src/cpu/sparc/vm/interp_masm_sparc.cpp

Thu, 21 Jul 2011 11:25:07 -0700

author
kvn
date
Thu, 21 Jul 2011 11:25:07 -0700
changeset 3037
3d42f82cd811
parent 2698
38fea01eb669
child 3050
fdb992d83a87
permissions
-rw-r--r--

7063628: Use cbcond on T4
Summary: Add new short branch instruction to Hotspot sparc assembler.
Reviewed-by: never, twisti, jrose

     1 /*
     2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "interp_masm_sparc.hpp"
    27 #include "interpreter/interpreter.hpp"
    28 #include "interpreter/interpreterRuntime.hpp"
    29 #include "oops/arrayOop.hpp"
    30 #include "oops/markOop.hpp"
    31 #include "oops/methodDataOop.hpp"
    32 #include "oops/methodOop.hpp"
    33 #include "prims/jvmtiExport.hpp"
    34 #include "prims/jvmtiRedefineClassesTrace.hpp"
    35 #include "prims/jvmtiThreadState.hpp"
    36 #include "runtime/basicLock.hpp"
    37 #include "runtime/biasedLocking.hpp"
    38 #include "runtime/sharedRuntime.hpp"
    39 #ifdef TARGET_OS_FAMILY_linux
    40 # include "thread_linux.inline.hpp"
    41 #endif
    42 #ifdef TARGET_OS_FAMILY_solaris
    43 # include "thread_solaris.inline.hpp"
    44 #endif
    46 #ifndef CC_INTERP
    47 #ifndef FAST_DISPATCH
    48 #define FAST_DISPATCH 1
    49 #endif
    50 #undef FAST_DISPATCH
    52 // Implementation of InterpreterMacroAssembler
    54 // This file specializes the assember with interpreter-specific macros
    56 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
    57 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
    59 #else // CC_INTERP
    60 #ifndef STATE
    61 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
    62 #endif // STATE
    64 #endif // CC_INTERP
    66 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
    67   // Note: this algorithm is also used by C1's OSR entry sequence.
    68   // Any changes should also be applied to CodeEmitter::emit_osr_entry().
    69   assert_different_registers(args_size, locals_size);
    70   // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
    71   subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
    72   // Use br/mov combination because it works on both V8 and V9 and is
    73   // faster.
    74   Label skip_move;
    75   br(Assembler::negative, true, Assembler::pt, skip_move);
    76   delayed()->mov(G0, delta);
    77   bind(skip_move);
    78   round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
    79   sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
    80 }
    82 #ifndef CC_INTERP
    84 // Dispatch code executed in the prolog of a bytecode which does not do it's
    85 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
    86 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
    87   assert_not_delayed();
    88 #ifdef FAST_DISPATCH
    89   // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
    90   // they both use I2.
    91   assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
    92   ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
    93   add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
    94                                                         // add offset to correct dispatch table
    95   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
    96   ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
    97 #else
    98   ldub( Lbcp, bcp_incr, Lbyte_code);                    // load next bytecode
    99   // dispatch table to use
   100   AddressLiteral tbl(Interpreter::dispatch_table(state));
   101   sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
   102   set(tbl, G3_scratch);                                 // compute addr of table
   103   ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
   104 #endif
   105 }
   108 // Dispatch code executed in the epilog of a bytecode which does not do it's
   109 // own dispatch. The dispatch address in IdispatchAddress is used for the
   110 // dispatch.
   111 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
   112   assert_not_delayed();
   113   verify_FPU(1, state);
   114   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   115   jmp( IdispatchAddress, 0 );
   116   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
   117   else                delayed()->nop();
   118 }
   121 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
   122   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
   123   assert_not_delayed();
   124   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
   125   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
   126 }
   129 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
   130   // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
   131   assert_not_delayed();
   132   ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
   133   dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
   134 }
   137 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
   138   // load current bytecode
   139   assert_not_delayed();
   140   ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
   141   dispatch_base(state, table);
   142 }
   145 void InterpreterMacroAssembler::call_VM_leaf_base(
   146   Register java_thread,
   147   address  entry_point,
   148   int      number_of_arguments
   149 ) {
   150   if (!java_thread->is_valid())
   151     java_thread = L7_thread_cache;
   152   // super call
   153   MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
   154 }
   157 void InterpreterMacroAssembler::call_VM_base(
   158   Register        oop_result,
   159   Register        java_thread,
   160   Register        last_java_sp,
   161   address         entry_point,
   162   int             number_of_arguments,
   163   bool            check_exception
   164 ) {
   165   if (!java_thread->is_valid())
   166     java_thread = L7_thread_cache;
   167   // See class ThreadInVMfromInterpreter, which assumes that the interpreter
   168   // takes responsibility for setting its own thread-state on call-out.
   169   // However, ThreadInVMfromInterpreter resets the state to "in_Java".
   171   //save_bcp();                                  // save bcp
   172   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
   173   //restore_bcp();                               // restore bcp
   174   //restore_locals();                            // restore locals pointer
   175 }
   178 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
   179   if (JvmtiExport::can_pop_frame()) {
   180     Label L;
   182     // Check the "pending popframe condition" flag in the current thread
   183     ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
   185     // Initiate popframe handling only if it is not already being processed.  If the flag
   186     // has the popframe_processing bit set, it means that this code is called *during* popframe
   187     // handling - we don't want to reenter.
   188     btst(JavaThread::popframe_pending_bit, scratch_reg);
   189     br(zero, false, pt, L);
   190     delayed()->nop();
   191     btst(JavaThread::popframe_processing_bit, scratch_reg);
   192     br(notZero, false, pt, L);
   193     delayed()->nop();
   195     // Call Interpreter::remove_activation_preserving_args_entry() to get the
   196     // address of the same-named entrypoint in the generated interpreter code.
   197     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
   199     // Jump to Interpreter::_remove_activation_preserving_args_entry
   200     jmpl(O0, G0, G0);
   201     delayed()->nop();
   202     bind(L);
   203   }
   204 }
   207 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
   208   Register thr_state = G4_scratch;
   209   ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
   210   const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
   211   const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
   212   const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
   213   switch (state) {
   214   case ltos: ld_long(val_addr, Otos_l);                   break;
   215   case atos: ld_ptr(oop_addr, Otos_l);
   216              st_ptr(G0, oop_addr);                        break;
   217   case btos:                                           // fall through
   218   case ctos:                                           // fall through
   219   case stos:                                           // fall through
   220   case itos: ld(val_addr, Otos_l1);                       break;
   221   case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
   222   case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
   223   case vtos: /* nothing to do */                          break;
   224   default  : ShouldNotReachHere();
   225   }
   226   // Clean up tos value in the jvmti thread state
   227   or3(G0, ilgl, G3_scratch);
   228   stw(G3_scratch, tos_addr);
   229   st_long(G0, val_addr);
   230   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   231 }
   234 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
   235   if (JvmtiExport::can_force_early_return()) {
   236     Label L;
   237     Register thr_state = G3_scratch;
   238     ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
   239     br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
   241     // Initiate earlyret handling only if it is not already being processed.
   242     // If the flag has the earlyret_processing bit set, it means that this code
   243     // is called *during* earlyret handling - we don't want to reenter.
   244     ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
   245     cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
   247     // Call Interpreter::remove_activation_early_entry() to get the address of the
   248     // same-named entrypoint in the generated interpreter code
   249     ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
   250     call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
   252     // Jump to Interpreter::_remove_activation_early_entry
   253     jmpl(O0, G0, G0);
   254     delayed()->nop();
   255     bind(L);
   256   }
   257 }
   260 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
   261   mov(arg_1, O0);
   262   mov(arg_2, O1);
   263   MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
   264 }
   265 #endif /* CC_INTERP */
   268 #ifndef CC_INTERP
   270 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
   271   assert_not_delayed();
   272   dispatch_Lbyte_code(state, table);
   273 }
   276 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
   277   dispatch_base(state, Interpreter::normal_table(state));
   278 }
   281 void InterpreterMacroAssembler::dispatch_only(TosState state) {
   282   dispatch_base(state, Interpreter::dispatch_table(state));
   283 }
   286 // common code to dispatch and dispatch_only
   287 // dispatch value in Lbyte_code and increment Lbcp
   289 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
   290   verify_FPU(1, state);
   291   // %%%%% maybe implement +VerifyActivationFrameSize here
   292   //verify_thread(); //too slow; we will just verify on method entry & exit
   293   if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   294 #ifdef FAST_DISPATCH
   295   if (table == Interpreter::dispatch_table(state)) {
   296     // use IdispatchTables
   297     add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
   298                                                         // add offset to correct dispatch table
   299     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
   300     ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
   301   } else {
   302 #endif
   303     // dispatch table to use
   304     AddressLiteral tbl(table);
   305     sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
   306     set(tbl, G3_scratch);                               // compute addr of table
   307     ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
   308 #ifdef FAST_DISPATCH
   309   }
   310 #endif
   311   jmp( G3_scratch, 0 );
   312   if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
   313   else                delayed()->nop();
   314 }
   317 // Helpers for expression stack
   319 // Longs and doubles are Category 2 computational types in the
   320 // JVM specification (section 3.11.1) and take 2 expression stack or
   321 // local slots.
   322 // Aligning them on 32 bit with tagged stacks is hard because the code generated
   323 // for the dup* bytecodes depends on what types are already on the stack.
   324 // If the types are split into the two stack/local slots, that is much easier
   325 // (and we can use 0 for non-reference tags).
   327 // Known good alignment in _LP64 but unknown otherwise
   328 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
   329   assert_not_delayed();
   331 #ifdef _LP64
   332   ldf(FloatRegisterImpl::D, r1, offset, d);
   333 #else
   334   ldf(FloatRegisterImpl::S, r1, offset, d);
   335   ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
   336 #endif
   337 }
   339 // Known good alignment in _LP64 but unknown otherwise
   340 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
   341   assert_not_delayed();
   343 #ifdef _LP64
   344   stf(FloatRegisterImpl::D, d, r1, offset);
   345   // store something more useful here
   346   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
   347 #else
   348   stf(FloatRegisterImpl::S, d, r1, offset);
   349   stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
   350 #endif
   351 }
   354 // Known good alignment in _LP64 but unknown otherwise
   355 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
   356   assert_not_delayed();
   357 #ifdef _LP64
   358   ldx(r1, offset, rd);
   359 #else
   360   ld(r1, offset, rd);
   361   ld(r1, offset + Interpreter::stackElementSize, rd->successor());
   362 #endif
   363 }
   365 // Known good alignment in _LP64 but unknown otherwise
   366 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
   367   assert_not_delayed();
   369 #ifdef _LP64
   370   stx(l, r1, offset);
   371   // store something more useful here
   372   debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
   373 #else
   374   st(l, r1, offset);
   375   st(l->successor(), r1, offset + Interpreter::stackElementSize);
   376 #endif
   377 }
   379 void InterpreterMacroAssembler::pop_i(Register r) {
   380   assert_not_delayed();
   381   ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   382   inc(Lesp, Interpreter::stackElementSize);
   383   debug_only(verify_esp(Lesp));
   384 }
   386 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
   387   assert_not_delayed();
   388   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   389   inc(Lesp, Interpreter::stackElementSize);
   390   debug_only(verify_esp(Lesp));
   391 }
   393 void InterpreterMacroAssembler::pop_l(Register r) {
   394   assert_not_delayed();
   395   load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
   396   inc(Lesp, 2*Interpreter::stackElementSize);
   397   debug_only(verify_esp(Lesp));
   398 }
   401 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
   402   assert_not_delayed();
   403   ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
   404   inc(Lesp, Interpreter::stackElementSize);
   405   debug_only(verify_esp(Lesp));
   406 }
   409 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
   410   assert_not_delayed();
   411   load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
   412   inc(Lesp, 2*Interpreter::stackElementSize);
   413   debug_only(verify_esp(Lesp));
   414 }
   417 void InterpreterMacroAssembler::push_i(Register r) {
   418   assert_not_delayed();
   419   debug_only(verify_esp(Lesp));
   420   st(r, Lesp, 0);
   421   dec(Lesp, Interpreter::stackElementSize);
   422 }
   424 void InterpreterMacroAssembler::push_ptr(Register r) {
   425   assert_not_delayed();
   426   st_ptr(r, Lesp, 0);
   427   dec(Lesp, Interpreter::stackElementSize);
   428 }
   430 // remember: our convention for longs in SPARC is:
   431 // O0 (Otos_l1) has high-order part in first word,
   432 // O1 (Otos_l2) has low-order part in second word
   434 void InterpreterMacroAssembler::push_l(Register r) {
   435   assert_not_delayed();
   436   debug_only(verify_esp(Lesp));
   437   // Longs are stored in memory-correct order, even if unaligned.
   438   int offset = -Interpreter::stackElementSize;
   439   store_unaligned_long(r, Lesp, offset);
   440   dec(Lesp, 2 * Interpreter::stackElementSize);
   441 }
   444 void InterpreterMacroAssembler::push_f(FloatRegister f) {
   445   assert_not_delayed();
   446   debug_only(verify_esp(Lesp));
   447   stf(FloatRegisterImpl::S, f, Lesp, 0);
   448   dec(Lesp, Interpreter::stackElementSize);
   449 }
   452 void InterpreterMacroAssembler::push_d(FloatRegister d)   {
   453   assert_not_delayed();
   454   debug_only(verify_esp(Lesp));
   455   // Longs are stored in memory-correct order, even if unaligned.
   456   int offset = -Interpreter::stackElementSize;
   457   store_unaligned_double(d, Lesp, offset);
   458   dec(Lesp, 2 * Interpreter::stackElementSize);
   459 }
   462 void InterpreterMacroAssembler::push(TosState state) {
   463   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   464   switch (state) {
   465     case atos: push_ptr();            break;
   466     case btos: push_i();              break;
   467     case ctos:
   468     case stos: push_i();              break;
   469     case itos: push_i();              break;
   470     case ltos: push_l();              break;
   471     case ftos: push_f();              break;
   472     case dtos: push_d();              break;
   473     case vtos: /* nothing to do */    break;
   474     default  : ShouldNotReachHere();
   475   }
   476 }
   479 void InterpreterMacroAssembler::pop(TosState state) {
   480   switch (state) {
   481     case atos: pop_ptr();            break;
   482     case btos: pop_i();              break;
   483     case ctos:
   484     case stos: pop_i();              break;
   485     case itos: pop_i();              break;
   486     case ltos: pop_l();              break;
   487     case ftos: pop_f();              break;
   488     case dtos: pop_d();              break;
   489     case vtos: /* nothing to do */   break;
   490     default  : ShouldNotReachHere();
   491   }
   492   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   493 }
   496 // Helpers for swap and dup
   497 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
   498   ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
   499 }
   500 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
   501   st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
   502 }
   505 void InterpreterMacroAssembler::load_receiver(Register param_count,
   506                                               Register recv) {
   507   sll(param_count, Interpreter::logStackElementSize, param_count);
   508   ld_ptr(Lesp, param_count, recv);                      // gets receiver Oop
   509 }
   511 void InterpreterMacroAssembler::empty_expression_stack() {
   512   // Reset Lesp.
   513   sub( Lmonitors, wordSize, Lesp );
   515   // Reset SP by subtracting more space from Lesp.
   516   Label done;
   517   verify_oop(Lmethod);
   518   assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
   520   // A native does not need to do this, since its callee does not change SP.
   521   ld(Lmethod, methodOopDesc::access_flags_offset(), Gframe_size);  // Load access flags.
   522   btst(JVM_ACC_NATIVE, Gframe_size);
   523   br(Assembler::notZero, false, Assembler::pt, done);
   524   delayed()->nop();
   526   // Compute max expression stack+register save area
   527   lduh(Lmethod, in_bytes(methodOopDesc::max_stack_offset()), Gframe_size);  // Load max stack.
   528   add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
   530   //
   531   // now set up a stack frame with the size computed above
   532   //
   533   //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
   534   sll( Gframe_size, LogBytesPerWord, Gframe_size );
   535   sub( Lesp, Gframe_size, Gframe_size );
   536   and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
   537   debug_only(verify_sp(Gframe_size, G4_scratch));
   538 #ifdef _LP64
   539   sub(Gframe_size, STACK_BIAS, Gframe_size );
   540 #endif
   541   mov(Gframe_size, SP);
   543   bind(done);
   544 }
   547 #ifdef ASSERT
   548 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
   549   Label Bad, OK;
   551   // Saved SP must be aligned.
   552 #ifdef _LP64
   553   btst(2*BytesPerWord-1, Rsp);
   554 #else
   555   btst(LongAlignmentMask, Rsp);
   556 #endif
   557   br(Assembler::notZero, false, Assembler::pn, Bad);
   558   delayed()->nop();
   560   // Saved SP, plus register window size, must not be above FP.
   561   add(Rsp, frame::register_save_words * wordSize, Rtemp);
   562 #ifdef _LP64
   563   sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
   564 #endif
   565   cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
   567   // Saved SP must not be ridiculously below current SP.
   568   size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
   569   set(maxstack, Rtemp);
   570   sub(SP, Rtemp, Rtemp);
   571 #ifdef _LP64
   572   add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
   573 #endif
   574   cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
   576   ba_short(OK);
   578   bind(Bad);
   579   stop("on return to interpreted call, restored SP is corrupted");
   581   bind(OK);
   582 }
   585 void InterpreterMacroAssembler::verify_esp(Register Resp) {
   586   // about to read or write Resp[0]
   587   // make sure it is not in the monitors or the register save area
   588   Label OK1, OK2;
   590   cmp(Resp, Lmonitors);
   591   brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
   592   delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
   593   stop("too many pops:  Lesp points into monitor area");
   594   bind(OK1);
   595 #ifdef _LP64
   596   sub(Resp, STACK_BIAS, Resp);
   597 #endif
   598   cmp(Resp, SP);
   599   brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
   600   delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
   601   stop("too many pushes:  Lesp points into register window");
   602   bind(OK2);
   603 }
   604 #endif // ASSERT
   606 // Load compiled (i2c) or interpreter entry when calling from interpreted and
   607 // do the call. Centralized so that all interpreter calls will do the same actions.
   608 // If jvmti single stepping is on for a thread we must not call compiled code.
   609 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
   611   // Assume we want to go compiled if available
   613   ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
   615   if (JvmtiExport::can_post_interpreter_events()) {
   616     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
   617     // compiled code in threads for which the event is enabled.  Check here for
   618     // interp_only_mode if these events CAN be enabled.
   619     verify_thread();
   620     Label skip_compiled_code;
   622     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
   623     ld(interp_only, scratch);
   624     cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
   625     delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
   626     bind(skip_compiled_code);
   627   }
   629   // the i2c_adapters need methodOop in G5_method (right? %%%)
   630   // do the call
   631 #ifdef ASSERT
   632   {
   633     Label ok;
   634     br_notnull_short(target, Assembler::pt, ok);
   635     stop("null entry point");
   636     bind(ok);
   637   }
   638 #endif // ASSERT
   640   // Adjust Rret first so Llast_SP can be same as Rret
   641   add(Rret, -frame::pc_return_offset, O7);
   642   add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
   643   // Record SP so we can remove any stack space allocated by adapter transition
   644   jmp(target, 0);
   645   delayed()->mov(SP, Llast_SP);
   646 }
   648 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
   649   assert_not_delayed();
   651   Label not_taken;
   652   if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
   653   else             br (cc, false, Assembler::pn, not_taken);
   654   delayed()->nop();
   656   TemplateTable::branch(false,false);
   658   bind(not_taken);
   660   profile_not_taken_branch(G3_scratch);
   661 }
   664 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
   665                                   int         bcp_offset,
   666                                   Register    Rtmp,
   667                                   Register    Rdst,
   668                                   signedOrNot is_signed,
   669                                   setCCOrNot  should_set_CC ) {
   670   assert(Rtmp != Rdst, "need separate temp register");
   671   assert_not_delayed();
   672   switch (is_signed) {
   673    default: ShouldNotReachHere();
   675    case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
   676    case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
   677   }
   678   ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
   679   sll( Rdst, BitsPerByte, Rdst);
   680   switch (should_set_CC ) {
   681    default: ShouldNotReachHere();
   683    case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
   684    case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
   685   }
   686 }
   689 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
   690                                   int        bcp_offset,
   691                                   Register   Rtmp,
   692                                   Register   Rdst,
   693                                   setCCOrNot should_set_CC ) {
   694   assert(Rtmp != Rdst, "need separate temp register");
   695   assert_not_delayed();
   696   add( Lbcp, bcp_offset, Rtmp);
   697   andcc( Rtmp, 3, G0);
   698   Label aligned;
   699   switch (should_set_CC ) {
   700    default: ShouldNotReachHere();
   702    case      set_CC: break;
   703    case dont_set_CC: break;
   704   }
   706   br(Assembler::zero, true, Assembler::pn, aligned);
   707 #ifdef _LP64
   708   delayed()->ldsw(Rtmp, 0, Rdst);
   709 #else
   710   delayed()->ld(Rtmp, 0, Rdst);
   711 #endif
   713   ldub(Lbcp, bcp_offset + 3, Rdst);
   714   ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
   715   ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
   716 #ifdef _LP64
   717   ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
   718 #else
   719   // Unsigned load is faster than signed on some implementations
   720   ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
   721 #endif
   722   or3(Rtmp, Rdst, Rdst );
   724   bind(aligned);
   725   if (should_set_CC == set_CC) tst(Rdst);
   726 }
   729 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register cache, Register tmp,
   730                                                        int bcp_offset, size_t index_size) {
   731   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   732   if (index_size == sizeof(u2)) {
   733     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
   734   } else if (index_size == sizeof(u4)) {
   735     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
   736     get_4_byte_integer_at_bcp(bcp_offset, cache, tmp);
   737     assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
   738     xor3(tmp, -1, tmp);  // convert to plain index
   739   } else if (index_size == sizeof(u1)) {
   740     assert(EnableInvokeDynamic, "tiny index used only for JSR 292");
   741     ldub(Lbcp, bcp_offset, tmp);
   742   } else {
   743     ShouldNotReachHere();
   744   }
   745 }
   748 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
   749                                                            int bcp_offset, size_t index_size) {
   750   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   751   assert_different_registers(cache, tmp);
   752   assert_not_delayed();
   753   get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
   754   // convert from field index to ConstantPoolCacheEntry index and from
   755   // word index to byte offset
   756   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
   757   add(LcpoolCache, tmp, cache);
   758 }
   761 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
   762                                                                int bcp_offset, size_t index_size) {
   763   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
   764   assert_different_registers(cache, tmp);
   765   assert_not_delayed();
   766   if (index_size == sizeof(u2)) {
   767     get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
   768   } else {
   769     ShouldNotReachHere();  // other sizes not supported here
   770   }
   771               // convert from field index to ConstantPoolCacheEntry index
   772               // and from word index to byte offset
   773   sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
   774               // skip past the header
   775   add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
   776               // construct pointer to cache entry
   777   add(LcpoolCache, tmp, cache);
   778 }
   781 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
   782 // a subtype of super_klass.  Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
   783 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
   784                                                   Register Rsuper_klass,
   785                                                   Register Rtmp1,
   786                                                   Register Rtmp2,
   787                                                   Register Rtmp3,
   788                                                   Label &ok_is_subtype ) {
   789   Label not_subtype;
   791   // Profile the not-null value's klass.
   792   profile_typecheck(Rsub_klass, Rtmp1);
   794   check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
   795                                 Rtmp1, Rtmp2,
   796                                 &ok_is_subtype, &not_subtype, NULL);
   798   check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
   799                                 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
   800                                 &ok_is_subtype, NULL);
   802   bind(not_subtype);
   803   profile_typecheck_failed(Rtmp1);
   804 }
   806 // Separate these two to allow for delay slot in middle
   807 // These are used to do a test and full jump to exception-throwing code.
   809 // %%%%% Could possibly reoptimize this by testing to see if could use
   810 // a single conditional branch (i.e. if span is small enough.
   811 // If you go that route, than get rid of the split and give up
   812 // on the delay-slot hack.
   814 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
   815                                                     Label&    ok ) {
   816   assert_not_delayed();
   817   br(ok_condition, true, pt, ok);
   818   // DELAY SLOT
   819 }
   821 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
   822                                                     Label&    ok ) {
   823   assert_not_delayed();
   824   bp( ok_condition, true, Assembler::xcc, pt, ok);
   825   // DELAY SLOT
   826 }
   828 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
   829                                                   Label&    ok ) {
   830   assert_not_delayed();
   831   brx(ok_condition, true, pt, ok);
   832   // DELAY SLOT
   833 }
   835 void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
   836                                                 Register Rscratch,
   837                                                 Label&   ok ) {
   838   assert(throw_entry_point != NULL, "entry point must be generated by now");
   839   AddressLiteral dest(throw_entry_point);
   840   jump_to(dest, Rscratch);
   841   delayed()->nop();
   842   bind(ok);
   843 }
   846 // And if you cannot use the delay slot, here is a shorthand:
   848 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
   849                                                   address   throw_entry_point,
   850                                                   Register  Rscratch ) {
   851   Label ok;
   852   if (ok_condition != never) {
   853     throw_if_not_1_icc( ok_condition, ok);
   854     delayed()->nop();
   855   }
   856   throw_if_not_2( throw_entry_point, Rscratch, ok);
   857 }
   858 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
   859                                                   address   throw_entry_point,
   860                                                   Register  Rscratch ) {
   861   Label ok;
   862   if (ok_condition != never) {
   863     throw_if_not_1_xcc( ok_condition, ok);
   864     delayed()->nop();
   865   }
   866   throw_if_not_2( throw_entry_point, Rscratch, ok);
   867 }
   868 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
   869                                                 address   throw_entry_point,
   870                                                 Register  Rscratch ) {
   871   Label ok;
   872   if (ok_condition != never) {
   873     throw_if_not_1_x( ok_condition, ok);
   874     delayed()->nop();
   875   }
   876   throw_if_not_2( throw_entry_point, Rscratch, ok);
   877 }
   879 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
   880 // Note: res is still shy of address by array offset into object.
   882 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
   883   assert_not_delayed();
   885   verify_oop(array);
   886 #ifdef _LP64
   887   // sign extend since tos (index) can be a 32bit value
   888   sra(index, G0, index);
   889 #endif // _LP64
   891   // check array
   892   Label ptr_ok;
   893   tst(array);
   894   throw_if_not_1_x( notZero, ptr_ok );
   895   delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
   896   throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
   898   Label index_ok;
   899   cmp(index, tmp);
   900   throw_if_not_1_icc( lessUnsigned, index_ok );
   901   if (index_shift > 0)  delayed()->sll(index, index_shift, index);
   902   else                  delayed()->add(array, index, res); // addr - const offset in index
   903   // convention: move aberrant index into G3_scratch for exception message
   904   mov(index, G3_scratch);
   905   throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
   907   // add offset if didn't do it in delay slot
   908   if (index_shift > 0)   add(array, index, res); // addr - const offset in index
   909 }
   912 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
   913   assert_not_delayed();
   915   // pop array
   916   pop_ptr(array);
   918   // check array
   919   index_check_without_pop(array, index, index_shift, tmp, res);
   920 }
   923 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
   924   ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
   925 }
   928 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
   929   get_constant_pool(Rdst);
   930   ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
   931 }
   934 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
   935   get_constant_pool(Rcpool);
   936   ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
   937 }
   940 // unlock if synchronized method
   941 //
   942 // Unlock the receiver if this is a synchronized method.
   943 // Unlock any Java monitors from syncronized blocks.
   944 //
   945 // If there are locked Java monitors
   946 //    If throw_monitor_exception
   947 //       throws IllegalMonitorStateException
   948 //    Else if install_monitor_exception
   949 //       installs IllegalMonitorStateException
   950 //    Else
   951 //       no error processing
   952 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
   953                                                               bool throw_monitor_exception,
   954                                                               bool install_monitor_exception) {
   955   Label unlocked, unlock, no_unlock;
   957   // get the value of _do_not_unlock_if_synchronized into G1_scratch
   958   const Address do_not_unlock_if_synchronized(G2_thread,
   959     JavaThread::do_not_unlock_if_synchronized_offset());
   960   ldbool(do_not_unlock_if_synchronized, G1_scratch);
   961   stbool(G0, do_not_unlock_if_synchronized); // reset the flag
   963   // check if synchronized method
   964   const Address access_flags(Lmethod, methodOopDesc::access_flags_offset());
   965   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
   966   push(state); // save tos
   967   ld(access_flags, G3_scratch); // Load access flags.
   968   btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
   969   br(zero, false, pt, unlocked);
   970   delayed()->nop();
   972   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
   973   // is set.
   974   cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
   975   delayed()->nop();
   977   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
   978   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
   980   //Intel: if (throw_monitor_exception) ... else ...
   981   // Entry already unlocked, need to throw exception
   982   //...
   984   // pass top-most monitor elem
   985   add( top_most_monitor(), O1 );
   987   ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
   988   br_notnull_short(G3_scratch, pt, unlock);
   990   if (throw_monitor_exception) {
   991     // Entry already unlocked need to throw an exception
   992     MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
   993     should_not_reach_here();
   994   } else {
   995     // Monitor already unlocked during a stack unroll.
   996     // If requested, install an illegal_monitor_state_exception.
   997     // Continue with stack unrolling.
   998     if (install_monitor_exception) {
   999       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
  1001     ba_short(unlocked);
  1004   bind(unlock);
  1006   unlock_object(O1);
  1008   bind(unlocked);
  1010   // I0, I1: Might contain return value
  1012   // Check that all monitors are unlocked
  1013   { Label loop, exception, entry, restart;
  1015     Register Rmptr   = O0;
  1016     Register Rtemp   = O1;
  1017     Register Rlimit  = Lmonitors;
  1018     const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  1019     assert( (delta & LongAlignmentMask) == 0,
  1020             "sizeof BasicObjectLock must be even number of doublewords");
  1022     #ifdef ASSERT
  1023     add(top_most_monitor(), Rmptr, delta);
  1024     { Label L;
  1025       // ensure that Rmptr starts out above (or at) Rlimit
  1026       cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
  1027       stop("monitor stack has negative size");
  1028       bind(L);
  1030     #endif
  1031     bind(restart);
  1032     ba(entry);
  1033     delayed()->
  1034     add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
  1036     // Entry is still locked, need to throw exception
  1037     bind(exception);
  1038     if (throw_monitor_exception) {
  1039       MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
  1040       should_not_reach_here();
  1041     } else {
  1042       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
  1043       // Unlock does not block, so don't have to worry about the frame
  1044       unlock_object(Rmptr);
  1045       if (install_monitor_exception) {
  1046         MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
  1048       ba_short(restart);
  1051     bind(loop);
  1052     cmp(Rtemp, G0);                             // check if current entry is used
  1053     brx(Assembler::notEqual, false, pn, exception);
  1054     delayed()->
  1055     dec(Rmptr, delta);                          // otherwise advance to next entry
  1056     #ifdef ASSERT
  1057     { Label L;
  1058       // ensure that Rmptr has not somehow stepped below Rlimit
  1059       cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
  1060       stop("ran off the end of the monitor stack");
  1061       bind(L);
  1063     #endif
  1064     bind(entry);
  1065     cmp(Rmptr, Rlimit);                         // check if bottom reached
  1066     brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
  1067     delayed()->
  1068     ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
  1071   bind(no_unlock);
  1072   pop(state);
  1073   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1077 // remove activation
  1078 //
  1079 // Unlock the receiver if this is a synchronized method.
  1080 // Unlock any Java monitors from syncronized blocks.
  1081 // Remove the activation from the stack.
  1082 //
  1083 // If there are locked Java monitors
  1084 //    If throw_monitor_exception
  1085 //       throws IllegalMonitorStateException
  1086 //    Else if install_monitor_exception
  1087 //       installs IllegalMonitorStateException
  1088 //    Else
  1089 //       no error processing
  1090 void InterpreterMacroAssembler::remove_activation(TosState state,
  1091                                                   bool throw_monitor_exception,
  1092                                                   bool install_monitor_exception) {
  1094   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
  1096   // save result (push state before jvmti call and pop it afterwards) and notify jvmti
  1097   notify_method_exit(false, state, NotifyJVMTI);
  1099   interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
  1100   verify_oop(Lmethod);
  1101   verify_thread();
  1103   // return tos
  1104   assert(Otos_l1 == Otos_i, "adjust code below");
  1105   switch (state) {
  1106 #ifdef _LP64
  1107   case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
  1108 #else
  1109   case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
  1110 #endif
  1111   case btos:                                      // fall through
  1112   case ctos:
  1113   case stos:                                      // fall through
  1114   case atos:                                      // fall through
  1115   case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
  1116   case ftos:                                      // fall through
  1117   case dtos:                                      // fall through
  1118   case vtos: /* nothing to do */                     break;
  1119   default  : ShouldNotReachHere();
  1122 #if defined(COMPILER2) && !defined(_LP64)
  1123   if (state == ltos) {
  1124     // C2 expects long results in G1 we can't tell if we're returning to interpreted
  1125     // or compiled so just be safe use G1 and O0/O1
  1127     // Shift bits into high (msb) of G1
  1128     sllx(Otos_l1->after_save(), 32, G1);
  1129     // Zero extend low bits
  1130     srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
  1131     or3 (Otos_l2->after_save(), G1, G1);
  1133 #endif /* COMPILER2 */
  1136 #endif /* CC_INTERP */
  1139 // Lock object
  1140 //
  1141 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
  1142 //            it must be initialized with the object to lock
  1143 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
  1144   if (UseHeavyMonitors) {
  1145     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
  1147   else {
  1148     Register obj_reg = Object;
  1149     Register mark_reg = G4_scratch;
  1150     Register temp_reg = G1_scratch;
  1151     Address  lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
  1152     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
  1153     Label    done;
  1155     Label slow_case;
  1157     assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
  1159     // load markOop from object into mark_reg
  1160     ld_ptr(mark_addr, mark_reg);
  1162     if (UseBiasedLocking) {
  1163       biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
  1166     // get the address of basicLock on stack that will be stored in the object
  1167     // we need a temporary register here as we do not want to clobber lock_reg
  1168     // (cas clobbers the destination register)
  1169     mov(lock_reg, temp_reg);
  1170     // set mark reg to be (markOop of object | UNLOCK_VALUE)
  1171     or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
  1172     // initialize the box  (Must happen before we update the object mark!)
  1173     st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
  1174     // compare and exchange object_addr, markOop | 1, stack address of basicLock
  1175     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  1176     casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
  1177       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  1179     // if the compare and exchange succeeded we are done (we saw an unlocked object)
  1180     cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
  1182     // We did not see an unlocked object so try the fast recursive case
  1184     // Check if owner is self by comparing the value in the markOop of object
  1185     // with the stack pointer
  1186     sub(temp_reg, SP, temp_reg);
  1187 #ifdef _LP64
  1188     sub(temp_reg, STACK_BIAS, temp_reg);
  1189 #endif
  1190     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
  1192     // Composite "andcc" test:
  1193     // (a) %sp -vs- markword proximity check, and,
  1194     // (b) verify mark word LSBs == 0 (Stack-locked).
  1195     //
  1196     // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
  1197     // Note that the page size used for %sp proximity testing is arbitrary and is
  1198     // unrelated to the actual MMU page size.  We use a 'logical' page size of
  1199     // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
  1200     // field of the andcc instruction.
  1201     andcc (temp_reg, 0xFFFFF003, G0) ;
  1203     // if condition is true we are done and hence we can store 0 in the displaced
  1204     // header indicating it is a recursive lock and be done
  1205     brx(Assembler::zero, true, Assembler::pt, done);
  1206     delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
  1208     // none of the above fast optimizations worked so we have to get into the
  1209     // slow case of monitor enter
  1210     bind(slow_case);
  1211     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
  1213     bind(done);
  1217 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
  1218 //
  1219 // Argument - lock_reg points to the BasicObjectLock for lock
  1220 // Throw IllegalMonitorException if object is not locked by current thread
  1221 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
  1222   if (UseHeavyMonitors) {
  1223     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
  1224   } else {
  1225     Register obj_reg = G3_scratch;
  1226     Register mark_reg = G4_scratch;
  1227     Register displaced_header_reg = G1_scratch;
  1228     Address  lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
  1229     Address  mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
  1230     Label    done;
  1232     if (UseBiasedLocking) {
  1233       // load the object out of the BasicObjectLock
  1234       ld_ptr(lockobj_addr, obj_reg);
  1235       biased_locking_exit(mark_addr, mark_reg, done, true);
  1236       st_ptr(G0, lockobj_addr);  // free entry
  1239     // Test first if we are in the fast recursive case
  1240     Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
  1241     ld_ptr(lock_addr, displaced_header_reg);
  1242     br_null(displaced_header_reg, true, Assembler::pn, done);
  1243     delayed()->st_ptr(G0, lockobj_addr);  // free entry
  1245     // See if it is still a light weight lock, if so we just unlock
  1246     // the object and we are done
  1248     if (!UseBiasedLocking) {
  1249       // load the object out of the BasicObjectLock
  1250       ld_ptr(lockobj_addr, obj_reg);
  1253     // we have the displaced header in displaced_header_reg
  1254     // we expect to see the stack address of the basicLock in case the
  1255     // lock is still a light weight lock (lock_reg)
  1256     assert(mark_addr.disp() == 0, "cas must take a zero displacement");
  1257     casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
  1258       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
  1259     cmp(lock_reg, displaced_header_reg);
  1260     brx(Assembler::equal, true, Assembler::pn, done);
  1261     delayed()->st_ptr(G0, lockobj_addr);  // free entry
  1263     // The lock has been converted into a heavy lock and hence
  1264     // we need to get into the slow case
  1266     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
  1268     bind(done);
  1272 #ifndef CC_INTERP
  1274 // Get the method data pointer from the methodOop and set the
  1275 // specified register to its value.
  1277 void InterpreterMacroAssembler::set_method_data_pointer() {
  1278   assert(ProfileInterpreter, "must be profiling interpreter");
  1279   Label get_continue;
  1281   ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
  1282   test_method_data_pointer(get_continue);
  1283   add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
  1284   bind(get_continue);
  1287 // Set the method data pointer for the current bcp.
  1289 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
  1290   assert(ProfileInterpreter, "must be profiling interpreter");
  1291   Label zero_continue;
  1293   // Test MDO to avoid the call if it is NULL.
  1294   ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
  1295   test_method_data_pointer(zero_continue);
  1296   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
  1297   add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
  1298   add(ImethodDataPtr, O0, ImethodDataPtr);
  1299   bind(zero_continue);
  1302 // Test ImethodDataPtr.  If it is null, continue at the specified label
  1304 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
  1305   assert(ProfileInterpreter, "must be profiling interpreter");
  1306   br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
  1309 void InterpreterMacroAssembler::verify_method_data_pointer() {
  1310   assert(ProfileInterpreter, "must be profiling interpreter");
  1311 #ifdef ASSERT
  1312   Label verify_continue;
  1313   test_method_data_pointer(verify_continue);
  1315   // If the mdp is valid, it will point to a DataLayout header which is
  1316   // consistent with the bcp.  The converse is highly probable also.
  1317   lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
  1318   ld_ptr(Lmethod, methodOopDesc::const_offset(), O5);
  1319   add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
  1320   add(G3_scratch, O5, G3_scratch);
  1321   cmp(Lbcp, G3_scratch);
  1322   brx(Assembler::equal, false, Assembler::pt, verify_continue);
  1324   Register temp_reg = O5;
  1325   delayed()->mov(ImethodDataPtr, temp_reg);
  1326   // %%% should use call_VM_leaf here?
  1327   //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
  1328   save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
  1329   Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
  1330   stf(FloatRegisterImpl::D, Ftos_d, d_save);
  1331   mov(temp_reg->after_save(), O2);
  1332   save_thread(L7_thread_cache);
  1333   call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
  1334   delayed()->nop();
  1335   restore_thread(L7_thread_cache);
  1336   ldf(FloatRegisterImpl::D, d_save, Ftos_d);
  1337   restore();
  1338   bind(verify_continue);
  1339 #endif // ASSERT
  1342 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
  1343                                                                 Register Rtmp,
  1344                                                                 Label &profile_continue) {
  1345   assert(ProfileInterpreter, "must be profiling interpreter");
  1346   // Control will flow to "profile_continue" if the counter is less than the
  1347   // limit or if we call profile_method()
  1349   Label done;
  1351   // if no method data exists, and the counter is high enough, make one
  1352   br_notnull_short(ImethodDataPtr, Assembler::pn, done);
  1354   // Test to see if we should create a method data oop
  1355   AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
  1356   sethi(profile_limit, Rtmp);
  1357   ld(Rtmp, profile_limit.low10(), Rtmp);
  1358   cmp_and_br_short(invocation_count, Rtmp, Assembler::lessUnsigned, Assembler::pn, profile_continue);
  1360   // Build it now.
  1361   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
  1362   set_method_data_pointer_for_bcp();
  1363   ba_short(profile_continue);
  1364   bind(done);
  1367 // Store a value at some constant offset from the method data pointer.
  1369 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
  1370   assert(ProfileInterpreter, "must be profiling interpreter");
  1371   st_ptr(value, ImethodDataPtr, constant);
  1374 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
  1375                                                       Register bumped_count,
  1376                                                       bool decrement) {
  1377   assert(ProfileInterpreter, "must be profiling interpreter");
  1379   // Load the counter.
  1380   ld_ptr(counter, bumped_count);
  1382   if (decrement) {
  1383     // Decrement the register.  Set condition codes.
  1384     subcc(bumped_count, DataLayout::counter_increment, bumped_count);
  1386     // If the decrement causes the counter to overflow, stay negative
  1387     Label L;
  1388     brx(Assembler::negative, true, Assembler::pn, L);
  1390     // Store the decremented counter, if it is still negative.
  1391     delayed()->st_ptr(bumped_count, counter);
  1392     bind(L);
  1393   } else {
  1394     // Increment the register.  Set carry flag.
  1395     addcc(bumped_count, DataLayout::counter_increment, bumped_count);
  1397     // If the increment causes the counter to overflow, pull back by 1.
  1398     assert(DataLayout::counter_increment == 1, "subc works");
  1399     subc(bumped_count, G0, bumped_count);
  1401     // Store the incremented counter.
  1402     st_ptr(bumped_count, counter);
  1406 // Increment the value at some constant offset from the method data pointer.
  1408 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
  1409                                                       Register bumped_count,
  1410                                                       bool decrement) {
  1411   // Locate the counter at a fixed offset from the mdp:
  1412   Address counter(ImethodDataPtr, constant);
  1413   increment_mdp_data_at(counter, bumped_count, decrement);
  1416 // Increment the value at some non-fixed (reg + constant) offset from
  1417 // the method data pointer.
  1419 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
  1420                                                       int constant,
  1421                                                       Register bumped_count,
  1422                                                       Register scratch2,
  1423                                                       bool decrement) {
  1424   // Add the constant to reg to get the offset.
  1425   add(ImethodDataPtr, reg, scratch2);
  1426   Address counter(scratch2, constant);
  1427   increment_mdp_data_at(counter, bumped_count, decrement);
  1430 // Set a flag value at the current method data pointer position.
  1431 // Updates a single byte of the header, to avoid races with other header bits.
  1433 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
  1434                                                 Register scratch) {
  1435   assert(ProfileInterpreter, "must be profiling interpreter");
  1436   // Load the data header
  1437   ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
  1439   // Set the flag
  1440   or3(scratch, flag_constant, scratch);
  1442   // Store the modified header.
  1443   stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
  1446 // Test the location at some offset from the method data pointer.
  1447 // If it is not equal to value, branch to the not_equal_continue Label.
  1448 // Set condition codes to match the nullness of the loaded value.
  1450 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
  1451                                                  Register value,
  1452                                                  Label& not_equal_continue,
  1453                                                  Register scratch) {
  1454   assert(ProfileInterpreter, "must be profiling interpreter");
  1455   ld_ptr(ImethodDataPtr, offset, scratch);
  1456   cmp(value, scratch);
  1457   brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
  1458   delayed()->tst(scratch);
  1461 // Update the method data pointer by the displacement located at some fixed
  1462 // offset from the method data pointer.
  1464 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
  1465                                                      Register scratch) {
  1466   assert(ProfileInterpreter, "must be profiling interpreter");
  1467   ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
  1468   add(ImethodDataPtr, scratch, ImethodDataPtr);
  1471 // Update the method data pointer by the displacement located at the
  1472 // offset (reg + offset_of_disp).
  1474 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
  1475                                                      int offset_of_disp,
  1476                                                      Register scratch) {
  1477   assert(ProfileInterpreter, "must be profiling interpreter");
  1478   add(reg, offset_of_disp, scratch);
  1479   ld_ptr(ImethodDataPtr, scratch, scratch);
  1480   add(ImethodDataPtr, scratch, ImethodDataPtr);
  1483 // Update the method data pointer by a simple constant displacement.
  1485 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
  1486   assert(ProfileInterpreter, "must be profiling interpreter");
  1487   add(ImethodDataPtr, constant, ImethodDataPtr);
  1490 // Update the method data pointer for a _ret bytecode whose target
  1491 // was not among our cached targets.
  1493 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
  1494                                                    Register return_bci) {
  1495   assert(ProfileInterpreter, "must be profiling interpreter");
  1496   push(state);
  1497   st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
  1498   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
  1499   ld_ptr(l_tmp, return_bci);
  1500   pop(state);
  1503 // Count a taken branch in the bytecodes.
  1505 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
  1506   if (ProfileInterpreter) {
  1507     Label profile_continue;
  1509     // If no method data exists, go to profile_continue.
  1510     test_method_data_pointer(profile_continue);
  1512     // We are taking a branch.  Increment the taken count.
  1513     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
  1515     // The method data pointer needs to be updated to reflect the new target.
  1516     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
  1517     bind (profile_continue);
  1522 // Count a not-taken branch in the bytecodes.
  1524 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
  1525   if (ProfileInterpreter) {
  1526     Label profile_continue;
  1528     // If no method data exists, go to profile_continue.
  1529     test_method_data_pointer(profile_continue);
  1531     // We are taking a branch.  Increment the not taken count.
  1532     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
  1534     // The method data pointer needs to be updated to correspond to the
  1535     // next bytecode.
  1536     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
  1537     bind (profile_continue);
  1542 // Count a non-virtual call in the bytecodes.
  1544 void InterpreterMacroAssembler::profile_call(Register scratch) {
  1545   if (ProfileInterpreter) {
  1546     Label profile_continue;
  1548     // If no method data exists, go to profile_continue.
  1549     test_method_data_pointer(profile_continue);
  1551     // We are making a call.  Increment the count.
  1552     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1554     // The method data pointer needs to be updated to reflect the new target.
  1555     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
  1556     bind (profile_continue);
  1561 // Count a final call in the bytecodes.
  1563 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
  1564   if (ProfileInterpreter) {
  1565     Label profile_continue;
  1567     // If no method data exists, go to profile_continue.
  1568     test_method_data_pointer(profile_continue);
  1570     // We are making a call.  Increment the count.
  1571     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1573     // The method data pointer needs to be updated to reflect the new target.
  1574     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1575     bind (profile_continue);
  1580 // Count a virtual call in the bytecodes.
  1582 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
  1583                                                      Register scratch,
  1584                                                      bool receiver_can_be_null) {
  1585   if (ProfileInterpreter) {
  1586     Label profile_continue;
  1588     // If no method data exists, go to profile_continue.
  1589     test_method_data_pointer(profile_continue);
  1592     Label skip_receiver_profile;
  1593     if (receiver_can_be_null) {
  1594       Label not_null;
  1595       br_notnull_short(receiver, Assembler::pt, not_null);
  1596       // We are making a call.  Increment the count for null receiver.
  1597       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1598       ba_short(skip_receiver_profile);
  1599       bind(not_null);
  1602     // Record the receiver type.
  1603     record_klass_in_profile(receiver, scratch, true);
  1604     bind(skip_receiver_profile);
  1606     // The method data pointer needs to be updated to reflect the new target.
  1607     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
  1608     bind (profile_continue);
  1612 void InterpreterMacroAssembler::record_klass_in_profile_helper(
  1613                                         Register receiver, Register scratch,
  1614                                         int start_row, Label& done, bool is_virtual_call) {
  1615   if (TypeProfileWidth == 0) {
  1616     if (is_virtual_call) {
  1617       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1619     return;
  1622   int last_row = VirtualCallData::row_limit() - 1;
  1623   assert(start_row <= last_row, "must be work left to do");
  1624   // Test this row for both the receiver and for null.
  1625   // Take any of three different outcomes:
  1626   //   1. found receiver => increment count and goto done
  1627   //   2. found null => keep looking for case 1, maybe allocate this cell
  1628   //   3. found something else => keep looking for cases 1 and 2
  1629   // Case 3 is handled by a recursive call.
  1630   for (int row = start_row; row <= last_row; row++) {
  1631     Label next_test;
  1632     bool test_for_null_also = (row == start_row);
  1634     // See if the receiver is receiver[n].
  1635     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
  1636     test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
  1637     // delayed()->tst(scratch);
  1639     // The receiver is receiver[n].  Increment count[n].
  1640     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
  1641     increment_mdp_data_at(count_offset, scratch);
  1642     ba_short(done);
  1643     bind(next_test);
  1645     if (test_for_null_also) {
  1646       Label found_null;
  1647       // Failed the equality check on receiver[n]...  Test for null.
  1648       if (start_row == last_row) {
  1649         // The only thing left to do is handle the null case.
  1650         if (is_virtual_call) {
  1651           brx(Assembler::zero, false, Assembler::pn, found_null);
  1652           delayed()->nop();
  1653           // Receiver did not match any saved receiver and there is no empty row for it.
  1654           // Increment total counter to indicate polymorphic case.
  1655           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1656           ba_short(done);
  1657           bind(found_null);
  1658         } else {
  1659           brx(Assembler::notZero, false, Assembler::pt, done);
  1660           delayed()->nop();
  1662         break;
  1664       // Since null is rare, make it be the branch-taken case.
  1665       brx(Assembler::zero, false, Assembler::pn, found_null);
  1666       delayed()->nop();
  1668       // Put all the "Case 3" tests here.
  1669       record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
  1671       // Found a null.  Keep searching for a matching receiver,
  1672       // but remember that this is an empty (unused) slot.
  1673       bind(found_null);
  1677   // In the fall-through case, we found no matching receiver, but we
  1678   // observed the receiver[start_row] is NULL.
  1680   // Fill in the receiver field and increment the count.
  1681   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
  1682   set_mdp_data_at(recvr_offset, receiver);
  1683   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
  1684   mov(DataLayout::counter_increment, scratch);
  1685   set_mdp_data_at(count_offset, scratch);
  1686   if (start_row > 0) {
  1687     ba_short(done);
  1691 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
  1692                                                         Register scratch, bool is_virtual_call) {
  1693   assert(ProfileInterpreter, "must be profiling");
  1694   Label done;
  1696   record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
  1698   bind (done);
  1702 // Count a ret in the bytecodes.
  1704 void InterpreterMacroAssembler::profile_ret(TosState state,
  1705                                             Register return_bci,
  1706                                             Register scratch) {
  1707   if (ProfileInterpreter) {
  1708     Label profile_continue;
  1709     uint row;
  1711     // If no method data exists, go to profile_continue.
  1712     test_method_data_pointer(profile_continue);
  1714     // Update the total ret count.
  1715     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
  1717     for (row = 0; row < RetData::row_limit(); row++) {
  1718       Label next_test;
  1720       // See if return_bci is equal to bci[n]:
  1721       test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
  1722                        return_bci, next_test, scratch);
  1724       // return_bci is equal to bci[n].  Increment the count.
  1725       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
  1727       // The method data pointer needs to be updated to reflect the new target.
  1728       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
  1729       ba_short(profile_continue);
  1730       bind(next_test);
  1733     update_mdp_for_ret(state, return_bci);
  1735     bind (profile_continue);
  1739 // Profile an unexpected null in the bytecodes.
  1740 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
  1741   if (ProfileInterpreter) {
  1742     Label profile_continue;
  1744     // If no method data exists, go to profile_continue.
  1745     test_method_data_pointer(profile_continue);
  1747     set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
  1749     // The method data pointer needs to be updated.
  1750     int mdp_delta = in_bytes(BitData::bit_data_size());
  1751     if (TypeProfileCasts) {
  1752       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1754     update_mdp_by_constant(mdp_delta);
  1756     bind (profile_continue);
  1760 void InterpreterMacroAssembler::profile_typecheck(Register klass,
  1761                                                   Register scratch) {
  1762   if (ProfileInterpreter) {
  1763     Label profile_continue;
  1765     // If no method data exists, go to profile_continue.
  1766     test_method_data_pointer(profile_continue);
  1768     int mdp_delta = in_bytes(BitData::bit_data_size());
  1769     if (TypeProfileCasts) {
  1770       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
  1772       // Record the object type.
  1773       record_klass_in_profile(klass, scratch, false);
  1776     // The method data pointer needs to be updated.
  1777     update_mdp_by_constant(mdp_delta);
  1779     bind (profile_continue);
  1783 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
  1784   if (ProfileInterpreter && TypeProfileCasts) {
  1785     Label profile_continue;
  1787     // If no method data exists, go to profile_continue.
  1788     test_method_data_pointer(profile_continue);
  1790     int count_offset = in_bytes(CounterData::count_offset());
  1791     // Back up the address, since we have already bumped the mdp.
  1792     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
  1794     // *Decrement* the counter.  We expect to see zero or small negatives.
  1795     increment_mdp_data_at(count_offset, scratch, true);
  1797     bind (profile_continue);
  1801 // Count the default case of a switch construct.
  1803 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
  1804   if (ProfileInterpreter) {
  1805     Label profile_continue;
  1807     // If no method data exists, go to profile_continue.
  1808     test_method_data_pointer(profile_continue);
  1810     // Update the default case count
  1811     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
  1812                           scratch);
  1814     // The method data pointer needs to be updated.
  1815     update_mdp_by_offset(
  1816                     in_bytes(MultiBranchData::default_displacement_offset()),
  1817                     scratch);
  1819     bind (profile_continue);
  1823 // Count the index'th case of a switch construct.
  1825 void InterpreterMacroAssembler::profile_switch_case(Register index,
  1826                                                     Register scratch,
  1827                                                     Register scratch2,
  1828                                                     Register scratch3) {
  1829   if (ProfileInterpreter) {
  1830     Label profile_continue;
  1832     // If no method data exists, go to profile_continue.
  1833     test_method_data_pointer(profile_continue);
  1835     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
  1836     set(in_bytes(MultiBranchData::per_case_size()), scratch);
  1837     smul(index, scratch, scratch);
  1838     add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
  1840     // Update the case count
  1841     increment_mdp_data_at(scratch,
  1842                           in_bytes(MultiBranchData::relative_count_offset()),
  1843                           scratch2,
  1844                           scratch3);
  1846     // The method data pointer needs to be updated.
  1847     update_mdp_by_offset(scratch,
  1848                      in_bytes(MultiBranchData::relative_displacement_offset()),
  1849                      scratch2);
  1851     bind (profile_continue);
  1855 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
  1857 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
  1858                                                       Register Rtemp,
  1859                                                       Register Rtemp2 ) {
  1861   Register Rlimit = Lmonitors;
  1862   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  1863   assert( (delta & LongAlignmentMask) == 0,
  1864           "sizeof BasicObjectLock must be even number of doublewords");
  1866   sub( SP,        delta, SP);
  1867   sub( Lesp,      delta, Lesp);
  1868   sub( Lmonitors, delta, Lmonitors);
  1870   if (!stack_is_empty) {
  1872     // must copy stack contents down
  1874     Label start_copying, next;
  1876     // untested("monitor stack expansion");
  1877     compute_stack_base(Rtemp);
  1878     ba(start_copying);
  1879     delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
  1881     // note: must copy from low memory upwards
  1882     // On entry to loop,
  1883     // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
  1884     // Loop mutates Rtemp
  1886     bind( next);
  1888     st_ptr(Rtemp2, Rtemp, 0);
  1889     inc(Rtemp, wordSize);
  1890     cmp(Rtemp, Rlimit); // are we done? (duplicated above)
  1892     bind( start_copying );
  1894     brx( notEqual, true, pn, next );
  1895     delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
  1897     // done copying stack
  1901 // Locals
  1902 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
  1903   assert_not_delayed();
  1904   sll(index, Interpreter::logStackElementSize, index);
  1905   sub(Llocals, index, index);
  1906   ld_ptr(index, 0, dst);
  1907   // Note:  index must hold the effective address--the iinc template uses it
  1910 // Just like access_local_ptr but the tag is a returnAddress
  1911 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
  1912                                                            Register dst ) {
  1913   assert_not_delayed();
  1914   sll(index, Interpreter::logStackElementSize, index);
  1915   sub(Llocals, index, index);
  1916   ld_ptr(index, 0, dst);
  1919 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
  1920   assert_not_delayed();
  1921   sll(index, Interpreter::logStackElementSize, index);
  1922   sub(Llocals, index, index);
  1923   ld(index, 0, dst);
  1924   // Note:  index must hold the effective address--the iinc template uses it
  1928 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
  1929   assert_not_delayed();
  1930   sll(index, Interpreter::logStackElementSize, index);
  1931   sub(Llocals, index, index);
  1932   // First half stored at index n+1 (which grows down from Llocals[n])
  1933   load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
  1937 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
  1938   assert_not_delayed();
  1939   sll(index, Interpreter::logStackElementSize, index);
  1940   sub(Llocals, index, index);
  1941   ldf(FloatRegisterImpl::S, index, 0, dst);
  1945 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
  1946   assert_not_delayed();
  1947   sll(index, Interpreter::logStackElementSize, index);
  1948   sub(Llocals, index, index);
  1949   load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
  1953 #ifdef ASSERT
  1954 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
  1955   Label L;
  1957   assert(Rindex != Rscratch, "Registers cannot be same");
  1958   assert(Rindex != Rscratch1, "Registers cannot be same");
  1959   assert(Rlimit != Rscratch, "Registers cannot be same");
  1960   assert(Rlimit != Rscratch1, "Registers cannot be same");
  1961   assert(Rscratch1 != Rscratch, "Registers cannot be same");
  1963   // untested("reg area corruption");
  1964   add(Rindex, offset, Rscratch);
  1965   add(Rlimit, 64 + STACK_BIAS, Rscratch1);
  1966   cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
  1967   stop("regsave area is being clobbered");
  1968   bind(L);
  1970 #endif // ASSERT
  1973 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
  1974   assert_not_delayed();
  1975   sll(index, Interpreter::logStackElementSize, index);
  1976   sub(Llocals, index, index);
  1977   debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
  1978   st(src, index, 0);
  1981 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
  1982   assert_not_delayed();
  1983   sll(index, Interpreter::logStackElementSize, index);
  1984   sub(Llocals, index, index);
  1985 #ifdef ASSERT
  1986   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
  1987 #endif
  1988   st_ptr(src, index, 0);
  1993 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
  1994   st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
  1997 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
  1998   assert_not_delayed();
  1999   sll(index, Interpreter::logStackElementSize, index);
  2000   sub(Llocals, index, index);
  2001 #ifdef ASSERT
  2002   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
  2003 #endif
  2004   store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
  2008 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
  2009   assert_not_delayed();
  2010   sll(index, Interpreter::logStackElementSize, index);
  2011   sub(Llocals, index, index);
  2012 #ifdef ASSERT
  2013   check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
  2014 #endif
  2015   stf(FloatRegisterImpl::S, src, index, 0);
  2019 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
  2020   assert_not_delayed();
  2021   sll(index, Interpreter::logStackElementSize, index);
  2022   sub(Llocals, index, index);
  2023 #ifdef ASSERT
  2024   check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
  2025 #endif
  2026   store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
  2030 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
  2031   const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
  2032   int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
  2033   return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
  2037 Address InterpreterMacroAssembler::top_most_monitor() {
  2038   return Address(FP, top_most_monitor_byte_offset());
  2042 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
  2043   add( Lesp,      wordSize,                                    Rdest );
  2046 #endif /* CC_INTERP */
  2048 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
  2049   assert(UseCompiler, "incrementing must be useful");
  2050 #ifdef CC_INTERP
  2051   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
  2052                                  InvocationCounter::counter_offset());
  2053   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
  2054                                  InvocationCounter::counter_offset());
  2055 #else
  2056   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
  2057                                InvocationCounter::counter_offset());
  2058   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
  2059                                InvocationCounter::counter_offset());
  2060 #endif /* CC_INTERP */
  2061   int delta = InvocationCounter::count_increment;
  2063   // Load each counter in a register
  2064   ld( inv_counter, Rtmp );
  2065   ld( be_counter, Rtmp2 );
  2067   assert( is_simm13( delta ), " delta too large.");
  2069   // Add the delta to the invocation counter and store the result
  2070   add( Rtmp, delta, Rtmp );
  2072   // Mask the backedge counter
  2073   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
  2075   // Store value
  2076   st( Rtmp, inv_counter);
  2078   // Add invocation counter + backedge counter
  2079   add( Rtmp, Rtmp2, Rtmp);
  2081   // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
  2084 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
  2085   assert(UseCompiler, "incrementing must be useful");
  2086 #ifdef CC_INTERP
  2087   Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
  2088                                  InvocationCounter::counter_offset());
  2089   Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
  2090                                  InvocationCounter::counter_offset());
  2091 #else
  2092   Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
  2093                                InvocationCounter::counter_offset());
  2094   Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
  2095                                InvocationCounter::counter_offset());
  2096 #endif /* CC_INTERP */
  2097   int delta = InvocationCounter::count_increment;
  2098   // Load each counter in a register
  2099   ld( be_counter, Rtmp );
  2100   ld( inv_counter, Rtmp2 );
  2102   // Add the delta to the backedge counter
  2103   add( Rtmp, delta, Rtmp );
  2105   // Mask the invocation counter, add to backedge counter
  2106   and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
  2108   // and store the result to memory
  2109   st( Rtmp, be_counter );
  2111   // Add backedge + invocation counter
  2112   add( Rtmp, Rtmp2, Rtmp );
  2114   // Note that this macro must leave backedge_count + invocation_count in Rtmp!
  2117 #ifndef CC_INTERP
  2118 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
  2119                                                              Register branch_bcp,
  2120                                                              Register Rtmp ) {
  2121   Label did_not_overflow;
  2122   Label overflow_with_error;
  2123   assert_different_registers(backedge_count, Rtmp, branch_bcp);
  2124   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
  2126   AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
  2127   load_contents(limit, Rtmp);
  2128   cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
  2130   // When ProfileInterpreter is on, the backedge_count comes from the
  2131   // methodDataOop, which value does not get reset on the call to
  2132   // frequency_counter_overflow().  To avoid excessive calls to the overflow
  2133   // routine while the method is being compiled, add a second test to make sure
  2134   // the overflow function is called only once every overflow_frequency.
  2135   if (ProfileInterpreter) {
  2136     const int overflow_frequency = 1024;
  2137     andcc(backedge_count, overflow_frequency-1, Rtmp);
  2138     brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
  2139     delayed()->nop();
  2142   // overflow in loop, pass branch bytecode
  2143   set(6,Rtmp);
  2144   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
  2146   // Was an OSR adapter generated?
  2147   // O0 = osr nmethod
  2148   br_null_short(O0, Assembler::pn, overflow_with_error);
  2150   // Has the nmethod been invalidated already?
  2151   ld(O0, nmethod::entry_bci_offset(), O2);
  2152   cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, overflow_with_error);
  2154   // migrate the interpreter frame off of the stack
  2156   mov(G2_thread, L7);
  2157   // save nmethod
  2158   mov(O0, L6);
  2159   set_last_Java_frame(SP, noreg);
  2160   call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
  2161   reset_last_Java_frame();
  2162   mov(L7, G2_thread);
  2164   // move OSR nmethod to I1
  2165   mov(L6, I1);
  2167   // OSR buffer to I0
  2168   mov(O0, I0);
  2170   // remove the interpreter frame
  2171   restore(I5_savedSP, 0, SP);
  2173   // Jump to the osr code.
  2174   ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
  2175   jmp(O2, G0);
  2176   delayed()->nop();
  2178   bind(overflow_with_error);
  2180   bind(did_not_overflow);
  2185 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
  2186   if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
  2190 // local helper function for the verify_oop_or_return_address macro
  2191 static bool verify_return_address(methodOopDesc* m, int bci) {
  2192 #ifndef PRODUCT
  2193   address pc = (address)(m->constMethod())
  2194              + in_bytes(constMethodOopDesc::codes_offset()) + bci;
  2195   // assume it is a valid return address if it is inside m and is preceded by a jsr
  2196   if (!m->contains(pc))                                          return false;
  2197   address jsr_pc;
  2198   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
  2199   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
  2200   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
  2201   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
  2202 #endif // PRODUCT
  2203   return false;
  2207 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
  2208   if (!VerifyOops)  return;
  2209   // the VM documentation for the astore[_wide] bytecode allows
  2210   // the TOS to be not only an oop but also a return address
  2211   Label test;
  2212   Label skip;
  2213   // See if it is an address (in the current method):
  2215   mov(reg, Rtmp);
  2216   const int log2_bytecode_size_limit = 16;
  2217   srl(Rtmp, log2_bytecode_size_limit, Rtmp);
  2218   br_notnull_short( Rtmp, pt, test );
  2220   // %%% should use call_VM_leaf here?
  2221   save_frame_and_mov(0, Lmethod, O0, reg, O1);
  2222   save_thread(L7_thread_cache);
  2223   call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
  2224   delayed()->nop();
  2225   restore_thread(L7_thread_cache);
  2226   br_notnull( O0, false, pt, skip );
  2227   delayed()->restore();
  2229   // Perform a more elaborate out-of-line call
  2230   // Not an address; verify it:
  2231   bind(test);
  2232   verify_oop(reg);
  2233   bind(skip);
  2237 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
  2238   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
  2240 #endif /* CC_INTERP */
  2242 // Inline assembly for:
  2243 //
  2244 // if (thread is in interp_only_mode) {
  2245 //   InterpreterRuntime::post_method_entry();
  2246 // }
  2247 // if (DTraceMethodProbes) {
  2248 //   SharedRuntime::dtrace_method_entry(method, receiver);
  2249 // }
  2250 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2251 //   SharedRuntime::rc_trace_method_entry(method, receiver);
  2252 // }
  2254 void InterpreterMacroAssembler::notify_method_entry() {
  2256   // C++ interpreter only uses this for native methods.
  2258   // Whenever JVMTI puts a thread in interp_only_mode, method
  2259   // entry/exit events are sent for that thread to track stack
  2260   // depth.  If it is possible to enter interp_only_mode we add
  2261   // the code to check if the event should be sent.
  2262   if (JvmtiExport::can_post_interpreter_events()) {
  2263     Label L;
  2264     Register temp_reg = O5;
  2265     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
  2266     ld(interp_only, temp_reg);
  2267     cmp_and_br_short(temp_reg, 0, equal, pt, L);
  2268     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
  2269     bind(L);
  2273     Register temp_reg = O5;
  2274     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
  2275     call_VM_leaf(noreg,
  2276       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
  2277       G2_thread, Lmethod);
  2280   // RedefineClasses() tracing support for obsolete method entry
  2281   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
  2282     call_VM_leaf(noreg,
  2283       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
  2284       G2_thread, Lmethod);
  2289 // Inline assembly for:
  2290 //
  2291 // if (thread is in interp_only_mode) {
  2292 //   // save result
  2293 //   InterpreterRuntime::post_method_exit();
  2294 //   // restore result
  2295 // }
  2296 // if (DTraceMethodProbes) {
  2297 //   SharedRuntime::dtrace_method_exit(thread, method);
  2298 // }
  2299 //
  2300 // Native methods have their result stored in d_tmp and l_tmp
  2301 // Java methods have their result stored in the expression stack
  2303 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
  2304                                                    TosState state,
  2305                                                    NotifyMethodExitMode mode) {
  2306   // C++ interpreter only uses this for native methods.
  2308   // Whenever JVMTI puts a thread in interp_only_mode, method
  2309   // entry/exit events are sent for that thread to track stack
  2310   // depth.  If it is possible to enter interp_only_mode we add
  2311   // the code to check if the event should be sent.
  2312   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
  2313     Label L;
  2314     Register temp_reg = O5;
  2315     const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
  2316     ld(interp_only, temp_reg);
  2317     cmp_and_br_short(temp_reg, 0, equal, pt, L);
  2319     // Note: frame::interpreter_frame_result has a dependency on how the
  2320     // method result is saved across the call to post_method_exit. For
  2321     // native methods it assumes the result registers are saved to
  2322     // l_scratch and d_scratch. If this changes then the interpreter_frame_result
  2323     // implementation will need to be updated too.
  2325     save_return_value(state, is_native_method);
  2326     call_VM(noreg,
  2327             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
  2328     restore_return_value(state, is_native_method);
  2329     bind(L);
  2333     Register temp_reg = O5;
  2334     // Dtrace notification
  2335     SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
  2336     save_return_value(state, is_native_method);
  2337     call_VM_leaf(
  2338       noreg,
  2339       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
  2340       G2_thread, Lmethod);
  2341     restore_return_value(state, is_native_method);
  2345 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
  2346 #ifdef CC_INTERP
  2347   // result potentially in O0/O1: save it across calls
  2348   stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
  2349 #ifdef _LP64
  2350   stx(O0, STATE(_native_lresult));
  2351 #else
  2352   std(O0, STATE(_native_lresult));
  2353 #endif
  2354 #else // CC_INTERP
  2355   if (is_native_call) {
  2356     stf(FloatRegisterImpl::D, F0, d_tmp);
  2357 #ifdef _LP64
  2358     stx(O0, l_tmp);
  2359 #else
  2360     std(O0, l_tmp);
  2361 #endif
  2362   } else {
  2363     push(state);
  2365 #endif // CC_INTERP
  2368 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
  2369 #ifdef CC_INTERP
  2370   ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
  2371 #ifdef _LP64
  2372   ldx(STATE(_native_lresult), O0);
  2373 #else
  2374   ldd(STATE(_native_lresult), O0);
  2375 #endif
  2376 #else // CC_INTERP
  2377   if (is_native_call) {
  2378     ldf(FloatRegisterImpl::D, d_tmp, F0);
  2379 #ifdef _LP64
  2380     ldx(l_tmp, O0);
  2381 #else
  2382     ldd(l_tmp, O0);
  2383 #endif
  2384   } else {
  2385     pop(state);
  2387 #endif // CC_INTERP
  2390 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
  2391 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
  2392                                                         int increment, int mask,
  2393                                                         Register scratch1, Register scratch2,
  2394                                                         Condition cond, Label *where) {
  2395   ld(counter_addr, scratch1);
  2396   add(scratch1, increment, scratch1);
  2397   if (is_simm13(mask)) {
  2398     andcc(scratch1, mask, G0);
  2399   } else {
  2400     set(mask, scratch2);
  2401     andcc(scratch1, scratch2,  G0);
  2403   br(cond, false, Assembler::pn, *where);
  2404   delayed()->st(scratch1, counter_addr);

mercurial