548 4635 }
coleenp@548 4636 }
coleenp@548 4637
coleenp@548 4638 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
coleenp@548 4639 if (UseCompressedOops) {
coleenp@548 4640 lduw(s1, s2, d);
coleenp@548 4641 decode_heap_oop(d, d);
coleenp@548 4642 } else {
coleenp@548 4643 ld_ptr(s1, s2, d);
coleenp@548 4644 }
coleenp@548 4645 }
coleenp@548 4646
coleenp@548 4647 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
coleenp@548 4648 if (UseCompressedOops) {
coleenp@548 4649 lduw(s1, simm13a, d);
coleenp@548 4650 decode_heap_oop(d, d);
coleenp@548 4651 } else {
coleenp@548 4652 ld_ptr(s1, simm13a, d);
coleenp@548 4653 }
coleenp@548 4654 }
coleenp@548 4655
coleenp@548 4656 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
coleenp@548 4657 if (UseCompressedOops) {
coleenp@548 4658 assert(s1 != d && s2 != d, "not enough registers");
coleenp@548 4659 encode_heap_oop(d);
coleenp@548 4660 st(d, s1, s2);
coleenp@548 4661 } else {
coleenp@548 4662 st_ptr(d, s1, s2);
coleenp@548 4663 }
coleenp@548 4664 }
coleenp@548 4665
coleenp@548 4666 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
coleenp@548 4667 if (UseCompressedOops) {
coleenp@548 4668 assert(s1 != d, "not enough registers");
coleenp@548 4669 encode_heap_oop(d);
coleenp@548 4670 st(d, s1, simm13a);
coleenp@548 4671 } else {
coleenp@548 4672 st_ptr(d, s1, simm13a);
coleenp@548 4673 }
coleenp@548 4674 }
coleenp@548 4675
coleenp@548 4676 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
coleenp@548 4677 if (UseCompressedOops) {
coleenp@548 4678 assert(a.base() != d, "not enough registers");
coleenp@548 4679 encode_heap_oop(d);
coleenp@548 4680 st(d, a, offset);
coleenp@548 4681 } else {
coleenp@548 4682 st_ptr(d, a, offset);
coleenp@548 4683 }
coleenp@548 4684 }
coleenp@548 4685
coleenp@548 4686
coleenp@548 4687 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
coleenp@548 4688 assert (UseCompressedOops, "must be compressed");
kvn@1077 4689 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4690 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4691 verify_oop(src);
kvn@1077 4692 if (Universe::narrow_oop_base() == NULL) {
kvn@1077 4693 srlx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4694 return;
kvn@1077 4695 }
coleenp@548 4696 Label done;
coleenp@548 4697 if (src == dst) {
coleenp@548 4698 // optimize for frequent case src == dst
coleenp@548 4699 bpr(rc_nz, true, Assembler::pt, src, done);
coleenp@548 4700 delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
coleenp@548 4701 bind(done);
coleenp@548 4702 srlx(src, LogMinObjAlignmentInBytes, dst);
coleenp@548 4703 } else {
coleenp@548 4704 bpr(rc_z, false, Assembler::pn, src, done);
coleenp@548 4705 delayed() -> mov(G0, dst);
coleenp@548 4706 // could be moved before branch, and annulate delay,
coleenp@548 4707 // but may add some unneeded work decoding null
coleenp@548 4708 sub(src, G6_heapbase, dst);
coleenp@548 4709 srlx(dst, LogMinObjAlignmentInBytes, dst);
coleenp@548 4710 bind(done);
coleenp@548 4711 }
coleenp@548 4712 }
coleenp@548 4713
coleenp@548 4714
coleenp@548 4715 void MacroAssembler::encode_heap_oop_not_null(Register r) {
coleenp@548 4716 assert (UseCompressedOops, "must be compressed");
kvn@1077 4717 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4718 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4719 verify_oop(r);
kvn@1077 4720 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4721 sub(r, G6_heapbase, r);
coleenp@548 4722 srlx(r, LogMinObjAlignmentInBytes, r);
coleenp@548 4723 }
coleenp@548 4724
kvn@559 4725 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
kvn@559 4726 assert (UseCompressedOops, "must be compressed");
kvn@1077 4727 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4728 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4729 verify_oop(src);
kvn@1077 4730 if (Universe::narrow_oop_base() == NULL) {
kvn@1077 4731 srlx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4732 } else {
kvn@1077 4733 sub(src, G6_heapbase, dst);
kvn@1077 4734 srlx(dst, LogMinObjAlignmentInBytes, dst);
kvn@1077 4735 }
kvn@559 4736 }
kvn@559 4737
coleenp@548 4738 // Same algorithm as oops.inline.hpp decode_heap_oop.
coleenp@548 4739 void MacroAssembler::decode_heap_oop(Register src, Register dst) {
coleenp@548 4740 assert (UseCompressedOops, "must be compressed");
kvn@1077 4741 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4742 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@548 4743 sllx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4744 if (Universe::narrow_oop_base() != NULL) {
kvn@1077 4745 Label done;
kvn@1077 4746 bpr(rc_nz, true, Assembler::pt, dst, done);
kvn@1077 4747 delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
kvn@1077 4748 bind(done);
kvn@1077 4749 }
coleenp@613 4750 verify_oop(dst);
coleenp@548 4751 }
coleenp@548 4752
coleenp@548 4753 void MacroAssembler::decode_heap_oop_not_null(Register r) {
coleenp@548 4754 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
coleenp@548 4755 // pd_code_size_limit.
coleenp@613 4756 // Also do not verify_oop as this is called by verify_oop.
coleenp@548 4757 assert (UseCompressedOops, "must be compressed");
kvn@1077 4758 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4759 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@548 4760 sllx(r, LogMinObjAlignmentInBytes, r);
kvn@1077 4761 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4762 add(r, G6_heapbase, r);
coleenp@548 4763 }
coleenp@548 4764
kvn@559 4765 void MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
kvn@559 4766 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
kvn@559 4767 // pd_code_size_limit.
coleenp@613 4768 // Also do not verify_oop as this is called by verify_oop.
kvn@559 4769 assert (UseCompressedOops, "must be compressed");
kvn@1077 4770 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4771 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
kvn@559 4772 sllx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4773 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4774 add(dst, G6_heapbase, dst);
kvn@559 4775 }
kvn@559 4776
coleenp@548 4777 void MacroAssembler::reinit_heapbase() {
coleenp@548 4778 if (UseCompressedOops) {
coleenp@548 4779 // call indirectly to solve generation ordering problem
twisti@1162 4780 AddressLiteral base(Universe::narrow_oop_base_addr());
coleenp@548 4781 load_ptr_contents(base, G6_heapbase);
coleenp@548 4782 }
coleenp@548 4783 }
kvn@1421 4784
kvn@1421 4785 // Compare char[] arrays aligned to 4 bytes.
kvn@1421 4786 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
kvn@1421 4787 Register limit, Register result,
kvn@1421 4788 Register chr1, Register chr2, Label& Ldone) {
kvn@1421 4789 Label Lvector, Lloop;
kvn@1421 4790 assert(chr1 == result, "should be the same");
kvn@1421 4791
kvn@1421 4792 // Note: limit contains number of bytes (2*char_elements) != 0.
kvn@1421 4793 andcc(limit, 0x2, chr1); // trailing character ?
kvn@1421 4794 br(Assembler::zero, false, Assembler::pt, Lvector);
kvn@1421 4795 delayed()->nop();
kvn@1421 4796
kvn@1421 4797 // compare the trailing char
kvn@1421 4798 sub(limit, sizeof(jchar), limit);
kvn@1421 4799 lduh(ary1, limit, chr1);
kvn@1421 4800 lduh(ary2, limit, chr2);
kvn@1421 4801 cmp(chr1, chr2);
kvn@1421 4802 br(Assembler::notEqual, true, Assembler::pt, Ldone);
kvn@1421 4803 delayed()->mov(G0, result); // not equal
kvn@1421 4804
kvn@1421 4805 // only one char ?
kvn@1421 4806 br_on_reg_cond(rc_z, true, Assembler::pn, limit, Ldone);
kvn@1421 4807 delayed()->add(G0, 1, result); // zero-length arrays are equal
kvn@1421 4808
kvn@1421 4809 // word by word compare, dont't need alignment check
kvn@1421 4810 bind(Lvector);
kvn@1421 4811 // Shift ary1 and ary2 to the end of the arrays, negate limit
kvn@1421 4812 add(ary1, limit, ary1);
kvn@1421 4813 add(ary2, limit, ary2);
kvn@1421 4814 neg(limit, limit);
kvn@1421 4815
kvn@1421 4816 lduw(ary1, limit, chr1);
kvn@1421 4817 bind(Lloop);
kvn@1421 4818 lduw(ary2, limit, chr2);
kvn@1421 4819 cmp(chr1, chr2);
kvn@1421 4820 br(Assembler::notEqual, true, Assembler::pt, Ldone);
kvn@1421 4821 delayed()->mov(G0, result); // not equal
kvn@1421 4822 inccc(limit, 2*sizeof(jchar));
kvn@1421 4823 // annul LDUW if branch is not taken to prevent access past end of array
kvn@1421 4824 br(Assembler::notZero, true, Assembler::pt, Lloop);
kvn@1421 4825 delayed()->lduw(ary1, limit, chr1); // hoisted
kvn@1421 4826
kvn@1421 4827 // Caller should set it:
kvn@1421 4828 // add(G0, 1, result); // equals
kvn@1421 4829 }
kvn@1421 4830

mercurial