src/cpu/sparc/vm/assembler_sparc.cpp

Fri, 07 Jan 2011 10:42:32 -0500

author
phh
date
Fri, 07 Jan 2011 10:42:32 -0500
changeset 2423
b1a2afa37ec4
parent 2350
2f644f85485d
child 2425
84f36150fcc3
permissions
-rw-r--r--

7003271: Hotspot should track cumulative Java heap bytes allocated on a per-thread basis
Summary: Track allocated bytes in Thread's, update on TLAB retirement and direct allocation in Eden and tenured, add JNI methods for ThreadMXBean.
Reviewed-by: coleenp, kvn, dholmes, ysr

duke@435 1 /*
phh@2423 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "assembler_sparc.inline.hpp"
stefank@2314 27 #include "gc_interface/collectedHeap.inline.hpp"
stefank@2314 28 #include "interpreter/interpreter.hpp"
stefank@2314 29 #include "memory/cardTableModRefBS.hpp"
stefank@2314 30 #include "memory/resourceArea.hpp"
stefank@2314 31 #include "prims/methodHandles.hpp"
stefank@2314 32 #include "runtime/biasedLocking.hpp"
stefank@2314 33 #include "runtime/interfaceSupport.hpp"
stefank@2314 34 #include "runtime/objectMonitor.hpp"
stefank@2314 35 #include "runtime/os.hpp"
stefank@2314 36 #include "runtime/sharedRuntime.hpp"
stefank@2314 37 #include "runtime/stubRoutines.hpp"
stefank@2314 38 #ifndef SERIALGC
stefank@2314 39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
stefank@2314 40 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
stefank@2314 41 #include "gc_implementation/g1/heapRegion.hpp"
stefank@2314 42 #endif
duke@435 43
twisti@1162 44 // Convert the raw encoding form into the form expected by the
twisti@1162 45 // constructor for Address.
twisti@1162 46 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
twisti@1162 47 assert(scale == 0, "not supported");
twisti@1162 48 RelocationHolder rspec;
twisti@1162 49 if (disp_is_oop) {
twisti@1162 50 rspec = Relocation::spec_simple(relocInfo::oop_type);
duke@435 51 }
twisti@1162 52
twisti@1162 53 Register rindex = as_Register(index);
twisti@1162 54 if (rindex != G0) {
twisti@1162 55 Address madr(as_Register(base), rindex);
twisti@1162 56 madr._rspec = rspec;
twisti@1162 57 return madr;
twisti@1162 58 } else {
twisti@1162 59 Address madr(as_Register(base), disp);
twisti@1162 60 madr._rspec = rspec;
twisti@1162 61 return madr;
twisti@1162 62 }
twisti@1162 63 }
twisti@1162 64
twisti@1162 65 Address Argument::address_in_frame() const {
twisti@1162 66 // Warning: In LP64 mode disp will occupy more than 10 bits, but
twisti@1162 67 // op codes such as ld or ldx, only access disp() to get
twisti@1162 68 // their simm13 argument.
twisti@1162 69 int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
twisti@1162 70 if (is_in())
twisti@1162 71 return Address(FP, disp); // In argument.
twisti@1162 72 else
twisti@1162 73 return Address(SP, disp); // Out argument.
duke@435 74 }
duke@435 75
duke@435 76 static const char* argumentNames[][2] = {
duke@435 77 {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
duke@435 78 {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
duke@435 79 {"A(n>9)","P(n>9)"}
duke@435 80 };
duke@435 81
duke@435 82 const char* Argument::name() const {
duke@435 83 int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
duke@435 84 int num = number();
duke@435 85 if (num >= nofArgs) num = nofArgs - 1;
duke@435 86 return argumentNames[num][is_in() ? 1 : 0];
duke@435 87 }
duke@435 88
duke@435 89 void Assembler::print_instruction(int inst) {
duke@435 90 const char* s;
duke@435 91 switch (inv_op(inst)) {
duke@435 92 default: s = "????"; break;
duke@435 93 case call_op: s = "call"; break;
duke@435 94 case branch_op:
duke@435 95 switch (inv_op2(inst)) {
duke@435 96 case bpr_op2: s = "bpr"; break;
duke@435 97 case fb_op2: s = "fb"; break;
duke@435 98 case fbp_op2: s = "fbp"; break;
duke@435 99 case br_op2: s = "br"; break;
duke@435 100 case bp_op2: s = "bp"; break;
duke@435 101 case cb_op2: s = "cb"; break;
duke@435 102 default: s = "????"; break;
duke@435 103 }
duke@435 104 }
duke@435 105 ::tty->print("%s", s);
duke@435 106 }
duke@435 107
duke@435 108
duke@435 109 // Patch instruction inst at offset inst_pos to refer to dest_pos
duke@435 110 // and return the resulting instruction.
duke@435 111 // We should have pcs, not offsets, but since all is relative, it will work out
duke@435 112 // OK.
duke@435 113 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
duke@435 114
duke@435 115 int m; // mask for displacement field
duke@435 116 int v; // new value for displacement field
duke@435 117 const int word_aligned_ones = -4;
duke@435 118 switch (inv_op(inst)) {
duke@435 119 default: ShouldNotReachHere();
duke@435 120 case call_op: m = wdisp(word_aligned_ones, 0, 30); v = wdisp(dest_pos, inst_pos, 30); break;
duke@435 121 case branch_op:
duke@435 122 switch (inv_op2(inst)) {
duke@435 123 case bpr_op2: m = wdisp16(word_aligned_ones, 0); v = wdisp16(dest_pos, inst_pos); break;
duke@435 124 case fbp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
duke@435 125 case bp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
duke@435 126 case fb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 127 case br_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 128 case cb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
duke@435 129 default: ShouldNotReachHere();
duke@435 130 }
duke@435 131 }
duke@435 132 return inst & ~m | v;
duke@435 133 }
duke@435 134
duke@435 135 // Return the offset of the branch destionation of instruction inst
duke@435 136 // at offset pos.
duke@435 137 // Should have pcs, but since all is relative, it works out.
duke@435 138 int Assembler::branch_destination(int inst, int pos) {
duke@435 139 int r;
duke@435 140 switch (inv_op(inst)) {
duke@435 141 default: ShouldNotReachHere();
duke@435 142 case call_op: r = inv_wdisp(inst, pos, 30); break;
duke@435 143 case branch_op:
duke@435 144 switch (inv_op2(inst)) {
duke@435 145 case bpr_op2: r = inv_wdisp16(inst, pos); break;
duke@435 146 case fbp_op2: r = inv_wdisp( inst, pos, 19); break;
duke@435 147 case bp_op2: r = inv_wdisp( inst, pos, 19); break;
duke@435 148 case fb_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 149 case br_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 150 case cb_op2: r = inv_wdisp( inst, pos, 22); break;
duke@435 151 default: ShouldNotReachHere();
duke@435 152 }
duke@435 153 }
duke@435 154 return r;
duke@435 155 }
duke@435 156
duke@435 157 int AbstractAssembler::code_fill_byte() {
duke@435 158 return 0x00; // illegal instruction 0x00000000
duke@435 159 }
duke@435 160
ysr@777 161 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
ysr@777 162 switch (in) {
ysr@777 163 case rc_z: return equal;
ysr@777 164 case rc_lez: return lessEqual;
ysr@777 165 case rc_lz: return less;
ysr@777 166 case rc_nz: return notEqual;
ysr@777 167 case rc_gz: return greater;
ysr@777 168 case rc_gez: return greaterEqual;
ysr@777 169 default:
ysr@777 170 ShouldNotReachHere();
ysr@777 171 }
ysr@777 172 return equal;
ysr@777 173 }
ysr@777 174
duke@435 175 // Generate a bunch 'o stuff (including v9's
duke@435 176 #ifndef PRODUCT
duke@435 177 void Assembler::test_v9() {
duke@435 178 add( G0, G1, G2 );
duke@435 179 add( G3, 0, G4 );
duke@435 180
duke@435 181 addcc( G5, G6, G7 );
duke@435 182 addcc( I0, 1, I1 );
duke@435 183 addc( I2, I3, I4 );
duke@435 184 addc( I5, -1, I6 );
duke@435 185 addccc( I7, L0, L1 );
duke@435 186 addccc( L2, (1 << 12) - 2, L3 );
duke@435 187
duke@435 188 Label lbl1, lbl2, lbl3;
duke@435 189
duke@435 190 bind(lbl1);
duke@435 191
duke@435 192 bpr( rc_z, true, pn, L4, pc(), relocInfo::oop_type );
duke@435 193 delayed()->nop();
duke@435 194 bpr( rc_lez, false, pt, L5, lbl1);
duke@435 195 delayed()->nop();
duke@435 196
duke@435 197 fb( f_never, true, pc() + 4, relocInfo::none);
duke@435 198 delayed()->nop();
duke@435 199 fb( f_notEqual, false, lbl2 );
duke@435 200 delayed()->nop();
duke@435 201
duke@435 202 fbp( f_notZero, true, fcc0, pn, pc() - 4, relocInfo::none);
duke@435 203 delayed()->nop();
duke@435 204 fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
duke@435 205 delayed()->nop();
duke@435 206
duke@435 207 br( equal, true, pc() + 1024, relocInfo::none);
duke@435 208 delayed()->nop();
duke@435 209 br( lessEqual, false, lbl1 );
duke@435 210 delayed()->nop();
duke@435 211 br( never, false, lbl1 );
duke@435 212 delayed()->nop();
duke@435 213
duke@435 214 bp( less, true, icc, pn, pc(), relocInfo::none);
duke@435 215 delayed()->nop();
duke@435 216 bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
duke@435 217 delayed()->nop();
duke@435 218
duke@435 219 call( pc(), relocInfo::none);
duke@435 220 delayed()->nop();
duke@435 221 call( lbl3 );
duke@435 222 delayed()->nop();
duke@435 223
duke@435 224
duke@435 225 casa( L6, L7, O0 );
duke@435 226 casxa( O1, O2, O3, 0 );
duke@435 227
duke@435 228 udiv( O4, O5, O7 );
duke@435 229 udiv( G0, (1 << 12) - 1, G1 );
duke@435 230 sdiv( G1, G2, G3 );
duke@435 231 sdiv( G4, -((1 << 12) - 1), G5 );
duke@435 232 udivcc( G6, G7, I0 );
duke@435 233 udivcc( I1, -((1 << 12) - 2), I2 );
duke@435 234 sdivcc( I3, I4, I5 );
duke@435 235 sdivcc( I6, -((1 << 12) - 0), I7 );
duke@435 236
duke@435 237 done();
duke@435 238 retry();
duke@435 239
duke@435 240 fadd( FloatRegisterImpl::S, F0, F1, F2 );
duke@435 241 fsub( FloatRegisterImpl::D, F34, F0, F62 );
duke@435 242
duke@435 243 fcmp( FloatRegisterImpl::Q, fcc0, F0, F60);
duke@435 244 fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
duke@435 245
duke@435 246 ftox( FloatRegisterImpl::D, F2, F4 );
duke@435 247 ftoi( FloatRegisterImpl::Q, F4, F8 );
duke@435 248
duke@435 249 ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
duke@435 250
duke@435 251 fxtof( FloatRegisterImpl::S, F4, F5 );
duke@435 252 fitof( FloatRegisterImpl::D, F6, F8 );
duke@435 253
duke@435 254 fmov( FloatRegisterImpl::Q, F16, F20 );
duke@435 255 fneg( FloatRegisterImpl::S, F6, F7 );
duke@435 256 fabs( FloatRegisterImpl::D, F10, F12 );
duke@435 257
duke@435 258 fmul( FloatRegisterImpl::Q, F24, F28, F32 );
duke@435 259 fmul( FloatRegisterImpl::S, FloatRegisterImpl::D, F8, F9, F14 );
duke@435 260 fdiv( FloatRegisterImpl::S, F10, F11, F12 );
duke@435 261
duke@435 262 fsqrt( FloatRegisterImpl::S, F13, F14 );
duke@435 263
duke@435 264 flush( L0, L1 );
duke@435 265 flush( L2, -1 );
duke@435 266
duke@435 267 flushw();
duke@435 268
duke@435 269 illtrap( (1 << 22) - 2);
duke@435 270
duke@435 271 impdep1( 17, (1 << 19) - 1 );
duke@435 272 impdep2( 3, 0 );
duke@435 273
duke@435 274 jmpl( L3, L4, L5 );
duke@435 275 delayed()->nop();
duke@435 276 jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
duke@435 277 delayed()->nop();
duke@435 278
duke@435 279
duke@435 280 ldf( FloatRegisterImpl::S, O0, O1, F15 );
duke@435 281 ldf( FloatRegisterImpl::D, O2, -1, F14 );
duke@435 282
duke@435 283
duke@435 284 ldfsr( O3, O4 );
duke@435 285 ldfsr( O5, -1 );
duke@435 286 ldxfsr( O6, O7 );
duke@435 287 ldxfsr( I0, -1 );
duke@435 288
duke@435 289 ldfa( FloatRegisterImpl::D, I1, I2, 1, F16 );
duke@435 290 ldfa( FloatRegisterImpl::Q, I3, -1, F36 );
duke@435 291
duke@435 292 ldsb( I4, I5, I6 );
duke@435 293 ldsb( I7, -1, G0 );
duke@435 294 ldsh( G1, G3, G4 );
duke@435 295 ldsh( G5, -1, G6 );
duke@435 296 ldsw( G7, L0, L1 );
duke@435 297 ldsw( L2, -1, L3 );
duke@435 298 ldub( L4, L5, L6 );
duke@435 299 ldub( L7, -1, O0 );
duke@435 300 lduh( O1, O2, O3 );
duke@435 301 lduh( O4, -1, O5 );
duke@435 302 lduw( O6, O7, G0 );
duke@435 303 lduw( G1, -1, G2 );
duke@435 304 ldx( G3, G4, G5 );
duke@435 305 ldx( G6, -1, G7 );
duke@435 306 ldd( I0, I1, I2 );
duke@435 307 ldd( I3, -1, I4 );
duke@435 308
duke@435 309 ldsba( I5, I6, 2, I7 );
duke@435 310 ldsba( L0, -1, L1 );
duke@435 311 ldsha( L2, L3, 3, L4 );
duke@435 312 ldsha( L5, -1, L6 );
duke@435 313 ldswa( L7, O0, (1 << 8) - 1, O1 );
duke@435 314 ldswa( O2, -1, O3 );
duke@435 315 lduba( O4, O5, 0, O6 );
duke@435 316 lduba( O7, -1, I0 );
duke@435 317 lduha( I1, I2, 1, I3 );
duke@435 318 lduha( I4, -1, I5 );
duke@435 319 lduwa( I6, I7, 2, L0 );
duke@435 320 lduwa( L1, -1, L2 );
duke@435 321 ldxa( L3, L4, 3, L5 );
duke@435 322 ldxa( L6, -1, L7 );
duke@435 323 ldda( G0, G1, 4, G2 );
duke@435 324 ldda( G3, -1, G4 );
duke@435 325
duke@435 326 ldstub( G5, G6, G7 );
duke@435 327 ldstub( O0, -1, O1 );
duke@435 328
duke@435 329 ldstuba( O2, O3, 5, O4 );
duke@435 330 ldstuba( O5, -1, O6 );
duke@435 331
duke@435 332 and3( I0, L0, O0 );
duke@435 333 and3( G7, -1, O7 );
duke@435 334 andcc( L2, I2, G2 );
duke@435 335 andcc( L4, -1, G4 );
duke@435 336 andn( I5, I6, I7 );
duke@435 337 andn( I6, -1, I7 );
duke@435 338 andncc( I5, I6, I7 );
duke@435 339 andncc( I7, -1, I6 );
duke@435 340 or3( I5, I6, I7 );
duke@435 341 or3( I7, -1, I6 );
duke@435 342 orcc( I5, I6, I7 );
duke@435 343 orcc( I7, -1, I6 );
duke@435 344 orn( I5, I6, I7 );
duke@435 345 orn( I7, -1, I6 );
duke@435 346 orncc( I5, I6, I7 );
duke@435 347 orncc( I7, -1, I6 );
duke@435 348 xor3( I5, I6, I7 );
duke@435 349 xor3( I7, -1, I6 );
duke@435 350 xorcc( I5, I6, I7 );
duke@435 351 xorcc( I7, -1, I6 );
duke@435 352 xnor( I5, I6, I7 );
duke@435 353 xnor( I7, -1, I6 );
duke@435 354 xnorcc( I5, I6, I7 );
duke@435 355 xnorcc( I7, -1, I6 );
duke@435 356
duke@435 357 membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
duke@435 358 membar( StoreStore );
duke@435 359 membar( LoadStore );
duke@435 360 membar( StoreLoad );
duke@435 361 membar( LoadLoad );
duke@435 362 membar( Sync );
duke@435 363 membar( MemIssue );
duke@435 364 membar( Lookaside );
duke@435 365
duke@435 366 fmov( FloatRegisterImpl::S, f_ordered, true, fcc2, F16, F17 );
duke@435 367 fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
duke@435 368
duke@435 369 movcc( overflowClear, false, icc, I6, L4 );
duke@435 370 movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
duke@435 371
duke@435 372 movr( rc_nz, I5, I6, I7 );
duke@435 373 movr( rc_gz, L1, -1, L2 );
duke@435 374
duke@435 375 mulx( I5, I6, I7 );
duke@435 376 mulx( I7, -1, I6 );
duke@435 377 sdivx( I5, I6, I7 );
duke@435 378 sdivx( I7, -1, I6 );
duke@435 379 udivx( I5, I6, I7 );
duke@435 380 udivx( I7, -1, I6 );
duke@435 381
duke@435 382 umul( I5, I6, I7 );
duke@435 383 umul( I7, -1, I6 );
duke@435 384 smul( I5, I6, I7 );
duke@435 385 smul( I7, -1, I6 );
duke@435 386 umulcc( I5, I6, I7 );
duke@435 387 umulcc( I7, -1, I6 );
duke@435 388 smulcc( I5, I6, I7 );
duke@435 389 smulcc( I7, -1, I6 );
duke@435 390
duke@435 391 mulscc( I5, I6, I7 );
duke@435 392 mulscc( I7, -1, I6 );
duke@435 393
duke@435 394 nop();
duke@435 395
duke@435 396
duke@435 397 popc( G0, G1);
duke@435 398 popc( -1, G2);
duke@435 399
duke@435 400 prefetch( L1, L2, severalReads );
duke@435 401 prefetch( L3, -1, oneRead );
duke@435 402 prefetcha( O3, O2, 6, severalWritesAndPossiblyReads );
duke@435 403 prefetcha( G2, -1, oneWrite );
duke@435 404
duke@435 405 rett( I7, I7);
duke@435 406 delayed()->nop();
duke@435 407 rett( G0, -1, relocInfo::none);
duke@435 408 delayed()->nop();
duke@435 409
duke@435 410 save( I5, I6, I7 );
duke@435 411 save( I7, -1, I6 );
duke@435 412 restore( I5, I6, I7 );
duke@435 413 restore( I7, -1, I6 );
duke@435 414
duke@435 415 saved();
duke@435 416 restored();
duke@435 417
duke@435 418 sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
duke@435 419
duke@435 420 sll( I5, I6, I7 );
duke@435 421 sll( I7, 31, I6 );
duke@435 422 srl( I5, I6, I7 );
duke@435 423 srl( I7, 0, I6 );
duke@435 424 sra( I5, I6, I7 );
duke@435 425 sra( I7, 30, I6 );
duke@435 426 sllx( I5, I6, I7 );
duke@435 427 sllx( I7, 63, I6 );
duke@435 428 srlx( I5, I6, I7 );
duke@435 429 srlx( I7, 0, I6 );
duke@435 430 srax( I5, I6, I7 );
duke@435 431 srax( I7, 62, I6 );
duke@435 432
duke@435 433 sir( -1 );
duke@435 434
duke@435 435 stbar();
duke@435 436
duke@435 437 stf( FloatRegisterImpl::Q, F40, G0, I7 );
duke@435 438 stf( FloatRegisterImpl::S, F18, I3, -1 );
duke@435 439
duke@435 440 stfsr( L1, L2 );
duke@435 441 stfsr( I7, -1 );
duke@435 442 stxfsr( I6, I5 );
duke@435 443 stxfsr( L4, -1 );
duke@435 444
duke@435 445 stfa( FloatRegisterImpl::D, F22, I6, I7, 7 );
duke@435 446 stfa( FloatRegisterImpl::Q, F44, G0, -1 );
duke@435 447
duke@435 448 stb( L5, O2, I7 );
duke@435 449 stb( I7, I6, -1 );
duke@435 450 sth( L5, O2, I7 );
duke@435 451 sth( I7, I6, -1 );
duke@435 452 stw( L5, O2, I7 );
duke@435 453 stw( I7, I6, -1 );
duke@435 454 stx( L5, O2, I7 );
duke@435 455 stx( I7, I6, -1 );
duke@435 456 std( L5, O2, I7 );
duke@435 457 std( I7, I6, -1 );
duke@435 458
duke@435 459 stba( L5, O2, I7, 8 );
duke@435 460 stba( I7, I6, -1 );
duke@435 461 stha( L5, O2, I7, 9 );
duke@435 462 stha( I7, I6, -1 );
duke@435 463 stwa( L5, O2, I7, 0 );
duke@435 464 stwa( I7, I6, -1 );
duke@435 465 stxa( L5, O2, I7, 11 );
duke@435 466 stxa( I7, I6, -1 );
duke@435 467 stda( L5, O2, I7, 12 );
duke@435 468 stda( I7, I6, -1 );
duke@435 469
duke@435 470 sub( I5, I6, I7 );
duke@435 471 sub( I7, -1, I6 );
duke@435 472 subcc( I5, I6, I7 );
duke@435 473 subcc( I7, -1, I6 );
duke@435 474 subc( I5, I6, I7 );
duke@435 475 subc( I7, -1, I6 );
duke@435 476 subccc( I5, I6, I7 );
duke@435 477 subccc( I7, -1, I6 );
duke@435 478
duke@435 479 swap( I5, I6, I7 );
duke@435 480 swap( I7, -1, I6 );
duke@435 481
duke@435 482 swapa( G0, G1, 13, G2 );
duke@435 483 swapa( I7, -1, I6 );
duke@435 484
duke@435 485 taddcc( I5, I6, I7 );
duke@435 486 taddcc( I7, -1, I6 );
duke@435 487 taddcctv( I5, I6, I7 );
duke@435 488 taddcctv( I7, -1, I6 );
duke@435 489
duke@435 490 tsubcc( I5, I6, I7 );
duke@435 491 tsubcc( I7, -1, I6 );
duke@435 492 tsubcctv( I5, I6, I7 );
duke@435 493 tsubcctv( I7, -1, I6 );
duke@435 494
duke@435 495 trap( overflowClear, xcc, G0, G1 );
duke@435 496 trap( lessEqual, icc, I7, 17 );
duke@435 497
duke@435 498 bind(lbl2);
duke@435 499 bind(lbl3);
duke@435 500
duke@435 501 code()->decode();
duke@435 502 }
duke@435 503
duke@435 504 // Generate a bunch 'o stuff unique to V8
duke@435 505 void Assembler::test_v8_onlys() {
duke@435 506 Label lbl1;
duke@435 507
duke@435 508 cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
duke@435 509 delayed()->nop();
duke@435 510 cb( cp_never, true, lbl1);
duke@435 511 delayed()->nop();
duke@435 512
duke@435 513 cpop1(1, 2, 3, 4);
duke@435 514 cpop2(5, 6, 7, 8);
duke@435 515
duke@435 516 ldc( I0, I1, 31);
duke@435 517 ldc( I2, -1, 0);
duke@435 518
duke@435 519 lddc( I4, I4, 30);
duke@435 520 lddc( I6, 0, 1 );
duke@435 521
duke@435 522 ldcsr( L0, L1, 0);
duke@435 523 ldcsr( L1, (1 << 12) - 1, 17 );
duke@435 524
duke@435 525 stc( 31, L4, L5);
duke@435 526 stc( 30, L6, -(1 << 12) );
duke@435 527
duke@435 528 stdc( 0, L7, G0);
duke@435 529 stdc( 1, G1, 0 );
duke@435 530
duke@435 531 stcsr( 16, G2, G3);
duke@435 532 stcsr( 17, G4, 1 );
duke@435 533
duke@435 534 stdcq( 4, G5, G6);
duke@435 535 stdcq( 5, G7, -1 );
duke@435 536
duke@435 537 bind(lbl1);
duke@435 538
duke@435 539 code()->decode();
duke@435 540 }
duke@435 541 #endif
duke@435 542
duke@435 543 // Implementation of MacroAssembler
duke@435 544
duke@435 545 void MacroAssembler::null_check(Register reg, int offset) {
duke@435 546 if (needs_explicit_null_check((intptr_t)offset)) {
duke@435 547 // provoke OS NULL exception if reg = NULL by
duke@435 548 // accessing M[reg] w/o changing any registers
duke@435 549 ld_ptr(reg, 0, G0);
duke@435 550 }
duke@435 551 else {
duke@435 552 // nothing to do, (later) access of M[reg + offset]
duke@435 553 // will provoke OS NULL exception if reg = NULL
duke@435 554 }
duke@435 555 }
duke@435 556
duke@435 557 // Ring buffer jumps
duke@435 558
duke@435 559 #ifndef PRODUCT
duke@435 560 void MacroAssembler::ret( bool trace ) { if (trace) {
duke@435 561 mov(I7, O7); // traceable register
duke@435 562 JMP(O7, 2 * BytesPerInstWord);
duke@435 563 } else {
duke@435 564 jmpl( I7, 2 * BytesPerInstWord, G0 );
duke@435 565 }
duke@435 566 }
duke@435 567
duke@435 568 void MacroAssembler::retl( bool trace ) { if (trace) JMP(O7, 2 * BytesPerInstWord);
duke@435 569 else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
duke@435 570 #endif /* PRODUCT */
duke@435 571
duke@435 572
duke@435 573 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
duke@435 574 assert_not_delayed();
duke@435 575 // This can only be traceable if r1 & r2 are visible after a window save
duke@435 576 if (TraceJumps) {
duke@435 577 #ifndef PRODUCT
duke@435 578 save_frame(0);
duke@435 579 verify_thread();
duke@435 580 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 581 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 582 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 583 add(O2, O1, O1);
duke@435 584
duke@435 585 add(r1->after_save(), r2->after_save(), O2);
duke@435 586 set((intptr_t)file, O3);
duke@435 587 set(line, O4);
duke@435 588 Label L;
duke@435 589 // get nearby pc, store jmp target
duke@435 590 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 591 delayed()->st(O2, O1, 0);
duke@435 592 bind(L);
duke@435 593
duke@435 594 // store nearby pc
duke@435 595 st(O7, O1, sizeof(intptr_t));
duke@435 596 // store file
duke@435 597 st(O3, O1, 2*sizeof(intptr_t));
duke@435 598 // store line
duke@435 599 st(O4, O1, 3*sizeof(intptr_t));
duke@435 600 add(O0, 1, O0);
duke@435 601 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 602 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 603 restore();
duke@435 604 #endif /* PRODUCT */
duke@435 605 }
duke@435 606 jmpl(r1, r2, G0);
duke@435 607 }
duke@435 608 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
duke@435 609 assert_not_delayed();
duke@435 610 // This can only be traceable if r1 is visible after a window save
duke@435 611 if (TraceJumps) {
duke@435 612 #ifndef PRODUCT
duke@435 613 save_frame(0);
duke@435 614 verify_thread();
duke@435 615 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 616 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 617 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 618 add(O2, O1, O1);
duke@435 619
duke@435 620 add(r1->after_save(), offset, O2);
duke@435 621 set((intptr_t)file, O3);
duke@435 622 set(line, O4);
duke@435 623 Label L;
duke@435 624 // get nearby pc, store jmp target
duke@435 625 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 626 delayed()->st(O2, O1, 0);
duke@435 627 bind(L);
duke@435 628
duke@435 629 // store nearby pc
duke@435 630 st(O7, O1, sizeof(intptr_t));
duke@435 631 // store file
duke@435 632 st(O3, O1, 2*sizeof(intptr_t));
duke@435 633 // store line
duke@435 634 st(O4, O1, 3*sizeof(intptr_t));
duke@435 635 add(O0, 1, O0);
duke@435 636 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 637 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 638 restore();
duke@435 639 #endif /* PRODUCT */
duke@435 640 }
duke@435 641 jmp(r1, offset);
duke@435 642 }
duke@435 643
duke@435 644 // This code sequence is relocatable to any address, even on LP64.
coleenp@2035 645 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
duke@435 646 assert_not_delayed();
duke@435 647 // Force fixed length sethi because NativeJump and NativeFarCall don't handle
duke@435 648 // variable length instruction streams.
twisti@1162 649 patchable_sethi(addrlit, temp);
twisti@1162 650 Address a(temp, addrlit.low10() + offset); // Add the offset to the displacement.
duke@435 651 if (TraceJumps) {
duke@435 652 #ifndef PRODUCT
duke@435 653 // Must do the add here so relocation can find the remainder of the
duke@435 654 // value to be relocated.
twisti@1162 655 add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
duke@435 656 save_frame(0);
duke@435 657 verify_thread();
duke@435 658 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
duke@435 659 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
duke@435 660 sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
duke@435 661 add(O2, O1, O1);
duke@435 662
duke@435 663 set((intptr_t)file, O3);
duke@435 664 set(line, O4);
duke@435 665 Label L;
duke@435 666
duke@435 667 // get nearby pc, store jmp target
duke@435 668 call(L, relocInfo::none); // No relocation for call to pc+0x8
duke@435 669 delayed()->st(a.base()->after_save(), O1, 0);
duke@435 670 bind(L);
duke@435 671
duke@435 672 // store nearby pc
duke@435 673 st(O7, O1, sizeof(intptr_t));
duke@435 674 // store file
duke@435 675 st(O3, O1, 2*sizeof(intptr_t));
duke@435 676 // store line
duke@435 677 st(O4, O1, 3*sizeof(intptr_t));
duke@435 678 add(O0, 1, O0);
duke@435 679 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0);
duke@435 680 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
duke@435 681 restore();
duke@435 682 jmpl(a.base(), G0, d);
duke@435 683 #else
twisti@1162 684 jmpl(a.base(), a.disp(), d);
duke@435 685 #endif /* PRODUCT */
duke@435 686 } else {
twisti@1162 687 jmpl(a.base(), a.disp(), d);
duke@435 688 }
duke@435 689 }
duke@435 690
coleenp@2035 691 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
twisti@1162 692 jumpl(addrlit, temp, G0, offset, file, line);
duke@435 693 }
duke@435 694
duke@435 695
duke@435 696 // Convert to C varargs format
duke@435 697 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
duke@435 698 // spill register-resident args to their memory slots
duke@435 699 // (SPARC calling convention requires callers to have already preallocated these)
duke@435 700 // Note that the inArg might in fact be an outgoing argument,
duke@435 701 // if a leaf routine or stub does some tricky argument shuffling.
duke@435 702 // This routine must work even though one of the saved arguments
duke@435 703 // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
duke@435 704 for (Argument savePtr = inArg;
duke@435 705 savePtr.is_register();
duke@435 706 savePtr = savePtr.successor()) {
duke@435 707 st_ptr(savePtr.as_register(), savePtr.address_in_frame());
duke@435 708 }
duke@435 709 // return the address of the first memory slot
twisti@1162 710 Address a = inArg.address_in_frame();
twisti@1162 711 add(a.base(), a.disp(), d);
duke@435 712 }
duke@435 713
duke@435 714 // Conditional breakpoint (for assertion checks in assembly code)
duke@435 715 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
duke@435 716 trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
duke@435 717 }
duke@435 718
duke@435 719 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
duke@435 720 void MacroAssembler::breakpoint_trap() {
duke@435 721 trap(ST_RESERVED_FOR_USER_0);
duke@435 722 }
duke@435 723
duke@435 724 // flush windows (except current) using flushw instruction if avail.
duke@435 725 void MacroAssembler::flush_windows() {
duke@435 726 if (VM_Version::v9_instructions_work()) flushw();
duke@435 727 else flush_windows_trap();
duke@435 728 }
duke@435 729
duke@435 730 // Write serialization page so VM thread can do a pseudo remote membar
duke@435 731 // We use the current thread pointer to calculate a thread specific
duke@435 732 // offset to write to within the page. This minimizes bus traffic
duke@435 733 // due to cache line collision.
duke@435 734 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
duke@435 735 srl(thread, os::get_serialize_page_shift_count(), tmp2);
duke@435 736 if (Assembler::is_simm13(os::vm_page_size())) {
duke@435 737 and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
duke@435 738 }
duke@435 739 else {
duke@435 740 set((os::vm_page_size() - sizeof(int)), tmp1);
duke@435 741 and3(tmp2, tmp1, tmp2);
duke@435 742 }
twisti@1162 743 set(os::get_memory_serialize_page(), tmp1);
duke@435 744 st(G0, tmp1, tmp2);
duke@435 745 }
duke@435 746
duke@435 747
duke@435 748
duke@435 749 void MacroAssembler::enter() {
duke@435 750 Unimplemented();
duke@435 751 }
duke@435 752
duke@435 753 void MacroAssembler::leave() {
duke@435 754 Unimplemented();
duke@435 755 }
duke@435 756
duke@435 757 void MacroAssembler::mult(Register s1, Register s2, Register d) {
duke@435 758 if(VM_Version::v9_instructions_work()) {
duke@435 759 mulx (s1, s2, d);
duke@435 760 } else {
duke@435 761 smul (s1, s2, d);
duke@435 762 }
duke@435 763 }
duke@435 764
duke@435 765 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
duke@435 766 if(VM_Version::v9_instructions_work()) {
duke@435 767 mulx (s1, simm13a, d);
duke@435 768 } else {
duke@435 769 smul (s1, simm13a, d);
duke@435 770 }
duke@435 771 }
duke@435 772
duke@435 773
duke@435 774 #ifdef ASSERT
duke@435 775 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
duke@435 776 const Register s1 = G3_scratch;
duke@435 777 const Register s2 = G4_scratch;
duke@435 778 Label get_psr_test;
duke@435 779 // Get the condition codes the V8 way.
duke@435 780 read_ccr_trap(s1);
duke@435 781 mov(ccr_save, s2);
duke@435 782 // This is a test of V8 which has icc but not xcc
duke@435 783 // so mask off the xcc bits
duke@435 784 and3(s2, 0xf, s2);
duke@435 785 // Compare condition codes from the V8 and V9 ways.
duke@435 786 subcc(s2, s1, G0);
duke@435 787 br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
duke@435 788 delayed()->breakpoint_trap();
duke@435 789 bind(get_psr_test);
duke@435 790 }
duke@435 791
duke@435 792 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
duke@435 793 const Register s1 = G3_scratch;
duke@435 794 const Register s2 = G4_scratch;
duke@435 795 Label set_psr_test;
duke@435 796 // Write out the saved condition codes the V8 way
duke@435 797 write_ccr_trap(ccr_save, s1, s2);
duke@435 798 // Read back the condition codes using the V9 instruction
duke@435 799 rdccr(s1);
duke@435 800 mov(ccr_save, s2);
duke@435 801 // This is a test of V8 which has icc but not xcc
duke@435 802 // so mask off the xcc bits
duke@435 803 and3(s2, 0xf, s2);
duke@435 804 and3(s1, 0xf, s1);
duke@435 805 // Compare the V8 way with the V9 way.
duke@435 806 subcc(s2, s1, G0);
duke@435 807 br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
duke@435 808 delayed()->breakpoint_trap();
duke@435 809 bind(set_psr_test);
duke@435 810 }
duke@435 811 #else
duke@435 812 #define read_ccr_v8_assert(x)
duke@435 813 #define write_ccr_v8_assert(x)
duke@435 814 #endif // ASSERT
duke@435 815
duke@435 816 void MacroAssembler::read_ccr(Register ccr_save) {
duke@435 817 if (VM_Version::v9_instructions_work()) {
duke@435 818 rdccr(ccr_save);
duke@435 819 // Test code sequence used on V8. Do not move above rdccr.
duke@435 820 read_ccr_v8_assert(ccr_save);
duke@435 821 } else {
duke@435 822 read_ccr_trap(ccr_save);
duke@435 823 }
duke@435 824 }
duke@435 825
duke@435 826 void MacroAssembler::write_ccr(Register ccr_save) {
duke@435 827 if (VM_Version::v9_instructions_work()) {
duke@435 828 // Test code sequence used on V8. Do not move below wrccr.
duke@435 829 write_ccr_v8_assert(ccr_save);
duke@435 830 wrccr(ccr_save);
duke@435 831 } else {
duke@435 832 const Register temp_reg1 = G3_scratch;
duke@435 833 const Register temp_reg2 = G4_scratch;
duke@435 834 write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
duke@435 835 }
duke@435 836 }
duke@435 837
duke@435 838
duke@435 839 // Calls to C land
duke@435 840
duke@435 841 #ifdef ASSERT
duke@435 842 // a hook for debugging
duke@435 843 static Thread* reinitialize_thread() {
duke@435 844 return ThreadLocalStorage::thread();
duke@435 845 }
duke@435 846 #else
duke@435 847 #define reinitialize_thread ThreadLocalStorage::thread
duke@435 848 #endif
duke@435 849
duke@435 850 #ifdef ASSERT
duke@435 851 address last_get_thread = NULL;
duke@435 852 #endif
duke@435 853
duke@435 854 // call this when G2_thread is not known to be valid
duke@435 855 void MacroAssembler::get_thread() {
duke@435 856 save_frame(0); // to avoid clobbering O0
duke@435 857 mov(G1, L0); // avoid clobbering G1
duke@435 858 mov(G5_method, L1); // avoid clobbering G5
duke@435 859 mov(G3, L2); // avoid clobbering G3 also
duke@435 860 mov(G4, L5); // avoid clobbering G4
duke@435 861 #ifdef ASSERT
twisti@1162 862 AddressLiteral last_get_thread_addrlit(&last_get_thread);
twisti@1162 863 set(last_get_thread_addrlit, L3);
duke@435 864 inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
twisti@1162 865 st_ptr(L4, L3, 0);
duke@435 866 #endif
duke@435 867 call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
duke@435 868 delayed()->nop();
duke@435 869 mov(L0, G1);
duke@435 870 mov(L1, G5_method);
duke@435 871 mov(L2, G3);
duke@435 872 mov(L5, G4);
duke@435 873 restore(O0, 0, G2_thread);
duke@435 874 }
duke@435 875
duke@435 876 static Thread* verify_thread_subroutine(Thread* gthread_value) {
duke@435 877 Thread* correct_value = ThreadLocalStorage::thread();
duke@435 878 guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
duke@435 879 return correct_value;
duke@435 880 }
duke@435 881
duke@435 882 void MacroAssembler::verify_thread() {
duke@435 883 if (VerifyThread) {
duke@435 884 // NOTE: this chops off the heads of the 64-bit O registers.
duke@435 885 #ifdef CC_INTERP
duke@435 886 save_frame(0);
duke@435 887 #else
duke@435 888 // make sure G2_thread contains the right value
duke@435 889 save_frame_and_mov(0, Lmethod, Lmethod); // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
duke@435 890 mov(G1, L1); // avoid clobbering G1
duke@435 891 // G2 saved below
duke@435 892 mov(G3, L3); // avoid clobbering G3
duke@435 893 mov(G4, L4); // avoid clobbering G4
duke@435 894 mov(G5_method, L5); // avoid clobbering G5_method
duke@435 895 #endif /* CC_INTERP */
duke@435 896 #if defined(COMPILER2) && !defined(_LP64)
duke@435 897 // Save & restore possible 64-bit Long arguments in G-regs
duke@435 898 srlx(G1,32,L0);
duke@435 899 srlx(G4,32,L6);
duke@435 900 #endif
duke@435 901 call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
duke@435 902 delayed()->mov(G2_thread, O0);
duke@435 903
duke@435 904 mov(L1, G1); // Restore G1
duke@435 905 // G2 restored below
duke@435 906 mov(L3, G3); // restore G3
duke@435 907 mov(L4, G4); // restore G4
duke@435 908 mov(L5, G5_method); // restore G5_method
duke@435 909 #if defined(COMPILER2) && !defined(_LP64)
duke@435 910 // Save & restore possible 64-bit Long arguments in G-regs
duke@435 911 sllx(L0,32,G2); // Move old high G1 bits high in G2
iveresov@2344 912 srl(G1, 0,G1); // Clear current high G1 bits
duke@435 913 or3 (G1,G2,G1); // Recover 64-bit G1
duke@435 914 sllx(L6,32,G2); // Move old high G4 bits high in G2
iveresov@2344 915 srl(G4, 0,G4); // Clear current high G4 bits
duke@435 916 or3 (G4,G2,G4); // Recover 64-bit G4
duke@435 917 #endif
duke@435 918 restore(O0, 0, G2_thread);
duke@435 919 }
duke@435 920 }
duke@435 921
duke@435 922
duke@435 923 void MacroAssembler::save_thread(const Register thread_cache) {
duke@435 924 verify_thread();
duke@435 925 if (thread_cache->is_valid()) {
duke@435 926 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
duke@435 927 mov(G2_thread, thread_cache);
duke@435 928 }
duke@435 929 if (VerifyThread) {
duke@435 930 // smash G2_thread, as if the VM were about to anyway
duke@435 931 set(0x67676767, G2_thread);
duke@435 932 }
duke@435 933 }
duke@435 934
duke@435 935
duke@435 936 void MacroAssembler::restore_thread(const Register thread_cache) {
duke@435 937 if (thread_cache->is_valid()) {
duke@435 938 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
duke@435 939 mov(thread_cache, G2_thread);
duke@435 940 verify_thread();
duke@435 941 } else {
duke@435 942 // do it the slow way
duke@435 943 get_thread();
duke@435 944 }
duke@435 945 }
duke@435 946
duke@435 947
duke@435 948 // %%% maybe get rid of [re]set_last_Java_frame
duke@435 949 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
duke@435 950 assert_not_delayed();
twisti@1162 951 Address flags(G2_thread, JavaThread::frame_anchor_offset() +
twisti@1162 952 JavaFrameAnchor::flags_offset());
twisti@1162 953 Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
duke@435 954
duke@435 955 // Always set last_Java_pc and flags first because once last_Java_sp is visible
duke@435 956 // has_last_Java_frame is true and users will look at the rest of the fields.
duke@435 957 // (Note: flags should always be zero before we get here so doesn't need to be set.)
duke@435 958
duke@435 959 #ifdef ASSERT
duke@435 960 // Verify that flags was zeroed on return to Java
duke@435 961 Label PcOk;
duke@435 962 save_frame(0); // to avoid clobbering O0
duke@435 963 ld_ptr(pc_addr, L0);
duke@435 964 tst(L0);
duke@435 965 #ifdef _LP64
duke@435 966 brx(Assembler::zero, false, Assembler::pt, PcOk);
duke@435 967 #else
duke@435 968 br(Assembler::zero, false, Assembler::pt, PcOk);
duke@435 969 #endif // _LP64
duke@435 970 delayed() -> nop();
duke@435 971 stop("last_Java_pc not zeroed before leaving Java");
duke@435 972 bind(PcOk);
duke@435 973
duke@435 974 // Verify that flags was zeroed on return to Java
duke@435 975 Label FlagsOk;
duke@435 976 ld(flags, L0);
duke@435 977 tst(L0);
duke@435 978 br(Assembler::zero, false, Assembler::pt, FlagsOk);
duke@435 979 delayed() -> restore();
duke@435 980 stop("flags not zeroed before leaving Java");
duke@435 981 bind(FlagsOk);
duke@435 982 #endif /* ASSERT */
duke@435 983 //
duke@435 984 // When returning from calling out from Java mode the frame anchor's last_Java_pc
duke@435 985 // will always be set to NULL. It is set here so that if we are doing a call to
duke@435 986 // native (not VM) that we capture the known pc and don't have to rely on the
duke@435 987 // native call having a standard frame linkage where we can find the pc.
duke@435 988
duke@435 989 if (last_Java_pc->is_valid()) {
duke@435 990 st_ptr(last_Java_pc, pc_addr);
duke@435 991 }
duke@435 992
duke@435 993 #ifdef _LP64
duke@435 994 #ifdef ASSERT
duke@435 995 // Make sure that we have an odd stack
duke@435 996 Label StackOk;
duke@435 997 andcc(last_java_sp, 0x01, G0);
duke@435 998 br(Assembler::notZero, false, Assembler::pt, StackOk);
duke@435 999 delayed() -> nop();
duke@435 1000 stop("Stack Not Biased in set_last_Java_frame");
duke@435 1001 bind(StackOk);
duke@435 1002 #endif // ASSERT
duke@435 1003 assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
duke@435 1004 add( last_java_sp, STACK_BIAS, G4_scratch );
twisti@1162 1005 st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
duke@435 1006 #else
twisti@1162 1007 st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
duke@435 1008 #endif // _LP64
duke@435 1009 }
duke@435 1010
duke@435 1011 void MacroAssembler::reset_last_Java_frame(void) {
duke@435 1012 assert_not_delayed();
duke@435 1013
twisti@1162 1014 Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
twisti@1162 1015 Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
twisti@1162 1016 Address flags (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
duke@435 1017
duke@435 1018 #ifdef ASSERT
duke@435 1019 // check that it WAS previously set
duke@435 1020 #ifdef CC_INTERP
duke@435 1021 save_frame(0);
duke@435 1022 #else
duke@435 1023 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod to helper frame for -Xprof
duke@435 1024 #endif /* CC_INTERP */
duke@435 1025 ld_ptr(sp_addr, L0);
duke@435 1026 tst(L0);
duke@435 1027 breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
duke@435 1028 restore();
duke@435 1029 #endif // ASSERT
duke@435 1030
duke@435 1031 st_ptr(G0, sp_addr);
duke@435 1032 // Always return last_Java_pc to zero
duke@435 1033 st_ptr(G0, pc_addr);
duke@435 1034 // Always null flags after return to Java
duke@435 1035 st(G0, flags);
duke@435 1036 }
duke@435 1037
duke@435 1038
duke@435 1039 void MacroAssembler::call_VM_base(
duke@435 1040 Register oop_result,
duke@435 1041 Register thread_cache,
duke@435 1042 Register last_java_sp,
duke@435 1043 address entry_point,
duke@435 1044 int number_of_arguments,
duke@435 1045 bool check_exceptions)
duke@435 1046 {
duke@435 1047 assert_not_delayed();
duke@435 1048
duke@435 1049 // determine last_java_sp register
duke@435 1050 if (!last_java_sp->is_valid()) {
duke@435 1051 last_java_sp = SP;
duke@435 1052 }
duke@435 1053 // debugging support
duke@435 1054 assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
duke@435 1055
duke@435 1056 // 64-bit last_java_sp is biased!
duke@435 1057 set_last_Java_frame(last_java_sp, noreg);
duke@435 1058 if (VerifyThread) mov(G2_thread, O0); // about to be smashed; pass early
duke@435 1059 save_thread(thread_cache);
duke@435 1060 // do the call
duke@435 1061 call(entry_point, relocInfo::runtime_call_type);
duke@435 1062 if (!VerifyThread)
duke@435 1063 delayed()->mov(G2_thread, O0); // pass thread as first argument
duke@435 1064 else
duke@435 1065 delayed()->nop(); // (thread already passed)
duke@435 1066 restore_thread(thread_cache);
duke@435 1067 reset_last_Java_frame();
duke@435 1068
duke@435 1069 // check for pending exceptions. use Gtemp as scratch register.
duke@435 1070 if (check_exceptions) {
duke@435 1071 check_and_forward_exception(Gtemp);
duke@435 1072 }
duke@435 1073
duke@435 1074 // get oop result if there is one and reset the value in the thread
duke@435 1075 if (oop_result->is_valid()) {
duke@435 1076 get_vm_result(oop_result);
duke@435 1077 }
duke@435 1078 }
duke@435 1079
duke@435 1080 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
duke@435 1081 {
duke@435 1082 Label L;
duke@435 1083
duke@435 1084 check_and_handle_popframe(scratch_reg);
duke@435 1085 check_and_handle_earlyret(scratch_reg);
duke@435 1086
twisti@1162 1087 Address exception_addr(G2_thread, Thread::pending_exception_offset());
duke@435 1088 ld_ptr(exception_addr, scratch_reg);
duke@435 1089 br_null(scratch_reg,false,pt,L);
duke@435 1090 delayed()->nop();
duke@435 1091 // we use O7 linkage so that forward_exception_entry has the issuing PC
duke@435 1092 call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
duke@435 1093 delayed()->nop();
duke@435 1094 bind(L);
duke@435 1095 }
duke@435 1096
duke@435 1097
duke@435 1098 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
duke@435 1099 }
duke@435 1100
duke@435 1101
duke@435 1102 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
duke@435 1103 }
duke@435 1104
duke@435 1105
duke@435 1106 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
duke@435 1107 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
duke@435 1108 }
duke@435 1109
duke@435 1110
duke@435 1111 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
duke@435 1112 // O0 is reserved for the thread
duke@435 1113 mov(arg_1, O1);
duke@435 1114 call_VM(oop_result, entry_point, 1, check_exceptions);
duke@435 1115 }
duke@435 1116
duke@435 1117
duke@435 1118 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
duke@435 1119 // O0 is reserved for the thread
duke@435 1120 mov(arg_1, O1);
duke@435 1121 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1122 call_VM(oop_result, entry_point, 2, check_exceptions);
duke@435 1123 }
duke@435 1124
duke@435 1125
duke@435 1126 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
duke@435 1127 // O0 is reserved for the thread
duke@435 1128 mov(arg_1, O1);
duke@435 1129 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1130 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
duke@435 1131 call_VM(oop_result, entry_point, 3, check_exceptions);
duke@435 1132 }
duke@435 1133
duke@435 1134
duke@435 1135
duke@435 1136 // Note: The following call_VM overloadings are useful when a "save"
duke@435 1137 // has already been performed by a stub, and the last Java frame is
duke@435 1138 // the previous one. In that case, last_java_sp must be passed as FP
duke@435 1139 // instead of SP.
duke@435 1140
duke@435 1141
duke@435 1142 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
duke@435 1143 call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
duke@435 1144 }
duke@435 1145
duke@435 1146
duke@435 1147 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
duke@435 1148 // O0 is reserved for the thread
duke@435 1149 mov(arg_1, O1);
duke@435 1150 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
duke@435 1151 }
duke@435 1152
duke@435 1153
duke@435 1154 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
duke@435 1155 // O0 is reserved for the thread
duke@435 1156 mov(arg_1, O1);
duke@435 1157 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1158 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
duke@435 1159 }
duke@435 1160
duke@435 1161
duke@435 1162 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
duke@435 1163 // O0 is reserved for the thread
duke@435 1164 mov(arg_1, O1);
duke@435 1165 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
duke@435 1166 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
duke@435 1167 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
duke@435 1168 }
duke@435 1169
duke@435 1170
duke@435 1171
duke@435 1172 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
duke@435 1173 assert_not_delayed();
duke@435 1174 save_thread(thread_cache);
duke@435 1175 // do the call
duke@435 1176 call(entry_point, relocInfo::runtime_call_type);
duke@435 1177 delayed()->nop();
duke@435 1178 restore_thread(thread_cache);
duke@435 1179 }
duke@435 1180
duke@435 1181
duke@435 1182 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
duke@435 1183 call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
duke@435 1184 }
duke@435 1185
duke@435 1186
duke@435 1187 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
duke@435 1188 mov(arg_1, O0);
duke@435 1189 call_VM_leaf(thread_cache, entry_point, 1);
duke@435 1190 }
duke@435 1191
duke@435 1192
duke@435 1193 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
duke@435 1194 mov(arg_1, O0);
duke@435 1195 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
duke@435 1196 call_VM_leaf(thread_cache, entry_point, 2);
duke@435 1197 }
duke@435 1198
duke@435 1199
duke@435 1200 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
duke@435 1201 mov(arg_1, O0);
duke@435 1202 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
duke@435 1203 mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
duke@435 1204 call_VM_leaf(thread_cache, entry_point, 3);
duke@435 1205 }
duke@435 1206
duke@435 1207
duke@435 1208 void MacroAssembler::get_vm_result(Register oop_result) {
duke@435 1209 verify_thread();
twisti@1162 1210 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
duke@435 1211 ld_ptr( vm_result_addr, oop_result);
duke@435 1212 st_ptr(G0, vm_result_addr);
duke@435 1213 verify_oop(oop_result);
duke@435 1214 }
duke@435 1215
duke@435 1216
duke@435 1217 void MacroAssembler::get_vm_result_2(Register oop_result) {
duke@435 1218 verify_thread();
twisti@1162 1219 Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
duke@435 1220 ld_ptr(vm_result_addr_2, oop_result);
duke@435 1221 st_ptr(G0, vm_result_addr_2);
duke@435 1222 verify_oop(oop_result);
duke@435 1223 }
duke@435 1224
duke@435 1225
duke@435 1226 // We require that C code which does not return a value in vm_result will
duke@435 1227 // leave it undisturbed.
duke@435 1228 void MacroAssembler::set_vm_result(Register oop_result) {
duke@435 1229 verify_thread();
twisti@1162 1230 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
duke@435 1231 verify_oop(oop_result);
duke@435 1232
duke@435 1233 # ifdef ASSERT
duke@435 1234 // Check that we are not overwriting any other oop.
duke@435 1235 #ifdef CC_INTERP
duke@435 1236 save_frame(0);
duke@435 1237 #else
duke@435 1238 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod for -Xprof
duke@435 1239 #endif /* CC_INTERP */
duke@435 1240 ld_ptr(vm_result_addr, L0);
duke@435 1241 tst(L0);
duke@435 1242 restore();
duke@435 1243 breakpoint_trap(notZero, Assembler::ptr_cc);
duke@435 1244 // }
duke@435 1245 # endif
duke@435 1246
duke@435 1247 st_ptr(oop_result, vm_result_addr);
duke@435 1248 }
duke@435 1249
duke@435 1250
ysr@777 1251 void MacroAssembler::card_table_write(jbyte* byte_map_base,
ysr@777 1252 Register tmp, Register obj) {
duke@435 1253 #ifdef _LP64
duke@435 1254 srlx(obj, CardTableModRefBS::card_shift, obj);
duke@435 1255 #else
duke@435 1256 srl(obj, CardTableModRefBS::card_shift, obj);
duke@435 1257 #endif
twisti@1162 1258 assert(tmp != obj, "need separate temp reg");
twisti@1162 1259 set((address) byte_map_base, tmp);
twisti@1162 1260 stb(G0, tmp, obj);
duke@435 1261 }
duke@435 1262
twisti@1162 1263
twisti@1162 1264 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
duke@435 1265 address save_pc;
duke@435 1266 int shiftcnt;
duke@435 1267 #ifdef _LP64
duke@435 1268 # ifdef CHECK_DELAY
twisti@1162 1269 assert_not_delayed((char*) "cannot put two instructions in delay slot");
duke@435 1270 # endif
duke@435 1271 v9_dep();
duke@435 1272 save_pc = pc();
twisti@1162 1273
twisti@1162 1274 int msb32 = (int) (addrlit.value() >> 32);
twisti@1162 1275 int lsb32 = (int) (addrlit.value());
twisti@1162 1276
twisti@1162 1277 if (msb32 == 0 && lsb32 >= 0) {
twisti@1162 1278 Assembler::sethi(lsb32, d, addrlit.rspec());
duke@435 1279 }
twisti@1162 1280 else if (msb32 == -1) {
twisti@1162 1281 Assembler::sethi(~lsb32, d, addrlit.rspec());
twisti@1162 1282 xor3(d, ~low10(~0), d);
duke@435 1283 }
duke@435 1284 else {
twisti@1162 1285 Assembler::sethi(msb32, d, addrlit.rspec()); // msb 22-bits
twisti@1162 1286 if (msb32 & 0x3ff) // Any bits?
twisti@1162 1287 or3(d, msb32 & 0x3ff, d); // msb 32-bits are now in lsb 32
twisti@1162 1288 if (lsb32 & 0xFFFFFC00) { // done?
twisti@1162 1289 if ((lsb32 >> 20) & 0xfff) { // Any bits set?
twisti@1162 1290 sllx(d, 12, d); // Make room for next 12 bits
twisti@1162 1291 or3(d, (lsb32 >> 20) & 0xfff, d); // Or in next 12
twisti@1162 1292 shiftcnt = 0; // We already shifted
duke@435 1293 }
duke@435 1294 else
duke@435 1295 shiftcnt = 12;
twisti@1162 1296 if ((lsb32 >> 10) & 0x3ff) {
twisti@1162 1297 sllx(d, shiftcnt + 10, d); // Make room for last 10 bits
twisti@1162 1298 or3(d, (lsb32 >> 10) & 0x3ff, d); // Or in next 10
duke@435 1299 shiftcnt = 0;
duke@435 1300 }
duke@435 1301 else
duke@435 1302 shiftcnt = 10;
twisti@1162 1303 sllx(d, shiftcnt + 10, d); // Shift leaving disp field 0'd
duke@435 1304 }
duke@435 1305 else
twisti@1162 1306 sllx(d, 32, d);
duke@435 1307 }
twisti@1162 1308 // Pad out the instruction sequence so it can be patched later.
twisti@1162 1309 if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
twisti@1162 1310 addrlit.rtype() != relocInfo::runtime_call_type)) {
twisti@1162 1311 while (pc() < (save_pc + (7 * BytesPerInstWord)))
duke@435 1312 nop();
duke@435 1313 }
duke@435 1314 #else
twisti@1162 1315 Assembler::sethi(addrlit.value(), d, addrlit.rspec());
duke@435 1316 #endif
duke@435 1317 }
duke@435 1318
twisti@1162 1319
twisti@1162 1320 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
twisti@1162 1321 internal_sethi(addrlit, d, false);
twisti@1162 1322 }
twisti@1162 1323
twisti@1162 1324
twisti@1162 1325 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
twisti@1162 1326 internal_sethi(addrlit, d, true);
twisti@1162 1327 }
twisti@1162 1328
twisti@1162 1329
duke@435 1330 int MacroAssembler::size_of_sethi(address a, bool worst_case) {
duke@435 1331 #ifdef _LP64
duke@435 1332 if (worst_case) return 7;
duke@435 1333 intptr_t iaddr = (intptr_t)a;
duke@435 1334 int hi32 = (int)(iaddr >> 32);
duke@435 1335 int lo32 = (int)(iaddr);
duke@435 1336 int inst_count;
duke@435 1337 if (hi32 == 0 && lo32 >= 0)
duke@435 1338 inst_count = 1;
duke@435 1339 else if (hi32 == -1)
duke@435 1340 inst_count = 2;
duke@435 1341 else {
duke@435 1342 inst_count = 2;
duke@435 1343 if ( hi32 & 0x3ff )
duke@435 1344 inst_count++;
duke@435 1345 if ( lo32 & 0xFFFFFC00 ) {
duke@435 1346 if( (lo32 >> 20) & 0xfff ) inst_count += 2;
duke@435 1347 if( (lo32 >> 10) & 0x3ff ) inst_count += 2;
duke@435 1348 }
duke@435 1349 }
duke@435 1350 return BytesPerInstWord * inst_count;
duke@435 1351 #else
duke@435 1352 return BytesPerInstWord;
duke@435 1353 #endif
duke@435 1354 }
duke@435 1355
duke@435 1356 int MacroAssembler::worst_case_size_of_set() {
duke@435 1357 return size_of_sethi(NULL, true) + 1;
duke@435 1358 }
duke@435 1359
twisti@1162 1360
twisti@1162 1361 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
twisti@1162 1362 intptr_t value = addrlit.value();
twisti@1162 1363
twisti@1162 1364 if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
duke@435 1365 // can optimize
twisti@1162 1366 if (-4096 <= value && value <= 4095) {
duke@435 1367 or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
duke@435 1368 return;
duke@435 1369 }
duke@435 1370 if (inv_hi22(hi22(value)) == value) {
twisti@1162 1371 sethi(addrlit, d);
duke@435 1372 return;
duke@435 1373 }
duke@435 1374 }
twisti@1162 1375 assert_not_delayed((char*) "cannot put two instructions in delay slot");
twisti@1162 1376 internal_sethi(addrlit, d, ForceRelocatable);
twisti@1162 1377 if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
twisti@1162 1378 add(d, addrlit.low10(), d, addrlit.rspec());
duke@435 1379 }
duke@435 1380 }
duke@435 1381
twisti@1162 1382 void MacroAssembler::set(const AddressLiteral& al, Register d) {
twisti@1162 1383 internal_set(al, d, false);
duke@435 1384 }
duke@435 1385
twisti@1162 1386 void MacroAssembler::set(intptr_t value, Register d) {
twisti@1162 1387 AddressLiteral al(value);
twisti@1162 1388 internal_set(al, d, false);
twisti@1162 1389 }
twisti@1162 1390
twisti@1162 1391 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
twisti@1162 1392 AddressLiteral al(addr, rspec);
twisti@1162 1393 internal_set(al, d, false);
twisti@1162 1394 }
twisti@1162 1395
twisti@1162 1396 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
twisti@1162 1397 internal_set(al, d, true);
twisti@1162 1398 }
twisti@1162 1399
twisti@1162 1400 void MacroAssembler::patchable_set(intptr_t value, Register d) {
twisti@1162 1401 AddressLiteral al(value);
twisti@1162 1402 internal_set(al, d, true);
twisti@1162 1403 }
duke@435 1404
duke@435 1405
duke@435 1406 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
duke@435 1407 assert_not_delayed();
duke@435 1408 v9_dep();
duke@435 1409
duke@435 1410 int hi = (int)(value >> 32);
duke@435 1411 int lo = (int)(value & ~0);
duke@435 1412 // (Matcher::isSimpleConstant64 knows about the following optimizations.)
duke@435 1413 if (Assembler::is_simm13(lo) && value == lo) {
duke@435 1414 or3(G0, lo, d);
duke@435 1415 } else if (hi == 0) {
duke@435 1416 Assembler::sethi(lo, d); // hardware version zero-extends to upper 32
duke@435 1417 if (low10(lo) != 0)
duke@435 1418 or3(d, low10(lo), d);
duke@435 1419 }
duke@435 1420 else if (hi == -1) {
duke@435 1421 Assembler::sethi(~lo, d); // hardware version zero-extends to upper 32
duke@435 1422 xor3(d, low10(lo) ^ ~low10(~0), d);
duke@435 1423 }
duke@435 1424 else if (lo == 0) {
duke@435 1425 if (Assembler::is_simm13(hi)) {
duke@435 1426 or3(G0, hi, d);
duke@435 1427 } else {
duke@435 1428 Assembler::sethi(hi, d); // hardware version zero-extends to upper 32
duke@435 1429 if (low10(hi) != 0)
duke@435 1430 or3(d, low10(hi), d);
duke@435 1431 }
duke@435 1432 sllx(d, 32, d);
duke@435 1433 }
duke@435 1434 else {
duke@435 1435 Assembler::sethi(hi, tmp);
duke@435 1436 Assembler::sethi(lo, d); // macro assembler version sign-extends
duke@435 1437 if (low10(hi) != 0)
duke@435 1438 or3 (tmp, low10(hi), tmp);
duke@435 1439 if (low10(lo) != 0)
duke@435 1440 or3 ( d, low10(lo), d);
duke@435 1441 sllx(tmp, 32, tmp);
duke@435 1442 or3 (d, tmp, d);
duke@435 1443 }
duke@435 1444 }
duke@435 1445
twisti@2350 1446 int MacroAssembler::size_of_set64(jlong value) {
twisti@2350 1447 v9_dep();
twisti@2350 1448
twisti@2350 1449 int hi = (int)(value >> 32);
twisti@2350 1450 int lo = (int)(value & ~0);
twisti@2350 1451 int count = 0;
twisti@2350 1452
twisti@2350 1453 // (Matcher::isSimpleConstant64 knows about the following optimizations.)
twisti@2350 1454 if (Assembler::is_simm13(lo) && value == lo) {
twisti@2350 1455 count++;
twisti@2350 1456 } else if (hi == 0) {
twisti@2350 1457 count++;
twisti@2350 1458 if (low10(lo) != 0)
twisti@2350 1459 count++;
twisti@2350 1460 }
twisti@2350 1461 else if (hi == -1) {
twisti@2350 1462 count += 2;
twisti@2350 1463 }
twisti@2350 1464 else if (lo == 0) {
twisti@2350 1465 if (Assembler::is_simm13(hi)) {
twisti@2350 1466 count++;
twisti@2350 1467 } else {
twisti@2350 1468 count++;
twisti@2350 1469 if (low10(hi) != 0)
twisti@2350 1470 count++;
twisti@2350 1471 }
twisti@2350 1472 count++;
twisti@2350 1473 }
twisti@2350 1474 else {
twisti@2350 1475 count += 2;
twisti@2350 1476 if (low10(hi) != 0)
twisti@2350 1477 count++;
twisti@2350 1478 if (low10(lo) != 0)
twisti@2350 1479 count++;
twisti@2350 1480 count += 2;
twisti@2350 1481 }
twisti@2350 1482 return count;
twisti@2350 1483 }
twisti@2350 1484
duke@435 1485 // compute size in bytes of sparc frame, given
duke@435 1486 // number of extraWords
duke@435 1487 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
duke@435 1488
duke@435 1489 int nWords = frame::memory_parameter_word_sp_offset;
duke@435 1490
duke@435 1491 nWords += extraWords;
duke@435 1492
duke@435 1493 if (nWords & 1) ++nWords; // round up to double-word
duke@435 1494
duke@435 1495 return nWords * BytesPerWord;
duke@435 1496 }
duke@435 1497
duke@435 1498
duke@435 1499 // save_frame: given number of "extra" words in frame,
duke@435 1500 // issue approp. save instruction (p 200, v8 manual)
duke@435 1501
duke@435 1502 void MacroAssembler::save_frame(int extraWords = 0) {
duke@435 1503 int delta = -total_frame_size_in_bytes(extraWords);
duke@435 1504 if (is_simm13(delta)) {
duke@435 1505 save(SP, delta, SP);
duke@435 1506 } else {
duke@435 1507 set(delta, G3_scratch);
duke@435 1508 save(SP, G3_scratch, SP);
duke@435 1509 }
duke@435 1510 }
duke@435 1511
duke@435 1512
duke@435 1513 void MacroAssembler::save_frame_c1(int size_in_bytes) {
duke@435 1514 if (is_simm13(-size_in_bytes)) {
duke@435 1515 save(SP, -size_in_bytes, SP);
duke@435 1516 } else {
duke@435 1517 set(-size_in_bytes, G3_scratch);
duke@435 1518 save(SP, G3_scratch, SP);
duke@435 1519 }
duke@435 1520 }
duke@435 1521
duke@435 1522
duke@435 1523 void MacroAssembler::save_frame_and_mov(int extraWords,
duke@435 1524 Register s1, Register d1,
duke@435 1525 Register s2, Register d2) {
duke@435 1526 assert_not_delayed();
duke@435 1527
duke@435 1528 // The trick here is to use precisely the same memory word
duke@435 1529 // that trap handlers also use to save the register.
duke@435 1530 // This word cannot be used for any other purpose, but
duke@435 1531 // it works fine to save the register's value, whether or not
duke@435 1532 // an interrupt flushes register windows at any given moment!
duke@435 1533 Address s1_addr;
duke@435 1534 if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
duke@435 1535 s1_addr = s1->address_in_saved_window();
duke@435 1536 st_ptr(s1, s1_addr);
duke@435 1537 }
duke@435 1538
duke@435 1539 Address s2_addr;
duke@435 1540 if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
duke@435 1541 s2_addr = s2->address_in_saved_window();
duke@435 1542 st_ptr(s2, s2_addr);
duke@435 1543 }
duke@435 1544
duke@435 1545 save_frame(extraWords);
duke@435 1546
duke@435 1547 if (s1_addr.base() == SP) {
duke@435 1548 ld_ptr(s1_addr.after_save(), d1);
duke@435 1549 } else if (s1->is_valid()) {
duke@435 1550 mov(s1->after_save(), d1);
duke@435 1551 }
duke@435 1552
duke@435 1553 if (s2_addr.base() == SP) {
duke@435 1554 ld_ptr(s2_addr.after_save(), d2);
duke@435 1555 } else if (s2->is_valid()) {
duke@435 1556 mov(s2->after_save(), d2);
duke@435 1557 }
duke@435 1558 }
duke@435 1559
duke@435 1560
twisti@1162 1561 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
duke@435 1562 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
duke@435 1563 int oop_index = oop_recorder()->allocate_index(obj);
twisti@1162 1564 return AddressLiteral(obj, oop_Relocation::spec(oop_index));
duke@435 1565 }
duke@435 1566
duke@435 1567
twisti@1162 1568 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
duke@435 1569 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
duke@435 1570 int oop_index = oop_recorder()->find_index(obj);
twisti@1162 1571 return AddressLiteral(obj, oop_Relocation::spec(oop_index));
duke@435 1572 }
duke@435 1573
kvn@599 1574 void MacroAssembler::set_narrow_oop(jobject obj, Register d) {
kvn@599 1575 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
kvn@599 1576 int oop_index = oop_recorder()->find_index(obj);
kvn@599 1577 RelocationHolder rspec = oop_Relocation::spec(oop_index);
kvn@599 1578
kvn@599 1579 assert_not_delayed();
kvn@599 1580 // Relocation with special format (see relocInfo_sparc.hpp).
kvn@599 1581 relocate(rspec, 1);
kvn@599 1582 // Assembler::sethi(0x3fffff, d);
kvn@599 1583 emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
kvn@599 1584 // Don't add relocation for 'add'. Do patching during 'sethi' processing.
kvn@599 1585 add(d, 0x3ff, d);
kvn@599 1586
kvn@599 1587 }
kvn@599 1588
duke@435 1589
duke@435 1590 void MacroAssembler::align(int modulus) {
duke@435 1591 while (offset() % modulus != 0) nop();
duke@435 1592 }
duke@435 1593
duke@435 1594
duke@435 1595 void MacroAssembler::safepoint() {
duke@435 1596 relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
duke@435 1597 }
duke@435 1598
duke@435 1599
duke@435 1600 void RegistersForDebugging::print(outputStream* s) {
duke@435 1601 int j;
duke@435 1602 for ( j = 0; j < 8; ++j )
duke@435 1603 if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
duke@435 1604 else s->print_cr( "fp = 0x%.16lx", i[j]);
duke@435 1605 s->cr();
duke@435 1606
duke@435 1607 for ( j = 0; j < 8; ++j )
duke@435 1608 s->print_cr("l%d = 0x%.16lx", j, l[j]);
duke@435 1609 s->cr();
duke@435 1610
duke@435 1611 for ( j = 0; j < 8; ++j )
duke@435 1612 if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
duke@435 1613 else s->print_cr( "sp = 0x%.16lx", o[j]);
duke@435 1614 s->cr();
duke@435 1615
duke@435 1616 for ( j = 0; j < 8; ++j )
duke@435 1617 s->print_cr("g%d = 0x%.16lx", j, g[j]);
duke@435 1618 s->cr();
duke@435 1619
duke@435 1620 // print out floats with compression
duke@435 1621 for (j = 0; j < 32; ) {
duke@435 1622 jfloat val = f[j];
duke@435 1623 int last = j;
duke@435 1624 for ( ; last+1 < 32; ++last ) {
duke@435 1625 char b1[1024], b2[1024];
duke@435 1626 sprintf(b1, "%f", val);
duke@435 1627 sprintf(b2, "%f", f[last+1]);
duke@435 1628 if (strcmp(b1, b2))
duke@435 1629 break;
duke@435 1630 }
duke@435 1631 s->print("f%d", j);
duke@435 1632 if ( j != last ) s->print(" - f%d", last);
duke@435 1633 s->print(" = %f", val);
duke@435 1634 s->fill_to(25);
duke@435 1635 s->print_cr(" (0x%x)", val);
duke@435 1636 j = last + 1;
duke@435 1637 }
duke@435 1638 s->cr();
duke@435 1639
duke@435 1640 // and doubles (evens only)
duke@435 1641 for (j = 0; j < 32; ) {
duke@435 1642 jdouble val = d[j];
duke@435 1643 int last = j;
duke@435 1644 for ( ; last+1 < 32; ++last ) {
duke@435 1645 char b1[1024], b2[1024];
duke@435 1646 sprintf(b1, "%f", val);
duke@435 1647 sprintf(b2, "%f", d[last+1]);
duke@435 1648 if (strcmp(b1, b2))
duke@435 1649 break;
duke@435 1650 }
duke@435 1651 s->print("d%d", 2 * j);
duke@435 1652 if ( j != last ) s->print(" - d%d", last);
duke@435 1653 s->print(" = %f", val);
duke@435 1654 s->fill_to(30);
duke@435 1655 s->print("(0x%x)", *(int*)&val);
duke@435 1656 s->fill_to(42);
duke@435 1657 s->print_cr("(0x%x)", *(1 + (int*)&val));
duke@435 1658 j = last + 1;
duke@435 1659 }
duke@435 1660 s->cr();
duke@435 1661 }
duke@435 1662
duke@435 1663 void RegistersForDebugging::save_registers(MacroAssembler* a) {
duke@435 1664 a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
duke@435 1665 a->flush_windows();
duke@435 1666 int i;
duke@435 1667 for (i = 0; i < 8; ++i) {
duke@435 1668 a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, i_offset(i));
duke@435 1669 a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, l_offset(i));
duke@435 1670 a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
duke@435 1671 a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
duke@435 1672 }
duke@435 1673 for (i = 0; i < 32; ++i) {
duke@435 1674 a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
duke@435 1675 }
duke@435 1676 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
duke@435 1677 a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
duke@435 1678 }
duke@435 1679 }
duke@435 1680
duke@435 1681 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
duke@435 1682 for (int i = 1; i < 8; ++i) {
duke@435 1683 a->ld_ptr(r, g_offset(i), as_gRegister(i));
duke@435 1684 }
duke@435 1685 for (int j = 0; j < 32; ++j) {
duke@435 1686 a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
duke@435 1687 }
duke@435 1688 for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
duke@435 1689 a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
duke@435 1690 }
duke@435 1691 }
duke@435 1692
duke@435 1693
duke@435 1694 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
duke@435 1695 void MacroAssembler::push_fTOS() {
duke@435 1696 // %%%%%% need to implement this
duke@435 1697 }
duke@435 1698
duke@435 1699 // pops double TOS element from CPU stack and pushes on FPU stack
duke@435 1700 void MacroAssembler::pop_fTOS() {
duke@435 1701 // %%%%%% need to implement this
duke@435 1702 }
duke@435 1703
duke@435 1704 void MacroAssembler::empty_FPU_stack() {
duke@435 1705 // %%%%%% need to implement this
duke@435 1706 }
duke@435 1707
duke@435 1708 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
duke@435 1709 // plausibility check for oops
duke@435 1710 if (!VerifyOops) return;
duke@435 1711
duke@435 1712 if (reg == G0) return; // always NULL, which is always an oop
duke@435 1713
ysr@777 1714 char buffer[64];
ysr@777 1715 #ifdef COMPILER1
ysr@777 1716 if (CommentedAssembly) {
ysr@777 1717 snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
ysr@777 1718 block_comment(buffer);
ysr@777 1719 }
ysr@777 1720 #endif
ysr@777 1721
ysr@777 1722 int len = strlen(file) + strlen(msg) + 1 + 4;
duke@435 1723 sprintf(buffer, "%d", line);
ysr@777 1724 len += strlen(buffer);
ysr@777 1725 sprintf(buffer, " at offset %d ", offset());
ysr@777 1726 len += strlen(buffer);
duke@435 1727 char * real_msg = new char[len];
ysr@777 1728 sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
duke@435 1729
duke@435 1730 // Call indirectly to solve generation ordering problem
twisti@1162 1731 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
duke@435 1732
duke@435 1733 // Make some space on stack above the current register window.
duke@435 1734 // Enough to hold 8 64-bit registers.
duke@435 1735 add(SP,-8*8,SP);
duke@435 1736
duke@435 1737 // Save some 64-bit registers; a normal 'save' chops the heads off
duke@435 1738 // of 64-bit longs in the 32-bit build.
duke@435 1739 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
duke@435 1740 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
duke@435 1741 mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
duke@435 1742 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
duke@435 1743
duke@435 1744 set((intptr_t)real_msg, O1);
duke@435 1745 // Load address to call to into O7
duke@435 1746 load_ptr_contents(a, O7);
duke@435 1747 // Register call to verify_oop_subroutine
duke@435 1748 callr(O7, G0);
duke@435 1749 delayed()->nop();
duke@435 1750 // recover frame size
duke@435 1751 add(SP, 8*8,SP);
duke@435 1752 }
duke@435 1753
duke@435 1754 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
duke@435 1755 // plausibility check for oops
duke@435 1756 if (!VerifyOops) return;
duke@435 1757
duke@435 1758 char buffer[64];
duke@435 1759 sprintf(buffer, "%d", line);
duke@435 1760 int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
duke@435 1761 sprintf(buffer, " at SP+%d ", addr.disp());
duke@435 1762 len += strlen(buffer);
duke@435 1763 char * real_msg = new char[len];
duke@435 1764 sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
duke@435 1765
duke@435 1766 // Call indirectly to solve generation ordering problem
twisti@1162 1767 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
duke@435 1768
duke@435 1769 // Make some space on stack above the current register window.
duke@435 1770 // Enough to hold 8 64-bit registers.
duke@435 1771 add(SP,-8*8,SP);
duke@435 1772
duke@435 1773 // Save some 64-bit registers; a normal 'save' chops the heads off
duke@435 1774 // of 64-bit longs in the 32-bit build.
duke@435 1775 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
duke@435 1776 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
duke@435 1777 ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
duke@435 1778 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
duke@435 1779
duke@435 1780 set((intptr_t)real_msg, O1);
duke@435 1781 // Load address to call to into O7
duke@435 1782 load_ptr_contents(a, O7);
duke@435 1783 // Register call to verify_oop_subroutine
duke@435 1784 callr(O7, G0);
duke@435 1785 delayed()->nop();
duke@435 1786 // recover frame size
duke@435 1787 add(SP, 8*8,SP);
duke@435 1788 }
duke@435 1789
duke@435 1790 // side-door communication with signalHandler in os_solaris.cpp
duke@435 1791 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
duke@435 1792
duke@435 1793 // This macro is expanded just once; it creates shared code. Contract:
duke@435 1794 // receives an oop in O0. Must restore O0 & O7 from TLS. Must not smash ANY
duke@435 1795 // registers, including flags. May not use a register 'save', as this blows
duke@435 1796 // the high bits of the O-regs if they contain Long values. Acts as a 'leaf'
duke@435 1797 // call.
duke@435 1798 void MacroAssembler::verify_oop_subroutine() {
duke@435 1799 assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
duke@435 1800
duke@435 1801 // Leaf call; no frame.
duke@435 1802 Label succeed, fail, null_or_fail;
duke@435 1803
duke@435 1804 // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
duke@435 1805 // O0 is now the oop to be checked. O7 is the return address.
duke@435 1806 Register O0_obj = O0;
duke@435 1807
duke@435 1808 // Save some more registers for temps.
duke@435 1809 stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
duke@435 1810 stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
duke@435 1811 stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
duke@435 1812 stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
duke@435 1813
duke@435 1814 // Save flags
duke@435 1815 Register O5_save_flags = O5;
duke@435 1816 rdccr( O5_save_flags );
duke@435 1817
duke@435 1818 { // count number of verifies
duke@435 1819 Register O2_adr = O2;
duke@435 1820 Register O3_accum = O3;
twisti@1162 1821 inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
duke@435 1822 }
duke@435 1823
duke@435 1824 Register O2_mask = O2;
duke@435 1825 Register O3_bits = O3;
duke@435 1826 Register O4_temp = O4;
duke@435 1827
duke@435 1828 // mark lower end of faulting range
duke@435 1829 assert(_verify_oop_implicit_branch[0] == NULL, "set once");
duke@435 1830 _verify_oop_implicit_branch[0] = pc();
duke@435 1831
duke@435 1832 // We can't check the mark oop because it could be in the process of
duke@435 1833 // locking or unlocking while this is running.
duke@435 1834 set(Universe::verify_oop_mask (), O2_mask);
duke@435 1835 set(Universe::verify_oop_bits (), O3_bits);
duke@435 1836
duke@435 1837 // assert((obj & oop_mask) == oop_bits);
duke@435 1838 and3(O0_obj, O2_mask, O4_temp);
duke@435 1839 cmp(O4_temp, O3_bits);
duke@435 1840 brx(notEqual, false, pn, null_or_fail);
duke@435 1841 delayed()->nop();
duke@435 1842
duke@435 1843 if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
duke@435 1844 // the null_or_fail case is useless; must test for null separately
duke@435 1845 br_null(O0_obj, false, pn, succeed);
duke@435 1846 delayed()->nop();
duke@435 1847 }
duke@435 1848
duke@435 1849 // Check the klassOop of this object for being in the right area of memory.
duke@435 1850 // Cannot do the load in the delay above slot in case O0 is null
coleenp@548 1851 load_klass(O0_obj, O0_obj);
duke@435 1852 // assert((klass & klass_mask) == klass_bits);
duke@435 1853 if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
duke@435 1854 set(Universe::verify_klass_mask(), O2_mask);
duke@435 1855 if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
duke@435 1856 set(Universe::verify_klass_bits(), O3_bits);
duke@435 1857 and3(O0_obj, O2_mask, O4_temp);
duke@435 1858 cmp(O4_temp, O3_bits);
duke@435 1859 brx(notEqual, false, pn, fail);
coleenp@548 1860 delayed()->nop();
duke@435 1861 // Check the klass's klass
coleenp@548 1862 load_klass(O0_obj, O0_obj);
duke@435 1863 and3(O0_obj, O2_mask, O4_temp);
duke@435 1864 cmp(O4_temp, O3_bits);
duke@435 1865 brx(notEqual, false, pn, fail);
duke@435 1866 delayed()->wrccr( O5_save_flags ); // Restore CCR's
duke@435 1867
duke@435 1868 // mark upper end of faulting range
duke@435 1869 _verify_oop_implicit_branch[1] = pc();
duke@435 1870
duke@435 1871 //-----------------------
duke@435 1872 // all tests pass
duke@435 1873 bind(succeed);
duke@435 1874
duke@435 1875 // Restore prior 64-bit registers
duke@435 1876 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
duke@435 1877 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
duke@435 1878 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
duke@435 1879 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
duke@435 1880 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
duke@435 1881 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
duke@435 1882
duke@435 1883 retl(); // Leaf return; restore prior O7 in delay slot
duke@435 1884 delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
duke@435 1885
duke@435 1886 //-----------------------
duke@435 1887 bind(null_or_fail); // nulls are less common but OK
duke@435 1888 br_null(O0_obj, false, pt, succeed);
duke@435 1889 delayed()->wrccr( O5_save_flags ); // Restore CCR's
duke@435 1890
duke@435 1891 //-----------------------
duke@435 1892 // report failure:
duke@435 1893 bind(fail);
duke@435 1894 _verify_oop_implicit_branch[2] = pc();
duke@435 1895
duke@435 1896 wrccr( O5_save_flags ); // Restore CCR's
duke@435 1897
duke@435 1898 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1899
duke@435 1900 // stop_subroutine expects message pointer in I1.
duke@435 1901 mov(I1, O1);
duke@435 1902
duke@435 1903 // Restore prior 64-bit registers
duke@435 1904 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
duke@435 1905 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
duke@435 1906 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
duke@435 1907 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
duke@435 1908 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
duke@435 1909 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
duke@435 1910
duke@435 1911 // factor long stop-sequence into subroutine to save space
duke@435 1912 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
duke@435 1913
duke@435 1914 // call indirectly to solve generation ordering problem
twisti@1162 1915 AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
twisti@1162 1916 load_ptr_contents(al, O5);
duke@435 1917 jmpl(O5, 0, O7);
duke@435 1918 delayed()->nop();
duke@435 1919 }
duke@435 1920
duke@435 1921
duke@435 1922 void MacroAssembler::stop(const char* msg) {
duke@435 1923 // save frame first to get O7 for return address
duke@435 1924 // add one word to size in case struct is odd number of words long
duke@435 1925 // It must be doubleword-aligned for storing doubles into it.
duke@435 1926
duke@435 1927 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1928
duke@435 1929 // stop_subroutine expects message pointer in I1.
duke@435 1930 set((intptr_t)msg, O1);
duke@435 1931
duke@435 1932 // factor long stop-sequence into subroutine to save space
duke@435 1933 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
duke@435 1934
duke@435 1935 // call indirectly to solve generation ordering problem
twisti@1162 1936 AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
duke@435 1937 load_ptr_contents(a, O5);
duke@435 1938 jmpl(O5, 0, O7);
duke@435 1939 delayed()->nop();
duke@435 1940
duke@435 1941 breakpoint_trap(); // make stop actually stop rather than writing
duke@435 1942 // unnoticeable results in the output files.
duke@435 1943
duke@435 1944 // restore(); done in callee to save space!
duke@435 1945 }
duke@435 1946
duke@435 1947
duke@435 1948 void MacroAssembler::warn(const char* msg) {
duke@435 1949 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
duke@435 1950 RegistersForDebugging::save_registers(this);
duke@435 1951 mov(O0, L0);
duke@435 1952 set((intptr_t)msg, O0);
duke@435 1953 call( CAST_FROM_FN_PTR(address, warning) );
duke@435 1954 delayed()->nop();
duke@435 1955 // ret();
duke@435 1956 // delayed()->restore();
duke@435 1957 RegistersForDebugging::restore_registers(this, L0);
duke@435 1958 restore();
duke@435 1959 }
duke@435 1960
duke@435 1961
duke@435 1962 void MacroAssembler::untested(const char* what) {
duke@435 1963 // We must be able to turn interactive prompting off
duke@435 1964 // in order to run automated test scripts on the VM
duke@435 1965 // Use the flag ShowMessageBoxOnError
duke@435 1966
duke@435 1967 char* b = new char[1024];
duke@435 1968 sprintf(b, "untested: %s", what);
duke@435 1969
duke@435 1970 if ( ShowMessageBoxOnError ) stop(b);
duke@435 1971 else warn(b);
duke@435 1972 }
duke@435 1973
duke@435 1974
duke@435 1975 void MacroAssembler::stop_subroutine() {
duke@435 1976 RegistersForDebugging::save_registers(this);
duke@435 1977
duke@435 1978 // for the sake of the debugger, stick a PC on the current frame
duke@435 1979 // (this assumes that the caller has performed an extra "save")
duke@435 1980 mov(I7, L7);
duke@435 1981 add(O7, -7 * BytesPerInt, I7);
duke@435 1982
duke@435 1983 save_frame(); // one more save to free up another O7 register
duke@435 1984 mov(I0, O1); // addr of reg save area
duke@435 1985
duke@435 1986 // We expect pointer to message in I1. Caller must set it up in O1
duke@435 1987 mov(I1, O0); // get msg
duke@435 1988 call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
duke@435 1989 delayed()->nop();
duke@435 1990
duke@435 1991 restore();
duke@435 1992
duke@435 1993 RegistersForDebugging::restore_registers(this, O0);
duke@435 1994
duke@435 1995 save_frame(0);
duke@435 1996 call(CAST_FROM_FN_PTR(address,breakpoint));
duke@435 1997 delayed()->nop();
duke@435 1998 restore();
duke@435 1999
duke@435 2000 mov(L7, I7);
duke@435 2001 retl();
duke@435 2002 delayed()->restore(); // see stop above
duke@435 2003 }
duke@435 2004
duke@435 2005
duke@435 2006 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
duke@435 2007 if ( ShowMessageBoxOnError ) {
duke@435 2008 JavaThreadState saved_state = JavaThread::current()->thread_state();
duke@435 2009 JavaThread::current()->set_thread_state(_thread_in_vm);
duke@435 2010 {
duke@435 2011 // In order to get locks work, we need to fake a in_VM state
duke@435 2012 ttyLocker ttyl;
duke@435 2013 ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
duke@435 2014 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
duke@435 2015 ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
duke@435 2016 }
duke@435 2017 if (os::message_box(msg, "Execution stopped, print registers?"))
duke@435 2018 regs->print(::tty);
duke@435 2019 }
duke@435 2020 ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
duke@435 2021 }
duke@435 2022 else
duke@435 2023 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
duke@435 2024 assert(false, "error");
duke@435 2025 }
duke@435 2026
duke@435 2027
duke@435 2028 #ifndef PRODUCT
duke@435 2029 void MacroAssembler::test() {
duke@435 2030 ResourceMark rm;
duke@435 2031
duke@435 2032 CodeBuffer cb("test", 10000, 10000);
duke@435 2033 MacroAssembler* a = new MacroAssembler(&cb);
duke@435 2034 VM_Version::allow_all();
duke@435 2035 a->test_v9();
duke@435 2036 a->test_v8_onlys();
duke@435 2037 VM_Version::revert();
duke@435 2038
duke@435 2039 StubRoutines::Sparc::test_stop_entry()();
duke@435 2040 }
duke@435 2041 #endif
duke@435 2042
duke@435 2043
duke@435 2044 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
duke@435 2045 subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
duke@435 2046 Label no_extras;
duke@435 2047 br( negative, true, pt, no_extras ); // if neg, clear reg
twisti@1162 2048 delayed()->set(0, Rresult); // annuled, so only if taken
duke@435 2049 bind( no_extras );
duke@435 2050 }
duke@435 2051
duke@435 2052
duke@435 2053 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
duke@435 2054 #ifdef _LP64
duke@435 2055 add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
duke@435 2056 #else
duke@435 2057 add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
duke@435 2058 #endif
duke@435 2059 bclr(1, Rresult);
duke@435 2060 sll(Rresult, LogBytesPerWord, Rresult); // Rresult has total frame bytes
duke@435 2061 }
duke@435 2062
duke@435 2063
duke@435 2064 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
duke@435 2065 calc_frame_size(Rextra_words, Rresult);
duke@435 2066 neg(Rresult);
duke@435 2067 save(SP, Rresult, SP);
duke@435 2068 }
duke@435 2069
duke@435 2070
duke@435 2071 // ---------------------------------------------------------
duke@435 2072 Assembler::RCondition cond2rcond(Assembler::Condition c) {
duke@435 2073 switch (c) {
duke@435 2074 /*case zero: */
duke@435 2075 case Assembler::equal: return Assembler::rc_z;
duke@435 2076 case Assembler::lessEqual: return Assembler::rc_lez;
duke@435 2077 case Assembler::less: return Assembler::rc_lz;
duke@435 2078 /*case notZero:*/
duke@435 2079 case Assembler::notEqual: return Assembler::rc_nz;
duke@435 2080 case Assembler::greater: return Assembler::rc_gz;
duke@435 2081 case Assembler::greaterEqual: return Assembler::rc_gez;
duke@435 2082 }
duke@435 2083 ShouldNotReachHere();
duke@435 2084 return Assembler::rc_z;
duke@435 2085 }
duke@435 2086
duke@435 2087 // compares register with zero and branches. NOT FOR USE WITH 64-bit POINTERS
duke@435 2088 void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
duke@435 2089 tst(s1);
duke@435 2090 br (c, a, p, L);
duke@435 2091 }
duke@435 2092
duke@435 2093
duke@435 2094 // Compares a pointer register with zero and branches on null.
duke@435 2095 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
duke@435 2096 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
duke@435 2097 assert_not_delayed();
duke@435 2098 #ifdef _LP64
duke@435 2099 bpr( rc_z, a, p, s1, L );
duke@435 2100 #else
duke@435 2101 tst(s1);
duke@435 2102 br ( zero, a, p, L );
duke@435 2103 #endif
duke@435 2104 }
duke@435 2105
duke@435 2106 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
duke@435 2107 assert_not_delayed();
duke@435 2108 #ifdef _LP64
duke@435 2109 bpr( rc_nz, a, p, s1, L );
duke@435 2110 #else
duke@435 2111 tst(s1);
duke@435 2112 br ( notZero, a, p, L );
duke@435 2113 #endif
duke@435 2114 }
duke@435 2115
ysr@777 2116 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
ysr@777 2117 Register s1, address d,
ysr@777 2118 relocInfo::relocType rt ) {
ysr@777 2119 if (VM_Version::v9_instructions_work()) {
ysr@777 2120 bpr(rc, a, p, s1, d, rt);
ysr@777 2121 } else {
ysr@777 2122 tst(s1);
ysr@777 2123 br(reg_cond_to_cc_cond(rc), a, p, d, rt);
ysr@777 2124 }
ysr@777 2125 }
ysr@777 2126
ysr@777 2127 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
ysr@777 2128 Register s1, Label& L ) {
ysr@777 2129 if (VM_Version::v9_instructions_work()) {
ysr@777 2130 bpr(rc, a, p, s1, L);
ysr@777 2131 } else {
ysr@777 2132 tst(s1);
ysr@777 2133 br(reg_cond_to_cc_cond(rc), a, p, L);
ysr@777 2134 }
ysr@777 2135 }
ysr@777 2136
duke@435 2137
duke@435 2138 // instruction sequences factored across compiler & interpreter
duke@435 2139
duke@435 2140
duke@435 2141 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
duke@435 2142 Register Rb_hi, Register Rb_low,
duke@435 2143 Register Rresult) {
duke@435 2144
duke@435 2145 Label check_low_parts, done;
duke@435 2146
duke@435 2147 cmp(Ra_hi, Rb_hi ); // compare hi parts
duke@435 2148 br(equal, true, pt, check_low_parts);
duke@435 2149 delayed()->cmp(Ra_low, Rb_low); // test low parts
duke@435 2150
duke@435 2151 // And, with an unsigned comparison, it does not matter if the numbers
duke@435 2152 // are negative or not.
duke@435 2153 // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
duke@435 2154 // The second one is bigger (unsignedly).
duke@435 2155
duke@435 2156 // Other notes: The first move in each triplet can be unconditional
duke@435 2157 // (and therefore probably prefetchable).
duke@435 2158 // And the equals case for the high part does not need testing,
duke@435 2159 // since that triplet is reached only after finding the high halves differ.
duke@435 2160
duke@435 2161 if (VM_Version::v9_instructions_work()) {
duke@435 2162
duke@435 2163 mov ( -1, Rresult);
duke@435 2164 ba( false, done ); delayed()-> movcc(greater, false, icc, 1, Rresult);
duke@435 2165 }
duke@435 2166 else {
duke@435 2167 br(less, true, pt, done); delayed()-> set(-1, Rresult);
duke@435 2168 br(greater, true, pt, done); delayed()-> set( 1, Rresult);
duke@435 2169 }
duke@435 2170
duke@435 2171 bind( check_low_parts );
duke@435 2172
duke@435 2173 if (VM_Version::v9_instructions_work()) {
duke@435 2174 mov( -1, Rresult);
duke@435 2175 movcc(equal, false, icc, 0, Rresult);
duke@435 2176 movcc(greaterUnsigned, false, icc, 1, Rresult);
duke@435 2177 }
duke@435 2178 else {
duke@435 2179 set(-1, Rresult);
duke@435 2180 br(equal, true, pt, done); delayed()->set( 0, Rresult);
duke@435 2181 br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
duke@435 2182 }
duke@435 2183 bind( done );
duke@435 2184 }
duke@435 2185
duke@435 2186 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
duke@435 2187 subcc( G0, Rlow, Rlow );
duke@435 2188 subc( G0, Rhi, Rhi );
duke@435 2189 }
duke@435 2190
duke@435 2191 void MacroAssembler::lshl( Register Rin_high, Register Rin_low,
duke@435 2192 Register Rcount,
duke@435 2193 Register Rout_high, Register Rout_low,
duke@435 2194 Register Rtemp ) {
duke@435 2195
duke@435 2196
duke@435 2197 Register Ralt_count = Rtemp;
duke@435 2198 Register Rxfer_bits = Rtemp;
duke@435 2199
duke@435 2200 assert( Ralt_count != Rin_high
duke@435 2201 && Ralt_count != Rin_low
duke@435 2202 && Ralt_count != Rcount
duke@435 2203 && Rxfer_bits != Rin_low
duke@435 2204 && Rxfer_bits != Rin_high
duke@435 2205 && Rxfer_bits != Rcount
duke@435 2206 && Rxfer_bits != Rout_low
duke@435 2207 && Rout_low != Rin_high,
duke@435 2208 "register alias checks");
duke@435 2209
duke@435 2210 Label big_shift, done;
duke@435 2211
duke@435 2212 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2213 // Here we use the 32 bit shifts.
duke@435 2214
duke@435 2215 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
duke@435 2216 subcc(Rcount, 31, Ralt_count);
duke@435 2217 br(greater, true, pn, big_shift);
duke@435 2218 delayed()->
duke@435 2219 dec(Ralt_count);
duke@435 2220
duke@435 2221 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2222
duke@435 2223 // We get the transfer bits by shifting right by 32-count the low
duke@435 2224 // register. This is done by shifting right by 31-count and then by one
duke@435 2225 // more to take care of the special (rare) case where count is zero
duke@435 2226 // (shifting by 32 would not work).
duke@435 2227
duke@435 2228 neg( Ralt_count );
duke@435 2229
duke@435 2230 // The order of the next two instructions is critical in the case where
duke@435 2231 // Rin and Rout are the same and should not be reversed.
duke@435 2232
duke@435 2233 srl( Rin_low, Ralt_count, Rxfer_bits ); // shift right by 31-count
duke@435 2234 if (Rcount != Rout_low) {
duke@435 2235 sll( Rin_low, Rcount, Rout_low ); // low half
duke@435 2236 }
duke@435 2237 sll( Rin_high, Rcount, Rout_high );
duke@435 2238 if (Rcount == Rout_low) {
duke@435 2239 sll( Rin_low, Rcount, Rout_low ); // low half
duke@435 2240 }
duke@435 2241 srl( Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
duke@435 2242 ba (false, done);
duke@435 2243 delayed()->
duke@435 2244 or3( Rout_high, Rxfer_bits, Rout_high); // new hi value: or in shifted old hi part and xfer from low
duke@435 2245
duke@435 2246 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2247 bind(big_shift);
duke@435 2248 sll( Rin_low, Ralt_count, Rout_high );
duke@435 2249 clr( Rout_low );
duke@435 2250
duke@435 2251 bind(done);
duke@435 2252 }
duke@435 2253
duke@435 2254
duke@435 2255 void MacroAssembler::lshr( Register Rin_high, Register Rin_low,
duke@435 2256 Register Rcount,
duke@435 2257 Register Rout_high, Register Rout_low,
duke@435 2258 Register Rtemp ) {
duke@435 2259
duke@435 2260 Register Ralt_count = Rtemp;
duke@435 2261 Register Rxfer_bits = Rtemp;
duke@435 2262
duke@435 2263 assert( Ralt_count != Rin_high
duke@435 2264 && Ralt_count != Rin_low
duke@435 2265 && Ralt_count != Rcount
duke@435 2266 && Rxfer_bits != Rin_low
duke@435 2267 && Rxfer_bits != Rin_high
duke@435 2268 && Rxfer_bits != Rcount
duke@435 2269 && Rxfer_bits != Rout_high
duke@435 2270 && Rout_high != Rin_low,
duke@435 2271 "register alias checks");
duke@435 2272
duke@435 2273 Label big_shift, done;
duke@435 2274
duke@435 2275 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2276 // Here we use the 32 bit shifts.
duke@435 2277
duke@435 2278 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
duke@435 2279 subcc(Rcount, 31, Ralt_count);
duke@435 2280 br(greater, true, pn, big_shift);
duke@435 2281 delayed()->dec(Ralt_count);
duke@435 2282
duke@435 2283 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2284
duke@435 2285 // We get the transfer bits by shifting left by 32-count the high
duke@435 2286 // register. This is done by shifting left by 31-count and then by one
duke@435 2287 // more to take care of the special (rare) case where count is zero
duke@435 2288 // (shifting by 32 would not work).
duke@435 2289
duke@435 2290 neg( Ralt_count );
duke@435 2291 if (Rcount != Rout_low) {
duke@435 2292 srl( Rin_low, Rcount, Rout_low );
duke@435 2293 }
duke@435 2294
duke@435 2295 // The order of the next two instructions is critical in the case where
duke@435 2296 // Rin and Rout are the same and should not be reversed.
duke@435 2297
duke@435 2298 sll( Rin_high, Ralt_count, Rxfer_bits ); // shift left by 31-count
duke@435 2299 sra( Rin_high, Rcount, Rout_high ); // high half
duke@435 2300 sll( Rxfer_bits, 1, Rxfer_bits ); // shift left by one more
duke@435 2301 if (Rcount == Rout_low) {
duke@435 2302 srl( Rin_low, Rcount, Rout_low );
duke@435 2303 }
duke@435 2304 ba (false, done);
duke@435 2305 delayed()->
duke@435 2306 or3( Rout_low, Rxfer_bits, Rout_low ); // new low value: or shifted old low part and xfer from high
duke@435 2307
duke@435 2308 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2309 bind(big_shift);
duke@435 2310
duke@435 2311 sra( Rin_high, Ralt_count, Rout_low );
duke@435 2312 sra( Rin_high, 31, Rout_high ); // sign into hi
duke@435 2313
duke@435 2314 bind( done );
duke@435 2315 }
duke@435 2316
duke@435 2317
duke@435 2318
duke@435 2319 void MacroAssembler::lushr( Register Rin_high, Register Rin_low,
duke@435 2320 Register Rcount,
duke@435 2321 Register Rout_high, Register Rout_low,
duke@435 2322 Register Rtemp ) {
duke@435 2323
duke@435 2324 Register Ralt_count = Rtemp;
duke@435 2325 Register Rxfer_bits = Rtemp;
duke@435 2326
duke@435 2327 assert( Ralt_count != Rin_high
duke@435 2328 && Ralt_count != Rin_low
duke@435 2329 && Ralt_count != Rcount
duke@435 2330 && Rxfer_bits != Rin_low
duke@435 2331 && Rxfer_bits != Rin_high
duke@435 2332 && Rxfer_bits != Rcount
duke@435 2333 && Rxfer_bits != Rout_high
duke@435 2334 && Rout_high != Rin_low,
duke@435 2335 "register alias checks");
duke@435 2336
duke@435 2337 Label big_shift, done;
duke@435 2338
duke@435 2339 // This code can be optimized to use the 64 bit shifts in V9.
duke@435 2340 // Here we use the 32 bit shifts.
duke@435 2341
duke@435 2342 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
duke@435 2343 subcc(Rcount, 31, Ralt_count);
duke@435 2344 br(greater, true, pn, big_shift);
duke@435 2345 delayed()->dec(Ralt_count);
duke@435 2346
duke@435 2347 // shift < 32 bits, Ralt_count = Rcount-31
duke@435 2348
duke@435 2349 // We get the transfer bits by shifting left by 32-count the high
duke@435 2350 // register. This is done by shifting left by 31-count and then by one
duke@435 2351 // more to take care of the special (rare) case where count is zero
duke@435 2352 // (shifting by 32 would not work).
duke@435 2353
duke@435 2354 neg( Ralt_count );
duke@435 2355 if (Rcount != Rout_low) {
duke@435 2356 srl( Rin_low, Rcount, Rout_low );
duke@435 2357 }
duke@435 2358
duke@435 2359 // The order of the next two instructions is critical in the case where
duke@435 2360 // Rin and Rout are the same and should not be reversed.
duke@435 2361
duke@435 2362 sll( Rin_high, Ralt_count, Rxfer_bits ); // shift left by 31-count
duke@435 2363 srl( Rin_high, Rcount, Rout_high ); // high half
duke@435 2364 sll( Rxfer_bits, 1, Rxfer_bits ); // shift left by one more
duke@435 2365 if (Rcount == Rout_low) {
duke@435 2366 srl( Rin_low, Rcount, Rout_low );
duke@435 2367 }
duke@435 2368 ba (false, done);
duke@435 2369 delayed()->
duke@435 2370 or3( Rout_low, Rxfer_bits, Rout_low ); // new low value: or shifted old low part and xfer from high
duke@435 2371
duke@435 2372 // shift >= 32 bits, Ralt_count = Rcount-32
duke@435 2373 bind(big_shift);
duke@435 2374
duke@435 2375 srl( Rin_high, Ralt_count, Rout_low );
duke@435 2376 clr( Rout_high );
duke@435 2377
duke@435 2378 bind( done );
duke@435 2379 }
duke@435 2380
duke@435 2381 #ifdef _LP64
duke@435 2382 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
duke@435 2383 cmp(Ra, Rb);
duke@435 2384 mov( -1, Rresult);
duke@435 2385 movcc(equal, false, xcc, 0, Rresult);
duke@435 2386 movcc(greater, false, xcc, 1, Rresult);
duke@435 2387 }
duke@435 2388 #endif
duke@435 2389
duke@435 2390
twisti@1858 2391 void MacroAssembler::load_sized_value(Address src, Register dst,
twisti@1858 2392 size_t size_in_bytes, bool is_signed) {
twisti@1858 2393 switch (size_in_bytes) {
twisti@1858 2394 case 8: ldx(src, dst); break;
twisti@1858 2395 case 4: ld( src, dst); break;
twisti@1858 2396 case 2: is_signed ? ldsh(src, dst) : lduh(src, dst); break;
twisti@1858 2397 case 1: is_signed ? ldsb(src, dst) : ldub(src, dst); break;
twisti@1858 2398 default: ShouldNotReachHere();
twisti@1858 2399 }
twisti@1858 2400 }
twisti@1858 2401
twisti@1858 2402
duke@435 2403 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
duke@435 2404 FloatRegister Fa, FloatRegister Fb,
duke@435 2405 Register Rresult) {
duke@435 2406
duke@435 2407 fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
duke@435 2408
duke@435 2409 Condition lt = unordered_result == -1 ? f_unorderedOrLess : f_less;
duke@435 2410 Condition eq = f_equal;
duke@435 2411 Condition gt = unordered_result == 1 ? f_unorderedOrGreater : f_greater;
duke@435 2412
duke@435 2413 if (VM_Version::v9_instructions_work()) {
duke@435 2414
duke@435 2415 mov( -1, Rresult );
duke@435 2416 movcc( eq, true, fcc0, 0, Rresult );
duke@435 2417 movcc( gt, true, fcc0, 1, Rresult );
duke@435 2418
duke@435 2419 } else {
duke@435 2420 Label done;
duke@435 2421
duke@435 2422 set( -1, Rresult );
duke@435 2423 //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
duke@435 2424 fb( eq, true, pn, done); delayed()->set( 0, Rresult );
duke@435 2425 fb( gt, true, pn, done); delayed()->set( 1, Rresult );
duke@435 2426
duke@435 2427 bind (done);
duke@435 2428 }
duke@435 2429 }
duke@435 2430
duke@435 2431
duke@435 2432 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2433 {
duke@435 2434 if (VM_Version::v9_instructions_work()) {
duke@435 2435 Assembler::fneg(w, s, d);
duke@435 2436 } else {
duke@435 2437 if (w == FloatRegisterImpl::S) {
duke@435 2438 Assembler::fneg(w, s, d);
duke@435 2439 } else if (w == FloatRegisterImpl::D) {
duke@435 2440 // number() does a sanity check on the alignment.
duke@435 2441 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2442 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2443
duke@435 2444 Assembler::fneg(FloatRegisterImpl::S, s, d);
duke@435 2445 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2446 } else {
duke@435 2447 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2448
duke@435 2449 // number() does a sanity check on the alignment.
duke@435 2450 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2451 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2452
duke@435 2453 Assembler::fneg(FloatRegisterImpl::S, s, d);
duke@435 2454 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2455 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2456 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2457 }
duke@435 2458 }
duke@435 2459 }
duke@435 2460
duke@435 2461 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2462 {
duke@435 2463 if (VM_Version::v9_instructions_work()) {
duke@435 2464 Assembler::fmov(w, s, d);
duke@435 2465 } else {
duke@435 2466 if (w == FloatRegisterImpl::S) {
duke@435 2467 Assembler::fmov(w, s, d);
duke@435 2468 } else if (w == FloatRegisterImpl::D) {
duke@435 2469 // number() does a sanity check on the alignment.
duke@435 2470 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2471 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2472
duke@435 2473 Assembler::fmov(FloatRegisterImpl::S, s, d);
duke@435 2474 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2475 } else {
duke@435 2476 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2477
duke@435 2478 // number() does a sanity check on the alignment.
duke@435 2479 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2480 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2481
duke@435 2482 Assembler::fmov(FloatRegisterImpl::S, s, d);
duke@435 2483 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2484 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2485 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2486 }
duke@435 2487 }
duke@435 2488 }
duke@435 2489
duke@435 2490 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
duke@435 2491 {
duke@435 2492 if (VM_Version::v9_instructions_work()) {
duke@435 2493 Assembler::fabs(w, s, d);
duke@435 2494 } else {
duke@435 2495 if (w == FloatRegisterImpl::S) {
duke@435 2496 Assembler::fabs(w, s, d);
duke@435 2497 } else if (w == FloatRegisterImpl::D) {
duke@435 2498 // number() does a sanity check on the alignment.
duke@435 2499 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
duke@435 2500 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
duke@435 2501
duke@435 2502 Assembler::fabs(FloatRegisterImpl::S, s, d);
duke@435 2503 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2504 } else {
duke@435 2505 assert(w == FloatRegisterImpl::Q, "Invalid float register width");
duke@435 2506
duke@435 2507 // number() does a sanity check on the alignment.
duke@435 2508 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
duke@435 2509 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
duke@435 2510
duke@435 2511 Assembler::fabs(FloatRegisterImpl::S, s, d);
duke@435 2512 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
duke@435 2513 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
duke@435 2514 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
duke@435 2515 }
duke@435 2516 }
duke@435 2517 }
duke@435 2518
duke@435 2519 void MacroAssembler::save_all_globals_into_locals() {
duke@435 2520 mov(G1,L1);
duke@435 2521 mov(G2,L2);
duke@435 2522 mov(G3,L3);
duke@435 2523 mov(G4,L4);
duke@435 2524 mov(G5,L5);
duke@435 2525 mov(G6,L6);
duke@435 2526 mov(G7,L7);
duke@435 2527 }
duke@435 2528
duke@435 2529 void MacroAssembler::restore_globals_from_locals() {
duke@435 2530 mov(L1,G1);
duke@435 2531 mov(L2,G2);
duke@435 2532 mov(L3,G3);
duke@435 2533 mov(L4,G4);
duke@435 2534 mov(L5,G5);
duke@435 2535 mov(L6,G6);
duke@435 2536 mov(L7,G7);
duke@435 2537 }
duke@435 2538
duke@435 2539 // Use for 64 bit operation.
duke@435 2540 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
duke@435 2541 {
duke@435 2542 // store ptr_reg as the new top value
duke@435 2543 #ifdef _LP64
duke@435 2544 casx(top_ptr_reg, top_reg, ptr_reg);
duke@435 2545 #else
duke@435 2546 cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
duke@435 2547 #endif // _LP64
duke@435 2548 }
duke@435 2549
duke@435 2550 // [RGV] This routine does not handle 64 bit operations.
duke@435 2551 // use casx_under_lock() or casx directly!!!
duke@435 2552 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
duke@435 2553 {
duke@435 2554 // store ptr_reg as the new top value
duke@435 2555 if (VM_Version::v9_instructions_work()) {
duke@435 2556 cas(top_ptr_reg, top_reg, ptr_reg);
duke@435 2557 } else {
duke@435 2558
duke@435 2559 // If the register is not an out nor global, it is not visible
duke@435 2560 // after the save. Allocate a register for it, save its
duke@435 2561 // value in the register save area (the save may not flush
duke@435 2562 // registers to the save area).
duke@435 2563
duke@435 2564 Register top_ptr_reg_after_save;
duke@435 2565 Register top_reg_after_save;
duke@435 2566 Register ptr_reg_after_save;
duke@435 2567
duke@435 2568 if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
duke@435 2569 top_ptr_reg_after_save = top_ptr_reg->after_save();
duke@435 2570 } else {
duke@435 2571 Address reg_save_addr = top_ptr_reg->address_in_saved_window();
duke@435 2572 top_ptr_reg_after_save = L0;
duke@435 2573 st(top_ptr_reg, reg_save_addr);
duke@435 2574 }
duke@435 2575
duke@435 2576 if (top_reg->is_out() || top_reg->is_global()) {
duke@435 2577 top_reg_after_save = top_reg->after_save();
duke@435 2578 } else {
duke@435 2579 Address reg_save_addr = top_reg->address_in_saved_window();
duke@435 2580 top_reg_after_save = L1;
duke@435 2581 st(top_reg, reg_save_addr);
duke@435 2582 }
duke@435 2583
duke@435 2584 if (ptr_reg->is_out() || ptr_reg->is_global()) {
duke@435 2585 ptr_reg_after_save = ptr_reg->after_save();
duke@435 2586 } else {
duke@435 2587 Address reg_save_addr = ptr_reg->address_in_saved_window();
duke@435 2588 ptr_reg_after_save = L2;
duke@435 2589 st(ptr_reg, reg_save_addr);
duke@435 2590 }
duke@435 2591
duke@435 2592 const Register& lock_reg = L3;
duke@435 2593 const Register& lock_ptr_reg = L4;
duke@435 2594 const Register& value_reg = L5;
duke@435 2595 const Register& yield_reg = L6;
duke@435 2596 const Register& yieldall_reg = L7;
duke@435 2597
duke@435 2598 save_frame();
duke@435 2599
duke@435 2600 if (top_ptr_reg_after_save == L0) {
duke@435 2601 ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
duke@435 2602 }
duke@435 2603
duke@435 2604 if (top_reg_after_save == L1) {
duke@435 2605 ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
duke@435 2606 }
duke@435 2607
duke@435 2608 if (ptr_reg_after_save == L2) {
duke@435 2609 ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
duke@435 2610 }
duke@435 2611
duke@435 2612 Label(retry_get_lock);
duke@435 2613 Label(not_same);
duke@435 2614 Label(dont_yield);
duke@435 2615
duke@435 2616 assert(lock_addr, "lock_address should be non null for v8");
duke@435 2617 set((intptr_t)lock_addr, lock_ptr_reg);
duke@435 2618 // Initialize yield counter
duke@435 2619 mov(G0,yield_reg);
duke@435 2620 mov(G0, yieldall_reg);
duke@435 2621 set(StubRoutines::Sparc::locked, lock_reg);
duke@435 2622
duke@435 2623 bind(retry_get_lock);
duke@435 2624 cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
duke@435 2625 br(Assembler::less, false, Assembler::pt, dont_yield);
duke@435 2626 delayed()->nop();
duke@435 2627
duke@435 2628 if(use_call_vm) {
duke@435 2629 Untested("Need to verify global reg consistancy");
duke@435 2630 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
duke@435 2631 } else {
duke@435 2632 // Save the regs and make space for a C call
duke@435 2633 save(SP, -96, SP);
duke@435 2634 save_all_globals_into_locals();
duke@435 2635 call(CAST_FROM_FN_PTR(address,os::yield_all));
duke@435 2636 delayed()->mov(yieldall_reg, O0);
duke@435 2637 restore_globals_from_locals();
duke@435 2638 restore();
duke@435 2639 }
duke@435 2640
duke@435 2641 // reset the counter
duke@435 2642 mov(G0,yield_reg);
duke@435 2643 add(yieldall_reg, 1, yieldall_reg);
duke@435 2644
duke@435 2645 bind(dont_yield);
duke@435 2646 // try to get lock
duke@435 2647 swap(lock_ptr_reg, 0, lock_reg);
duke@435 2648
duke@435 2649 // did we get the lock?
duke@435 2650 cmp(lock_reg, StubRoutines::Sparc::unlocked);
duke@435 2651 br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
duke@435 2652 delayed()->add(yield_reg,1,yield_reg);
duke@435 2653
duke@435 2654 // yes, got lock. do we have the same top?
duke@435 2655 ld(top_ptr_reg_after_save, 0, value_reg);
duke@435 2656 cmp(value_reg, top_reg_after_save);
duke@435 2657 br(Assembler::notEqual, false, Assembler::pn, not_same);
duke@435 2658 delayed()->nop();
duke@435 2659
duke@435 2660 // yes, same top.
duke@435 2661 st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
duke@435 2662 membar(Assembler::StoreStore);
duke@435 2663
duke@435 2664 bind(not_same);
duke@435 2665 mov(value_reg, ptr_reg_after_save);
duke@435 2666 st(lock_reg, lock_ptr_reg, 0); // unlock
duke@435 2667
duke@435 2668 restore();
duke@435 2669 }
duke@435 2670 }
duke@435 2671
jrose@1100 2672 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
jrose@1100 2673 Register tmp,
jrose@1100 2674 int offset) {
jrose@1057 2675 intptr_t value = *delayed_value_addr;
jrose@1057 2676 if (value != 0)
jrose@1100 2677 return RegisterOrConstant(value + offset);
jrose@1057 2678
jrose@1057 2679 // load indirectly to solve generation ordering problem
twisti@1162 2680 AddressLiteral a(delayed_value_addr);
jrose@1057 2681 load_ptr_contents(a, tmp);
jrose@1057 2682
jrose@1057 2683 #ifdef ASSERT
jrose@1057 2684 tst(tmp);
jrose@1057 2685 breakpoint_trap(zero, xcc);
jrose@1057 2686 #endif
jrose@1057 2687
jrose@1057 2688 if (offset != 0)
jrose@1057 2689 add(tmp, offset, tmp);
jrose@1057 2690
jrose@1100 2691 return RegisterOrConstant(tmp);
jrose@1057 2692 }
jrose@1057 2693
jrose@1057 2694
twisti@1858 2695 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
twisti@1858 2696 assert(d.register_or_noreg() != G0, "lost side effect");
twisti@1858 2697 if ((s2.is_constant() && s2.as_constant() == 0) ||
twisti@1858 2698 (s2.is_register() && s2.as_register() == G0)) {
twisti@1858 2699 // Do nothing, just move value.
twisti@1858 2700 if (s1.is_register()) {
twisti@1858 2701 if (d.is_constant()) d = temp;
twisti@1858 2702 mov(s1.as_register(), d.as_register());
twisti@1858 2703 return d;
twisti@1858 2704 } else {
twisti@1858 2705 return s1;
twisti@1858 2706 }
twisti@1858 2707 }
twisti@1858 2708
twisti@1858 2709 if (s1.is_register()) {
twisti@1858 2710 assert_different_registers(s1.as_register(), temp);
twisti@1858 2711 if (d.is_constant()) d = temp;
twisti@1858 2712 andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
twisti@1858 2713 return d;
jrose@1058 2714 } else {
twisti@1858 2715 if (s2.is_register()) {
twisti@1858 2716 assert_different_registers(s2.as_register(), temp);
twisti@1858 2717 if (d.is_constant()) d = temp;
twisti@1858 2718 set(s1.as_constant(), temp);
twisti@1858 2719 andn(temp, s2.as_register(), d.as_register());
twisti@1858 2720 return d;
twisti@1858 2721 } else {
twisti@1858 2722 intptr_t res = s1.as_constant() & ~s2.as_constant();
twisti@1858 2723 return res;
twisti@1858 2724 }
jrose@1058 2725 }
jrose@1058 2726 }
jrose@1058 2727
twisti@1858 2728 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
twisti@1858 2729 assert(d.register_or_noreg() != G0, "lost side effect");
twisti@1858 2730 if ((s2.is_constant() && s2.as_constant() == 0) ||
twisti@1858 2731 (s2.is_register() && s2.as_register() == G0)) {
twisti@1858 2732 // Do nothing, just move value.
twisti@1858 2733 if (s1.is_register()) {
twisti@1858 2734 if (d.is_constant()) d = temp;
twisti@1858 2735 mov(s1.as_register(), d.as_register());
twisti@1858 2736 return d;
twisti@1858 2737 } else {
twisti@1858 2738 return s1;
twisti@1858 2739 }
twisti@1858 2740 }
twisti@1858 2741
twisti@1858 2742 if (s1.is_register()) {
twisti@1858 2743 assert_different_registers(s1.as_register(), temp);
twisti@1858 2744 if (d.is_constant()) d = temp;
twisti@1858 2745 add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
twisti@1858 2746 return d;
jrose@1058 2747 } else {
twisti@1858 2748 if (s2.is_register()) {
twisti@1858 2749 assert_different_registers(s2.as_register(), temp);
twisti@1858 2750 if (d.is_constant()) d = temp;
twisti@1858 2751 add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
twisti@1858 2752 return d;
twisti@1858 2753 } else {
twisti@1858 2754 intptr_t res = s1.as_constant() + s2.as_constant();
twisti@1858 2755 return res;
twisti@1858 2756 }
twisti@1858 2757 }
twisti@1858 2758 }
twisti@1858 2759
twisti@1858 2760 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
twisti@1858 2761 assert(d.register_or_noreg() != G0, "lost side effect");
twisti@1858 2762 if (!is_simm13(s2.constant_or_zero()))
twisti@1858 2763 s2 = (s2.as_constant() & 0xFF);
twisti@1858 2764 if ((s2.is_constant() && s2.as_constant() == 0) ||
twisti@1858 2765 (s2.is_register() && s2.as_register() == G0)) {
twisti@1858 2766 // Do nothing, just move value.
twisti@1858 2767 if (s1.is_register()) {
twisti@1858 2768 if (d.is_constant()) d = temp;
twisti@1858 2769 mov(s1.as_register(), d.as_register());
twisti@1858 2770 return d;
twisti@1858 2771 } else {
twisti@1858 2772 return s1;
twisti@1858 2773 }
twisti@1858 2774 }
twisti@1858 2775
twisti@1858 2776 if (s1.is_register()) {
twisti@1858 2777 assert_different_registers(s1.as_register(), temp);
twisti@1858 2778 if (d.is_constant()) d = temp;
twisti@1858 2779 sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
twisti@1858 2780 return d;
twisti@1858 2781 } else {
twisti@1858 2782 if (s2.is_register()) {
twisti@1858 2783 assert_different_registers(s2.as_register(), temp);
twisti@1858 2784 if (d.is_constant()) d = temp;
twisti@1858 2785 set(s1.as_constant(), temp);
twisti@1858 2786 sll_ptr(temp, s2.as_register(), d.as_register());
twisti@1858 2787 return d;
twisti@1858 2788 } else {
twisti@1858 2789 intptr_t res = s1.as_constant() << s2.as_constant();
twisti@1858 2790 return res;
twisti@1858 2791 }
jrose@1058 2792 }
jrose@1058 2793 }
jrose@1058 2794
jrose@1058 2795
jrose@1058 2796 // Look up the method for a megamorphic invokeinterface call.
jrose@1058 2797 // The target method is determined by <intf_klass, itable_index>.
jrose@1058 2798 // The receiver klass is in recv_klass.
jrose@1058 2799 // On success, the result will be in method_result, and execution falls through.
jrose@1058 2800 // On failure, execution transfers to the given label.
jrose@1058 2801 void MacroAssembler::lookup_interface_method(Register recv_klass,
jrose@1058 2802 Register intf_klass,
jrose@1100 2803 RegisterOrConstant itable_index,
jrose@1058 2804 Register method_result,
jrose@1058 2805 Register scan_temp,
jrose@1058 2806 Register sethi_temp,
jrose@1058 2807 Label& L_no_such_interface) {
jrose@1058 2808 assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
jrose@1058 2809 assert(itable_index.is_constant() || itable_index.as_register() == method_result,
jrose@1058 2810 "caller must use same register for non-constant itable index as for method");
jrose@1058 2811
jrose@1058 2812 // Compute start of first itableOffsetEntry (which is at the end of the vtable)
jrose@1058 2813 int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
jrose@1058 2814 int scan_step = itableOffsetEntry::size() * wordSize;
jrose@1058 2815 int vte_size = vtableEntry::size() * wordSize;
jrose@1058 2816
jrose@1058 2817 lduw(recv_klass, instanceKlass::vtable_length_offset() * wordSize, scan_temp);
jrose@1058 2818 // %%% We should store the aligned, prescaled offset in the klassoop.
jrose@1058 2819 // Then the next several instructions would fold away.
jrose@1058 2820
jrose@1058 2821 int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
jrose@1058 2822 int itb_offset = vtable_base;
jrose@1058 2823 if (round_to_unit != 0) {
jrose@1058 2824 // hoist first instruction of round_to(scan_temp, BytesPerLong):
jrose@1058 2825 itb_offset += round_to_unit - wordSize;
jrose@1058 2826 }
jrose@1058 2827 int itb_scale = exact_log2(vtableEntry::size() * wordSize);
jrose@1058 2828 sll(scan_temp, itb_scale, scan_temp);
jrose@1058 2829 add(scan_temp, itb_offset, scan_temp);
jrose@1058 2830 if (round_to_unit != 0) {
jrose@1058 2831 // Round up to align_object_offset boundary
jrose@1058 2832 // see code for instanceKlass::start_of_itable!
jrose@1058 2833 // Was: round_to(scan_temp, BytesPerLong);
jrose@1058 2834 // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
jrose@1058 2835 and3(scan_temp, -round_to_unit, scan_temp);
jrose@1058 2836 }
jrose@1058 2837 add(recv_klass, scan_temp, scan_temp);
jrose@1058 2838
jrose@1058 2839 // Adjust recv_klass by scaled itable_index, so we can free itable_index.
jrose@1100 2840 RegisterOrConstant itable_offset = itable_index;
twisti@1858 2841 itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
twisti@1858 2842 itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
twisti@1441 2843 add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
jrose@1058 2844
jrose@1058 2845 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
jrose@1058 2846 // if (scan->interface() == intf) {
jrose@1058 2847 // result = (klass + scan->offset() + itable_index);
jrose@1058 2848 // }
jrose@1058 2849 // }
jrose@1058 2850 Label search, found_method;
jrose@1058 2851
jrose@1058 2852 for (int peel = 1; peel >= 0; peel--) {
jrose@1058 2853 // %%%% Could load both offset and interface in one ldx, if they were
jrose@1058 2854 // in the opposite order. This would save a load.
jrose@1058 2855 ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
jrose@1058 2856
jrose@1058 2857 // Check that this entry is non-null. A null entry means that
jrose@1058 2858 // the receiver class doesn't implement the interface, and wasn't the
jrose@1058 2859 // same as when the caller was compiled.
jrose@1058 2860 bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
jrose@1058 2861 delayed()->cmp(method_result, intf_klass);
jrose@1058 2862
jrose@1058 2863 if (peel) {
jrose@1058 2864 brx(Assembler::equal, false, Assembler::pt, found_method);
jrose@1058 2865 } else {
jrose@1058 2866 brx(Assembler::notEqual, false, Assembler::pn, search);
jrose@1058 2867 // (invert the test to fall through to found_method...)
jrose@1058 2868 }
jrose@1058 2869 delayed()->add(scan_temp, scan_step, scan_temp);
jrose@1058 2870
jrose@1058 2871 if (!peel) break;
jrose@1058 2872
jrose@1058 2873 bind(search);
jrose@1058 2874 }
jrose@1058 2875
jrose@1058 2876 bind(found_method);
jrose@1058 2877
jrose@1058 2878 // Got a hit.
jrose@1058 2879 int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
jrose@1058 2880 // scan_temp[-scan_step] points to the vtable offset we need
jrose@1058 2881 ito_offset -= scan_step;
jrose@1058 2882 lduw(scan_temp, ito_offset, scan_temp);
jrose@1058 2883 ld_ptr(recv_klass, scan_temp, method_result);
jrose@1058 2884 }
jrose@1058 2885
jrose@1058 2886
jrose@1079 2887 void MacroAssembler::check_klass_subtype(Register sub_klass,
jrose@1079 2888 Register super_klass,
jrose@1079 2889 Register temp_reg,
jrose@1079 2890 Register temp2_reg,
jrose@1079 2891 Label& L_success) {
jrose@1079 2892 Label L_failure, L_pop_to_failure;
jrose@1079 2893 check_klass_subtype_fast_path(sub_klass, super_klass,
jrose@1079 2894 temp_reg, temp2_reg,
jrose@1079 2895 &L_success, &L_failure, NULL);
jrose@1079 2896 Register sub_2 = sub_klass;
jrose@1079 2897 Register sup_2 = super_klass;
jrose@1079 2898 if (!sub_2->is_global()) sub_2 = L0;
jrose@1079 2899 if (!sup_2->is_global()) sup_2 = L1;
jrose@1079 2900
jrose@1079 2901 save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
jrose@1079 2902 check_klass_subtype_slow_path(sub_2, sup_2,
jrose@1079 2903 L2, L3, L4, L5,
jrose@1079 2904 NULL, &L_pop_to_failure);
jrose@1079 2905
jrose@1079 2906 // on success:
jrose@1079 2907 restore();
jrose@1079 2908 ba(false, L_success);
jrose@1079 2909 delayed()->nop();
jrose@1079 2910
jrose@1079 2911 // on failure:
jrose@1079 2912 bind(L_pop_to_failure);
jrose@1079 2913 restore();
jrose@1079 2914 bind(L_failure);
jrose@1079 2915 }
jrose@1079 2916
jrose@1079 2917
jrose@1079 2918 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
jrose@1079 2919 Register super_klass,
jrose@1079 2920 Register temp_reg,
jrose@1079 2921 Register temp2_reg,
jrose@1079 2922 Label* L_success,
jrose@1079 2923 Label* L_failure,
jrose@1079 2924 Label* L_slow_path,
jrose@1100 2925 RegisterOrConstant super_check_offset,
jrose@1079 2926 Register instanceof_hack) {
jrose@1079 2927 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 2928 Klass::secondary_super_cache_offset_in_bytes());
jrose@1079 2929 int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 2930 Klass::super_check_offset_offset_in_bytes());
jrose@1079 2931
jrose@1079 2932 bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
jrose@1079 2933 bool need_slow_path = (must_load_sco ||
jrose@1079 2934 super_check_offset.constant_or_zero() == sco_offset);
jrose@1079 2935
jrose@1079 2936 assert_different_registers(sub_klass, super_klass, temp_reg);
jrose@1079 2937 if (super_check_offset.is_register()) {
twisti@1858 2938 assert_different_registers(sub_klass, super_klass, temp_reg,
jrose@1079 2939 super_check_offset.as_register());
jrose@1079 2940 } else if (must_load_sco) {
jrose@1079 2941 assert(temp2_reg != noreg, "supply either a temp or a register offset");
jrose@1079 2942 }
jrose@1079 2943
jrose@1079 2944 Label L_fallthrough;
jrose@1079 2945 int label_nulls = 0;
jrose@1079 2946 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
jrose@1079 2947 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
jrose@1079 2948 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
jrose@1079 2949 assert(label_nulls <= 1 || instanceof_hack != noreg ||
jrose@1079 2950 (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
jrose@1079 2951 "at most one NULL in the batch, usually");
jrose@1079 2952
jrose@1079 2953 // Support for the instanceof hack, which uses delay slots to
jrose@1079 2954 // set a destination register to zero or one.
jrose@1079 2955 bool do_bool_sets = (instanceof_hack != noreg);
jrose@1079 2956 #define BOOL_SET(bool_value) \
jrose@1079 2957 if (do_bool_sets && bool_value >= 0) \
jrose@1079 2958 set(bool_value, instanceof_hack)
jrose@1079 2959 #define DELAYED_BOOL_SET(bool_value) \
jrose@1079 2960 if (do_bool_sets && bool_value >= 0) \
jrose@1079 2961 delayed()->set(bool_value, instanceof_hack); \
jrose@1079 2962 else delayed()->nop()
jrose@1079 2963 // Hacked ba(), which may only be used just before L_fallthrough.
jrose@1079 2964 #define FINAL_JUMP(label, bool_value) \
jrose@1079 2965 if (&(label) == &L_fallthrough) { \
jrose@1079 2966 BOOL_SET(bool_value); \
jrose@1079 2967 } else { \
jrose@1079 2968 ba((do_bool_sets && bool_value >= 0), label); \
jrose@1079 2969 DELAYED_BOOL_SET(bool_value); \
jrose@1079 2970 }
jrose@1079 2971
jrose@1079 2972 // If the pointers are equal, we are done (e.g., String[] elements).
jrose@1079 2973 // This self-check enables sharing of secondary supertype arrays among
jrose@1079 2974 // non-primary types such as array-of-interface. Otherwise, each such
jrose@1079 2975 // type would need its own customized SSA.
jrose@1079 2976 // We move this check to the front of the fast path because many
jrose@1079 2977 // type checks are in fact trivially successful in this manner,
jrose@1079 2978 // so we get a nicely predicted branch right at the start of the check.
jrose@1079 2979 cmp(super_klass, sub_klass);
jrose@1079 2980 brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
jrose@1079 2981 DELAYED_BOOL_SET(1);
jrose@1079 2982
jrose@1079 2983 // Check the supertype display:
jrose@1079 2984 if (must_load_sco) {
jrose@1079 2985 // The super check offset is always positive...
jrose@1079 2986 lduw(super_klass, sco_offset, temp2_reg);
jrose@1100 2987 super_check_offset = RegisterOrConstant(temp2_reg);
twisti@1858 2988 // super_check_offset is register.
twisti@1858 2989 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
jrose@1079 2990 }
jrose@1079 2991 ld_ptr(sub_klass, super_check_offset, temp_reg);
jrose@1079 2992 cmp(super_klass, temp_reg);
jrose@1079 2993
jrose@1079 2994 // This check has worked decisively for primary supers.
jrose@1079 2995 // Secondary supers are sought in the super_cache ('super_cache_addr').
jrose@1079 2996 // (Secondary supers are interfaces and very deeply nested subtypes.)
jrose@1079 2997 // This works in the same check above because of a tricky aliasing
jrose@1079 2998 // between the super_cache and the primary super display elements.
jrose@1079 2999 // (The 'super_check_addr' can address either, as the case requires.)
jrose@1079 3000 // Note that the cache is updated below if it does not help us find
jrose@1079 3001 // what we need immediately.
jrose@1079 3002 // So if it was a primary super, we can just fail immediately.
jrose@1079 3003 // Otherwise, it's the slow path for us (no success at this point).
jrose@1079 3004
jrose@1079 3005 if (super_check_offset.is_register()) {
jrose@1079 3006 brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
jrose@1079 3007 delayed(); if (do_bool_sets) BOOL_SET(1);
jrose@1079 3008 // if !do_bool_sets, sneak the next cmp into the delay slot:
jrose@1079 3009 cmp(super_check_offset.as_register(), sc_offset);
jrose@1079 3010
jrose@1079 3011 if (L_failure == &L_fallthrough) {
jrose@1079 3012 brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_slow_path);
jrose@1079 3013 delayed()->nop();
jrose@1079 3014 BOOL_SET(0); // fallthrough on failure
jrose@1079 3015 } else {
jrose@1079 3016 brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
jrose@1079 3017 DELAYED_BOOL_SET(0);
jrose@1079 3018 FINAL_JUMP(*L_slow_path, -1); // -1 => vanilla delay slot
jrose@1079 3019 }
jrose@1079 3020 } else if (super_check_offset.as_constant() == sc_offset) {
jrose@1079 3021 // Need a slow path; fast failure is impossible.
jrose@1079 3022 if (L_slow_path == &L_fallthrough) {
jrose@1079 3023 brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
jrose@1079 3024 DELAYED_BOOL_SET(1);
jrose@1079 3025 } else {
jrose@1079 3026 brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
jrose@1079 3027 delayed()->nop();
jrose@1079 3028 FINAL_JUMP(*L_success, 1);
jrose@1079 3029 }
jrose@1079 3030 } else {
jrose@1079 3031 // No slow path; it's a fast decision.
jrose@1079 3032 if (L_failure == &L_fallthrough) {
jrose@1079 3033 brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
jrose@1079 3034 DELAYED_BOOL_SET(1);
jrose@1079 3035 BOOL_SET(0);
jrose@1079 3036 } else {
jrose@1079 3037 brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
jrose@1079 3038 DELAYED_BOOL_SET(0);
jrose@1079 3039 FINAL_JUMP(*L_success, 1);
jrose@1079 3040 }
jrose@1079 3041 }
jrose@1079 3042
jrose@1079 3043 bind(L_fallthrough);
jrose@1079 3044
jrose@1079 3045 #undef final_jump
jrose@1079 3046 #undef bool_set
jrose@1079 3047 #undef DELAYED_BOOL_SET
jrose@1079 3048 #undef final_jump
jrose@1079 3049 }
jrose@1079 3050
jrose@1079 3051
jrose@1079 3052 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
jrose@1079 3053 Register super_klass,
jrose@1079 3054 Register count_temp,
jrose@1079 3055 Register scan_temp,
jrose@1079 3056 Register scratch_reg,
jrose@1079 3057 Register coop_reg,
jrose@1079 3058 Label* L_success,
jrose@1079 3059 Label* L_failure) {
jrose@1079 3060 assert_different_registers(sub_klass, super_klass,
jrose@1079 3061 count_temp, scan_temp, scratch_reg, coop_reg);
jrose@1079 3062
jrose@1079 3063 Label L_fallthrough, L_loop;
jrose@1079 3064 int label_nulls = 0;
jrose@1079 3065 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
jrose@1079 3066 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
jrose@1079 3067 assert(label_nulls <= 1, "at most one NULL in the batch");
jrose@1079 3068
jrose@1079 3069 // a couple of useful fields in sub_klass:
jrose@1079 3070 int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 3071 Klass::secondary_supers_offset_in_bytes());
jrose@1079 3072 int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
jrose@1079 3073 Klass::secondary_super_cache_offset_in_bytes());
jrose@1079 3074
jrose@1079 3075 // Do a linear scan of the secondary super-klass chain.
jrose@1079 3076 // This code is rarely used, so simplicity is a virtue here.
jrose@1079 3077
jrose@1079 3078 #ifndef PRODUCT
jrose@1079 3079 int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
jrose@1079 3080 inc_counter((address) pst_counter, count_temp, scan_temp);
jrose@1079 3081 #endif
jrose@1079 3082
jrose@1079 3083 // We will consult the secondary-super array.
jrose@1079 3084 ld_ptr(sub_klass, ss_offset, scan_temp);
jrose@1079 3085
jrose@1079 3086 // Compress superclass if necessary.
jrose@1079 3087 Register search_key = super_klass;
jrose@1079 3088 bool decode_super_klass = false;
jrose@1079 3089 if (UseCompressedOops) {
jrose@1079 3090 if (coop_reg != noreg) {
jrose@1079 3091 encode_heap_oop_not_null(super_klass, coop_reg);
jrose@1079 3092 search_key = coop_reg;
jrose@1079 3093 } else {
jrose@1079 3094 encode_heap_oop_not_null(super_klass);
jrose@1079 3095 decode_super_klass = true; // scarce temps!
jrose@1079 3096 }
jrose@1079 3097 // The superclass is never null; it would be a basic system error if a null
jrose@1079 3098 // pointer were to sneak in here. Note that we have already loaded the
jrose@1079 3099 // Klass::super_check_offset from the super_klass in the fast path,
jrose@1079 3100 // so if there is a null in that register, we are already in the afterlife.
jrose@1079 3101 }
jrose@1079 3102
jrose@1079 3103 // Load the array length. (Positive movl does right thing on LP64.)
jrose@1079 3104 lduw(scan_temp, arrayOopDesc::length_offset_in_bytes(), count_temp);
jrose@1079 3105
jrose@1079 3106 // Check for empty secondary super list
jrose@1079 3107 tst(count_temp);
jrose@1079 3108
jrose@1079 3109 // Top of search loop
jrose@1079 3110 bind(L_loop);
jrose@1079 3111 br(Assembler::equal, false, Assembler::pn, *L_failure);
jrose@1079 3112 delayed()->add(scan_temp, heapOopSize, scan_temp);
jrose@1079 3113 assert(heapOopSize != 0, "heapOopSize should be initialized");
jrose@1079 3114
jrose@1079 3115 // Skip the array header in all array accesses.
jrose@1079 3116 int elem_offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
jrose@1079 3117 elem_offset -= heapOopSize; // the scan pointer was pre-incremented also
jrose@1079 3118
jrose@1079 3119 // Load next super to check
jrose@1079 3120 if (UseCompressedOops) {
jrose@1079 3121 // Don't use load_heap_oop; we don't want to decode the element.
jrose@1079 3122 lduw( scan_temp, elem_offset, scratch_reg );
jrose@1079 3123 } else {
jrose@1079 3124 ld_ptr( scan_temp, elem_offset, scratch_reg );
jrose@1079 3125 }
jrose@1079 3126
jrose@1079 3127 // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
jrose@1079 3128 cmp(scratch_reg, search_key);
jrose@1079 3129
jrose@1079 3130 // A miss means we are NOT a subtype and need to keep looping
jrose@1079 3131 brx(Assembler::notEqual, false, Assembler::pn, L_loop);
jrose@1079 3132 delayed()->deccc(count_temp); // decrement trip counter in delay slot
jrose@1079 3133
jrose@1079 3134 // Falling out the bottom means we found a hit; we ARE a subtype
jrose@1079 3135 if (decode_super_klass) decode_heap_oop(super_klass);
jrose@1079 3136
jrose@1079 3137 // Success. Cache the super we found and proceed in triumph.
jrose@1079 3138 st_ptr(super_klass, sub_klass, sc_offset);
jrose@1079 3139
jrose@1079 3140 if (L_success != &L_fallthrough) {
jrose@1079 3141 ba(false, *L_success);
jrose@1079 3142 delayed()->nop();
jrose@1079 3143 }
jrose@1079 3144
jrose@1079 3145 bind(L_fallthrough);
jrose@1079 3146 }
jrose@1079 3147
jrose@1079 3148
jrose@1145 3149 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
jrose@1145 3150 Register temp_reg,
jrose@1145 3151 Label& wrong_method_type) {
jrose@1145 3152 assert_different_registers(mtype_reg, mh_reg, temp_reg);
jrose@1145 3153 // compare method type against that of the receiver
jrose@1145 3154 RegisterOrConstant mhtype_offset = delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg);
twisti@2201 3155 load_heap_oop(mh_reg, mhtype_offset, temp_reg);
jrose@1145 3156 cmp(temp_reg, mtype_reg);
jrose@1145 3157 br(Assembler::notEqual, false, Assembler::pn, wrong_method_type);
jrose@1145 3158 delayed()->nop();
jrose@1145 3159 }
jrose@1145 3160
jrose@1145 3161
twisti@1858 3162 // A method handle has a "vmslots" field which gives the size of its
twisti@1858 3163 // argument list in JVM stack slots. This field is either located directly
twisti@1858 3164 // in every method handle, or else is indirectly accessed through the
twisti@1858 3165 // method handle's MethodType. This macro hides the distinction.
twisti@1858 3166 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
twisti@1858 3167 Register temp_reg) {
twisti@1858 3168 assert_different_registers(vmslots_reg, mh_reg, temp_reg);
twisti@1858 3169 // load mh.type.form.vmslots
twisti@1858 3170 if (java_dyn_MethodHandle::vmslots_offset_in_bytes() != 0) {
twisti@1858 3171 // hoist vmslots into every mh to avoid dependent load chain
twisti@2201 3172 ld( Address(mh_reg, delayed_value(java_dyn_MethodHandle::vmslots_offset_in_bytes, temp_reg)), vmslots_reg);
twisti@1858 3173 } else {
twisti@1858 3174 Register temp2_reg = vmslots_reg;
twisti@2201 3175 load_heap_oop(Address(mh_reg, delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg)), temp2_reg);
twisti@2201 3176 load_heap_oop(Address(temp2_reg, delayed_value(java_dyn_MethodType::form_offset_in_bytes, temp_reg)), temp2_reg);
twisti@2201 3177 ld( Address(temp2_reg, delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)), vmslots_reg);
twisti@1858 3178 }
twisti@1858 3179 }
twisti@1858 3180
twisti@1858 3181
twisti@1858 3182 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop) {
jrose@1145 3183 assert(mh_reg == G3_method_handle, "caller must put MH object in G3");
jrose@1145 3184 assert_different_registers(mh_reg, temp_reg);
jrose@1145 3185
jrose@1145 3186 // pick out the interpreted side of the handler
twisti@2201 3187 // NOTE: vmentry is not an oop!
jrose@1145 3188 ld_ptr(mh_reg, delayed_value(java_dyn_MethodHandle::vmentry_offset_in_bytes, temp_reg), temp_reg);
jrose@1145 3189
jrose@1145 3190 // off we go...
jrose@1145 3191 ld_ptr(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes(), temp_reg);
jrose@1145 3192 jmp(temp_reg, 0);
jrose@1145 3193
jrose@1145 3194 // for the various stubs which take control at this point,
jrose@1145 3195 // see MethodHandles::generate_method_handle_stub
jrose@1145 3196
twisti@1858 3197 // Some callers can fill the delay slot.
twisti@1858 3198 if (emit_delayed_nop) {
twisti@1858 3199 delayed()->nop();
twisti@1858 3200 }
jrose@1145 3201 }
jrose@1145 3202
twisti@1858 3203
jrose@1145 3204 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
jrose@1145 3205 int extra_slot_offset) {
jrose@1145 3206 // cf. TemplateTable::prepare_invoke(), if (load_receiver).
twisti@1861 3207 int stackElementSize = Interpreter::stackElementSize;
twisti@1858 3208 int offset = extra_slot_offset * stackElementSize;
jrose@1145 3209 if (arg_slot.is_constant()) {
jrose@1145 3210 offset += arg_slot.as_constant() * stackElementSize;
jrose@1145 3211 return offset;
jrose@1145 3212 } else {
jrose@1145 3213 Register temp = arg_slot.as_register();
jrose@1145 3214 sll_ptr(temp, exact_log2(stackElementSize), temp);
jrose@1145 3215 if (offset != 0)
jrose@1145 3216 add(temp, offset, temp);
jrose@1145 3217 return temp;
jrose@1145 3218 }
jrose@1145 3219 }
jrose@1145 3220
jrose@1145 3221
twisti@1858 3222 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
twisti@1858 3223 int extra_slot_offset) {
twisti@1858 3224 return Address(Gargs, argument_offset(arg_slot, extra_slot_offset));
twisti@1858 3225 }
twisti@1858 3226
jrose@1145 3227
kvn@855 3228 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
kvn@855 3229 Register temp_reg,
duke@435 3230 Label& done, Label* slow_case,
duke@435 3231 BiasedLockingCounters* counters) {
duke@435 3232 assert(UseBiasedLocking, "why call this otherwise?");
duke@435 3233
duke@435 3234 if (PrintBiasedLockingStatistics) {
duke@435 3235 assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
duke@435 3236 if (counters == NULL)
duke@435 3237 counters = BiasedLocking::counters();
duke@435 3238 }
duke@435 3239
duke@435 3240 Label cas_label;
duke@435 3241
duke@435 3242 // Biased locking
duke@435 3243 // See whether the lock is currently biased toward our thread and
duke@435 3244 // whether the epoch is still valid
duke@435 3245 // Note that the runtime guarantees sufficient alignment of JavaThread
duke@435 3246 // pointers to allow age to be placed into low bits
duke@435 3247 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
duke@435 3248 and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 3249 cmp(temp_reg, markOopDesc::biased_lock_pattern);
duke@435 3250 brx(Assembler::notEqual, false, Assembler::pn, cas_label);
coleenp@548 3251 delayed()->nop();
coleenp@548 3252
coleenp@548 3253 load_klass(obj_reg, temp_reg);
twisti@1162 3254 ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
duke@435 3255 or3(G2_thread, temp_reg, temp_reg);
duke@435 3256 xor3(mark_reg, temp_reg, temp_reg);
duke@435 3257 andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
duke@435 3258 if (counters != NULL) {
duke@435 3259 cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3260 // Reload mark_reg as we may need it later
twisti@1162 3261 ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
duke@435 3262 }
duke@435 3263 brx(Assembler::equal, true, Assembler::pt, done);
duke@435 3264 delayed()->nop();
duke@435 3265
duke@435 3266 Label try_revoke_bias;
duke@435 3267 Label try_rebias;
twisti@1162 3268 Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 3269 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3270
duke@435 3271 // At this point we know that the header has the bias pattern and
duke@435 3272 // that we are not the bias owner in the current epoch. We need to
duke@435 3273 // figure out more details about the state of the header in order to
duke@435 3274 // know what operations can be legally performed on the object's
duke@435 3275 // header.
duke@435 3276
duke@435 3277 // If the low three bits in the xor result aren't clear, that means
duke@435 3278 // the prototype header is no longer biased and we have to revoke
duke@435 3279 // the bias on this object.
duke@435 3280 btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 3281 brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
duke@435 3282
duke@435 3283 // Biasing is still enabled for this data type. See whether the
duke@435 3284 // epoch of the current bias is still valid, meaning that the epoch
duke@435 3285 // bits of the mark word are equal to the epoch bits of the
duke@435 3286 // prototype header. (Note that the prototype header's epoch bits
duke@435 3287 // only change at a safepoint.) If not, attempt to rebias the object
duke@435 3288 // toward the current thread. Note that we must be absolutely sure
duke@435 3289 // that the current epoch is invalid in order to do this because
duke@435 3290 // otherwise the manipulations it performs on the mark word are
duke@435 3291 // illegal.
duke@435 3292 delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
duke@435 3293 brx(Assembler::notZero, false, Assembler::pn, try_rebias);
duke@435 3294
duke@435 3295 // The epoch of the current bias is still valid but we know nothing
duke@435 3296 // about the owner; it might be set or it might be clear. Try to
duke@435 3297 // acquire the bias of the object using an atomic operation. If this
duke@435 3298 // fails we will go in to the runtime to revoke the object's bias.
duke@435 3299 // Note that we first construct the presumed unbiased header so we
duke@435 3300 // don't accidentally blow away another thread's valid bias.
duke@435 3301 delayed()->and3(mark_reg,
duke@435 3302 markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
duke@435 3303 mark_reg);
duke@435 3304 or3(G2_thread, mark_reg, temp_reg);
kvn@855 3305 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3306 // If the biasing toward our thread failed, this means that
duke@435 3307 // another thread succeeded in biasing it toward itself and we
duke@435 3308 // need to revoke that bias. The revocation will occur in the
duke@435 3309 // interpreter runtime in the slow case.
duke@435 3310 cmp(mark_reg, temp_reg);
duke@435 3311 if (counters != NULL) {
duke@435 3312 cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3313 }
duke@435 3314 if (slow_case != NULL) {
duke@435 3315 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
duke@435 3316 delayed()->nop();
duke@435 3317 }
duke@435 3318 br(Assembler::always, false, Assembler::pt, done);
duke@435 3319 delayed()->nop();
duke@435 3320
duke@435 3321 bind(try_rebias);
duke@435 3322 // At this point we know the epoch has expired, meaning that the
duke@435 3323 // current "bias owner", if any, is actually invalid. Under these
duke@435 3324 // circumstances _only_, we are allowed to use the current header's
duke@435 3325 // value as the comparison value when doing the cas to acquire the
duke@435 3326 // bias in the current epoch. In other words, we allow transfer of
duke@435 3327 // the bias from one thread to another directly in this situation.
duke@435 3328 //
duke@435 3329 // FIXME: due to a lack of registers we currently blow away the age
duke@435 3330 // bits in this situation. Should attempt to preserve them.
coleenp@548 3331 load_klass(obj_reg, temp_reg);
twisti@1162 3332 ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
duke@435 3333 or3(G2_thread, temp_reg, temp_reg);
kvn@855 3334 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3335 // If the biasing toward our thread failed, this means that
duke@435 3336 // another thread succeeded in biasing it toward itself and we
duke@435 3337 // need to revoke that bias. The revocation will occur in the
duke@435 3338 // interpreter runtime in the slow case.
duke@435 3339 cmp(mark_reg, temp_reg);
duke@435 3340 if (counters != NULL) {
duke@435 3341 cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3342 }
duke@435 3343 if (slow_case != NULL) {
duke@435 3344 brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
duke@435 3345 delayed()->nop();
duke@435 3346 }
duke@435 3347 br(Assembler::always, false, Assembler::pt, done);
duke@435 3348 delayed()->nop();
duke@435 3349
duke@435 3350 bind(try_revoke_bias);
duke@435 3351 // The prototype mark in the klass doesn't have the bias bit set any
duke@435 3352 // more, indicating that objects of this data type are not supposed
duke@435 3353 // to be biased any more. We are going to try to reset the mark of
duke@435 3354 // this object to the prototype value and fall through to the
duke@435 3355 // CAS-based locking scheme. Note that if our CAS fails, it means
duke@435 3356 // that another thread raced us for the privilege of revoking the
duke@435 3357 // bias of this particular object, so it's okay to continue in the
duke@435 3358 // normal locking code.
duke@435 3359 //
duke@435 3360 // FIXME: due to a lack of registers we currently blow away the age
duke@435 3361 // bits in this situation. Should attempt to preserve them.
coleenp@548 3362 load_klass(obj_reg, temp_reg);
twisti@1162 3363 ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
kvn@855 3364 casn(mark_addr.base(), mark_reg, temp_reg);
duke@435 3365 // Fall through to the normal CAS-based lock, because no matter what
duke@435 3366 // the result of the above CAS, some thread must have succeeded in
duke@435 3367 // removing the bias bit from the object's header.
duke@435 3368 if (counters != NULL) {
duke@435 3369 cmp(mark_reg, temp_reg);
duke@435 3370 cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
duke@435 3371 }
duke@435 3372
duke@435 3373 bind(cas_label);
duke@435 3374 }
duke@435 3375
duke@435 3376 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
duke@435 3377 bool allow_delay_slot_filling) {
duke@435 3378 // Check for biased locking unlock case, which is a no-op
duke@435 3379 // Note: we do not have to check the thread ID for two reasons.
duke@435 3380 // First, the interpreter checks for IllegalMonitorStateException at
duke@435 3381 // a higher level. Second, if the bias was revoked while we held the
duke@435 3382 // lock, the object could not be rebiased toward another thread, so
duke@435 3383 // the bias bit would be clear.
duke@435 3384 ld_ptr(mark_addr, temp_reg);
duke@435 3385 and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
duke@435 3386 cmp(temp_reg, markOopDesc::biased_lock_pattern);
duke@435 3387 brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
duke@435 3388 delayed();
duke@435 3389 if (!allow_delay_slot_filling) {
duke@435 3390 nop();
duke@435 3391 }
duke@435 3392 }
duke@435 3393
duke@435 3394
duke@435 3395 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
duke@435 3396 // Solaris/SPARC's "as". Another apt name would be cas_ptr()
duke@435 3397
duke@435 3398 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
duke@435 3399 casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
duke@435 3400 }
duke@435 3401
duke@435 3402
duke@435 3403
duke@435 3404 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
duke@435 3405 // of i486.ad fast_lock() and fast_unlock(). See those methods for detailed comments.
duke@435 3406 // The code could be tightened up considerably.
duke@435 3407 //
duke@435 3408 // box->dhw disposition - post-conditions at DONE_LABEL.
duke@435 3409 // - Successful inflated lock: box->dhw != 0.
duke@435 3410 // Any non-zero value suffices.
duke@435 3411 // Consider G2_thread, rsp, boxReg, or unused_mark()
duke@435 3412 // - Successful Stack-lock: box->dhw == mark.
duke@435 3413 // box->dhw must contain the displaced mark word value
duke@435 3414 // - Failure -- icc.ZFlag == 0 and box->dhw is undefined.
duke@435 3415 // The slow-path fast_enter() and slow_enter() operators
duke@435 3416 // are responsible for setting box->dhw = NonZero (typically ::unused_mark).
duke@435 3417 // - Biased: box->dhw is undefined
duke@435 3418 //
duke@435 3419 // SPARC refworkload performance - specifically jetstream and scimark - are
duke@435 3420 // extremely sensitive to the size of the code emitted by compiler_lock_object
duke@435 3421 // and compiler_unlock_object. Critically, the key factor is code size, not path
duke@435 3422 // length. (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
duke@435 3423 // effect).
duke@435 3424
duke@435 3425
kvn@855 3426 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
kvn@855 3427 Register Rbox, Register Rscratch,
kvn@855 3428 BiasedLockingCounters* counters,
kvn@855 3429 bool try_bias) {
twisti@1162 3430 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
duke@435 3431
duke@435 3432 verify_oop(Roop);
duke@435 3433 Label done ;
duke@435 3434
duke@435 3435 if (counters != NULL) {
duke@435 3436 inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
duke@435 3437 }
duke@435 3438
duke@435 3439 if (EmitSync & 1) {
duke@435 3440 mov (3, Rscratch) ;
duke@435 3441 st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3442 cmp (SP, G0) ;
duke@435 3443 return ;
duke@435 3444 }
duke@435 3445
duke@435 3446 if (EmitSync & 2) {
duke@435 3447
duke@435 3448 // Fetch object's markword
duke@435 3449 ld_ptr(mark_addr, Rmark);
duke@435 3450
kvn@855 3451 if (try_bias) {
duke@435 3452 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3453 }
duke@435 3454
duke@435 3455 // Save Rbox in Rscratch to be used for the cas operation
duke@435 3456 mov(Rbox, Rscratch);
duke@435 3457
duke@435 3458 // set Rmark to markOop | markOopDesc::unlocked_value
duke@435 3459 or3(Rmark, markOopDesc::unlocked_value, Rmark);
duke@435 3460
duke@435 3461 // Initialize the box. (Must happen before we update the object mark!)
duke@435 3462 st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3463
duke@435 3464 // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
duke@435 3465 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3466 casx_under_lock(mark_addr.base(), Rmark, Rscratch,
duke@435 3467 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 3468
duke@435 3469 // if compare/exchange succeeded we found an unlocked object and we now have locked it
duke@435 3470 // hence we are done
duke@435 3471 cmp(Rmark, Rscratch);
duke@435 3472 #ifdef _LP64
duke@435 3473 sub(Rscratch, STACK_BIAS, Rscratch);
duke@435 3474 #endif
duke@435 3475 brx(Assembler::equal, false, Assembler::pt, done);
duke@435 3476 delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot
duke@435 3477
duke@435 3478 // we did not find an unlocked object so see if this is a recursive case
duke@435 3479 // sub(Rscratch, SP, Rscratch);
duke@435 3480 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 3481 andcc(Rscratch, 0xfffff003, Rscratch);
duke@435 3482 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3483 bind (done) ;
duke@435 3484 return ;
duke@435 3485 }
duke@435 3486
duke@435 3487 Label Egress ;
duke@435 3488
duke@435 3489 if (EmitSync & 256) {
duke@435 3490 Label IsInflated ;
duke@435 3491
duke@435 3492 ld_ptr (mark_addr, Rmark); // fetch obj->mark
duke@435 3493 // Triage: biased, stack-locked, neutral, inflated
kvn@855 3494 if (try_bias) {
duke@435 3495 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3496 // Invariant: if control reaches this point in the emitted stream
duke@435 3497 // then Rmark has not been modified.
duke@435 3498 }
duke@435 3499
duke@435 3500 // Store mark into displaced mark field in the on-stack basic-lock "box"
duke@435 3501 // Critically, this must happen before the CAS
duke@435 3502 // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
duke@435 3503 st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3504 andcc (Rmark, 2, G0) ;
duke@435 3505 brx (Assembler::notZero, false, Assembler::pn, IsInflated) ;
duke@435 3506 delayed() ->
duke@435 3507
duke@435 3508 // Try stack-lock acquisition.
duke@435 3509 // Beware: the 1st instruction is in a delay slot
duke@435 3510 mov (Rbox, Rscratch);
duke@435 3511 or3 (Rmark, markOopDesc::unlocked_value, Rmark);
duke@435 3512 assert (mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3513 casn (mark_addr.base(), Rmark, Rscratch) ;
duke@435 3514 cmp (Rmark, Rscratch);
duke@435 3515 brx (Assembler::equal, false, Assembler::pt, done);
duke@435 3516 delayed()->sub(Rscratch, SP, Rscratch);
duke@435 3517
duke@435 3518 // Stack-lock attempt failed - check for recursive stack-lock.
duke@435 3519 // See the comments below about how we might remove this case.
duke@435 3520 #ifdef _LP64
duke@435 3521 sub (Rscratch, STACK_BIAS, Rscratch);
duke@435 3522 #endif
duke@435 3523 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 3524 andcc (Rscratch, 0xfffff003, Rscratch);
duke@435 3525 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3526 delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3527
duke@435 3528 bind (IsInflated) ;
duke@435 3529 if (EmitSync & 64) {
duke@435 3530 // If m->owner != null goto IsLocked
duke@435 3531 // Pessimistic form: Test-and-CAS vs CAS
duke@435 3532 // The optimistic form avoids RTS->RTO cache line upgrades.
twisti@1162 3533 ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
duke@435 3534 andcc (Rscratch, Rscratch, G0) ;
duke@435 3535 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 3536 delayed()->nop() ;
duke@435 3537 // m->owner == null : it's unlocked.
duke@435 3538 }
duke@435 3539
duke@435 3540 // Try to CAS m->owner from null to Self
duke@435 3541 // Invariant: if we acquire the lock then _recursions should be 0.
duke@435 3542 add (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
duke@435 3543 mov (G2_thread, Rscratch) ;
duke@435 3544 casn (Rmark, G0, Rscratch) ;
duke@435 3545 cmp (Rscratch, G0) ;
duke@435 3546 // Intentional fall-through into done
duke@435 3547 } else {
duke@435 3548 // Aggressively avoid the Store-before-CAS penalty
duke@435 3549 // Defer the store into box->dhw until after the CAS
duke@435 3550 Label IsInflated, Recursive ;
duke@435 3551
duke@435 3552 // Anticipate CAS -- Avoid RTS->RTO upgrade
duke@435 3553 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
duke@435 3554
duke@435 3555 ld_ptr (mark_addr, Rmark); // fetch obj->mark
duke@435 3556 // Triage: biased, stack-locked, neutral, inflated
duke@435 3557
kvn@855 3558 if (try_bias) {
duke@435 3559 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
duke@435 3560 // Invariant: if control reaches this point in the emitted stream
duke@435 3561 // then Rmark has not been modified.
duke@435 3562 }
duke@435 3563 andcc (Rmark, 2, G0) ;
duke@435 3564 brx (Assembler::notZero, false, Assembler::pn, IsInflated) ;
duke@435 3565 delayed()-> // Beware - dangling delay-slot
duke@435 3566
duke@435 3567 // Try stack-lock acquisition.
duke@435 3568 // Transiently install BUSY (0) encoding in the mark word.
duke@435 3569 // if the CAS of 0 into the mark was successful then we execute:
duke@435 3570 // ST box->dhw = mark -- save fetched mark in on-stack basiclock box
duke@435 3571 // ST obj->mark = box -- overwrite transient 0 value
duke@435 3572 // This presumes TSO, of course.
duke@435 3573
duke@435 3574 mov (0, Rscratch) ;
duke@435 3575 or3 (Rmark, markOopDesc::unlocked_value, Rmark);
duke@435 3576 assert (mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3577 casn (mark_addr.base(), Rmark, Rscratch) ;
duke@435 3578 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
duke@435 3579 cmp (Rscratch, Rmark) ;
duke@435 3580 brx (Assembler::notZero, false, Assembler::pn, Recursive) ;
duke@435 3581 delayed() ->
duke@435 3582 st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3583 if (counters != NULL) {
duke@435 3584 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
duke@435 3585 }
duke@435 3586 br (Assembler::always, false, Assembler::pt, done);
duke@435 3587 delayed() ->
duke@435 3588 st_ptr (Rbox, mark_addr) ;
duke@435 3589
duke@435 3590 bind (Recursive) ;
duke@435 3591 // Stack-lock attempt failed - check for recursive stack-lock.
duke@435 3592 // Tests show that we can remove the recursive case with no impact
duke@435 3593 // on refworkload 0.83. If we need to reduce the size of the code
duke@435 3594 // emitted by compiler_lock_object() the recursive case is perfect
duke@435 3595 // candidate.
duke@435 3596 //
duke@435 3597 // A more extreme idea is to always inflate on stack-lock recursion.
duke@435 3598 // This lets us eliminate the recursive checks in compiler_lock_object
duke@435 3599 // and compiler_unlock_object and the (box->dhw == 0) encoding.
duke@435 3600 // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
duke@435 3601 // and showed a performance *increase*. In the same experiment I eliminated
duke@435 3602 // the fast-path stack-lock code from the interpreter and always passed
duke@435 3603 // control to the "slow" operators in synchronizer.cpp.
duke@435 3604
duke@435 3605 // RScratch contains the fetched obj->mark value from the failed CASN.
duke@435 3606 #ifdef _LP64
duke@435 3607 sub (Rscratch, STACK_BIAS, Rscratch);
duke@435 3608 #endif
duke@435 3609 sub(Rscratch, SP, Rscratch);
duke@435 3610 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 3611 andcc (Rscratch, 0xfffff003, Rscratch);
duke@435 3612 if (counters != NULL) {
duke@435 3613 // Accounting needs the Rscratch register
duke@435 3614 st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3615 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
duke@435 3616 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3617 delayed()->nop() ;
duke@435 3618 } else {
duke@435 3619 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3620 delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3621 }
duke@435 3622
duke@435 3623 bind (IsInflated) ;
duke@435 3624 if (EmitSync & 64) {
duke@435 3625 // If m->owner != null goto IsLocked
duke@435 3626 // Test-and-CAS vs CAS
duke@435 3627 // Pessimistic form avoids futile (doomed) CAS attempts
duke@435 3628 // The optimistic form avoids RTS->RTO cache line upgrades.
twisti@1162 3629 ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
duke@435 3630 andcc (Rscratch, Rscratch, G0) ;
duke@435 3631 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 3632 delayed()->nop() ;
duke@435 3633 // m->owner == null : it's unlocked.
duke@435 3634 }
duke@435 3635
duke@435 3636 // Try to CAS m->owner from null to Self
duke@435 3637 // Invariant: if we acquire the lock then _recursions should be 0.
duke@435 3638 add (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
duke@435 3639 mov (G2_thread, Rscratch) ;
duke@435 3640 casn (Rmark, G0, Rscratch) ;
duke@435 3641 cmp (Rscratch, G0) ;
duke@435 3642 // ST box->displaced_header = NonZero.
duke@435 3643 // Any non-zero value suffices:
duke@435 3644 // unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
duke@435 3645 st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
duke@435 3646 // Intentional fall-through into done
duke@435 3647 }
duke@435 3648
duke@435 3649 bind (done) ;
duke@435 3650 }
duke@435 3651
kvn@855 3652 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
kvn@855 3653 Register Rbox, Register Rscratch,
kvn@855 3654 bool try_bias) {
twisti@1162 3655 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
duke@435 3656
duke@435 3657 Label done ;
duke@435 3658
duke@435 3659 if (EmitSync & 4) {
duke@435 3660 cmp (SP, G0) ;
duke@435 3661 return ;
duke@435 3662 }
duke@435 3663
duke@435 3664 if (EmitSync & 8) {
kvn@855 3665 if (try_bias) {
duke@435 3666 biased_locking_exit(mark_addr, Rscratch, done);
duke@435 3667 }
duke@435 3668
duke@435 3669 // Test first if it is a fast recursive unlock
duke@435 3670 ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
duke@435 3671 cmp(Rmark, G0);
duke@435 3672 brx(Assembler::equal, false, Assembler::pt, done);
duke@435 3673 delayed()->nop();
duke@435 3674
duke@435 3675 // Check if it is still a light weight lock, this is is true if we see
duke@435 3676 // the stack address of the basicLock in the markOop of the object
duke@435 3677 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 3678 casx_under_lock(mark_addr.base(), Rbox, Rmark,
duke@435 3679 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 3680 br (Assembler::always, false, Assembler::pt, done);
duke@435 3681 delayed()->cmp(Rbox, Rmark);
duke@435 3682 bind (done) ;
duke@435 3683 return ;
duke@435 3684 }
duke@435 3685
duke@435 3686 // Beware ... If the aggregate size of the code emitted by CLO and CUO is
duke@435 3687 // is too large performance rolls abruptly off a cliff.
duke@435 3688 // This could be related to inlining policies, code cache management, or
duke@435 3689 // I$ effects.
duke@435 3690 Label LStacked ;
duke@435 3691
kvn@855 3692 if (try_bias) {
duke@435 3693 // TODO: eliminate redundant LDs of obj->mark
duke@435 3694 biased_locking_exit(mark_addr, Rscratch, done);
duke@435 3695 }
duke@435 3696
duke@435 3697 ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
duke@435 3698 ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
duke@435 3699 andcc (Rscratch, Rscratch, G0);
duke@435 3700 brx (Assembler::zero, false, Assembler::pn, done);
duke@435 3701 delayed()-> nop() ; // consider: relocate fetch of mark, above, into this DS
duke@435 3702 andcc (Rmark, 2, G0) ;
duke@435 3703 brx (Assembler::zero, false, Assembler::pt, LStacked) ;
duke@435 3704 delayed()-> nop() ;
duke@435 3705
duke@435 3706 // It's inflated
duke@435 3707 // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
duke@435 3708 // the ST of 0 into _owner which releases the lock. This prevents loads
duke@435 3709 // and stores within the critical section from reordering (floating)
duke@435 3710 // past the store that releases the lock. But TSO is a strong memory model
duke@435 3711 // and that particular flavor of barrier is a noop, so we can safely elide it.
duke@435 3712 // Note that we use 1-0 locking by default for the inflated case. We
duke@435 3713 // close the resultant (and rare) race by having contented threads in
duke@435 3714 // monitorenter periodically poll _owner.
twisti@1162 3715 ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
twisti@1162 3716 ld_ptr (Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
duke@435 3717 xor3 (Rscratch, G2_thread, Rscratch) ;
duke@435 3718 orcc (Rbox, Rscratch, Rbox) ;
duke@435 3719 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 3720 delayed()->
twisti@1162 3721 ld_ptr (Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
twisti@1162 3722 ld_ptr (Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
duke@435 3723 orcc (Rbox, Rscratch, G0) ;
duke@435 3724 if (EmitSync & 65536) {
duke@435 3725 Label LSucc ;
duke@435 3726 brx (Assembler::notZero, false, Assembler::pn, LSucc) ;
duke@435 3727 delayed()->nop() ;
duke@435 3728 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3729 delayed()->
twisti@1162 3730 st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
duke@435 3731
duke@435 3732 bind (LSucc) ;
twisti@1162 3733 st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
duke@435 3734 if (os::is_MP()) { membar (StoreLoad) ; }
twisti@1162 3735 ld_ptr (Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
duke@435 3736 andcc (Rscratch, Rscratch, G0) ;
duke@435 3737 brx (Assembler::notZero, false, Assembler::pt, done) ;
duke@435 3738 delayed()-> andcc (G0, G0, G0) ;
duke@435 3739 add (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
duke@435 3740 mov (G2_thread, Rscratch) ;
duke@435 3741 casn (Rmark, G0, Rscratch) ;
duke@435 3742 cmp (Rscratch, G0) ;
duke@435 3743 // invert icc.zf and goto done
duke@435 3744 brx (Assembler::notZero, false, Assembler::pt, done) ;
duke@435 3745 delayed() -> cmp (G0, G0) ;
duke@435 3746 br (Assembler::always, false, Assembler::pt, done);
duke@435 3747 delayed() -> cmp (G0, 1) ;
duke@435 3748 } else {
duke@435 3749 brx (Assembler::notZero, false, Assembler::pn, done) ;
duke@435 3750 delayed()->nop() ;
duke@435 3751 br (Assembler::always, false, Assembler::pt, done) ;
duke@435 3752 delayed()->
twisti@1162 3753 st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
duke@435 3754 }
duke@435 3755
duke@435 3756 bind (LStacked) ;
duke@435 3757 // Consider: we could replace the expensive CAS in the exit
duke@435 3758 // path with a simple ST of the displaced mark value fetched from
duke@435 3759 // the on-stack basiclock box. That admits a race where a thread T2
duke@435 3760 // in the slow lock path -- inflating with monitor M -- could race a
duke@435 3761 // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
duke@435 3762 // More precisely T1 in the stack-lock unlock path could "stomp" the
duke@435 3763 // inflated mark value M installed by T2, resulting in an orphan
duke@435 3764 // object monitor M and T2 becoming stranded. We can remedy that situation
duke@435 3765 // by having T2 periodically poll the object's mark word using timed wait
duke@435 3766 // operations. If T2 discovers that a stomp has occurred it vacates
duke@435 3767 // the monitor M and wakes any other threads stranded on the now-orphan M.
duke@435 3768 // In addition the monitor scavenger, which performs deflation,
duke@435 3769 // would also need to check for orpan monitors and stranded threads.
duke@435 3770 //
duke@435 3771 // Finally, inflation is also used when T2 needs to assign a hashCode
duke@435 3772 // to O and O is stack-locked by T1. The "stomp" race could cause
duke@435 3773 // an assigned hashCode value to be lost. We can avoid that condition
duke@435 3774 // and provide the necessary hashCode stability invariants by ensuring
duke@435 3775 // that hashCode generation is idempotent between copying GCs.
duke@435 3776 // For example we could compute the hashCode of an object O as
duke@435 3777 // O's heap address XOR some high quality RNG value that is refreshed
duke@435 3778 // at GC-time. The monitor scavenger would install the hashCode
duke@435 3779 // found in any orphan monitors. Again, the mechanism admits a
duke@435 3780 // lost-update "stomp" WAW race but detects and recovers as needed.
duke@435 3781 //
duke@435 3782 // A prototype implementation showed excellent results, although
duke@435 3783 // the scavenger and timeout code was rather involved.
duke@435 3784
duke@435 3785 casn (mark_addr.base(), Rbox, Rscratch) ;
duke@435 3786 cmp (Rbox, Rscratch);
duke@435 3787 // Intentional fall through into done ...
duke@435 3788
duke@435 3789 bind (done) ;
duke@435 3790 }
duke@435 3791
duke@435 3792
duke@435 3793
duke@435 3794 void MacroAssembler::print_CPU_state() {
duke@435 3795 // %%%%% need to implement this
duke@435 3796 }
duke@435 3797
duke@435 3798 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
duke@435 3799 // %%%%% need to implement this
duke@435 3800 }
duke@435 3801
duke@435 3802 void MacroAssembler::push_IU_state() {
duke@435 3803 // %%%%% need to implement this
duke@435 3804 }
duke@435 3805
duke@435 3806
duke@435 3807 void MacroAssembler::pop_IU_state() {
duke@435 3808 // %%%%% need to implement this
duke@435 3809 }
duke@435 3810
duke@435 3811
duke@435 3812 void MacroAssembler::push_FPU_state() {
duke@435 3813 // %%%%% need to implement this
duke@435 3814 }
duke@435 3815
duke@435 3816
duke@435 3817 void MacroAssembler::pop_FPU_state() {
duke@435 3818 // %%%%% need to implement this
duke@435 3819 }
duke@435 3820
duke@435 3821
duke@435 3822 void MacroAssembler::push_CPU_state() {
duke@435 3823 // %%%%% need to implement this
duke@435 3824 }
duke@435 3825
duke@435 3826
duke@435 3827 void MacroAssembler::pop_CPU_state() {
duke@435 3828 // %%%%% need to implement this
duke@435 3829 }
duke@435 3830
duke@435 3831
duke@435 3832
duke@435 3833 void MacroAssembler::verify_tlab() {
duke@435 3834 #ifdef ASSERT
duke@435 3835 if (UseTLAB && VerifyOops) {
duke@435 3836 Label next, next2, ok;
duke@435 3837 Register t1 = L0;
duke@435 3838 Register t2 = L1;
duke@435 3839 Register t3 = L2;
duke@435 3840
duke@435 3841 save_frame(0);
duke@435 3842 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
duke@435 3843 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
duke@435 3844 or3(t1, t2, t3);
duke@435 3845 cmp(t1, t2);
duke@435 3846 br(Assembler::greaterEqual, false, Assembler::pn, next);
duke@435 3847 delayed()->nop();
duke@435 3848 stop("assert(top >= start)");
duke@435 3849 should_not_reach_here();
duke@435 3850
duke@435 3851 bind(next);
duke@435 3852 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
duke@435 3853 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
duke@435 3854 or3(t3, t2, t3);
duke@435 3855 cmp(t1, t2);
duke@435 3856 br(Assembler::lessEqual, false, Assembler::pn, next2);
duke@435 3857 delayed()->nop();
duke@435 3858 stop("assert(top <= end)");
duke@435 3859 should_not_reach_here();
duke@435 3860
duke@435 3861 bind(next2);
duke@435 3862 and3(t3, MinObjAlignmentInBytesMask, t3);
duke@435 3863 cmp(t3, 0);
duke@435 3864 br(Assembler::lessEqual, false, Assembler::pn, ok);
duke@435 3865 delayed()->nop();
duke@435 3866 stop("assert(aligned)");
duke@435 3867 should_not_reach_here();
duke@435 3868
duke@435 3869 bind(ok);
duke@435 3870 restore();
duke@435 3871 }
duke@435 3872 #endif
duke@435 3873 }
duke@435 3874
duke@435 3875
duke@435 3876 void MacroAssembler::eden_allocate(
duke@435 3877 Register obj, // result: pointer to object after successful allocation
duke@435 3878 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 3879 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 3880 Register t1, // temp register
duke@435 3881 Register t2, // temp register
duke@435 3882 Label& slow_case // continuation point if fast allocation fails
duke@435 3883 ){
duke@435 3884 // make sure arguments make sense
duke@435 3885 assert_different_registers(obj, var_size_in_bytes, t1, t2);
duke@435 3886 assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
duke@435 3887 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
duke@435 3888
ysr@777 3889 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
ysr@777 3890 // No allocation in the shared eden.
ysr@777 3891 br(Assembler::always, false, Assembler::pt, slow_case);
ysr@777 3892 delayed()->nop();
ysr@777 3893 } else {
ysr@777 3894 // get eden boundaries
ysr@777 3895 // note: we need both top & top_addr!
ysr@777 3896 const Register top_addr = t1;
ysr@777 3897 const Register end = t2;
ysr@777 3898
ysr@777 3899 CollectedHeap* ch = Universe::heap();
ysr@777 3900 set((intx)ch->top_addr(), top_addr);
ysr@777 3901 intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
ysr@777 3902 ld_ptr(top_addr, delta, end);
ysr@777 3903 ld_ptr(top_addr, 0, obj);
ysr@777 3904
ysr@777 3905 // try to allocate
ysr@777 3906 Label retry;
ysr@777 3907 bind(retry);
duke@435 3908 #ifdef ASSERT
ysr@777 3909 // make sure eden top is properly aligned
ysr@777 3910 {
ysr@777 3911 Label L;
ysr@777 3912 btst(MinObjAlignmentInBytesMask, obj);
ysr@777 3913 br(Assembler::zero, false, Assembler::pt, L);
ysr@777 3914 delayed()->nop();
ysr@777 3915 stop("eden top is not properly aligned");
ysr@777 3916 bind(L);
ysr@777 3917 }
ysr@777 3918 #endif // ASSERT
ysr@777 3919 const Register free = end;
ysr@777 3920 sub(end, obj, free); // compute amount of free space
ysr@777 3921 if (var_size_in_bytes->is_valid()) {
ysr@777 3922 // size is unknown at compile time
ysr@777 3923 cmp(free, var_size_in_bytes);
ysr@777 3924 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
ysr@777 3925 delayed()->add(obj, var_size_in_bytes, end);
ysr@777 3926 } else {
ysr@777 3927 // size is known at compile time
ysr@777 3928 cmp(free, con_size_in_bytes);
ysr@777 3929 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
ysr@777 3930 delayed()->add(obj, con_size_in_bytes, end);
ysr@777 3931 }
ysr@777 3932 // Compare obj with the value at top_addr; if still equal, swap the value of
ysr@777 3933 // end with the value at top_addr. If not equal, read the value at top_addr
ysr@777 3934 // into end.
ysr@777 3935 casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
ysr@777 3936 // if someone beat us on the allocation, try again, otherwise continue
ysr@777 3937 cmp(obj, end);
ysr@777 3938 brx(Assembler::notEqual, false, Assembler::pn, retry);
ysr@777 3939 delayed()->mov(end, obj); // nop if successfull since obj == end
ysr@777 3940
ysr@777 3941 #ifdef ASSERT
ysr@777 3942 // make sure eden top is properly aligned
ysr@777 3943 {
ysr@777 3944 Label L;
ysr@777 3945 const Register top_addr = t1;
ysr@777 3946
ysr@777 3947 set((intx)ch->top_addr(), top_addr);
ysr@777 3948 ld_ptr(top_addr, 0, top_addr);
ysr@777 3949 btst(MinObjAlignmentInBytesMask, top_addr);
ysr@777 3950 br(Assembler::zero, false, Assembler::pt, L);
ysr@777 3951 delayed()->nop();
ysr@777 3952 stop("eden top is not properly aligned");
ysr@777 3953 bind(L);
ysr@777 3954 }
ysr@777 3955 #endif // ASSERT
duke@435 3956 }
duke@435 3957 }
duke@435 3958
duke@435 3959
duke@435 3960 void MacroAssembler::tlab_allocate(
duke@435 3961 Register obj, // result: pointer to object after successful allocation
duke@435 3962 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
duke@435 3963 int con_size_in_bytes, // object size in bytes if known at compile time
duke@435 3964 Register t1, // temp register
duke@435 3965 Label& slow_case // continuation point if fast allocation fails
duke@435 3966 ){
duke@435 3967 // make sure arguments make sense
duke@435 3968 assert_different_registers(obj, var_size_in_bytes, t1);
duke@435 3969 assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
duke@435 3970 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
duke@435 3971
duke@435 3972 const Register free = t1;
duke@435 3973
duke@435 3974 verify_tlab();
duke@435 3975
duke@435 3976 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
duke@435 3977
duke@435 3978 // calculate amount of free space
duke@435 3979 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
duke@435 3980 sub(free, obj, free);
duke@435 3981
duke@435 3982 Label done;
duke@435 3983 if (var_size_in_bytes == noreg) {
duke@435 3984 cmp(free, con_size_in_bytes);
duke@435 3985 } else {
duke@435 3986 cmp(free, var_size_in_bytes);
duke@435 3987 }
duke@435 3988 br(Assembler::less, false, Assembler::pn, slow_case);
duke@435 3989 // calculate the new top pointer
duke@435 3990 if (var_size_in_bytes == noreg) {
duke@435 3991 delayed()->add(obj, con_size_in_bytes, free);
duke@435 3992 } else {
duke@435 3993 delayed()->add(obj, var_size_in_bytes, free);
duke@435 3994 }
duke@435 3995
duke@435 3996 bind(done);
duke@435 3997
duke@435 3998 #ifdef ASSERT
duke@435 3999 // make sure new free pointer is properly aligned
duke@435 4000 {
duke@435 4001 Label L;
duke@435 4002 btst(MinObjAlignmentInBytesMask, free);
duke@435 4003 br(Assembler::zero, false, Assembler::pt, L);
duke@435 4004 delayed()->nop();
duke@435 4005 stop("updated TLAB free is not properly aligned");
duke@435 4006 bind(L);
duke@435 4007 }
duke@435 4008 #endif // ASSERT
duke@435 4009
duke@435 4010 // update the tlab top pointer
duke@435 4011 st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
duke@435 4012 verify_tlab();
duke@435 4013 }
duke@435 4014
duke@435 4015
duke@435 4016 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
duke@435 4017 Register top = O0;
duke@435 4018 Register t1 = G1;
duke@435 4019 Register t2 = G3;
duke@435 4020 Register t3 = O1;
duke@435 4021 assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
duke@435 4022 Label do_refill, discard_tlab;
duke@435 4023
duke@435 4024 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
duke@435 4025 // No allocation in the shared eden.
duke@435 4026 br(Assembler::always, false, Assembler::pt, slow_case);
duke@435 4027 delayed()->nop();
duke@435 4028 }
duke@435 4029
duke@435 4030 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
duke@435 4031 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
duke@435 4032 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
duke@435 4033
duke@435 4034 // calculate amount of free space
duke@435 4035 sub(t1, top, t1);
duke@435 4036 srl_ptr(t1, LogHeapWordSize, t1);
duke@435 4037
duke@435 4038 // Retain tlab and allocate object in shared space if
duke@435 4039 // the amount free in the tlab is too large to discard.
duke@435 4040 cmp(t1, t2);
duke@435 4041 brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
duke@435 4042
duke@435 4043 // increment waste limit to prevent getting stuck on this slow path
duke@435 4044 delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
duke@435 4045 st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
duke@435 4046 if (TLABStats) {
duke@435 4047 // increment number of slow_allocations
duke@435 4048 ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
duke@435 4049 add(t2, 1, t2);
duke@435 4050 stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
duke@435 4051 }
duke@435 4052 br(Assembler::always, false, Assembler::pt, try_eden);
duke@435 4053 delayed()->nop();
duke@435 4054
duke@435 4055 bind(discard_tlab);
duke@435 4056 if (TLABStats) {
duke@435 4057 // increment number of refills
duke@435 4058 ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
duke@435 4059 add(t2, 1, t2);
duke@435 4060 stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
duke@435 4061 // accumulate wastage
duke@435 4062 ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
duke@435 4063 add(t2, t1, t2);
duke@435 4064 stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
duke@435 4065 }
duke@435 4066
duke@435 4067 // if tlab is currently allocated (top or end != null) then
duke@435 4068 // fill [top, end + alignment_reserve) with array object
duke@435 4069 br_null(top, false, Assembler::pn, do_refill);
duke@435 4070 delayed()->nop();
duke@435 4071
duke@435 4072 set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
duke@435 4073 st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
duke@435 4074 // set klass to intArrayKlass
duke@435 4075 sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
duke@435 4076 add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
duke@435 4077 sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
duke@435 4078 st(t1, top, arrayOopDesc::length_offset_in_bytes());
coleenp@602 4079 set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
coleenp@602 4080 ld_ptr(t2, 0, t2);
coleenp@602 4081 // store klass last. concurrent gcs assumes klass length is valid if
coleenp@602 4082 // klass field is not null.
coleenp@602 4083 store_klass(t2, top);
duke@435 4084 verify_oop(top);
duke@435 4085
phh@2423 4086 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
phh@2423 4087 sub(top, t1, t1); // size of tlab's allocated portion
phh@2423 4088 incr_allocated_bytes(t1, 0, t2);
phh@2423 4089
duke@435 4090 // refill the tlab with an eden allocation
duke@435 4091 bind(do_refill);
duke@435 4092 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
duke@435 4093 sll_ptr(t1, LogHeapWordSize, t1);
phh@2423 4094 // allocate new tlab, address returned in top
duke@435 4095 eden_allocate(top, t1, 0, t2, t3, slow_case);
duke@435 4096
duke@435 4097 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
duke@435 4098 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
duke@435 4099 #ifdef ASSERT
duke@435 4100 // check that tlab_size (t1) is still valid
duke@435 4101 {
duke@435 4102 Label ok;
duke@435 4103 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
duke@435 4104 sll_ptr(t2, LogHeapWordSize, t2);
duke@435 4105 cmp(t1, t2);
duke@435 4106 br(Assembler::equal, false, Assembler::pt, ok);
duke@435 4107 delayed()->nop();
duke@435 4108 stop("assert(t1 == tlab_size)");
duke@435 4109 should_not_reach_here();
duke@435 4110
duke@435 4111 bind(ok);
duke@435 4112 }
duke@435 4113 #endif // ASSERT
duke@435 4114 add(top, t1, top); // t1 is tlab_size
duke@435 4115 sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
duke@435 4116 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
duke@435 4117 verify_tlab();
duke@435 4118 br(Assembler::always, false, Assembler::pt, retry);
duke@435 4119 delayed()->nop();
duke@435 4120 }
duke@435 4121
phh@2423 4122 void MacroAssembler::incr_allocated_bytes(Register var_size_in_bytes,
phh@2423 4123 int con_size_in_bytes,
phh@2423 4124 Register t1) {
phh@2423 4125 // Bump total bytes allocated by this thread
phh@2423 4126 assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
phh@2423 4127 assert_different_registers(var_size_in_bytes, t1);
phh@2423 4128 // v8 support has gone the way of the dodo
phh@2423 4129 ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
phh@2423 4130 if (var_size_in_bytes->is_valid()) {
phh@2423 4131 add(t1, var_size_in_bytes, t1);
phh@2423 4132 } else {
phh@2423 4133 add(t1, con_size_in_bytes, t1);
phh@2423 4134 }
phh@2423 4135 stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
phh@2423 4136 }
phh@2423 4137
duke@435 4138 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
duke@435 4139 switch (cond) {
duke@435 4140 // Note some conditions are synonyms for others
duke@435 4141 case Assembler::never: return Assembler::always;
duke@435 4142 case Assembler::zero: return Assembler::notZero;
duke@435 4143 case Assembler::lessEqual: return Assembler::greater;
duke@435 4144 case Assembler::less: return Assembler::greaterEqual;
duke@435 4145 case Assembler::lessEqualUnsigned: return Assembler::greaterUnsigned;
duke@435 4146 case Assembler::lessUnsigned: return Assembler::greaterEqualUnsigned;
duke@435 4147 case Assembler::negative: return Assembler::positive;
duke@435 4148 case Assembler::overflowSet: return Assembler::overflowClear;
duke@435 4149 case Assembler::always: return Assembler::never;
duke@435 4150 case Assembler::notZero: return Assembler::zero;
duke@435 4151 case Assembler::greater: return Assembler::lessEqual;
duke@435 4152 case Assembler::greaterEqual: return Assembler::less;
duke@435 4153 case Assembler::greaterUnsigned: return Assembler::lessEqualUnsigned;
duke@435 4154 case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
duke@435 4155 case Assembler::positive: return Assembler::negative;
duke@435 4156 case Assembler::overflowClear: return Assembler::overflowSet;
duke@435 4157 }
duke@435 4158
duke@435 4159 ShouldNotReachHere(); return Assembler::overflowClear;
duke@435 4160 }
duke@435 4161
duke@435 4162 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
duke@435 4163 Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
duke@435 4164 Condition negated_cond = negate_condition(cond);
duke@435 4165 Label L;
duke@435 4166 brx(negated_cond, false, Assembler::pt, L);
duke@435 4167 delayed()->nop();
duke@435 4168 inc_counter(counter_ptr, Rtmp1, Rtmp2);
duke@435 4169 bind(L);
duke@435 4170 }
duke@435 4171
twisti@1162 4172 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
twisti@1162 4173 AddressLiteral addrlit(counter_addr);
twisti@1162 4174 sethi(addrlit, Rtmp1); // Move hi22 bits into temporary register.
twisti@1162 4175 Address addr(Rtmp1, addrlit.low10()); // Build an address with low10 bits.
twisti@1162 4176 ld(addr, Rtmp2);
duke@435 4177 inc(Rtmp2);
twisti@1162 4178 st(Rtmp2, addr);
twisti@1162 4179 }
twisti@1162 4180
twisti@1162 4181 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
twisti@1162 4182 inc_counter((address) counter_addr, Rtmp1, Rtmp2);
duke@435 4183 }
duke@435 4184
duke@435 4185 SkipIfEqual::SkipIfEqual(
duke@435 4186 MacroAssembler* masm, Register temp, const bool* flag_addr,
duke@435 4187 Assembler::Condition condition) {
duke@435 4188 _masm = masm;
twisti@1162 4189 AddressLiteral flag(flag_addr);
twisti@1162 4190 _masm->sethi(flag, temp);
twisti@1162 4191 _masm->ldub(temp, flag.low10(), temp);
duke@435 4192 _masm->tst(temp);
duke@435 4193 _masm->br(condition, false, Assembler::pt, _label);
duke@435 4194 _masm->delayed()->nop();
duke@435 4195 }
duke@435 4196
duke@435 4197 SkipIfEqual::~SkipIfEqual() {
duke@435 4198 _masm->bind(_label);
duke@435 4199 }
duke@435 4200
duke@435 4201
duke@435 4202 // Writes to stack successive pages until offset reached to check for
duke@435 4203 // stack overflow + shadow pages. This clobbers tsp and scratch.
duke@435 4204 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
duke@435 4205 Register Rscratch) {
duke@435 4206 // Use stack pointer in temp stack pointer
duke@435 4207 mov(SP, Rtsp);
duke@435 4208
duke@435 4209 // Bang stack for total size given plus stack shadow page size.
duke@435 4210 // Bang one page at a time because a large size can overflow yellow and
duke@435 4211 // red zones (the bang will fail but stack overflow handling can't tell that
duke@435 4212 // it was a stack overflow bang vs a regular segv).
duke@435 4213 int offset = os::vm_page_size();
duke@435 4214 Register Roffset = Rscratch;
duke@435 4215
duke@435 4216 Label loop;
duke@435 4217 bind(loop);
duke@435 4218 set((-offset)+STACK_BIAS, Rscratch);
duke@435 4219 st(G0, Rtsp, Rscratch);
duke@435 4220 set(offset, Roffset);
duke@435 4221 sub(Rsize, Roffset, Rsize);
duke@435 4222 cmp(Rsize, G0);
duke@435 4223 br(Assembler::greater, false, Assembler::pn, loop);
duke@435 4224 delayed()->sub(Rtsp, Roffset, Rtsp);
duke@435 4225
duke@435 4226 // Bang down shadow pages too.
duke@435 4227 // The -1 because we already subtracted 1 page.
duke@435 4228 for (int i = 0; i< StackShadowPages-1; i++) {
duke@435 4229 set((-i*offset)+STACK_BIAS, Rscratch);
duke@435 4230 st(G0, Rtsp, Rscratch);
duke@435 4231 }
duke@435 4232 }
coleenp@548 4233
ysr@777 4234 ///////////////////////////////////////////////////////////////////////////////////
ysr@777 4235 #ifndef SERIALGC
ysr@777 4236
ysr@777 4237 static uint num_stores = 0;
ysr@777 4238 static uint num_null_pre_stores = 0;
ysr@777 4239
ysr@777 4240 static void count_null_pre_vals(void* pre_val) {
ysr@777 4241 num_stores++;
ysr@777 4242 if (pre_val == NULL) num_null_pre_stores++;
ysr@777 4243 if ((num_stores % 1000000) == 0) {
ysr@777 4244 tty->print_cr(UINT32_FORMAT " stores, " UINT32_FORMAT " (%5.2f%%) with null pre-vals.",
ysr@777 4245 num_stores, num_null_pre_stores,
ysr@777 4246 100.0*(float)num_null_pre_stores/(float)num_stores);
ysr@777 4247 }
ysr@777 4248 }
ysr@777 4249
ysr@777 4250 static address satb_log_enqueue_with_frame = 0;
ysr@777 4251 static u_char* satb_log_enqueue_with_frame_end = 0;
ysr@777 4252
ysr@777 4253 static address satb_log_enqueue_frameless = 0;
ysr@777 4254 static u_char* satb_log_enqueue_frameless_end = 0;
ysr@777 4255
ysr@777 4256 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
ysr@777 4257
ysr@777 4258 // The calls to this don't work. We'd need to do a fair amount of work to
ysr@777 4259 // make it work.
ysr@777 4260 static void check_index(int ind) {
ysr@777 4261 assert(0 <= ind && ind <= 64*K && ((ind % oopSize) == 0),
jcoomes@1844 4262 "Invariants.");
ysr@777 4263 }
ysr@777 4264
ysr@777 4265 static void generate_satb_log_enqueue(bool with_frame) {
ysr@777 4266 BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
twisti@2103 4267 CodeBuffer buf(bb);
ysr@777 4268 MacroAssembler masm(&buf);
ysr@777 4269 address start = masm.pc();
ysr@777 4270 Register pre_val;
ysr@777 4271
ysr@777 4272 Label refill, restart;
ysr@777 4273 if (with_frame) {
ysr@777 4274 masm.save_frame(0);
ysr@777 4275 pre_val = I0; // Was O0 before the save.
ysr@777 4276 } else {
ysr@777 4277 pre_val = O0;
ysr@777 4278 }
ysr@777 4279 int satb_q_index_byte_offset =
ysr@777 4280 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4281 PtrQueue::byte_offset_of_index());
ysr@777 4282 int satb_q_buf_byte_offset =
ysr@777 4283 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4284 PtrQueue::byte_offset_of_buf());
ysr@777 4285 assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
ysr@777 4286 in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
ysr@777 4287 "check sizes in assembly below");
ysr@777 4288
ysr@777 4289 masm.bind(restart);
ysr@777 4290 masm.ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
ysr@777 4291
ysr@777 4292 masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn, L0, refill);
ysr@777 4293 // If the branch is taken, no harm in executing this in the delay slot.
ysr@777 4294 masm.delayed()->ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
ysr@777 4295 masm.sub(L0, oopSize, L0);
ysr@777 4296
ysr@777 4297 masm.st_ptr(pre_val, L1, L0); // [_buf + index] := I0
ysr@777 4298 if (!with_frame) {
ysr@777 4299 // Use return-from-leaf
ysr@777 4300 masm.retl();
ysr@777 4301 masm.delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
ysr@777 4302 } else {
ysr@777 4303 // Not delayed.
ysr@777 4304 masm.st_ptr(L0, G2_thread, satb_q_index_byte_offset);
ysr@777 4305 }
ysr@777 4306 if (with_frame) {
ysr@777 4307 masm.ret();
ysr@777 4308 masm.delayed()->restore();
ysr@777 4309 }
ysr@777 4310 masm.bind(refill);
ysr@777 4311
ysr@777 4312 address handle_zero =
ysr@777 4313 CAST_FROM_FN_PTR(address,
ysr@777 4314 &SATBMarkQueueSet::handle_zero_index_for_thread);
ysr@777 4315 // This should be rare enough that we can afford to save all the
ysr@777 4316 // scratch registers that the calling context might be using.
ysr@777 4317 masm.mov(G1_scratch, L0);
ysr@777 4318 masm.mov(G3_scratch, L1);
ysr@777 4319 masm.mov(G4, L2);
ysr@777 4320 // We need the value of O0 above (for the write into the buffer), so we
ysr@777 4321 // save and restore it.
ysr@777 4322 masm.mov(O0, L3);
ysr@777 4323 // Since the call will overwrite O7, we save and restore that, as well.
ysr@777 4324 masm.mov(O7, L4);
ysr@777 4325 masm.call_VM_leaf(L5, handle_zero, G2_thread);
ysr@777 4326 masm.mov(L0, G1_scratch);
ysr@777 4327 masm.mov(L1, G3_scratch);
ysr@777 4328 masm.mov(L2, G4);
ysr@777 4329 masm.mov(L3, O0);
ysr@777 4330 masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
ysr@777 4331 masm.delayed()->mov(L4, O7);
ysr@777 4332
ysr@777 4333 if (with_frame) {
ysr@777 4334 satb_log_enqueue_with_frame = start;
ysr@777 4335 satb_log_enqueue_with_frame_end = masm.pc();
ysr@777 4336 } else {
ysr@777 4337 satb_log_enqueue_frameless = start;
ysr@777 4338 satb_log_enqueue_frameless_end = masm.pc();
ysr@777 4339 }
ysr@777 4340 }
ysr@777 4341
ysr@777 4342 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
ysr@777 4343 if (with_frame) {
ysr@777 4344 if (satb_log_enqueue_with_frame == 0) {
ysr@777 4345 generate_satb_log_enqueue(with_frame);
ysr@777 4346 assert(satb_log_enqueue_with_frame != 0, "postcondition.");
ysr@777 4347 if (G1SATBPrintStubs) {
ysr@777 4348 tty->print_cr("Generated with-frame satb enqueue:");
ysr@777 4349 Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
ysr@777 4350 satb_log_enqueue_with_frame_end,
ysr@777 4351 tty);
ysr@777 4352 }
ysr@777 4353 }
ysr@777 4354 } else {
ysr@777 4355 if (satb_log_enqueue_frameless == 0) {
ysr@777 4356 generate_satb_log_enqueue(with_frame);
ysr@777 4357 assert(satb_log_enqueue_frameless != 0, "postcondition.");
ysr@777 4358 if (G1SATBPrintStubs) {
ysr@777 4359 tty->print_cr("Generated frameless satb enqueue:");
ysr@777 4360 Disassembler::decode((u_char*)satb_log_enqueue_frameless,
ysr@777 4361 satb_log_enqueue_frameless_end,
ysr@777 4362 tty);
ysr@777 4363 }
ysr@777 4364 }
ysr@777 4365 }
ysr@777 4366 }
ysr@777 4367
ysr@777 4368 void MacroAssembler::g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs) {
ysr@777 4369 assert(offset == 0 || index == noreg, "choose one");
ysr@777 4370
ysr@777 4371 if (G1DisablePreBarrier) return;
ysr@777 4372 // satb_log_barrier(tmp, obj, offset, preserve_o_regs);
ysr@777 4373 Label filtered;
ysr@777 4374 // satb_log_barrier_work0(tmp, filtered);
ysr@777 4375 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
ysr@777 4376 ld(G2,
ysr@777 4377 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4378 PtrQueue::byte_offset_of_active()),
ysr@777 4379 tmp);
ysr@777 4380 } else {
ysr@777 4381 guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
ysr@777 4382 "Assumption");
ysr@777 4383 ldsb(G2,
ysr@777 4384 in_bytes(JavaThread::satb_mark_queue_offset() +
ysr@777 4385 PtrQueue::byte_offset_of_active()),
ysr@777 4386 tmp);
ysr@777 4387 }
ysr@1280 4388
ysr@777 4389 // Check on whether to annul.
ysr@777 4390 br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
ysr@777 4391 delayed() -> nop();
ysr@777 4392
ysr@777 4393 // satb_log_barrier_work1(tmp, offset);
ysr@777 4394 if (index == noreg) {
ysr@777 4395 if (Assembler::is_simm13(offset)) {
ysr@1280 4396 load_heap_oop(obj, offset, tmp);
ysr@777 4397 } else {
ysr@777 4398 set(offset, tmp);
ysr@1280 4399 load_heap_oop(obj, tmp, tmp);
ysr@777 4400 }
ysr@777 4401 } else {
ysr@1280 4402 load_heap_oop(obj, index, tmp);
ysr@777 4403 }
ysr@777 4404
ysr@777 4405 // satb_log_barrier_work2(obj, tmp, offset);
ysr@777 4406
ysr@777 4407 // satb_log_barrier_work3(tmp, filtered, preserve_o_regs);
ysr@777 4408
ysr@777 4409 const Register pre_val = tmp;
ysr@777 4410
ysr@777 4411 if (G1SATBBarrierPrintNullPreVals) {
ysr@777 4412 save_frame(0);
ysr@777 4413 mov(pre_val, O0);
ysr@777 4414 // Save G-regs that target may use.
ysr@777 4415 mov(G1, L1);
ysr@777 4416 mov(G2, L2);
ysr@777 4417 mov(G3, L3);
ysr@777 4418 mov(G4, L4);
ysr@777 4419 mov(G5, L5);
ysr@777 4420 call(CAST_FROM_FN_PTR(address, &count_null_pre_vals));
ysr@777 4421 delayed()->nop();
ysr@777 4422 // Restore G-regs that target may have used.
ysr@777 4423 mov(L1, G1);
ysr@777 4424 mov(L2, G2);
ysr@777 4425 mov(L3, G3);
ysr@777 4426 mov(L4, G4);
ysr@777 4427 mov(L5, G5);
ysr@777 4428 restore(G0, G0, G0);
ysr@777 4429 }
ysr@777 4430
ysr@777 4431 // Check on whether to annul.
ysr@777 4432 br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, pre_val, filtered);
ysr@777 4433 delayed() -> nop();
ysr@777 4434
ysr@777 4435 // OK, it's not filtered, so we'll need to call enqueue. In the normal
ysr@777 4436 // case, pre_val will be a scratch G-reg, but there's some cases in which
ysr@777 4437 // it's an O-reg. In the first case, do a normal call. In the latter,
ysr@777 4438 // do a save here and call the frameless version.
ysr@777 4439
ysr@777 4440 guarantee(pre_val->is_global() || pre_val->is_out(),
ysr@777 4441 "Or we need to think harder.");
ysr@777 4442 if (pre_val->is_global() && !preserve_o_regs) {
ysr@777 4443 generate_satb_log_enqueue_if_necessary(true); // with frame.
ysr@777 4444 call(satb_log_enqueue_with_frame);
ysr@777 4445 delayed()->mov(pre_val, O0);
ysr@777 4446 } else {
ysr@777 4447 generate_satb_log_enqueue_if_necessary(false); // with frameless.
ysr@777 4448 save_frame(0);
ysr@777 4449 call(satb_log_enqueue_frameless);
ysr@777 4450 delayed()->mov(pre_val->after_save(), O0);
ysr@777 4451 restore();
ysr@777 4452 }
ysr@777 4453
ysr@777 4454 bind(filtered);
ysr@777 4455 }
ysr@777 4456
ysr@777 4457 static jint num_ct_writes = 0;
ysr@777 4458 static jint num_ct_writes_filtered_in_hr = 0;
ysr@777 4459 static jint num_ct_writes_filtered_null = 0;
ysr@777 4460 static G1CollectedHeap* g1 = NULL;
ysr@777 4461
ysr@777 4462 static Thread* count_ct_writes(void* filter_val, void* new_val) {
ysr@777 4463 Atomic::inc(&num_ct_writes);
ysr@777 4464 if (filter_val == NULL) {
ysr@777 4465 Atomic::inc(&num_ct_writes_filtered_in_hr);
ysr@777 4466 } else if (new_val == NULL) {
ysr@777 4467 Atomic::inc(&num_ct_writes_filtered_null);
ysr@777 4468 } else {
ysr@777 4469 if (g1 == NULL) {
ysr@777 4470 g1 = G1CollectedHeap::heap();
ysr@777 4471 }
ysr@777 4472 }
ysr@777 4473 if ((num_ct_writes % 1000000) == 0) {
ysr@777 4474 jint num_ct_writes_filtered =
ysr@777 4475 num_ct_writes_filtered_in_hr +
apetrusenko@1112 4476 num_ct_writes_filtered_null;
ysr@777 4477
ysr@777 4478 tty->print_cr("%d potential CT writes: %5.2f%% filtered\n"
apetrusenko@1112 4479 " (%5.2f%% intra-HR, %5.2f%% null).",
ysr@777 4480 num_ct_writes,
ysr@777 4481 100.0*(float)num_ct_writes_filtered/(float)num_ct_writes,
ysr@777 4482 100.0*(float)num_ct_writes_filtered_in_hr/
ysr@777 4483 (float)num_ct_writes,
ysr@777 4484 100.0*(float)num_ct_writes_filtered_null/
ysr@777 4485 (float)num_ct_writes);
ysr@777 4486 }
ysr@777 4487 return Thread::current();
ysr@777 4488 }
ysr@777 4489
ysr@777 4490 static address dirty_card_log_enqueue = 0;
ysr@777 4491 static u_char* dirty_card_log_enqueue_end = 0;
ysr@777 4492
ysr@777 4493 // This gets to assume that o0 contains the object address.
ysr@777 4494 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
ysr@777 4495 BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
twisti@2103 4496 CodeBuffer buf(bb);
ysr@777 4497 MacroAssembler masm(&buf);
ysr@777 4498 address start = masm.pc();
ysr@777 4499
ysr@777 4500 Label not_already_dirty, restart, refill;
ysr@777 4501
ysr@777 4502 #ifdef _LP64
ysr@777 4503 masm.srlx(O0, CardTableModRefBS::card_shift, O0);
ysr@777 4504 #else
ysr@777 4505 masm.srl(O0, CardTableModRefBS::card_shift, O0);
ysr@777 4506 #endif
twisti@1162 4507 AddressLiteral addrlit(byte_map_base);
twisti@1162 4508 masm.set(addrlit, O1); // O1 := <card table base>
ysr@777 4509 masm.ldub(O0, O1, O2); // O2 := [O0 + O1]
ysr@777 4510
ysr@777 4511 masm.br_on_reg_cond(Assembler::rc_nz, /*annul*/false, Assembler::pt,
ysr@777 4512 O2, not_already_dirty);
ysr@777 4513 // Get O1 + O2 into a reg by itself -- useful in the take-the-branch
ysr@777 4514 // case, harmless if not.
ysr@777 4515 masm.delayed()->add(O0, O1, O3);
ysr@777 4516
ysr@777 4517 // We didn't take the branch, so we're already dirty: return.
ysr@777 4518 // Use return-from-leaf
ysr@777 4519 masm.retl();
ysr@777 4520 masm.delayed()->nop();
ysr@777 4521
ysr@777 4522 // Not dirty.
ysr@777 4523 masm.bind(not_already_dirty);
ysr@777 4524 // First, dirty it.
ysr@777 4525 masm.stb(G0, O3, G0); // [cardPtr] := 0 (i.e., dirty).
ysr@777 4526 int dirty_card_q_index_byte_offset =
ysr@777 4527 in_bytes(JavaThread::dirty_card_queue_offset() +
ysr@777 4528 PtrQueue::byte_offset_of_index());
ysr@777 4529 int dirty_card_q_buf_byte_offset =
ysr@777 4530 in_bytes(JavaThread::dirty_card_queue_offset() +
ysr@777 4531 PtrQueue::byte_offset_of_buf());
ysr@777 4532 masm.bind(restart);
ysr@777 4533 masm.ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
ysr@777 4534
ysr@777 4535 masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn,
ysr@777 4536 L0, refill);
ysr@777 4537 // If the branch is taken, no harm in executing this in the delay slot.
ysr@777 4538 masm.delayed()->ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
ysr@777 4539 masm.sub(L0, oopSize, L0);
ysr@777 4540
ysr@777 4541 masm.st_ptr(O3, L1, L0); // [_buf + index] := I0
ysr@777 4542 // Use return-from-leaf
ysr@777 4543 masm.retl();
ysr@777 4544 masm.delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
ysr@777 4545
ysr@777 4546 masm.bind(refill);
ysr@777 4547 address handle_zero =
ysr@777 4548 CAST_FROM_FN_PTR(address,
ysr@777 4549 &DirtyCardQueueSet::handle_zero_index_for_thread);
ysr@777 4550 // This should be rare enough that we can afford to save all the
ysr@777 4551 // scratch registers that the calling context might be using.
ysr@777 4552 masm.mov(G1_scratch, L3);
ysr@777 4553 masm.mov(G3_scratch, L5);
ysr@777 4554 // We need the value of O3 above (for the write into the buffer), so we
ysr@777 4555 // save and restore it.
ysr@777 4556 masm.mov(O3, L6);
ysr@777 4557 // Since the call will overwrite O7, we save and restore that, as well.
ysr@777 4558 masm.mov(O7, L4);
ysr@777 4559
ysr@777 4560 masm.call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
ysr@777 4561 masm.mov(L3, G1_scratch);
ysr@777 4562 masm.mov(L5, G3_scratch);
ysr@777 4563 masm.mov(L6, O3);
ysr@777 4564 masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
ysr@777 4565 masm.delayed()->mov(L4, O7);
ysr@777 4566
ysr@777 4567 dirty_card_log_enqueue = start;
ysr@777 4568 dirty_card_log_enqueue_end = masm.pc();
ysr@777 4569 // XXX Should have a guarantee here about not going off the end!
ysr@777 4570 // Does it already do so? Do an experiment...
ysr@777 4571 }
ysr@777 4572
ysr@777 4573 static inline void
ysr@777 4574 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
ysr@777 4575 if (dirty_card_log_enqueue == 0) {
ysr@777 4576 generate_dirty_card_log_enqueue(byte_map_base);
ysr@777 4577 assert(dirty_card_log_enqueue != 0, "postcondition.");
ysr@777 4578 if (G1SATBPrintStubs) {
ysr@777 4579 tty->print_cr("Generated dirty_card enqueue:");
ysr@777 4580 Disassembler::decode((u_char*)dirty_card_log_enqueue,
ysr@777 4581 dirty_card_log_enqueue_end,
ysr@777 4582 tty);
ysr@777 4583 }
ysr@777 4584 }
ysr@777 4585 }
ysr@777 4586
ysr@777 4587
ysr@777 4588 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
ysr@777 4589
ysr@777 4590 Label filtered;
ysr@777 4591 MacroAssembler* post_filter_masm = this;
ysr@777 4592
ysr@777 4593 if (new_val == G0) return;
ysr@777 4594 if (G1DisablePostBarrier) return;
ysr@777 4595
ysr@777 4596 G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
ysr@777 4597 assert(bs->kind() == BarrierSet::G1SATBCT ||
ysr@777 4598 bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
ysr@777 4599 if (G1RSBarrierRegionFilter) {
ysr@777 4600 xor3(store_addr, new_val, tmp);
ysr@777 4601 #ifdef _LP64
ysr@777 4602 srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
ysr@777 4603 #else
ysr@777 4604 srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
ysr@777 4605 #endif
ysr@777 4606 if (G1PrintCTFilterStats) {
ysr@777 4607 guarantee(tmp->is_global(), "Or stats won't work...");
ysr@777 4608 // This is a sleazy hack: I'm temporarily hijacking G2, which I
ysr@777 4609 // promise to restore.
ysr@777 4610 mov(new_val, G2);
ysr@777 4611 save_frame(0);
ysr@777 4612 mov(tmp, O0);
ysr@777 4613 mov(G2, O1);
ysr@777 4614 // Save G-regs that target may use.
ysr@777 4615 mov(G1, L1);
ysr@777 4616 mov(G2, L2);
ysr@777 4617 mov(G3, L3);
ysr@777 4618 mov(G4, L4);
ysr@777 4619 mov(G5, L5);
ysr@777 4620 call(CAST_FROM_FN_PTR(address, &count_ct_writes));
ysr@777 4621 delayed()->nop();
ysr@777 4622 mov(O0, G2);
ysr@777 4623 // Restore G-regs that target may have used.
ysr@777 4624 mov(L1, G1);
ysr@777 4625 mov(L3, G3);
ysr@777 4626 mov(L4, G4);
ysr@777 4627 mov(L5, G5);
ysr@777 4628 restore(G0, G0, G0);
ysr@777 4629 }
ysr@777 4630 // XXX Should I predict this taken or not? Does it mattern?
ysr@777 4631 br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
ysr@777 4632 delayed()->nop();
ysr@777 4633 }
ysr@777 4634
iveresov@1229 4635 // If the "store_addr" register is an "in" or "local" register, move it to
iveresov@1229 4636 // a scratch reg so we can pass it as an argument.
iveresov@1229 4637 bool use_scr = !(store_addr->is_global() || store_addr->is_out());
iveresov@1229 4638 // Pick a scratch register different from "tmp".
iveresov@1229 4639 Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
iveresov@1229 4640 // Make sure we use up the delay slot!
iveresov@1229 4641 if (use_scr) {
iveresov@1229 4642 post_filter_masm->mov(store_addr, scr);
ysr@777 4643 } else {
iveresov@1229 4644 post_filter_masm->nop();
ysr@777 4645 }
iveresov@1229 4646 generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
iveresov@1229 4647 save_frame(0);
iveresov@1229 4648 call(dirty_card_log_enqueue);
iveresov@1229 4649 if (use_scr) {
iveresov@1229 4650 delayed()->mov(scr, O0);
iveresov@1229 4651 } else {
iveresov@1229 4652 delayed()->mov(store_addr->after_save(), O0);
iveresov@1229 4653 }
iveresov@1229 4654 restore();
ysr@777 4655
ysr@777 4656 bind(filtered);
ysr@777 4657
ysr@777 4658 }
ysr@777 4659
ysr@777 4660 #endif // SERIALGC
ysr@777 4661 ///////////////////////////////////////////////////////////////////////////////////
ysr@777 4662
ysr@777 4663 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
ysr@777 4664 // If we're writing constant NULL, we can skip the write barrier.
ysr@777 4665 if (new_val == G0) return;
ysr@777 4666 CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
ysr@777 4667 assert(bs->kind() == BarrierSet::CardTableModRef ||
ysr@777 4668 bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
ysr@777 4669 card_table_write(bs->byte_map_base, tmp, store_addr);
ysr@777 4670 }
ysr@777 4671
kvn@599 4672 void MacroAssembler::load_klass(Register src_oop, Register klass) {
coleenp@548 4673 // The number of bytes in this code is used by
coleenp@548 4674 // MachCallDynamicJavaNode::ret_addr_offset()
coleenp@548 4675 // if this changes, change that.
coleenp@548 4676 if (UseCompressedOops) {
kvn@599 4677 lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
kvn@599 4678 decode_heap_oop_not_null(klass);
coleenp@548 4679 } else {
kvn@599 4680 ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
coleenp@548 4681 }
coleenp@548 4682 }
coleenp@548 4683
kvn@599 4684 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
coleenp@548 4685 if (UseCompressedOops) {
kvn@599 4686 assert(dst_oop != klass, "not enough registers");
kvn@599 4687 encode_heap_oop_not_null(klass);
coleenp@602 4688 st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
coleenp@548 4689 } else {
kvn@599 4690 st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
kvn@559 4691 }
kvn@559 4692 }
kvn@559 4693
coleenp@602 4694 void MacroAssembler::store_klass_gap(Register s, Register d) {
coleenp@602 4695 if (UseCompressedOops) {
coleenp@602 4696 assert(s != d, "not enough registers");
coleenp@602 4697 st(s, d, oopDesc::klass_gap_offset_in_bytes());
coleenp@548 4698 }
coleenp@548 4699 }
coleenp@548 4700
twisti@1162 4701 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
coleenp@548 4702 if (UseCompressedOops) {
twisti@1162 4703 lduw(s, d);
coleenp@548 4704 decode_heap_oop(d);
coleenp@548 4705 } else {
twisti@1162 4706 ld_ptr(s, d);
coleenp@548 4707 }
coleenp@548 4708 }
coleenp@548 4709
coleenp@548 4710 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
coleenp@548 4711 if (UseCompressedOops) {
coleenp@548 4712 lduw(s1, s2, d);
coleenp@548 4713 decode_heap_oop(d, d);
coleenp@548 4714 } else {
coleenp@548 4715 ld_ptr(s1, s2, d);
coleenp@548 4716 }
coleenp@548 4717 }
coleenp@548 4718
coleenp@548 4719 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
coleenp@548 4720 if (UseCompressedOops) {
coleenp@548 4721 lduw(s1, simm13a, d);
coleenp@548 4722 decode_heap_oop(d, d);
coleenp@548 4723 } else {
coleenp@548 4724 ld_ptr(s1, simm13a, d);
coleenp@548 4725 }
coleenp@548 4726 }
coleenp@548 4727
twisti@2201 4728 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
twisti@2201 4729 if (s2.is_constant()) load_heap_oop(s1, s2.as_constant(), d);
twisti@2201 4730 else load_heap_oop(s1, s2.as_register(), d);
twisti@2201 4731 }
twisti@2201 4732
coleenp@548 4733 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
coleenp@548 4734 if (UseCompressedOops) {
coleenp@548 4735 assert(s1 != d && s2 != d, "not enough registers");
coleenp@548 4736 encode_heap_oop(d);
coleenp@548 4737 st(d, s1, s2);
coleenp@548 4738 } else {
coleenp@548 4739 st_ptr(d, s1, s2);
coleenp@548 4740 }
coleenp@548 4741 }
coleenp@548 4742
coleenp@548 4743 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
coleenp@548 4744 if (UseCompressedOops) {
coleenp@548 4745 assert(s1 != d, "not enough registers");
coleenp@548 4746 encode_heap_oop(d);
coleenp@548 4747 st(d, s1, simm13a);
coleenp@548 4748 } else {
coleenp@548 4749 st_ptr(d, s1, simm13a);
coleenp@548 4750 }
coleenp@548 4751 }
coleenp@548 4752
coleenp@548 4753 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
coleenp@548 4754 if (UseCompressedOops) {
coleenp@548 4755 assert(a.base() != d, "not enough registers");
coleenp@548 4756 encode_heap_oop(d);
coleenp@548 4757 st(d, a, offset);
coleenp@548 4758 } else {
coleenp@548 4759 st_ptr(d, a, offset);
coleenp@548 4760 }
coleenp@548 4761 }
coleenp@548 4762
coleenp@548 4763
coleenp@548 4764 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
coleenp@548 4765 assert (UseCompressedOops, "must be compressed");
kvn@1077 4766 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4767 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4768 verify_oop(src);
kvn@1077 4769 if (Universe::narrow_oop_base() == NULL) {
kvn@1077 4770 srlx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4771 return;
kvn@1077 4772 }
coleenp@548 4773 Label done;
coleenp@548 4774 if (src == dst) {
coleenp@548 4775 // optimize for frequent case src == dst
coleenp@548 4776 bpr(rc_nz, true, Assembler::pt, src, done);
coleenp@548 4777 delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
coleenp@548 4778 bind(done);
coleenp@548 4779 srlx(src, LogMinObjAlignmentInBytes, dst);
coleenp@548 4780 } else {
coleenp@548 4781 bpr(rc_z, false, Assembler::pn, src, done);
coleenp@548 4782 delayed() -> mov(G0, dst);
coleenp@548 4783 // could be moved before branch, and annulate delay,
coleenp@548 4784 // but may add some unneeded work decoding null
coleenp@548 4785 sub(src, G6_heapbase, dst);
coleenp@548 4786 srlx(dst, LogMinObjAlignmentInBytes, dst);
coleenp@548 4787 bind(done);
coleenp@548 4788 }
coleenp@548 4789 }
coleenp@548 4790
coleenp@548 4791
coleenp@548 4792 void MacroAssembler::encode_heap_oop_not_null(Register r) {
coleenp@548 4793 assert (UseCompressedOops, "must be compressed");
kvn@1077 4794 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4795 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4796 verify_oop(r);
kvn@1077 4797 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4798 sub(r, G6_heapbase, r);
coleenp@548 4799 srlx(r, LogMinObjAlignmentInBytes, r);
coleenp@548 4800 }
coleenp@548 4801
kvn@559 4802 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
kvn@559 4803 assert (UseCompressedOops, "must be compressed");
kvn@1077 4804 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4805 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@613 4806 verify_oop(src);
kvn@1077 4807 if (Universe::narrow_oop_base() == NULL) {
kvn@1077 4808 srlx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4809 } else {
kvn@1077 4810 sub(src, G6_heapbase, dst);
kvn@1077 4811 srlx(dst, LogMinObjAlignmentInBytes, dst);
kvn@1077 4812 }
kvn@559 4813 }
kvn@559 4814
coleenp@548 4815 // Same algorithm as oops.inline.hpp decode_heap_oop.
coleenp@548 4816 void MacroAssembler::decode_heap_oop(Register src, Register dst) {
coleenp@548 4817 assert (UseCompressedOops, "must be compressed");
kvn@1077 4818 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4819 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@548 4820 sllx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4821 if (Universe::narrow_oop_base() != NULL) {
kvn@1077 4822 Label done;
kvn@1077 4823 bpr(rc_nz, true, Assembler::pt, dst, done);
kvn@1077 4824 delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
kvn@1077 4825 bind(done);
kvn@1077 4826 }
coleenp@613 4827 verify_oop(dst);
coleenp@548 4828 }
coleenp@548 4829
coleenp@548 4830 void MacroAssembler::decode_heap_oop_not_null(Register r) {
coleenp@548 4831 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
coleenp@548 4832 // pd_code_size_limit.
coleenp@613 4833 // Also do not verify_oop as this is called by verify_oop.
coleenp@548 4834 assert (UseCompressedOops, "must be compressed");
kvn@1077 4835 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4836 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
coleenp@548 4837 sllx(r, LogMinObjAlignmentInBytes, r);
kvn@1077 4838 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4839 add(r, G6_heapbase, r);
coleenp@548 4840 }
coleenp@548 4841
kvn@559 4842 void MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
kvn@559 4843 // Do not add assert code to this unless you change vtableStubs_sparc.cpp
kvn@559 4844 // pd_code_size_limit.
coleenp@613 4845 // Also do not verify_oop as this is called by verify_oop.
kvn@559 4846 assert (UseCompressedOops, "must be compressed");
kvn@1077 4847 assert (Universe::heap() != NULL, "java heap should be initialized");
kvn@1077 4848 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
kvn@559 4849 sllx(src, LogMinObjAlignmentInBytes, dst);
kvn@1077 4850 if (Universe::narrow_oop_base() != NULL)
kvn@1077 4851 add(dst, G6_heapbase, dst);
kvn@559 4852 }
kvn@559 4853
coleenp@548 4854 void MacroAssembler::reinit_heapbase() {
coleenp@548 4855 if (UseCompressedOops) {
coleenp@548 4856 // call indirectly to solve generation ordering problem
twisti@1162 4857 AddressLiteral base(Universe::narrow_oop_base_addr());
coleenp@548 4858 load_ptr_contents(base, G6_heapbase);
coleenp@548 4859 }
coleenp@548 4860 }
kvn@1421 4861
kvn@1421 4862 // Compare char[] arrays aligned to 4 bytes.
kvn@1421 4863 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
kvn@1421 4864 Register limit, Register result,
kvn@1421 4865 Register chr1, Register chr2, Label& Ldone) {
kvn@1421 4866 Label Lvector, Lloop;
kvn@1421 4867 assert(chr1 == result, "should be the same");
kvn@1421 4868
kvn@1421 4869 // Note: limit contains number of bytes (2*char_elements) != 0.
kvn@1421 4870 andcc(limit, 0x2, chr1); // trailing character ?
kvn@1421 4871 br(Assembler::zero, false, Assembler::pt, Lvector);
kvn@1421 4872 delayed()->nop();
kvn@1421 4873
kvn@1421 4874 // compare the trailing char
kvn@1421 4875 sub(limit, sizeof(jchar), limit);
kvn@1421 4876 lduh(ary1, limit, chr1);
kvn@1421 4877 lduh(ary2, limit, chr2);
kvn@1421 4878 cmp(chr1, chr2);
kvn@1421 4879 br(Assembler::notEqual, true, Assembler::pt, Ldone);
kvn@1421 4880 delayed()->mov(G0, result); // not equal
kvn@1421 4881
kvn@1421 4882 // only one char ?
kvn@1421 4883 br_on_reg_cond(rc_z, true, Assembler::pn, limit, Ldone);
kvn@1421 4884 delayed()->add(G0, 1, result); // zero-length arrays are equal
kvn@1421 4885
kvn@1421 4886 // word by word compare, dont't need alignment check
kvn@1421 4887 bind(Lvector);
kvn@1421 4888 // Shift ary1 and ary2 to the end of the arrays, negate limit
kvn@1421 4889 add(ary1, limit, ary1);
kvn@1421 4890 add(ary2, limit, ary2);
kvn@1421 4891 neg(limit, limit);
kvn@1421 4892
kvn@1421 4893 lduw(ary1, limit, chr1);
kvn@1421 4894 bind(Lloop);
kvn@1421 4895 lduw(ary2, limit, chr2);
kvn@1421 4896 cmp(chr1, chr2);
kvn@1421 4897 br(Assembler::notEqual, true, Assembler::pt, Ldone);
kvn@1421 4898 delayed()->mov(G0, result); // not equal
kvn@1421 4899 inccc(limit, 2*sizeof(jchar));
kvn@1421 4900 // annul LDUW if branch is not taken to prevent access past end of array
kvn@1421 4901 br(Assembler::notZero, true, Assembler::pt, Lloop);
kvn@1421 4902 delayed()->lduw(ary1, limit, chr1); // hoisted
kvn@1421 4903
kvn@1421 4904 // Caller should set it:
kvn@1421 4905 // add(G0, 1, result); // equals
kvn@1421 4906 }
kvn@1421 4907

mercurial