src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Fri, 06 Jan 2012 20:09:20 -0800

author
kvn
date
Fri, 06 Jan 2012 20:09:20 -0800
changeset 3400
22cee0ee8927
parent 3368
52b5d32fbfaf
parent 3391
069ab3f976d3
child 3435
898522ae3c32
permissions
-rw-r--r--

Merge

duke@435 1 /*
iveresov@2432 2 * Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
twisti@2697 26 #include "asm/assembler.hpp"
stefank@2314 27 #include "c1/c1_Compilation.hpp"
stefank@2314 28 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 29 #include "c1/c1_MacroAssembler.hpp"
stefank@2314 30 #include "c1/c1_Runtime1.hpp"
stefank@2314 31 #include "c1/c1_ValueStack.hpp"
stefank@2314 32 #include "ci/ciArrayKlass.hpp"
stefank@2314 33 #include "ci/ciInstance.hpp"
stefank@2314 34 #include "gc_interface/collectedHeap.hpp"
stefank@2314 35 #include "memory/barrierSet.hpp"
stefank@2314 36 #include "memory/cardTableModRefBS.hpp"
stefank@2314 37 #include "nativeInst_x86.hpp"
stefank@2314 38 #include "oops/objArrayKlass.hpp"
stefank@2314 39 #include "runtime/sharedRuntime.hpp"
duke@435 40
duke@435 41
duke@435 42 // These masks are used to provide 128-bit aligned bitmasks to the XMM
duke@435 43 // instructions, to allow sign-masking or sign-bit flipping. They allow
duke@435 44 // fast versions of NegF/NegD and AbsF/AbsD.
duke@435 45
duke@435 46 // Note: 'double' and 'long long' have 32-bits alignment on x86.
duke@435 47 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
duke@435 48 // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
duke@435 49 // of 128-bits operands for SSE instructions.
iveresov@2932 50 jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
duke@435 51 // Store the value to a 128-bits operand.
duke@435 52 operand[0] = lo;
duke@435 53 operand[1] = hi;
duke@435 54 return operand;
duke@435 55 }
duke@435 56
duke@435 57 // Buffer for 128-bits masks used by SSE instructions.
duke@435 58 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
duke@435 59
duke@435 60 // Static initialization during VM startup.
duke@435 61 static jlong *float_signmask_pool = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
duke@435 62 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
duke@435 63 static jlong *float_signflip_pool = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
duke@435 64 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
duke@435 65
duke@435 66
duke@435 67
duke@435 68 NEEDS_CLEANUP // remove this definitions ?
duke@435 69 const Register IC_Klass = rax; // where the IC klass is cached
duke@435 70 const Register SYNC_header = rax; // synchronization header
duke@435 71 const Register SHIFT_count = rcx; // where count for shift operations must be
duke@435 72
duke@435 73 #define __ _masm->
duke@435 74
duke@435 75
duke@435 76 static void select_different_registers(Register preserve,
duke@435 77 Register extra,
duke@435 78 Register &tmp1,
duke@435 79 Register &tmp2) {
duke@435 80 if (tmp1 == preserve) {
duke@435 81 assert_different_registers(tmp1, tmp2, extra);
duke@435 82 tmp1 = extra;
duke@435 83 } else if (tmp2 == preserve) {
duke@435 84 assert_different_registers(tmp1, tmp2, extra);
duke@435 85 tmp2 = extra;
duke@435 86 }
duke@435 87 assert_different_registers(preserve, tmp1, tmp2);
duke@435 88 }
duke@435 89
duke@435 90
duke@435 91
duke@435 92 static void select_different_registers(Register preserve,
duke@435 93 Register extra,
duke@435 94 Register &tmp1,
duke@435 95 Register &tmp2,
duke@435 96 Register &tmp3) {
duke@435 97 if (tmp1 == preserve) {
duke@435 98 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 99 tmp1 = extra;
duke@435 100 } else if (tmp2 == preserve) {
duke@435 101 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 102 tmp2 = extra;
duke@435 103 } else if (tmp3 == preserve) {
duke@435 104 assert_different_registers(tmp1, tmp2, tmp3, extra);
duke@435 105 tmp3 = extra;
duke@435 106 }
duke@435 107 assert_different_registers(preserve, tmp1, tmp2, tmp3);
duke@435 108 }
duke@435 109
duke@435 110
duke@435 111
duke@435 112 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 113 if (opr->is_constant()) {
duke@435 114 LIR_Const* constant = opr->as_constant_ptr();
duke@435 115 switch (constant->type()) {
duke@435 116 case T_INT: {
duke@435 117 return true;
duke@435 118 }
duke@435 119
duke@435 120 default:
duke@435 121 return false;
duke@435 122 }
duke@435 123 }
duke@435 124 return false;
duke@435 125 }
duke@435 126
duke@435 127
duke@435 128 LIR_Opr LIR_Assembler::receiverOpr() {
never@739 129 return FrameMap::receiver_opr;
duke@435 130 }
duke@435 131
duke@435 132 LIR_Opr LIR_Assembler::osrBufferPointer() {
never@739 133 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
duke@435 134 }
duke@435 135
duke@435 136 //--------------fpu register translations-----------------------
duke@435 137
duke@435 138
duke@435 139 address LIR_Assembler::float_constant(float f) {
duke@435 140 address const_addr = __ float_constant(f);
duke@435 141 if (const_addr == NULL) {
duke@435 142 bailout("const section overflow");
duke@435 143 return __ code()->consts()->start();
duke@435 144 } else {
duke@435 145 return const_addr;
duke@435 146 }
duke@435 147 }
duke@435 148
duke@435 149
duke@435 150 address LIR_Assembler::double_constant(double d) {
duke@435 151 address const_addr = __ double_constant(d);
duke@435 152 if (const_addr == NULL) {
duke@435 153 bailout("const section overflow");
duke@435 154 return __ code()->consts()->start();
duke@435 155 } else {
duke@435 156 return const_addr;
duke@435 157 }
duke@435 158 }
duke@435 159
duke@435 160
duke@435 161 void LIR_Assembler::set_24bit_FPU() {
duke@435 162 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
duke@435 163 }
duke@435 164
duke@435 165 void LIR_Assembler::reset_FPU() {
duke@435 166 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 167 }
duke@435 168
duke@435 169 void LIR_Assembler::fpop() {
duke@435 170 __ fpop();
duke@435 171 }
duke@435 172
duke@435 173 void LIR_Assembler::fxch(int i) {
duke@435 174 __ fxch(i);
duke@435 175 }
duke@435 176
duke@435 177 void LIR_Assembler::fld(int i) {
duke@435 178 __ fld_s(i);
duke@435 179 }
duke@435 180
duke@435 181 void LIR_Assembler::ffree(int i) {
duke@435 182 __ ffree(i);
duke@435 183 }
duke@435 184
duke@435 185 void LIR_Assembler::breakpoint() {
duke@435 186 __ int3();
duke@435 187 }
duke@435 188
duke@435 189 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 190 if (opr->is_single_cpu()) {
duke@435 191 __ push_reg(opr->as_register());
duke@435 192 } else if (opr->is_double_cpu()) {
never@739 193 NOT_LP64(__ push_reg(opr->as_register_hi()));
duke@435 194 __ push_reg(opr->as_register_lo());
duke@435 195 } else if (opr->is_stack()) {
duke@435 196 __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
duke@435 197 } else if (opr->is_constant()) {
duke@435 198 LIR_Const* const_opr = opr->as_constant_ptr();
duke@435 199 if (const_opr->type() == T_OBJECT) {
duke@435 200 __ push_oop(const_opr->as_jobject());
duke@435 201 } else if (const_opr->type() == T_INT) {
duke@435 202 __ push_jint(const_opr->as_jint());
duke@435 203 } else {
duke@435 204 ShouldNotReachHere();
duke@435 205 }
duke@435 206
duke@435 207 } else {
duke@435 208 ShouldNotReachHere();
duke@435 209 }
duke@435 210 }
duke@435 211
duke@435 212 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 213 if (opr->is_single_cpu()) {
never@739 214 __ pop_reg(opr->as_register());
duke@435 215 } else {
duke@435 216 ShouldNotReachHere();
duke@435 217 }
duke@435 218 }
duke@435 219
never@739 220 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
never@739 221 return addr->base()->is_illegal() && addr->index()->is_illegal();
never@739 222 }
never@739 223
duke@435 224 //-------------------------------------------
never@739 225
duke@435 226 Address LIR_Assembler::as_Address(LIR_Address* addr) {
never@739 227 return as_Address(addr, rscratch1);
never@739 228 }
never@739 229
never@739 230 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
duke@435 231 if (addr->base()->is_illegal()) {
duke@435 232 assert(addr->index()->is_illegal(), "must be illegal too");
never@739 233 AddressLiteral laddr((address)addr->disp(), relocInfo::none);
never@739 234 if (! __ reachable(laddr)) {
never@739 235 __ movptr(tmp, laddr.addr());
never@739 236 Address res(tmp, 0);
never@739 237 return res;
never@739 238 } else {
never@739 239 return __ as_Address(laddr);
never@739 240 }
duke@435 241 }
duke@435 242
never@739 243 Register base = addr->base()->as_pointer_register();
duke@435 244
duke@435 245 if (addr->index()->is_illegal()) {
duke@435 246 return Address( base, addr->disp());
never@739 247 } else if (addr->index()->is_cpu_register()) {
never@739 248 Register index = addr->index()->as_pointer_register();
duke@435 249 return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
duke@435 250 } else if (addr->index()->is_constant()) {
never@739 251 intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
never@739 252 assert(Assembler::is_simm32(addr_offset), "must be");
duke@435 253
duke@435 254 return Address(base, addr_offset);
duke@435 255 } else {
duke@435 256 Unimplemented();
duke@435 257 return Address();
duke@435 258 }
duke@435 259 }
duke@435 260
duke@435 261
duke@435 262 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 263 Address base = as_Address(addr);
duke@435 264 return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
duke@435 265 }
duke@435 266
duke@435 267
duke@435 268 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 269 return as_Address(addr);
duke@435 270 }
duke@435 271
duke@435 272
duke@435 273 void LIR_Assembler::osr_entry() {
duke@435 274 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 275 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 276 ValueStack* entry_state = osr_entry->state();
duke@435 277 int number_of_locks = entry_state->locks_size();
duke@435 278
duke@435 279 // we jump here if osr happens with the interpreter
duke@435 280 // state set up to continue at the beginning of the
duke@435 281 // loop that triggered osr - in particular, we have
duke@435 282 // the following registers setup:
duke@435 283 //
duke@435 284 // rcx: osr buffer
duke@435 285 //
duke@435 286
duke@435 287 // build frame
duke@435 288 ciMethod* m = compilation()->method();
duke@435 289 __ build_frame(initial_frame_size_in_bytes());
duke@435 290
duke@435 291 // OSR buffer is
duke@435 292 //
duke@435 293 // locals[nlocals-1..0]
duke@435 294 // monitors[0..number_of_locks]
duke@435 295 //
duke@435 296 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 297 // so first slot in the local array is the last local from the interpreter
duke@435 298 // and last slot is local[0] (receiver) from the interpreter
duke@435 299 //
duke@435 300 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 301 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 302 // in the interpreter frame (the method lock if a sync method)
duke@435 303
duke@435 304 // Initialize monitors in the compiled activation.
duke@435 305 // rcx: pointer to osr buffer
duke@435 306 //
duke@435 307 // All other registers are dead at this point and the locals will be
duke@435 308 // copied into place by code emitted in the IR.
duke@435 309
never@739 310 Register OSR_buf = osrBufferPointer()->as_pointer_register();
duke@435 311 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 312 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 313 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 314 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 315 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 316 // the oop.
duke@435 317 for (int i = 0; i < number_of_locks; i++) {
roland@1495 318 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 319 #ifdef ASSERT
duke@435 320 // verify the interpreter's monitor has a non-null object
duke@435 321 {
duke@435 322 Label L;
roland@1495 323 __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
duke@435 324 __ jcc(Assembler::notZero, L);
duke@435 325 __ stop("locked object is NULL");
duke@435 326 __ bind(L);
duke@435 327 }
duke@435 328 #endif
roland@1495 329 __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
never@739 330 __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
roland@1495 331 __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
never@739 332 __ movptr(frame_map()->address_for_monitor_object(i), rbx);
duke@435 333 }
duke@435 334 }
duke@435 335 }
duke@435 336
duke@435 337
duke@435 338 // inline cache check; done before the frame is built.
duke@435 339 int LIR_Assembler::check_icache() {
duke@435 340 Register receiver = FrameMap::receiver_opr->as_register();
duke@435 341 Register ic_klass = IC_Klass;
never@739 342 const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
iveresov@2344 343 const bool do_post_padding = VerifyOops || UseCompressedOops;
iveresov@2344 344 if (!do_post_padding) {
duke@435 345 // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
never@739 346 while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
duke@435 347 __ nop();
duke@435 348 }
duke@435 349 }
duke@435 350 int offset = __ offset();
duke@435 351 __ inline_cache_check(receiver, IC_Klass);
iveresov@2344 352 assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
iveresov@2344 353 if (do_post_padding) {
duke@435 354 // force alignment after the cache check.
duke@435 355 // It's been verified to be aligned if !VerifyOops
duke@435 356 __ align(CodeEntryAlignment);
duke@435 357 }
duke@435 358 return offset;
duke@435 359 }
duke@435 360
duke@435 361
duke@435 362 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
duke@435 363 jobject o = NULL;
duke@435 364 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
duke@435 365 __ movoop(reg, o);
duke@435 366 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 367 }
duke@435 368
duke@435 369
duke@435 370 // This specifies the rsp decrement needed to build the frame
duke@435 371 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 372 // if rounding, must let FrameMap know!
never@739 373
never@739 374 // The frame_map records size in slots (32bit word)
never@739 375
never@739 376 // subtract two words to account for return address and link
never@739 377 return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word)) * VMRegImpl::stack_slot_size;
duke@435 378 }
duke@435 379
duke@435 380
twisti@1639 381 int LIR_Assembler::emit_exception_handler() {
duke@435 382 // if the last instruction is a call (typically to do a throw which
duke@435 383 // is coming at the end after block reordering) the return address
duke@435 384 // must still point into the code area in order to avoid assertion
duke@435 385 // failures when searching for the corresponding bci => add a nop
duke@435 386 // (was bug 5/14/1999 - gri)
duke@435 387 __ nop();
duke@435 388
duke@435 389 // generate code for exception handler
duke@435 390 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 391 if (handler_base == NULL) {
duke@435 392 // not enough space left for the handler
duke@435 393 bailout("exception handler overflow");
twisti@1639 394 return -1;
duke@435 395 }
twisti@1639 396
duke@435 397 int offset = code_offset();
duke@435 398
twisti@1730 399 // the exception oop and pc are in rax, and rdx
duke@435 400 // no other registers need to be preserved, so invalidate them
twisti@1730 401 __ invalidate_registers(false, true, true, false, true, true);
duke@435 402
duke@435 403 // check that there is really an exception
duke@435 404 __ verify_not_null_oop(rax);
duke@435 405
twisti@1730 406 // search an exception handler (rax: exception oop, rdx: throwing pc)
twisti@2603 407 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
twisti@2603 408 __ should_not_reach_here();
duke@435 409 assert(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 410 __ end_a_stub();
twisti@1639 411
twisti@1639 412 return offset;
duke@435 413 }
duke@435 414
twisti@1639 415
never@1813 416 // Emit the code to remove the frame from the stack in the exception
never@1813 417 // unwind path.
never@1813 418 int LIR_Assembler::emit_unwind_handler() {
never@1813 419 #ifndef PRODUCT
never@1813 420 if (CommentedAssembly) {
never@1813 421 _masm->block_comment("Unwind handler");
never@1813 422 }
never@1813 423 #endif
never@1813 424
never@1813 425 int offset = code_offset();
never@1813 426
never@1813 427 // Fetch the exception from TLS and clear out exception related thread state
never@1813 428 __ get_thread(rsi);
never@1813 429 __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
never@3156 430 __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
never@3156 431 __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
never@1813 432
never@1813 433 __ bind(_unwind_handler_entry);
never@1813 434 __ verify_not_null_oop(rax);
never@1813 435 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 436 __ mov(rsi, rax); // Preserve the exception
never@1813 437 }
never@1813 438
never@1813 439 // Preform needed unlocking
never@1813 440 MonitorExitStub* stub = NULL;
never@1813 441 if (method()->is_synchronized()) {
never@1813 442 monitor_address(0, FrameMap::rax_opr);
never@1813 443 stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
never@1813 444 __ unlock_object(rdi, rbx, rax, *stub->entry());
never@1813 445 __ bind(*stub->continuation());
never@1813 446 }
never@1813 447
never@1813 448 if (compilation()->env()->dtrace_method_probes()) {
never@2185 449 __ get_thread(rax);
never@2185 450 __ movptr(Address(rsp, 0), rax);
never@2185 451 __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
never@1813 452 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
never@1813 453 }
never@1813 454
never@1813 455 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 456 __ mov(rax, rsi); // Restore the exception
never@1813 457 }
never@1813 458
never@1813 459 // remove the activation and dispatch to the unwind handler
never@1813 460 __ remove_frame(initial_frame_size_in_bytes());
never@1813 461 __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
never@1813 462
never@1813 463 // Emit the slow path assembly
never@1813 464 if (stub != NULL) {
never@1813 465 stub->emit_code(this);
never@1813 466 }
never@1813 467
never@1813 468 return offset;
never@1813 469 }
never@1813 470
never@1813 471
twisti@1639 472 int LIR_Assembler::emit_deopt_handler() {
duke@435 473 // if the last instruction is a call (typically to do a throw which
duke@435 474 // is coming at the end after block reordering) the return address
duke@435 475 // must still point into the code area in order to avoid assertion
duke@435 476 // failures when searching for the corresponding bci => add a nop
duke@435 477 // (was bug 5/14/1999 - gri)
duke@435 478 __ nop();
duke@435 479
duke@435 480 // generate code for exception handler
duke@435 481 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 482 if (handler_base == NULL) {
duke@435 483 // not enough space left for the handler
duke@435 484 bailout("deopt handler overflow");
twisti@1639 485 return -1;
duke@435 486 }
twisti@1639 487
duke@435 488 int offset = code_offset();
duke@435 489 InternalAddress here(__ pc());
twisti@1730 490
duke@435 491 __ pushptr(here.addr());
duke@435 492 __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
twisti@1730 493
duke@435 494 assert(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 495 __ end_a_stub();
duke@435 496
twisti@1639 497 return offset;
duke@435 498 }
duke@435 499
duke@435 500
duke@435 501 // This is the fast version of java.lang.String.compare; it has not
duke@435 502 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 503 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
never@739 504 __ movptr (rbx, rcx); // receiver is in rcx
never@739 505 __ movptr (rax, arg1->as_register());
duke@435 506
duke@435 507 // Get addresses of first characters from both Strings
iveresov@2344 508 __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
iveresov@2344 509 __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
iveresov@2344 510 __ lea (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 511
duke@435 512
duke@435 513 // rbx, may be NULL
duke@435 514 add_debug_info_for_null_check_here(info);
iveresov@2344 515 __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
iveresov@2344 516 __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
iveresov@2344 517 __ lea (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
duke@435 518
duke@435 519 // compute minimum length (in rax) and difference of lengths (on top of stack)
twisti@2697 520 __ movl (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
twisti@2697 521 __ movl (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
twisti@2697 522 __ mov (rcx, rbx);
twisti@2697 523 __ subptr(rbx, rax); // subtract lengths
twisti@2697 524 __ push (rbx); // result
twisti@2697 525 __ cmov (Assembler::lessEqual, rax, rcx);
twisti@2697 526
duke@435 527 // is minimum length 0?
duke@435 528 Label noLoop, haveResult;
never@739 529 __ testptr (rax, rax);
duke@435 530 __ jcc (Assembler::zero, noLoop);
duke@435 531
duke@435 532 // compare first characters
jrose@1057 533 __ load_unsigned_short(rcx, Address(rdi, 0));
jrose@1057 534 __ load_unsigned_short(rbx, Address(rsi, 0));
duke@435 535 __ subl(rcx, rbx);
duke@435 536 __ jcc(Assembler::notZero, haveResult);
duke@435 537 // starting loop
duke@435 538 __ decrement(rax); // we already tested index: skip one
duke@435 539 __ jcc(Assembler::zero, noLoop);
duke@435 540
duke@435 541 // set rsi.edi to the end of the arrays (arrays have same length)
duke@435 542 // negate the index
duke@435 543
never@739 544 __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 545 __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
never@739 546 __ negptr(rax);
duke@435 547
duke@435 548 // compare the strings in a loop
duke@435 549
duke@435 550 Label loop;
duke@435 551 __ align(wordSize);
duke@435 552 __ bind(loop);
jrose@1057 553 __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
jrose@1057 554 __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
duke@435 555 __ subl(rcx, rbx);
duke@435 556 __ jcc(Assembler::notZero, haveResult);
duke@435 557 __ increment(rax);
duke@435 558 __ jcc(Assembler::notZero, loop);
duke@435 559
duke@435 560 // strings are equal up to min length
duke@435 561
duke@435 562 __ bind(noLoop);
never@739 563 __ pop(rax);
duke@435 564 return_op(LIR_OprFact::illegalOpr);
duke@435 565
duke@435 566 __ bind(haveResult);
duke@435 567 // leave instruction is going to discard the TOS value
never@739 568 __ mov (rax, rcx); // result of call is in rax,
duke@435 569 }
duke@435 570
duke@435 571
duke@435 572 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 573 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
duke@435 574 if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
duke@435 575 assert(result->fpu() == 0, "result must already be on TOS");
duke@435 576 }
duke@435 577
duke@435 578 // Pop the stack before the safepoint code
twisti@1730 579 __ remove_frame(initial_frame_size_in_bytes());
duke@435 580
duke@435 581 bool result_is_oop = result->is_valid() ? result->is_oop() : false;
duke@435 582
duke@435 583 // Note: we do not need to round double result; float result has the right precision
duke@435 584 // the poll sets the condition code, but no data registers
duke@435 585 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 586 relocInfo::poll_return_type);
never@739 587
iveresov@2686 588 if (Assembler::is_polling_page_far()) {
iveresov@2686 589 __ lea(rscratch1, polling_page);
iveresov@2686 590 __ relocate(relocInfo::poll_return_type);
iveresov@2686 591 __ testl(rax, Address(rscratch1, 0));
iveresov@2686 592 } else {
iveresov@2686 593 __ testl(rax, polling_page);
iveresov@2686 594 }
duke@435 595 __ ret(0);
duke@435 596 }
duke@435 597
duke@435 598
duke@435 599 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 600 AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
duke@435 601 relocInfo::poll_type);
iveresov@2686 602 guarantee(info != NULL, "Shouldn't be NULL");
iveresov@2686 603 int offset = __ offset();
iveresov@2686 604 if (Assembler::is_polling_page_far()) {
iveresov@2686 605 __ lea(rscratch1, polling_page);
iveresov@2686 606 offset = __ offset();
duke@435 607 add_debug_info_for_branch(info);
iveresov@2686 608 __ testl(rax, Address(rscratch1, 0));
duke@435 609 } else {
iveresov@2686 610 add_debug_info_for_branch(info);
iveresov@2686 611 __ testl(rax, polling_page);
duke@435 612 }
duke@435 613 return offset;
duke@435 614 }
duke@435 615
duke@435 616
duke@435 617 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
never@739 618 if (from_reg != to_reg) __ mov(to_reg, from_reg);
duke@435 619 }
duke@435 620
duke@435 621 void LIR_Assembler::swap_reg(Register a, Register b) {
never@739 622 __ xchgptr(a, b);
duke@435 623 }
duke@435 624
duke@435 625
duke@435 626 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 627 assert(src->is_constant(), "should not call otherwise");
duke@435 628 assert(dest->is_register(), "should not call otherwise");
duke@435 629 LIR_Const* c = src->as_constant_ptr();
duke@435 630
duke@435 631 switch (c->type()) {
iveresov@2344 632 case T_INT: {
iveresov@2344 633 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 634 __ movl(dest->as_register(), c->as_jint());
iveresov@2344 635 break;
iveresov@2344 636 }
iveresov@2344 637
roland@1732 638 case T_ADDRESS: {
duke@435 639 assert(patch_code == lir_patch_none, "no patching handled here");
iveresov@2344 640 __ movptr(dest->as_register(), c->as_jint());
duke@435 641 break;
duke@435 642 }
duke@435 643
duke@435 644 case T_LONG: {
duke@435 645 assert(patch_code == lir_patch_none, "no patching handled here");
never@739 646 #ifdef _LP64
never@739 647 __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
never@739 648 #else
never@739 649 __ movptr(dest->as_register_lo(), c->as_jint_lo());
never@739 650 __ movptr(dest->as_register_hi(), c->as_jint_hi());
never@739 651 #endif // _LP64
duke@435 652 break;
duke@435 653 }
duke@435 654
duke@435 655 case T_OBJECT: {
duke@435 656 if (patch_code != lir_patch_none) {
duke@435 657 jobject2reg_with_patching(dest->as_register(), info);
duke@435 658 } else {
duke@435 659 __ movoop(dest->as_register(), c->as_jobject());
duke@435 660 }
duke@435 661 break;
duke@435 662 }
duke@435 663
duke@435 664 case T_FLOAT: {
duke@435 665 if (dest->is_single_xmm()) {
duke@435 666 if (c->is_zero_float()) {
duke@435 667 __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
duke@435 668 } else {
duke@435 669 __ movflt(dest->as_xmm_float_reg(),
duke@435 670 InternalAddress(float_constant(c->as_jfloat())));
duke@435 671 }
duke@435 672 } else {
duke@435 673 assert(dest->is_single_fpu(), "must be");
duke@435 674 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 675 if (c->is_zero_float()) {
duke@435 676 __ fldz();
duke@435 677 } else if (c->is_one_float()) {
duke@435 678 __ fld1();
duke@435 679 } else {
duke@435 680 __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
duke@435 681 }
duke@435 682 }
duke@435 683 break;
duke@435 684 }
duke@435 685
duke@435 686 case T_DOUBLE: {
duke@435 687 if (dest->is_double_xmm()) {
duke@435 688 if (c->is_zero_double()) {
duke@435 689 __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
duke@435 690 } else {
duke@435 691 __ movdbl(dest->as_xmm_double_reg(),
duke@435 692 InternalAddress(double_constant(c->as_jdouble())));
duke@435 693 }
duke@435 694 } else {
duke@435 695 assert(dest->is_double_fpu(), "must be");
duke@435 696 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 697 if (c->is_zero_double()) {
duke@435 698 __ fldz();
duke@435 699 } else if (c->is_one_double()) {
duke@435 700 __ fld1();
duke@435 701 } else {
duke@435 702 __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
duke@435 703 }
duke@435 704 }
duke@435 705 break;
duke@435 706 }
duke@435 707
duke@435 708 default:
duke@435 709 ShouldNotReachHere();
duke@435 710 }
duke@435 711 }
duke@435 712
duke@435 713 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 714 assert(src->is_constant(), "should not call otherwise");
duke@435 715 assert(dest->is_stack(), "should not call otherwise");
duke@435 716 LIR_Const* c = src->as_constant_ptr();
duke@435 717
duke@435 718 switch (c->type()) {
duke@435 719 case T_INT: // fall through
duke@435 720 case T_FLOAT:
iveresov@2344 721 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
iveresov@2344 722 break;
iveresov@2344 723
roland@1732 724 case T_ADDRESS:
iveresov@2344 725 __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
duke@435 726 break;
duke@435 727
duke@435 728 case T_OBJECT:
duke@435 729 __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
duke@435 730 break;
duke@435 731
duke@435 732 case T_LONG: // fall through
duke@435 733 case T_DOUBLE:
never@739 734 #ifdef _LP64
never@739 735 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 736 lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
never@739 737 #else
never@739 738 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 739 lo_word_offset_in_bytes), c->as_jint_lo_bits());
never@739 740 __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
never@739 741 hi_word_offset_in_bytes), c->as_jint_hi_bits());
never@739 742 #endif // _LP64
duke@435 743 break;
duke@435 744
duke@435 745 default:
duke@435 746 ShouldNotReachHere();
duke@435 747 }
duke@435 748 }
duke@435 749
iveresov@2344 750 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
duke@435 751 assert(src->is_constant(), "should not call otherwise");
duke@435 752 assert(dest->is_address(), "should not call otherwise");
duke@435 753 LIR_Const* c = src->as_constant_ptr();
duke@435 754 LIR_Address* addr = dest->as_address_ptr();
duke@435 755
never@739 756 int null_check_here = code_offset();
duke@435 757 switch (type) {
duke@435 758 case T_INT: // fall through
duke@435 759 case T_FLOAT:
iveresov@2344 760 __ movl(as_Address(addr), c->as_jint_bits());
iveresov@2344 761 break;
iveresov@2344 762
roland@1732 763 case T_ADDRESS:
iveresov@2344 764 __ movptr(as_Address(addr), c->as_jint_bits());
duke@435 765 break;
duke@435 766
duke@435 767 case T_OBJECT: // fall through
duke@435 768 case T_ARRAY:
duke@435 769 if (c->as_jobject() == NULL) {
iveresov@2344 770 if (UseCompressedOops && !wide) {
iveresov@2344 771 __ movl(as_Address(addr), (int32_t)NULL_WORD);
iveresov@2344 772 } else {
iveresov@2344 773 __ movptr(as_Address(addr), NULL_WORD);
iveresov@2344 774 }
duke@435 775 } else {
never@739 776 if (is_literal_address(addr)) {
never@739 777 ShouldNotReachHere();
never@739 778 __ movoop(as_Address(addr, noreg), c->as_jobject());
never@739 779 } else {
roland@1495 780 #ifdef _LP64
roland@1495 781 __ movoop(rscratch1, c->as_jobject());
iveresov@2344 782 if (UseCompressedOops && !wide) {
iveresov@2344 783 __ encode_heap_oop(rscratch1);
iveresov@2344 784 null_check_here = code_offset();
iveresov@2344 785 __ movl(as_Address_lo(addr), rscratch1);
iveresov@2344 786 } else {
iveresov@2344 787 null_check_here = code_offset();
iveresov@2344 788 __ movptr(as_Address_lo(addr), rscratch1);
iveresov@2344 789 }
roland@1495 790 #else
never@739 791 __ movoop(as_Address(addr), c->as_jobject());
roland@1495 792 #endif
never@739 793 }
duke@435 794 }
duke@435 795 break;
duke@435 796
duke@435 797 case T_LONG: // fall through
duke@435 798 case T_DOUBLE:
never@739 799 #ifdef _LP64
never@739 800 if (is_literal_address(addr)) {
never@739 801 ShouldNotReachHere();
never@739 802 __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
never@739 803 } else {
never@739 804 __ movptr(r10, (intptr_t)c->as_jlong_bits());
never@739 805 null_check_here = code_offset();
never@739 806 __ movptr(as_Address_lo(addr), r10);
never@739 807 }
never@739 808 #else
never@739 809 // Always reachable in 32bit so this doesn't produce useless move literal
never@739 810 __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
never@739 811 __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
never@739 812 #endif // _LP64
duke@435 813 break;
duke@435 814
duke@435 815 case T_BOOLEAN: // fall through
duke@435 816 case T_BYTE:
duke@435 817 __ movb(as_Address(addr), c->as_jint() & 0xFF);
duke@435 818 break;
duke@435 819
duke@435 820 case T_CHAR: // fall through
duke@435 821 case T_SHORT:
duke@435 822 __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
duke@435 823 break;
duke@435 824
duke@435 825 default:
duke@435 826 ShouldNotReachHere();
duke@435 827 };
never@739 828
never@739 829 if (info != NULL) {
never@739 830 add_debug_info_for_null_check(null_check_here, info);
never@739 831 }
duke@435 832 }
duke@435 833
duke@435 834
duke@435 835 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
duke@435 836 assert(src->is_register(), "should not call otherwise");
duke@435 837 assert(dest->is_register(), "should not call otherwise");
duke@435 838
duke@435 839 // move between cpu-registers
duke@435 840 if (dest->is_single_cpu()) {
never@739 841 #ifdef _LP64
never@739 842 if (src->type() == T_LONG) {
never@739 843 // Can do LONG -> OBJECT
never@739 844 move_regs(src->as_register_lo(), dest->as_register());
never@739 845 return;
never@739 846 }
never@739 847 #endif
duke@435 848 assert(src->is_single_cpu(), "must match");
duke@435 849 if (src->type() == T_OBJECT) {
duke@435 850 __ verify_oop(src->as_register());
duke@435 851 }
duke@435 852 move_regs(src->as_register(), dest->as_register());
duke@435 853
duke@435 854 } else if (dest->is_double_cpu()) {
never@739 855 #ifdef _LP64
never@739 856 if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
never@739 857 // Surprising to me but we can see move of a long to t_object
never@739 858 __ verify_oop(src->as_register());
never@739 859 move_regs(src->as_register(), dest->as_register_lo());
never@739 860 return;
never@739 861 }
never@739 862 #endif
duke@435 863 assert(src->is_double_cpu(), "must match");
duke@435 864 Register f_lo = src->as_register_lo();
duke@435 865 Register f_hi = src->as_register_hi();
duke@435 866 Register t_lo = dest->as_register_lo();
duke@435 867 Register t_hi = dest->as_register_hi();
never@739 868 #ifdef _LP64
never@739 869 assert(f_hi == f_lo, "must be same");
never@739 870 assert(t_hi == t_lo, "must be same");
never@739 871 move_regs(f_lo, t_lo);
never@739 872 #else
duke@435 873 assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
duke@435 874
never@739 875
duke@435 876 if (f_lo == t_hi && f_hi == t_lo) {
duke@435 877 swap_reg(f_lo, f_hi);
duke@435 878 } else if (f_hi == t_lo) {
duke@435 879 assert(f_lo != t_hi, "overwriting register");
duke@435 880 move_regs(f_hi, t_hi);
duke@435 881 move_regs(f_lo, t_lo);
duke@435 882 } else {
duke@435 883 assert(f_hi != t_lo, "overwriting register");
duke@435 884 move_regs(f_lo, t_lo);
duke@435 885 move_regs(f_hi, t_hi);
duke@435 886 }
never@739 887 #endif // LP64
duke@435 888
duke@435 889 // special moves from fpu-register to xmm-register
duke@435 890 // necessary for method results
duke@435 891 } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
duke@435 892 __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
duke@435 893 __ fld_s(Address(rsp, 0));
duke@435 894 } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
duke@435 895 __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
duke@435 896 __ fld_d(Address(rsp, 0));
duke@435 897 } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
duke@435 898 __ fstp_s(Address(rsp, 0));
duke@435 899 __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
duke@435 900 } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
duke@435 901 __ fstp_d(Address(rsp, 0));
duke@435 902 __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
duke@435 903
duke@435 904 // move between xmm-registers
duke@435 905 } else if (dest->is_single_xmm()) {
duke@435 906 assert(src->is_single_xmm(), "must match");
duke@435 907 __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
duke@435 908 } else if (dest->is_double_xmm()) {
duke@435 909 assert(src->is_double_xmm(), "must match");
duke@435 910 __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
duke@435 911
duke@435 912 // move between fpu-registers (no instruction necessary because of fpu-stack)
duke@435 913 } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
duke@435 914 assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
duke@435 915 assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
duke@435 916 } else {
duke@435 917 ShouldNotReachHere();
duke@435 918 }
duke@435 919 }
duke@435 920
duke@435 921 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 922 assert(src->is_register(), "should not call otherwise");
duke@435 923 assert(dest->is_stack(), "should not call otherwise");
duke@435 924
duke@435 925 if (src->is_single_cpu()) {
duke@435 926 Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 927 if (type == T_OBJECT || type == T_ARRAY) {
duke@435 928 __ verify_oop(src->as_register());
never@739 929 __ movptr (dst, src->as_register());
never@739 930 } else {
never@739 931 __ movl (dst, src->as_register());
duke@435 932 }
duke@435 933
duke@435 934 } else if (src->is_double_cpu()) {
duke@435 935 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 936 Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
never@739 937 __ movptr (dstLO, src->as_register_lo());
never@739 938 NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
duke@435 939
duke@435 940 } else if (src->is_single_xmm()) {
duke@435 941 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 942 __ movflt(dst_addr, src->as_xmm_float_reg());
duke@435 943
duke@435 944 } else if (src->is_double_xmm()) {
duke@435 945 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 946 __ movdbl(dst_addr, src->as_xmm_double_reg());
duke@435 947
duke@435 948 } else if (src->is_single_fpu()) {
duke@435 949 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 950 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 951 if (pop_fpu_stack) __ fstp_s (dst_addr);
duke@435 952 else __ fst_s (dst_addr);
duke@435 953
duke@435 954 } else if (src->is_double_fpu()) {
duke@435 955 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 956 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 957 if (pop_fpu_stack) __ fstp_d (dst_addr);
duke@435 958 else __ fst_d (dst_addr);
duke@435 959
duke@435 960 } else {
duke@435 961 ShouldNotReachHere();
duke@435 962 }
duke@435 963 }
duke@435 964
duke@435 965
iveresov@2344 966 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
duke@435 967 LIR_Address* to_addr = dest->as_address_ptr();
duke@435 968 PatchingStub* patch = NULL;
iveresov@2344 969 Register compressed_src = rscratch1;
duke@435 970
duke@435 971 if (type == T_ARRAY || type == T_OBJECT) {
duke@435 972 __ verify_oop(src->as_register());
iveresov@2344 973 #ifdef _LP64
iveresov@2344 974 if (UseCompressedOops && !wide) {
iveresov@2344 975 __ movptr(compressed_src, src->as_register());
iveresov@2344 976 __ encode_heap_oop(compressed_src);
iveresov@2344 977 }
iveresov@2344 978 #endif
duke@435 979 }
iveresov@2344 980
duke@435 981 if (patch_code != lir_patch_none) {
duke@435 982 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 983 Address toa = as_Address(to_addr);
never@739 984 assert(toa.disp() != 0, "must have");
duke@435 985 }
iveresov@2344 986
iveresov@2344 987 int null_check_here = code_offset();
duke@435 988 switch (type) {
duke@435 989 case T_FLOAT: {
duke@435 990 if (src->is_single_xmm()) {
duke@435 991 __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
duke@435 992 } else {
duke@435 993 assert(src->is_single_fpu(), "must be");
duke@435 994 assert(src->fpu_regnr() == 0, "argument must be on TOS");
duke@435 995 if (pop_fpu_stack) __ fstp_s(as_Address(to_addr));
duke@435 996 else __ fst_s (as_Address(to_addr));
duke@435 997 }
duke@435 998 break;
duke@435 999 }
duke@435 1000
duke@435 1001 case T_DOUBLE: {
duke@435 1002 if (src->is_double_xmm()) {
duke@435 1003 __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
duke@435 1004 } else {
duke@435 1005 assert(src->is_double_fpu(), "must be");
duke@435 1006 assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
duke@435 1007 if (pop_fpu_stack) __ fstp_d(as_Address(to_addr));
duke@435 1008 else __ fst_d (as_Address(to_addr));
duke@435 1009 }
duke@435 1010 break;
duke@435 1011 }
duke@435 1012
duke@435 1013 case T_ARRAY: // fall through
duke@435 1014 case T_OBJECT: // fall through
iveresov@2344 1015 if (UseCompressedOops && !wide) {
iveresov@2344 1016 __ movl(as_Address(to_addr), compressed_src);
iveresov@2344 1017 } else {
iveresov@2344 1018 __ movptr(as_Address(to_addr), src->as_register());
iveresov@2344 1019 }
iveresov@2344 1020 break;
iveresov@2344 1021 case T_ADDRESS:
never@739 1022 __ movptr(as_Address(to_addr), src->as_register());
never@739 1023 break;
duke@435 1024 case T_INT:
duke@435 1025 __ movl(as_Address(to_addr), src->as_register());
duke@435 1026 break;
duke@435 1027
duke@435 1028 case T_LONG: {
duke@435 1029 Register from_lo = src->as_register_lo();
duke@435 1030 Register from_hi = src->as_register_hi();
never@739 1031 #ifdef _LP64
never@739 1032 __ movptr(as_Address_lo(to_addr), from_lo);
never@739 1033 #else
duke@435 1034 Register base = to_addr->base()->as_register();
duke@435 1035 Register index = noreg;
duke@435 1036 if (to_addr->index()->is_register()) {
duke@435 1037 index = to_addr->index()->as_register();
duke@435 1038 }
duke@435 1039 if (base == from_lo || index == from_lo) {
duke@435 1040 assert(base != from_hi, "can't be");
duke@435 1041 assert(index == noreg || (index != base && index != from_hi), "can't handle this");
duke@435 1042 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1043 if (patch != NULL) {
duke@435 1044 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1045 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1046 patch_code = lir_patch_low;
duke@435 1047 }
duke@435 1048 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1049 } else {
duke@435 1050 assert(index == noreg || (index != base && index != from_lo), "can't handle this");
duke@435 1051 __ movl(as_Address_lo(to_addr), from_lo);
duke@435 1052 if (patch != NULL) {
duke@435 1053 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1054 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1055 patch_code = lir_patch_high;
duke@435 1056 }
duke@435 1057 __ movl(as_Address_hi(to_addr), from_hi);
duke@435 1058 }
never@739 1059 #endif // _LP64
duke@435 1060 break;
duke@435 1061 }
duke@435 1062
duke@435 1063 case T_BYTE: // fall through
duke@435 1064 case T_BOOLEAN: {
duke@435 1065 Register src_reg = src->as_register();
duke@435 1066 Address dst_addr = as_Address(to_addr);
duke@435 1067 assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1068 __ movb(dst_addr, src_reg);
duke@435 1069 break;
duke@435 1070 }
duke@435 1071
duke@435 1072 case T_CHAR: // fall through
duke@435 1073 case T_SHORT:
duke@435 1074 __ movw(as_Address(to_addr), src->as_register());
duke@435 1075 break;
duke@435 1076
duke@435 1077 default:
duke@435 1078 ShouldNotReachHere();
duke@435 1079 }
iveresov@2344 1080 if (info != NULL) {
iveresov@2344 1081 add_debug_info_for_null_check(null_check_here, info);
iveresov@2344 1082 }
duke@435 1083
duke@435 1084 if (patch_code != lir_patch_none) {
duke@435 1085 patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
duke@435 1086 }
duke@435 1087 }
duke@435 1088
duke@435 1089
duke@435 1090 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1091 assert(src->is_stack(), "should not call otherwise");
duke@435 1092 assert(dest->is_register(), "should not call otherwise");
duke@435 1093
duke@435 1094 if (dest->is_single_cpu()) {
duke@435 1095 if (type == T_ARRAY || type == T_OBJECT) {
never@739 1096 __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1097 __ verify_oop(dest->as_register());
never@739 1098 } else {
never@739 1099 __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
duke@435 1100 }
duke@435 1101
duke@435 1102 } else if (dest->is_double_cpu()) {
duke@435 1103 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
duke@435 1104 Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
never@739 1105 __ movptr(dest->as_register_lo(), src_addr_LO);
never@739 1106 NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
duke@435 1107
duke@435 1108 } else if (dest->is_single_xmm()) {
duke@435 1109 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1110 __ movflt(dest->as_xmm_float_reg(), src_addr);
duke@435 1111
duke@435 1112 } else if (dest->is_double_xmm()) {
duke@435 1113 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1114 __ movdbl(dest->as_xmm_double_reg(), src_addr);
duke@435 1115
duke@435 1116 } else if (dest->is_single_fpu()) {
duke@435 1117 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1118 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1119 __ fld_s(src_addr);
duke@435 1120
duke@435 1121 } else if (dest->is_double_fpu()) {
duke@435 1122 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1123 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
duke@435 1124 __ fld_d(src_addr);
duke@435 1125
duke@435 1126 } else {
duke@435 1127 ShouldNotReachHere();
duke@435 1128 }
duke@435 1129 }
duke@435 1130
duke@435 1131
duke@435 1132 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1133 if (src->is_single_stack()) {
never@739 1134 if (type == T_OBJECT || type == T_ARRAY) {
never@739 1135 __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1136 __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
never@739 1137 } else {
roland@1495 1138 #ifndef _LP64
never@739 1139 __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
never@739 1140 __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
roland@1495 1141 #else
roland@1495 1142 //no pushl on 64bits
roland@1495 1143 __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
roland@1495 1144 __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
roland@1495 1145 #endif
never@739 1146 }
duke@435 1147
duke@435 1148 } else if (src->is_double_stack()) {
never@739 1149 #ifdef _LP64
never@739 1150 __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
never@739 1151 __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
never@739 1152 #else
duke@435 1153 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
never@739 1154 // push and pop the part at src + wordSize, adding wordSize for the previous push
never@756 1155 __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
never@756 1156 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
duke@435 1157 __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
never@739 1158 #endif // _LP64
duke@435 1159
duke@435 1160 } else {
duke@435 1161 ShouldNotReachHere();
duke@435 1162 }
duke@435 1163 }
duke@435 1164
duke@435 1165
iveresov@2344 1166 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
duke@435 1167 assert(src->is_address(), "should not call otherwise");
duke@435 1168 assert(dest->is_register(), "should not call otherwise");
duke@435 1169
duke@435 1170 LIR_Address* addr = src->as_address_ptr();
duke@435 1171 Address from_addr = as_Address(addr);
duke@435 1172
duke@435 1173 switch (type) {
duke@435 1174 case T_BOOLEAN: // fall through
duke@435 1175 case T_BYTE: // fall through
duke@435 1176 case T_CHAR: // fall through
duke@435 1177 case T_SHORT:
duke@435 1178 if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
duke@435 1179 // on pre P6 processors we may get partial register stalls
duke@435 1180 // so blow away the value of to_rinfo before loading a
duke@435 1181 // partial word into it. Do it here so that it precedes
duke@435 1182 // the potential patch point below.
never@739 1183 __ xorptr(dest->as_register(), dest->as_register());
duke@435 1184 }
duke@435 1185 break;
duke@435 1186 }
duke@435 1187
duke@435 1188 PatchingStub* patch = NULL;
duke@435 1189 if (patch_code != lir_patch_none) {
duke@435 1190 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
never@739 1191 assert(from_addr.disp() != 0, "must have");
duke@435 1192 }
duke@435 1193 if (info != NULL) {
duke@435 1194 add_debug_info_for_null_check_here(info);
duke@435 1195 }
duke@435 1196
duke@435 1197 switch (type) {
duke@435 1198 case T_FLOAT: {
duke@435 1199 if (dest->is_single_xmm()) {
duke@435 1200 __ movflt(dest->as_xmm_float_reg(), from_addr);
duke@435 1201 } else {
duke@435 1202 assert(dest->is_single_fpu(), "must be");
duke@435 1203 assert(dest->fpu_regnr() == 0, "dest must be TOS");
duke@435 1204 __ fld_s(from_addr);
duke@435 1205 }
duke@435 1206 break;
duke@435 1207 }
duke@435 1208
duke@435 1209 case T_DOUBLE: {
duke@435 1210 if (dest->is_double_xmm()) {
duke@435 1211 __ movdbl(dest->as_xmm_double_reg(), from_addr);
duke@435 1212 } else {
duke@435 1213 assert(dest->is_double_fpu(), "must be");
duke@435 1214 assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
duke@435 1215 __ fld_d(from_addr);
duke@435 1216 }
duke@435 1217 break;
duke@435 1218 }
duke@435 1219
duke@435 1220 case T_OBJECT: // fall through
duke@435 1221 case T_ARRAY: // fall through
iveresov@2344 1222 if (UseCompressedOops && !wide) {
iveresov@2344 1223 __ movl(dest->as_register(), from_addr);
iveresov@2344 1224 } else {
iveresov@2344 1225 __ movptr(dest->as_register(), from_addr);
iveresov@2344 1226 }
iveresov@2344 1227 break;
iveresov@2344 1228
iveresov@2344 1229 case T_ADDRESS:
never@739 1230 __ movptr(dest->as_register(), from_addr);
never@739 1231 break;
duke@435 1232 case T_INT:
iveresov@1833 1233 __ movl(dest->as_register(), from_addr);
duke@435 1234 break;
duke@435 1235
duke@435 1236 case T_LONG: {
duke@435 1237 Register to_lo = dest->as_register_lo();
duke@435 1238 Register to_hi = dest->as_register_hi();
never@739 1239 #ifdef _LP64
never@739 1240 __ movptr(to_lo, as_Address_lo(addr));
never@739 1241 #else
duke@435 1242 Register base = addr->base()->as_register();
duke@435 1243 Register index = noreg;
duke@435 1244 if (addr->index()->is_register()) {
duke@435 1245 index = addr->index()->as_register();
duke@435 1246 }
duke@435 1247 if ((base == to_lo && index == to_hi) ||
duke@435 1248 (base == to_hi && index == to_lo)) {
duke@435 1249 // addresses with 2 registers are only formed as a result of
duke@435 1250 // array access so this code will never have to deal with
duke@435 1251 // patches or null checks.
duke@435 1252 assert(info == NULL && patch == NULL, "must be");
never@739 1253 __ lea(to_hi, as_Address(addr));
duke@435 1254 __ movl(to_lo, Address(to_hi, 0));
duke@435 1255 __ movl(to_hi, Address(to_hi, BytesPerWord));
duke@435 1256 } else if (base == to_lo || index == to_lo) {
duke@435 1257 assert(base != to_hi, "can't be");
duke@435 1258 assert(index == noreg || (index != base && index != to_hi), "can't handle this");
duke@435 1259 __ movl(to_hi, as_Address_hi(addr));
duke@435 1260 if (patch != NULL) {
duke@435 1261 patching_epilog(patch, lir_patch_high, base, info);
duke@435 1262 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1263 patch_code = lir_patch_low;
duke@435 1264 }
duke@435 1265 __ movl(to_lo, as_Address_lo(addr));
duke@435 1266 } else {
duke@435 1267 assert(index == noreg || (index != base && index != to_lo), "can't handle this");
duke@435 1268 __ movl(to_lo, as_Address_lo(addr));
duke@435 1269 if (patch != NULL) {
duke@435 1270 patching_epilog(patch, lir_patch_low, base, info);
duke@435 1271 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1272 patch_code = lir_patch_high;
duke@435 1273 }
duke@435 1274 __ movl(to_hi, as_Address_hi(addr));
duke@435 1275 }
never@739 1276 #endif // _LP64
duke@435 1277 break;
duke@435 1278 }
duke@435 1279
duke@435 1280 case T_BOOLEAN: // fall through
duke@435 1281 case T_BYTE: {
duke@435 1282 Register dest_reg = dest->as_register();
duke@435 1283 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1284 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1285 __ movsbl(dest_reg, from_addr);
duke@435 1286 } else {
duke@435 1287 __ movb(dest_reg, from_addr);
duke@435 1288 __ shll(dest_reg, 24);
duke@435 1289 __ sarl(dest_reg, 24);
duke@435 1290 }
duke@435 1291 break;
duke@435 1292 }
duke@435 1293
duke@435 1294 case T_CHAR: {
duke@435 1295 Register dest_reg = dest->as_register();
duke@435 1296 assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
duke@435 1297 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1298 __ movzwl(dest_reg, from_addr);
duke@435 1299 } else {
duke@435 1300 __ movw(dest_reg, from_addr);
duke@435 1301 }
duke@435 1302 break;
duke@435 1303 }
duke@435 1304
duke@435 1305 case T_SHORT: {
duke@435 1306 Register dest_reg = dest->as_register();
duke@435 1307 if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
never@739 1308 __ movswl(dest_reg, from_addr);
duke@435 1309 } else {
duke@435 1310 __ movw(dest_reg, from_addr);
duke@435 1311 __ shll(dest_reg, 16);
duke@435 1312 __ sarl(dest_reg, 16);
duke@435 1313 }
duke@435 1314 break;
duke@435 1315 }
duke@435 1316
duke@435 1317 default:
duke@435 1318 ShouldNotReachHere();
duke@435 1319 }
duke@435 1320
duke@435 1321 if (patch != NULL) {
duke@435 1322 patching_epilog(patch, patch_code, addr->base()->as_register(), info);
duke@435 1323 }
duke@435 1324
duke@435 1325 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 1326 #ifdef _LP64
iveresov@2344 1327 if (UseCompressedOops && !wide) {
iveresov@2344 1328 __ decode_heap_oop(dest->as_register());
iveresov@2344 1329 }
iveresov@2344 1330 #endif
duke@435 1331 __ verify_oop(dest->as_register());
duke@435 1332 }
duke@435 1333 }
duke@435 1334
duke@435 1335
duke@435 1336 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1337 LIR_Address* addr = src->as_address_ptr();
duke@435 1338 Address from_addr = as_Address(addr);
duke@435 1339
duke@435 1340 if (VM_Version::supports_sse()) {
duke@435 1341 switch (ReadPrefetchInstr) {
duke@435 1342 case 0:
duke@435 1343 __ prefetchnta(from_addr); break;
duke@435 1344 case 1:
duke@435 1345 __ prefetcht0(from_addr); break;
duke@435 1346 case 2:
duke@435 1347 __ prefetcht2(from_addr); break;
duke@435 1348 default:
duke@435 1349 ShouldNotReachHere(); break;
duke@435 1350 }
kvn@2761 1351 } else if (VM_Version::supports_3dnow_prefetch()) {
duke@435 1352 __ prefetchr(from_addr);
duke@435 1353 }
duke@435 1354 }
duke@435 1355
duke@435 1356
duke@435 1357 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1358 LIR_Address* addr = src->as_address_ptr();
duke@435 1359 Address from_addr = as_Address(addr);
duke@435 1360
duke@435 1361 if (VM_Version::supports_sse()) {
duke@435 1362 switch (AllocatePrefetchInstr) {
duke@435 1363 case 0:
duke@435 1364 __ prefetchnta(from_addr); break;
duke@435 1365 case 1:
duke@435 1366 __ prefetcht0(from_addr); break;
duke@435 1367 case 2:
duke@435 1368 __ prefetcht2(from_addr); break;
duke@435 1369 case 3:
duke@435 1370 __ prefetchw(from_addr); break;
duke@435 1371 default:
duke@435 1372 ShouldNotReachHere(); break;
duke@435 1373 }
kvn@2761 1374 } else if (VM_Version::supports_3dnow_prefetch()) {
duke@435 1375 __ prefetchw(from_addr);
duke@435 1376 }
duke@435 1377 }
duke@435 1378
duke@435 1379
duke@435 1380 NEEDS_CLEANUP; // This could be static?
duke@435 1381 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
kvn@464 1382 int elem_size = type2aelembytes(type);
duke@435 1383 switch (elem_size) {
duke@435 1384 case 1: return Address::times_1;
duke@435 1385 case 2: return Address::times_2;
duke@435 1386 case 4: return Address::times_4;
duke@435 1387 case 8: return Address::times_8;
duke@435 1388 }
duke@435 1389 ShouldNotReachHere();
duke@435 1390 return Address::no_scale;
duke@435 1391 }
duke@435 1392
duke@435 1393
duke@435 1394 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 1395 switch (op->code()) {
duke@435 1396 case lir_idiv:
duke@435 1397 case lir_irem:
duke@435 1398 arithmetic_idiv(op->code(),
duke@435 1399 op->in_opr1(),
duke@435 1400 op->in_opr2(),
duke@435 1401 op->in_opr3(),
duke@435 1402 op->result_opr(),
duke@435 1403 op->info());
duke@435 1404 break;
duke@435 1405 default: ShouldNotReachHere(); break;
duke@435 1406 }
duke@435 1407 }
duke@435 1408
duke@435 1409 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 1410 #ifdef ASSERT
duke@435 1411 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 1412 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 1413 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 1414 #endif
duke@435 1415
duke@435 1416 if (op->cond() == lir_cond_always) {
duke@435 1417 if (op->info() != NULL) add_debug_info_for_branch(op->info());
duke@435 1418 __ jmp (*(op->label()));
duke@435 1419 } else {
duke@435 1420 Assembler::Condition acond = Assembler::zero;
duke@435 1421 if (op->code() == lir_cond_float_branch) {
duke@435 1422 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 1423 __ jcc(Assembler::parity, *(op->ublock()->label()));
duke@435 1424 switch(op->cond()) {
duke@435 1425 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1426 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1427 case lir_cond_less: acond = Assembler::below; break;
duke@435 1428 case lir_cond_lessEqual: acond = Assembler::belowEqual; break;
duke@435 1429 case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
duke@435 1430 case lir_cond_greater: acond = Assembler::above; break;
duke@435 1431 default: ShouldNotReachHere();
duke@435 1432 }
duke@435 1433 } else {
duke@435 1434 switch (op->cond()) {
duke@435 1435 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1436 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1437 case lir_cond_less: acond = Assembler::less; break;
duke@435 1438 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1439 case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
duke@435 1440 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1441 case lir_cond_belowEqual: acond = Assembler::belowEqual; break;
duke@435 1442 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; break;
duke@435 1443 default: ShouldNotReachHere();
duke@435 1444 }
duke@435 1445 }
duke@435 1446 __ jcc(acond,*(op->label()));
duke@435 1447 }
duke@435 1448 }
duke@435 1449
duke@435 1450 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 1451 LIR_Opr src = op->in_opr();
duke@435 1452 LIR_Opr dest = op->result_opr();
duke@435 1453
duke@435 1454 switch (op->bytecode()) {
duke@435 1455 case Bytecodes::_i2l:
never@739 1456 #ifdef _LP64
never@739 1457 __ movl2ptr(dest->as_register_lo(), src->as_register());
never@739 1458 #else
duke@435 1459 move_regs(src->as_register(), dest->as_register_lo());
duke@435 1460 move_regs(src->as_register(), dest->as_register_hi());
duke@435 1461 __ sarl(dest->as_register_hi(), 31);
never@739 1462 #endif // LP64
duke@435 1463 break;
duke@435 1464
duke@435 1465 case Bytecodes::_l2i:
duke@435 1466 move_regs(src->as_register_lo(), dest->as_register());
duke@435 1467 break;
duke@435 1468
duke@435 1469 case Bytecodes::_i2b:
duke@435 1470 move_regs(src->as_register(), dest->as_register());
duke@435 1471 __ sign_extend_byte(dest->as_register());
duke@435 1472 break;
duke@435 1473
duke@435 1474 case Bytecodes::_i2c:
duke@435 1475 move_regs(src->as_register(), dest->as_register());
duke@435 1476 __ andl(dest->as_register(), 0xFFFF);
duke@435 1477 break;
duke@435 1478
duke@435 1479 case Bytecodes::_i2s:
duke@435 1480 move_regs(src->as_register(), dest->as_register());
duke@435 1481 __ sign_extend_short(dest->as_register());
duke@435 1482 break;
duke@435 1483
duke@435 1484
duke@435 1485 case Bytecodes::_f2d:
duke@435 1486 case Bytecodes::_d2f:
duke@435 1487 if (dest->is_single_xmm()) {
duke@435 1488 __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
duke@435 1489 } else if (dest->is_double_xmm()) {
duke@435 1490 __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
duke@435 1491 } else {
duke@435 1492 assert(src->fpu() == dest->fpu(), "register must be equal");
duke@435 1493 // do nothing (float result is rounded later through spilling)
duke@435 1494 }
duke@435 1495 break;
duke@435 1496
duke@435 1497 case Bytecodes::_i2f:
duke@435 1498 case Bytecodes::_i2d:
duke@435 1499 if (dest->is_single_xmm()) {
never@739 1500 __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
duke@435 1501 } else if (dest->is_double_xmm()) {
never@739 1502 __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
duke@435 1503 } else {
duke@435 1504 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1505 __ movl(Address(rsp, 0), src->as_register());
duke@435 1506 __ fild_s(Address(rsp, 0));
duke@435 1507 }
duke@435 1508 break;
duke@435 1509
duke@435 1510 case Bytecodes::_f2i:
duke@435 1511 case Bytecodes::_d2i:
duke@435 1512 if (src->is_single_xmm()) {
never@739 1513 __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
duke@435 1514 } else if (src->is_double_xmm()) {
never@739 1515 __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
duke@435 1516 } else {
duke@435 1517 assert(src->fpu() == 0, "input must be on TOS");
duke@435 1518 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
duke@435 1519 __ fist_s(Address(rsp, 0));
duke@435 1520 __ movl(dest->as_register(), Address(rsp, 0));
duke@435 1521 __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
duke@435 1522 }
duke@435 1523
duke@435 1524 // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
duke@435 1525 assert(op->stub() != NULL, "stub required");
duke@435 1526 __ cmpl(dest->as_register(), 0x80000000);
duke@435 1527 __ jcc(Assembler::equal, *op->stub()->entry());
duke@435 1528 __ bind(*op->stub()->continuation());
duke@435 1529 break;
duke@435 1530
duke@435 1531 case Bytecodes::_l2f:
duke@435 1532 case Bytecodes::_l2d:
duke@435 1533 assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
duke@435 1534 assert(dest->fpu() == 0, "result must be on TOS");
duke@435 1535
never@739 1536 __ movptr(Address(rsp, 0), src->as_register_lo());
never@739 1537 NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
duke@435 1538 __ fild_d(Address(rsp, 0));
duke@435 1539 // float result is rounded later through spilling
duke@435 1540 break;
duke@435 1541
duke@435 1542 case Bytecodes::_f2l:
duke@435 1543 case Bytecodes::_d2l:
duke@435 1544 assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
duke@435 1545 assert(src->fpu() == 0, "input must be on TOS");
never@739 1546 assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
duke@435 1547
duke@435 1548 // instruction sequence too long to inline it here
duke@435 1549 {
duke@435 1550 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
duke@435 1551 }
duke@435 1552 break;
duke@435 1553
duke@435 1554 default: ShouldNotReachHere();
duke@435 1555 }
duke@435 1556 }
duke@435 1557
duke@435 1558 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 1559 if (op->init_check()) {
coleenp@3368 1560 __ cmpb(Address(op->klass()->as_register(),
stefank@3391 1561 instanceKlass::init_state_offset()),
duke@435 1562 instanceKlass::fully_initialized);
duke@435 1563 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 1564 __ jcc(Assembler::notEqual, *op->stub()->entry());
duke@435 1565 }
duke@435 1566 __ allocate_object(op->obj()->as_register(),
duke@435 1567 op->tmp1()->as_register(),
duke@435 1568 op->tmp2()->as_register(),
duke@435 1569 op->header_size(),
duke@435 1570 op->object_size(),
duke@435 1571 op->klass()->as_register(),
duke@435 1572 *op->stub()->entry());
duke@435 1573 __ bind(*op->stub()->continuation());
duke@435 1574 }
duke@435 1575
duke@435 1576 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
iveresov@2432 1577 Register len = op->len()->as_register();
iveresov@2432 1578 LP64_ONLY( __ movslq(len, len); )
iveresov@2432 1579
duke@435 1580 if (UseSlowPath ||
duke@435 1581 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 1582 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
duke@435 1583 __ jmp(*op->stub()->entry());
duke@435 1584 } else {
duke@435 1585 Register tmp1 = op->tmp1()->as_register();
duke@435 1586 Register tmp2 = op->tmp2()->as_register();
duke@435 1587 Register tmp3 = op->tmp3()->as_register();
duke@435 1588 if (len == tmp1) {
duke@435 1589 tmp1 = tmp3;
duke@435 1590 } else if (len == tmp2) {
duke@435 1591 tmp2 = tmp3;
duke@435 1592 } else if (len == tmp3) {
duke@435 1593 // everything is ok
duke@435 1594 } else {
never@739 1595 __ mov(tmp3, len);
duke@435 1596 }
duke@435 1597 __ allocate_array(op->obj()->as_register(),
duke@435 1598 len,
duke@435 1599 tmp1,
duke@435 1600 tmp2,
duke@435 1601 arrayOopDesc::header_size(op->type()),
duke@435 1602 array_element_size(op->type()),
duke@435 1603 op->klass()->as_register(),
duke@435 1604 *op->stub()->entry());
duke@435 1605 }
duke@435 1606 __ bind(*op->stub()->continuation());
duke@435 1607 }
duke@435 1608
iveresov@2138 1609 void LIR_Assembler::type_profile_helper(Register mdo,
iveresov@2138 1610 ciMethodData *md, ciProfileData *data,
iveresov@2138 1611 Register recv, Label* update_done) {
iveresov@2163 1612 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1613 Label next_test;
iveresov@2138 1614 // See if the receiver is receiver[n].
iveresov@2138 1615 __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
iveresov@2138 1616 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1617 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
iveresov@2138 1618 __ addptr(data_addr, DataLayout::counter_increment);
iveresov@2146 1619 __ jmp(*update_done);
iveresov@2138 1620 __ bind(next_test);
iveresov@2138 1621 }
iveresov@2138 1622
iveresov@2138 1623 // Didn't find receiver; find next empty slot and fill it in
iveresov@2163 1624 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
iveresov@2138 1625 Label next_test;
iveresov@2138 1626 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
iveresov@2138 1627 __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
iveresov@2138 1628 __ jccb(Assembler::notEqual, next_test);
iveresov@2138 1629 __ movptr(recv_addr, recv);
iveresov@2138 1630 __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
iveresov@2146 1631 __ jmp(*update_done);
iveresov@2138 1632 __ bind(next_test);
iveresov@2138 1633 }
iveresov@2138 1634 }
iveresov@2138 1635
iveresov@2146 1636 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 1637 // we always need a stub for the failure case.
iveresov@2138 1638 CodeStub* stub = op->stub();
iveresov@2138 1639 Register obj = op->object()->as_register();
iveresov@2138 1640 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 1641 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 1642 Register dst = op->result_opr()->as_register();
iveresov@2138 1643 ciKlass* k = op->klass();
iveresov@2138 1644 Register Rtmp1 = noreg;
iveresov@2138 1645
iveresov@2138 1646 // check if it needs to be profiled
iveresov@2138 1647 ciMethodData* md;
iveresov@2138 1648 ciProfileData* data;
iveresov@2138 1649
iveresov@2138 1650 if (op->should_profile()) {
iveresov@2138 1651 ciMethod* method = op->profiled_method();
iveresov@2138 1652 assert(method != NULL, "Should have method");
iveresov@2138 1653 int bci = op->profiled_bci();
iveresov@2349 1654 md = method->method_data_or_null();
iveresov@2349 1655 assert(md != NULL, "Sanity");
iveresov@2138 1656 data = md->bci_to_data(bci);
iveresov@2146 1657 assert(data != NULL, "need data for type check");
iveresov@2146 1658 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2138 1659 }
iveresov@2146 1660 Label profile_cast_success, profile_cast_failure;
iveresov@2146 1661 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2146 1662 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2138 1663
iveresov@2138 1664 if (obj == k_RInfo) {
iveresov@2138 1665 k_RInfo = dst;
iveresov@2138 1666 } else if (obj == klass_RInfo) {
iveresov@2138 1667 klass_RInfo = dst;
iveresov@2138 1668 }
iveresov@2344 1669 if (k->is_loaded() && !UseCompressedOops) {
iveresov@2138 1670 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
iveresov@2138 1671 } else {
iveresov@2138 1672 Rtmp1 = op->tmp3()->as_register();
iveresov@2138 1673 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
iveresov@2138 1674 }
iveresov@2138 1675
iveresov@2138 1676 assert_different_registers(obj, k_RInfo, klass_RInfo);
iveresov@2138 1677 if (!k->is_loaded()) {
iveresov@2138 1678 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@2138 1679 } else {
iveresov@2138 1680 #ifdef _LP64
iveresov@2138 1681 __ movoop(k_RInfo, k->constant_encoding());
iveresov@2138 1682 #endif // _LP64
iveresov@2138 1683 }
iveresov@2138 1684 assert(obj != k_RInfo, "must be different");
iveresov@2138 1685
iveresov@2138 1686 __ cmpptr(obj, (int32_t)NULL_WORD);
iveresov@2138 1687 if (op->should_profile()) {
iveresov@2146 1688 Label not_null;
iveresov@2146 1689 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1690 // Object is null; update MDO and exit
iveresov@2138 1691 Register mdo = klass_RInfo;
iveresov@2138 1692 __ movoop(mdo, md->constant_encoding());
iveresov@2138 1693 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2138 1694 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2138 1695 __ orl(data_addr, header_bits);
iveresov@2146 1696 __ jmp(*obj_is_null);
iveresov@2146 1697 __ bind(not_null);
iveresov@2138 1698 } else {
iveresov@2146 1699 __ jcc(Assembler::equal, *obj_is_null);
iveresov@2138 1700 }
iveresov@2138 1701 __ verify_oop(obj);
iveresov@2138 1702
iveresov@2138 1703 if (op->fast_check()) {
iveresov@2146 1704 // get object class
iveresov@2138 1705 // not a safepoint as obj null check happens earlier
iveresov@2138 1706 #ifdef _LP64
iveresov@2344 1707 if (UseCompressedOops) {
iveresov@2344 1708 __ load_klass(Rtmp1, obj);
iveresov@2344 1709 __ cmpptr(k_RInfo, Rtmp1);
iveresov@2138 1710 } else {
iveresov@2138 1711 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2138 1712 }
iveresov@2344 1713 #else
iveresov@2344 1714 if (k->is_loaded()) {
iveresov@2344 1715 __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
iveresov@2344 1716 } else {
iveresov@2344 1717 __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
iveresov@2344 1718 }
iveresov@2344 1719 #endif
iveresov@2138 1720 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1721 // successful cast, fall through to profile or jump
iveresov@2138 1722 } else {
iveresov@2138 1723 // get object class
iveresov@2138 1724 // not a safepoint as obj null check happens earlier
iveresov@2344 1725 __ load_klass(klass_RInfo, obj);
iveresov@2138 1726 if (k->is_loaded()) {
iveresov@2138 1727 // See if we get an immediate positive hit
iveresov@2138 1728 #ifdef _LP64
iveresov@2138 1729 __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
iveresov@2138 1730 #else
iveresov@2138 1731 __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
iveresov@2138 1732 #endif // _LP64
stefank@3391 1733 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
iveresov@2138 1734 __ jcc(Assembler::notEqual, *failure_target);
iveresov@2146 1735 // successful cast, fall through to profile or jump
iveresov@2138 1736 } else {
iveresov@2138 1737 // See if we get an immediate positive hit
iveresov@2146 1738 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1739 // check for self
iveresov@2138 1740 #ifdef _LP64
iveresov@2138 1741 __ cmpptr(klass_RInfo, k_RInfo);
iveresov@2138 1742 #else
iveresov@2138 1743 __ cmpoop(klass_RInfo, k->constant_encoding());
iveresov@2138 1744 #endif // _LP64
iveresov@2146 1745 __ jcc(Assembler::equal, *success_target);
iveresov@2138 1746
iveresov@2138 1747 __ push(klass_RInfo);
iveresov@2138 1748 #ifdef _LP64
iveresov@2138 1749 __ push(k_RInfo);
iveresov@2138 1750 #else
iveresov@2138 1751 __ pushoop(k->constant_encoding());
iveresov@2138 1752 #endif // _LP64
iveresov@2138 1753 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1754 __ pop(klass_RInfo);
iveresov@2138 1755 __ pop(klass_RInfo);
iveresov@2138 1756 // result is a boolean
iveresov@2138 1757 __ cmpl(klass_RInfo, 0);
iveresov@2138 1758 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1759 // successful cast, fall through to profile or jump
iveresov@2138 1760 }
iveresov@2138 1761 } else {
iveresov@2138 1762 // perform the fast part of the checking logic
iveresov@2146 1763 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
iveresov@2138 1764 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 1765 __ push(klass_RInfo);
iveresov@2138 1766 __ push(k_RInfo);
iveresov@2138 1767 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
iveresov@2138 1768 __ pop(klass_RInfo);
iveresov@2138 1769 __ pop(k_RInfo);
iveresov@2138 1770 // result is a boolean
iveresov@2138 1771 __ cmpl(k_RInfo, 0);
iveresov@2138 1772 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1773 // successful cast, fall through to profile or jump
iveresov@2138 1774 }
iveresov@2138 1775 }
iveresov@2138 1776 if (op->should_profile()) {
iveresov@2138 1777 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1778 __ bind(profile_cast_success);
iveresov@2138 1779 __ movoop(mdo, md->constant_encoding());
iveresov@2344 1780 __ load_klass(recv, obj);
iveresov@2138 1781 Label update_done;
iveresov@2146 1782 type_profile_helper(mdo, md, data, recv, success);
iveresov@2146 1783 __ jmp(*success);
iveresov@2138 1784
iveresov@2138 1785 __ bind(profile_cast_failure);
iveresov@2138 1786 __ movoop(mdo, md->constant_encoding());
iveresov@2138 1787 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2138 1788 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1789 __ jmp(*failure);
iveresov@2138 1790 }
iveresov@2146 1791 __ jmp(*success);
iveresov@2138 1792 }
duke@435 1793
iveresov@2146 1794
duke@435 1795 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 1796 LIR_Code code = op->code();
duke@435 1797 if (code == lir_store_check) {
duke@435 1798 Register value = op->object()->as_register();
duke@435 1799 Register array = op->array()->as_register();
duke@435 1800 Register k_RInfo = op->tmp1()->as_register();
duke@435 1801 Register klass_RInfo = op->tmp2()->as_register();
duke@435 1802 Register Rtmp1 = op->tmp3()->as_register();
duke@435 1803
duke@435 1804 CodeStub* stub = op->stub();
iveresov@2146 1805
iveresov@2146 1806 // check if it needs to be profiled
iveresov@2146 1807 ciMethodData* md;
iveresov@2146 1808 ciProfileData* data;
iveresov@2146 1809
iveresov@2146 1810 if (op->should_profile()) {
iveresov@2146 1811 ciMethod* method = op->profiled_method();
iveresov@2146 1812 assert(method != NULL, "Should have method");
iveresov@2146 1813 int bci = op->profiled_bci();
iveresov@2349 1814 md = method->method_data_or_null();
iveresov@2349 1815 assert(md != NULL, "Sanity");
iveresov@2146 1816 data = md->bci_to_data(bci);
iveresov@2146 1817 assert(data != NULL, "need data for type check");
iveresov@2146 1818 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 1819 }
iveresov@2146 1820 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 1821 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 1822 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 1823
never@739 1824 __ cmpptr(value, (int32_t)NULL_WORD);
iveresov@2146 1825 if (op->should_profile()) {
iveresov@2146 1826 Label not_null;
iveresov@2146 1827 __ jccb(Assembler::notEqual, not_null);
iveresov@2146 1828 // Object is null; update MDO and exit
iveresov@2146 1829 Register mdo = klass_RInfo;
iveresov@2146 1830 __ movoop(mdo, md->constant_encoding());
iveresov@2146 1831 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
iveresov@2146 1832 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
iveresov@2146 1833 __ orl(data_addr, header_bits);
iveresov@2146 1834 __ jmp(done);
iveresov@2146 1835 __ bind(not_null);
iveresov@2146 1836 } else {
iveresov@2146 1837 __ jcc(Assembler::equal, done);
iveresov@2146 1838 }
iveresov@2146 1839
duke@435 1840 add_debug_info_for_null_check_here(op->info_for_exception());
iveresov@2344 1841 __ load_klass(k_RInfo, array);
iveresov@2344 1842 __ load_klass(klass_RInfo, value);
iveresov@2344 1843
iveresov@2344 1844 // get instance klass (it's already uncompressed)
stefank@3391 1845 __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset()));
jrose@1079 1846 // perform the fast part of the checking logic
iveresov@2146 1847 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
jrose@1079 1848 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
never@739 1849 __ push(klass_RInfo);
never@739 1850 __ push(k_RInfo);
duke@435 1851 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
never@739 1852 __ pop(klass_RInfo);
never@739 1853 __ pop(k_RInfo);
never@739 1854 // result is a boolean
duke@435 1855 __ cmpl(k_RInfo, 0);
iveresov@2146 1856 __ jcc(Assembler::equal, *failure_target);
iveresov@2146 1857 // fall through to the success case
iveresov@2146 1858
iveresov@2146 1859 if (op->should_profile()) {
iveresov@2146 1860 Register mdo = klass_RInfo, recv = k_RInfo;
iveresov@2146 1861 __ bind(profile_cast_success);
iveresov@2146 1862 __ movoop(mdo, md->constant_encoding());
iveresov@2344 1863 __ load_klass(recv, value);
iveresov@2146 1864 Label update_done;
iveresov@2146 1865 type_profile_helper(mdo, md, data, recv, &done);
iveresov@2146 1866 __ jmpb(done);
iveresov@2146 1867
iveresov@2146 1868 __ bind(profile_cast_failure);
iveresov@2146 1869 __ movoop(mdo, md->constant_encoding());
iveresov@2146 1870 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
iveresov@2146 1871 __ subptr(counter_addr, DataLayout::counter_increment);
iveresov@2146 1872 __ jmp(*stub->entry());
iveresov@2146 1873 }
iveresov@2146 1874
duke@435 1875 __ bind(done);
iveresov@2146 1876 } else
iveresov@2146 1877 if (code == lir_checkcast) {
iveresov@2146 1878 Register obj = op->object()->as_register();
iveresov@2146 1879 Register dst = op->result_opr()->as_register();
iveresov@2146 1880 Label success;
iveresov@2146 1881 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 1882 __ bind(success);
iveresov@2146 1883 if (dst != obj) {
iveresov@2146 1884 __ mov(dst, obj);
iveresov@2146 1885 }
iveresov@2146 1886 } else
iveresov@2146 1887 if (code == lir_instanceof) {
iveresov@2146 1888 Register obj = op->object()->as_register();
iveresov@2146 1889 Register dst = op->result_opr()->as_register();
iveresov@2146 1890 Label success, failure, done;
iveresov@2146 1891 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 1892 __ bind(failure);
iveresov@2146 1893 __ xorptr(dst, dst);
iveresov@2146 1894 __ jmpb(done);
iveresov@2146 1895 __ bind(success);
iveresov@2146 1896 __ movptr(dst, 1);
iveresov@2146 1897 __ bind(done);
duke@435 1898 } else {
iveresov@2146 1899 ShouldNotReachHere();
duke@435 1900 }
duke@435 1901
duke@435 1902 }
duke@435 1903
duke@435 1904
duke@435 1905 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
never@739 1906 if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
duke@435 1907 assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
duke@435 1908 assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
duke@435 1909 assert(op->new_value()->as_register_lo() == rbx, "wrong register");
duke@435 1910 assert(op->new_value()->as_register_hi() == rcx, "wrong register");
duke@435 1911 Register addr = op->addr()->as_register();
duke@435 1912 if (os::is_MP()) {
duke@435 1913 __ lock();
duke@435 1914 }
never@739 1915 NOT_LP64(__ cmpxchg8(Address(addr, 0)));
never@739 1916
never@739 1917 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
never@739 1918 NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
never@739 1919 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
duke@435 1920 Register newval = op->new_value()->as_register();
duke@435 1921 Register cmpval = op->cmp_value()->as_register();
duke@435 1922 assert(cmpval == rax, "wrong register");
duke@435 1923 assert(newval != NULL, "new val must be register");
duke@435 1924 assert(cmpval != newval, "cmp and new values must be in different registers");
duke@435 1925 assert(cmpval != addr, "cmp and addr must be in different registers");
duke@435 1926 assert(newval != addr, "new value and addr must be in different registers");
iveresov@2344 1927
never@739 1928 if ( op->code() == lir_cas_obj) {
iveresov@2344 1929 #ifdef _LP64
iveresov@2344 1930 if (UseCompressedOops) {
iveresov@2344 1931 __ encode_heap_oop(cmpval);
iveresov@2355 1932 __ mov(rscratch1, newval);
iveresov@2355 1933 __ encode_heap_oop(rscratch1);
iveresov@2344 1934 if (os::is_MP()) {
iveresov@2344 1935 __ lock();
iveresov@2344 1936 }
iveresov@2355 1937 // cmpval (rax) is implicitly used by this instruction
iveresov@2355 1938 __ cmpxchgl(rscratch1, Address(addr, 0));
iveresov@2344 1939 } else
iveresov@2344 1940 #endif
iveresov@2344 1941 {
iveresov@2344 1942 if (os::is_MP()) {
iveresov@2344 1943 __ lock();
iveresov@2344 1944 }
iveresov@2344 1945 __ cmpxchgptr(newval, Address(addr, 0));
iveresov@2344 1946 }
iveresov@2344 1947 } else {
iveresov@2344 1948 assert(op->code() == lir_cas_int, "lir_cas_int expected");
iveresov@2344 1949 if (os::is_MP()) {
iveresov@2344 1950 __ lock();
iveresov@2344 1951 }
never@739 1952 __ cmpxchgl(newval, Address(addr, 0));
never@739 1953 }
never@739 1954 #ifdef _LP64
never@739 1955 } else if (op->code() == lir_cas_long) {
never@739 1956 Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
never@739 1957 Register newval = op->new_value()->as_register_lo();
never@739 1958 Register cmpval = op->cmp_value()->as_register_lo();
never@739 1959 assert(cmpval == rax, "wrong register");
never@739 1960 assert(newval != NULL, "new val must be register");
never@739 1961 assert(cmpval != newval, "cmp and new values must be in different registers");
never@739 1962 assert(cmpval != addr, "cmp and addr must be in different registers");
never@739 1963 assert(newval != addr, "new value and addr must be in different registers");
never@739 1964 if (os::is_MP()) {
never@739 1965 __ lock();
never@739 1966 }
never@739 1967 __ cmpxchgq(newval, Address(addr, 0));
never@739 1968 #endif // _LP64
duke@435 1969 } else {
duke@435 1970 Unimplemented();
duke@435 1971 }
duke@435 1972 }
duke@435 1973
iveresov@2412 1974 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
duke@435 1975 Assembler::Condition acond, ncond;
duke@435 1976 switch (condition) {
duke@435 1977 case lir_cond_equal: acond = Assembler::equal; ncond = Assembler::notEqual; break;
duke@435 1978 case lir_cond_notEqual: acond = Assembler::notEqual; ncond = Assembler::equal; break;
duke@435 1979 case lir_cond_less: acond = Assembler::less; ncond = Assembler::greaterEqual; break;
duke@435 1980 case lir_cond_lessEqual: acond = Assembler::lessEqual; ncond = Assembler::greater; break;
duke@435 1981 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less; break;
duke@435 1982 case lir_cond_greater: acond = Assembler::greater; ncond = Assembler::lessEqual; break;
duke@435 1983 case lir_cond_belowEqual: acond = Assembler::belowEqual; ncond = Assembler::above; break;
duke@435 1984 case lir_cond_aboveEqual: acond = Assembler::aboveEqual; ncond = Assembler::below; break;
duke@435 1985 default: ShouldNotReachHere();
duke@435 1986 }
duke@435 1987
duke@435 1988 if (opr1->is_cpu_register()) {
duke@435 1989 reg2reg(opr1, result);
duke@435 1990 } else if (opr1->is_stack()) {
duke@435 1991 stack2reg(opr1, result, result->type());
duke@435 1992 } else if (opr1->is_constant()) {
duke@435 1993 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 1994 } else {
duke@435 1995 ShouldNotReachHere();
duke@435 1996 }
duke@435 1997
duke@435 1998 if (VM_Version::supports_cmov() && !opr2->is_constant()) {
duke@435 1999 // optimized version that does not require a branch
duke@435 2000 if (opr2->is_single_cpu()) {
duke@435 2001 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
never@739 2002 __ cmov(ncond, result->as_register(), opr2->as_register());
duke@435 2003 } else if (opr2->is_double_cpu()) {
duke@435 2004 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
duke@435 2005 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
never@739 2006 __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
never@739 2007 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
duke@435 2008 } else if (opr2->is_single_stack()) {
duke@435 2009 __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2010 } else if (opr2->is_double_stack()) {
never@739 2011 __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
never@739 2012 NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
duke@435 2013 } else {
duke@435 2014 ShouldNotReachHere();
duke@435 2015 }
duke@435 2016
duke@435 2017 } else {
duke@435 2018 Label skip;
duke@435 2019 __ jcc (acond, skip);
duke@435 2020 if (opr2->is_cpu_register()) {
duke@435 2021 reg2reg(opr2, result);
duke@435 2022 } else if (opr2->is_stack()) {
duke@435 2023 stack2reg(opr2, result, result->type());
duke@435 2024 } else if (opr2->is_constant()) {
duke@435 2025 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 2026 } else {
duke@435 2027 ShouldNotReachHere();
duke@435 2028 }
duke@435 2029 __ bind(skip);
duke@435 2030 }
duke@435 2031 }
duke@435 2032
duke@435 2033
duke@435 2034 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 2035 assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
duke@435 2036
duke@435 2037 if (left->is_single_cpu()) {
duke@435 2038 assert(left == dest, "left and dest must be equal");
duke@435 2039 Register lreg = left->as_register();
duke@435 2040
duke@435 2041 if (right->is_single_cpu()) {
duke@435 2042 // cpu register - cpu register
duke@435 2043 Register rreg = right->as_register();
duke@435 2044 switch (code) {
duke@435 2045 case lir_add: __ addl (lreg, rreg); break;
duke@435 2046 case lir_sub: __ subl (lreg, rreg); break;
duke@435 2047 case lir_mul: __ imull(lreg, rreg); break;
duke@435 2048 default: ShouldNotReachHere();
duke@435 2049 }
duke@435 2050
duke@435 2051 } else if (right->is_stack()) {
duke@435 2052 // cpu register - stack
duke@435 2053 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2054 switch (code) {
duke@435 2055 case lir_add: __ addl(lreg, raddr); break;
duke@435 2056 case lir_sub: __ subl(lreg, raddr); break;
duke@435 2057 default: ShouldNotReachHere();
duke@435 2058 }
duke@435 2059
duke@435 2060 } else if (right->is_constant()) {
duke@435 2061 // cpu register - constant
duke@435 2062 jint c = right->as_constant_ptr()->as_jint();
duke@435 2063 switch (code) {
duke@435 2064 case lir_add: {
iveresov@2145 2065 __ incrementl(lreg, c);
duke@435 2066 break;
duke@435 2067 }
duke@435 2068 case lir_sub: {
iveresov@2145 2069 __ decrementl(lreg, c);
duke@435 2070 break;
duke@435 2071 }
duke@435 2072 default: ShouldNotReachHere();
duke@435 2073 }
duke@435 2074
duke@435 2075 } else {
duke@435 2076 ShouldNotReachHere();
duke@435 2077 }
duke@435 2078
duke@435 2079 } else if (left->is_double_cpu()) {
duke@435 2080 assert(left == dest, "left and dest must be equal");
duke@435 2081 Register lreg_lo = left->as_register_lo();
duke@435 2082 Register lreg_hi = left->as_register_hi();
duke@435 2083
duke@435 2084 if (right->is_double_cpu()) {
duke@435 2085 // cpu register - cpu register
duke@435 2086 Register rreg_lo = right->as_register_lo();
duke@435 2087 Register rreg_hi = right->as_register_hi();
never@739 2088 NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
never@739 2089 LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
duke@435 2090 switch (code) {
duke@435 2091 case lir_add:
never@739 2092 __ addptr(lreg_lo, rreg_lo);
never@739 2093 NOT_LP64(__ adcl(lreg_hi, rreg_hi));
duke@435 2094 break;
duke@435 2095 case lir_sub:
never@739 2096 __ subptr(lreg_lo, rreg_lo);
never@739 2097 NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
duke@435 2098 break;
duke@435 2099 case lir_mul:
never@739 2100 #ifdef _LP64
never@739 2101 __ imulq(lreg_lo, rreg_lo);
never@739 2102 #else
duke@435 2103 assert(lreg_lo == rax && lreg_hi == rdx, "must be");
duke@435 2104 __ imull(lreg_hi, rreg_lo);
duke@435 2105 __ imull(rreg_hi, lreg_lo);
duke@435 2106 __ addl (rreg_hi, lreg_hi);
duke@435 2107 __ mull (rreg_lo);
duke@435 2108 __ addl (lreg_hi, rreg_hi);
never@739 2109 #endif // _LP64
duke@435 2110 break;
duke@435 2111 default:
duke@435 2112 ShouldNotReachHere();
duke@435 2113 }
duke@435 2114
duke@435 2115 } else if (right->is_constant()) {
duke@435 2116 // cpu register - constant
never@739 2117 #ifdef _LP64
never@739 2118 jlong c = right->as_constant_ptr()->as_jlong_bits();
never@739 2119 __ movptr(r10, (intptr_t) c);
never@739 2120 switch (code) {
never@739 2121 case lir_add:
never@739 2122 __ addptr(lreg_lo, r10);
never@739 2123 break;
never@739 2124 case lir_sub:
never@739 2125 __ subptr(lreg_lo, r10);
never@739 2126 break;
never@739 2127 default:
never@739 2128 ShouldNotReachHere();
never@739 2129 }
never@739 2130 #else
duke@435 2131 jint c_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2132 jint c_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2133 switch (code) {
duke@435 2134 case lir_add:
never@739 2135 __ addptr(lreg_lo, c_lo);
duke@435 2136 __ adcl(lreg_hi, c_hi);
duke@435 2137 break;
duke@435 2138 case lir_sub:
never@739 2139 __ subptr(lreg_lo, c_lo);
duke@435 2140 __ sbbl(lreg_hi, c_hi);
duke@435 2141 break;
duke@435 2142 default:
duke@435 2143 ShouldNotReachHere();
duke@435 2144 }
never@739 2145 #endif // _LP64
duke@435 2146
duke@435 2147 } else {
duke@435 2148 ShouldNotReachHere();
duke@435 2149 }
duke@435 2150
duke@435 2151 } else if (left->is_single_xmm()) {
duke@435 2152 assert(left == dest, "left and dest must be equal");
duke@435 2153 XMMRegister lreg = left->as_xmm_float_reg();
duke@435 2154
duke@435 2155 if (right->is_single_xmm()) {
duke@435 2156 XMMRegister rreg = right->as_xmm_float_reg();
duke@435 2157 switch (code) {
duke@435 2158 case lir_add: __ addss(lreg, rreg); break;
duke@435 2159 case lir_sub: __ subss(lreg, rreg); break;
duke@435 2160 case lir_mul_strictfp: // fall through
duke@435 2161 case lir_mul: __ mulss(lreg, rreg); break;
duke@435 2162 case lir_div_strictfp: // fall through
duke@435 2163 case lir_div: __ divss(lreg, rreg); break;
duke@435 2164 default: ShouldNotReachHere();
duke@435 2165 }
duke@435 2166 } else {
duke@435 2167 Address raddr;
duke@435 2168 if (right->is_single_stack()) {
duke@435 2169 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2170 } else if (right->is_constant()) {
duke@435 2171 // hack for now
duke@435 2172 raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
duke@435 2173 } else {
duke@435 2174 ShouldNotReachHere();
duke@435 2175 }
duke@435 2176 switch (code) {
duke@435 2177 case lir_add: __ addss(lreg, raddr); break;
duke@435 2178 case lir_sub: __ subss(lreg, raddr); break;
duke@435 2179 case lir_mul_strictfp: // fall through
duke@435 2180 case lir_mul: __ mulss(lreg, raddr); break;
duke@435 2181 case lir_div_strictfp: // fall through
duke@435 2182 case lir_div: __ divss(lreg, raddr); break;
duke@435 2183 default: ShouldNotReachHere();
duke@435 2184 }
duke@435 2185 }
duke@435 2186
duke@435 2187 } else if (left->is_double_xmm()) {
duke@435 2188 assert(left == dest, "left and dest must be equal");
duke@435 2189
duke@435 2190 XMMRegister lreg = left->as_xmm_double_reg();
duke@435 2191 if (right->is_double_xmm()) {
duke@435 2192 XMMRegister rreg = right->as_xmm_double_reg();
duke@435 2193 switch (code) {
duke@435 2194 case lir_add: __ addsd(lreg, rreg); break;
duke@435 2195 case lir_sub: __ subsd(lreg, rreg); break;
duke@435 2196 case lir_mul_strictfp: // fall through
duke@435 2197 case lir_mul: __ mulsd(lreg, rreg); break;
duke@435 2198 case lir_div_strictfp: // fall through
duke@435 2199 case lir_div: __ divsd(lreg, rreg); break;
duke@435 2200 default: ShouldNotReachHere();
duke@435 2201 }
duke@435 2202 } else {
duke@435 2203 Address raddr;
duke@435 2204 if (right->is_double_stack()) {
duke@435 2205 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2206 } else if (right->is_constant()) {
duke@435 2207 // hack for now
duke@435 2208 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2209 } else {
duke@435 2210 ShouldNotReachHere();
duke@435 2211 }
duke@435 2212 switch (code) {
duke@435 2213 case lir_add: __ addsd(lreg, raddr); break;
duke@435 2214 case lir_sub: __ subsd(lreg, raddr); break;
duke@435 2215 case lir_mul_strictfp: // fall through
duke@435 2216 case lir_mul: __ mulsd(lreg, raddr); break;
duke@435 2217 case lir_div_strictfp: // fall through
duke@435 2218 case lir_div: __ divsd(lreg, raddr); break;
duke@435 2219 default: ShouldNotReachHere();
duke@435 2220 }
duke@435 2221 }
duke@435 2222
duke@435 2223 } else if (left->is_single_fpu()) {
duke@435 2224 assert(dest->is_single_fpu(), "fpu stack allocation required");
duke@435 2225
duke@435 2226 if (right->is_single_fpu()) {
duke@435 2227 arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
duke@435 2228
duke@435 2229 } else {
duke@435 2230 assert(left->fpu_regnr() == 0, "left must be on TOS");
duke@435 2231 assert(dest->fpu_regnr() == 0, "dest must be on TOS");
duke@435 2232
duke@435 2233 Address raddr;
duke@435 2234 if (right->is_single_stack()) {
duke@435 2235 raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2236 } else if (right->is_constant()) {
duke@435 2237 address const_addr = float_constant(right->as_jfloat());
duke@435 2238 assert(const_addr != NULL, "incorrect float/double constant maintainance");
duke@435 2239 // hack for now
duke@435 2240 raddr = __ as_Address(InternalAddress(const_addr));
duke@435 2241 } else {
duke@435 2242 ShouldNotReachHere();
duke@435 2243 }
duke@435 2244
duke@435 2245 switch (code) {
duke@435 2246 case lir_add: __ fadd_s(raddr); break;
duke@435 2247 case lir_sub: __ fsub_s(raddr); break;
duke@435 2248 case lir_mul_strictfp: // fall through
duke@435 2249 case lir_mul: __ fmul_s(raddr); break;
duke@435 2250 case lir_div_strictfp: // fall through
duke@435 2251 case lir_div: __ fdiv_s(raddr); break;
duke@435 2252 default: ShouldNotReachHere();
duke@435 2253 }
duke@435 2254 }
duke@435 2255
duke@435 2256 } else if (left->is_double_fpu()) {
duke@435 2257 assert(dest->is_double_fpu(), "fpu stack allocation required");
duke@435 2258
duke@435 2259 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2260 // Double values require special handling for strictfp mul/div on x86
duke@435 2261 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
duke@435 2262 __ fmulp(left->fpu_regnrLo() + 1);
duke@435 2263 }
duke@435 2264
duke@435 2265 if (right->is_double_fpu()) {
duke@435 2266 arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
duke@435 2267
duke@435 2268 } else {
duke@435 2269 assert(left->fpu_regnrLo() == 0, "left must be on TOS");
duke@435 2270 assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
duke@435 2271
duke@435 2272 Address raddr;
duke@435 2273 if (right->is_double_stack()) {
duke@435 2274 raddr = frame_map()->address_for_slot(right->double_stack_ix());
duke@435 2275 } else if (right->is_constant()) {
duke@435 2276 // hack for now
duke@435 2277 raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
duke@435 2278 } else {
duke@435 2279 ShouldNotReachHere();
duke@435 2280 }
duke@435 2281
duke@435 2282 switch (code) {
duke@435 2283 case lir_add: __ fadd_d(raddr); break;
duke@435 2284 case lir_sub: __ fsub_d(raddr); break;
duke@435 2285 case lir_mul_strictfp: // fall through
duke@435 2286 case lir_mul: __ fmul_d(raddr); break;
duke@435 2287 case lir_div_strictfp: // fall through
duke@435 2288 case lir_div: __ fdiv_d(raddr); break;
duke@435 2289 default: ShouldNotReachHere();
duke@435 2290 }
duke@435 2291 }
duke@435 2292
duke@435 2293 if (code == lir_mul_strictfp || code == lir_div_strictfp) {
duke@435 2294 // Double values require special handling for strictfp mul/div on x86
duke@435 2295 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
duke@435 2296 __ fmulp(dest->fpu_regnrLo() + 1);
duke@435 2297 }
duke@435 2298
duke@435 2299 } else if (left->is_single_stack() || left->is_address()) {
duke@435 2300 assert(left == dest, "left and dest must be equal");
duke@435 2301
duke@435 2302 Address laddr;
duke@435 2303 if (left->is_single_stack()) {
duke@435 2304 laddr = frame_map()->address_for_slot(left->single_stack_ix());
duke@435 2305 } else if (left->is_address()) {
duke@435 2306 laddr = as_Address(left->as_address_ptr());
duke@435 2307 } else {
duke@435 2308 ShouldNotReachHere();
duke@435 2309 }
duke@435 2310
duke@435 2311 if (right->is_single_cpu()) {
duke@435 2312 Register rreg = right->as_register();
duke@435 2313 switch (code) {
duke@435 2314 case lir_add: __ addl(laddr, rreg); break;
duke@435 2315 case lir_sub: __ subl(laddr, rreg); break;
duke@435 2316 default: ShouldNotReachHere();
duke@435 2317 }
duke@435 2318 } else if (right->is_constant()) {
duke@435 2319 jint c = right->as_constant_ptr()->as_jint();
duke@435 2320 switch (code) {
duke@435 2321 case lir_add: {
never@739 2322 __ incrementl(laddr, c);
duke@435 2323 break;
duke@435 2324 }
duke@435 2325 case lir_sub: {
never@739 2326 __ decrementl(laddr, c);
duke@435 2327 break;
duke@435 2328 }
duke@435 2329 default: ShouldNotReachHere();
duke@435 2330 }
duke@435 2331 } else {
duke@435 2332 ShouldNotReachHere();
duke@435 2333 }
duke@435 2334
duke@435 2335 } else {
duke@435 2336 ShouldNotReachHere();
duke@435 2337 }
duke@435 2338 }
duke@435 2339
duke@435 2340 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
duke@435 2341 assert(pop_fpu_stack || (left_index == dest_index || right_index == dest_index), "invalid LIR");
duke@435 2342 assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
duke@435 2343 assert(left_index == 0 || right_index == 0, "either must be on top of stack");
duke@435 2344
duke@435 2345 bool left_is_tos = (left_index == 0);
duke@435 2346 bool dest_is_tos = (dest_index == 0);
duke@435 2347 int non_tos_index = (left_is_tos ? right_index : left_index);
duke@435 2348
duke@435 2349 switch (code) {
duke@435 2350 case lir_add:
duke@435 2351 if (pop_fpu_stack) __ faddp(non_tos_index);
duke@435 2352 else if (dest_is_tos) __ fadd (non_tos_index);
duke@435 2353 else __ fadda(non_tos_index);
duke@435 2354 break;
duke@435 2355
duke@435 2356 case lir_sub:
duke@435 2357 if (left_is_tos) {
duke@435 2358 if (pop_fpu_stack) __ fsubrp(non_tos_index);
duke@435 2359 else if (dest_is_tos) __ fsub (non_tos_index);
duke@435 2360 else __ fsubra(non_tos_index);
duke@435 2361 } else {
duke@435 2362 if (pop_fpu_stack) __ fsubp (non_tos_index);
duke@435 2363 else if (dest_is_tos) __ fsubr (non_tos_index);
duke@435 2364 else __ fsuba (non_tos_index);
duke@435 2365 }
duke@435 2366 break;
duke@435 2367
duke@435 2368 case lir_mul_strictfp: // fall through
duke@435 2369 case lir_mul:
duke@435 2370 if (pop_fpu_stack) __ fmulp(non_tos_index);
duke@435 2371 else if (dest_is_tos) __ fmul (non_tos_index);
duke@435 2372 else __ fmula(non_tos_index);
duke@435 2373 break;
duke@435 2374
duke@435 2375 case lir_div_strictfp: // fall through
duke@435 2376 case lir_div:
duke@435 2377 if (left_is_tos) {
duke@435 2378 if (pop_fpu_stack) __ fdivrp(non_tos_index);
duke@435 2379 else if (dest_is_tos) __ fdiv (non_tos_index);
duke@435 2380 else __ fdivra(non_tos_index);
duke@435 2381 } else {
duke@435 2382 if (pop_fpu_stack) __ fdivp (non_tos_index);
duke@435 2383 else if (dest_is_tos) __ fdivr (non_tos_index);
duke@435 2384 else __ fdiva (non_tos_index);
duke@435 2385 }
duke@435 2386 break;
duke@435 2387
duke@435 2388 case lir_rem:
duke@435 2389 assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
duke@435 2390 __ fremr(noreg);
duke@435 2391 break;
duke@435 2392
duke@435 2393 default:
duke@435 2394 ShouldNotReachHere();
duke@435 2395 }
duke@435 2396 }
duke@435 2397
duke@435 2398
duke@435 2399 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
duke@435 2400 if (value->is_double_xmm()) {
duke@435 2401 switch(code) {
duke@435 2402 case lir_abs :
duke@435 2403 {
duke@435 2404 if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
duke@435 2405 __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
duke@435 2406 }
duke@435 2407 __ andpd(dest->as_xmm_double_reg(),
duke@435 2408 ExternalAddress((address)double_signmask_pool));
duke@435 2409 }
duke@435 2410 break;
duke@435 2411
duke@435 2412 case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
duke@435 2413 // all other intrinsics are not available in the SSE instruction set, so FPU is used
duke@435 2414 default : ShouldNotReachHere();
duke@435 2415 }
duke@435 2416
duke@435 2417 } else if (value->is_double_fpu()) {
duke@435 2418 assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
duke@435 2419 switch(code) {
duke@435 2420 case lir_log : __ flog() ; break;
duke@435 2421 case lir_log10 : __ flog10() ; break;
duke@435 2422 case lir_abs : __ fabs() ; break;
duke@435 2423 case lir_sqrt : __ fsqrt(); break;
duke@435 2424 case lir_sin :
duke@435 2425 // Should consider not saving rbx, if not necessary
duke@435 2426 __ trigfunc('s', op->as_Op2()->fpu_stack_size());
duke@435 2427 break;
duke@435 2428 case lir_cos :
duke@435 2429 // Should consider not saving rbx, if not necessary
duke@435 2430 assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
duke@435 2431 __ trigfunc('c', op->as_Op2()->fpu_stack_size());
duke@435 2432 break;
duke@435 2433 case lir_tan :
duke@435 2434 // Should consider not saving rbx, if not necessary
duke@435 2435 __ trigfunc('t', op->as_Op2()->fpu_stack_size());
duke@435 2436 break;
duke@435 2437 default : ShouldNotReachHere();
duke@435 2438 }
duke@435 2439 } else {
duke@435 2440 Unimplemented();
duke@435 2441 }
duke@435 2442 }
duke@435 2443
duke@435 2444 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
duke@435 2445 // assert(left->destroys_register(), "check");
duke@435 2446 if (left->is_single_cpu()) {
duke@435 2447 Register reg = left->as_register();
duke@435 2448 if (right->is_constant()) {
duke@435 2449 int val = right->as_constant_ptr()->as_jint();
duke@435 2450 switch (code) {
duke@435 2451 case lir_logic_and: __ andl (reg, val); break;
duke@435 2452 case lir_logic_or: __ orl (reg, val); break;
duke@435 2453 case lir_logic_xor: __ xorl (reg, val); break;
duke@435 2454 default: ShouldNotReachHere();
duke@435 2455 }
duke@435 2456 } else if (right->is_stack()) {
duke@435 2457 // added support for stack operands
duke@435 2458 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
duke@435 2459 switch (code) {
duke@435 2460 case lir_logic_and: __ andl (reg, raddr); break;
duke@435 2461 case lir_logic_or: __ orl (reg, raddr); break;
duke@435 2462 case lir_logic_xor: __ xorl (reg, raddr); break;
duke@435 2463 default: ShouldNotReachHere();
duke@435 2464 }
duke@435 2465 } else {
duke@435 2466 Register rright = right->as_register();
duke@435 2467 switch (code) {
never@739 2468 case lir_logic_and: __ andptr (reg, rright); break;
never@739 2469 case lir_logic_or : __ orptr (reg, rright); break;
never@739 2470 case lir_logic_xor: __ xorptr (reg, rright); break;
duke@435 2471 default: ShouldNotReachHere();
duke@435 2472 }
duke@435 2473 }
duke@435 2474 move_regs(reg, dst->as_register());
duke@435 2475 } else {
duke@435 2476 Register l_lo = left->as_register_lo();
duke@435 2477 Register l_hi = left->as_register_hi();
duke@435 2478 if (right->is_constant()) {
never@739 2479 #ifdef _LP64
never@739 2480 __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
never@739 2481 switch (code) {
never@739 2482 case lir_logic_and:
never@739 2483 __ andq(l_lo, rscratch1);
never@739 2484 break;
never@739 2485 case lir_logic_or:
never@739 2486 __ orq(l_lo, rscratch1);
never@739 2487 break;
never@739 2488 case lir_logic_xor:
never@739 2489 __ xorq(l_lo, rscratch1);
never@739 2490 break;
never@739 2491 default: ShouldNotReachHere();
never@739 2492 }
never@739 2493 #else
duke@435 2494 int r_lo = right->as_constant_ptr()->as_jint_lo();
duke@435 2495 int r_hi = right->as_constant_ptr()->as_jint_hi();
duke@435 2496 switch (code) {
duke@435 2497 case lir_logic_and:
duke@435 2498 __ andl(l_lo, r_lo);
duke@435 2499 __ andl(l_hi, r_hi);
duke@435 2500 break;
duke@435 2501 case lir_logic_or:
duke@435 2502 __ orl(l_lo, r_lo);
duke@435 2503 __ orl(l_hi, r_hi);
duke@435 2504 break;
duke@435 2505 case lir_logic_xor:
duke@435 2506 __ xorl(l_lo, r_lo);
duke@435 2507 __ xorl(l_hi, r_hi);
duke@435 2508 break;
duke@435 2509 default: ShouldNotReachHere();
duke@435 2510 }
never@739 2511 #endif // _LP64
duke@435 2512 } else {
iveresov@1927 2513 #ifdef _LP64
iveresov@1927 2514 Register r_lo;
iveresov@1927 2515 if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
iveresov@1927 2516 r_lo = right->as_register();
iveresov@1927 2517 } else {
iveresov@1927 2518 r_lo = right->as_register_lo();
iveresov@1927 2519 }
iveresov@1927 2520 #else
duke@435 2521 Register r_lo = right->as_register_lo();
duke@435 2522 Register r_hi = right->as_register_hi();
duke@435 2523 assert(l_lo != r_hi, "overwriting registers");
iveresov@1927 2524 #endif
duke@435 2525 switch (code) {
duke@435 2526 case lir_logic_and:
never@739 2527 __ andptr(l_lo, r_lo);
never@739 2528 NOT_LP64(__ andptr(l_hi, r_hi);)
duke@435 2529 break;
duke@435 2530 case lir_logic_or:
never@739 2531 __ orptr(l_lo, r_lo);
never@739 2532 NOT_LP64(__ orptr(l_hi, r_hi);)
duke@435 2533 break;
duke@435 2534 case lir_logic_xor:
never@739 2535 __ xorptr(l_lo, r_lo);
never@739 2536 NOT_LP64(__ xorptr(l_hi, r_hi);)
duke@435 2537 break;
duke@435 2538 default: ShouldNotReachHere();
duke@435 2539 }
duke@435 2540 }
duke@435 2541
duke@435 2542 Register dst_lo = dst->as_register_lo();
duke@435 2543 Register dst_hi = dst->as_register_hi();
duke@435 2544
never@739 2545 #ifdef _LP64
never@739 2546 move_regs(l_lo, dst_lo);
never@739 2547 #else
duke@435 2548 if (dst_lo == l_hi) {
duke@435 2549 assert(dst_hi != l_lo, "overwriting registers");
duke@435 2550 move_regs(l_hi, dst_hi);
duke@435 2551 move_regs(l_lo, dst_lo);
duke@435 2552 } else {
duke@435 2553 assert(dst_lo != l_hi, "overwriting registers");
duke@435 2554 move_regs(l_lo, dst_lo);
duke@435 2555 move_regs(l_hi, dst_hi);
duke@435 2556 }
never@739 2557 #endif // _LP64
duke@435 2558 }
duke@435 2559 }
duke@435 2560
duke@435 2561
duke@435 2562 // we assume that rax, and rdx can be overwritten
duke@435 2563 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
duke@435 2564
duke@435 2565 assert(left->is_single_cpu(), "left must be register");
duke@435 2566 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
duke@435 2567 assert(result->is_single_cpu(), "result must be register");
duke@435 2568
duke@435 2569 // assert(left->destroys_register(), "check");
duke@435 2570 // assert(right->destroys_register(), "check");
duke@435 2571
duke@435 2572 Register lreg = left->as_register();
duke@435 2573 Register dreg = result->as_register();
duke@435 2574
duke@435 2575 if (right->is_constant()) {
duke@435 2576 int divisor = right->as_constant_ptr()->as_jint();
duke@435 2577 assert(divisor > 0 && is_power_of_2(divisor), "must be");
duke@435 2578 if (code == lir_idiv) {
duke@435 2579 assert(lreg == rax, "must be rax,");
duke@435 2580 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2581 __ cdql(); // sign extend into rdx:rax
duke@435 2582 if (divisor == 2) {
duke@435 2583 __ subl(lreg, rdx);
duke@435 2584 } else {
duke@435 2585 __ andl(rdx, divisor - 1);
duke@435 2586 __ addl(lreg, rdx);
duke@435 2587 }
duke@435 2588 __ sarl(lreg, log2_intptr(divisor));
duke@435 2589 move_regs(lreg, dreg);
duke@435 2590 } else if (code == lir_irem) {
duke@435 2591 Label done;
never@739 2592 __ mov(dreg, lreg);
duke@435 2593 __ andl(dreg, 0x80000000 | (divisor - 1));
duke@435 2594 __ jcc(Assembler::positive, done);
duke@435 2595 __ decrement(dreg);
duke@435 2596 __ orl(dreg, ~(divisor - 1));
duke@435 2597 __ increment(dreg);
duke@435 2598 __ bind(done);
duke@435 2599 } else {
duke@435 2600 ShouldNotReachHere();
duke@435 2601 }
duke@435 2602 } else {
duke@435 2603 Register rreg = right->as_register();
duke@435 2604 assert(lreg == rax, "left register must be rax,");
duke@435 2605 assert(rreg != rdx, "right register must not be rdx");
duke@435 2606 assert(temp->as_register() == rdx, "tmp register must be rdx");
duke@435 2607
duke@435 2608 move_regs(lreg, rax);
duke@435 2609
duke@435 2610 int idivl_offset = __ corrected_idivl(rreg);
duke@435 2611 add_debug_info_for_div0(idivl_offset, info);
duke@435 2612 if (code == lir_irem) {
duke@435 2613 move_regs(rdx, dreg); // result is in rdx
duke@435 2614 } else {
duke@435 2615 move_regs(rax, dreg);
duke@435 2616 }
duke@435 2617 }
duke@435 2618 }
duke@435 2619
duke@435 2620
duke@435 2621 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 2622 if (opr1->is_single_cpu()) {
duke@435 2623 Register reg1 = opr1->as_register();
duke@435 2624 if (opr2->is_single_cpu()) {
duke@435 2625 // cpu register - cpu register
never@739 2626 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2627 __ cmpptr(reg1, opr2->as_register());
never@739 2628 } else {
never@739 2629 assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
never@739 2630 __ cmpl(reg1, opr2->as_register());
never@739 2631 }
duke@435 2632 } else if (opr2->is_stack()) {
duke@435 2633 // cpu register - stack
never@739 2634 if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
never@739 2635 __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2636 } else {
never@739 2637 __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
never@739 2638 }
duke@435 2639 } else if (opr2->is_constant()) {
duke@435 2640 // cpu register - constant
duke@435 2641 LIR_Const* c = opr2->as_constant_ptr();
duke@435 2642 if (c->type() == T_INT) {
duke@435 2643 __ cmpl(reg1, c->as_jint());
never@739 2644 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2645 // In 64bit oops are single register
duke@435 2646 jobject o = c->as_jobject();
duke@435 2647 if (o == NULL) {
never@739 2648 __ cmpptr(reg1, (int32_t)NULL_WORD);
duke@435 2649 } else {
never@739 2650 #ifdef _LP64
never@739 2651 __ movoop(rscratch1, o);
never@739 2652 __ cmpptr(reg1, rscratch1);
never@739 2653 #else
duke@435 2654 __ cmpoop(reg1, c->as_jobject());
never@739 2655 #endif // _LP64
duke@435 2656 }
duke@435 2657 } else {
duke@435 2658 ShouldNotReachHere();
duke@435 2659 }
duke@435 2660 // cpu register - address
duke@435 2661 } else if (opr2->is_address()) {
duke@435 2662 if (op->info() != NULL) {
duke@435 2663 add_debug_info_for_null_check_here(op->info());
duke@435 2664 }
duke@435 2665 __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2666 } else {
duke@435 2667 ShouldNotReachHere();
duke@435 2668 }
duke@435 2669
duke@435 2670 } else if(opr1->is_double_cpu()) {
duke@435 2671 Register xlo = opr1->as_register_lo();
duke@435 2672 Register xhi = opr1->as_register_hi();
duke@435 2673 if (opr2->is_double_cpu()) {
never@739 2674 #ifdef _LP64
never@739 2675 __ cmpptr(xlo, opr2->as_register_lo());
never@739 2676 #else
duke@435 2677 // cpu register - cpu register
duke@435 2678 Register ylo = opr2->as_register_lo();
duke@435 2679 Register yhi = opr2->as_register_hi();
duke@435 2680 __ subl(xlo, ylo);
duke@435 2681 __ sbbl(xhi, yhi);
duke@435 2682 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 2683 __ orl(xhi, xlo);
duke@435 2684 }
never@739 2685 #endif // _LP64
duke@435 2686 } else if (opr2->is_constant()) {
duke@435 2687 // cpu register - constant 0
duke@435 2688 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
never@739 2689 #ifdef _LP64
never@739 2690 __ cmpptr(xlo, (int32_t)opr2->as_jlong());
never@739 2691 #else
duke@435 2692 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
duke@435 2693 __ orl(xhi, xlo);
never@739 2694 #endif // _LP64
duke@435 2695 } else {
duke@435 2696 ShouldNotReachHere();
duke@435 2697 }
duke@435 2698
duke@435 2699 } else if (opr1->is_single_xmm()) {
duke@435 2700 XMMRegister reg1 = opr1->as_xmm_float_reg();
duke@435 2701 if (opr2->is_single_xmm()) {
duke@435 2702 // xmm register - xmm register
duke@435 2703 __ ucomiss(reg1, opr2->as_xmm_float_reg());
duke@435 2704 } else if (opr2->is_stack()) {
duke@435 2705 // xmm register - stack
duke@435 2706 __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
duke@435 2707 } else if (opr2->is_constant()) {
duke@435 2708 // xmm register - constant
duke@435 2709 __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
duke@435 2710 } else if (opr2->is_address()) {
duke@435 2711 // xmm register - address
duke@435 2712 if (op->info() != NULL) {
duke@435 2713 add_debug_info_for_null_check_here(op->info());
duke@435 2714 }
duke@435 2715 __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
duke@435 2716 } else {
duke@435 2717 ShouldNotReachHere();
duke@435 2718 }
duke@435 2719
duke@435 2720 } else if (opr1->is_double_xmm()) {
duke@435 2721 XMMRegister reg1 = opr1->as_xmm_double_reg();
duke@435 2722 if (opr2->is_double_xmm()) {
duke@435 2723 // xmm register - xmm register
duke@435 2724 __ ucomisd(reg1, opr2->as_xmm_double_reg());
duke@435 2725 } else if (opr2->is_stack()) {
duke@435 2726 // xmm register - stack
duke@435 2727 __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
duke@435 2728 } else if (opr2->is_constant()) {
duke@435 2729 // xmm register - constant
duke@435 2730 __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
duke@435 2731 } else if (opr2->is_address()) {
duke@435 2732 // xmm register - address
duke@435 2733 if (op->info() != NULL) {
duke@435 2734 add_debug_info_for_null_check_here(op->info());
duke@435 2735 }
duke@435 2736 __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
duke@435 2737 } else {
duke@435 2738 ShouldNotReachHere();
duke@435 2739 }
duke@435 2740
duke@435 2741 } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
duke@435 2742 assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
duke@435 2743 assert(opr2->is_fpu_register(), "both must be registers");
duke@435 2744 __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2745
duke@435 2746 } else if (opr1->is_address() && opr2->is_constant()) {
never@739 2747 LIR_Const* c = opr2->as_constant_ptr();
never@739 2748 #ifdef _LP64
never@739 2749 if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2750 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
never@739 2751 __ movoop(rscratch1, c->as_jobject());
never@739 2752 }
never@739 2753 #endif // LP64
duke@435 2754 if (op->info() != NULL) {
duke@435 2755 add_debug_info_for_null_check_here(op->info());
duke@435 2756 }
duke@435 2757 // special case: address - constant
duke@435 2758 LIR_Address* addr = opr1->as_address_ptr();
duke@435 2759 if (c->type() == T_INT) {
duke@435 2760 __ cmpl(as_Address(addr), c->as_jint());
never@739 2761 } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
never@739 2762 #ifdef _LP64
never@739 2763 // %%% Make this explode if addr isn't reachable until we figure out a
never@739 2764 // better strategy by giving noreg as the temp for as_Address
never@739 2765 __ cmpptr(rscratch1, as_Address(addr, noreg));
never@739 2766 #else
duke@435 2767 __ cmpoop(as_Address(addr), c->as_jobject());
never@739 2768 #endif // _LP64
duke@435 2769 } else {
duke@435 2770 ShouldNotReachHere();
duke@435 2771 }
duke@435 2772
duke@435 2773 } else {
duke@435 2774 ShouldNotReachHere();
duke@435 2775 }
duke@435 2776 }
duke@435 2777
duke@435 2778 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
duke@435 2779 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 2780 if (left->is_single_xmm()) {
duke@435 2781 assert(right->is_single_xmm(), "must match");
duke@435 2782 __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2783 } else if (left->is_double_xmm()) {
duke@435 2784 assert(right->is_double_xmm(), "must match");
duke@435 2785 __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
duke@435 2786
duke@435 2787 } else {
duke@435 2788 assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
duke@435 2789 assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
duke@435 2790
duke@435 2791 assert(left->fpu() == 0, "left must be on TOS");
duke@435 2792 __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
duke@435 2793 op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
duke@435 2794 }
duke@435 2795 } else {
duke@435 2796 assert(code == lir_cmp_l2i, "check");
never@739 2797 #ifdef _LP64
iveresov@1804 2798 Label done;
iveresov@1804 2799 Register dest = dst->as_register();
iveresov@1804 2800 __ cmpptr(left->as_register_lo(), right->as_register_lo());
iveresov@1804 2801 __ movl(dest, -1);
iveresov@1804 2802 __ jccb(Assembler::less, done);
iveresov@1804 2803 __ set_byte_if_not_zero(dest);
iveresov@1804 2804 __ movzbl(dest, dest);
iveresov@1804 2805 __ bind(done);
never@739 2806 #else
duke@435 2807 __ lcmp2int(left->as_register_hi(),
duke@435 2808 left->as_register_lo(),
duke@435 2809 right->as_register_hi(),
duke@435 2810 right->as_register_lo());
duke@435 2811 move_regs(left->as_register_hi(), dst->as_register());
never@739 2812 #endif // _LP64
duke@435 2813 }
duke@435 2814 }
duke@435 2815
duke@435 2816
duke@435 2817 void LIR_Assembler::align_call(LIR_Code code) {
duke@435 2818 if (os::is_MP()) {
duke@435 2819 // make sure that the displacement word of the call ends up word aligned
duke@435 2820 int offset = __ offset();
duke@435 2821 switch (code) {
duke@435 2822 case lir_static_call:
duke@435 2823 case lir_optvirtual_call:
twisti@1730 2824 case lir_dynamic_call:
duke@435 2825 offset += NativeCall::displacement_offset;
duke@435 2826 break;
duke@435 2827 case lir_icvirtual_call:
duke@435 2828 offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
duke@435 2829 break;
duke@435 2830 case lir_virtual_call: // currently, sparc-specific for niagara
duke@435 2831 default: ShouldNotReachHere();
duke@435 2832 }
duke@435 2833 while (offset++ % BytesPerWord != 0) {
duke@435 2834 __ nop();
duke@435 2835 }
duke@435 2836 }
duke@435 2837 }
duke@435 2838
duke@435 2839
twisti@1730 2840 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
duke@435 2841 assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2842 "must be aligned");
twisti@1730 2843 __ call(AddressLiteral(op->addr(), rtype));
twisti@1919 2844 add_call_info(code_offset(), op->info());
duke@435 2845 }
duke@435 2846
duke@435 2847
twisti@1730 2848 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
duke@435 2849 RelocationHolder rh = virtual_call_Relocation::spec(pc());
duke@435 2850 __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
duke@435 2851 assert(!os::is_MP() ||
duke@435 2852 (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
duke@435 2853 "must be aligned");
twisti@1730 2854 __ call(AddressLiteral(op->addr(), rh));
twisti@1919 2855 add_call_info(code_offset(), op->info());
duke@435 2856 }
duke@435 2857
duke@435 2858
duke@435 2859 /* Currently, vtable-dispatch is only enabled for sparc platforms */
twisti@1730 2860 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
duke@435 2861 ShouldNotReachHere();
duke@435 2862 }
duke@435 2863
twisti@1730 2864
duke@435 2865 void LIR_Assembler::emit_static_call_stub() {
duke@435 2866 address call_pc = __ pc();
duke@435 2867 address stub = __ start_a_stub(call_stub_size);
duke@435 2868 if (stub == NULL) {
duke@435 2869 bailout("static call stub overflow");
duke@435 2870 return;
duke@435 2871 }
duke@435 2872
duke@435 2873 int start = __ offset();
duke@435 2874 if (os::is_MP()) {
duke@435 2875 // make sure that the displacement word of the call ends up word aligned
duke@435 2876 int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
duke@435 2877 while (offset++ % BytesPerWord != 0) {
duke@435 2878 __ nop();
duke@435 2879 }
duke@435 2880 }
duke@435 2881 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 2882 __ movoop(rbx, (jobject)NULL);
duke@435 2883 // must be set to -1 at code generation time
duke@435 2884 assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
never@739 2885 // On 64bit this will die since it will take a movq & jmp, must be only a jmp
never@739 2886 __ jump(RuntimeAddress(__ pc()));
duke@435 2887
jcoomes@1844 2888 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 2889 __ end_a_stub();
duke@435 2890 }
duke@435 2891
duke@435 2892
never@1813 2893 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2894 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2895 assert(exceptionPC->as_register() == rdx, "must match");
duke@435 2896
duke@435 2897 // exception object is not added to oop map by LinearScan
duke@435 2898 // (LinearScan assumes that no oops are in fixed registers)
duke@435 2899 info->add_register_oop(exceptionOop);
duke@435 2900 Runtime1::StubID unwind_id;
duke@435 2901
never@1813 2902 // get current pc information
never@1813 2903 // pc is only needed if the method has an exception handler, the unwind code does not need it.
never@1813 2904 int pc_for_athrow_offset = __ offset();
never@1813 2905 InternalAddress pc_for_athrow(__ pc());
never@1813 2906 __ lea(exceptionPC->as_register(), pc_for_athrow);
never@1813 2907 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2908
never@1813 2909 __ verify_not_null_oop(rax);
never@1813 2910 // search an exception handler (rax: exception oop, rdx: throwing pc)
never@1813 2911 if (compilation()->has_fpu_code()) {
never@1813 2912 unwind_id = Runtime1::handle_exception_id;
duke@435 2913 } else {
never@1813 2914 unwind_id = Runtime1::handle_exception_nofpu_id;
duke@435 2915 }
never@1813 2916 __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
duke@435 2917
duke@435 2918 // enough room for two byte trap
duke@435 2919 __ nop();
duke@435 2920 }
duke@435 2921
duke@435 2922
never@1813 2923 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2924 assert(exceptionOop->as_register() == rax, "must match");
never@1813 2925
never@1813 2926 __ jmp(_unwind_handler_entry);
never@1813 2927 }
never@1813 2928
never@1813 2929
duke@435 2930 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2931
duke@435 2932 // optimized version for linear scan:
duke@435 2933 // * count must be already in ECX (guaranteed by LinearScan)
duke@435 2934 // * left and dest must be equal
duke@435 2935 // * tmp must be unused
duke@435 2936 assert(count->as_register() == SHIFT_count, "count must be in ECX");
duke@435 2937 assert(left == dest, "left and dest must be equal");
duke@435 2938 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
duke@435 2939
duke@435 2940 if (left->is_single_cpu()) {
duke@435 2941 Register value = left->as_register();
duke@435 2942 assert(value != SHIFT_count, "left cannot be ECX");
duke@435 2943
duke@435 2944 switch (code) {
duke@435 2945 case lir_shl: __ shll(value); break;
duke@435 2946 case lir_shr: __ sarl(value); break;
duke@435 2947 case lir_ushr: __ shrl(value); break;
duke@435 2948 default: ShouldNotReachHere();
duke@435 2949 }
duke@435 2950 } else if (left->is_double_cpu()) {
duke@435 2951 Register lo = left->as_register_lo();
duke@435 2952 Register hi = left->as_register_hi();
duke@435 2953 assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
never@739 2954 #ifdef _LP64
never@739 2955 switch (code) {
never@739 2956 case lir_shl: __ shlptr(lo); break;
never@739 2957 case lir_shr: __ sarptr(lo); break;
never@739 2958 case lir_ushr: __ shrptr(lo); break;
never@739 2959 default: ShouldNotReachHere();
never@739 2960 }
never@739 2961 #else
duke@435 2962
duke@435 2963 switch (code) {
duke@435 2964 case lir_shl: __ lshl(hi, lo); break;
duke@435 2965 case lir_shr: __ lshr(hi, lo, true); break;
duke@435 2966 case lir_ushr: __ lshr(hi, lo, false); break;
duke@435 2967 default: ShouldNotReachHere();
duke@435 2968 }
never@739 2969 #endif // LP64
duke@435 2970 } else {
duke@435 2971 ShouldNotReachHere();
duke@435 2972 }
duke@435 2973 }
duke@435 2974
duke@435 2975
duke@435 2976 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2977 if (dest->is_single_cpu()) {
duke@435 2978 // first move left into dest so that left is not destroyed by the shift
duke@435 2979 Register value = dest->as_register();
duke@435 2980 count = count & 0x1F; // Java spec
duke@435 2981
duke@435 2982 move_regs(left->as_register(), value);
duke@435 2983 switch (code) {
duke@435 2984 case lir_shl: __ shll(value, count); break;
duke@435 2985 case lir_shr: __ sarl(value, count); break;
duke@435 2986 case lir_ushr: __ shrl(value, count); break;
duke@435 2987 default: ShouldNotReachHere();
duke@435 2988 }
duke@435 2989 } else if (dest->is_double_cpu()) {
never@739 2990 #ifndef _LP64
duke@435 2991 Unimplemented();
never@739 2992 #else
never@739 2993 // first move left into dest so that left is not destroyed by the shift
never@739 2994 Register value = dest->as_register_lo();
never@739 2995 count = count & 0x1F; // Java spec
never@739 2996
never@739 2997 move_regs(left->as_register_lo(), value);
never@739 2998 switch (code) {
never@739 2999 case lir_shl: __ shlptr(value, count); break;
never@739 3000 case lir_shr: __ sarptr(value, count); break;
never@739 3001 case lir_ushr: __ shrptr(value, count); break;
never@739 3002 default: ShouldNotReachHere();
never@739 3003 }
never@739 3004 #endif // _LP64
duke@435 3005 } else {
duke@435 3006 ShouldNotReachHere();
duke@435 3007 }
duke@435 3008 }
duke@435 3009
duke@435 3010
duke@435 3011 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
duke@435 3012 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3013 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3014 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3015 __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
duke@435 3016 }
duke@435 3017
duke@435 3018
duke@435 3019 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
duke@435 3020 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3021 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3022 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
never@739 3023 __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
duke@435 3024 }
duke@435 3025
duke@435 3026
duke@435 3027 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
duke@435 3028 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
duke@435 3029 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
duke@435 3030 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
duke@435 3031 __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
duke@435 3032 }
duke@435 3033
duke@435 3034
duke@435 3035 // This code replaces a call to arraycopy; no exception may
duke@435 3036 // be thrown in this code, they must be thrown in the System.arraycopy
duke@435 3037 // activation frame; we could save some checks if this would not be the case
duke@435 3038 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 3039 ciArrayKlass* default_type = op->expected_type();
duke@435 3040 Register src = op->src()->as_register();
duke@435 3041 Register dst = op->dst()->as_register();
duke@435 3042 Register src_pos = op->src_pos()->as_register();
duke@435 3043 Register dst_pos = op->dst_pos()->as_register();
duke@435 3044 Register length = op->length()->as_register();
duke@435 3045 Register tmp = op->tmp()->as_register();
duke@435 3046
duke@435 3047 CodeStub* stub = op->stub();
duke@435 3048 int flags = op->flags();
duke@435 3049 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 3050 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 3051
roland@2728 3052 // if we don't know anything, just go through the generic arraycopy
duke@435 3053 if (default_type == NULL) {
duke@435 3054 Label done;
duke@435 3055 // save outgoing arguments on stack in case call to System.arraycopy is needed
duke@435 3056 // HACK ALERT. This code used to push the parameters in a hardwired fashion
duke@435 3057 // for interpreter calling conventions. Now we have to do it in new style conventions.
duke@435 3058 // For the moment until C1 gets the new register allocator I just force all the
duke@435 3059 // args to the right place (except the register args) and then on the back side
duke@435 3060 // reload the register args properly if we go slow path. Yuck
duke@435 3061
duke@435 3062 // These are proper for the calling convention
duke@435 3063 store_parameter(length, 2);
duke@435 3064 store_parameter(dst_pos, 1);
duke@435 3065 store_parameter(dst, 0);
duke@435 3066
duke@435 3067 // these are just temporary placements until we need to reload
duke@435 3068 store_parameter(src_pos, 3);
duke@435 3069 store_parameter(src, 4);
never@739 3070 NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
never@739 3071
roland@2728 3072 address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
roland@2728 3073
roland@2728 3074 address copyfunc_addr = StubRoutines::generic_arraycopy();
duke@435 3075
duke@435 3076 // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
never@739 3077 #ifdef _LP64
never@739 3078 // The arguments are in java calling convention so we can trivially shift them to C
never@739 3079 // convention
never@739 3080 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3081 __ mov(c_rarg0, j_rarg0);
never@739 3082 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
never@739 3083 __ mov(c_rarg1, j_rarg1);
never@739 3084 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
never@739 3085 __ mov(c_rarg2, j_rarg2);
never@739 3086 assert_different_registers(c_rarg3, j_rarg4);
never@739 3087 __ mov(c_rarg3, j_rarg3);
never@739 3088 #ifdef _WIN64
never@739 3089 // Allocate abi space for args but be sure to keep stack aligned
never@739 3090 __ subptr(rsp, 6*wordSize);
never@739 3091 store_parameter(j_rarg4, 4);
roland@2728 3092 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3093 __ call(RuntimeAddress(C_entry));
roland@2728 3094 } else {
roland@2728 3095 #ifndef PRODUCT
roland@2728 3096 if (PrintC1Statistics) {
roland@2728 3097 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3098 }
roland@2728 3099 #endif
roland@2728 3100 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3101 }
never@739 3102 __ addptr(rsp, 6*wordSize);
never@739 3103 #else
never@739 3104 __ mov(c_rarg4, j_rarg4);
roland@2728 3105 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3106 __ call(RuntimeAddress(C_entry));
roland@2728 3107 } else {
roland@2728 3108 #ifndef PRODUCT
roland@2728 3109 if (PrintC1Statistics) {
roland@2728 3110 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3111 }
roland@2728 3112 #endif
roland@2728 3113 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3114 }
never@739 3115 #endif // _WIN64
never@739 3116 #else
never@739 3117 __ push(length);
never@739 3118 __ push(dst_pos);
never@739 3119 __ push(dst);
never@739 3120 __ push(src_pos);
never@739 3121 __ push(src);
roland@2728 3122
roland@2728 3123 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 3124 __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
roland@2728 3125 } else {
roland@2728 3126 #ifndef PRODUCT
roland@2728 3127 if (PrintC1Statistics) {
roland@2728 3128 __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
roland@2728 3129 }
roland@2728 3130 #endif
roland@2728 3131 __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
roland@2728 3132 }
duke@435 3133
never@739 3134 #endif // _LP64
never@739 3135
duke@435 3136 __ cmpl(rax, 0);
duke@435 3137 __ jcc(Assembler::equal, *stub->continuation());
duke@435 3138
roland@2728 3139 if (copyfunc_addr != NULL) {
roland@2728 3140 __ mov(tmp, rax);
roland@2728 3141 __ xorl(tmp, -1);
roland@2728 3142 }
roland@2728 3143
duke@435 3144 // Reload values from the stack so they are where the stub
duke@435 3145 // expects them.
never@739 3146 __ movptr (dst, Address(rsp, 0*BytesPerWord));
never@739 3147 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
never@739 3148 __ movptr (length, Address(rsp, 2*BytesPerWord));
never@739 3149 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
never@739 3150 __ movptr (src, Address(rsp, 4*BytesPerWord));
roland@2728 3151
roland@2728 3152 if (copyfunc_addr != NULL) {
roland@2728 3153 __ subl(length, tmp);
roland@2728 3154 __ addl(src_pos, tmp);
roland@2728 3155 __ addl(dst_pos, tmp);
roland@2728 3156 }
duke@435 3157 __ jmp(*stub->entry());
duke@435 3158
duke@435 3159 __ bind(*stub->continuation());
duke@435 3160 return;
duke@435 3161 }
duke@435 3162
duke@435 3163 assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
duke@435 3164
kvn@464 3165 int elem_size = type2aelembytes(basic_type);
duke@435 3166 int shift_amount;
duke@435 3167 Address::ScaleFactor scale;
duke@435 3168
duke@435 3169 switch (elem_size) {
duke@435 3170 case 1 :
duke@435 3171 shift_amount = 0;
duke@435 3172 scale = Address::times_1;
duke@435 3173 break;
duke@435 3174 case 2 :
duke@435 3175 shift_amount = 1;
duke@435 3176 scale = Address::times_2;
duke@435 3177 break;
duke@435 3178 case 4 :
duke@435 3179 shift_amount = 2;
duke@435 3180 scale = Address::times_4;
duke@435 3181 break;
duke@435 3182 case 8 :
duke@435 3183 shift_amount = 3;
duke@435 3184 scale = Address::times_8;
duke@435 3185 break;
duke@435 3186 default:
duke@435 3187 ShouldNotReachHere();
duke@435 3188 }
duke@435 3189
duke@435 3190 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
duke@435 3191 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
duke@435 3192 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
duke@435 3193 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
duke@435 3194
never@739 3195 // length and pos's are all sign extended at this point on 64bit
never@739 3196
duke@435 3197 // test for NULL
duke@435 3198 if (flags & LIR_OpArrayCopy::src_null_check) {
never@739 3199 __ testptr(src, src);
duke@435 3200 __ jcc(Assembler::zero, *stub->entry());
duke@435 3201 }
duke@435 3202 if (flags & LIR_OpArrayCopy::dst_null_check) {
never@739 3203 __ testptr(dst, dst);
duke@435 3204 __ jcc(Assembler::zero, *stub->entry());
duke@435 3205 }
duke@435 3206
duke@435 3207 // check if negative
duke@435 3208 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 3209 __ testl(src_pos, src_pos);
duke@435 3210 __ jcc(Assembler::less, *stub->entry());
duke@435 3211 }
duke@435 3212 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 3213 __ testl(dst_pos, dst_pos);
duke@435 3214 __ jcc(Assembler::less, *stub->entry());
duke@435 3215 }
duke@435 3216
duke@435 3217 if (flags & LIR_OpArrayCopy::src_range_check) {
never@739 3218 __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
duke@435 3219 __ cmpl(tmp, src_length_addr);
duke@435 3220 __ jcc(Assembler::above, *stub->entry());
duke@435 3221 }
duke@435 3222 if (flags & LIR_OpArrayCopy::dst_range_check) {
never@739 3223 __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
duke@435 3224 __ cmpl(tmp, dst_length_addr);
duke@435 3225 __ jcc(Assembler::above, *stub->entry());
duke@435 3226 }
duke@435 3227
roland@2728 3228 if (flags & LIR_OpArrayCopy::length_positive_check) {
roland@2728 3229 __ testl(length, length);
roland@2728 3230 __ jcc(Assembler::less, *stub->entry());
roland@2728 3231 __ jcc(Assembler::zero, *stub->continuation());
roland@2728 3232 }
roland@2728 3233
roland@2728 3234 #ifdef _LP64
roland@2728 3235 __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
roland@2728 3236 __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
roland@2728 3237 #endif
roland@2728 3238
duke@435 3239 if (flags & LIR_OpArrayCopy::type_check) {
roland@2728 3240 // We don't know the array types are compatible
roland@2728 3241 if (basic_type != T_OBJECT) {
roland@2728 3242 // Simple test for basic type arrays
roland@2728 3243 if (UseCompressedOops) {
roland@2728 3244 __ movl(tmp, src_klass_addr);
roland@2728 3245 __ cmpl(tmp, dst_klass_addr);
roland@2728 3246 } else {
roland@2728 3247 __ movptr(tmp, src_klass_addr);
roland@2728 3248 __ cmpptr(tmp, dst_klass_addr);
roland@2728 3249 }
roland@2728 3250 __ jcc(Assembler::notEqual, *stub->entry());
iveresov@2344 3251 } else {
roland@2728 3252 // For object arrays, if src is a sub class of dst then we can
roland@2728 3253 // safely do the copy.
roland@2728 3254 Label cont, slow;
roland@2728 3255
roland@2728 3256 __ push(src);
roland@2728 3257 __ push(dst);
roland@2728 3258
roland@2728 3259 __ load_klass(src, src);
roland@2728 3260 __ load_klass(dst, dst);
roland@2728 3261
roland@2728 3262 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
roland@2728 3263
roland@2728 3264 __ push(src);
roland@2728 3265 __ push(dst);
roland@2728 3266 __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
roland@2728 3267 __ pop(dst);
roland@2728 3268 __ pop(src);
roland@2728 3269
roland@2728 3270 __ cmpl(src, 0);
roland@2728 3271 __ jcc(Assembler::notEqual, cont);
roland@2728 3272
roland@2728 3273 __ bind(slow);
roland@2728 3274 __ pop(dst);
roland@2728 3275 __ pop(src);
roland@2728 3276
roland@2728 3277 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
roland@2728 3278 if (copyfunc_addr != NULL) { // use stub if available
roland@2728 3279 // src is not a sub class of dst so we have to do a
roland@2728 3280 // per-element check.
roland@2728 3281
roland@2728 3282 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
roland@2728 3283 if ((flags & mask) != mask) {
roland@2728 3284 // Check that at least both of them object arrays.
roland@2728 3285 assert(flags & mask, "one of the two should be known to be an object array");
roland@2728 3286
roland@2728 3287 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
roland@2728 3288 __ load_klass(tmp, src);
roland@2728 3289 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
roland@2728 3290 __ load_klass(tmp, dst);
roland@2728 3291 }
stefank@3391 3292 int lh_offset = in_bytes(Klass::layout_helper_offset());
roland@2728 3293 Address klass_lh_addr(tmp, lh_offset);
roland@2728 3294 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
roland@2728 3295 __ cmpl(klass_lh_addr, objArray_lh);
roland@2728 3296 __ jcc(Assembler::notEqual, *stub->entry());
roland@2728 3297 }
roland@2728 3298
iveresov@2936 3299 // Spill because stubs can use any register they like and it's
iveresov@2936 3300 // easier to restore just those that we care about.
iveresov@2936 3301 store_parameter(dst, 0);
iveresov@2936 3302 store_parameter(dst_pos, 1);
iveresov@2936 3303 store_parameter(length, 2);
iveresov@2936 3304 store_parameter(src_pos, 3);
iveresov@2936 3305 store_parameter(src, 4);
iveresov@2936 3306
roland@2728 3307 #ifndef _LP64
roland@2728 3308 __ movptr(tmp, dst_klass_addr);
stefank@3391 3309 __ movptr(tmp, Address(tmp, objArrayKlass::element_klass_offset()));
roland@2728 3310 __ push(tmp);
stefank@3391 3311 __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
roland@2728 3312 __ push(tmp);
roland@2728 3313 __ push(length);
roland@2728 3314 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3315 __ push(tmp);
roland@2728 3316 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3317 __ push(tmp);
roland@2728 3318
roland@2728 3319 __ call_VM_leaf(copyfunc_addr, 5);
roland@2728 3320 #else
roland@2728 3321 __ movl2ptr(length, length); //higher 32bits must be null
roland@2728 3322
roland@2728 3323 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3324 assert_different_registers(c_rarg0, dst, dst_pos, length);
roland@2728 3325 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
roland@2728 3326 assert_different_registers(c_rarg1, dst, length);
roland@2728 3327
roland@2728 3328 __ mov(c_rarg2, length);
roland@2728 3329 assert_different_registers(c_rarg2, dst);
roland@2728 3330
roland@2728 3331 #ifdef _WIN64
roland@2728 3332 // Allocate abi space for args but be sure to keep stack aligned
roland@2728 3333 __ subptr(rsp, 6*wordSize);
roland@2728 3334 __ load_klass(c_rarg3, dst);
stefank@3391 3335 __ movptr(c_rarg3, Address(c_rarg3, objArrayKlass::element_klass_offset()));
roland@2728 3336 store_parameter(c_rarg3, 4);
stefank@3391 3337 __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
roland@2728 3338 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3339 __ addptr(rsp, 6*wordSize);
roland@2728 3340 #else
roland@2728 3341 __ load_klass(c_rarg4, dst);
stefank@3391 3342 __ movptr(c_rarg4, Address(c_rarg4, objArrayKlass::element_klass_offset()));
stefank@3391 3343 __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
roland@2728 3344 __ call(RuntimeAddress(copyfunc_addr));
roland@2728 3345 #endif
roland@2728 3346
roland@2728 3347 #endif
roland@2728 3348
roland@2728 3349 #ifndef PRODUCT
roland@2728 3350 if (PrintC1Statistics) {
roland@2728 3351 Label failed;
roland@2728 3352 __ testl(rax, rax);
roland@2728 3353 __ jcc(Assembler::notZero, failed);
roland@2728 3354 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
roland@2728 3355 __ bind(failed);
roland@2728 3356 }
roland@2728 3357 #endif
roland@2728 3358
roland@2728 3359 __ testl(rax, rax);
roland@2728 3360 __ jcc(Assembler::zero, *stub->continuation());
roland@2728 3361
roland@2728 3362 #ifndef PRODUCT
roland@2728 3363 if (PrintC1Statistics) {
roland@2728 3364 __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
roland@2728 3365 }
roland@2728 3366 #endif
roland@2728 3367
roland@2728 3368 __ mov(tmp, rax);
roland@2728 3369
roland@2728 3370 __ xorl(tmp, -1);
roland@2728 3371
iveresov@2936 3372 // Restore previously spilled arguments
iveresov@2936 3373 __ movptr (dst, Address(rsp, 0*BytesPerWord));
iveresov@2936 3374 __ movptr (dst_pos, Address(rsp, 1*BytesPerWord));
iveresov@2936 3375 __ movptr (length, Address(rsp, 2*BytesPerWord));
iveresov@2936 3376 __ movptr (src_pos, Address(rsp, 3*BytesPerWord));
iveresov@2936 3377 __ movptr (src, Address(rsp, 4*BytesPerWord));
iveresov@2936 3378
roland@2728 3379
roland@2728 3380 __ subl(length, tmp);
roland@2728 3381 __ addl(src_pos, tmp);
roland@2728 3382 __ addl(dst_pos, tmp);
roland@2728 3383 }
roland@2728 3384
roland@2728 3385 __ jmp(*stub->entry());
roland@2728 3386
roland@2728 3387 __ bind(cont);
roland@2728 3388 __ pop(dst);
roland@2728 3389 __ pop(src);
iveresov@2344 3390 }
duke@435 3391 }
duke@435 3392
duke@435 3393 #ifdef ASSERT
duke@435 3394 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 3395 // Sanity check the known type with the incoming class. For the
duke@435 3396 // primitive case the types must match exactly with src.klass and
duke@435 3397 // dst.klass each exactly matching the default type. For the
duke@435 3398 // object array case, if no type check is needed then either the
duke@435 3399 // dst type is exactly the expected type and the src type is a
duke@435 3400 // subtype which we can't check or src is the same array as dst
duke@435 3401 // but not necessarily exactly of type default_type.
duke@435 3402 Label known_ok, halt;
jrose@1424 3403 __ movoop(tmp, default_type->constant_encoding());
iveresov@2344 3404 #ifdef _LP64
iveresov@2344 3405 if (UseCompressedOops) {
iveresov@2344 3406 __ encode_heap_oop(tmp);
iveresov@2344 3407 }
iveresov@2344 3408 #endif
iveresov@2344 3409
duke@435 3410 if (basic_type != T_OBJECT) {
iveresov@2344 3411
iveresov@2344 3412 if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3413 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3414 __ jcc(Assembler::notEqual, halt);
iveresov@2344 3415 if (UseCompressedOops) __ cmpl(tmp, src_klass_addr);
iveresov@2344 3416 else __ cmpptr(tmp, src_klass_addr);
duke@435 3417 __ jcc(Assembler::equal, known_ok);
duke@435 3418 } else {
iveresov@2344 3419 if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
iveresov@2344 3420 else __ cmpptr(tmp, dst_klass_addr);
duke@435 3421 __ jcc(Assembler::equal, known_ok);
never@739 3422 __ cmpptr(src, dst);
duke@435 3423 __ jcc(Assembler::equal, known_ok);
duke@435 3424 }
duke@435 3425 __ bind(halt);
duke@435 3426 __ stop("incorrect type information in arraycopy");
duke@435 3427 __ bind(known_ok);
duke@435 3428 }
duke@435 3429 #endif
duke@435 3430
roland@2728 3431 #ifndef PRODUCT
roland@2728 3432 if (PrintC1Statistics) {
roland@2728 3433 __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
never@739 3434 }
roland@2728 3435 #endif
never@739 3436
never@739 3437 #ifdef _LP64
never@739 3438 assert_different_registers(c_rarg0, dst, dst_pos, length);
never@739 3439 __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3440 assert_different_registers(c_rarg1, length);
never@739 3441 __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
never@739 3442 __ mov(c_rarg2, length);
never@739 3443
never@739 3444 #else
never@739 3445 __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3446 store_parameter(tmp, 0);
never@739 3447 __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
duke@435 3448 store_parameter(tmp, 1);
duke@435 3449 store_parameter(length, 2);
never@739 3450 #endif // _LP64
roland@2728 3451
roland@2728 3452 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
roland@2728 3453 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
roland@2728 3454 const char *name;
roland@2728 3455 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
roland@2728 3456 __ call_VM_leaf(entry, 0);
duke@435 3457
duke@435 3458 __ bind(*stub->continuation());
duke@435 3459 }
duke@435 3460
duke@435 3461
duke@435 3462 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 3463 Register obj = op->obj_opr()->as_register(); // may not be an oop
duke@435 3464 Register hdr = op->hdr_opr()->as_register();
duke@435 3465 Register lock = op->lock_opr()->as_register();
duke@435 3466 if (!UseFastLocking) {
duke@435 3467 __ jmp(*op->stub()->entry());
duke@435 3468 } else if (op->code() == lir_lock) {
duke@435 3469 Register scratch = noreg;
duke@435 3470 if (UseBiasedLocking) {
duke@435 3471 scratch = op->scratch_opr()->as_register();
duke@435 3472 }
duke@435 3473 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3474 // add debug info for NullPointerException only if one is possible
duke@435 3475 int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
duke@435 3476 if (op->info() != NULL) {
duke@435 3477 add_debug_info_for_null_check(null_check_offset, op->info());
duke@435 3478 }
duke@435 3479 // done
duke@435 3480 } else if (op->code() == lir_unlock) {
duke@435 3481 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 3482 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 3483 } else {
duke@435 3484 Unimplemented();
duke@435 3485 }
duke@435 3486 __ bind(*op->stub()->continuation());
duke@435 3487 }
duke@435 3488
duke@435 3489
duke@435 3490 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 3491 ciMethod* method = op->profiled_method();
duke@435 3492 int bci = op->profiled_bci();
duke@435 3493
duke@435 3494 // Update counter for all call types
iveresov@2349 3495 ciMethodData* md = method->method_data_or_null();
iveresov@2349 3496 assert(md != NULL, "Sanity");
duke@435 3497 ciProfileData* data = md->bci_to_data(bci);
duke@435 3498 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 3499 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
duke@435 3500 Register mdo = op->mdo()->as_register();
jrose@1424 3501 __ movoop(mdo, md->constant_encoding());
duke@435 3502 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
duke@435 3503 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 3504 // Perform additional virtual call profiling for invokevirtual and
duke@435 3505 // invokeinterface bytecodes
duke@435 3506 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
iveresov@2138 3507 C1ProfileVirtualCalls) {
duke@435 3508 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3509 Register recv = op->recv()->as_register();
duke@435 3510 assert_different_registers(mdo, recv);
duke@435 3511 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3512 ciKlass* known_klass = op->known_holder();
iveresov@2138 3513 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3514 // We know the type that will be seen at this call site; we can
duke@435 3515 // statically update the methodDataOop rather than needing to do
duke@435 3516 // dynamic tests on the receiver type
duke@435 3517
duke@435 3518 // NOTE: we should probably put a lock around this search to
duke@435 3519 // avoid collisions by concurrent compilations
duke@435 3520 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3521 uint i;
duke@435 3522 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3523 ciKlass* receiver = vc_data->receiver(i);
duke@435 3524 if (known_klass->equals(receiver)) {
duke@435 3525 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3526 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3527 return;
duke@435 3528 }
duke@435 3529 }
duke@435 3530
duke@435 3531 // Receiver type not found in profile data; select an empty slot
duke@435 3532
duke@435 3533 // Note that this is less efficient than it should be because it
duke@435 3534 // always does a write to the receiver part of the
duke@435 3535 // VirtualCallData rather than just the first time
duke@435 3536 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3537 ciKlass* receiver = vc_data->receiver(i);
duke@435 3538 if (receiver == NULL) {
duke@435 3539 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
jrose@1424 3540 __ movoop(recv_addr, known_klass->constant_encoding());
duke@435 3541 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
iveresov@2138 3542 __ addptr(data_addr, DataLayout::counter_increment);
duke@435 3543 return;
duke@435 3544 }
duke@435 3545 }
duke@435 3546 } else {
iveresov@2344 3547 __ load_klass(recv, recv);
duke@435 3548 Label update_done;
iveresov@2138 3549 type_profile_helper(mdo, md, data, recv, &update_done);
kvn@1641 3550 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 3551 // Increment total counter to indicate polymorphic case.
iveresov@2138 3552 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3553
duke@435 3554 __ bind(update_done);
duke@435 3555 }
kvn@1641 3556 } else {
kvn@1641 3557 // Static call
iveresov@2138 3558 __ addptr(counter_addr, DataLayout::counter_increment);
duke@435 3559 }
duke@435 3560 }
duke@435 3561
duke@435 3562 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
duke@435 3563 Unimplemented();
duke@435 3564 }
duke@435 3565
duke@435 3566
duke@435 3567 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
never@739 3568 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
duke@435 3569 }
duke@435 3570
duke@435 3571
duke@435 3572 void LIR_Assembler::align_backward_branch_target() {
duke@435 3573 __ align(BytesPerWord);
duke@435 3574 }
duke@435 3575
duke@435 3576
duke@435 3577 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3578 if (left->is_single_cpu()) {
duke@435 3579 __ negl(left->as_register());
duke@435 3580 move_regs(left->as_register(), dest->as_register());
duke@435 3581
duke@435 3582 } else if (left->is_double_cpu()) {
duke@435 3583 Register lo = left->as_register_lo();
never@739 3584 #ifdef _LP64
never@739 3585 Register dst = dest->as_register_lo();
never@739 3586 __ movptr(dst, lo);
never@739 3587 __ negptr(dst);
never@739 3588 #else
duke@435 3589 Register hi = left->as_register_hi();
duke@435 3590 __ lneg(hi, lo);
duke@435 3591 if (dest->as_register_lo() == hi) {
duke@435 3592 assert(dest->as_register_hi() != lo, "destroying register");
duke@435 3593 move_regs(hi, dest->as_register_hi());
duke@435 3594 move_regs(lo, dest->as_register_lo());
duke@435 3595 } else {
duke@435 3596 move_regs(lo, dest->as_register_lo());
duke@435 3597 move_regs(hi, dest->as_register_hi());
duke@435 3598 }
never@739 3599 #endif // _LP64
duke@435 3600
duke@435 3601 } else if (dest->is_single_xmm()) {
duke@435 3602 if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
duke@435 3603 __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
duke@435 3604 }
duke@435 3605 __ xorps(dest->as_xmm_float_reg(),
duke@435 3606 ExternalAddress((address)float_signflip_pool));
duke@435 3607
duke@435 3608 } else if (dest->is_double_xmm()) {
duke@435 3609 if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
duke@435 3610 __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
duke@435 3611 }
duke@435 3612 __ xorpd(dest->as_xmm_double_reg(),
duke@435 3613 ExternalAddress((address)double_signflip_pool));
duke@435 3614
duke@435 3615 } else if (left->is_single_fpu() || left->is_double_fpu()) {
duke@435 3616 assert(left->fpu() == 0, "arg must be on TOS");
duke@435 3617 assert(dest->fpu() == 0, "dest must be TOS");
duke@435 3618 __ fchs();
duke@435 3619
duke@435 3620 } else {
duke@435 3621 ShouldNotReachHere();
duke@435 3622 }
duke@435 3623 }
duke@435 3624
duke@435 3625
duke@435 3626 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
duke@435 3627 assert(addr->is_address() && dest->is_register(), "check");
never@739 3628 Register reg;
never@739 3629 reg = dest->as_pointer_register();
never@739 3630 __ lea(reg, as_Address(addr->as_address_ptr()));
duke@435 3631 }
duke@435 3632
duke@435 3633
duke@435 3634
duke@435 3635 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3636 assert(!tmp->is_valid(), "don't need temporary");
duke@435 3637 __ call(RuntimeAddress(dest));
duke@435 3638 if (info != NULL) {
duke@435 3639 add_call_info_here(info);
duke@435 3640 }
duke@435 3641 }
duke@435 3642
duke@435 3643
duke@435 3644 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3645 assert(type == T_LONG, "only for volatile long fields");
duke@435 3646
duke@435 3647 if (info != NULL) {
duke@435 3648 add_debug_info_for_null_check_here(info);
duke@435 3649 }
duke@435 3650
duke@435 3651 if (src->is_double_xmm()) {
duke@435 3652 if (dest->is_double_cpu()) {
never@739 3653 #ifdef _LP64
never@739 3654 __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
never@739 3655 #else
never@739 3656 __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
duke@435 3657 __ psrlq(src->as_xmm_double_reg(), 32);
never@739 3658 __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
never@739 3659 #endif // _LP64
duke@435 3660 } else if (dest->is_double_stack()) {
duke@435 3661 __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
duke@435 3662 } else if (dest->is_address()) {
duke@435 3663 __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
duke@435 3664 } else {
duke@435 3665 ShouldNotReachHere();
duke@435 3666 }
duke@435 3667
duke@435 3668 } else if (dest->is_double_xmm()) {
duke@435 3669 if (src->is_double_stack()) {
duke@435 3670 __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3671 } else if (src->is_address()) {
duke@435 3672 __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
duke@435 3673 } else {
duke@435 3674 ShouldNotReachHere();
duke@435 3675 }
duke@435 3676
duke@435 3677 } else if (src->is_double_fpu()) {
duke@435 3678 assert(src->fpu_regnrLo() == 0, "must be TOS");
duke@435 3679 if (dest->is_double_stack()) {
duke@435 3680 __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
duke@435 3681 } else if (dest->is_address()) {
duke@435 3682 __ fistp_d(as_Address(dest->as_address_ptr()));
duke@435 3683 } else {
duke@435 3684 ShouldNotReachHere();
duke@435 3685 }
duke@435 3686
duke@435 3687 } else if (dest->is_double_fpu()) {
duke@435 3688 assert(dest->fpu_regnrLo() == 0, "must be TOS");
duke@435 3689 if (src->is_double_stack()) {
duke@435 3690 __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
duke@435 3691 } else if (src->is_address()) {
duke@435 3692 __ fild_d(as_Address(src->as_address_ptr()));
duke@435 3693 } else {
duke@435 3694 ShouldNotReachHere();
duke@435 3695 }
duke@435 3696 } else {
duke@435 3697 ShouldNotReachHere();
duke@435 3698 }
duke@435 3699 }
duke@435 3700
duke@435 3701
duke@435 3702 void LIR_Assembler::membar() {
never@739 3703 // QQQ sparc TSO uses this,
never@739 3704 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
duke@435 3705 }
duke@435 3706
duke@435 3707 void LIR_Assembler::membar_acquire() {
duke@435 3708 // No x86 machines currently require load fences
duke@435 3709 // __ load_fence();
duke@435 3710 }
duke@435 3711
duke@435 3712 void LIR_Assembler::membar_release() {
duke@435 3713 // No x86 machines currently require store fences
duke@435 3714 // __ store_fence();
duke@435 3715 }
duke@435 3716
duke@435 3717 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3718 assert(result_reg->is_register(), "check");
never@739 3719 #ifdef _LP64
never@739 3720 // __ get_thread(result_reg->as_register_lo());
never@739 3721 __ mov(result_reg->as_register(), r15_thread);
never@739 3722 #else
duke@435 3723 __ get_thread(result_reg->as_register());
never@739 3724 #endif // _LP64
duke@435 3725 }
duke@435 3726
duke@435 3727
duke@435 3728 void LIR_Assembler::peephole(LIR_List*) {
duke@435 3729 // do nothing for now
duke@435 3730 }
duke@435 3731
duke@435 3732
duke@435 3733 #undef __

mercurial