src/share/vm/gc_implementation/g1/g1CollectedHeap.hpp

Mon, 07 Jul 2014 10:12:40 +0200

author
stefank
date
Mon, 07 Jul 2014 10:12:40 +0200
changeset 6992
2c6ef90f030a
parent 6971
7426d8d76305
child 7005
e0954897238a
child 7018
a22acf6d7598
permissions
-rw-r--r--

8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com

     1 /*
     2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
    28 #include "gc_implementation/g1/concurrentMark.hpp"
    29 #include "gc_implementation/g1/evacuationInfo.hpp"
    30 #include "gc_implementation/g1/g1AllocRegion.hpp"
    31 #include "gc_implementation/g1/g1BiasedArray.hpp"
    32 #include "gc_implementation/g1/g1HRPrinter.hpp"
    33 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
    34 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
    35 #include "gc_implementation/g1/g1YCTypes.hpp"
    36 #include "gc_implementation/g1/heapRegionSeq.hpp"
    37 #include "gc_implementation/g1/heapRegionSet.hpp"
    38 #include "gc_implementation/shared/hSpaceCounters.hpp"
    39 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
    40 #include "memory/barrierSet.hpp"
    41 #include "memory/memRegion.hpp"
    42 #include "memory/sharedHeap.hpp"
    43 #include "utilities/stack.hpp"
    45 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
    46 // It uses the "Garbage First" heap organization and algorithm, which
    47 // may combine concurrent marking with parallel, incremental compaction of
    48 // heap subsets that will yield large amounts of garbage.
    50 // Forward declarations
    51 class HeapRegion;
    52 class HRRSCleanupTask;
    53 class GenerationSpec;
    54 class OopsInHeapRegionClosure;
    55 class G1KlassScanClosure;
    56 class G1ScanHeapEvacClosure;
    57 class ObjectClosure;
    58 class SpaceClosure;
    59 class CompactibleSpaceClosure;
    60 class Space;
    61 class G1CollectorPolicy;
    62 class GenRemSet;
    63 class G1RemSet;
    64 class HeapRegionRemSetIterator;
    65 class ConcurrentMark;
    66 class ConcurrentMarkThread;
    67 class ConcurrentG1Refine;
    68 class ConcurrentGCTimer;
    69 class GenerationCounters;
    70 class STWGCTimer;
    71 class G1NewTracer;
    72 class G1OldTracer;
    73 class EvacuationFailedInfo;
    74 class nmethod;
    75 class Ticks;
    77 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
    78 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
    80 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
    81 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
    83 enum GCAllocPurpose {
    84   GCAllocForTenured,
    85   GCAllocForSurvived,
    86   GCAllocPurposeCount
    87 };
    89 class YoungList : public CHeapObj<mtGC> {
    90 private:
    91   G1CollectedHeap* _g1h;
    93   HeapRegion* _head;
    95   HeapRegion* _survivor_head;
    96   HeapRegion* _survivor_tail;
    98   HeapRegion* _curr;
   100   uint        _length;
   101   uint        _survivor_length;
   103   size_t      _last_sampled_rs_lengths;
   104   size_t      _sampled_rs_lengths;
   106   void         empty_list(HeapRegion* list);
   108 public:
   109   YoungList(G1CollectedHeap* g1h);
   111   void         push_region(HeapRegion* hr);
   112   void         add_survivor_region(HeapRegion* hr);
   114   void         empty_list();
   115   bool         is_empty() { return _length == 0; }
   116   uint         length() { return _length; }
   117   uint         survivor_length() { return _survivor_length; }
   119   // Currently we do not keep track of the used byte sum for the
   120   // young list and the survivors and it'd be quite a lot of work to
   121   // do so. When we'll eventually replace the young list with
   122   // instances of HeapRegionLinkedList we'll get that for free. So,
   123   // we'll report the more accurate information then.
   124   size_t       eden_used_bytes() {
   125     assert(length() >= survivor_length(), "invariant");
   126     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
   127   }
   128   size_t       survivor_used_bytes() {
   129     return (size_t) survivor_length() * HeapRegion::GrainBytes;
   130   }
   132   void rs_length_sampling_init();
   133   bool rs_length_sampling_more();
   134   void rs_length_sampling_next();
   136   void reset_sampled_info() {
   137     _last_sampled_rs_lengths =   0;
   138   }
   139   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
   141   // for development purposes
   142   void reset_auxilary_lists();
   143   void clear() { _head = NULL; _length = 0; }
   145   void clear_survivors() {
   146     _survivor_head    = NULL;
   147     _survivor_tail    = NULL;
   148     _survivor_length  = 0;
   149   }
   151   HeapRegion* first_region() { return _head; }
   152   HeapRegion* first_survivor_region() { return _survivor_head; }
   153   HeapRegion* last_survivor_region() { return _survivor_tail; }
   155   // debugging
   156   bool          check_list_well_formed();
   157   bool          check_list_empty(bool check_sample = true);
   158   void          print();
   159 };
   161 class MutatorAllocRegion : public G1AllocRegion {
   162 protected:
   163   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   164   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   165 public:
   166   MutatorAllocRegion()
   167     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
   168 };
   170 class SurvivorGCAllocRegion : public G1AllocRegion {
   171 protected:
   172   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   173   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   174 public:
   175   SurvivorGCAllocRegion()
   176   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
   177 };
   179 class OldGCAllocRegion : public G1AllocRegion {
   180 protected:
   181   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
   182   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
   183 public:
   184   OldGCAllocRegion()
   185   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
   186 };
   188 // The G1 STW is alive closure.
   189 // An instance is embedded into the G1CH and used as the
   190 // (optional) _is_alive_non_header closure in the STW
   191 // reference processor. It is also extensively used during
   192 // reference processing during STW evacuation pauses.
   193 class G1STWIsAliveClosure: public BoolObjectClosure {
   194   G1CollectedHeap* _g1;
   195 public:
   196   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
   197   bool do_object_b(oop p);
   198 };
   200 // Instances of this class are used for quick tests on whether a reference points
   201 // into the collection set. Each of the array's elements denotes whether the
   202 // corresponding region is in the collection set.
   203 class G1FastCSetBiasedMappedArray : public G1BiasedMappedArray<bool> {
   204  protected:
   205   bool default_value() const { return false; }
   206  public:
   207   void clear() { G1BiasedMappedArray<bool>::clear(); }
   208 };
   210 class RefineCardTableEntryClosure;
   212 class G1CollectedHeap : public SharedHeap {
   213   friend class VM_CollectForMetadataAllocation;
   214   friend class VM_G1CollectForAllocation;
   215   friend class VM_G1CollectFull;
   216   friend class VM_G1IncCollectionPause;
   217   friend class VMStructs;
   218   friend class MutatorAllocRegion;
   219   friend class SurvivorGCAllocRegion;
   220   friend class OldGCAllocRegion;
   222   // Closures used in implementation.
   223   template <G1Barrier barrier, G1Mark do_mark_object>
   224   friend class G1ParCopyClosure;
   225   friend class G1IsAliveClosure;
   226   friend class G1EvacuateFollowersClosure;
   227   friend class G1ParScanThreadState;
   228   friend class G1ParScanClosureSuper;
   229   friend class G1ParEvacuateFollowersClosure;
   230   friend class G1ParTask;
   231   friend class G1FreeGarbageRegionClosure;
   232   friend class RefineCardTableEntryClosure;
   233   friend class G1PrepareCompactClosure;
   234   friend class RegionSorter;
   235   friend class RegionResetter;
   236   friend class CountRCClosure;
   237   friend class EvacPopObjClosure;
   238   friend class G1ParCleanupCTTask;
   240   // Other related classes.
   241   friend class G1MarkSweep;
   243 private:
   244   // The one and only G1CollectedHeap, so static functions can find it.
   245   static G1CollectedHeap* _g1h;
   247   static size_t _humongous_object_threshold_in_words;
   249   // Storage for the G1 heap.
   250   VirtualSpace _g1_storage;
   251   MemRegion    _g1_reserved;
   253   // The part of _g1_storage that is currently committed.
   254   MemRegion _g1_committed;
   256   // The master free list. It will satisfy all new region allocations.
   257   FreeRegionList _free_list;
   259   // The secondary free list which contains regions that have been
   260   // freed up during the cleanup process. This will be appended to the
   261   // master free list when appropriate.
   262   FreeRegionList _secondary_free_list;
   264   // It keeps track of the old regions.
   265   HeapRegionSet _old_set;
   267   // It keeps track of the humongous regions.
   268   HeapRegionSet _humongous_set;
   270   // The number of regions we could create by expansion.
   271   uint _expansion_regions;
   273   // The block offset table for the G1 heap.
   274   G1BlockOffsetSharedArray* _bot_shared;
   276   // Tears down the region sets / lists so that they are empty and the
   277   // regions on the heap do not belong to a region set / list. The
   278   // only exception is the humongous set which we leave unaltered. If
   279   // free_list_only is true, it will only tear down the master free
   280   // list. It is called before a Full GC (free_list_only == false) or
   281   // before heap shrinking (free_list_only == true).
   282   void tear_down_region_sets(bool free_list_only);
   284   // Rebuilds the region sets / lists so that they are repopulated to
   285   // reflect the contents of the heap. The only exception is the
   286   // humongous set which was not torn down in the first place. If
   287   // free_list_only is true, it will only rebuild the master free
   288   // list. It is called after a Full GC (free_list_only == false) or
   289   // after heap shrinking (free_list_only == true).
   290   void rebuild_region_sets(bool free_list_only);
   292   // The sequence of all heap regions in the heap.
   293   HeapRegionSeq _hrs;
   295   // Alloc region used to satisfy mutator allocation requests.
   296   MutatorAllocRegion _mutator_alloc_region;
   298   // Alloc region used to satisfy allocation requests by the GC for
   299   // survivor objects.
   300   SurvivorGCAllocRegion _survivor_gc_alloc_region;
   302   // PLAB sizing policy for survivors.
   303   PLABStats _survivor_plab_stats;
   305   // Alloc region used to satisfy allocation requests by the GC for
   306   // old objects.
   307   OldGCAllocRegion _old_gc_alloc_region;
   309   // PLAB sizing policy for tenured objects.
   310   PLABStats _old_plab_stats;
   312   PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
   313     PLABStats* stats = NULL;
   315     switch (purpose) {
   316     case GCAllocForSurvived:
   317       stats = &_survivor_plab_stats;
   318       break;
   319     case GCAllocForTenured:
   320       stats = &_old_plab_stats;
   321       break;
   322     default:
   323       assert(false, "unrecognized GCAllocPurpose");
   324     }
   326     return stats;
   327   }
   329   // The last old region we allocated to during the last GC.
   330   // Typically, it is not full so we should re-use it during the next GC.
   331   HeapRegion* _retained_old_gc_alloc_region;
   333   // It specifies whether we should attempt to expand the heap after a
   334   // region allocation failure. If heap expansion fails we set this to
   335   // false so that we don't re-attempt the heap expansion (it's likely
   336   // that subsequent expansion attempts will also fail if one fails).
   337   // Currently, it is only consulted during GC and it's reset at the
   338   // start of each GC.
   339   bool _expand_heap_after_alloc_failure;
   341   // It resets the mutator alloc region before new allocations can take place.
   342   void init_mutator_alloc_region();
   344   // It releases the mutator alloc region.
   345   void release_mutator_alloc_region();
   347   // It initializes the GC alloc regions at the start of a GC.
   348   void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
   350   // Setup the retained old gc alloc region as the currrent old gc alloc region.
   351   void use_retained_old_gc_alloc_region(EvacuationInfo& evacuation_info);
   353   // It releases the GC alloc regions at the end of a GC.
   354   void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
   356   // It does any cleanup that needs to be done on the GC alloc regions
   357   // before a Full GC.
   358   void abandon_gc_alloc_regions();
   360   // Helper for monitoring and management support.
   361   G1MonitoringSupport* _g1mm;
   363   // Determines PLAB size for a particular allocation purpose.
   364   size_t desired_plab_sz(GCAllocPurpose purpose);
   366   // Outside of GC pauses, the number of bytes used in all regions other
   367   // than the current allocation region.
   368   size_t _summary_bytes_used;
   370   // This array is used for a quick test on whether a reference points into
   371   // the collection set or not. Each of the array's elements denotes whether the
   372   // corresponding region is in the collection set or not.
   373   G1FastCSetBiasedMappedArray _in_cset_fast_test;
   375   volatile unsigned _gc_time_stamp;
   377   size_t* _surviving_young_words;
   379   G1HRPrinter _hr_printer;
   381   void setup_surviving_young_words();
   382   void update_surviving_young_words(size_t* surv_young_words);
   383   void cleanup_surviving_young_words();
   385   // It decides whether an explicit GC should start a concurrent cycle
   386   // instead of doing a STW GC. Currently, a concurrent cycle is
   387   // explicitly started if:
   388   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
   389   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
   390   // (c) cause == _g1_humongous_allocation
   391   bool should_do_concurrent_full_gc(GCCause::Cause cause);
   393   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   394   // concurrent cycles) we have started.
   395   volatile unsigned int _old_marking_cycles_started;
   397   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
   398   // concurrent cycles) we have completed.
   399   volatile unsigned int _old_marking_cycles_completed;
   401   bool _concurrent_cycle_started;
   403   // This is a non-product method that is helpful for testing. It is
   404   // called at the end of a GC and artificially expands the heap by
   405   // allocating a number of dead regions. This way we can induce very
   406   // frequent marking cycles and stress the cleanup / concurrent
   407   // cleanup code more (as all the regions that will be allocated by
   408   // this method will be found dead by the marking cycle).
   409   void allocate_dummy_regions() PRODUCT_RETURN;
   411   // Clear RSets after a compaction. It also resets the GC time stamps.
   412   void clear_rsets_post_compaction();
   414   // If the HR printer is active, dump the state of the regions in the
   415   // heap after a compaction.
   416   void print_hrs_post_compaction();
   418   double verify(bool guard, const char* msg);
   419   void verify_before_gc();
   420   void verify_after_gc();
   422   void log_gc_header();
   423   void log_gc_footer(double pause_time_sec);
   425   // These are macros so that, if the assert fires, we get the correct
   426   // line number, file, etc.
   428 #define heap_locking_asserts_err_msg(_extra_message_)                         \
   429   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
   430           (_extra_message_),                                                  \
   431           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
   432           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
   433           BOOL_TO_STR(Thread::current()->is_VM_thread()))
   435 #define assert_heap_locked()                                                  \
   436   do {                                                                        \
   437     assert(Heap_lock->owned_by_self(),                                        \
   438            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
   439   } while (0)
   441 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
   442   do {                                                                        \
   443     assert(Heap_lock->owned_by_self() ||                                      \
   444            (SafepointSynchronize::is_at_safepoint() &&                        \
   445              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
   446            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
   447                                         "should be at a safepoint"));         \
   448   } while (0)
   450 #define assert_heap_locked_and_not_at_safepoint()                             \
   451   do {                                                                        \
   452     assert(Heap_lock->owned_by_self() &&                                      \
   453                                     !SafepointSynchronize::is_at_safepoint(), \
   454           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
   455                                        "should not be at a safepoint"));      \
   456   } while (0)
   458 #define assert_heap_not_locked()                                              \
   459   do {                                                                        \
   460     assert(!Heap_lock->owned_by_self(),                                       \
   461         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
   462   } while (0)
   464 #define assert_heap_not_locked_and_not_at_safepoint()                         \
   465   do {                                                                        \
   466     assert(!Heap_lock->owned_by_self() &&                                     \
   467                                     !SafepointSynchronize::is_at_safepoint(), \
   468       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
   469                                    "should not be at a safepoint"));          \
   470   } while (0)
   472 #define assert_at_safepoint(_should_be_vm_thread_)                            \
   473   do {                                                                        \
   474     assert(SafepointSynchronize::is_at_safepoint() &&                         \
   475               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
   476            heap_locking_asserts_err_msg("should be at a safepoint"));         \
   477   } while (0)
   479 #define assert_not_at_safepoint()                                             \
   480   do {                                                                        \
   481     assert(!SafepointSynchronize::is_at_safepoint(),                          \
   482            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
   483   } while (0)
   485 protected:
   487   // The young region list.
   488   YoungList*  _young_list;
   490   // The current policy object for the collector.
   491   G1CollectorPolicy* _g1_policy;
   493   // This is the second level of trying to allocate a new region. If
   494   // new_region() didn't find a region on the free_list, this call will
   495   // check whether there's anything available on the
   496   // secondary_free_list and/or wait for more regions to appear on
   497   // that list, if _free_regions_coming is set.
   498   HeapRegion* new_region_try_secondary_free_list(bool is_old);
   500   // Try to allocate a single non-humongous HeapRegion sufficient for
   501   // an allocation of the given word_size. If do_expand is true,
   502   // attempt to expand the heap if necessary to satisfy the allocation
   503   // request. If the region is to be used as an old region or for a
   504   // humongous object, set is_old to true. If not, to false.
   505   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
   507   // Attempt to satisfy a humongous allocation request of the given
   508   // size by finding a contiguous set of free regions of num_regions
   509   // length and remove them from the master free list. Return the
   510   // index of the first region or G1_NULL_HRS_INDEX if the search
   511   // was unsuccessful.
   512   uint humongous_obj_allocate_find_first(uint num_regions,
   513                                          size_t word_size);
   515   // Initialize a contiguous set of free regions of length num_regions
   516   // and starting at index first so that they appear as a single
   517   // humongous region.
   518   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
   519                                                       uint num_regions,
   520                                                       size_t word_size);
   522   // Attempt to allocate a humongous object of the given size. Return
   523   // NULL if unsuccessful.
   524   HeapWord* humongous_obj_allocate(size_t word_size);
   526   // The following two methods, allocate_new_tlab() and
   527   // mem_allocate(), are the two main entry points from the runtime
   528   // into the G1's allocation routines. They have the following
   529   // assumptions:
   530   //
   531   // * They should both be called outside safepoints.
   532   //
   533   // * They should both be called without holding the Heap_lock.
   534   //
   535   // * All allocation requests for new TLABs should go to
   536   //   allocate_new_tlab().
   537   //
   538   // * All non-TLAB allocation requests should go to mem_allocate().
   539   //
   540   // * If either call cannot satisfy the allocation request using the
   541   //   current allocating region, they will try to get a new one. If
   542   //   this fails, they will attempt to do an evacuation pause and
   543   //   retry the allocation.
   544   //
   545   // * If all allocation attempts fail, even after trying to schedule
   546   //   an evacuation pause, allocate_new_tlab() will return NULL,
   547   //   whereas mem_allocate() will attempt a heap expansion and/or
   548   //   schedule a Full GC.
   549   //
   550   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
   551   //   should never be called with word_size being humongous. All
   552   //   humongous allocation requests should go to mem_allocate() which
   553   //   will satisfy them with a special path.
   555   virtual HeapWord* allocate_new_tlab(size_t word_size);
   557   virtual HeapWord* mem_allocate(size_t word_size,
   558                                  bool*  gc_overhead_limit_was_exceeded);
   560   // The following three methods take a gc_count_before_ret
   561   // parameter which is used to return the GC count if the method
   562   // returns NULL. Given that we are required to read the GC count
   563   // while holding the Heap_lock, and these paths will take the
   564   // Heap_lock at some point, it's easier to get them to read the GC
   565   // count while holding the Heap_lock before they return NULL instead
   566   // of the caller (namely: mem_allocate()) having to also take the
   567   // Heap_lock just to read the GC count.
   569   // First-level mutator allocation attempt: try to allocate out of
   570   // the mutator alloc region without taking the Heap_lock. This
   571   // should only be used for non-humongous allocations.
   572   inline HeapWord* attempt_allocation(size_t word_size,
   573                                       unsigned int* gc_count_before_ret,
   574                                       int* gclocker_retry_count_ret);
   576   // Second-level mutator allocation attempt: take the Heap_lock and
   577   // retry the allocation attempt, potentially scheduling a GC
   578   // pause. This should only be used for non-humongous allocations.
   579   HeapWord* attempt_allocation_slow(size_t word_size,
   580                                     unsigned int* gc_count_before_ret,
   581                                     int* gclocker_retry_count_ret);
   583   // Takes the Heap_lock and attempts a humongous allocation. It can
   584   // potentially schedule a GC pause.
   585   HeapWord* attempt_allocation_humongous(size_t word_size,
   586                                          unsigned int* gc_count_before_ret,
   587                                          int* gclocker_retry_count_ret);
   589   // Allocation attempt that should be called during safepoints (e.g.,
   590   // at the end of a successful GC). expect_null_mutator_alloc_region
   591   // specifies whether the mutator alloc region is expected to be NULL
   592   // or not.
   593   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
   594                                        bool expect_null_mutator_alloc_region);
   596   // It dirties the cards that cover the block so that so that the post
   597   // write barrier never queues anything when updating objects on this
   598   // block. It is assumed (and in fact we assert) that the block
   599   // belongs to a young region.
   600   inline void dirty_young_block(HeapWord* start, size_t word_size);
   602   // Allocate blocks during garbage collection. Will ensure an
   603   // allocation region, either by picking one or expanding the
   604   // heap, and then allocate a block of the given size. The block
   605   // may not be a humongous - it must fit into a single heap region.
   606   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
   608   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
   609                                     HeapRegion*    alloc_region,
   610                                     bool           par,
   611                                     size_t         word_size);
   613   // Ensure that no further allocations can happen in "r", bearing in mind
   614   // that parallel threads might be attempting allocations.
   615   void par_allocate_remaining_space(HeapRegion* r);
   617   // Allocation attempt during GC for a survivor object / PLAB.
   618   inline HeapWord* survivor_attempt_allocation(size_t word_size);
   620   // Allocation attempt during GC for an old object / PLAB.
   621   inline HeapWord* old_attempt_allocation(size_t word_size);
   623   // These methods are the "callbacks" from the G1AllocRegion class.
   625   // For mutator alloc regions.
   626   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
   627   void retire_mutator_alloc_region(HeapRegion* alloc_region,
   628                                    size_t allocated_bytes);
   630   // For GC alloc regions.
   631   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
   632                                   GCAllocPurpose ap);
   633   void retire_gc_alloc_region(HeapRegion* alloc_region,
   634                               size_t allocated_bytes, GCAllocPurpose ap);
   636   // - if explicit_gc is true, the GC is for a System.gc() or a heap
   637   //   inspection request and should collect the entire heap
   638   // - if clear_all_soft_refs is true, all soft references should be
   639   //   cleared during the GC
   640   // - if explicit_gc is false, word_size describes the allocation that
   641   //   the GC should attempt (at least) to satisfy
   642   // - it returns false if it is unable to do the collection due to the
   643   //   GC locker being active, true otherwise
   644   bool do_collection(bool explicit_gc,
   645                      bool clear_all_soft_refs,
   646                      size_t word_size);
   648   // Callback from VM_G1CollectFull operation.
   649   // Perform a full collection.
   650   virtual void do_full_collection(bool clear_all_soft_refs);
   652   // Resize the heap if necessary after a full collection.  If this is
   653   // after a collect-for allocation, "word_size" is the allocation size,
   654   // and will be considered part of the used portion of the heap.
   655   void resize_if_necessary_after_full_collection(size_t word_size);
   657   // Callback from VM_G1CollectForAllocation operation.
   658   // This function does everything necessary/possible to satisfy a
   659   // failed allocation request (including collection, expansion, etc.)
   660   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
   662   // Attempting to expand the heap sufficiently
   663   // to support an allocation of the given "word_size".  If
   664   // successful, perform the allocation and return the address of the
   665   // allocated block, or else "NULL".
   666   HeapWord* expand_and_allocate(size_t word_size);
   668   // Process any reference objects discovered during
   669   // an incremental evacuation pause.
   670   void process_discovered_references(uint no_of_gc_workers);
   672   // Enqueue any remaining discovered references
   673   // after processing.
   674   void enqueue_discovered_references(uint no_of_gc_workers);
   676 public:
   678   G1MonitoringSupport* g1mm() {
   679     assert(_g1mm != NULL, "should have been initialized");
   680     return _g1mm;
   681   }
   683   // Expand the garbage-first heap by at least the given size (in bytes!).
   684   // Returns true if the heap was expanded by the requested amount;
   685   // false otherwise.
   686   // (Rounds up to a HeapRegion boundary.)
   687   bool expand(size_t expand_bytes);
   689   // Do anything common to GC's.
   690   virtual void gc_prologue(bool full);
   691   virtual void gc_epilogue(bool full);
   693   // We register a region with the fast "in collection set" test. We
   694   // simply set to true the array slot corresponding to this region.
   695   void register_region_with_in_cset_fast_test(HeapRegion* r) {
   696     _in_cset_fast_test.set_by_index(r->hrs_index(), true);
   697   }
   699   // This is a fast test on whether a reference points into the
   700   // collection set or not. Assume that the reference
   701   // points into the heap.
   702   inline bool in_cset_fast_test(oop obj);
   704   void clear_cset_fast_test() {
   705     _in_cset_fast_test.clear();
   706   }
   708   // This is called at the start of either a concurrent cycle or a Full
   709   // GC to update the number of old marking cycles started.
   710   void increment_old_marking_cycles_started();
   712   // This is called at the end of either a concurrent cycle or a Full
   713   // GC to update the number of old marking cycles completed. Those two
   714   // can happen in a nested fashion, i.e., we start a concurrent
   715   // cycle, a Full GC happens half-way through it which ends first,
   716   // and then the cycle notices that a Full GC happened and ends
   717   // too. The concurrent parameter is a boolean to help us do a bit
   718   // tighter consistency checking in the method. If concurrent is
   719   // false, the caller is the inner caller in the nesting (i.e., the
   720   // Full GC). If concurrent is true, the caller is the outer caller
   721   // in this nesting (i.e., the concurrent cycle). Further nesting is
   722   // not currently supported. The end of this call also notifies
   723   // the FullGCCount_lock in case a Java thread is waiting for a full
   724   // GC to happen (e.g., it called System.gc() with
   725   // +ExplicitGCInvokesConcurrent).
   726   void increment_old_marking_cycles_completed(bool concurrent);
   728   unsigned int old_marking_cycles_completed() {
   729     return _old_marking_cycles_completed;
   730   }
   732   void register_concurrent_cycle_start(const Ticks& start_time);
   733   void register_concurrent_cycle_end();
   734   void trace_heap_after_concurrent_cycle();
   736   G1YCType yc_type();
   738   G1HRPrinter* hr_printer() { return &_hr_printer; }
   740   // Frees a non-humongous region by initializing its contents and
   741   // adding it to the free list that's passed as a parameter (this is
   742   // usually a local list which will be appended to the master free
   743   // list later). The used bytes of freed regions are accumulated in
   744   // pre_used. If par is true, the region's RSet will not be freed
   745   // up. The assumption is that this will be done later.
   746   // The locked parameter indicates if the caller has already taken
   747   // care of proper synchronization. This may allow some optimizations.
   748   void free_region(HeapRegion* hr,
   749                    FreeRegionList* free_list,
   750                    bool par,
   751                    bool locked = false);
   753   // Frees a humongous region by collapsing it into individual regions
   754   // and calling free_region() for each of them. The freed regions
   755   // will be added to the free list that's passed as a parameter (this
   756   // is usually a local list which will be appended to the master free
   757   // list later). The used bytes of freed regions are accumulated in
   758   // pre_used. If par is true, the region's RSet will not be freed
   759   // up. The assumption is that this will be done later.
   760   void free_humongous_region(HeapRegion* hr,
   761                              FreeRegionList* free_list,
   762                              bool par);
   763 protected:
   765   // Shrink the garbage-first heap by at most the given size (in bytes!).
   766   // (Rounds down to a HeapRegion boundary.)
   767   virtual void shrink(size_t expand_bytes);
   768   void shrink_helper(size_t expand_bytes);
   770   #if TASKQUEUE_STATS
   771   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
   772   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
   773   void reset_taskqueue_stats();
   774   #endif // TASKQUEUE_STATS
   776   // Schedule the VM operation that will do an evacuation pause to
   777   // satisfy an allocation request of word_size. *succeeded will
   778   // return whether the VM operation was successful (it did do an
   779   // evacuation pause) or not (another thread beat us to it or the GC
   780   // locker was active). Given that we should not be holding the
   781   // Heap_lock when we enter this method, we will pass the
   782   // gc_count_before (i.e., total_collections()) as a parameter since
   783   // it has to be read while holding the Heap_lock. Currently, both
   784   // methods that call do_collection_pause() release the Heap_lock
   785   // before the call, so it's easy to read gc_count_before just before.
   786   HeapWord* do_collection_pause(size_t         word_size,
   787                                 unsigned int   gc_count_before,
   788                                 bool*          succeeded,
   789                                 GCCause::Cause gc_cause);
   791   // The guts of the incremental collection pause, executed by the vm
   792   // thread. It returns false if it is unable to do the collection due
   793   // to the GC locker being active, true otherwise
   794   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
   796   // Actually do the work of evacuating the collection set.
   797   void evacuate_collection_set(EvacuationInfo& evacuation_info);
   799   // The g1 remembered set of the heap.
   800   G1RemSet* _g1_rem_set;
   802   // A set of cards that cover the objects for which the Rsets should be updated
   803   // concurrently after the collection.
   804   DirtyCardQueueSet _dirty_card_queue_set;
   806   // The closure used to refine a single card.
   807   RefineCardTableEntryClosure* _refine_cte_cl;
   809   // A function to check the consistency of dirty card logs.
   810   void check_ct_logs_at_safepoint();
   812   // A DirtyCardQueueSet that is used to hold cards that contain
   813   // references into the current collection set. This is used to
   814   // update the remembered sets of the regions in the collection
   815   // set in the event of an evacuation failure.
   816   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
   818   // After a collection pause, make the regions in the CS into free
   819   // regions.
   820   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
   822   // Abandon the current collection set without recording policy
   823   // statistics or updating free lists.
   824   void abandon_collection_set(HeapRegion* cs_head);
   826   // Applies "scan_non_heap_roots" to roots outside the heap,
   827   // "scan_rs" to roots inside the heap (having done "set_region" to
   828   // indicate the region in which the root resides),
   829   // and does "scan_metadata" If "scan_rs" is
   830   // NULL, then this step is skipped.  The "worker_i"
   831   // param is for use with parallel roots processing, and should be
   832   // the "i" of the calling parallel worker thread's work(i) function.
   833   // In the sequential case this param will be ignored.
   834   void g1_process_roots(OopClosure* scan_non_heap_roots,
   835                         OopClosure* scan_non_heap_weak_roots,
   836                         OopsInHeapRegionClosure* scan_rs,
   837                         CLDClosure* scan_strong_clds,
   838                         CLDClosure* scan_weak_clds,
   839                         CodeBlobClosure* scan_strong_code,
   840                         uint worker_i);
   842   // Notifies all the necessary spaces that the committed space has
   843   // been updated (either expanded or shrunk). It should be called
   844   // after _g1_storage is updated.
   845   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
   847   // The concurrent marker (and the thread it runs in.)
   848   ConcurrentMark* _cm;
   849   ConcurrentMarkThread* _cmThread;
   850   bool _mark_in_progress;
   852   // The concurrent refiner.
   853   ConcurrentG1Refine* _cg1r;
   855   // The parallel task queues
   856   RefToScanQueueSet *_task_queues;
   858   // True iff a evacuation has failed in the current collection.
   859   bool _evacuation_failed;
   861   EvacuationFailedInfo* _evacuation_failed_info_array;
   863   // Failed evacuations cause some logical from-space objects to have
   864   // forwarding pointers to themselves.  Reset them.
   865   void remove_self_forwarding_pointers();
   867   // Together, these store an object with a preserved mark, and its mark value.
   868   Stack<oop, mtGC>     _objs_with_preserved_marks;
   869   Stack<markOop, mtGC> _preserved_marks_of_objs;
   871   // Preserve the mark of "obj", if necessary, in preparation for its mark
   872   // word being overwritten with a self-forwarding-pointer.
   873   void preserve_mark_if_necessary(oop obj, markOop m);
   875   // The stack of evac-failure objects left to be scanned.
   876   GrowableArray<oop>*    _evac_failure_scan_stack;
   877   // The closure to apply to evac-failure objects.
   879   OopsInHeapRegionClosure* _evac_failure_closure;
   880   // Set the field above.
   881   void
   882   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
   883     _evac_failure_closure = evac_failure_closure;
   884   }
   886   // Push "obj" on the scan stack.
   887   void push_on_evac_failure_scan_stack(oop obj);
   888   // Process scan stack entries until the stack is empty.
   889   void drain_evac_failure_scan_stack();
   890   // True iff an invocation of "drain_scan_stack" is in progress; to
   891   // prevent unnecessary recursion.
   892   bool _drain_in_progress;
   894   // Do any necessary initialization for evacuation-failure handling.
   895   // "cl" is the closure that will be used to process evac-failure
   896   // objects.
   897   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
   898   // Do any necessary cleanup for evacuation-failure handling data
   899   // structures.
   900   void finalize_for_evac_failure();
   902   // An attempt to evacuate "obj" has failed; take necessary steps.
   903   oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
   904   void handle_evacuation_failure_common(oop obj, markOop m);
   906 #ifndef PRODUCT
   907   // Support for forcing evacuation failures. Analogous to
   908   // PromotionFailureALot for the other collectors.
   910   // Records whether G1EvacuationFailureALot should be in effect
   911   // for the current GC
   912   bool _evacuation_failure_alot_for_current_gc;
   914   // Used to record the GC number for interval checking when
   915   // determining whether G1EvaucationFailureALot is in effect
   916   // for the current GC.
   917   size_t _evacuation_failure_alot_gc_number;
   919   // Count of the number of evacuations between failures.
   920   volatile size_t _evacuation_failure_alot_count;
   922   // Set whether G1EvacuationFailureALot should be in effect
   923   // for the current GC (based upon the type of GC and which
   924   // command line flags are set);
   925   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
   926                                                   bool during_initial_mark,
   927                                                   bool during_marking);
   929   inline void set_evacuation_failure_alot_for_current_gc();
   931   // Return true if it's time to cause an evacuation failure.
   932   inline bool evacuation_should_fail();
   934   // Reset the G1EvacuationFailureALot counters.  Should be called at
   935   // the end of an evacuation pause in which an evacuation failure occurred.
   936   inline void reset_evacuation_should_fail();
   937 #endif // !PRODUCT
   939   // ("Weak") Reference processing support.
   940   //
   941   // G1 has 2 instances of the reference processor class. One
   942   // (_ref_processor_cm) handles reference object discovery
   943   // and subsequent processing during concurrent marking cycles.
   944   //
   945   // The other (_ref_processor_stw) handles reference object
   946   // discovery and processing during full GCs and incremental
   947   // evacuation pauses.
   948   //
   949   // During an incremental pause, reference discovery will be
   950   // temporarily disabled for _ref_processor_cm and will be
   951   // enabled for _ref_processor_stw. At the end of the evacuation
   952   // pause references discovered by _ref_processor_stw will be
   953   // processed and discovery will be disabled. The previous
   954   // setting for reference object discovery for _ref_processor_cm
   955   // will be re-instated.
   956   //
   957   // At the start of marking:
   958   //  * Discovery by the CM ref processor is verified to be inactive
   959   //    and it's discovered lists are empty.
   960   //  * Discovery by the CM ref processor is then enabled.
   961   //
   962   // At the end of marking:
   963   //  * Any references on the CM ref processor's discovered
   964   //    lists are processed (possibly MT).
   965   //
   966   // At the start of full GC we:
   967   //  * Disable discovery by the CM ref processor and
   968   //    empty CM ref processor's discovered lists
   969   //    (without processing any entries).
   970   //  * Verify that the STW ref processor is inactive and it's
   971   //    discovered lists are empty.
   972   //  * Temporarily set STW ref processor discovery as single threaded.
   973   //  * Temporarily clear the STW ref processor's _is_alive_non_header
   974   //    field.
   975   //  * Finally enable discovery by the STW ref processor.
   976   //
   977   // The STW ref processor is used to record any discovered
   978   // references during the full GC.
   979   //
   980   // At the end of a full GC we:
   981   //  * Enqueue any reference objects discovered by the STW ref processor
   982   //    that have non-live referents. This has the side-effect of
   983   //    making the STW ref processor inactive by disabling discovery.
   984   //  * Verify that the CM ref processor is still inactive
   985   //    and no references have been placed on it's discovered
   986   //    lists (also checked as a precondition during initial marking).
   988   // The (stw) reference processor...
   989   ReferenceProcessor* _ref_processor_stw;
   991   STWGCTimer* _gc_timer_stw;
   992   ConcurrentGCTimer* _gc_timer_cm;
   994   G1OldTracer* _gc_tracer_cm;
   995   G1NewTracer* _gc_tracer_stw;
   997   // During reference object discovery, the _is_alive_non_header
   998   // closure (if non-null) is applied to the referent object to
   999   // determine whether the referent is live. If so then the
  1000   // reference object does not need to be 'discovered' and can
  1001   // be treated as a regular oop. This has the benefit of reducing
  1002   // the number of 'discovered' reference objects that need to
  1003   // be processed.
  1004   //
  1005   // Instance of the is_alive closure for embedding into the
  1006   // STW reference processor as the _is_alive_non_header field.
  1007   // Supplying a value for the _is_alive_non_header field is
  1008   // optional but doing so prevents unnecessary additions to
  1009   // the discovered lists during reference discovery.
  1010   G1STWIsAliveClosure _is_alive_closure_stw;
  1012   // The (concurrent marking) reference processor...
  1013   ReferenceProcessor* _ref_processor_cm;
  1015   // Instance of the concurrent mark is_alive closure for embedding
  1016   // into the Concurrent Marking reference processor as the
  1017   // _is_alive_non_header field. Supplying a value for the
  1018   // _is_alive_non_header field is optional but doing so prevents
  1019   // unnecessary additions to the discovered lists during reference
  1020   // discovery.
  1021   G1CMIsAliveClosure _is_alive_closure_cm;
  1023   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
  1024   HeapRegion** _worker_cset_start_region;
  1026   // Time stamp to validate the regions recorded in the cache
  1027   // used by G1CollectedHeap::start_cset_region_for_worker().
  1028   // The heap region entry for a given worker is valid iff
  1029   // the associated time stamp value matches the current value
  1030   // of G1CollectedHeap::_gc_time_stamp.
  1031   unsigned int* _worker_cset_start_region_time_stamp;
  1033   enum G1H_process_roots_tasks {
  1034     G1H_PS_filter_satb_buffers,
  1035     G1H_PS_refProcessor_oops_do,
  1036     // Leave this one last.
  1037     G1H_PS_NumElements
  1038   };
  1040   SubTasksDone* _process_strong_tasks;
  1042   volatile bool _free_regions_coming;
  1044 public:
  1046   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
  1048   void set_refine_cte_cl_concurrency(bool concurrent);
  1050   RefToScanQueue *task_queue(int i) const;
  1052   // A set of cards where updates happened during the GC
  1053   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
  1055   // A DirtyCardQueueSet that is used to hold cards that contain
  1056   // references into the current collection set. This is used to
  1057   // update the remembered sets of the regions in the collection
  1058   // set in the event of an evacuation failure.
  1059   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
  1060         { return _into_cset_dirty_card_queue_set; }
  1062   // Create a G1CollectedHeap with the specified policy.
  1063   // Must call the initialize method afterwards.
  1064   // May not return if something goes wrong.
  1065   G1CollectedHeap(G1CollectorPolicy* policy);
  1067   // Initialize the G1CollectedHeap to have the initial and
  1068   // maximum sizes and remembered and barrier sets
  1069   // specified by the policy object.
  1070   jint initialize();
  1072   virtual void stop();
  1074   // Return the (conservative) maximum heap alignment for any G1 heap
  1075   static size_t conservative_max_heap_alignment();
  1077   // Initialize weak reference processing.
  1078   virtual void ref_processing_init();
  1080   void set_par_threads(uint t) {
  1081     SharedHeap::set_par_threads(t);
  1082     // Done in SharedHeap but oddly there are
  1083     // two _process_strong_tasks's in a G1CollectedHeap
  1084     // so do it here too.
  1085     _process_strong_tasks->set_n_threads(t);
  1088   // Set _n_par_threads according to a policy TBD.
  1089   void set_par_threads();
  1091   void set_n_termination(int t) {
  1092     _process_strong_tasks->set_n_threads(t);
  1095   virtual CollectedHeap::Name kind() const {
  1096     return CollectedHeap::G1CollectedHeap;
  1099   // The current policy object for the collector.
  1100   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
  1102   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
  1104   // Adaptive size policy.  No such thing for g1.
  1105   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
  1107   // The rem set and barrier set.
  1108   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
  1110   unsigned get_gc_time_stamp() {
  1111     return _gc_time_stamp;
  1114   inline void reset_gc_time_stamp();
  1116   void check_gc_time_stamps() PRODUCT_RETURN;
  1118   inline void increment_gc_time_stamp();
  1120   // Reset the given region's GC timestamp. If it's starts humongous,
  1121   // also reset the GC timestamp of its corresponding
  1122   // continues humongous regions too.
  1123   void reset_gc_time_stamps(HeapRegion* hr);
  1125   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
  1126                                   DirtyCardQueue* into_cset_dcq,
  1127                                   bool concurrent, uint worker_i);
  1129   // The shared block offset table array.
  1130   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
  1132   // Reference Processing accessors
  1134   // The STW reference processor....
  1135   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
  1137   // The Concurrent Marking reference processor...
  1138   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
  1140   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
  1141   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
  1143   virtual size_t capacity() const;
  1144   virtual size_t used() const;
  1145   // This should be called when we're not holding the heap lock. The
  1146   // result might be a bit inaccurate.
  1147   size_t used_unlocked() const;
  1148   size_t recalculate_used() const;
  1150   // These virtual functions do the actual allocation.
  1151   // Some heaps may offer a contiguous region for shared non-blocking
  1152   // allocation, via inlined code (by exporting the address of the top and
  1153   // end fields defining the extent of the contiguous allocation region.)
  1154   // But G1CollectedHeap doesn't yet support this.
  1156   // Return an estimate of the maximum allocation that could be performed
  1157   // without triggering any collection or expansion activity.  In a
  1158   // generational collector, for example, this is probably the largest
  1159   // allocation that could be supported (without expansion) in the youngest
  1160   // generation.  It is "unsafe" because no locks are taken; the result
  1161   // should be treated as an approximation, not a guarantee, for use in
  1162   // heuristic resizing decisions.
  1163   virtual size_t unsafe_max_alloc();
  1165   virtual bool is_maximal_no_gc() const {
  1166     return _g1_storage.uncommitted_size() == 0;
  1169   // The total number of regions in the heap.
  1170   uint n_regions() { return _hrs.length(); }
  1172   // The max number of regions in the heap.
  1173   uint max_regions() { return _hrs.max_length(); }
  1175   // The number of regions that are completely free.
  1176   uint free_regions() { return _free_list.length(); }
  1178   // The number of regions that are not completely free.
  1179   uint used_regions() { return n_regions() - free_regions(); }
  1181   // The number of regions available for "regular" expansion.
  1182   uint expansion_regions() { return _expansion_regions; }
  1184   // Factory method for HeapRegion instances. It will return NULL if
  1185   // the allocation fails.
  1186   HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
  1188   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1189   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
  1190   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
  1191   void verify_dirty_young_regions() PRODUCT_RETURN;
  1193   // verify_region_sets() performs verification over the region
  1194   // lists. It will be compiled in the product code to be used when
  1195   // necessary (i.e., during heap verification).
  1196   void verify_region_sets();
  1198   // verify_region_sets_optional() is planted in the code for
  1199   // list verification in non-product builds (and it can be enabled in
  1200   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
  1201 #if HEAP_REGION_SET_FORCE_VERIFY
  1202   void verify_region_sets_optional() {
  1203     verify_region_sets();
  1205 #else // HEAP_REGION_SET_FORCE_VERIFY
  1206   void verify_region_sets_optional() { }
  1207 #endif // HEAP_REGION_SET_FORCE_VERIFY
  1209 #ifdef ASSERT
  1210   bool is_on_master_free_list(HeapRegion* hr) {
  1211     return hr->containing_set() == &_free_list;
  1213 #endif // ASSERT
  1215   // Wrapper for the region list operations that can be called from
  1216   // methods outside this class.
  1218   void secondary_free_list_add(FreeRegionList* list) {
  1219     _secondary_free_list.add_ordered(list);
  1222   void append_secondary_free_list() {
  1223     _free_list.add_ordered(&_secondary_free_list);
  1226   void append_secondary_free_list_if_not_empty_with_lock() {
  1227     // If the secondary free list looks empty there's no reason to
  1228     // take the lock and then try to append it.
  1229     if (!_secondary_free_list.is_empty()) {
  1230       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
  1231       append_secondary_free_list();
  1235   inline void old_set_remove(HeapRegion* hr);
  1237   size_t non_young_capacity_bytes() {
  1238     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
  1241   void set_free_regions_coming();
  1242   void reset_free_regions_coming();
  1243   bool free_regions_coming() { return _free_regions_coming; }
  1244   void wait_while_free_regions_coming();
  1246   // Determine whether the given region is one that we are using as an
  1247   // old GC alloc region.
  1248   bool is_old_gc_alloc_region(HeapRegion* hr) {
  1249     return hr == _retained_old_gc_alloc_region;
  1252   // Perform a collection of the heap; intended for use in implementing
  1253   // "System.gc".  This probably implies as full a collection as the
  1254   // "CollectedHeap" supports.
  1255   virtual void collect(GCCause::Cause cause);
  1257   // The same as above but assume that the caller holds the Heap_lock.
  1258   void collect_locked(GCCause::Cause cause);
  1260   // True iff an evacuation has failed in the most-recent collection.
  1261   bool evacuation_failed() { return _evacuation_failed; }
  1263   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
  1264   void prepend_to_freelist(FreeRegionList* list);
  1265   void decrement_summary_bytes(size_t bytes);
  1267   // Returns "TRUE" iff "p" points into the committed areas of the heap.
  1268   virtual bool is_in(const void* p) const;
  1270   // Return "TRUE" iff the given object address is within the collection
  1271   // set.
  1272   inline bool obj_in_cs(oop obj);
  1274   // Return "TRUE" iff the given object address is in the reserved
  1275   // region of g1.
  1276   bool is_in_g1_reserved(const void* p) const {
  1277     return _g1_reserved.contains(p);
  1280   // Returns a MemRegion that corresponds to the space that has been
  1281   // reserved for the heap
  1282   MemRegion g1_reserved() {
  1283     return _g1_reserved;
  1286   // Returns a MemRegion that corresponds to the space that has been
  1287   // committed in the heap
  1288   MemRegion g1_committed() {
  1289     return _g1_committed;
  1292   virtual bool is_in_closed_subset(const void* p) const;
  1294   G1SATBCardTableModRefBS* g1_barrier_set() {
  1295     return (G1SATBCardTableModRefBS*) barrier_set();
  1298   // This resets the card table to all zeros.  It is used after
  1299   // a collection pause which used the card table to claim cards.
  1300   void cleanUpCardTable();
  1302   // Iteration functions.
  1304   // Iterate over all the ref-containing fields of all objects, calling
  1305   // "cl.do_oop" on each.
  1306   virtual void oop_iterate(ExtendedOopClosure* cl);
  1308   // Same as above, restricted to a memory region.
  1309   void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
  1311   // Iterate over all objects, calling "cl.do_object" on each.
  1312   virtual void object_iterate(ObjectClosure* cl);
  1314   virtual void safe_object_iterate(ObjectClosure* cl) {
  1315     object_iterate(cl);
  1318   // Iterate over all spaces in use in the heap, in ascending address order.
  1319   virtual void space_iterate(SpaceClosure* cl);
  1321   // Iterate over heap regions, in address order, terminating the
  1322   // iteration early if the "doHeapRegion" method returns "true".
  1323   void heap_region_iterate(HeapRegionClosure* blk) const;
  1325   // Return the region with the given index. It assumes the index is valid.
  1326   inline HeapRegion* region_at(uint index) const;
  1328   // Divide the heap region sequence into "chunks" of some size (the number
  1329   // of regions divided by the number of parallel threads times some
  1330   // overpartition factor, currently 4).  Assumes that this will be called
  1331   // in parallel by ParallelGCThreads worker threads with discinct worker
  1332   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
  1333   // calls will use the same "claim_value", and that that claim value is
  1334   // different from the claim_value of any heap region before the start of
  1335   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
  1336   // attempting to claim the first region in each chunk, and, if
  1337   // successful, applying the closure to each region in the chunk (and
  1338   // setting the claim value of the second and subsequent regions of the
  1339   // chunk.)  For now requires that "doHeapRegion" always returns "false",
  1340   // i.e., that a closure never attempt to abort a traversal.
  1341   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
  1342                                        uint worker,
  1343                                        uint no_of_par_workers,
  1344                                        jint claim_value);
  1346   // It resets all the region claim values to the default.
  1347   void reset_heap_region_claim_values();
  1349   // Resets the claim values of regions in the current
  1350   // collection set to the default.
  1351   void reset_cset_heap_region_claim_values();
  1353 #ifdef ASSERT
  1354   bool check_heap_region_claim_values(jint claim_value);
  1356   // Same as the routine above but only checks regions in the
  1357   // current collection set.
  1358   bool check_cset_heap_region_claim_values(jint claim_value);
  1359 #endif // ASSERT
  1361   // Clear the cached cset start regions and (more importantly)
  1362   // the time stamps. Called when we reset the GC time stamp.
  1363   void clear_cset_start_regions();
  1365   // Given the id of a worker, obtain or calculate a suitable
  1366   // starting region for iterating over the current collection set.
  1367   HeapRegion* start_cset_region_for_worker(uint worker_i);
  1369   // This is a convenience method that is used by the
  1370   // HeapRegionIterator classes to calculate the starting region for
  1371   // each worker so that they do not all start from the same region.
  1372   HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
  1374   // Iterate over the regions (if any) in the current collection set.
  1375   void collection_set_iterate(HeapRegionClosure* blk);
  1377   // As above but starting from region r
  1378   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
  1380   // Returns the first (lowest address) compactible space in the heap.
  1381   virtual CompactibleSpace* first_compactible_space();
  1383   // A CollectedHeap will contain some number of spaces.  This finds the
  1384   // space containing a given address, or else returns NULL.
  1385   virtual Space* space_containing(const void* addr) const;
  1387   // A G1CollectedHeap will contain some number of heap regions.  This
  1388   // finds the region containing a given address, or else returns NULL.
  1389   template <class T>
  1390   inline HeapRegion* heap_region_containing(const T addr) const;
  1392   // Like the above, but requires "addr" to be in the heap (to avoid a
  1393   // null-check), and unlike the above, may return an continuing humongous
  1394   // region.
  1395   template <class T>
  1396   inline HeapRegion* heap_region_containing_raw(const T addr) const;
  1398   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
  1399   // each address in the (reserved) heap is a member of exactly
  1400   // one block.  The defining characteristic of a block is that it is
  1401   // possible to find its size, and thus to progress forward to the next
  1402   // block.  (Blocks may be of different sizes.)  Thus, blocks may
  1403   // represent Java objects, or they might be free blocks in a
  1404   // free-list-based heap (or subheap), as long as the two kinds are
  1405   // distinguishable and the size of each is determinable.
  1407   // Returns the address of the start of the "block" that contains the
  1408   // address "addr".  We say "blocks" instead of "object" since some heaps
  1409   // may not pack objects densely; a chunk may either be an object or a
  1410   // non-object.
  1411   virtual HeapWord* block_start(const void* addr) const;
  1413   // Requires "addr" to be the start of a chunk, and returns its size.
  1414   // "addr + size" is required to be the start of a new chunk, or the end
  1415   // of the active area of the heap.
  1416   virtual size_t block_size(const HeapWord* addr) const;
  1418   // Requires "addr" to be the start of a block, and returns "TRUE" iff
  1419   // the block is an object.
  1420   virtual bool block_is_obj(const HeapWord* addr) const;
  1422   // Does this heap support heap inspection? (+PrintClassHistogram)
  1423   virtual bool supports_heap_inspection() const { return true; }
  1425   // Section on thread-local allocation buffers (TLABs)
  1426   // See CollectedHeap for semantics.
  1428   bool supports_tlab_allocation() const;
  1429   size_t tlab_capacity(Thread* ignored) const;
  1430   size_t tlab_used(Thread* ignored) const;
  1431   size_t max_tlab_size() const;
  1432   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
  1434   // Can a compiler initialize a new object without store barriers?
  1435   // This permission only extends from the creation of a new object
  1436   // via a TLAB up to the first subsequent safepoint. If such permission
  1437   // is granted for this heap type, the compiler promises to call
  1438   // defer_store_barrier() below on any slow path allocation of
  1439   // a new object for which such initializing store barriers will
  1440   // have been elided. G1, like CMS, allows this, but should be
  1441   // ready to provide a compensating write barrier as necessary
  1442   // if that storage came out of a non-young region. The efficiency
  1443   // of this implementation depends crucially on being able to
  1444   // answer very efficiently in constant time whether a piece of
  1445   // storage in the heap comes from a young region or not.
  1446   // See ReduceInitialCardMarks.
  1447   virtual bool can_elide_tlab_store_barriers() const {
  1448     return true;
  1451   virtual bool card_mark_must_follow_store() const {
  1452     return true;
  1455   inline bool is_in_young(const oop obj);
  1457 #ifdef ASSERT
  1458   virtual bool is_in_partial_collection(const void* p);
  1459 #endif
  1461   virtual bool is_scavengable(const void* addr);
  1463   // We don't need barriers for initializing stores to objects
  1464   // in the young gen: for the SATB pre-barrier, there is no
  1465   // pre-value that needs to be remembered; for the remembered-set
  1466   // update logging post-barrier, we don't maintain remembered set
  1467   // information for young gen objects.
  1468   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
  1470   // Returns "true" iff the given word_size is "very large".
  1471   static bool isHumongous(size_t word_size) {
  1472     // Note this has to be strictly greater-than as the TLABs
  1473     // are capped at the humongous thresold and we want to
  1474     // ensure that we don't try to allocate a TLAB as
  1475     // humongous and that we don't allocate a humongous
  1476     // object in a TLAB.
  1477     return word_size > _humongous_object_threshold_in_words;
  1480   // Update mod union table with the set of dirty cards.
  1481   void updateModUnion();
  1483   // Set the mod union bits corresponding to the given memRegion.  Note
  1484   // that this is always a safe operation, since it doesn't clear any
  1485   // bits.
  1486   void markModUnionRange(MemRegion mr);
  1488   // Records the fact that a marking phase is no longer in progress.
  1489   void set_marking_complete() {
  1490     _mark_in_progress = false;
  1492   void set_marking_started() {
  1493     _mark_in_progress = true;
  1495   bool mark_in_progress() {
  1496     return _mark_in_progress;
  1499   // Print the maximum heap capacity.
  1500   virtual size_t max_capacity() const;
  1502   virtual jlong millis_since_last_gc();
  1505   // Convenience function to be used in situations where the heap type can be
  1506   // asserted to be this type.
  1507   static G1CollectedHeap* heap();
  1509   void set_region_short_lived_locked(HeapRegion* hr);
  1510   // add appropriate methods for any other surv rate groups
  1512   YoungList* young_list() const { return _young_list; }
  1514   // debugging
  1515   bool check_young_list_well_formed() {
  1516     return _young_list->check_list_well_formed();
  1519   bool check_young_list_empty(bool check_heap,
  1520                               bool check_sample = true);
  1522   // *** Stuff related to concurrent marking.  It's not clear to me that so
  1523   // many of these need to be public.
  1525   // The functions below are helper functions that a subclass of
  1526   // "CollectedHeap" can use in the implementation of its virtual
  1527   // functions.
  1528   // This performs a concurrent marking of the live objects in a
  1529   // bitmap off to the side.
  1530   void doConcurrentMark();
  1532   bool isMarkedPrev(oop obj) const;
  1533   bool isMarkedNext(oop obj) const;
  1535   // Determine if an object is dead, given the object and also
  1536   // the region to which the object belongs. An object is dead
  1537   // iff a) it was not allocated since the last mark and b) it
  1538   // is not marked.
  1540   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
  1541     return
  1542       !hr->obj_allocated_since_prev_marking(obj) &&
  1543       !isMarkedPrev(obj);
  1546   // This function returns true when an object has been
  1547   // around since the previous marking and hasn't yet
  1548   // been marked during this marking.
  1550   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
  1551     return
  1552       !hr->obj_allocated_since_next_marking(obj) &&
  1553       !isMarkedNext(obj);
  1556   // Determine if an object is dead, given only the object itself.
  1557   // This will find the region to which the object belongs and
  1558   // then call the region version of the same function.
  1560   // Added if it is NULL it isn't dead.
  1562   inline bool is_obj_dead(const oop obj) const;
  1564   inline bool is_obj_ill(const oop obj) const;
  1566   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
  1567   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
  1568   bool is_marked(oop obj, VerifyOption vo);
  1569   const char* top_at_mark_start_str(VerifyOption vo);
  1571   ConcurrentMark* concurrent_mark() const { return _cm; }
  1573   // Refinement
  1575   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
  1577   // The dirty cards region list is used to record a subset of regions
  1578   // whose cards need clearing. The list if populated during the
  1579   // remembered set scanning and drained during the card table
  1580   // cleanup. Although the methods are reentrant, population/draining
  1581   // phases must not overlap. For synchronization purposes the last
  1582   // element on the list points to itself.
  1583   HeapRegion* _dirty_cards_region_list;
  1584   void push_dirty_cards_region(HeapRegion* hr);
  1585   HeapRegion* pop_dirty_cards_region();
  1587   // Optimized nmethod scanning support routines
  1589   // Register the given nmethod with the G1 heap
  1590   virtual void register_nmethod(nmethod* nm);
  1592   // Unregister the given nmethod from the G1 heap
  1593   virtual void unregister_nmethod(nmethod* nm);
  1595   // Migrate the nmethods in the code root lists of the regions
  1596   // in the collection set to regions in to-space. In the event
  1597   // of an evacuation failure, nmethods that reference objects
  1598   // that were not successfullly evacuated are not migrated.
  1599   void migrate_strong_code_roots();
  1601   // Free up superfluous code root memory.
  1602   void purge_code_root_memory();
  1604   // Rebuild the stong code root lists for each region
  1605   // after a full GC
  1606   void rebuild_strong_code_roots();
  1608   // Delete entries for dead interned string and clean up unreferenced symbols
  1609   // in symbol table, possibly in parallel.
  1610   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
  1612   // Parallel phase of unloading/cleaning after G1 concurrent mark.
  1613   void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
  1615   // Redirty logged cards in the refinement queue.
  1616   void redirty_logged_cards();
  1617   // Verification
  1619   // The following is just to alert the verification code
  1620   // that a full collection has occurred and that the
  1621   // remembered sets are no longer up to date.
  1622   bool _full_collection;
  1623   void set_full_collection() { _full_collection = true;}
  1624   void clear_full_collection() {_full_collection = false;}
  1625   bool full_collection() {return _full_collection;}
  1627   // Perform any cleanup actions necessary before allowing a verification.
  1628   virtual void prepare_for_verify();
  1630   // Perform verification.
  1632   // vo == UsePrevMarking  -> use "prev" marking information,
  1633   // vo == UseNextMarking -> use "next" marking information
  1634   // vo == UseMarkWord    -> use the mark word in the object header
  1635   //
  1636   // NOTE: Only the "prev" marking information is guaranteed to be
  1637   // consistent most of the time, so most calls to this should use
  1638   // vo == UsePrevMarking.
  1639   // Currently, there is only one case where this is called with
  1640   // vo == UseNextMarking, which is to verify the "next" marking
  1641   // information at the end of remark.
  1642   // Currently there is only one place where this is called with
  1643   // vo == UseMarkWord, which is to verify the marking during a
  1644   // full GC.
  1645   void verify(bool silent, VerifyOption vo);
  1647   // Override; it uses the "prev" marking information
  1648   virtual void verify(bool silent);
  1650   // The methods below are here for convenience and dispatch the
  1651   // appropriate method depending on value of the given VerifyOption
  1652   // parameter. The values for that parameter, and their meanings,
  1653   // are the same as those above.
  1655   bool is_obj_dead_cond(const oop obj,
  1656                         const HeapRegion* hr,
  1657                         const VerifyOption vo) const;
  1659   bool is_obj_dead_cond(const oop obj,
  1660                         const VerifyOption vo) const;
  1662   // Printing
  1664   virtual void print_on(outputStream* st) const;
  1665   virtual void print_extended_on(outputStream* st) const;
  1666   virtual void print_on_error(outputStream* st) const;
  1668   virtual void print_gc_threads_on(outputStream* st) const;
  1669   virtual void gc_threads_do(ThreadClosure* tc) const;
  1671   // Override
  1672   void print_tracing_info() const;
  1674   // The following two methods are helpful for debugging RSet issues.
  1675   void print_cset_rsets() PRODUCT_RETURN;
  1676   void print_all_rsets() PRODUCT_RETURN;
  1678 public:
  1679   size_t pending_card_num();
  1680   size_t cards_scanned();
  1682 protected:
  1683   size_t _max_heap_capacity;
  1684 };
  1686 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
  1687 private:
  1688   bool        _retired;
  1690 public:
  1691   G1ParGCAllocBuffer(size_t gclab_word_size);
  1692   virtual ~G1ParGCAllocBuffer() {
  1693     guarantee(_retired, "Allocation buffer has not been retired");
  1696   virtual void set_buf(HeapWord* buf) {
  1697     ParGCAllocBuffer::set_buf(buf);
  1698     _retired = false;
  1701   virtual void retire(bool end_of_gc, bool retain) {
  1702     if (_retired) {
  1703       return;
  1705     ParGCAllocBuffer::retire(end_of_gc, retain);
  1706     _retired = true;
  1708 };
  1710 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP

mercurial