src/cpu/sparc/vm/assembler_sparc.cpp

Wed, 16 Nov 2011 01:39:50 -0800

author
twisti
date
Wed, 16 Nov 2011 01:39:50 -0800
changeset 3310
6729bbc1fcd6
parent 3137
e6b1331a51d2
child 3391
069ab3f976d3
permissions
-rw-r--r--

7003454: order constants in constant table by number of references in code
Reviewed-by: kvn, never, bdelsart

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "assembler_sparc.inline.hpp"
    28 #include "gc_interface/collectedHeap.inline.hpp"
    29 #include "interpreter/interpreter.hpp"
    30 #include "memory/cardTableModRefBS.hpp"
    31 #include "memory/resourceArea.hpp"
    32 #include "prims/methodHandles.hpp"
    33 #include "runtime/biasedLocking.hpp"
    34 #include "runtime/interfaceSupport.hpp"
    35 #include "runtime/objectMonitor.hpp"
    36 #include "runtime/os.hpp"
    37 #include "runtime/sharedRuntime.hpp"
    38 #include "runtime/stubRoutines.hpp"
    39 #ifndef SERIALGC
    40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
    41 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    42 #include "gc_implementation/g1/heapRegion.hpp"
    43 #endif
    45 #ifdef PRODUCT
    46 #define BLOCK_COMMENT(str) /* nothing */
    47 #else
    48 #define BLOCK_COMMENT(str) block_comment(str)
    49 #endif
    51 // Convert the raw encoding form into the form expected by the
    52 // constructor for Address.
    53 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
    54   assert(scale == 0, "not supported");
    55   RelocationHolder rspec;
    56   if (disp_is_oop) {
    57     rspec = Relocation::spec_simple(relocInfo::oop_type);
    58   }
    60   Register rindex = as_Register(index);
    61   if (rindex != G0) {
    62     Address madr(as_Register(base), rindex);
    63     madr._rspec = rspec;
    64     return madr;
    65   } else {
    66     Address madr(as_Register(base), disp);
    67     madr._rspec = rspec;
    68     return madr;
    69   }
    70 }
    72 Address Argument::address_in_frame() const {
    73   // Warning: In LP64 mode disp will occupy more than 10 bits, but
    74   //          op codes such as ld or ldx, only access disp() to get
    75   //          their simm13 argument.
    76   int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
    77   if (is_in())
    78     return Address(FP, disp); // In argument.
    79   else
    80     return Address(SP, disp); // Out argument.
    81 }
    83 static const char* argumentNames[][2] = {
    84   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
    85   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
    86   {"A(n>9)","P(n>9)"}
    87 };
    89 const char* Argument::name() const {
    90   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
    91   int num = number();
    92   if (num >= nofArgs)  num = nofArgs - 1;
    93   return argumentNames[num][is_in() ? 1 : 0];
    94 }
    96 void Assembler::print_instruction(int inst) {
    97   const char* s;
    98   switch (inv_op(inst)) {
    99   default:         s = "????"; break;
   100   case call_op:    s = "call"; break;
   101   case branch_op:
   102     switch (inv_op2(inst)) {
   103       case fb_op2:     s = "fb";   break;
   104       case fbp_op2:    s = "fbp";  break;
   105       case br_op2:     s = "br";   break;
   106       case bp_op2:     s = "bp";   break;
   107       case cb_op2:     s = "cb";   break;
   108       case bpr_op2: {
   109         if (is_cbcond(inst)) {
   110           s = is_cxb(inst) ? "cxb" : "cwb";
   111         } else {
   112           s = "bpr";
   113         }
   114         break;
   115       }
   116       default:         s = "????"; break;
   117     }
   118   }
   119   ::tty->print("%s", s);
   120 }
   123 // Patch instruction inst at offset inst_pos to refer to dest_pos
   124 // and return the resulting instruction.
   125 // We should have pcs, not offsets, but since all is relative, it will work out
   126 // OK.
   127 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
   129   int m; // mask for displacement field
   130   int v; // new value for displacement field
   131   const int word_aligned_ones = -4;
   132   switch (inv_op(inst)) {
   133   default: ShouldNotReachHere();
   134   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
   135   case branch_op:
   136     switch (inv_op2(inst)) {
   137       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
   138       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
   139       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   140       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   141       case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
   142       case bpr_op2: {
   143         if (is_cbcond(inst)) {
   144           m = wdisp10(word_aligned_ones, 0);
   145           v = wdisp10(dest_pos, inst_pos);
   146         } else {
   147           m = wdisp16(word_aligned_ones, 0);
   148           v = wdisp16(dest_pos, inst_pos);
   149         }
   150         break;
   151       }
   152       default: ShouldNotReachHere();
   153     }
   154   }
   155   return  inst & ~m  |  v;
   156 }
   158 // Return the offset of the branch destionation of instruction inst
   159 // at offset pos.
   160 // Should have pcs, but since all is relative, it works out.
   161 int Assembler::branch_destination(int inst, int pos) {
   162   int r;
   163   switch (inv_op(inst)) {
   164   default: ShouldNotReachHere();
   165   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
   166   case branch_op:
   167     switch (inv_op2(inst)) {
   168       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
   169       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
   170       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   171       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   172       case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
   173       case bpr_op2: {
   174         if (is_cbcond(inst)) {
   175           r = inv_wdisp10(inst, pos);
   176         } else {
   177           r = inv_wdisp16(inst, pos);
   178         }
   179         break;
   180       }
   181       default: ShouldNotReachHere();
   182     }
   183   }
   184   return r;
   185 }
   187 int AbstractAssembler::code_fill_byte() {
   188   return 0x00;                  // illegal instruction 0x00000000
   189 }
   191 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
   192   switch (in) {
   193   case rc_z:   return equal;
   194   case rc_lez: return lessEqual;
   195   case rc_lz:  return less;
   196   case rc_nz:  return notEqual;
   197   case rc_gz:  return greater;
   198   case rc_gez: return greaterEqual;
   199   default:
   200     ShouldNotReachHere();
   201   }
   202   return equal;
   203 }
   205 // Generate a bunch 'o stuff (including v9's
   206 #ifndef PRODUCT
   207 void Assembler::test_v9() {
   208   add(    G0, G1, G2 );
   209   add(    G3,  0, G4 );
   211   addcc(  G5, G6, G7 );
   212   addcc(  I0,  1, I1 );
   213   addc(   I2, I3, I4 );
   214   addc(   I5, -1, I6 );
   215   addccc( I7, L0, L1 );
   216   addccc( L2, (1 << 12) - 2, L3 );
   218   Label lbl1, lbl2, lbl3;
   220   bind(lbl1);
   222   bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
   223   delayed()->nop();
   224   bpr( rc_lez, false, pt, L5, lbl1);
   225   delayed()->nop();
   227   fb( f_never,     true, pc() + 4,  relocInfo::none);
   228   delayed()->nop();
   229   fb( f_notEqual, false, lbl2 );
   230   delayed()->nop();
   232   fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
   233   delayed()->nop();
   234   fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
   235   delayed()->nop();
   237   br( equal,  true, pc() + 1024, relocInfo::none);
   238   delayed()->nop();
   239   br( lessEqual, false, lbl1 );
   240   delayed()->nop();
   241   br( never, false, lbl1 );
   242   delayed()->nop();
   244   bp( less,               true, icc, pn, pc(), relocInfo::none);
   245   delayed()->nop();
   246   bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
   247   delayed()->nop();
   249   call( pc(), relocInfo::none);
   250   delayed()->nop();
   251   call( lbl3 );
   252   delayed()->nop();
   255   casa(  L6, L7, O0 );
   256   casxa( O1, O2, O3, 0 );
   258   udiv(   O4, O5, O7 );
   259   udiv(   G0, (1 << 12) - 1, G1 );
   260   sdiv(   G1, G2, G3 );
   261   sdiv(   G4, -((1 << 12) - 1), G5 );
   262   udivcc( G6, G7, I0 );
   263   udivcc( I1, -((1 << 12) - 2), I2 );
   264   sdivcc( I3, I4, I5 );
   265   sdivcc( I6, -((1 << 12) - 0), I7 );
   267   done();
   268   retry();
   270   fadd( FloatRegisterImpl::S, F0,  F1, F2 );
   271   fsub( FloatRegisterImpl::D, F34, F0, F62 );
   273   fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
   274   fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
   276   ftox( FloatRegisterImpl::D, F2, F4 );
   277   ftoi( FloatRegisterImpl::Q, F4, F8 );
   279   ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
   281   fxtof( FloatRegisterImpl::S, F4, F5 );
   282   fitof( FloatRegisterImpl::D, F6, F8 );
   284   fmov( FloatRegisterImpl::Q, F16, F20 );
   285   fneg( FloatRegisterImpl::S, F6, F7 );
   286   fabs( FloatRegisterImpl::D, F10, F12 );
   288   fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
   289   fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
   290   fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
   292   fsqrt( FloatRegisterImpl::S, F13, F14 );
   294   flush( L0, L1 );
   295   flush( L2, -1 );
   297   flushw();
   299   illtrap( (1 << 22) - 2);
   301   impdep1( 17, (1 << 19) - 1 );
   302   impdep2( 3,  0 );
   304   jmpl( L3, L4, L5 );
   305   delayed()->nop();
   306   jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
   307   delayed()->nop();
   310   ldf(    FloatRegisterImpl::S, O0, O1, F15 );
   311   ldf(    FloatRegisterImpl::D, O2, -1, F14 );
   314   ldfsr(  O3, O4 );
   315   ldfsr(  O5, -1 );
   316   ldxfsr( O6, O7 );
   317   ldxfsr( I0, -1 );
   319   ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
   320   ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
   322   ldsb(  I4, I5, I6 );
   323   ldsb(  I7, -1, G0 );
   324   ldsh(  G1, G3, G4 );
   325   ldsh(  G5, -1, G6 );
   326   ldsw(  G7, L0, L1 );
   327   ldsw(  L2, -1, L3 );
   328   ldub(  L4, L5, L6 );
   329   ldub(  L7, -1, O0 );
   330   lduh(  O1, O2, O3 );
   331   lduh(  O4, -1, O5 );
   332   lduw(  O6, O7, G0 );
   333   lduw(  G1, -1, G2 );
   334   ldx(   G3, G4, G5 );
   335   ldx(   G6, -1, G7 );
   336   ldd(   I0, I1, I2 );
   337   ldd(   I3, -1, I4 );
   339   ldsba(  I5, I6, 2, I7 );
   340   ldsba(  L0, -1, L1 );
   341   ldsha(  L2, L3, 3, L4 );
   342   ldsha(  L5, -1, L6 );
   343   ldswa(  L7, O0, (1 << 8) - 1, O1 );
   344   ldswa(  O2, -1, O3 );
   345   lduba(  O4, O5, 0, O6 );
   346   lduba(  O7, -1, I0 );
   347   lduha(  I1, I2, 1, I3 );
   348   lduha(  I4, -1, I5 );
   349   lduwa(  I6, I7, 2, L0 );
   350   lduwa(  L1, -1, L2 );
   351   ldxa(   L3, L4, 3, L5 );
   352   ldxa(   L6, -1, L7 );
   353   ldda(   G0, G1, 4, G2 );
   354   ldda(   G3, -1, G4 );
   356   ldstub(  G5, G6, G7 );
   357   ldstub(  O0, -1, O1 );
   359   ldstuba( O2, O3, 5, O4 );
   360   ldstuba( O5, -1, O6 );
   362   and3(    I0, L0, O0 );
   363   and3(    G7, -1, O7 );
   364   andcc(   L2, I2, G2 );
   365   andcc(   L4, -1, G4 );
   366   andn(    I5, I6, I7 );
   367   andn(    I6, -1, I7 );
   368   andncc(  I5, I6, I7 );
   369   andncc(  I7, -1, I6 );
   370   or3(     I5, I6, I7 );
   371   or3(     I7, -1, I6 );
   372   orcc(    I5, I6, I7 );
   373   orcc(    I7, -1, I6 );
   374   orn(     I5, I6, I7 );
   375   orn(     I7, -1, I6 );
   376   orncc(   I5, I6, I7 );
   377   orncc(   I7, -1, I6 );
   378   xor3(    I5, I6, I7 );
   379   xor3(    I7, -1, I6 );
   380   xorcc(   I5, I6, I7 );
   381   xorcc(   I7, -1, I6 );
   382   xnor(    I5, I6, I7 );
   383   xnor(    I7, -1, I6 );
   384   xnorcc(  I5, I6, I7 );
   385   xnorcc(  I7, -1, I6 );
   387   membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
   388   membar( StoreStore );
   389   membar( LoadStore );
   390   membar( StoreLoad );
   391   membar( LoadLoad );
   392   membar( Sync );
   393   membar( MemIssue );
   394   membar( Lookaside );
   396   fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
   397   fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
   399   movcc( overflowClear,  false, icc, I6, L4 );
   400   movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
   402   movr( rc_nz, I5, I6, I7 );
   403   movr( rc_gz, L1, -1,  L2 );
   405   mulx(  I5, I6, I7 );
   406   mulx(  I7, -1, I6 );
   407   sdivx( I5, I6, I7 );
   408   sdivx( I7, -1, I6 );
   409   udivx( I5, I6, I7 );
   410   udivx( I7, -1, I6 );
   412   umul(   I5, I6, I7 );
   413   umul(   I7, -1, I6 );
   414   smul(   I5, I6, I7 );
   415   smul(   I7, -1, I6 );
   416   umulcc( I5, I6, I7 );
   417   umulcc( I7, -1, I6 );
   418   smulcc( I5, I6, I7 );
   419   smulcc( I7, -1, I6 );
   421   mulscc(   I5, I6, I7 );
   422   mulscc(   I7, -1, I6 );
   424   nop();
   427   popc( G0,  G1);
   428   popc( -1, G2);
   430   prefetch(   L1, L2,    severalReads );
   431   prefetch(   L3, -1,    oneRead );
   432   prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
   433   prefetcha(  G2, -1,    oneWrite );
   435   rett( I7, I7);
   436   delayed()->nop();
   437   rett( G0, -1, relocInfo::none);
   438   delayed()->nop();
   440   save(    I5, I6, I7 );
   441   save(    I7, -1, I6 );
   442   restore( I5, I6, I7 );
   443   restore( I7, -1, I6 );
   445   saved();
   446   restored();
   448   sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
   450   sll(  I5, I6, I7 );
   451   sll(  I7, 31, I6 );
   452   srl(  I5, I6, I7 );
   453   srl(  I7,  0, I6 );
   454   sra(  I5, I6, I7 );
   455   sra(  I7, 30, I6 );
   456   sllx( I5, I6, I7 );
   457   sllx( I7, 63, I6 );
   458   srlx( I5, I6, I7 );
   459   srlx( I7,  0, I6 );
   460   srax( I5, I6, I7 );
   461   srax( I7, 62, I6 );
   463   sir( -1 );
   465   stbar();
   467   stf(    FloatRegisterImpl::Q, F40, G0, I7 );
   468   stf(    FloatRegisterImpl::S, F18, I3, -1 );
   470   stfsr(  L1, L2 );
   471   stfsr(  I7, -1 );
   472   stxfsr( I6, I5 );
   473   stxfsr( L4, -1 );
   475   stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
   476   stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
   478   stb(  L5, O2, I7 );
   479   stb(  I7, I6, -1 );
   480   sth(  L5, O2, I7 );
   481   sth(  I7, I6, -1 );
   482   stw(  L5, O2, I7 );
   483   stw(  I7, I6, -1 );
   484   stx(  L5, O2, I7 );
   485   stx(  I7, I6, -1 );
   486   std(  L5, O2, I7 );
   487   std(  I7, I6, -1 );
   489   stba(  L5, O2, I7, 8 );
   490   stba(  I7, I6, -1    );
   491   stha(  L5, O2, I7, 9 );
   492   stha(  I7, I6, -1    );
   493   stwa(  L5, O2, I7, 0 );
   494   stwa(  I7, I6, -1    );
   495   stxa(  L5, O2, I7, 11 );
   496   stxa(  I7, I6, -1     );
   497   stda(  L5, O2, I7, 12 );
   498   stda(  I7, I6, -1     );
   500   sub(    I5, I6, I7 );
   501   sub(    I7, -1, I6 );
   502   subcc(  I5, I6, I7 );
   503   subcc(  I7, -1, I6 );
   504   subc(   I5, I6, I7 );
   505   subc(   I7, -1, I6 );
   506   subccc( I5, I6, I7 );
   507   subccc( I7, -1, I6 );
   509   swap( I5, I6, I7 );
   510   swap( I7, -1, I6 );
   512   swapa(   G0, G1, 13, G2 );
   513   swapa(   I7, -1,     I6 );
   515   taddcc(    I5, I6, I7 );
   516   taddcc(    I7, -1, I6 );
   517   taddcctv(  I5, I6, I7 );
   518   taddcctv(  I7, -1, I6 );
   520   tsubcc(    I5, I6, I7 );
   521   tsubcc(    I7, -1, I6 );
   522   tsubcctv(  I5, I6, I7 );
   523   tsubcctv(  I7, -1, I6 );
   525   trap( overflowClear, xcc, G0, G1 );
   526   trap( lessEqual,     icc, I7, 17 );
   528   bind(lbl2);
   529   bind(lbl3);
   531   code()->decode();
   532 }
   534 // Generate a bunch 'o stuff unique to V8
   535 void Assembler::test_v8_onlys() {
   536   Label lbl1;
   538   cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
   539   delayed()->nop();
   540   cb( cp_never,    true, lbl1);
   541   delayed()->nop();
   543   cpop1(1, 2, 3, 4);
   544   cpop2(5, 6, 7, 8);
   546   ldc( I0, I1, 31);
   547   ldc( I2, -1,  0);
   549   lddc( I4, I4, 30);
   550   lddc( I6,  0, 1 );
   552   ldcsr( L0, L1, 0);
   553   ldcsr( L1, (1 << 12) - 1, 17 );
   555   stc( 31, L4, L5);
   556   stc( 30, L6, -(1 << 12) );
   558   stdc( 0, L7, G0);
   559   stdc( 1, G1, 0 );
   561   stcsr( 16, G2, G3);
   562   stcsr( 17, G4, 1 );
   564   stdcq( 4, G5, G6);
   565   stdcq( 5, G7, -1 );
   567   bind(lbl1);
   569   code()->decode();
   570 }
   571 #endif
   573 // Implementation of MacroAssembler
   575 void MacroAssembler::null_check(Register reg, int offset) {
   576   if (needs_explicit_null_check((intptr_t)offset)) {
   577     // provoke OS NULL exception if reg = NULL by
   578     // accessing M[reg] w/o changing any registers
   579     ld_ptr(reg, 0, G0);
   580   }
   581   else {
   582     // nothing to do, (later) access of M[reg + offset]
   583     // will provoke OS NULL exception if reg = NULL
   584   }
   585 }
   587 // Ring buffer jumps
   589 #ifndef PRODUCT
   590 void MacroAssembler::ret(  bool trace )   { if (trace) {
   591                                                     mov(I7, O7); // traceable register
   592                                                     JMP(O7, 2 * BytesPerInstWord);
   593                                                   } else {
   594                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
   595                                                   }
   596                                                 }
   598 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
   599                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
   600 #endif /* PRODUCT */
   603 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
   604   assert_not_delayed();
   605   // This can only be traceable if r1 & r2 are visible after a window save
   606   if (TraceJumps) {
   607 #ifndef PRODUCT
   608     save_frame(0);
   609     verify_thread();
   610     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   611     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   612     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   613     add(O2, O1, O1);
   615     add(r1->after_save(), r2->after_save(), O2);
   616     set((intptr_t)file, O3);
   617     set(line, O4);
   618     Label L;
   619     // get nearby pc, store jmp target
   620     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   621     delayed()->st(O2, O1, 0);
   622     bind(L);
   624     // store nearby pc
   625     st(O7, O1, sizeof(intptr_t));
   626     // store file
   627     st(O3, O1, 2*sizeof(intptr_t));
   628     // store line
   629     st(O4, O1, 3*sizeof(intptr_t));
   630     add(O0, 1, O0);
   631     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   632     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   633     restore();
   634 #endif /* PRODUCT */
   635   }
   636   jmpl(r1, r2, G0);
   637 }
   638 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
   639   assert_not_delayed();
   640   // This can only be traceable if r1 is visible after a window save
   641   if (TraceJumps) {
   642 #ifndef PRODUCT
   643     save_frame(0);
   644     verify_thread();
   645     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   646     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   647     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   648     add(O2, O1, O1);
   650     add(r1->after_save(), offset, O2);
   651     set((intptr_t)file, O3);
   652     set(line, O4);
   653     Label L;
   654     // get nearby pc, store jmp target
   655     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   656     delayed()->st(O2, O1, 0);
   657     bind(L);
   659     // store nearby pc
   660     st(O7, O1, sizeof(intptr_t));
   661     // store file
   662     st(O3, O1, 2*sizeof(intptr_t));
   663     // store line
   664     st(O4, O1, 3*sizeof(intptr_t));
   665     add(O0, 1, O0);
   666     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   667     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   668     restore();
   669 #endif /* PRODUCT */
   670   }
   671   jmp(r1, offset);
   672 }
   674 // This code sequence is relocatable to any address, even on LP64.
   675 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
   676   assert_not_delayed();
   677   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
   678   // variable length instruction streams.
   679   patchable_sethi(addrlit, temp);
   680   Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
   681   if (TraceJumps) {
   682 #ifndef PRODUCT
   683     // Must do the add here so relocation can find the remainder of the
   684     // value to be relocated.
   685     add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
   686     save_frame(0);
   687     verify_thread();
   688     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
   689     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
   690     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
   691     add(O2, O1, O1);
   693     set((intptr_t)file, O3);
   694     set(line, O4);
   695     Label L;
   697     // get nearby pc, store jmp target
   698     call(L, relocInfo::none);  // No relocation for call to pc+0x8
   699     delayed()->st(a.base()->after_save(), O1, 0);
   700     bind(L);
   702     // store nearby pc
   703     st(O7, O1, sizeof(intptr_t));
   704     // store file
   705     st(O3, O1, 2*sizeof(intptr_t));
   706     // store line
   707     st(O4, O1, 3*sizeof(intptr_t));
   708     add(O0, 1, O0);
   709     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
   710     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
   711     restore();
   712     jmpl(a.base(), G0, d);
   713 #else
   714     jmpl(a.base(), a.disp(), d);
   715 #endif /* PRODUCT */
   716   } else {
   717     jmpl(a.base(), a.disp(), d);
   718   }
   719 }
   721 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
   722   jumpl(addrlit, temp, G0, offset, file, line);
   723 }
   726 // Convert to C varargs format
   727 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
   728   // spill register-resident args to their memory slots
   729   // (SPARC calling convention requires callers to have already preallocated these)
   730   // Note that the inArg might in fact be an outgoing argument,
   731   // if a leaf routine or stub does some tricky argument shuffling.
   732   // This routine must work even though one of the saved arguments
   733   // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
   734   for (Argument savePtr = inArg;
   735        savePtr.is_register();
   736        savePtr = savePtr.successor()) {
   737     st_ptr(savePtr.as_register(), savePtr.address_in_frame());
   738   }
   739   // return the address of the first memory slot
   740   Address a = inArg.address_in_frame();
   741   add(a.base(), a.disp(), d);
   742 }
   744 // Conditional breakpoint (for assertion checks in assembly code)
   745 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
   746   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
   747 }
   749 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
   750 void MacroAssembler::breakpoint_trap() {
   751   trap(ST_RESERVED_FOR_USER_0);
   752 }
   754 // flush windows (except current) using flushw instruction if avail.
   755 void MacroAssembler::flush_windows() {
   756   if (VM_Version::v9_instructions_work())  flushw();
   757   else                                     flush_windows_trap();
   758 }
   760 // Write serialization page so VM thread can do a pseudo remote membar
   761 // We use the current thread pointer to calculate a thread specific
   762 // offset to write to within the page. This minimizes bus traffic
   763 // due to cache line collision.
   764 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
   765   srl(thread, os::get_serialize_page_shift_count(), tmp2);
   766   if (Assembler::is_simm13(os::vm_page_size())) {
   767     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
   768   }
   769   else {
   770     set((os::vm_page_size() - sizeof(int)), tmp1);
   771     and3(tmp2, tmp1, tmp2);
   772   }
   773   set(os::get_memory_serialize_page(), tmp1);
   774   st(G0, tmp1, tmp2);
   775 }
   779 void MacroAssembler::enter() {
   780   Unimplemented();
   781 }
   783 void MacroAssembler::leave() {
   784   Unimplemented();
   785 }
   787 void MacroAssembler::mult(Register s1, Register s2, Register d) {
   788   if(VM_Version::v9_instructions_work()) {
   789     mulx (s1, s2, d);
   790   } else {
   791     smul (s1, s2, d);
   792   }
   793 }
   795 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
   796   if(VM_Version::v9_instructions_work()) {
   797     mulx (s1, simm13a, d);
   798   } else {
   799     smul (s1, simm13a, d);
   800   }
   801 }
   804 #ifdef ASSERT
   805 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
   806   const Register s1 = G3_scratch;
   807   const Register s2 = G4_scratch;
   808   Label get_psr_test;
   809   // Get the condition codes the V8 way.
   810   read_ccr_trap(s1);
   811   mov(ccr_save, s2);
   812   // This is a test of V8 which has icc but not xcc
   813   // so mask off the xcc bits
   814   and3(s2, 0xf, s2);
   815   // Compare condition codes from the V8 and V9 ways.
   816   subcc(s2, s1, G0);
   817   br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
   818   delayed()->breakpoint_trap();
   819   bind(get_psr_test);
   820 }
   822 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
   823   const Register s1 = G3_scratch;
   824   const Register s2 = G4_scratch;
   825   Label set_psr_test;
   826   // Write out the saved condition codes the V8 way
   827   write_ccr_trap(ccr_save, s1, s2);
   828   // Read back the condition codes using the V9 instruction
   829   rdccr(s1);
   830   mov(ccr_save, s2);
   831   // This is a test of V8 which has icc but not xcc
   832   // so mask off the xcc bits
   833   and3(s2, 0xf, s2);
   834   and3(s1, 0xf, s1);
   835   // Compare the V8 way with the V9 way.
   836   subcc(s2, s1, G0);
   837   br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
   838   delayed()->breakpoint_trap();
   839   bind(set_psr_test);
   840 }
   841 #else
   842 #define read_ccr_v8_assert(x)
   843 #define write_ccr_v8_assert(x)
   844 #endif // ASSERT
   846 void MacroAssembler::read_ccr(Register ccr_save) {
   847   if (VM_Version::v9_instructions_work()) {
   848     rdccr(ccr_save);
   849     // Test code sequence used on V8.  Do not move above rdccr.
   850     read_ccr_v8_assert(ccr_save);
   851   } else {
   852     read_ccr_trap(ccr_save);
   853   }
   854 }
   856 void MacroAssembler::write_ccr(Register ccr_save) {
   857   if (VM_Version::v9_instructions_work()) {
   858     // Test code sequence used on V8.  Do not move below wrccr.
   859     write_ccr_v8_assert(ccr_save);
   860     wrccr(ccr_save);
   861   } else {
   862     const Register temp_reg1 = G3_scratch;
   863     const Register temp_reg2 = G4_scratch;
   864     write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
   865   }
   866 }
   869 // Calls to C land
   871 #ifdef ASSERT
   872 // a hook for debugging
   873 static Thread* reinitialize_thread() {
   874   return ThreadLocalStorage::thread();
   875 }
   876 #else
   877 #define reinitialize_thread ThreadLocalStorage::thread
   878 #endif
   880 #ifdef ASSERT
   881 address last_get_thread = NULL;
   882 #endif
   884 // call this when G2_thread is not known to be valid
   885 void MacroAssembler::get_thread() {
   886   save_frame(0);                // to avoid clobbering O0
   887   mov(G1, L0);                  // avoid clobbering G1
   888   mov(G5_method, L1);           // avoid clobbering G5
   889   mov(G3, L2);                  // avoid clobbering G3 also
   890   mov(G4, L5);                  // avoid clobbering G4
   891 #ifdef ASSERT
   892   AddressLiteral last_get_thread_addrlit(&last_get_thread);
   893   set(last_get_thread_addrlit, L3);
   894   inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
   895   st_ptr(L4, L3, 0);
   896 #endif
   897   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
   898   delayed()->nop();
   899   mov(L0, G1);
   900   mov(L1, G5_method);
   901   mov(L2, G3);
   902   mov(L5, G4);
   903   restore(O0, 0, G2_thread);
   904 }
   906 static Thread* verify_thread_subroutine(Thread* gthread_value) {
   907   Thread* correct_value = ThreadLocalStorage::thread();
   908   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
   909   return correct_value;
   910 }
   912 void MacroAssembler::verify_thread() {
   913   if (VerifyThread) {
   914     // NOTE: this chops off the heads of the 64-bit O registers.
   915 #ifdef CC_INTERP
   916     save_frame(0);
   917 #else
   918     // make sure G2_thread contains the right value
   919     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
   920     mov(G1, L1);                // avoid clobbering G1
   921     // G2 saved below
   922     mov(G3, L3);                // avoid clobbering G3
   923     mov(G4, L4);                // avoid clobbering G4
   924     mov(G5_method, L5);         // avoid clobbering G5_method
   925 #endif /* CC_INTERP */
   926 #if defined(COMPILER2) && !defined(_LP64)
   927     // Save & restore possible 64-bit Long arguments in G-regs
   928     srlx(G1,32,L0);
   929     srlx(G4,32,L6);
   930 #endif
   931     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
   932     delayed()->mov(G2_thread, O0);
   934     mov(L1, G1);                // Restore G1
   935     // G2 restored below
   936     mov(L3, G3);                // restore G3
   937     mov(L4, G4);                // restore G4
   938     mov(L5, G5_method);         // restore G5_method
   939 #if defined(COMPILER2) && !defined(_LP64)
   940     // Save & restore possible 64-bit Long arguments in G-regs
   941     sllx(L0,32,G2);             // Move old high G1 bits high in G2
   942     srl(G1, 0,G1);              // Clear current high G1 bits
   943     or3 (G1,G2,G1);             // Recover 64-bit G1
   944     sllx(L6,32,G2);             // Move old high G4 bits high in G2
   945     srl(G4, 0,G4);              // Clear current high G4 bits
   946     or3 (G4,G2,G4);             // Recover 64-bit G4
   947 #endif
   948     restore(O0, 0, G2_thread);
   949   }
   950 }
   953 void MacroAssembler::save_thread(const Register thread_cache) {
   954   verify_thread();
   955   if (thread_cache->is_valid()) {
   956     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   957     mov(G2_thread, thread_cache);
   958   }
   959   if (VerifyThread) {
   960     // smash G2_thread, as if the VM were about to anyway
   961     set(0x67676767, G2_thread);
   962   }
   963 }
   966 void MacroAssembler::restore_thread(const Register thread_cache) {
   967   if (thread_cache->is_valid()) {
   968     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
   969     mov(thread_cache, G2_thread);
   970     verify_thread();
   971   } else {
   972     // do it the slow way
   973     get_thread();
   974   }
   975 }
   978 // %%% maybe get rid of [re]set_last_Java_frame
   979 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
   980   assert_not_delayed();
   981   Address flags(G2_thread, JavaThread::frame_anchor_offset() +
   982                            JavaFrameAnchor::flags_offset());
   983   Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
   985   // Always set last_Java_pc and flags first because once last_Java_sp is visible
   986   // has_last_Java_frame is true and users will look at the rest of the fields.
   987   // (Note: flags should always be zero before we get here so doesn't need to be set.)
   989 #ifdef ASSERT
   990   // Verify that flags was zeroed on return to Java
   991   Label PcOk;
   992   save_frame(0);                // to avoid clobbering O0
   993   ld_ptr(pc_addr, L0);
   994   br_null_short(L0, Assembler::pt, PcOk);
   995   stop("last_Java_pc not zeroed before leaving Java");
   996   bind(PcOk);
   998   // Verify that flags was zeroed on return to Java
   999   Label FlagsOk;
  1000   ld(flags, L0);
  1001   tst(L0);
  1002   br(Assembler::zero, false, Assembler::pt, FlagsOk);
  1003   delayed() -> restore();
  1004   stop("flags not zeroed before leaving Java");
  1005   bind(FlagsOk);
  1006 #endif /* ASSERT */
  1007   //
  1008   // When returning from calling out from Java mode the frame anchor's last_Java_pc
  1009   // will always be set to NULL. It is set here so that if we are doing a call to
  1010   // native (not VM) that we capture the known pc and don't have to rely on the
  1011   // native call having a standard frame linkage where we can find the pc.
  1013   if (last_Java_pc->is_valid()) {
  1014     st_ptr(last_Java_pc, pc_addr);
  1017 #ifdef _LP64
  1018 #ifdef ASSERT
  1019   // Make sure that we have an odd stack
  1020   Label StackOk;
  1021   andcc(last_java_sp, 0x01, G0);
  1022   br(Assembler::notZero, false, Assembler::pt, StackOk);
  1023   delayed()->nop();
  1024   stop("Stack Not Biased in set_last_Java_frame");
  1025   bind(StackOk);
  1026 #endif // ASSERT
  1027   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
  1028   add( last_java_sp, STACK_BIAS, G4_scratch );
  1029   st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
  1030 #else
  1031   st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
  1032 #endif // _LP64
  1035 void MacroAssembler::reset_last_Java_frame(void) {
  1036   assert_not_delayed();
  1038   Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
  1039   Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
  1040   Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
  1042 #ifdef ASSERT
  1043   // check that it WAS previously set
  1044 #ifdef CC_INTERP
  1045     save_frame(0);
  1046 #else
  1047     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
  1048 #endif /* CC_INTERP */
  1049     ld_ptr(sp_addr, L0);
  1050     tst(L0);
  1051     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
  1052     restore();
  1053 #endif // ASSERT
  1055   st_ptr(G0, sp_addr);
  1056   // Always return last_Java_pc to zero
  1057   st_ptr(G0, pc_addr);
  1058   // Always null flags after return to Java
  1059   st(G0, flags);
  1063 void MacroAssembler::call_VM_base(
  1064   Register        oop_result,
  1065   Register        thread_cache,
  1066   Register        last_java_sp,
  1067   address         entry_point,
  1068   int             number_of_arguments,
  1069   bool            check_exceptions)
  1071   assert_not_delayed();
  1073   // determine last_java_sp register
  1074   if (!last_java_sp->is_valid()) {
  1075     last_java_sp = SP;
  1077   // debugging support
  1078   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
  1080   // 64-bit last_java_sp is biased!
  1081   set_last_Java_frame(last_java_sp, noreg);
  1082   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
  1083   save_thread(thread_cache);
  1084   // do the call
  1085   call(entry_point, relocInfo::runtime_call_type);
  1086   if (!VerifyThread)
  1087     delayed()->mov(G2_thread, O0);  // pass thread as first argument
  1088   else
  1089     delayed()->nop();             // (thread already passed)
  1090   restore_thread(thread_cache);
  1091   reset_last_Java_frame();
  1093   // check for pending exceptions. use Gtemp as scratch register.
  1094   if (check_exceptions) {
  1095     check_and_forward_exception(Gtemp);
  1098 #ifdef ASSERT
  1099   set(badHeapWordVal, G3);
  1100   set(badHeapWordVal, G4);
  1101   set(badHeapWordVal, G5);
  1102 #endif
  1104   // get oop result if there is one and reset the value in the thread
  1105   if (oop_result->is_valid()) {
  1106     get_vm_result(oop_result);
  1110 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
  1112   Label L;
  1114   check_and_handle_popframe(scratch_reg);
  1115   check_and_handle_earlyret(scratch_reg);
  1117   Address exception_addr(G2_thread, Thread::pending_exception_offset());
  1118   ld_ptr(exception_addr, scratch_reg);
  1119   br_null_short(scratch_reg, pt, L);
  1120   // we use O7 linkage so that forward_exception_entry has the issuing PC
  1121   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
  1122   delayed()->nop();
  1123   bind(L);
  1127 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
  1131 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
  1135 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
  1136   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
  1140 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
  1141   // O0 is reserved for the thread
  1142   mov(arg_1, O1);
  1143   call_VM(oop_result, entry_point, 1, check_exceptions);
  1147 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1148   // O0 is reserved for the thread
  1149   mov(arg_1, O1);
  1150   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1151   call_VM(oop_result, entry_point, 2, check_exceptions);
  1155 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1156   // O0 is reserved for the thread
  1157   mov(arg_1, O1);
  1158   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1159   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1160   call_VM(oop_result, entry_point, 3, check_exceptions);
  1165 // Note: The following call_VM overloadings are useful when a "save"
  1166 // has already been performed by a stub, and the last Java frame is
  1167 // the previous one.  In that case, last_java_sp must be passed as FP
  1168 // instead of SP.
  1171 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
  1172   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
  1176 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
  1177   // O0 is reserved for the thread
  1178   mov(arg_1, O1);
  1179   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
  1183 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
  1184   // O0 is reserved for the thread
  1185   mov(arg_1, O1);
  1186   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
  1187   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
  1191 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
  1192   // O0 is reserved for the thread
  1193   mov(arg_1, O1);
  1194   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
  1195   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
  1196   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
  1201 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
  1202   assert_not_delayed();
  1203   save_thread(thread_cache);
  1204   // do the call
  1205   call(entry_point, relocInfo::runtime_call_type);
  1206   delayed()->nop();
  1207   restore_thread(thread_cache);
  1208 #ifdef ASSERT
  1209   set(badHeapWordVal, G3);
  1210   set(badHeapWordVal, G4);
  1211   set(badHeapWordVal, G5);
  1212 #endif
  1216 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
  1217   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
  1221 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
  1222   mov(arg_1, O0);
  1223   call_VM_leaf(thread_cache, entry_point, 1);
  1227 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
  1228   mov(arg_1, O0);
  1229   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
  1230   call_VM_leaf(thread_cache, entry_point, 2);
  1234 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
  1235   mov(arg_1, O0);
  1236   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
  1237   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
  1238   call_VM_leaf(thread_cache, entry_point, 3);
  1242 void MacroAssembler::get_vm_result(Register oop_result) {
  1243   verify_thread();
  1244   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
  1245   ld_ptr(    vm_result_addr, oop_result);
  1246   st_ptr(G0, vm_result_addr);
  1247   verify_oop(oop_result);
  1251 void MacroAssembler::get_vm_result_2(Register oop_result) {
  1252   verify_thread();
  1253   Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
  1254   ld_ptr(vm_result_addr_2, oop_result);
  1255   st_ptr(G0, vm_result_addr_2);
  1256   verify_oop(oop_result);
  1260 // We require that C code which does not return a value in vm_result will
  1261 // leave it undisturbed.
  1262 void MacroAssembler::set_vm_result(Register oop_result) {
  1263   verify_thread();
  1264   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
  1265   verify_oop(oop_result);
  1267 # ifdef ASSERT
  1268     // Check that we are not overwriting any other oop.
  1269 #ifdef CC_INTERP
  1270     save_frame(0);
  1271 #else
  1272     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
  1273 #endif /* CC_INTERP */
  1274     ld_ptr(vm_result_addr, L0);
  1275     tst(L0);
  1276     restore();
  1277     breakpoint_trap(notZero, Assembler::ptr_cc);
  1278     // }
  1279 # endif
  1281   st_ptr(oop_result, vm_result_addr);
  1285 void MacroAssembler::card_table_write(jbyte* byte_map_base,
  1286                                       Register tmp, Register obj) {
  1287 #ifdef _LP64
  1288   srlx(obj, CardTableModRefBS::card_shift, obj);
  1289 #else
  1290   srl(obj, CardTableModRefBS::card_shift, obj);
  1291 #endif
  1292   assert(tmp != obj, "need separate temp reg");
  1293   set((address) byte_map_base, tmp);
  1294   stb(G0, tmp, obj);
  1298 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
  1299   address save_pc;
  1300   int shiftcnt;
  1301 #ifdef _LP64
  1302 # ifdef CHECK_DELAY
  1303   assert_not_delayed((char*) "cannot put two instructions in delay slot");
  1304 # endif
  1305   v9_dep();
  1306   save_pc = pc();
  1308   int msb32 = (int) (addrlit.value() >> 32);
  1309   int lsb32 = (int) (addrlit.value());
  1311   if (msb32 == 0 && lsb32 >= 0) {
  1312     Assembler::sethi(lsb32, d, addrlit.rspec());
  1314   else if (msb32 == -1) {
  1315     Assembler::sethi(~lsb32, d, addrlit.rspec());
  1316     xor3(d, ~low10(~0), d);
  1318   else {
  1319     Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
  1320     if (msb32 & 0x3ff)                            // Any bits?
  1321       or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
  1322     if (lsb32 & 0xFFFFFC00) {                     // done?
  1323       if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
  1324         sllx(d, 12, d);                           // Make room for next 12 bits
  1325         or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
  1326         shiftcnt = 0;                             // We already shifted
  1328       else
  1329         shiftcnt = 12;
  1330       if ((lsb32 >> 10) & 0x3ff) {
  1331         sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
  1332         or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
  1333         shiftcnt = 0;
  1335       else
  1336         shiftcnt = 10;
  1337       sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
  1339     else
  1340       sllx(d, 32, d);
  1342   // Pad out the instruction sequence so it can be patched later.
  1343   if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
  1344                            addrlit.rtype() != relocInfo::runtime_call_type)) {
  1345     while (pc() < (save_pc + (7 * BytesPerInstWord)))
  1346       nop();
  1348 #else
  1349   Assembler::sethi(addrlit.value(), d, addrlit.rspec());
  1350 #endif
  1354 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
  1355   internal_sethi(addrlit, d, false);
  1359 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
  1360   internal_sethi(addrlit, d, true);
  1364 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
  1365 #ifdef _LP64
  1366   if (worst_case)  return 7;
  1367   intptr_t iaddr = (intptr_t) a;
  1368   int msb32 = (int) (iaddr >> 32);
  1369   int lsb32 = (int) (iaddr);
  1370   int count;
  1371   if (msb32 == 0 && lsb32 >= 0)
  1372     count = 1;
  1373   else if (msb32 == -1)
  1374     count = 2;
  1375   else {
  1376     count = 2;
  1377     if (msb32 & 0x3ff)
  1378       count++;
  1379     if (lsb32 & 0xFFFFFC00 ) {
  1380       if ((lsb32 >> 20) & 0xfff)  count += 2;
  1381       if ((lsb32 >> 10) & 0x3ff)  count += 2;
  1384   return count;
  1385 #else
  1386   return 1;
  1387 #endif
  1390 int MacroAssembler::worst_case_insts_for_set() {
  1391   return insts_for_sethi(NULL, true) + 1;
  1395 // Keep in sync with MacroAssembler::insts_for_internal_set
  1396 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
  1397   intptr_t value = addrlit.value();
  1399   if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
  1400     // can optimize
  1401     if (-4096 <= value && value <= 4095) {
  1402       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
  1403       return;
  1405     if (inv_hi22(hi22(value)) == value) {
  1406       sethi(addrlit, d);
  1407       return;
  1410   assert_not_delayed((char*) "cannot put two instructions in delay slot");
  1411   internal_sethi(addrlit, d, ForceRelocatable);
  1412   if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
  1413     add(d, addrlit.low10(), d, addrlit.rspec());
  1417 // Keep in sync with MacroAssembler::internal_set
  1418 int MacroAssembler::insts_for_internal_set(intptr_t value) {
  1419   // can optimize
  1420   if (-4096 <= value && value <= 4095) {
  1421     return 1;
  1423   if (inv_hi22(hi22(value)) == value) {
  1424     return insts_for_sethi((address) value);
  1426   int count = insts_for_sethi((address) value);
  1427   AddressLiteral al(value);
  1428   if (al.low10() != 0) {
  1429     count++;
  1431   return count;
  1434 void MacroAssembler::set(const AddressLiteral& al, Register d) {
  1435   internal_set(al, d, false);
  1438 void MacroAssembler::set(intptr_t value, Register d) {
  1439   AddressLiteral al(value);
  1440   internal_set(al, d, false);
  1443 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
  1444   AddressLiteral al(addr, rspec);
  1445   internal_set(al, d, false);
  1448 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
  1449   internal_set(al, d, true);
  1452 void MacroAssembler::patchable_set(intptr_t value, Register d) {
  1453   AddressLiteral al(value);
  1454   internal_set(al, d, true);
  1458 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
  1459   assert_not_delayed();
  1460   v9_dep();
  1462   int hi = (int)(value >> 32);
  1463   int lo = (int)(value & ~0);
  1464   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1465   if (Assembler::is_simm13(lo) && value == lo) {
  1466     or3(G0, lo, d);
  1467   } else if (hi == 0) {
  1468     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
  1469     if (low10(lo) != 0)
  1470       or3(d, low10(lo), d);
  1472   else if (hi == -1) {
  1473     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
  1474     xor3(d, low10(lo) ^ ~low10(~0), d);
  1476   else if (lo == 0) {
  1477     if (Assembler::is_simm13(hi)) {
  1478       or3(G0, hi, d);
  1479     } else {
  1480       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
  1481       if (low10(hi) != 0)
  1482         or3(d, low10(hi), d);
  1484     sllx(d, 32, d);
  1486   else {
  1487     Assembler::sethi(hi, tmp);
  1488     Assembler::sethi(lo,   d); // macro assembler version sign-extends
  1489     if (low10(hi) != 0)
  1490       or3 (tmp, low10(hi), tmp);
  1491     if (low10(lo) != 0)
  1492       or3 (  d, low10(lo),   d);
  1493     sllx(tmp, 32, tmp);
  1494     or3 (d, tmp, d);
  1498 int MacroAssembler::insts_for_set64(jlong value) {
  1499   v9_dep();
  1501   int hi = (int) (value >> 32);
  1502   int lo = (int) (value & ~0);
  1503   int count = 0;
  1505   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
  1506   if (Assembler::is_simm13(lo) && value == lo) {
  1507     count++;
  1508   } else if (hi == 0) {
  1509     count++;
  1510     if (low10(lo) != 0)
  1511       count++;
  1513   else if (hi == -1) {
  1514     count += 2;
  1516   else if (lo == 0) {
  1517     if (Assembler::is_simm13(hi)) {
  1518       count++;
  1519     } else {
  1520       count++;
  1521       if (low10(hi) != 0)
  1522         count++;
  1524     count++;
  1526   else {
  1527     count += 2;
  1528     if (low10(hi) != 0)
  1529       count++;
  1530     if (low10(lo) != 0)
  1531       count++;
  1532     count += 2;
  1534   return count;
  1537 // compute size in bytes of sparc frame, given
  1538 // number of extraWords
  1539 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
  1541   int nWords = frame::memory_parameter_word_sp_offset;
  1543   nWords += extraWords;
  1545   if (nWords & 1) ++nWords; // round up to double-word
  1547   return nWords * BytesPerWord;
  1551 // save_frame: given number of "extra" words in frame,
  1552 // issue approp. save instruction (p 200, v8 manual)
  1554 void MacroAssembler::save_frame(int extraWords) {
  1555   int delta = -total_frame_size_in_bytes(extraWords);
  1556   if (is_simm13(delta)) {
  1557     save(SP, delta, SP);
  1558   } else {
  1559     set(delta, G3_scratch);
  1560     save(SP, G3_scratch, SP);
  1565 void MacroAssembler::save_frame_c1(int size_in_bytes) {
  1566   if (is_simm13(-size_in_bytes)) {
  1567     save(SP, -size_in_bytes, SP);
  1568   } else {
  1569     set(-size_in_bytes, G3_scratch);
  1570     save(SP, G3_scratch, SP);
  1575 void MacroAssembler::save_frame_and_mov(int extraWords,
  1576                                         Register s1, Register d1,
  1577                                         Register s2, Register d2) {
  1578   assert_not_delayed();
  1580   // The trick here is to use precisely the same memory word
  1581   // that trap handlers also use to save the register.
  1582   // This word cannot be used for any other purpose, but
  1583   // it works fine to save the register's value, whether or not
  1584   // an interrupt flushes register windows at any given moment!
  1585   Address s1_addr;
  1586   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
  1587     s1_addr = s1->address_in_saved_window();
  1588     st_ptr(s1, s1_addr);
  1591   Address s2_addr;
  1592   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
  1593     s2_addr = s2->address_in_saved_window();
  1594     st_ptr(s2, s2_addr);
  1597   save_frame(extraWords);
  1599   if (s1_addr.base() == SP) {
  1600     ld_ptr(s1_addr.after_save(), d1);
  1601   } else if (s1->is_valid()) {
  1602     mov(s1->after_save(), d1);
  1605   if (s2_addr.base() == SP) {
  1606     ld_ptr(s2_addr.after_save(), d2);
  1607   } else if (s2->is_valid()) {
  1608     mov(s2->after_save(), d2);
  1613 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
  1614   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1615   int oop_index = oop_recorder()->allocate_index(obj);
  1616   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
  1620 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
  1621   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1622   int oop_index = oop_recorder()->find_index(obj);
  1623   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
  1626 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
  1627   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
  1628   int oop_index = oop_recorder()->find_index(obj);
  1629   RelocationHolder rspec = oop_Relocation::spec(oop_index);
  1631   assert_not_delayed();
  1632   // Relocation with special format (see relocInfo_sparc.hpp).
  1633   relocate(rspec, 1);
  1634   // Assembler::sethi(0x3fffff, d);
  1635   emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
  1636   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
  1637   add(d, 0x3ff, d);
  1642 void MacroAssembler::align(int modulus) {
  1643   while (offset() % modulus != 0) nop();
  1647 void MacroAssembler::safepoint() {
  1648   relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
  1652 void RegistersForDebugging::print(outputStream* s) {
  1653   int j;
  1654   for ( j = 0;  j < 8;  ++j )
  1655     if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
  1656     else          s->print_cr( "fp = 0x%.16lx",    i[j]);
  1657   s->cr();
  1659   for ( j = 0;  j < 8;  ++j )
  1660     s->print_cr("l%d = 0x%.16lx", j, l[j]);
  1661   s->cr();
  1663   for ( j = 0;  j < 8;  ++j )
  1664     if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
  1665     else          s->print_cr( "sp = 0x%.16lx",    o[j]);
  1666   s->cr();
  1668   for ( j = 0;  j < 8;  ++j )
  1669     s->print_cr("g%d = 0x%.16lx", j, g[j]);
  1670   s->cr();
  1672   // print out floats with compression
  1673   for (j = 0; j < 32; ) {
  1674     jfloat val = f[j];
  1675     int last = j;
  1676     for ( ;  last+1 < 32;  ++last ) {
  1677       char b1[1024], b2[1024];
  1678       sprintf(b1, "%f", val);
  1679       sprintf(b2, "%f", f[last+1]);
  1680       if (strcmp(b1, b2))
  1681         break;
  1683     s->print("f%d", j);
  1684     if ( j != last )  s->print(" - f%d", last);
  1685     s->print(" = %f", val);
  1686     s->fill_to(25);
  1687     s->print_cr(" (0x%x)", val);
  1688     j = last + 1;
  1690   s->cr();
  1692   // and doubles (evens only)
  1693   for (j = 0; j < 32; ) {
  1694     jdouble val = d[j];
  1695     int last = j;
  1696     for ( ;  last+1 < 32;  ++last ) {
  1697       char b1[1024], b2[1024];
  1698       sprintf(b1, "%f", val);
  1699       sprintf(b2, "%f", d[last+1]);
  1700       if (strcmp(b1, b2))
  1701         break;
  1703     s->print("d%d", 2 * j);
  1704     if ( j != last )  s->print(" - d%d", last);
  1705     s->print(" = %f", val);
  1706     s->fill_to(30);
  1707     s->print("(0x%x)", *(int*)&val);
  1708     s->fill_to(42);
  1709     s->print_cr("(0x%x)", *(1 + (int*)&val));
  1710     j = last + 1;
  1712   s->cr();
  1715 void RegistersForDebugging::save_registers(MacroAssembler* a) {
  1716   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
  1717   a->flush_windows();
  1718   int i;
  1719   for (i = 0; i < 8; ++i) {
  1720     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
  1721     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
  1722     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
  1723     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
  1725   for (i = 0;  i < 32; ++i) {
  1726     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
  1728   for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
  1729     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
  1733 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
  1734   for (int i = 1; i < 8;  ++i) {
  1735     a->ld_ptr(r, g_offset(i), as_gRegister(i));
  1737   for (int j = 0; j < 32; ++j) {
  1738     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
  1740   for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
  1741     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
  1746 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
  1747 void MacroAssembler::push_fTOS() {
  1748   // %%%%%% need to implement this
  1751 // pops double TOS element from CPU stack and pushes on FPU stack
  1752 void MacroAssembler::pop_fTOS() {
  1753   // %%%%%% need to implement this
  1756 void MacroAssembler::empty_FPU_stack() {
  1757   // %%%%%% need to implement this
  1760 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
  1761   // plausibility check for oops
  1762   if (!VerifyOops) return;
  1764   if (reg == G0)  return;       // always NULL, which is always an oop
  1766   BLOCK_COMMENT("verify_oop {");
  1767   char buffer[64];
  1768 #ifdef COMPILER1
  1769   if (CommentedAssembly) {
  1770     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
  1771     block_comment(buffer);
  1773 #endif
  1775   int len = strlen(file) + strlen(msg) + 1 + 4;
  1776   sprintf(buffer, "%d", line);
  1777   len += strlen(buffer);
  1778   sprintf(buffer, " at offset %d ", offset());
  1779   len += strlen(buffer);
  1780   char * real_msg = new char[len];
  1781   sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
  1783   // Call indirectly to solve generation ordering problem
  1784   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
  1786   // Make some space on stack above the current register window.
  1787   // Enough to hold 8 64-bit registers.
  1788   add(SP,-8*8,SP);
  1790   // Save some 64-bit registers; a normal 'save' chops the heads off
  1791   // of 64-bit longs in the 32-bit build.
  1792   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1793   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1794   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
  1795   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1797   // Size of set() should stay the same
  1798   patchable_set((intptr_t)real_msg, O1);
  1799   // Load address to call to into O7
  1800   load_ptr_contents(a, O7);
  1801   // Register call to verify_oop_subroutine
  1802   callr(O7, G0);
  1803   delayed()->nop();
  1804   // recover frame size
  1805   add(SP, 8*8,SP);
  1806   BLOCK_COMMENT("} verify_oop");
  1809 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
  1810   // plausibility check for oops
  1811   if (!VerifyOops) return;
  1813   char buffer[64];
  1814   sprintf(buffer, "%d", line);
  1815   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
  1816   sprintf(buffer, " at SP+%d ", addr.disp());
  1817   len += strlen(buffer);
  1818   char * real_msg = new char[len];
  1819   sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
  1821   // Call indirectly to solve generation ordering problem
  1822   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
  1824   // Make some space on stack above the current register window.
  1825   // Enough to hold 8 64-bit registers.
  1826   add(SP,-8*8,SP);
  1828   // Save some 64-bit registers; a normal 'save' chops the heads off
  1829   // of 64-bit longs in the 32-bit build.
  1830   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
  1831   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
  1832   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
  1833   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
  1835   // Size of set() should stay the same
  1836   patchable_set((intptr_t)real_msg, O1);
  1837   // Load address to call to into O7
  1838   load_ptr_contents(a, O7);
  1839   // Register call to verify_oop_subroutine
  1840   callr(O7, G0);
  1841   delayed()->nop();
  1842   // recover frame size
  1843   add(SP, 8*8,SP);
  1846 // side-door communication with signalHandler in os_solaris.cpp
  1847 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
  1849 // This macro is expanded just once; it creates shared code.  Contract:
  1850 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
  1851 // registers, including flags.  May not use a register 'save', as this blows
  1852 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
  1853 // call.
  1854 void MacroAssembler::verify_oop_subroutine() {
  1855   assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
  1857   // Leaf call; no frame.
  1858   Label succeed, fail, null_or_fail;
  1860   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
  1861   // O0 is now the oop to be checked.  O7 is the return address.
  1862   Register O0_obj = O0;
  1864   // Save some more registers for temps.
  1865   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
  1866   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
  1867   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
  1868   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
  1870   // Save flags
  1871   Register O5_save_flags = O5;
  1872   rdccr( O5_save_flags );
  1874   { // count number of verifies
  1875     Register O2_adr   = O2;
  1876     Register O3_accum = O3;
  1877     inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
  1880   Register O2_mask = O2;
  1881   Register O3_bits = O3;
  1882   Register O4_temp = O4;
  1884   // mark lower end of faulting range
  1885   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
  1886   _verify_oop_implicit_branch[0] = pc();
  1888   // We can't check the mark oop because it could be in the process of
  1889   // locking or unlocking while this is running.
  1890   set(Universe::verify_oop_mask (), O2_mask);
  1891   set(Universe::verify_oop_bits (), O3_bits);
  1893   // assert((obj & oop_mask) == oop_bits);
  1894   and3(O0_obj, O2_mask, O4_temp);
  1895   cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
  1897   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
  1898     // the null_or_fail case is useless; must test for null separately
  1899     br_null_short(O0_obj, pn, succeed);
  1902   // Check the klassOop of this object for being in the right area of memory.
  1903   // Cannot do the load in the delay above slot in case O0 is null
  1904   load_klass(O0_obj, O0_obj);
  1905   // assert((klass & klass_mask) == klass_bits);
  1906   if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
  1907     set(Universe::verify_klass_mask(), O2_mask);
  1908   if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
  1909     set(Universe::verify_klass_bits(), O3_bits);
  1910   and3(O0_obj, O2_mask, O4_temp);
  1911   cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, fail);
  1912   // Check the klass's klass
  1913   load_klass(O0_obj, O0_obj);
  1914   and3(O0_obj, O2_mask, O4_temp);
  1915   cmp(O4_temp, O3_bits);
  1916   brx(notEqual, false, pn, fail);
  1917   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1919   // mark upper end of faulting range
  1920   _verify_oop_implicit_branch[1] = pc();
  1922   //-----------------------
  1923   // all tests pass
  1924   bind(succeed);
  1926   // Restore prior 64-bit registers
  1927   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
  1928   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
  1929   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
  1930   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
  1931   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
  1932   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
  1934   retl();                       // Leaf return; restore prior O7 in delay slot
  1935   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
  1937   //-----------------------
  1938   bind(null_or_fail);           // nulls are less common but OK
  1939   br_null(O0_obj, false, pt, succeed);
  1940   delayed()->wrccr( O5_save_flags ); // Restore CCR's
  1942   //-----------------------
  1943   // report failure:
  1944   bind(fail);
  1945   _verify_oop_implicit_branch[2] = pc();
  1947   wrccr( O5_save_flags ); // Restore CCR's
  1949   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1951   // stop_subroutine expects message pointer in I1.
  1952   mov(I1, O1);
  1954   // Restore prior 64-bit registers
  1955   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
  1956   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
  1957   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
  1958   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
  1959   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
  1960   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
  1962   // factor long stop-sequence into subroutine to save space
  1963   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1965   // call indirectly to solve generation ordering problem
  1966   AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
  1967   load_ptr_contents(al, O5);
  1968   jmpl(O5, 0, O7);
  1969   delayed()->nop();
  1973 void MacroAssembler::stop(const char* msg) {
  1974   // save frame first to get O7 for return address
  1975   // add one word to size in case struct is odd number of words long
  1976   // It must be doubleword-aligned for storing doubles into it.
  1978     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  1980     // stop_subroutine expects message pointer in I1.
  1981     // Size of set() should stay the same
  1982     patchable_set((intptr_t)msg, O1);
  1984     // factor long stop-sequence into subroutine to save space
  1985     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
  1987     // call indirectly to solve generation ordering problem
  1988     AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
  1989     load_ptr_contents(a, O5);
  1990     jmpl(O5, 0, O7);
  1991     delayed()->nop();
  1993     breakpoint_trap();   // make stop actually stop rather than writing
  1994                          // unnoticeable results in the output files.
  1996     // restore(); done in callee to save space!
  2000 void MacroAssembler::warn(const char* msg) {
  2001   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
  2002   RegistersForDebugging::save_registers(this);
  2003   mov(O0, L0);
  2004   // Size of set() should stay the same
  2005   patchable_set((intptr_t)msg, O0);
  2006   call( CAST_FROM_FN_PTR(address, warning) );
  2007   delayed()->nop();
  2008 //  ret();
  2009 //  delayed()->restore();
  2010   RegistersForDebugging::restore_registers(this, L0);
  2011   restore();
  2015 void MacroAssembler::untested(const char* what) {
  2016   // We must be able to turn interactive prompting off
  2017   // in order to run automated test scripts on the VM
  2018   // Use the flag ShowMessageBoxOnError
  2020   char* b = new char[1024];
  2021   sprintf(b, "untested: %s", what);
  2023   if ( ShowMessageBoxOnError )   stop(b);
  2024   else                           warn(b);
  2028 void MacroAssembler::stop_subroutine() {
  2029   RegistersForDebugging::save_registers(this);
  2031   // for the sake of the debugger, stick a PC on the current frame
  2032   // (this assumes that the caller has performed an extra "save")
  2033   mov(I7, L7);
  2034   add(O7, -7 * BytesPerInt, I7);
  2036   save_frame(); // one more save to free up another O7 register
  2037   mov(I0, O1); // addr of reg save area
  2039   // We expect pointer to message in I1. Caller must set it up in O1
  2040   mov(I1, O0); // get msg
  2041   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
  2042   delayed()->nop();
  2044   restore();
  2046   RegistersForDebugging::restore_registers(this, O0);
  2048   save_frame(0);
  2049   call(CAST_FROM_FN_PTR(address,breakpoint));
  2050   delayed()->nop();
  2051   restore();
  2053   mov(L7, I7);
  2054   retl();
  2055   delayed()->restore(); // see stop above
  2059 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
  2060   if ( ShowMessageBoxOnError ) {
  2061       JavaThreadState saved_state = JavaThread::current()->thread_state();
  2062       JavaThread::current()->set_thread_state(_thread_in_vm);
  2064         // In order to get locks work, we need to fake a in_VM state
  2065         ttyLocker ttyl;
  2066         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
  2067         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
  2068           ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
  2070         if (os::message_box(msg, "Execution stopped, print registers?"))
  2071           regs->print(::tty);
  2073       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
  2075   else
  2076      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
  2077   assert(false, err_msg("DEBUG MESSAGE: %s", msg));
  2081 #ifndef PRODUCT
  2082 void MacroAssembler::test() {
  2083   ResourceMark rm;
  2085   CodeBuffer cb("test", 10000, 10000);
  2086   MacroAssembler* a = new MacroAssembler(&cb);
  2087   VM_Version::allow_all();
  2088   a->test_v9();
  2089   a->test_v8_onlys();
  2090   VM_Version::revert();
  2092   StubRoutines::Sparc::test_stop_entry()();
  2094 #endif
  2097 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
  2098   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
  2099   Label no_extras;
  2100   br( negative, true, pt, no_extras ); // if neg, clear reg
  2101   delayed()->set(0, Rresult);          // annuled, so only if taken
  2102   bind( no_extras );
  2106 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
  2107 #ifdef _LP64
  2108   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
  2109 #else
  2110   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
  2111 #endif
  2112   bclr(1, Rresult);
  2113   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
  2117 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
  2118   calc_frame_size(Rextra_words, Rresult);
  2119   neg(Rresult);
  2120   save(SP, Rresult, SP);
  2124 // ---------------------------------------------------------
  2125 Assembler::RCondition cond2rcond(Assembler::Condition c) {
  2126   switch (c) {
  2127     /*case zero: */
  2128     case Assembler::equal:        return Assembler::rc_z;
  2129     case Assembler::lessEqual:    return Assembler::rc_lez;
  2130     case Assembler::less:         return Assembler::rc_lz;
  2131     /*case notZero:*/
  2132     case Assembler::notEqual:     return Assembler::rc_nz;
  2133     case Assembler::greater:      return Assembler::rc_gz;
  2134     case Assembler::greaterEqual: return Assembler::rc_gez;
  2136   ShouldNotReachHere();
  2137   return Assembler::rc_z;
  2140 // compares (32 bit) register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
  2141 void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
  2142   tst(s1);
  2143   br (c, a, p, L);
  2146 // Compares a pointer register with zero and branches on null.
  2147 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
  2148 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
  2149   assert_not_delayed();
  2150 #ifdef _LP64
  2151   bpr( rc_z, a, p, s1, L );
  2152 #else
  2153   tst(s1);
  2154   br ( zero, a, p, L );
  2155 #endif
  2158 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
  2159   assert_not_delayed();
  2160 #ifdef _LP64
  2161   bpr( rc_nz, a, p, s1, L );
  2162 #else
  2163   tst(s1);
  2164   br ( notZero, a, p, L );
  2165 #endif
  2168 // Compare registers and branch with nop in delay slot or cbcond without delay slot.
  2170 // Compare integer (32 bit) values (icc only).
  2171 void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
  2172                                       Predict p, Label& L) {
  2173   assert_not_delayed();
  2174   if (use_cbcond(L)) {
  2175     Assembler::cbcond(c, icc, s1, s2, L);
  2176   } else {
  2177     cmp(s1, s2);
  2178     br(c, false, p, L);
  2179     delayed()->nop();
  2183 // Compare integer (32 bit) values (icc only).
  2184 void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
  2185                                       Predict p, Label& L) {
  2186   assert_not_delayed();
  2187   if (is_simm(simm13a,5) && use_cbcond(L)) {
  2188     Assembler::cbcond(c, icc, s1, simm13a, L);
  2189   } else {
  2190     cmp(s1, simm13a);
  2191     br(c, false, p, L);
  2192     delayed()->nop();
  2196 // Branch that tests xcc in LP64 and icc in !LP64
  2197 void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
  2198                                        Predict p, Label& L) {
  2199   assert_not_delayed();
  2200   if (use_cbcond(L)) {
  2201     Assembler::cbcond(c, ptr_cc, s1, s2, L);
  2202   } else {
  2203     cmp(s1, s2);
  2204     brx(c, false, p, L);
  2205     delayed()->nop();
  2209 // Branch that tests xcc in LP64 and icc in !LP64
  2210 void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
  2211                                        Predict p, Label& L) {
  2212   assert_not_delayed();
  2213   if (is_simm(simm13a,5) && use_cbcond(L)) {
  2214     Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
  2215   } else {
  2216     cmp(s1, simm13a);
  2217     brx(c, false, p, L);
  2218     delayed()->nop();
  2222 // Short branch version for compares a pointer with zero.
  2224 void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
  2225   assert_not_delayed();
  2226   if (use_cbcond(L)) {
  2227     Assembler::cbcond(zero, ptr_cc, s1, 0, L);
  2228     return;
  2230   br_null(s1, false, p, L);
  2231   delayed()->nop();
  2234 void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
  2235   assert_not_delayed();
  2236   if (use_cbcond(L)) {
  2237     Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
  2238     return;
  2240   br_notnull(s1, false, p, L);
  2241   delayed()->nop();
  2244 // Unconditional short branch
  2245 void MacroAssembler::ba_short(Label& L) {
  2246   if (use_cbcond(L)) {
  2247     Assembler::cbcond(equal, icc, G0, G0, L);
  2248     return;
  2250   br(always, false, pt, L);
  2251   delayed()->nop();
  2254 // instruction sequences factored across compiler & interpreter
  2257 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
  2258                            Register Rb_hi, Register Rb_low,
  2259                            Register Rresult) {
  2261   Label check_low_parts, done;
  2263   cmp(Ra_hi, Rb_hi );  // compare hi parts
  2264   br(equal, true, pt, check_low_parts);
  2265   delayed()->cmp(Ra_low, Rb_low); // test low parts
  2267   // And, with an unsigned comparison, it does not matter if the numbers
  2268   // are negative or not.
  2269   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
  2270   // The second one is bigger (unsignedly).
  2272   // Other notes:  The first move in each triplet can be unconditional
  2273   // (and therefore probably prefetchable).
  2274   // And the equals case for the high part does not need testing,
  2275   // since that triplet is reached only after finding the high halves differ.
  2277   if (VM_Version::v9_instructions_work()) {
  2278     mov(-1, Rresult);
  2279     ba(done);  delayed()-> movcc(greater, false, icc,  1, Rresult);
  2280   } else {
  2281     br(less,    true, pt, done); delayed()-> set(-1, Rresult);
  2282     br(greater, true, pt, done); delayed()-> set( 1, Rresult);
  2285   bind( check_low_parts );
  2287   if (VM_Version::v9_instructions_work()) {
  2288     mov(                               -1, Rresult);
  2289     movcc(equal,           false, icc,  0, Rresult);
  2290     movcc(greaterUnsigned, false, icc,  1, Rresult);
  2291   } else {
  2292     set(-1, Rresult);
  2293     br(equal,           true, pt, done); delayed()->set( 0, Rresult);
  2294     br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
  2296   bind( done );
  2299 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
  2300   subcc(  G0, Rlow, Rlow );
  2301   subc(   G0, Rhi,  Rhi  );
  2304 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
  2305                            Register Rcount,
  2306                            Register Rout_high, Register Rout_low,
  2307                            Register Rtemp ) {
  2310   Register Ralt_count = Rtemp;
  2311   Register Rxfer_bits = Rtemp;
  2313   assert( Ralt_count != Rin_high
  2314       &&  Ralt_count != Rin_low
  2315       &&  Ralt_count != Rcount
  2316       &&  Rxfer_bits != Rin_low
  2317       &&  Rxfer_bits != Rin_high
  2318       &&  Rxfer_bits != Rcount
  2319       &&  Rxfer_bits != Rout_low
  2320       &&  Rout_low   != Rin_high,
  2321         "register alias checks");
  2323   Label big_shift, done;
  2325   // This code can be optimized to use the 64 bit shifts in V9.
  2326   // Here we use the 32 bit shifts.
  2328   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
  2329   subcc(Rcount,   31, Ralt_count);
  2330   br(greater, true, pn, big_shift);
  2331   delayed()->dec(Ralt_count);
  2333   // shift < 32 bits, Ralt_count = Rcount-31
  2335   // We get the transfer bits by shifting right by 32-count the low
  2336   // register. This is done by shifting right by 31-count and then by one
  2337   // more to take care of the special (rare) case where count is zero
  2338   // (shifting by 32 would not work).
  2340   neg(Ralt_count);
  2342   // The order of the next two instructions is critical in the case where
  2343   // Rin and Rout are the same and should not be reversed.
  2345   srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
  2346   if (Rcount != Rout_low) {
  2347     sll(Rin_low, Rcount, Rout_low); // low half
  2349   sll(Rin_high, Rcount, Rout_high);
  2350   if (Rcount == Rout_low) {
  2351     sll(Rin_low, Rcount, Rout_low); // low half
  2353   srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
  2354   ba(done);
  2355   delayed()->or3(Rout_high, Rxfer_bits, Rout_high);   // new hi value: or in shifted old hi part and xfer from low
  2357   // shift >= 32 bits, Ralt_count = Rcount-32
  2358   bind(big_shift);
  2359   sll(Rin_low, Ralt_count, Rout_high  );
  2360   clr(Rout_low);
  2362   bind(done);
  2366 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
  2367                            Register Rcount,
  2368                            Register Rout_high, Register Rout_low,
  2369                            Register Rtemp ) {
  2371   Register Ralt_count = Rtemp;
  2372   Register Rxfer_bits = Rtemp;
  2374   assert( Ralt_count != Rin_high
  2375       &&  Ralt_count != Rin_low
  2376       &&  Ralt_count != Rcount
  2377       &&  Rxfer_bits != Rin_low
  2378       &&  Rxfer_bits != Rin_high
  2379       &&  Rxfer_bits != Rcount
  2380       &&  Rxfer_bits != Rout_high
  2381       &&  Rout_high  != Rin_low,
  2382         "register alias checks");
  2384   Label big_shift, done;
  2386   // This code can be optimized to use the 64 bit shifts in V9.
  2387   // Here we use the 32 bit shifts.
  2389   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
  2390   subcc(Rcount,   31, Ralt_count);
  2391   br(greater, true, pn, big_shift);
  2392   delayed()->dec(Ralt_count);
  2394   // shift < 32 bits, Ralt_count = Rcount-31
  2396   // We get the transfer bits by shifting left by 32-count the high
  2397   // register. This is done by shifting left by 31-count and then by one
  2398   // more to take care of the special (rare) case where count is zero
  2399   // (shifting by 32 would not work).
  2401   neg(Ralt_count);
  2402   if (Rcount != Rout_low) {
  2403     srl(Rin_low, Rcount, Rout_low);
  2406   // The order of the next two instructions is critical in the case where
  2407   // Rin and Rout are the same and should not be reversed.
  2409   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
  2410   sra(Rin_high,     Rcount, Rout_high ); // high half
  2411   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
  2412   if (Rcount == Rout_low) {
  2413     srl(Rin_low, Rcount, Rout_low);
  2415   ba(done);
  2416   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
  2418   // shift >= 32 bits, Ralt_count = Rcount-32
  2419   bind(big_shift);
  2421   sra(Rin_high, Ralt_count, Rout_low);
  2422   sra(Rin_high,         31, Rout_high); // sign into hi
  2424   bind( done );
  2429 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
  2430                             Register Rcount,
  2431                             Register Rout_high, Register Rout_low,
  2432                             Register Rtemp ) {
  2434   Register Ralt_count = Rtemp;
  2435   Register Rxfer_bits = Rtemp;
  2437   assert( Ralt_count != Rin_high
  2438       &&  Ralt_count != Rin_low
  2439       &&  Ralt_count != Rcount
  2440       &&  Rxfer_bits != Rin_low
  2441       &&  Rxfer_bits != Rin_high
  2442       &&  Rxfer_bits != Rcount
  2443       &&  Rxfer_bits != Rout_high
  2444       &&  Rout_high  != Rin_low,
  2445         "register alias checks");
  2447   Label big_shift, done;
  2449   // This code can be optimized to use the 64 bit shifts in V9.
  2450   // Here we use the 32 bit shifts.
  2452   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
  2453   subcc(Rcount,   31, Ralt_count);
  2454   br(greater, true, pn, big_shift);
  2455   delayed()->dec(Ralt_count);
  2457   // shift < 32 bits, Ralt_count = Rcount-31
  2459   // We get the transfer bits by shifting left by 32-count the high
  2460   // register. This is done by shifting left by 31-count and then by one
  2461   // more to take care of the special (rare) case where count is zero
  2462   // (shifting by 32 would not work).
  2464   neg(Ralt_count);
  2465   if (Rcount != Rout_low) {
  2466     srl(Rin_low, Rcount, Rout_low);
  2469   // The order of the next two instructions is critical in the case where
  2470   // Rin and Rout are the same and should not be reversed.
  2472   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
  2473   srl(Rin_high,     Rcount, Rout_high ); // high half
  2474   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
  2475   if (Rcount == Rout_low) {
  2476     srl(Rin_low, Rcount, Rout_low);
  2478   ba(done);
  2479   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
  2481   // shift >= 32 bits, Ralt_count = Rcount-32
  2482   bind(big_shift);
  2484   srl(Rin_high, Ralt_count, Rout_low);
  2485   clr(Rout_high);
  2487   bind( done );
  2490 #ifdef _LP64
  2491 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
  2492   cmp(Ra, Rb);
  2493   mov(-1, Rresult);
  2494   movcc(equal,   false, xcc,  0, Rresult);
  2495   movcc(greater, false, xcc,  1, Rresult);
  2497 #endif
  2500 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
  2501   switch (size_in_bytes) {
  2502   case  8:  ld_long(src, dst); break;
  2503   case  4:  ld(     src, dst); break;
  2504   case  2:  is_signed ? ldsh(src, dst) : lduh(src, dst); break;
  2505   case  1:  is_signed ? ldsb(src, dst) : ldub(src, dst); break;
  2506   default:  ShouldNotReachHere();
  2510 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
  2511   switch (size_in_bytes) {
  2512   case  8:  st_long(src, dst); break;
  2513   case  4:  st(     src, dst); break;
  2514   case  2:  sth(    src, dst); break;
  2515   case  1:  stb(    src, dst); break;
  2516   default:  ShouldNotReachHere();
  2521 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
  2522                                 FloatRegister Fa, FloatRegister Fb,
  2523                                 Register Rresult) {
  2525   fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
  2527   Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
  2528   Condition eq =                          f_equal;
  2529   Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
  2531   if (VM_Version::v9_instructions_work()) {
  2533     mov(-1, Rresult);
  2534     movcc(eq, true, fcc0, 0, Rresult);
  2535     movcc(gt, true, fcc0, 1, Rresult);
  2537   } else {
  2538     Label done;
  2540     set( -1, Rresult );
  2541     //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
  2542     fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
  2543     fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
  2545     bind (done);
  2550 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2552   if (VM_Version::v9_instructions_work()) {
  2553     Assembler::fneg(w, s, d);
  2554   } else {
  2555     if (w == FloatRegisterImpl::S) {
  2556       Assembler::fneg(w, s, d);
  2557     } else if (w == FloatRegisterImpl::D) {
  2558       // number() does a sanity check on the alignment.
  2559       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2560         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2562       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2563       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2564     } else {
  2565       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2567       // number() does a sanity check on the alignment.
  2568       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2569         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2571       Assembler::fneg(FloatRegisterImpl::S, s, d);
  2572       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2573       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2574       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2579 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2581   if (VM_Version::v9_instructions_work()) {
  2582     Assembler::fmov(w, s, d);
  2583   } else {
  2584     if (w == FloatRegisterImpl::S) {
  2585       Assembler::fmov(w, s, d);
  2586     } else if (w == FloatRegisterImpl::D) {
  2587       // number() does a sanity check on the alignment.
  2588       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2589         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2591       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2592       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2593     } else {
  2594       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2596       // number() does a sanity check on the alignment.
  2597       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2598         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2600       Assembler::fmov(FloatRegisterImpl::S, s, d);
  2601       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2602       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2603       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2608 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
  2610   if (VM_Version::v9_instructions_work()) {
  2611     Assembler::fabs(w, s, d);
  2612   } else {
  2613     if (w == FloatRegisterImpl::S) {
  2614       Assembler::fabs(w, s, d);
  2615     } else if (w == FloatRegisterImpl::D) {
  2616       // number() does a sanity check on the alignment.
  2617       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
  2618         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
  2620       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2621       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2622     } else {
  2623       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
  2625       // number() does a sanity check on the alignment.
  2626       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
  2627        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
  2629       Assembler::fabs(FloatRegisterImpl::S, s, d);
  2630       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
  2631       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
  2632       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
  2637 void MacroAssembler::save_all_globals_into_locals() {
  2638   mov(G1,L1);
  2639   mov(G2,L2);
  2640   mov(G3,L3);
  2641   mov(G4,L4);
  2642   mov(G5,L5);
  2643   mov(G6,L6);
  2644   mov(G7,L7);
  2647 void MacroAssembler::restore_globals_from_locals() {
  2648   mov(L1,G1);
  2649   mov(L2,G2);
  2650   mov(L3,G3);
  2651   mov(L4,G4);
  2652   mov(L5,G5);
  2653   mov(L6,G6);
  2654   mov(L7,G7);
  2657 // Use for 64 bit operation.
  2658 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2660   // store ptr_reg as the new top value
  2661 #ifdef _LP64
  2662   casx(top_ptr_reg, top_reg, ptr_reg);
  2663 #else
  2664   cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
  2665 #endif // _LP64
  2668 // [RGV] This routine does not handle 64 bit operations.
  2669 //       use casx_under_lock() or casx directly!!!
  2670 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
  2672   // store ptr_reg as the new top value
  2673   if (VM_Version::v9_instructions_work()) {
  2674     cas(top_ptr_reg, top_reg, ptr_reg);
  2675   } else {
  2677     // If the register is not an out nor global, it is not visible
  2678     // after the save.  Allocate a register for it, save its
  2679     // value in the register save area (the save may not flush
  2680     // registers to the save area).
  2682     Register top_ptr_reg_after_save;
  2683     Register top_reg_after_save;
  2684     Register ptr_reg_after_save;
  2686     if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
  2687       top_ptr_reg_after_save = top_ptr_reg->after_save();
  2688     } else {
  2689       Address reg_save_addr = top_ptr_reg->address_in_saved_window();
  2690       top_ptr_reg_after_save = L0;
  2691       st(top_ptr_reg, reg_save_addr);
  2694     if (top_reg->is_out() || top_reg->is_global()) {
  2695       top_reg_after_save = top_reg->after_save();
  2696     } else {
  2697       Address reg_save_addr = top_reg->address_in_saved_window();
  2698       top_reg_after_save = L1;
  2699       st(top_reg, reg_save_addr);
  2702     if (ptr_reg->is_out() || ptr_reg->is_global()) {
  2703       ptr_reg_after_save = ptr_reg->after_save();
  2704     } else {
  2705       Address reg_save_addr = ptr_reg->address_in_saved_window();
  2706       ptr_reg_after_save = L2;
  2707       st(ptr_reg, reg_save_addr);
  2710     const Register& lock_reg = L3;
  2711     const Register& lock_ptr_reg = L4;
  2712     const Register& value_reg = L5;
  2713     const Register& yield_reg = L6;
  2714     const Register& yieldall_reg = L7;
  2716     save_frame();
  2718     if (top_ptr_reg_after_save == L0) {
  2719       ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
  2722     if (top_reg_after_save == L1) {
  2723       ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
  2726     if (ptr_reg_after_save == L2) {
  2727       ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
  2730     Label(retry_get_lock);
  2731     Label(not_same);
  2732     Label(dont_yield);
  2734     assert(lock_addr, "lock_address should be non null for v8");
  2735     set((intptr_t)lock_addr, lock_ptr_reg);
  2736     // Initialize yield counter
  2737     mov(G0,yield_reg);
  2738     mov(G0, yieldall_reg);
  2739     set(StubRoutines::Sparc::locked, lock_reg);
  2741     bind(retry_get_lock);
  2742     cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dont_yield);
  2744     if(use_call_vm) {
  2745       Untested("Need to verify global reg consistancy");
  2746       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
  2747     } else {
  2748       // Save the regs and make space for a C call
  2749       save(SP, -96, SP);
  2750       save_all_globals_into_locals();
  2751       call(CAST_FROM_FN_PTR(address,os::yield_all));
  2752       delayed()->mov(yieldall_reg, O0);
  2753       restore_globals_from_locals();
  2754       restore();
  2757     // reset the counter
  2758     mov(G0,yield_reg);
  2759     add(yieldall_reg, 1, yieldall_reg);
  2761     bind(dont_yield);
  2762     // try to get lock
  2763     swap(lock_ptr_reg, 0, lock_reg);
  2765     // did we get the lock?
  2766     cmp(lock_reg, StubRoutines::Sparc::unlocked);
  2767     br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
  2768     delayed()->add(yield_reg,1,yield_reg);
  2770     // yes, got lock.  do we have the same top?
  2771     ld(top_ptr_reg_after_save, 0, value_reg);
  2772     cmp_and_br_short(value_reg, top_reg_after_save, Assembler::notEqual, Assembler::pn, not_same);
  2774     // yes, same top.
  2775     st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
  2776     membar(Assembler::StoreStore);
  2778     bind(not_same);
  2779     mov(value_reg, ptr_reg_after_save);
  2780     st(lock_reg, lock_ptr_reg, 0); // unlock
  2782     restore();
  2786 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
  2787                                                       Register tmp,
  2788                                                       int offset) {
  2789   intptr_t value = *delayed_value_addr;
  2790   if (value != 0)
  2791     return RegisterOrConstant(value + offset);
  2793   // load indirectly to solve generation ordering problem
  2794   AddressLiteral a(delayed_value_addr);
  2795   load_ptr_contents(a, tmp);
  2797 #ifdef ASSERT
  2798   tst(tmp);
  2799   breakpoint_trap(zero, xcc);
  2800 #endif
  2802   if (offset != 0)
  2803     add(tmp, offset, tmp);
  2805   return RegisterOrConstant(tmp);
  2809 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2810   assert(d.register_or_noreg() != G0, "lost side effect");
  2811   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2812       (s2.is_register() && s2.as_register() == G0)) {
  2813     // Do nothing, just move value.
  2814     if (s1.is_register()) {
  2815       if (d.is_constant())  d = temp;
  2816       mov(s1.as_register(), d.as_register());
  2817       return d;
  2818     } else {
  2819       return s1;
  2823   if (s1.is_register()) {
  2824     assert_different_registers(s1.as_register(), temp);
  2825     if (d.is_constant())  d = temp;
  2826     andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2827     return d;
  2828   } else {
  2829     if (s2.is_register()) {
  2830       assert_different_registers(s2.as_register(), temp);
  2831       if (d.is_constant())  d = temp;
  2832       set(s1.as_constant(), temp);
  2833       andn(temp, s2.as_register(), d.as_register());
  2834       return d;
  2835     } else {
  2836       intptr_t res = s1.as_constant() & ~s2.as_constant();
  2837       return res;
  2842 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2843   assert(d.register_or_noreg() != G0, "lost side effect");
  2844   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2845       (s2.is_register() && s2.as_register() == G0)) {
  2846     // Do nothing, just move value.
  2847     if (s1.is_register()) {
  2848       if (d.is_constant())  d = temp;
  2849       mov(s1.as_register(), d.as_register());
  2850       return d;
  2851     } else {
  2852       return s1;
  2856   if (s1.is_register()) {
  2857     assert_different_registers(s1.as_register(), temp);
  2858     if (d.is_constant())  d = temp;
  2859     add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2860     return d;
  2861   } else {
  2862     if (s2.is_register()) {
  2863       assert_different_registers(s2.as_register(), temp);
  2864       if (d.is_constant())  d = temp;
  2865       add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
  2866       return d;
  2867     } else {
  2868       intptr_t res = s1.as_constant() + s2.as_constant();
  2869       return res;
  2874 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
  2875   assert(d.register_or_noreg() != G0, "lost side effect");
  2876   if (!is_simm13(s2.constant_or_zero()))
  2877     s2 = (s2.as_constant() & 0xFF);
  2878   if ((s2.is_constant() && s2.as_constant() == 0) ||
  2879       (s2.is_register() && s2.as_register() == G0)) {
  2880     // Do nothing, just move value.
  2881     if (s1.is_register()) {
  2882       if (d.is_constant())  d = temp;
  2883       mov(s1.as_register(), d.as_register());
  2884       return d;
  2885     } else {
  2886       return s1;
  2890   if (s1.is_register()) {
  2891     assert_different_registers(s1.as_register(), temp);
  2892     if (d.is_constant())  d = temp;
  2893     sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
  2894     return d;
  2895   } else {
  2896     if (s2.is_register()) {
  2897       assert_different_registers(s2.as_register(), temp);
  2898       if (d.is_constant())  d = temp;
  2899       set(s1.as_constant(), temp);
  2900       sll_ptr(temp, s2.as_register(), d.as_register());
  2901       return d;
  2902     } else {
  2903       intptr_t res = s1.as_constant() << s2.as_constant();
  2904       return res;
  2910 // Look up the method for a megamorphic invokeinterface call.
  2911 // The target method is determined by <intf_klass, itable_index>.
  2912 // The receiver klass is in recv_klass.
  2913 // On success, the result will be in method_result, and execution falls through.
  2914 // On failure, execution transfers to the given label.
  2915 void MacroAssembler::lookup_interface_method(Register recv_klass,
  2916                                              Register intf_klass,
  2917                                              RegisterOrConstant itable_index,
  2918                                              Register method_result,
  2919                                              Register scan_temp,
  2920                                              Register sethi_temp,
  2921                                              Label& L_no_such_interface) {
  2922   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
  2923   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
  2924          "caller must use same register for non-constant itable index as for method");
  2926   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
  2927   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
  2928   int scan_step   = itableOffsetEntry::size() * wordSize;
  2929   int vte_size    = vtableEntry::size() * wordSize;
  2931   lduw(recv_klass, instanceKlass::vtable_length_offset() * wordSize, scan_temp);
  2932   // %%% We should store the aligned, prescaled offset in the klassoop.
  2933   // Then the next several instructions would fold away.
  2935   int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
  2936   int itb_offset = vtable_base;
  2937   if (round_to_unit != 0) {
  2938     // hoist first instruction of round_to(scan_temp, BytesPerLong):
  2939     itb_offset += round_to_unit - wordSize;
  2941   int itb_scale = exact_log2(vtableEntry::size() * wordSize);
  2942   sll(scan_temp, itb_scale,  scan_temp);
  2943   add(scan_temp, itb_offset, scan_temp);
  2944   if (round_to_unit != 0) {
  2945     // Round up to align_object_offset boundary
  2946     // see code for instanceKlass::start_of_itable!
  2947     // Was: round_to(scan_temp, BytesPerLong);
  2948     // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
  2949     and3(scan_temp, -round_to_unit, scan_temp);
  2951   add(recv_klass, scan_temp, scan_temp);
  2953   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
  2954   RegisterOrConstant itable_offset = itable_index;
  2955   itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
  2956   itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
  2957   add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
  2959   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
  2960   //   if (scan->interface() == intf) {
  2961   //     result = (klass + scan->offset() + itable_index);
  2962   //   }
  2963   // }
  2964   Label search, found_method;
  2966   for (int peel = 1; peel >= 0; peel--) {
  2967     // %%%% Could load both offset and interface in one ldx, if they were
  2968     // in the opposite order.  This would save a load.
  2969     ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
  2971     // Check that this entry is non-null.  A null entry means that
  2972     // the receiver class doesn't implement the interface, and wasn't the
  2973     // same as when the caller was compiled.
  2974     bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
  2975     delayed()->cmp(method_result, intf_klass);
  2977     if (peel) {
  2978       brx(Assembler::equal,    false, Assembler::pt, found_method);
  2979     } else {
  2980       brx(Assembler::notEqual, false, Assembler::pn, search);
  2981       // (invert the test to fall through to found_method...)
  2983     delayed()->add(scan_temp, scan_step, scan_temp);
  2985     if (!peel)  break;
  2987     bind(search);
  2990   bind(found_method);
  2992   // Got a hit.
  2993   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
  2994   // scan_temp[-scan_step] points to the vtable offset we need
  2995   ito_offset -= scan_step;
  2996   lduw(scan_temp, ito_offset, scan_temp);
  2997   ld_ptr(recv_klass, scan_temp, method_result);
  3001 void MacroAssembler::check_klass_subtype(Register sub_klass,
  3002                                          Register super_klass,
  3003                                          Register temp_reg,
  3004                                          Register temp2_reg,
  3005                                          Label& L_success) {
  3006   Label L_failure, L_pop_to_failure;
  3007   check_klass_subtype_fast_path(sub_klass, super_klass,
  3008                                 temp_reg, temp2_reg,
  3009                                 &L_success, &L_failure, NULL);
  3010   Register sub_2 = sub_klass;
  3011   Register sup_2 = super_klass;
  3012   if (!sub_2->is_global())  sub_2 = L0;
  3013   if (!sup_2->is_global())  sup_2 = L1;
  3015   save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
  3016   check_klass_subtype_slow_path(sub_2, sup_2,
  3017                                 L2, L3, L4, L5,
  3018                                 NULL, &L_pop_to_failure);
  3020   // on success:
  3021   restore();
  3022   ba_short(L_success);
  3024   // on failure:
  3025   bind(L_pop_to_failure);
  3026   restore();
  3027   bind(L_failure);
  3031 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
  3032                                                    Register super_klass,
  3033                                                    Register temp_reg,
  3034                                                    Register temp2_reg,
  3035                                                    Label* L_success,
  3036                                                    Label* L_failure,
  3037                                                    Label* L_slow_path,
  3038                                         RegisterOrConstant super_check_offset) {
  3039   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  3040                    Klass::secondary_super_cache_offset_in_bytes());
  3041   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
  3042                     Klass::super_check_offset_offset_in_bytes());
  3044   bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
  3045   bool need_slow_path = (must_load_sco ||
  3046                          super_check_offset.constant_or_zero() == sco_offset);
  3048   assert_different_registers(sub_klass, super_klass, temp_reg);
  3049   if (super_check_offset.is_register()) {
  3050     assert_different_registers(sub_klass, super_klass, temp_reg,
  3051                                super_check_offset.as_register());
  3052   } else if (must_load_sco) {
  3053     assert(temp2_reg != noreg, "supply either a temp or a register offset");
  3056   Label L_fallthrough;
  3057   int label_nulls = 0;
  3058   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  3059   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  3060   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
  3061   assert(label_nulls <= 1 ||
  3062          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
  3063          "at most one NULL in the batch, usually");
  3065   // If the pointers are equal, we are done (e.g., String[] elements).
  3066   // This self-check enables sharing of secondary supertype arrays among
  3067   // non-primary types such as array-of-interface.  Otherwise, each such
  3068   // type would need its own customized SSA.
  3069   // We move this check to the front of the fast path because many
  3070   // type checks are in fact trivially successful in this manner,
  3071   // so we get a nicely predicted branch right at the start of the check.
  3072   cmp(super_klass, sub_klass);
  3073   brx(Assembler::equal, false, Assembler::pn, *L_success);
  3074   delayed()->nop();
  3076   // Check the supertype display:
  3077   if (must_load_sco) {
  3078     // The super check offset is always positive...
  3079     lduw(super_klass, sco_offset, temp2_reg);
  3080     super_check_offset = RegisterOrConstant(temp2_reg);
  3081     // super_check_offset is register.
  3082     assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
  3084   ld_ptr(sub_klass, super_check_offset, temp_reg);
  3085   cmp(super_klass, temp_reg);
  3087   // This check has worked decisively for primary supers.
  3088   // Secondary supers are sought in the super_cache ('super_cache_addr').
  3089   // (Secondary supers are interfaces and very deeply nested subtypes.)
  3090   // This works in the same check above because of a tricky aliasing
  3091   // between the super_cache and the primary super display elements.
  3092   // (The 'super_check_addr' can address either, as the case requires.)
  3093   // Note that the cache is updated below if it does not help us find
  3094   // what we need immediately.
  3095   // So if it was a primary super, we can just fail immediately.
  3096   // Otherwise, it's the slow path for us (no success at this point).
  3098   // Hacked ba(), which may only be used just before L_fallthrough.
  3099 #define FINAL_JUMP(label)            \
  3100   if (&(label) != &L_fallthrough) {  \
  3101     ba(label);  delayed()->nop();    \
  3104   if (super_check_offset.is_register()) {
  3105     brx(Assembler::equal, false, Assembler::pn, *L_success);
  3106     delayed()->cmp(super_check_offset.as_register(), sc_offset);
  3108     if (L_failure == &L_fallthrough) {
  3109       brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
  3110       delayed()->nop();
  3111     } else {
  3112       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
  3113       delayed()->nop();
  3114       FINAL_JUMP(*L_slow_path);
  3116   } else if (super_check_offset.as_constant() == sc_offset) {
  3117     // Need a slow path; fast failure is impossible.
  3118     if (L_slow_path == &L_fallthrough) {
  3119       brx(Assembler::equal, false, Assembler::pt, *L_success);
  3120       delayed()->nop();
  3121     } else {
  3122       brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
  3123       delayed()->nop();
  3124       FINAL_JUMP(*L_success);
  3126   } else {
  3127     // No slow path; it's a fast decision.
  3128     if (L_failure == &L_fallthrough) {
  3129       brx(Assembler::equal, false, Assembler::pt, *L_success);
  3130       delayed()->nop();
  3131     } else {
  3132       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
  3133       delayed()->nop();
  3134       FINAL_JUMP(*L_success);
  3138   bind(L_fallthrough);
  3140 #undef FINAL_JUMP
  3144 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
  3145                                                    Register super_klass,
  3146                                                    Register count_temp,
  3147                                                    Register scan_temp,
  3148                                                    Register scratch_reg,
  3149                                                    Register coop_reg,
  3150                                                    Label* L_success,
  3151                                                    Label* L_failure) {
  3152   assert_different_registers(sub_klass, super_klass,
  3153                              count_temp, scan_temp, scratch_reg, coop_reg);
  3155   Label L_fallthrough, L_loop;
  3156   int label_nulls = 0;
  3157   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
  3158   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
  3159   assert(label_nulls <= 1, "at most one NULL in the batch");
  3161   // a couple of useful fields in sub_klass:
  3162   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
  3163                    Klass::secondary_supers_offset_in_bytes());
  3164   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
  3165                    Klass::secondary_super_cache_offset_in_bytes());
  3167   // Do a linear scan of the secondary super-klass chain.
  3168   // This code is rarely used, so simplicity is a virtue here.
  3170 #ifndef PRODUCT
  3171   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
  3172   inc_counter((address) pst_counter, count_temp, scan_temp);
  3173 #endif
  3175   // We will consult the secondary-super array.
  3176   ld_ptr(sub_klass, ss_offset, scan_temp);
  3178   // Compress superclass if necessary.
  3179   Register search_key = super_klass;
  3180   bool decode_super_klass = false;
  3181   if (UseCompressedOops) {
  3182     if (coop_reg != noreg) {
  3183       encode_heap_oop_not_null(super_klass, coop_reg);
  3184       search_key = coop_reg;
  3185     } else {
  3186       encode_heap_oop_not_null(super_klass);
  3187       decode_super_klass = true; // scarce temps!
  3189     // The superclass is never null; it would be a basic system error if a null
  3190     // pointer were to sneak in here.  Note that we have already loaded the
  3191     // Klass::super_check_offset from the super_klass in the fast path,
  3192     // so if there is a null in that register, we are already in the afterlife.
  3195   // Load the array length.  (Positive movl does right thing on LP64.)
  3196   lduw(scan_temp, arrayOopDesc::length_offset_in_bytes(), count_temp);
  3198   // Check for empty secondary super list
  3199   tst(count_temp);
  3201   // Top of search loop
  3202   bind(L_loop);
  3203   br(Assembler::equal, false, Assembler::pn, *L_failure);
  3204   delayed()->add(scan_temp, heapOopSize, scan_temp);
  3205   assert(heapOopSize != 0, "heapOopSize should be initialized");
  3207   // Skip the array header in all array accesses.
  3208   int elem_offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
  3209   elem_offset -= heapOopSize;   // the scan pointer was pre-incremented also
  3211   // Load next super to check
  3212   if (UseCompressedOops) {
  3213     // Don't use load_heap_oop; we don't want to decode the element.
  3214     lduw(   scan_temp, elem_offset, scratch_reg );
  3215   } else {
  3216     ld_ptr( scan_temp, elem_offset, scratch_reg );
  3219   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
  3220   cmp(scratch_reg, search_key);
  3222   // A miss means we are NOT a subtype and need to keep looping
  3223   brx(Assembler::notEqual, false, Assembler::pn, L_loop);
  3224   delayed()->deccc(count_temp); // decrement trip counter in delay slot
  3226   // Falling out the bottom means we found a hit; we ARE a subtype
  3227   if (decode_super_klass) decode_heap_oop(super_klass);
  3229   // Success.  Cache the super we found and proceed in triumph.
  3230   st_ptr(super_klass, sub_klass, sc_offset);
  3232   if (L_success != &L_fallthrough) {
  3233     ba(*L_success);
  3234     delayed()->nop();
  3237   bind(L_fallthrough);
  3241 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
  3242                                               Register temp_reg,
  3243                                               Label& wrong_method_type) {
  3244   assert_different_registers(mtype_reg, mh_reg, temp_reg);
  3245   // compare method type against that of the receiver
  3246   RegisterOrConstant mhtype_offset = delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg);
  3247   load_heap_oop(mh_reg, mhtype_offset, temp_reg);
  3248   cmp_and_brx_short(temp_reg, mtype_reg, Assembler::notEqual, Assembler::pn, wrong_method_type);
  3252 // A method handle has a "vmslots" field which gives the size of its
  3253 // argument list in JVM stack slots.  This field is either located directly
  3254 // in every method handle, or else is indirectly accessed through the
  3255 // method handle's MethodType.  This macro hides the distinction.
  3256 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
  3257                                                 Register temp_reg) {
  3258   assert_different_registers(vmslots_reg, mh_reg, temp_reg);
  3259   // load mh.type.form.vmslots
  3260   Register temp2_reg = vmslots_reg;
  3261   load_heap_oop(Address(mh_reg,    delayed_value(java_lang_invoke_MethodHandle::type_offset_in_bytes, temp_reg)),      temp2_reg);
  3262   load_heap_oop(Address(temp2_reg, delayed_value(java_lang_invoke_MethodType::form_offset_in_bytes, temp_reg)),        temp2_reg);
  3263   ld(           Address(temp2_reg, delayed_value(java_lang_invoke_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)), vmslots_reg);
  3267 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop) {
  3268   assert(mh_reg == G3_method_handle, "caller must put MH object in G3");
  3269   assert_different_registers(mh_reg, temp_reg);
  3271   // pick out the interpreted side of the handler
  3272   // NOTE: vmentry is not an oop!
  3273   ld_ptr(mh_reg, delayed_value(java_lang_invoke_MethodHandle::vmentry_offset_in_bytes, temp_reg), temp_reg);
  3275   // off we go...
  3276   ld_ptr(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes(), temp_reg);
  3277   jmp(temp_reg, 0);
  3279   // for the various stubs which take control at this point,
  3280   // see MethodHandles::generate_method_handle_stub
  3282   // Some callers can fill the delay slot.
  3283   if (emit_delayed_nop) {
  3284     delayed()->nop();
  3289 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
  3290                                                    Register temp_reg,
  3291                                                    int extra_slot_offset) {
  3292   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
  3293   int stackElementSize = Interpreter::stackElementSize;
  3294   int offset = extra_slot_offset * stackElementSize;
  3295   if (arg_slot.is_constant()) {
  3296     offset += arg_slot.as_constant() * stackElementSize;
  3297     return offset;
  3298   } else {
  3299     assert(temp_reg != noreg, "must specify");
  3300     sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
  3301     if (offset != 0)
  3302       add(temp_reg, offset, temp_reg);
  3303     return temp_reg;
  3308 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
  3309                                          Register temp_reg,
  3310                                          int extra_slot_offset) {
  3311   return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
  3315 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
  3316                                           Register temp_reg,
  3317                                           Label& done, Label* slow_case,
  3318                                           BiasedLockingCounters* counters) {
  3319   assert(UseBiasedLocking, "why call this otherwise?");
  3321   if (PrintBiasedLockingStatistics) {
  3322     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
  3323     if (counters == NULL)
  3324       counters = BiasedLocking::counters();
  3327   Label cas_label;
  3329   // Biased locking
  3330   // See whether the lock is currently biased toward our thread and
  3331   // whether the epoch is still valid
  3332   // Note that the runtime guarantees sufficient alignment of JavaThread
  3333   // pointers to allow age to be placed into low bits
  3334   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
  3335   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  3336   cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
  3338   load_klass(obj_reg, temp_reg);
  3339   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  3340   or3(G2_thread, temp_reg, temp_reg);
  3341   xor3(mark_reg, temp_reg, temp_reg);
  3342   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
  3343   if (counters != NULL) {
  3344     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
  3345     // Reload mark_reg as we may need it later
  3346     ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
  3348   brx(Assembler::equal, true, Assembler::pt, done);
  3349   delayed()->nop();
  3351   Label try_revoke_bias;
  3352   Label try_rebias;
  3353   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
  3354   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3356   // At this point we know that the header has the bias pattern and
  3357   // that we are not the bias owner in the current epoch. We need to
  3358   // figure out more details about the state of the header in order to
  3359   // know what operations can be legally performed on the object's
  3360   // header.
  3362   // If the low three bits in the xor result aren't clear, that means
  3363   // the prototype header is no longer biased and we have to revoke
  3364   // the bias on this object.
  3365   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
  3366   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
  3368   // Biasing is still enabled for this data type. See whether the
  3369   // epoch of the current bias is still valid, meaning that the epoch
  3370   // bits of the mark word are equal to the epoch bits of the
  3371   // prototype header. (Note that the prototype header's epoch bits
  3372   // only change at a safepoint.) If not, attempt to rebias the object
  3373   // toward the current thread. Note that we must be absolutely sure
  3374   // that the current epoch is invalid in order to do this because
  3375   // otherwise the manipulations it performs on the mark word are
  3376   // illegal.
  3377   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
  3378   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
  3380   // The epoch of the current bias is still valid but we know nothing
  3381   // about the owner; it might be set or it might be clear. Try to
  3382   // acquire the bias of the object using an atomic operation. If this
  3383   // fails we will go in to the runtime to revoke the object's bias.
  3384   // Note that we first construct the presumed unbiased header so we
  3385   // don't accidentally blow away another thread's valid bias.
  3386   delayed()->and3(mark_reg,
  3387                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
  3388                   mark_reg);
  3389   or3(G2_thread, mark_reg, temp_reg);
  3390   casn(mark_addr.base(), mark_reg, temp_reg);
  3391   // If the biasing toward our thread failed, this means that
  3392   // another thread succeeded in biasing it toward itself and we
  3393   // need to revoke that bias. The revocation will occur in the
  3394   // interpreter runtime in the slow case.
  3395   cmp(mark_reg, temp_reg);
  3396   if (counters != NULL) {
  3397     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
  3399   if (slow_case != NULL) {
  3400     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  3401     delayed()->nop();
  3403   ba_short(done);
  3405   bind(try_rebias);
  3406   // At this point we know the epoch has expired, meaning that the
  3407   // current "bias owner", if any, is actually invalid. Under these
  3408   // circumstances _only_, we are allowed to use the current header's
  3409   // value as the comparison value when doing the cas to acquire the
  3410   // bias in the current epoch. In other words, we allow transfer of
  3411   // the bias from one thread to another directly in this situation.
  3412   //
  3413   // FIXME: due to a lack of registers we currently blow away the age
  3414   // bits in this situation. Should attempt to preserve them.
  3415   load_klass(obj_reg, temp_reg);
  3416   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  3417   or3(G2_thread, temp_reg, temp_reg);
  3418   casn(mark_addr.base(), mark_reg, temp_reg);
  3419   // If the biasing toward our thread failed, this means that
  3420   // another thread succeeded in biasing it toward itself and we
  3421   // need to revoke that bias. The revocation will occur in the
  3422   // interpreter runtime in the slow case.
  3423   cmp(mark_reg, temp_reg);
  3424   if (counters != NULL) {
  3425     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
  3427   if (slow_case != NULL) {
  3428     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
  3429     delayed()->nop();
  3431   ba_short(done);
  3433   bind(try_revoke_bias);
  3434   // The prototype mark in the klass doesn't have the bias bit set any
  3435   // more, indicating that objects of this data type are not supposed
  3436   // to be biased any more. We are going to try to reset the mark of
  3437   // this object to the prototype value and fall through to the
  3438   // CAS-based locking scheme. Note that if our CAS fails, it means
  3439   // that another thread raced us for the privilege of revoking the
  3440   // bias of this particular object, so it's okay to continue in the
  3441   // normal locking code.
  3442   //
  3443   // FIXME: due to a lack of registers we currently blow away the age
  3444   // bits in this situation. Should attempt to preserve them.
  3445   load_klass(obj_reg, temp_reg);
  3446   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
  3447   casn(mark_addr.base(), mark_reg, temp_reg);
  3448   // Fall through to the normal CAS-based lock, because no matter what
  3449   // the result of the above CAS, some thread must have succeeded in
  3450   // removing the bias bit from the object's header.
  3451   if (counters != NULL) {
  3452     cmp(mark_reg, temp_reg);
  3453     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
  3456   bind(cas_label);
  3459 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
  3460                                           bool allow_delay_slot_filling) {
  3461   // Check for biased locking unlock case, which is a no-op
  3462   // Note: we do not have to check the thread ID for two reasons.
  3463   // First, the interpreter checks for IllegalMonitorStateException at
  3464   // a higher level. Second, if the bias was revoked while we held the
  3465   // lock, the object could not be rebiased toward another thread, so
  3466   // the bias bit would be clear.
  3467   ld_ptr(mark_addr, temp_reg);
  3468   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
  3469   cmp(temp_reg, markOopDesc::biased_lock_pattern);
  3470   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
  3471   delayed();
  3472   if (!allow_delay_slot_filling) {
  3473     nop();
  3478 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
  3479 // Solaris/SPARC's "as".  Another apt name would be cas_ptr()
  3481 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
  3482   casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3487 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
  3488 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
  3489 // The code could be tightened up considerably.
  3490 //
  3491 // box->dhw disposition - post-conditions at DONE_LABEL.
  3492 // -   Successful inflated lock:  box->dhw != 0.
  3493 //     Any non-zero value suffices.
  3494 //     Consider G2_thread, rsp, boxReg, or unused_mark()
  3495 // -   Successful Stack-lock: box->dhw == mark.
  3496 //     box->dhw must contain the displaced mark word value
  3497 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
  3498 //     The slow-path fast_enter() and slow_enter() operators
  3499 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
  3500 // -   Biased: box->dhw is undefined
  3501 //
  3502 // SPARC refworkload performance - specifically jetstream and scimark - are
  3503 // extremely sensitive to the size of the code emitted by compiler_lock_object
  3504 // and compiler_unlock_object.  Critically, the key factor is code size, not path
  3505 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
  3506 // effect).
  3509 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
  3510                                           Register Rbox, Register Rscratch,
  3511                                           BiasedLockingCounters* counters,
  3512                                           bool try_bias) {
  3513    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
  3515    verify_oop(Roop);
  3516    Label done ;
  3518    if (counters != NULL) {
  3519      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
  3522    if (EmitSync & 1) {
  3523      mov(3, Rscratch);
  3524      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3525      cmp(SP, G0);
  3526      return ;
  3529    if (EmitSync & 2) {
  3531      // Fetch object's markword
  3532      ld_ptr(mark_addr, Rmark);
  3534      if (try_bias) {
  3535         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3538      // Save Rbox in Rscratch to be used for the cas operation
  3539      mov(Rbox, Rscratch);
  3541      // set Rmark to markOop | markOopDesc::unlocked_value
  3542      or3(Rmark, markOopDesc::unlocked_value, Rmark);
  3544      // Initialize the box.  (Must happen before we update the object mark!)
  3545      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3547      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
  3548      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3549      casx_under_lock(mark_addr.base(), Rmark, Rscratch,
  3550         (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3552      // if compare/exchange succeeded we found an unlocked object and we now have locked it
  3553      // hence we are done
  3554      cmp(Rmark, Rscratch);
  3555 #ifdef _LP64
  3556      sub(Rscratch, STACK_BIAS, Rscratch);
  3557 #endif
  3558      brx(Assembler::equal, false, Assembler::pt, done);
  3559      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
  3561      // we did not find an unlocked object so see if this is a recursive case
  3562      // sub(Rscratch, SP, Rscratch);
  3563      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3564      andcc(Rscratch, 0xfffff003, Rscratch);
  3565      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3566      bind (done);
  3567      return ;
  3570    Label Egress ;
  3572    if (EmitSync & 256) {
  3573       Label IsInflated ;
  3575       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
  3576       // Triage: biased, stack-locked, neutral, inflated
  3577       if (try_bias) {
  3578         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3579         // Invariant: if control reaches this point in the emitted stream
  3580         // then Rmark has not been modified.
  3583       // Store mark into displaced mark field in the on-stack basic-lock "box"
  3584       // Critically, this must happen before the CAS
  3585       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
  3586       st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3587       andcc(Rmark, 2, G0);
  3588       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
  3589       delayed()->
  3591       // Try stack-lock acquisition.
  3592       // Beware: the 1st instruction is in a delay slot
  3593       mov(Rbox,  Rscratch);
  3594       or3(Rmark, markOopDesc::unlocked_value, Rmark);
  3595       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3596       casn(mark_addr.base(), Rmark, Rscratch);
  3597       cmp(Rmark, Rscratch);
  3598       brx(Assembler::equal, false, Assembler::pt, done);
  3599       delayed()->sub(Rscratch, SP, Rscratch);
  3601       // Stack-lock attempt failed - check for recursive stack-lock.
  3602       // See the comments below about how we might remove this case.
  3603 #ifdef _LP64
  3604       sub(Rscratch, STACK_BIAS, Rscratch);
  3605 #endif
  3606       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3607       andcc(Rscratch, 0xfffff003, Rscratch);
  3608       br(Assembler::always, false, Assembler::pt, done);
  3609       delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3611       bind(IsInflated);
  3612       if (EmitSync & 64) {
  3613          // If m->owner != null goto IsLocked
  3614          // Pessimistic form: Test-and-CAS vs CAS
  3615          // The optimistic form avoids RTS->RTO cache line upgrades.
  3616          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3617          andcc(Rscratch, Rscratch, G0);
  3618          brx(Assembler::notZero, false, Assembler::pn, done);
  3619          delayed()->nop();
  3620          // m->owner == null : it's unlocked.
  3623       // Try to CAS m->owner from null to Self
  3624       // Invariant: if we acquire the lock then _recursions should be 0.
  3625       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
  3626       mov(G2_thread, Rscratch);
  3627       casn(Rmark, G0, Rscratch);
  3628       cmp(Rscratch, G0);
  3629       // Intentional fall-through into done
  3630    } else {
  3631       // Aggressively avoid the Store-before-CAS penalty
  3632       // Defer the store into box->dhw until after the CAS
  3633       Label IsInflated, Recursive ;
  3635 // Anticipate CAS -- Avoid RTS->RTO upgrade
  3636 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
  3638       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
  3639       // Triage: biased, stack-locked, neutral, inflated
  3641       if (try_bias) {
  3642         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
  3643         // Invariant: if control reaches this point in the emitted stream
  3644         // then Rmark has not been modified.
  3646       andcc(Rmark, 2, G0);
  3647       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
  3648       delayed()->                         // Beware - dangling delay-slot
  3650       // Try stack-lock acquisition.
  3651       // Transiently install BUSY (0) encoding in the mark word.
  3652       // if the CAS of 0 into the mark was successful then we execute:
  3653       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
  3654       //   ST obj->mark = box    -- overwrite transient 0 value
  3655       // This presumes TSO, of course.
  3657       mov(0, Rscratch);
  3658       or3(Rmark, markOopDesc::unlocked_value, Rmark);
  3659       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3660       casn(mark_addr.base(), Rmark, Rscratch);
  3661 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
  3662       cmp(Rscratch, Rmark);
  3663       brx(Assembler::notZero, false, Assembler::pn, Recursive);
  3664       delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3665       if (counters != NULL) {
  3666         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  3668       ba(done);
  3669       delayed()->st_ptr(Rbox, mark_addr);
  3671       bind(Recursive);
  3672       // Stack-lock attempt failed - check for recursive stack-lock.
  3673       // Tests show that we can remove the recursive case with no impact
  3674       // on refworkload 0.83.  If we need to reduce the size of the code
  3675       // emitted by compiler_lock_object() the recursive case is perfect
  3676       // candidate.
  3677       //
  3678       // A more extreme idea is to always inflate on stack-lock recursion.
  3679       // This lets us eliminate the recursive checks in compiler_lock_object
  3680       // and compiler_unlock_object and the (box->dhw == 0) encoding.
  3681       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
  3682       // and showed a performance *increase*.  In the same experiment I eliminated
  3683       // the fast-path stack-lock code from the interpreter and always passed
  3684       // control to the "slow" operators in synchronizer.cpp.
  3686       // RScratch contains the fetched obj->mark value from the failed CASN.
  3687 #ifdef _LP64
  3688       sub(Rscratch, STACK_BIAS, Rscratch);
  3689 #endif
  3690       sub(Rscratch, SP, Rscratch);
  3691       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  3692       andcc(Rscratch, 0xfffff003, Rscratch);
  3693       if (counters != NULL) {
  3694         // Accounting needs the Rscratch register
  3695         st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3696         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
  3697         ba_short(done);
  3698       } else {
  3699         ba(done);
  3700         delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3703       bind   (IsInflated);
  3704       if (EmitSync & 64) {
  3705          // If m->owner != null goto IsLocked
  3706          // Test-and-CAS vs CAS
  3707          // Pessimistic form avoids futile (doomed) CAS attempts
  3708          // The optimistic form avoids RTS->RTO cache line upgrades.
  3709          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3710          andcc(Rscratch, Rscratch, G0);
  3711          brx(Assembler::notZero, false, Assembler::pn, done);
  3712          delayed()->nop();
  3713          // m->owner == null : it's unlocked.
  3716       // Try to CAS m->owner from null to Self
  3717       // Invariant: if we acquire the lock then _recursions should be 0.
  3718       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
  3719       mov(G2_thread, Rscratch);
  3720       casn(Rmark, G0, Rscratch);
  3721       cmp(Rscratch, G0);
  3722       // ST box->displaced_header = NonZero.
  3723       // Any non-zero value suffices:
  3724       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
  3725       st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
  3726       // Intentional fall-through into done
  3729    bind   (done);
  3732 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
  3733                                             Register Rbox, Register Rscratch,
  3734                                             bool try_bias) {
  3735    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
  3737    Label done ;
  3739    if (EmitSync & 4) {
  3740      cmp(SP, G0);
  3741      return ;
  3744    if (EmitSync & 8) {
  3745      if (try_bias) {
  3746         biased_locking_exit(mark_addr, Rscratch, done);
  3749      // Test first if it is a fast recursive unlock
  3750      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
  3751      br_null_short(Rmark, Assembler::pt, done);
  3753      // Check if it is still a light weight lock, this is is true if we see
  3754      // the stack address of the basicLock in the markOop of the object
  3755      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  3756      casx_under_lock(mark_addr.base(), Rbox, Rmark,
  3757        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  3758      ba(done);
  3759      delayed()->cmp(Rbox, Rmark);
  3760      bind(done);
  3761      return ;
  3764    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
  3765    // is too large performance rolls abruptly off a cliff.
  3766    // This could be related to inlining policies, code cache management, or
  3767    // I$ effects.
  3768    Label LStacked ;
  3770    if (try_bias) {
  3771       // TODO: eliminate redundant LDs of obj->mark
  3772       biased_locking_exit(mark_addr, Rscratch, done);
  3775    ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
  3776    ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
  3777    andcc(Rscratch, Rscratch, G0);
  3778    brx(Assembler::zero, false, Assembler::pn, done);
  3779    delayed()->nop();      // consider: relocate fetch of mark, above, into this DS
  3780    andcc(Rmark, 2, G0);
  3781    brx(Assembler::zero, false, Assembler::pt, LStacked);
  3782    delayed()->nop();
  3784    // It's inflated
  3785    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
  3786    // the ST of 0 into _owner which releases the lock.  This prevents loads
  3787    // and stores within the critical section from reordering (floating)
  3788    // past the store that releases the lock.  But TSO is a strong memory model
  3789    // and that particular flavor of barrier is a noop, so we can safely elide it.
  3790    // Note that we use 1-0 locking by default for the inflated case.  We
  3791    // close the resultant (and rare) race by having contented threads in
  3792    // monitorenter periodically poll _owner.
  3793    ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
  3794    ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
  3795    xor3(Rscratch, G2_thread, Rscratch);
  3796    orcc(Rbox, Rscratch, Rbox);
  3797    brx(Assembler::notZero, false, Assembler::pn, done);
  3798    delayed()->
  3799    ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
  3800    ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
  3801    orcc(Rbox, Rscratch, G0);
  3802    if (EmitSync & 65536) {
  3803       Label LSucc ;
  3804       brx(Assembler::notZero, false, Assembler::pn, LSucc);
  3805       delayed()->nop();
  3806       ba(done);
  3807       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3809       bind(LSucc);
  3810       st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3811       if (os::is_MP()) { membar (StoreLoad); }
  3812       ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
  3813       andcc(Rscratch, Rscratch, G0);
  3814       brx(Assembler::notZero, false, Assembler::pt, done);
  3815       delayed()->andcc(G0, G0, G0);
  3816       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
  3817       mov(G2_thread, Rscratch);
  3818       casn(Rmark, G0, Rscratch);
  3819       // invert icc.zf and goto done
  3820       br_notnull(Rscratch, false, Assembler::pt, done);
  3821       delayed()->cmp(G0, G0);
  3822       ba(done);
  3823       delayed()->cmp(G0, 1);
  3824    } else {
  3825       brx(Assembler::notZero, false, Assembler::pn, done);
  3826       delayed()->nop();
  3827       ba(done);
  3828       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
  3831    bind   (LStacked);
  3832    // Consider: we could replace the expensive CAS in the exit
  3833    // path with a simple ST of the displaced mark value fetched from
  3834    // the on-stack basiclock box.  That admits a race where a thread T2
  3835    // in the slow lock path -- inflating with monitor M -- could race a
  3836    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
  3837    // More precisely T1 in the stack-lock unlock path could "stomp" the
  3838    // inflated mark value M installed by T2, resulting in an orphan
  3839    // object monitor M and T2 becoming stranded.  We can remedy that situation
  3840    // by having T2 periodically poll the object's mark word using timed wait
  3841    // operations.  If T2 discovers that a stomp has occurred it vacates
  3842    // the monitor M and wakes any other threads stranded on the now-orphan M.
  3843    // In addition the monitor scavenger, which performs deflation,
  3844    // would also need to check for orpan monitors and stranded threads.
  3845    //
  3846    // Finally, inflation is also used when T2 needs to assign a hashCode
  3847    // to O and O is stack-locked by T1.  The "stomp" race could cause
  3848    // an assigned hashCode value to be lost.  We can avoid that condition
  3849    // and provide the necessary hashCode stability invariants by ensuring
  3850    // that hashCode generation is idempotent between copying GCs.
  3851    // For example we could compute the hashCode of an object O as
  3852    // O's heap address XOR some high quality RNG value that is refreshed
  3853    // at GC-time.  The monitor scavenger would install the hashCode
  3854    // found in any orphan monitors.  Again, the mechanism admits a
  3855    // lost-update "stomp" WAW race but detects and recovers as needed.
  3856    //
  3857    // A prototype implementation showed excellent results, although
  3858    // the scavenger and timeout code was rather involved.
  3860    casn(mark_addr.base(), Rbox, Rscratch);
  3861    cmp(Rbox, Rscratch);
  3862    // Intentional fall through into done ...
  3864    bind(done);
  3869 void MacroAssembler::print_CPU_state() {
  3870   // %%%%% need to implement this
  3873 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
  3874   // %%%%% need to implement this
  3877 void MacroAssembler::push_IU_state() {
  3878   // %%%%% need to implement this
  3882 void MacroAssembler::pop_IU_state() {
  3883   // %%%%% need to implement this
  3887 void MacroAssembler::push_FPU_state() {
  3888   // %%%%% need to implement this
  3892 void MacroAssembler::pop_FPU_state() {
  3893   // %%%%% need to implement this
  3897 void MacroAssembler::push_CPU_state() {
  3898   // %%%%% need to implement this
  3902 void MacroAssembler::pop_CPU_state() {
  3903   // %%%%% need to implement this
  3908 void MacroAssembler::verify_tlab() {
  3909 #ifdef ASSERT
  3910   if (UseTLAB && VerifyOops) {
  3911     Label next, next2, ok;
  3912     Register t1 = L0;
  3913     Register t2 = L1;
  3914     Register t3 = L2;
  3916     save_frame(0);
  3917     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3918     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
  3919     or3(t1, t2, t3);
  3920     cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
  3921     stop("assert(top >= start)");
  3922     should_not_reach_here();
  3924     bind(next);
  3925     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
  3926     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
  3927     or3(t3, t2, t3);
  3928     cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
  3929     stop("assert(top <= end)");
  3930     should_not_reach_here();
  3932     bind(next2);
  3933     and3(t3, MinObjAlignmentInBytesMask, t3);
  3934     cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
  3935     stop("assert(aligned)");
  3936     should_not_reach_here();
  3938     bind(ok);
  3939     restore();
  3941 #endif
  3945 void MacroAssembler::eden_allocate(
  3946   Register obj,                        // result: pointer to object after successful allocation
  3947   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  3948   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  3949   Register t1,                         // temp register
  3950   Register t2,                         // temp register
  3951   Label&   slow_case                   // continuation point if fast allocation fails
  3952 ){
  3953   // make sure arguments make sense
  3954   assert_different_registers(obj, var_size_in_bytes, t1, t2);
  3955   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
  3956   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  3958   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  3959     // No allocation in the shared eden.
  3960     ba_short(slow_case);
  3961   } else {
  3962     // get eden boundaries
  3963     // note: we need both top & top_addr!
  3964     const Register top_addr = t1;
  3965     const Register end      = t2;
  3967     CollectedHeap* ch = Universe::heap();
  3968     set((intx)ch->top_addr(), top_addr);
  3969     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
  3970     ld_ptr(top_addr, delta, end);
  3971     ld_ptr(top_addr, 0, obj);
  3973     // try to allocate
  3974     Label retry;
  3975     bind(retry);
  3976 #ifdef ASSERT
  3977     // make sure eden top is properly aligned
  3979       Label L;
  3980       btst(MinObjAlignmentInBytesMask, obj);
  3981       br(Assembler::zero, false, Assembler::pt, L);
  3982       delayed()->nop();
  3983       stop("eden top is not properly aligned");
  3984       bind(L);
  3986 #endif // ASSERT
  3987     const Register free = end;
  3988     sub(end, obj, free);                                   // compute amount of free space
  3989     if (var_size_in_bytes->is_valid()) {
  3990       // size is unknown at compile time
  3991       cmp(free, var_size_in_bytes);
  3992       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3993       delayed()->add(obj, var_size_in_bytes, end);
  3994     } else {
  3995       // size is known at compile time
  3996       cmp(free, con_size_in_bytes);
  3997       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
  3998       delayed()->add(obj, con_size_in_bytes, end);
  4000     // Compare obj with the value at top_addr; if still equal, swap the value of
  4001     // end with the value at top_addr. If not equal, read the value at top_addr
  4002     // into end.
  4003     casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  4004     // if someone beat us on the allocation, try again, otherwise continue
  4005     cmp(obj, end);
  4006     brx(Assembler::notEqual, false, Assembler::pn, retry);
  4007     delayed()->mov(end, obj);                              // nop if successfull since obj == end
  4009 #ifdef ASSERT
  4010     // make sure eden top is properly aligned
  4012       Label L;
  4013       const Register top_addr = t1;
  4015       set((intx)ch->top_addr(), top_addr);
  4016       ld_ptr(top_addr, 0, top_addr);
  4017       btst(MinObjAlignmentInBytesMask, top_addr);
  4018       br(Assembler::zero, false, Assembler::pt, L);
  4019       delayed()->nop();
  4020       stop("eden top is not properly aligned");
  4021       bind(L);
  4023 #endif // ASSERT
  4028 void MacroAssembler::tlab_allocate(
  4029   Register obj,                        // result: pointer to object after successful allocation
  4030   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
  4031   int      con_size_in_bytes,          // object size in bytes if   known at compile time
  4032   Register t1,                         // temp register
  4033   Label&   slow_case                   // continuation point if fast allocation fails
  4034 ){
  4035   // make sure arguments make sense
  4036   assert_different_registers(obj, var_size_in_bytes, t1);
  4037   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
  4038   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
  4040   const Register free  = t1;
  4042   verify_tlab();
  4044   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
  4046   // calculate amount of free space
  4047   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
  4048   sub(free, obj, free);
  4050   Label done;
  4051   if (var_size_in_bytes == noreg) {
  4052     cmp(free, con_size_in_bytes);
  4053   } else {
  4054     cmp(free, var_size_in_bytes);
  4056   br(Assembler::less, false, Assembler::pn, slow_case);
  4057   // calculate the new top pointer
  4058   if (var_size_in_bytes == noreg) {
  4059     delayed()->add(obj, con_size_in_bytes, free);
  4060   } else {
  4061     delayed()->add(obj, var_size_in_bytes, free);
  4064   bind(done);
  4066 #ifdef ASSERT
  4067   // make sure new free pointer is properly aligned
  4069     Label L;
  4070     btst(MinObjAlignmentInBytesMask, free);
  4071     br(Assembler::zero, false, Assembler::pt, L);
  4072     delayed()->nop();
  4073     stop("updated TLAB free is not properly aligned");
  4074     bind(L);
  4076 #endif // ASSERT
  4078   // update the tlab top pointer
  4079   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  4080   verify_tlab();
  4084 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
  4085   Register top = O0;
  4086   Register t1 = G1;
  4087   Register t2 = G3;
  4088   Register t3 = O1;
  4089   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
  4090   Label do_refill, discard_tlab;
  4092   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
  4093     // No allocation in the shared eden.
  4094     ba_short(slow_case);
  4097   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
  4098   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
  4099   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
  4101   // calculate amount of free space
  4102   sub(t1, top, t1);
  4103   srl_ptr(t1, LogHeapWordSize, t1);
  4105   // Retain tlab and allocate object in shared space if
  4106   // the amount free in the tlab is too large to discard.
  4107   cmp(t1, t2);
  4108   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
  4110   // increment waste limit to prevent getting stuck on this slow path
  4111   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
  4112   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
  4113   if (TLABStats) {
  4114     // increment number of slow_allocations
  4115     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
  4116     add(t2, 1, t2);
  4117     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
  4119   ba_short(try_eden);
  4121   bind(discard_tlab);
  4122   if (TLABStats) {
  4123     // increment number of refills
  4124     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
  4125     add(t2, 1, t2);
  4126     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
  4127     // accumulate wastage
  4128     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
  4129     add(t2, t1, t2);
  4130     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
  4133   // if tlab is currently allocated (top or end != null) then
  4134   // fill [top, end + alignment_reserve) with array object
  4135   br_null_short(top, Assembler::pn, do_refill);
  4137   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
  4138   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
  4139   // set klass to intArrayKlass
  4140   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
  4141   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
  4142   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
  4143   st(t1, top, arrayOopDesc::length_offset_in_bytes());
  4144   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
  4145   ld_ptr(t2, 0, t2);
  4146   // store klass last.  concurrent gcs assumes klass length is valid if
  4147   // klass field is not null.
  4148   store_klass(t2, top);
  4149   verify_oop(top);
  4151   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
  4152   sub(top, t1, t1); // size of tlab's allocated portion
  4153   incr_allocated_bytes(t1, t2, t3);
  4155   // refill the tlab with an eden allocation
  4156   bind(do_refill);
  4157   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
  4158   sll_ptr(t1, LogHeapWordSize, t1);
  4159   // allocate new tlab, address returned in top
  4160   eden_allocate(top, t1, 0, t2, t3, slow_case);
  4162   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
  4163   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
  4164 #ifdef ASSERT
  4165   // check that tlab_size (t1) is still valid
  4167     Label ok;
  4168     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
  4169     sll_ptr(t2, LogHeapWordSize, t2);
  4170     cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
  4171     stop("assert(t1 == tlab_size)");
  4172     should_not_reach_here();
  4174     bind(ok);
  4176 #endif // ASSERT
  4177   add(top, t1, top); // t1 is tlab_size
  4178   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
  4179   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
  4180   verify_tlab();
  4181   ba_short(retry);
  4184 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
  4185                                           Register t1, Register t2) {
  4186   // Bump total bytes allocated by this thread
  4187   assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
  4188   assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
  4189   // v8 support has gone the way of the dodo
  4190   ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
  4191   add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
  4192   stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
  4195 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
  4196   switch (cond) {
  4197     // Note some conditions are synonyms for others
  4198     case Assembler::never:                return Assembler::always;
  4199     case Assembler::zero:                 return Assembler::notZero;
  4200     case Assembler::lessEqual:            return Assembler::greater;
  4201     case Assembler::less:                 return Assembler::greaterEqual;
  4202     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
  4203     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
  4204     case Assembler::negative:             return Assembler::positive;
  4205     case Assembler::overflowSet:          return Assembler::overflowClear;
  4206     case Assembler::always:               return Assembler::never;
  4207     case Assembler::notZero:              return Assembler::zero;
  4208     case Assembler::greater:              return Assembler::lessEqual;
  4209     case Assembler::greaterEqual:         return Assembler::less;
  4210     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
  4211     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
  4212     case Assembler::positive:             return Assembler::negative;
  4213     case Assembler::overflowClear:        return Assembler::overflowSet;
  4216   ShouldNotReachHere(); return Assembler::overflowClear;
  4219 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
  4220                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
  4221   Condition negated_cond = negate_condition(cond);
  4222   Label L;
  4223   brx(negated_cond, false, Assembler::pt, L);
  4224   delayed()->nop();
  4225   inc_counter(counter_ptr, Rtmp1, Rtmp2);
  4226   bind(L);
  4229 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
  4230   AddressLiteral addrlit(counter_addr);
  4231   sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
  4232   Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
  4233   ld(addr, Rtmp2);
  4234   inc(Rtmp2);
  4235   st(Rtmp2, addr);
  4238 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
  4239   inc_counter((address) counter_addr, Rtmp1, Rtmp2);
  4242 SkipIfEqual::SkipIfEqual(
  4243     MacroAssembler* masm, Register temp, const bool* flag_addr,
  4244     Assembler::Condition condition) {
  4245   _masm = masm;
  4246   AddressLiteral flag(flag_addr);
  4247   _masm->sethi(flag, temp);
  4248   _masm->ldub(temp, flag.low10(), temp);
  4249   _masm->tst(temp);
  4250   _masm->br(condition, false, Assembler::pt, _label);
  4251   _masm->delayed()->nop();
  4254 SkipIfEqual::~SkipIfEqual() {
  4255   _masm->bind(_label);
  4259 // Writes to stack successive pages until offset reached to check for
  4260 // stack overflow + shadow pages.  This clobbers tsp and scratch.
  4261 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
  4262                                      Register Rscratch) {
  4263   // Use stack pointer in temp stack pointer
  4264   mov(SP, Rtsp);
  4266   // Bang stack for total size given plus stack shadow page size.
  4267   // Bang one page at a time because a large size can overflow yellow and
  4268   // red zones (the bang will fail but stack overflow handling can't tell that
  4269   // it was a stack overflow bang vs a regular segv).
  4270   int offset = os::vm_page_size();
  4271   Register Roffset = Rscratch;
  4273   Label loop;
  4274   bind(loop);
  4275   set((-offset)+STACK_BIAS, Rscratch);
  4276   st(G0, Rtsp, Rscratch);
  4277   set(offset, Roffset);
  4278   sub(Rsize, Roffset, Rsize);
  4279   cmp(Rsize, G0);
  4280   br(Assembler::greater, false, Assembler::pn, loop);
  4281   delayed()->sub(Rtsp, Roffset, Rtsp);
  4283   // Bang down shadow pages too.
  4284   // The -1 because we already subtracted 1 page.
  4285   for (int i = 0; i< StackShadowPages-1; i++) {
  4286     set((-i*offset)+STACK_BIAS, Rscratch);
  4287     st(G0, Rtsp, Rscratch);
  4291 ///////////////////////////////////////////////////////////////////////////////////
  4292 #ifndef SERIALGC
  4294 static address satb_log_enqueue_with_frame = NULL;
  4295 static u_char* satb_log_enqueue_with_frame_end = NULL;
  4297 static address satb_log_enqueue_frameless = NULL;
  4298 static u_char* satb_log_enqueue_frameless_end = NULL;
  4300 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
  4302 static void generate_satb_log_enqueue(bool with_frame) {
  4303   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
  4304   CodeBuffer buf(bb);
  4305   MacroAssembler masm(&buf);
  4307 #define __ masm.
  4309   address start = __ pc();
  4310   Register pre_val;
  4312   Label refill, restart;
  4313   if (with_frame) {
  4314     __ save_frame(0);
  4315     pre_val = I0;  // Was O0 before the save.
  4316   } else {
  4317     pre_val = O0;
  4320   int satb_q_index_byte_offset =
  4321     in_bytes(JavaThread::satb_mark_queue_offset() +
  4322              PtrQueue::byte_offset_of_index());
  4324   int satb_q_buf_byte_offset =
  4325     in_bytes(JavaThread::satb_mark_queue_offset() +
  4326              PtrQueue::byte_offset_of_buf());
  4328   assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
  4329          in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
  4330          "check sizes in assembly below");
  4332   __ bind(restart);
  4334   // Load the index into the SATB buffer. PtrQueue::_index is a size_t
  4335   // so ld_ptr is appropriate.
  4336   __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
  4338   // index == 0?
  4339   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
  4341   __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
  4342   __ sub(L0, oopSize, L0);
  4344   __ st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
  4345   if (!with_frame) {
  4346     // Use return-from-leaf
  4347     __ retl();
  4348     __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  4349   } else {
  4350     // Not delayed.
  4351     __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
  4353   if (with_frame) {
  4354     __ ret();
  4355     __ delayed()->restore();
  4357   __ bind(refill);
  4359   address handle_zero =
  4360     CAST_FROM_FN_PTR(address,
  4361                      &SATBMarkQueueSet::handle_zero_index_for_thread);
  4362   // This should be rare enough that we can afford to save all the
  4363   // scratch registers that the calling context might be using.
  4364   __ mov(G1_scratch, L0);
  4365   __ mov(G3_scratch, L1);
  4366   __ mov(G4, L2);
  4367   // We need the value of O0 above (for the write into the buffer), so we
  4368   // save and restore it.
  4369   __ mov(O0, L3);
  4370   // Since the call will overwrite O7, we save and restore that, as well.
  4371   __ mov(O7, L4);
  4372   __ call_VM_leaf(L5, handle_zero, G2_thread);
  4373   __ mov(L0, G1_scratch);
  4374   __ mov(L1, G3_scratch);
  4375   __ mov(L2, G4);
  4376   __ mov(L3, O0);
  4377   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  4378   __ delayed()->mov(L4, O7);
  4380   if (with_frame) {
  4381     satb_log_enqueue_with_frame = start;
  4382     satb_log_enqueue_with_frame_end = __ pc();
  4383   } else {
  4384     satb_log_enqueue_frameless = start;
  4385     satb_log_enqueue_frameless_end = __ pc();
  4388 #undef __
  4391 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
  4392   if (with_frame) {
  4393     if (satb_log_enqueue_with_frame == 0) {
  4394       generate_satb_log_enqueue(with_frame);
  4395       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
  4396       if (G1SATBPrintStubs) {
  4397         tty->print_cr("Generated with-frame satb enqueue:");
  4398         Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
  4399                              satb_log_enqueue_with_frame_end,
  4400                              tty);
  4403   } else {
  4404     if (satb_log_enqueue_frameless == 0) {
  4405       generate_satb_log_enqueue(with_frame);
  4406       assert(satb_log_enqueue_frameless != 0, "postcondition.");
  4407       if (G1SATBPrintStubs) {
  4408         tty->print_cr("Generated frameless satb enqueue:");
  4409         Disassembler::decode((u_char*)satb_log_enqueue_frameless,
  4410                              satb_log_enqueue_frameless_end,
  4411                              tty);
  4417 void MacroAssembler::g1_write_barrier_pre(Register obj,
  4418                                           Register index,
  4419                                           int offset,
  4420                                           Register pre_val,
  4421                                           Register tmp,
  4422                                           bool preserve_o_regs) {
  4423   Label filtered;
  4425   if (obj == noreg) {
  4426     // We are not loading the previous value so make
  4427     // sure that we don't trash the value in pre_val
  4428     // with the code below.
  4429     assert_different_registers(pre_val, tmp);
  4430   } else {
  4431     // We will be loading the previous value
  4432     // in this code so...
  4433     assert(offset == 0 || index == noreg, "choose one");
  4434     assert(pre_val == noreg, "check this code");
  4437   // Is marking active?
  4438   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
  4439     ld(G2,
  4440        in_bytes(JavaThread::satb_mark_queue_offset() +
  4441                 PtrQueue::byte_offset_of_active()),
  4442        tmp);
  4443   } else {
  4444     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
  4445               "Assumption");
  4446     ldsb(G2,
  4447          in_bytes(JavaThread::satb_mark_queue_offset() +
  4448                   PtrQueue::byte_offset_of_active()),
  4449          tmp);
  4452   // Is marking active?
  4453   cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
  4455   // Do we need to load the previous value?
  4456   if (obj != noreg) {
  4457     // Load the previous value...
  4458     if (index == noreg) {
  4459       if (Assembler::is_simm13(offset)) {
  4460         load_heap_oop(obj, offset, tmp);
  4461       } else {
  4462         set(offset, tmp);
  4463         load_heap_oop(obj, tmp, tmp);
  4465     } else {
  4466       load_heap_oop(obj, index, tmp);
  4468     // Previous value has been loaded into tmp
  4469     pre_val = tmp;
  4472   assert(pre_val != noreg, "must have a real register");
  4474   // Is the previous value null?
  4475   cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
  4477   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
  4478   // case, pre_val will be a scratch G-reg, but there are some cases in
  4479   // which it's an O-reg.  In the first case, do a normal call.  In the
  4480   // latter, do a save here and call the frameless version.
  4482   guarantee(pre_val->is_global() || pre_val->is_out(),
  4483             "Or we need to think harder.");
  4485   if (pre_val->is_global() && !preserve_o_regs) {
  4486     generate_satb_log_enqueue_if_necessary(true); // with frame
  4488     call(satb_log_enqueue_with_frame);
  4489     delayed()->mov(pre_val, O0);
  4490   } else {
  4491     generate_satb_log_enqueue_if_necessary(false); // frameless
  4493     save_frame(0);
  4494     call(satb_log_enqueue_frameless);
  4495     delayed()->mov(pre_val->after_save(), O0);
  4496     restore();
  4499   bind(filtered);
  4502 static address dirty_card_log_enqueue = 0;
  4503 static u_char* dirty_card_log_enqueue_end = 0;
  4505 // This gets to assume that o0 contains the object address.
  4506 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
  4507   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
  4508   CodeBuffer buf(bb);
  4509   MacroAssembler masm(&buf);
  4510 #define __ masm.
  4511   address start = __ pc();
  4513   Label not_already_dirty, restart, refill;
  4515 #ifdef _LP64
  4516   __ srlx(O0, CardTableModRefBS::card_shift, O0);
  4517 #else
  4518   __ srl(O0, CardTableModRefBS::card_shift, O0);
  4519 #endif
  4520   AddressLiteral addrlit(byte_map_base);
  4521   __ set(addrlit, O1); // O1 := <card table base>
  4522   __ ldub(O0, O1, O2); // O2 := [O0 + O1]
  4524   assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
  4525   __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
  4527   // We didn't take the branch, so we're already dirty: return.
  4528   // Use return-from-leaf
  4529   __ retl();
  4530   __ delayed()->nop();
  4532   // Not dirty.
  4533   __ bind(not_already_dirty);
  4535   // Get O0 + O1 into a reg by itself
  4536   __ add(O0, O1, O3);
  4538   // First, dirty it.
  4539   __ stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
  4541   int dirty_card_q_index_byte_offset =
  4542     in_bytes(JavaThread::dirty_card_queue_offset() +
  4543              PtrQueue::byte_offset_of_index());
  4544   int dirty_card_q_buf_byte_offset =
  4545     in_bytes(JavaThread::dirty_card_queue_offset() +
  4546              PtrQueue::byte_offset_of_buf());
  4547   __ bind(restart);
  4549   // Load the index into the update buffer. PtrQueue::_index is
  4550   // a size_t so ld_ptr is appropriate here.
  4551   __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
  4553   // index == 0?
  4554   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
  4556   __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
  4557   __ sub(L0, oopSize, L0);
  4559   __ st_ptr(O3, L1, L0);  // [_buf + index] := I0
  4560   // Use return-from-leaf
  4561   __ retl();
  4562   __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
  4564   __ bind(refill);
  4565   address handle_zero =
  4566     CAST_FROM_FN_PTR(address,
  4567                      &DirtyCardQueueSet::handle_zero_index_for_thread);
  4568   // This should be rare enough that we can afford to save all the
  4569   // scratch registers that the calling context might be using.
  4570   __ mov(G1_scratch, L3);
  4571   __ mov(G3_scratch, L5);
  4572   // We need the value of O3 above (for the write into the buffer), so we
  4573   // save and restore it.
  4574   __ mov(O3, L6);
  4575   // Since the call will overwrite O7, we save and restore that, as well.
  4576   __ mov(O7, L4);
  4578   __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
  4579   __ mov(L3, G1_scratch);
  4580   __ mov(L5, G3_scratch);
  4581   __ mov(L6, O3);
  4582   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
  4583   __ delayed()->mov(L4, O7);
  4585   dirty_card_log_enqueue = start;
  4586   dirty_card_log_enqueue_end = __ pc();
  4587   // XXX Should have a guarantee here about not going off the end!
  4588   // Does it already do so?  Do an experiment...
  4590 #undef __
  4594 static inline void
  4595 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
  4596   if (dirty_card_log_enqueue == 0) {
  4597     generate_dirty_card_log_enqueue(byte_map_base);
  4598     assert(dirty_card_log_enqueue != 0, "postcondition.");
  4599     if (G1SATBPrintStubs) {
  4600       tty->print_cr("Generated dirty_card enqueue:");
  4601       Disassembler::decode((u_char*)dirty_card_log_enqueue,
  4602                            dirty_card_log_enqueue_end,
  4603                            tty);
  4609 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  4611   Label filtered;
  4612   MacroAssembler* post_filter_masm = this;
  4614   if (new_val == G0) return;
  4616   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
  4617   assert(bs->kind() == BarrierSet::G1SATBCT ||
  4618          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
  4620   if (G1RSBarrierRegionFilter) {
  4621     xor3(store_addr, new_val, tmp);
  4622 #ifdef _LP64
  4623     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  4624 #else
  4625     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
  4626 #endif
  4628     // XXX Should I predict this taken or not?  Does it matter?
  4629     cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
  4632   // If the "store_addr" register is an "in" or "local" register, move it to
  4633   // a scratch reg so we can pass it as an argument.
  4634   bool use_scr = !(store_addr->is_global() || store_addr->is_out());
  4635   // Pick a scratch register different from "tmp".
  4636   Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
  4637   // Make sure we use up the delay slot!
  4638   if (use_scr) {
  4639     post_filter_masm->mov(store_addr, scr);
  4640   } else {
  4641     post_filter_masm->nop();
  4643   generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
  4644   save_frame(0);
  4645   call(dirty_card_log_enqueue);
  4646   if (use_scr) {
  4647     delayed()->mov(scr, O0);
  4648   } else {
  4649     delayed()->mov(store_addr->after_save(), O0);
  4651   restore();
  4653   bind(filtered);
  4656 #endif  // SERIALGC
  4657 ///////////////////////////////////////////////////////////////////////////////////
  4659 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
  4660   // If we're writing constant NULL, we can skip the write barrier.
  4661   if (new_val == G0) return;
  4662   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
  4663   assert(bs->kind() == BarrierSet::CardTableModRef ||
  4664          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
  4665   card_table_write(bs->byte_map_base, tmp, store_addr);
  4668 void MacroAssembler::load_klass(Register src_oop, Register klass) {
  4669   // The number of bytes in this code is used by
  4670   // MachCallDynamicJavaNode::ret_addr_offset()
  4671   // if this changes, change that.
  4672   if (UseCompressedOops) {
  4673     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  4674     decode_heap_oop_not_null(klass);
  4675   } else {
  4676     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
  4680 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
  4681   if (UseCompressedOops) {
  4682     assert(dst_oop != klass, "not enough registers");
  4683     encode_heap_oop_not_null(klass);
  4684     st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  4685   } else {
  4686     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
  4690 void MacroAssembler::store_klass_gap(Register s, Register d) {
  4691   if (UseCompressedOops) {
  4692     assert(s != d, "not enough registers");
  4693     st(s, d, oopDesc::klass_gap_offset_in_bytes());
  4697 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
  4698   if (UseCompressedOops) {
  4699     lduw(s, d);
  4700     decode_heap_oop(d);
  4701   } else {
  4702     ld_ptr(s, d);
  4706 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
  4707    if (UseCompressedOops) {
  4708     lduw(s1, s2, d);
  4709     decode_heap_oop(d, d);
  4710   } else {
  4711     ld_ptr(s1, s2, d);
  4715 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
  4716    if (UseCompressedOops) {
  4717     lduw(s1, simm13a, d);
  4718     decode_heap_oop(d, d);
  4719   } else {
  4720     ld_ptr(s1, simm13a, d);
  4724 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
  4725   if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
  4726   else                   load_heap_oop(s1, s2.as_register(), d);
  4729 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
  4730   if (UseCompressedOops) {
  4731     assert(s1 != d && s2 != d, "not enough registers");
  4732     encode_heap_oop(d);
  4733     st(d, s1, s2);
  4734   } else {
  4735     st_ptr(d, s1, s2);
  4739 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
  4740   if (UseCompressedOops) {
  4741     assert(s1 != d, "not enough registers");
  4742     encode_heap_oop(d);
  4743     st(d, s1, simm13a);
  4744   } else {
  4745     st_ptr(d, s1, simm13a);
  4749 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
  4750   if (UseCompressedOops) {
  4751     assert(a.base() != d, "not enough registers");
  4752     encode_heap_oop(d);
  4753     st(d, a, offset);
  4754   } else {
  4755     st_ptr(d, a, offset);
  4760 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
  4761   assert (UseCompressedOops, "must be compressed");
  4762   assert (Universe::heap() != NULL, "java heap should be initialized");
  4763   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4764   verify_oop(src);
  4765   if (Universe::narrow_oop_base() == NULL) {
  4766     srlx(src, LogMinObjAlignmentInBytes, dst);
  4767     return;
  4769   Label done;
  4770   if (src == dst) {
  4771     // optimize for frequent case src == dst
  4772     bpr(rc_nz, true, Assembler::pt, src, done);
  4773     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
  4774     bind(done);
  4775     srlx(src, LogMinObjAlignmentInBytes, dst);
  4776   } else {
  4777     bpr(rc_z, false, Assembler::pn, src, done);
  4778     delayed() -> mov(G0, dst);
  4779     // could be moved before branch, and annulate delay,
  4780     // but may add some unneeded work decoding null
  4781     sub(src, G6_heapbase, dst);
  4782     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4783     bind(done);
  4788 void MacroAssembler::encode_heap_oop_not_null(Register r) {
  4789   assert (UseCompressedOops, "must be compressed");
  4790   assert (Universe::heap() != NULL, "java heap should be initialized");
  4791   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4792   verify_oop(r);
  4793   if (Universe::narrow_oop_base() != NULL)
  4794     sub(r, G6_heapbase, r);
  4795   srlx(r, LogMinObjAlignmentInBytes, r);
  4798 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
  4799   assert (UseCompressedOops, "must be compressed");
  4800   assert (Universe::heap() != NULL, "java heap should be initialized");
  4801   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4802   verify_oop(src);
  4803   if (Universe::narrow_oop_base() == NULL) {
  4804     srlx(src, LogMinObjAlignmentInBytes, dst);
  4805   } else {
  4806     sub(src, G6_heapbase, dst);
  4807     srlx(dst, LogMinObjAlignmentInBytes, dst);
  4811 // Same algorithm as oops.inline.hpp decode_heap_oop.
  4812 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
  4813   assert (UseCompressedOops, "must be compressed");
  4814   assert (Universe::heap() != NULL, "java heap should be initialized");
  4815   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4816   sllx(src, LogMinObjAlignmentInBytes, dst);
  4817   if (Universe::narrow_oop_base() != NULL) {
  4818     Label done;
  4819     bpr(rc_nz, true, Assembler::pt, dst, done);
  4820     delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
  4821     bind(done);
  4823   verify_oop(dst);
  4826 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
  4827   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4828   // pd_code_size_limit.
  4829   // Also do not verify_oop as this is called by verify_oop.
  4830   assert (UseCompressedOops, "must be compressed");
  4831   assert (Universe::heap() != NULL, "java heap should be initialized");
  4832   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4833   sllx(r, LogMinObjAlignmentInBytes, r);
  4834   if (Universe::narrow_oop_base() != NULL)
  4835     add(r, G6_heapbase, r);
  4838 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
  4839   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
  4840   // pd_code_size_limit.
  4841   // Also do not verify_oop as this is called by verify_oop.
  4842   assert (UseCompressedOops, "must be compressed");
  4843   assert (Universe::heap() != NULL, "java heap should be initialized");
  4844   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
  4845   sllx(src, LogMinObjAlignmentInBytes, dst);
  4846   if (Universe::narrow_oop_base() != NULL)
  4847     add(dst, G6_heapbase, dst);
  4850 void MacroAssembler::reinit_heapbase() {
  4851   if (UseCompressedOops) {
  4852     // call indirectly to solve generation ordering problem
  4853     AddressLiteral base(Universe::narrow_oop_base_addr());
  4854     load_ptr_contents(base, G6_heapbase);
  4858 // Compare char[] arrays aligned to 4 bytes.
  4859 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
  4860                                         Register limit, Register result,
  4861                                         Register chr1, Register chr2, Label& Ldone) {
  4862   Label Lvector, Lloop;
  4863   assert(chr1 == result, "should be the same");
  4865   // Note: limit contains number of bytes (2*char_elements) != 0.
  4866   andcc(limit, 0x2, chr1); // trailing character ?
  4867   br(Assembler::zero, false, Assembler::pt, Lvector);
  4868   delayed()->nop();
  4870   // compare the trailing char
  4871   sub(limit, sizeof(jchar), limit);
  4872   lduh(ary1, limit, chr1);
  4873   lduh(ary2, limit, chr2);
  4874   cmp(chr1, chr2);
  4875   br(Assembler::notEqual, true, Assembler::pt, Ldone);
  4876   delayed()->mov(G0, result);     // not equal
  4878   // only one char ?
  4879   cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
  4880   delayed()->add(G0, 1, result); // zero-length arrays are equal
  4882   // word by word compare, dont't need alignment check
  4883   bind(Lvector);
  4884   // Shift ary1 and ary2 to the end of the arrays, negate limit
  4885   add(ary1, limit, ary1);
  4886   add(ary2, limit, ary2);
  4887   neg(limit, limit);
  4889   lduw(ary1, limit, chr1);
  4890   bind(Lloop);
  4891   lduw(ary2, limit, chr2);
  4892   cmp(chr1, chr2);
  4893   br(Assembler::notEqual, true, Assembler::pt, Ldone);
  4894   delayed()->mov(G0, result);     // not equal
  4895   inccc(limit, 2*sizeof(jchar));
  4896   // annul LDUW if branch is not taken to prevent access past end of array
  4897   br(Assembler::notZero, true, Assembler::pt, Lloop);
  4898   delayed()->lduw(ary1, limit, chr1); // hoisted
  4900   // Caller should set it:
  4901   // add(G0, 1, result); // equals
  4904 // Use BIS for zeroing (count is in bytes).
  4905 void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
  4906   assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
  4907   Register end = count;
  4908   int cache_line_size = VM_Version::prefetch_data_size();
  4909   // Minimum count when BIS zeroing can be used since
  4910   // it needs membar which is expensive.
  4911   int block_zero_size  = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
  4913   Label small_loop;
  4914   // Check if count is negative (dead code) or zero.
  4915   // Note, count uses 64bit in 64 bit VM.
  4916   cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
  4918   // Use BIS zeroing only for big arrays since it requires membar.
  4919   if (Assembler::is_simm13(block_zero_size)) { // < 4096
  4920     cmp(count, block_zero_size);
  4921   } else {
  4922     set(block_zero_size, temp);
  4923     cmp(count, temp);
  4925   br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
  4926   delayed()->add(to, count, end);
  4928   // Note: size is >= three (32 bytes) cache lines.
  4930   // Clean the beginning of space up to next cache line.
  4931   for (int offs = 0; offs < cache_line_size; offs += 8) {
  4932     stx(G0, to, offs);
  4935   // align to next cache line
  4936   add(to, cache_line_size, to);
  4937   and3(to, -cache_line_size, to);
  4939   // Note: size left >= two (32 bytes) cache lines.
  4941   // BIS should not be used to zero tail (64 bytes)
  4942   // to avoid zeroing a header of the following object.
  4943   sub(end, (cache_line_size*2)-8, end);
  4945   Label bis_loop;
  4946   bind(bis_loop);
  4947   stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
  4948   add(to, cache_line_size, to);
  4949   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
  4951   // BIS needs membar.
  4952   membar(Assembler::StoreLoad);
  4954   add(end, (cache_line_size*2)-8, end); // restore end
  4955   cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
  4957   // Clean the tail.
  4958   bind(small_loop);
  4959   stx(G0, to, 0);
  4960   add(to, 8, to);
  4961   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
  4962   nop(); // Separate short branches

mercurial