src/share/vm/opto/escape.cpp

Wed, 16 Nov 2011 09:13:57 -0800

author
kvn
date
Wed, 16 Nov 2011 09:13:57 -0800
changeset 3311
1bd45abaa507
parent 3309
8c57262447d3
child 3318
cc81b9c09bbb
permissions
-rw-r--r--

6890673: Eliminate allocations immediately after EA
Summary: Try to eliminate allocations and related locks immediately after escape analysis.
Reviewed-by: never

duke@435 1 /*
kvn@2556 2 * Copyright (c) 2005, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "ci/bcEscapeAnalyzer.hpp"
stefank@2314 27 #include "libadt/vectset.hpp"
stefank@2314 28 #include "memory/allocation.hpp"
stefank@2314 29 #include "opto/c2compiler.hpp"
stefank@2314 30 #include "opto/callnode.hpp"
stefank@2314 31 #include "opto/cfgnode.hpp"
stefank@2314 32 #include "opto/compile.hpp"
stefank@2314 33 #include "opto/escape.hpp"
stefank@2314 34 #include "opto/phaseX.hpp"
stefank@2314 35 #include "opto/rootnode.hpp"
duke@435 36
duke@435 37 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 38 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 39 if (_edges == NULL) {
duke@435 40 Arena *a = Compile::current()->comp_arena();
duke@435 41 _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
duke@435 42 }
duke@435 43 _edges->append_if_missing(v);
duke@435 44 }
duke@435 45
duke@435 46 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 47 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 48
duke@435 49 _edges->remove(v);
duke@435 50 }
duke@435 51
duke@435 52 #ifndef PRODUCT
kvn@512 53 static const char *node_type_names[] = {
duke@435 54 "UnknownType",
duke@435 55 "JavaObject",
duke@435 56 "LocalVar",
duke@435 57 "Field"
duke@435 58 };
duke@435 59
kvn@512 60 static const char *esc_names[] = {
duke@435 61 "UnknownEscape",
kvn@500 62 "NoEscape",
kvn@500 63 "ArgEscape",
kvn@500 64 "GlobalEscape"
duke@435 65 };
duke@435 66
kvn@512 67 static const char *edge_type_suffix[] = {
duke@435 68 "?", // UnknownEdge
duke@435 69 "P", // PointsToEdge
duke@435 70 "D", // DeferredEdge
duke@435 71 "F" // FieldEdge
duke@435 72 };
duke@435 73
kvn@688 74 void PointsToNode::dump(bool print_state) const {
duke@435 75 NodeType nt = node_type();
kvn@688 76 tty->print("%s ", node_type_names[(int) nt]);
kvn@688 77 if (print_state) {
kvn@688 78 EscapeState es = escape_state();
kvn@688 79 tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
kvn@688 80 }
kvn@688 81 tty->print("[[");
duke@435 82 for (uint i = 0; i < edge_count(); i++) {
duke@435 83 tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
duke@435 84 }
duke@435 85 tty->print("]] ");
duke@435 86 if (_node == NULL)
duke@435 87 tty->print_cr("<null>");
duke@435 88 else
duke@435 89 _node->dump();
duke@435 90 }
duke@435 91 #endif
duke@435 92
kvn@1989 93 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
kvn@679 94 _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
kvn@679 95 _processed(C->comp_arena()),
kvn@2556 96 pt_ptset(C->comp_arena()),
kvn@2556 97 pt_visited(C->comp_arena()),
kvn@2556 98 pt_worklist(C->comp_arena(), 4, 0, 0),
kvn@679 99 _collecting(true),
kvn@2276 100 _progress(false),
kvn@679 101 _compile(C),
kvn@1989 102 _igvn(igvn),
kvn@679 103 _node_map(C->comp_arena()) {
kvn@679 104
kvn@688 105 _phantom_object = C->top()->_idx,
kvn@688 106 add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
kvn@688 107
kvn@688 108 // Add ConP(#NULL) and ConN(#NULL) nodes.
kvn@688 109 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@688 110 _oop_null = oop_null->_idx;
kvn@3242 111 assert(_oop_null < nodes_size(), "should be created already");
kvn@688 112 add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 113
kvn@688 114 if (UseCompressedOops) {
kvn@688 115 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@688 116 _noop_null = noop_null->_idx;
kvn@3242 117 assert(_noop_null < nodes_size(), "should be created already");
kvn@688 118 add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@3242 119 } else {
kvn@3242 120 _noop_null = _oop_null; // Should be initialized
kvn@688 121 }
kvn@3309 122 _pcmp_neq = NULL; // Should be initialized
kvn@3309 123 _pcmp_eq = NULL;
duke@435 124 }
duke@435 125
duke@435 126 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
duke@435 127 PointsToNode *f = ptnode_adr(from_i);
duke@435 128 PointsToNode *t = ptnode_adr(to_i);
duke@435 129
duke@435 130 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 131 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
duke@435 132 assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
kvn@2276 133 add_edge(f, to_i, PointsToNode::PointsToEdge);
duke@435 134 }
duke@435 135
duke@435 136 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
duke@435 137 PointsToNode *f = ptnode_adr(from_i);
duke@435 138 PointsToNode *t = ptnode_adr(to_i);
duke@435 139
duke@435 140 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 141 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
duke@435 142 assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
duke@435 143 // don't add a self-referential edge, this can occur during removal of
duke@435 144 // deferred edges
duke@435 145 if (from_i != to_i)
kvn@2276 146 add_edge(f, to_i, PointsToNode::DeferredEdge);
duke@435 147 }
duke@435 148
kvn@500 149 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 150 const Type *adr_type = phase->type(adr);
kvn@500 151 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 152 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 153 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 154 // We are computing a raw address for a store captured by an Initialize
kvn@500 155 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 156 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 157 assert(offs != Type::OffsetBot ||
kvn@500 158 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 159 "offset must be a constant or it is initialization of array");
kvn@500 160 return offs;
kvn@500 161 }
kvn@500 162 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 163 assert(t_ptr != NULL, "must be a pointer type");
duke@435 164 return t_ptr->offset();
duke@435 165 }
duke@435 166
duke@435 167 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
duke@435 168 PointsToNode *f = ptnode_adr(from_i);
duke@435 169 PointsToNode *t = ptnode_adr(to_i);
duke@435 170
duke@435 171 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 172 assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
duke@435 173 assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
duke@435 174 assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
duke@435 175 t->set_offset(offset);
duke@435 176
kvn@2276 177 add_edge(f, to_i, PointsToNode::FieldEdge);
duke@435 178 }
duke@435 179
duke@435 180 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
kvn@3242 181 // Don't change non-escaping state of NULL pointer.
kvn@3242 182 if (ni == _noop_null || ni == _oop_null)
kvn@3242 183 return;
duke@435 184 PointsToNode *npt = ptnode_adr(ni);
duke@435 185 PointsToNode::EscapeState old_es = npt->escape_state();
duke@435 186 if (es > old_es)
duke@435 187 npt->set_escape_state(es);
duke@435 188 }
duke@435 189
kvn@500 190 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
kvn@500 191 PointsToNode::EscapeState es, bool done) {
kvn@500 192 PointsToNode* ptadr = ptnode_adr(n->_idx);
kvn@500 193 ptadr->_node = n;
kvn@500 194 ptadr->set_node_type(nt);
kvn@500 195
kvn@500 196 // inline set_escape_state(idx, es);
kvn@500 197 PointsToNode::EscapeState old_es = ptadr->escape_state();
kvn@500 198 if (es > old_es)
kvn@500 199 ptadr->set_escape_state(es);
kvn@500 200
kvn@500 201 if (done)
kvn@500 202 _processed.set(n->_idx);
kvn@500 203 }
kvn@500 204
kvn@1989 205 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n) {
duke@435 206 uint idx = n->_idx;
duke@435 207 PointsToNode::EscapeState es;
duke@435 208
kvn@500 209 // If we are still collecting or there were no non-escaping allocations
kvn@500 210 // we don't know the answer yet
kvn@679 211 if (_collecting)
duke@435 212 return PointsToNode::UnknownEscape;
duke@435 213
duke@435 214 // if the node was created after the escape computation, return
duke@435 215 // UnknownEscape
kvn@679 216 if (idx >= nodes_size())
duke@435 217 return PointsToNode::UnknownEscape;
duke@435 218
kvn@679 219 es = ptnode_adr(idx)->escape_state();
duke@435 220
duke@435 221 // if we have already computed a value, return it
kvn@895 222 if (es != PointsToNode::UnknownEscape &&
kvn@895 223 ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
duke@435 224 return es;
duke@435 225
kvn@679 226 // PointsTo() calls n->uncast() which can return a new ideal node.
kvn@679 227 if (n->uncast()->_idx >= nodes_size())
kvn@679 228 return PointsToNode::UnknownEscape;
kvn@679 229
kvn@1989 230 PointsToNode::EscapeState orig_es = es;
kvn@1989 231
duke@435 232 // compute max escape state of anything this node could point to
kvn@2556 233 for(VectorSetI i(PointsTo(n)); i.test() && es != PointsToNode::GlobalEscape; ++i) {
duke@435 234 uint pt = i.elem;
kvn@679 235 PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
duke@435 236 if (pes > es)
duke@435 237 es = pes;
duke@435 238 }
kvn@1989 239 if (orig_es != es) {
kvn@1989 240 // cache the computed escape state
kvn@3242 241 assert(es > orig_es, "should have computed an escape state");
kvn@3242 242 set_escape_state(idx, es);
kvn@1989 243 } // orig_es could be PointsToNode::UnknownEscape
duke@435 244 return es;
duke@435 245 }
duke@435 246
kvn@2556 247 VectorSet* ConnectionGraph::PointsTo(Node * n) {
kvn@2556 248 pt_ptset.Reset();
kvn@2556 249 pt_visited.Reset();
kvn@2556 250 pt_worklist.clear();
duke@435 251
kvn@559 252 #ifdef ASSERT
kvn@559 253 Node *orig_n = n;
kvn@559 254 #endif
kvn@559 255
kvn@500 256 n = n->uncast();
kvn@679 257 PointsToNode* npt = ptnode_adr(n->_idx);
duke@435 258
duke@435 259 // If we have a JavaObject, return just that object
kvn@679 260 if (npt->node_type() == PointsToNode::JavaObject) {
kvn@2556 261 pt_ptset.set(n->_idx);
kvn@2556 262 return &pt_ptset;
duke@435 263 }
kvn@559 264 #ifdef ASSERT
kvn@679 265 if (npt->_node == NULL) {
kvn@559 266 if (orig_n != n)
kvn@559 267 orig_n->dump();
kvn@559 268 n->dump();
kvn@679 269 assert(npt->_node != NULL, "unregistered node");
kvn@559 270 }
kvn@559 271 #endif
kvn@2556 272 pt_worklist.push(n->_idx);
kvn@2556 273 while(pt_worklist.length() > 0) {
kvn@2556 274 int ni = pt_worklist.pop();
kvn@2556 275 if (pt_visited.test_set(ni))
kvn@679 276 continue;
duke@435 277
kvn@679 278 PointsToNode* pn = ptnode_adr(ni);
kvn@679 279 // ensure that all inputs of a Phi have been processed
kvn@679 280 assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
kvn@679 281
kvn@679 282 int edges_processed = 0;
kvn@679 283 uint e_cnt = pn->edge_count();
kvn@679 284 for (uint e = 0; e < e_cnt; e++) {
kvn@679 285 uint etgt = pn->edge_target(e);
kvn@679 286 PointsToNode::EdgeType et = pn->edge_type(e);
kvn@679 287 if (et == PointsToNode::PointsToEdge) {
kvn@2556 288 pt_ptset.set(etgt);
kvn@679 289 edges_processed++;
kvn@679 290 } else if (et == PointsToNode::DeferredEdge) {
kvn@2556 291 pt_worklist.push(etgt);
kvn@679 292 edges_processed++;
kvn@679 293 } else {
kvn@679 294 assert(false,"neither PointsToEdge or DeferredEdge");
duke@435 295 }
kvn@679 296 }
kvn@679 297 if (edges_processed == 0) {
kvn@679 298 // no deferred or pointsto edges found. Assume the value was set
kvn@679 299 // outside this method. Add the phantom object to the pointsto set.
kvn@2556 300 pt_ptset.set(_phantom_object);
duke@435 301 }
duke@435 302 }
kvn@2556 303 return &pt_ptset;
duke@435 304 }
duke@435 305
kvn@536 306 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
kvn@536 307 // This method is most expensive during ConnectionGraph construction.
kvn@536 308 // Reuse vectorSet and an additional growable array for deferred edges.
kvn@536 309 deferred_edges->clear();
kvn@2556 310 visited->Reset();
duke@435 311
kvn@679 312 visited->set(ni);
duke@435 313 PointsToNode *ptn = ptnode_adr(ni);
kvn@3309 314 if (ptn->edge_count() == 0) {
kvn@3309 315 // No deferred or pointsto edges found. Assume the value was set
kvn@3309 316 // outside this method. Add edge to phantom object.
kvn@3309 317 add_pointsto_edge(ni, _phantom_object);
kvn@3309 318 }
duke@435 319
kvn@536 320 // Mark current edges as visited and move deferred edges to separate array.
kvn@679 321 for (uint i = 0; i < ptn->edge_count(); ) {
kvn@500 322 uint t = ptn->edge_target(i);
kvn@536 323 #ifdef ASSERT
kvn@536 324 assert(!visited->test_set(t), "expecting no duplications");
kvn@536 325 #else
kvn@536 326 visited->set(t);
kvn@536 327 #endif
kvn@536 328 if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
kvn@536 329 ptn->remove_edge(t, PointsToNode::DeferredEdge);
kvn@536 330 deferred_edges->append(t);
kvn@559 331 } else {
kvn@559 332 i++;
kvn@536 333 }
kvn@536 334 }
kvn@536 335 for (int next = 0; next < deferred_edges->length(); ++next) {
kvn@536 336 uint t = deferred_edges->at(next);
kvn@500 337 PointsToNode *ptt = ptnode_adr(t);
kvn@679 338 uint e_cnt = ptt->edge_count();
kvn@3309 339 if (e_cnt == 0) {
kvn@3309 340 // No deferred or pointsto edges found. Assume the value was set
kvn@3309 341 // outside this method. Add edge to phantom object.
kvn@3309 342 add_pointsto_edge(t, _phantom_object);
kvn@3309 343 add_pointsto_edge(ni, _phantom_object);
kvn@3309 344 }
kvn@679 345 for (uint e = 0; e < e_cnt; e++) {
kvn@679 346 uint etgt = ptt->edge_target(e);
kvn@679 347 if (visited->test_set(etgt))
kvn@536 348 continue;
kvn@679 349
kvn@679 350 PointsToNode::EdgeType et = ptt->edge_type(e);
kvn@679 351 if (et == PointsToNode::PointsToEdge) {
kvn@679 352 add_pointsto_edge(ni, etgt);
kvn@679 353 if(etgt == _phantom_object) {
kvn@679 354 // Special case - field set outside (globally escaping).
kvn@3242 355 set_escape_state(ni, PointsToNode::GlobalEscape);
kvn@679 356 }
kvn@679 357 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 358 deferred_edges->append(etgt);
kvn@679 359 } else {
kvn@679 360 assert(false,"invalid connection graph");
duke@435 361 }
duke@435 362 }
duke@435 363 }
duke@435 364 }
duke@435 365
duke@435 366
duke@435 367 // Add an edge to node given by "to_i" from any field of adr_i whose offset
duke@435 368 // matches "offset" A deferred edge is added if to_i is a LocalVar, and
duke@435 369 // a pointsto edge is added if it is a JavaObject
duke@435 370
duke@435 371 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
kvn@679 372 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 373 PointsToNode* to = ptnode_adr(to_i);
kvn@679 374 bool deferred = (to->node_type() == PointsToNode::LocalVar);
duke@435 375
kvn@679 376 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 377 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 378 int fi = an->edge_target(fe);
kvn@679 379 PointsToNode* pf = ptnode_adr(fi);
kvn@679 380 int po = pf->offset();
duke@435 381 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 382 if (deferred)
duke@435 383 add_deferred_edge(fi, to_i);
duke@435 384 else
duke@435 385 add_pointsto_edge(fi, to_i);
duke@435 386 }
duke@435 387 }
duke@435 388 }
duke@435 389
kvn@500 390 // Add a deferred edge from node given by "from_i" to any field of adr_i
kvn@500 391 // whose offset matches "offset".
duke@435 392 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
kvn@679 393 PointsToNode* an = ptnode_adr(adr_i);
kvn@3254 394 bool is_alloc = an->_node->is_Allocate();
kvn@679 395 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 396 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 397 int fi = an->edge_target(fe);
kvn@679 398 PointsToNode* pf = ptnode_adr(fi);
kvn@3254 399 int offset = pf->offset();
kvn@3254 400 if (!is_alloc) {
kvn@3254 401 // Assume the field was set outside this method if it is not Allocation
duke@435 402 add_pointsto_edge(fi, _phantom_object);
duke@435 403 }
kvn@3254 404 if (offset == offs || offset == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 405 add_deferred_edge(from_i, fi);
duke@435 406 }
duke@435 407 }
kvn@3309 408 // Some fields references (AddP) may still be missing
kvn@3309 409 // until Connection Graph construction is complete.
kvn@3309 410 // For example, loads from RAW pointers with offset 0
kvn@3309 411 // which don't have AddP.
kvn@3309 412 // A reference to phantom_object will be added if
kvn@3309 413 // a field reference is still missing after completing
kvn@3309 414 // Connection Graph (see remove_deferred()).
duke@435 415 }
duke@435 416
kvn@500 417 // Helper functions
kvn@500 418
kvn@500 419 static Node* get_addp_base(Node *addp) {
kvn@500 420 assert(addp->is_AddP(), "must be AddP");
kvn@500 421 //
kvn@500 422 // AddP cases for Base and Address inputs:
kvn@500 423 // case #1. Direct object's field reference:
kvn@500 424 // Allocate
kvn@500 425 // |
kvn@500 426 // Proj #5 ( oop result )
kvn@500 427 // |
kvn@500 428 // CheckCastPP (cast to instance type)
kvn@500 429 // | |
kvn@500 430 // AddP ( base == address )
kvn@500 431 //
kvn@500 432 // case #2. Indirect object's field reference:
kvn@500 433 // Phi
kvn@500 434 // |
kvn@500 435 // CastPP (cast to instance type)
kvn@500 436 // | |
kvn@500 437 // AddP ( base == address )
kvn@500 438 //
kvn@500 439 // case #3. Raw object's field reference for Initialize node:
kvn@500 440 // Allocate
kvn@500 441 // |
kvn@500 442 // Proj #5 ( oop result )
kvn@500 443 // top |
kvn@500 444 // \ |
kvn@500 445 // AddP ( base == top )
kvn@500 446 //
kvn@500 447 // case #4. Array's element reference:
kvn@500 448 // {CheckCastPP | CastPP}
kvn@500 449 // | | |
kvn@500 450 // | AddP ( array's element offset )
kvn@500 451 // | |
kvn@500 452 // AddP ( array's offset )
kvn@500 453 //
kvn@500 454 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 455 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 456 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 457 // Allocate
kvn@500 458 // |
kvn@500 459 // Proj #5 ( oop result )
kvn@500 460 // | |
kvn@500 461 // AddP ( base == address )
kvn@500 462 //
kvn@512 463 // case #6. Constant Pool, ThreadLocal, CastX2P or
kvn@512 464 // Raw object's field reference:
kvn@512 465 // {ConP, ThreadLocal, CastX2P, raw Load}
kvn@500 466 // top |
kvn@500 467 // \ |
kvn@500 468 // AddP ( base == top )
kvn@500 469 //
kvn@512 470 // case #7. Klass's field reference.
kvn@512 471 // LoadKlass
kvn@512 472 // | |
kvn@512 473 // AddP ( base == address )
kvn@512 474 //
kvn@599 475 // case #8. narrow Klass's field reference.
kvn@599 476 // LoadNKlass
kvn@599 477 // |
kvn@599 478 // DecodeN
kvn@599 479 // | |
kvn@599 480 // AddP ( base == address )
kvn@599 481 //
kvn@500 482 Node *base = addp->in(AddPNode::Base)->uncast();
kvn@500 483 if (base->is_top()) { // The AddP case #3 and #6.
kvn@500 484 base = addp->in(AddPNode::Address)->uncast();
kvn@1392 485 while (base->is_AddP()) {
kvn@1392 486 // Case #6 (unsafe access) may have several chained AddP nodes.
kvn@1392 487 assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
kvn@1392 488 base = base->in(AddPNode::Address)->uncast();
kvn@1392 489 }
kvn@500 490 assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
kvn@603 491 base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
kvn@512 492 (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
kvn@512 493 (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
duke@435 494 }
kvn@500 495 return base;
kvn@500 496 }
kvn@500 497
kvn@500 498 static Node* find_second_addp(Node* addp, Node* n) {
kvn@500 499 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 500
kvn@500 501 Node* addp2 = addp->raw_out(0);
kvn@500 502 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 503 addp2->in(AddPNode::Base) == n &&
kvn@500 504 addp2->in(AddPNode::Address) == addp) {
kvn@500 505
kvn@500 506 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 507 //
kvn@500 508 // Find array's offset to push it on worklist first and
kvn@500 509 // as result process an array's element offset first (pushed second)
kvn@500 510 // to avoid CastPP for the array's offset.
kvn@500 511 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 512 // the AddP (Field) points to. Which would be wrong since
kvn@500 513 // the algorithm expects the CastPP has the same point as
kvn@500 514 // as AddP's base CheckCastPP (LocalVar).
kvn@500 515 //
kvn@500 516 // ArrayAllocation
kvn@500 517 // |
kvn@500 518 // CheckCastPP
kvn@500 519 // |
kvn@500 520 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 521 // | ||
kvn@500 522 // | || Int (element index)
kvn@500 523 // | || | ConI (log(element size))
kvn@500 524 // | || | /
kvn@500 525 // | || LShift
kvn@500 526 // | || /
kvn@500 527 // | AddP (array's element offset)
kvn@500 528 // | |
kvn@500 529 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 530 // | / /
kvn@500 531 // AddP (array's offset)
kvn@500 532 // |
kvn@500 533 // Load/Store (memory operation on array's element)
kvn@500 534 //
kvn@500 535 return addp2;
kvn@500 536 }
kvn@500 537 return NULL;
duke@435 538 }
duke@435 539
duke@435 540 //
duke@435 541 // Adjust the type and inputs of an AddP which computes the
duke@435 542 // address of a field of an instance
duke@435 543 //
kvn@728 544 bool ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
kvn@500 545 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@658 546 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
duke@435 547 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 548 if (t == NULL) {
kvn@500 549 // We are computing a raw address for a store captured by an Initialize
kvn@728 550 // compute an appropriate address type (cases #3 and #5).
kvn@500 551 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 552 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@741 553 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 554 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 555 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 556 }
kvn@658 557 int inst_id = base_t->instance_id();
kvn@658 558 assert(!t->is_known_instance() || t->instance_id() == inst_id,
duke@435 559 "old type must be non-instance or match new type");
kvn@728 560
kvn@728 561 // The type 't' could be subclass of 'base_t'.
kvn@728 562 // As result t->offset() could be large then base_t's size and it will
kvn@728 563 // cause the failure in add_offset() with narrow oops since TypeOopPtr()
kvn@728 564 // constructor verifies correctness of the offset.
kvn@728 565 //
twisti@1040 566 // It could happened on subclass's branch (from the type profiling
kvn@728 567 // inlining) which was not eliminated during parsing since the exactness
kvn@728 568 // of the allocation type was not propagated to the subclass type check.
kvn@728 569 //
kvn@1423 570 // Or the type 't' could be not related to 'base_t' at all.
kvn@1423 571 // It could happened when CHA type is different from MDO type on a dead path
kvn@1423 572 // (for example, from instanceof check) which is not collapsed during parsing.
kvn@1423 573 //
kvn@728 574 // Do nothing for such AddP node and don't process its users since
kvn@728 575 // this code branch will go away.
kvn@728 576 //
kvn@728 577 if (!t->is_known_instance() &&
kvn@1423 578 !base_t->klass()->is_subtype_of(t->klass())) {
kvn@728 579 return false; // bail out
kvn@728 580 }
kvn@728 581
duke@435 582 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@1497 583 // Do NOT remove the next line: ensure a new alias index is allocated
kvn@1497 584 // for the instance type. Note: C++ will not remove it since the call
kvn@1497 585 // has side effect.
duke@435 586 int alias_idx = _compile->get_alias_index(tinst);
duke@435 587 igvn->set_type(addp, tinst);
duke@435 588 // record the allocation in the node map
kvn@1536 589 assert(ptnode_adr(addp->_idx)->_node != NULL, "should be registered");
duke@435 590 set_map(addp->_idx, get_map(base->_idx));
kvn@688 591
kvn@688 592 // Set addp's Base and Address to 'base'.
kvn@688 593 Node *abase = addp->in(AddPNode::Base);
kvn@688 594 Node *adr = addp->in(AddPNode::Address);
kvn@688 595 if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
kvn@688 596 adr->in(0)->_idx == (uint)inst_id) {
kvn@688 597 // Skip AddP cases #3 and #5.
kvn@688 598 } else {
kvn@688 599 assert(!abase->is_top(), "sanity"); // AddP case #3
kvn@688 600 if (abase != base) {
kvn@688 601 igvn->hash_delete(addp);
kvn@688 602 addp->set_req(AddPNode::Base, base);
kvn@688 603 if (abase == adr) {
kvn@688 604 addp->set_req(AddPNode::Address, base);
kvn@688 605 } else {
kvn@688 606 // AddP case #4 (adr is array's element offset AddP node)
kvn@688 607 #ifdef ASSERT
kvn@688 608 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@688 609 assert(adr->is_AddP() && atype != NULL &&
kvn@688 610 atype->instance_id() == inst_id, "array's element offset should be processed first");
kvn@688 611 #endif
kvn@688 612 }
kvn@688 613 igvn->hash_insert(addp);
duke@435 614 }
duke@435 615 }
kvn@500 616 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 617 record_for_optimizer(addp);
kvn@728 618 return true;
duke@435 619 }
duke@435 620
duke@435 621 //
duke@435 622 // Create a new version of orig_phi if necessary. Returns either the newly
kvn@2741 623 // created phi or an existing phi. Sets create_new to indicate whether a new
duke@435 624 // phi was created. Cache the last newly created phi in the node map.
duke@435 625 //
duke@435 626 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
duke@435 627 Compile *C = _compile;
duke@435 628 new_created = false;
duke@435 629 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 630 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 631 if (phi_alias_idx == alias_idx) {
duke@435 632 return orig_phi;
duke@435 633 }
kvn@1286 634 // Have we recently created a Phi for this alias index?
duke@435 635 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 636 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 637 return result;
duke@435 638 }
kvn@1286 639 // Previous check may fail when the same wide memory Phi was split into Phis
kvn@1286 640 // for different memory slices. Search all Phis for this region.
kvn@1286 641 if (result != NULL) {
kvn@1286 642 Node* region = orig_phi->in(0);
kvn@1286 643 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@1286 644 Node* phi = region->fast_out(i);
kvn@1286 645 if (phi->is_Phi() &&
kvn@1286 646 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
kvn@1286 647 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
kvn@1286 648 return phi->as_Phi();
kvn@1286 649 }
kvn@1286 650 }
kvn@1286 651 }
kvn@473 652 if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
kvn@473 653 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 654 // Retry compilation without escape analysis.
kvn@473 655 // If this is the first failure, the sentinel string will "stick"
kvn@473 656 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 657 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 658 }
kvn@473 659 return NULL;
kvn@473 660 }
duke@435 661 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 662 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 663 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
kvn@1286 664 C->copy_node_notes_to(result, orig_phi);
duke@435 665 igvn->set_type(result, result->bottom_type());
duke@435 666 record_for_optimizer(result);
kvn@1536 667
kvn@1536 668 debug_only(Node* pn = ptnode_adr(orig_phi->_idx)->_node;)
kvn@1536 669 assert(pn == NULL || pn == orig_phi, "wrong node");
kvn@1536 670 set_map(orig_phi->_idx, result);
kvn@1536 671 ptnode_adr(orig_phi->_idx)->_node = orig_phi;
kvn@1536 672
duke@435 673 new_created = true;
duke@435 674 return result;
duke@435 675 }
duke@435 676
duke@435 677 //
kvn@2741 678 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 679 // specified alias index.
duke@435 680 //
duke@435 681 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
duke@435 682
duke@435 683 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 684 Compile *C = _compile;
duke@435 685 bool new_phi_created;
kvn@500 686 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 687 if (!new_phi_created) {
duke@435 688 return result;
duke@435 689 }
duke@435 690
duke@435 691 GrowableArray<PhiNode *> phi_list;
duke@435 692 GrowableArray<uint> cur_input;
duke@435 693
duke@435 694 PhiNode *phi = orig_phi;
duke@435 695 uint idx = 1;
duke@435 696 bool finished = false;
duke@435 697 while(!finished) {
duke@435 698 while (idx < phi->req()) {
kvn@500 699 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
duke@435 700 if (mem != NULL && mem->is_Phi()) {
kvn@500 701 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 702 if (new_phi_created) {
duke@435 703 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 704 // processing new one
duke@435 705 phi_list.push(phi);
duke@435 706 cur_input.push(idx);
duke@435 707 phi = mem->as_Phi();
kvn@500 708 result = newphi;
duke@435 709 idx = 1;
duke@435 710 continue;
duke@435 711 } else {
kvn@500 712 mem = newphi;
duke@435 713 }
duke@435 714 }
kvn@473 715 if (C->failing()) {
kvn@473 716 return NULL;
kvn@473 717 }
duke@435 718 result->set_req(idx++, mem);
duke@435 719 }
duke@435 720 #ifdef ASSERT
duke@435 721 // verify that the new Phi has an input for each input of the original
duke@435 722 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 723 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 724 #endif
kvn@500 725 // Check if all new phi's inputs have specified alias index.
kvn@500 726 // Otherwise use old phi.
duke@435 727 for (uint i = 1; i < phi->req(); i++) {
kvn@500 728 Node* in = result->in(i);
kvn@500 729 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 730 }
duke@435 731 // we have finished processing a Phi, see if there are any more to do
duke@435 732 finished = (phi_list.length() == 0 );
duke@435 733 if (!finished) {
duke@435 734 phi = phi_list.pop();
duke@435 735 idx = cur_input.pop();
kvn@500 736 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 737 prev_result->set_req(idx++, result);
kvn@500 738 result = prev_result;
duke@435 739 }
duke@435 740 }
duke@435 741 return result;
duke@435 742 }
duke@435 743
kvn@500 744
kvn@500 745 //
kvn@500 746 // The next methods are derived from methods in MemNode.
kvn@500 747 //
never@2170 748 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
kvn@500 749 Node *mem = mmem;
never@2170 750 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 751 // means an array I have not precisely typed yet. Do not do any
kvn@500 752 // alias stuff with it any time soon.
never@2170 753 if( toop->base() != Type::AnyPtr &&
never@2170 754 !(toop->klass() != NULL &&
never@2170 755 toop->klass()->is_java_lang_Object() &&
never@2170 756 toop->offset() == Type::OffsetBot) ) {
kvn@500 757 mem = mmem->memory_at(alias_idx);
kvn@500 758 // Update input if it is progress over what we have now
kvn@500 759 }
kvn@500 760 return mem;
kvn@500 761 }
kvn@500 762
kvn@500 763 //
kvn@1536 764 // Move memory users to their memory slices.
kvn@1536 765 //
kvn@1536 766 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *igvn) {
kvn@1536 767 Compile* C = _compile;
kvn@1536 768
kvn@1536 769 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
kvn@1536 770 assert(tp != NULL, "ptr type");
kvn@1536 771 int alias_idx = C->get_alias_index(tp);
kvn@1536 772 int general_idx = C->get_general_index(alias_idx);
kvn@1536 773
kvn@1536 774 // Move users first
kvn@1536 775 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1536 776 Node* use = n->fast_out(i);
kvn@1536 777 if (use->is_MergeMem()) {
kvn@1536 778 MergeMemNode* mmem = use->as_MergeMem();
kvn@1536 779 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
kvn@1536 780 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
kvn@1536 781 continue; // Nothing to do
kvn@1536 782 }
kvn@1536 783 // Replace previous general reference to mem node.
kvn@1536 784 uint orig_uniq = C->unique();
kvn@1536 785 Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
kvn@1536 786 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 787 mmem->set_memory_at(general_idx, m);
kvn@1536 788 --imax;
kvn@1536 789 --i;
kvn@1536 790 } else if (use->is_MemBar()) {
kvn@1536 791 assert(!use->is_Initialize(), "initializing stores should not be moved");
kvn@1536 792 if (use->req() > MemBarNode::Precedent &&
kvn@1536 793 use->in(MemBarNode::Precedent) == n) {
kvn@1536 794 // Don't move related membars.
kvn@1536 795 record_for_optimizer(use);
kvn@1536 796 continue;
kvn@1536 797 }
kvn@1536 798 tp = use->as_MemBar()->adr_type()->isa_ptr();
kvn@1536 799 if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
kvn@1536 800 alias_idx == general_idx) {
kvn@1536 801 continue; // Nothing to do
kvn@1536 802 }
kvn@1536 803 // Move to general memory slice.
kvn@1536 804 uint orig_uniq = C->unique();
kvn@1536 805 Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
kvn@1536 806 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 807 igvn->hash_delete(use);
kvn@1536 808 imax -= use->replace_edge(n, m);
kvn@1536 809 igvn->hash_insert(use);
kvn@1536 810 record_for_optimizer(use);
kvn@1536 811 --i;
kvn@1536 812 #ifdef ASSERT
kvn@1536 813 } else if (use->is_Mem()) {
kvn@1536 814 if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
kvn@1536 815 // Don't move related cardmark.
kvn@1536 816 continue;
kvn@1536 817 }
kvn@1536 818 // Memory nodes should have new memory input.
kvn@1536 819 tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
kvn@1536 820 assert(tp != NULL, "ptr type");
kvn@1536 821 int idx = C->get_alias_index(tp);
kvn@1536 822 assert(get_map(use->_idx) != NULL || idx == alias_idx,
kvn@1536 823 "Following memory nodes should have new memory input or be on the same memory slice");
kvn@1536 824 } else if (use->is_Phi()) {
kvn@1536 825 // Phi nodes should be split and moved already.
kvn@1536 826 tp = use->as_Phi()->adr_type()->isa_ptr();
kvn@1536 827 assert(tp != NULL, "ptr type");
kvn@1536 828 int idx = C->get_alias_index(tp);
kvn@1536 829 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
kvn@1536 830 } else {
kvn@1536 831 use->dump();
kvn@1536 832 assert(false, "should not be here");
kvn@1536 833 #endif
kvn@1536 834 }
kvn@1536 835 }
kvn@1536 836 }
kvn@1536 837
kvn@1536 838 //
kvn@500 839 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 840 // is the specified alias index.
kvn@500 841 //
kvn@500 842 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *phase) {
kvn@500 843 if (orig_mem == NULL)
kvn@500 844 return orig_mem;
kvn@500 845 Compile* C = phase->C;
never@2170 846 const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
never@2170 847 bool is_instance = (toop != NULL) && toop->is_known_instance();
kvn@688 848 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@500 849 Node *prev = NULL;
kvn@500 850 Node *result = orig_mem;
kvn@500 851 while (prev != result) {
kvn@500 852 prev = result;
kvn@688 853 if (result == start_mem)
twisti@1040 854 break; // hit one of our sentinels
kvn@500 855 if (result->is_Mem()) {
kvn@688 856 const Type *at = phase->type(result->in(MemNode::Address));
kvn@2741 857 if (at == Type::TOP)
kvn@2741 858 break; // Dead
kvn@2741 859 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@2741 860 int idx = C->get_alias_index(at->is_ptr());
kvn@2741 861 if (idx == alias_idx)
kvn@2741 862 break; // Found
kvn@2741 863 if (!is_instance && (at->isa_oopptr() == NULL ||
kvn@2741 864 !at->is_oopptr()->is_known_instance())) {
kvn@2741 865 break; // Do not skip store to general memory slice.
kvn@500 866 }
kvn@688 867 result = result->in(MemNode::Memory);
kvn@500 868 }
kvn@500 869 if (!is_instance)
kvn@500 870 continue; // don't search further for non-instance types
kvn@500 871 // skip over a call which does not affect this memory slice
kvn@500 872 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 873 Node *proj_in = result->in(0);
never@2170 874 if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
twisti@1040 875 break; // hit one of our sentinels
kvn@688 876 } else if (proj_in->is_Call()) {
kvn@500 877 CallNode *call = proj_in->as_Call();
never@2170 878 if (!call->may_modify(toop, phase)) {
kvn@500 879 result = call->in(TypeFunc::Memory);
kvn@500 880 }
kvn@500 881 } else if (proj_in->is_Initialize()) {
kvn@500 882 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 883 // Stop if this is the initialization for the object instance which
kvn@500 884 // which contains this memory slice, otherwise skip over it.
never@2170 885 if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
kvn@500 886 result = proj_in->in(TypeFunc::Memory);
kvn@500 887 }
kvn@500 888 } else if (proj_in->is_MemBar()) {
kvn@500 889 result = proj_in->in(TypeFunc::Memory);
kvn@500 890 }
kvn@500 891 } else if (result->is_MergeMem()) {
kvn@500 892 MergeMemNode *mmem = result->as_MergeMem();
never@2170 893 result = step_through_mergemem(mmem, alias_idx, toop);
kvn@500 894 if (result == mmem->base_memory()) {
kvn@500 895 // Didn't find instance memory, search through general slice recursively.
kvn@500 896 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@500 897 result = find_inst_mem(result, alias_idx, orig_phis, phase);
kvn@500 898 if (C->failing()) {
kvn@500 899 return NULL;
kvn@500 900 }
kvn@500 901 mmem->set_memory_at(alias_idx, result);
kvn@500 902 }
kvn@500 903 } else if (result->is_Phi() &&
kvn@500 904 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@500 905 Node *un = result->as_Phi()->unique_input(phase);
kvn@500 906 if (un != NULL) {
kvn@1536 907 orig_phis.append_if_missing(result->as_Phi());
kvn@500 908 result = un;
kvn@500 909 } else {
kvn@500 910 break;
kvn@500 911 }
kvn@1535 912 } else if (result->is_ClearArray()) {
never@2170 913 if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), phase)) {
kvn@1535 914 // Can not bypass initialization of the instance
kvn@1535 915 // we are looking for.
kvn@1535 916 break;
kvn@1535 917 }
kvn@1535 918 // Otherwise skip it (the call updated 'result' value).
kvn@1019 919 } else if (result->Opcode() == Op_SCMemProj) {
kvn@1019 920 assert(result->in(0)->is_LoadStore(), "sanity");
kvn@1019 921 const Type *at = phase->type(result->in(0)->in(MemNode::Address));
kvn@1019 922 if (at != Type::TOP) {
kvn@1019 923 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@1019 924 int idx = C->get_alias_index(at->is_ptr());
kvn@1019 925 assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 926 break;
kvn@1019 927 }
kvn@1019 928 result = result->in(0)->in(MemNode::Memory);
kvn@500 929 }
kvn@500 930 }
kvn@682 931 if (result->is_Phi()) {
kvn@500 932 PhiNode *mphi = result->as_Phi();
kvn@500 933 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 934 const TypePtr *t = mphi->adr_type();
kvn@2741 935 if (!is_instance) {
kvn@682 936 // Push all non-instance Phis on the orig_phis worklist to update inputs
kvn@682 937 // during Phase 4 if needed.
kvn@682 938 orig_phis.append_if_missing(mphi);
kvn@2741 939 } else if (C->get_alias_index(t) != alias_idx) {
kvn@2741 940 // Create a new Phi with the specified alias index type.
kvn@2741 941 result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
kvn@500 942 }
kvn@500 943 }
kvn@500 944 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 945 return result;
kvn@500 946 }
kvn@500 947
duke@435 948 //
duke@435 949 // Convert the types of unescaped object to instance types where possible,
duke@435 950 // propagate the new type information through the graph, and update memory
duke@435 951 // edges and MergeMem inputs to reflect the new type.
duke@435 952 //
duke@435 953 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 954 // The processing is done in 4 phases:
duke@435 955 //
duke@435 956 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 957 // types for the CheckCastPP for allocations where possible.
duke@435 958 // Propagate the the new types through users as follows:
duke@435 959 // casts and Phi: push users on alloc_worklist
duke@435 960 // AddP: cast Base and Address inputs to the instance type
duke@435 961 // push any AddP users on alloc_worklist and push any memnode
duke@435 962 // users onto memnode_worklist.
duke@435 963 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 964 // search the Memory chain for a store with the appropriate type
duke@435 965 // address type. If a Phi is found, create a new version with
twisti@1040 966 // the appropriate memory slices from each of the Phi inputs.
duke@435 967 // For stores, process the users as follows:
duke@435 968 // MemNode: push on memnode_worklist
duke@435 969 // MergeMem: push on mergemem_worklist
duke@435 970 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 971 // moving the first node encountered of each instance type to the
duke@435 972 // the input corresponding to its alias index.
duke@435 973 // appropriate memory slice.
duke@435 974 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 975 //
duke@435 976 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 977 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 978 // instance type.
duke@435 979 //
duke@435 980 // We start with:
duke@435 981 //
duke@435 982 // 7 Parm #memory
duke@435 983 // 10 ConI "12"
duke@435 984 // 19 CheckCastPP "Foo"
duke@435 985 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 986 // 29 CheckCastPP "Foo"
duke@435 987 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 988 //
duke@435 989 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 990 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 991 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 992 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 993 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 994 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 995 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 996 //
duke@435 997 //
duke@435 998 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 999 // and creating a new alias index for node 30. This gives:
duke@435 1000 //
duke@435 1001 // 7 Parm #memory
duke@435 1002 // 10 ConI "12"
duke@435 1003 // 19 CheckCastPP "Foo"
duke@435 1004 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 1005 // 29 CheckCastPP "Foo" iid=24
duke@435 1006 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 1007 //
duke@435 1008 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 1009 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 1010 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 1011 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 1012 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 1013 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 1014 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 1015 //
duke@435 1016 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 1017 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 1018 // node 80 are updated and then the memory nodes are updated with the
duke@435 1019 // values computed in phase 2. This results in:
duke@435 1020 //
duke@435 1021 // 7 Parm #memory
duke@435 1022 // 10 ConI "12"
duke@435 1023 // 19 CheckCastPP "Foo"
duke@435 1024 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 1025 // 29 CheckCastPP "Foo" iid=24
duke@435 1026 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 1027 //
duke@435 1028 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 1029 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 1030 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 1031 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 1032 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 1033 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 1034 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 1035 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 1036 //
duke@435 1037 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 1038 GrowableArray<Node *> memnode_worklist;
duke@435 1039 GrowableArray<PhiNode *> orig_phis;
kvn@1536 1040
kvn@2276 1041 PhaseIterGVN *igvn = _igvn;
duke@435 1042 uint new_index_start = (uint) _compile->num_alias_types();
kvn@1536 1043 Arena* arena = Thread::current()->resource_area();
kvn@1536 1044 VectorSet visited(arena);
duke@435 1045
kvn@500 1046
kvn@500 1047 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 1048 // Create instance types for the CheckCastPP for allocations where possible.
kvn@679 1049 //
kvn@679 1050 // (Note: don't forget to change the order of the second AddP node on
kvn@679 1051 // the alloc_worklist if the order of the worklist processing is changed,
kvn@679 1052 // see the comment in find_second_addp().)
kvn@679 1053 //
duke@435 1054 while (alloc_worklist.length() != 0) {
duke@435 1055 Node *n = alloc_worklist.pop();
duke@435 1056 uint ni = n->_idx;
kvn@500 1057 const TypeOopPtr* tinst = NULL;
duke@435 1058 if (n->is_Call()) {
duke@435 1059 CallNode *alloc = n->as_Call();
duke@435 1060 // copy escape information to call node
kvn@679 1061 PointsToNode* ptn = ptnode_adr(alloc->_idx);
kvn@1989 1062 PointsToNode::EscapeState es = escape_state(alloc);
kvn@500 1063 // We have an allocation or call which returns a Java object,
kvn@500 1064 // see if it is unescaped.
kvn@3254 1065 if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
duke@435 1066 continue;
kvn@1219 1067
kvn@1219 1068 // Find CheckCastPP for the allocate or for the return value of a call
kvn@1219 1069 n = alloc->result_cast();
kvn@1219 1070 if (n == NULL) { // No uses except Initialize node
kvn@1219 1071 if (alloc->is_Allocate()) {
kvn@1219 1072 // Set the scalar_replaceable flag for allocation
kvn@1219 1073 // so it could be eliminated if it has no uses.
kvn@1219 1074 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 1075 }
kvn@1219 1076 continue;
kvn@474 1077 }
kvn@1219 1078 if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
kvn@1219 1079 assert(!alloc->is_Allocate(), "allocation should have unique type");
kvn@500 1080 continue;
kvn@1219 1081 }
kvn@1219 1082
kvn@500 1083 // The inline code for Object.clone() casts the allocation result to
kvn@682 1084 // java.lang.Object and then to the actual type of the allocated
kvn@500 1085 // object. Detect this case and use the second cast.
kvn@682 1086 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
kvn@682 1087 // the allocation result is cast to java.lang.Object and then
kvn@682 1088 // to the actual Array type.
kvn@500 1089 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@682 1090 && (alloc->is_AllocateArray() ||
kvn@682 1091 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
kvn@500 1092 Node *cast2 = NULL;
kvn@500 1093 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1094 Node *use = n->fast_out(i);
kvn@500 1095 if (use->is_CheckCastPP()) {
kvn@500 1096 cast2 = use;
kvn@500 1097 break;
kvn@500 1098 }
kvn@500 1099 }
kvn@500 1100 if (cast2 != NULL) {
kvn@500 1101 n = cast2;
kvn@500 1102 } else {
kvn@1219 1103 // Non-scalar replaceable if the allocation type is unknown statically
kvn@1219 1104 // (reflection allocation), the object can't be restored during
kvn@1219 1105 // deoptimization without precise type.
kvn@500 1106 continue;
kvn@500 1107 }
kvn@500 1108 }
kvn@1219 1109 if (alloc->is_Allocate()) {
kvn@1219 1110 // Set the scalar_replaceable flag for allocation
kvn@1219 1111 // so it could be eliminated.
kvn@1219 1112 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 1113 }
kvn@3254 1114 set_escape_state(n->_idx, es); // CheckCastPP escape state
kvn@682 1115 // in order for an object to be scalar-replaceable, it must be:
kvn@500 1116 // - a direct allocation (not a call returning an object)
kvn@500 1117 // - non-escaping
kvn@500 1118 // - eligible to be a unique type
kvn@500 1119 // - not determined to be ineligible by escape analysis
kvn@1536 1120 assert(ptnode_adr(alloc->_idx)->_node != NULL &&
kvn@1536 1121 ptnode_adr(n->_idx)->_node != NULL, "should be registered");
duke@435 1122 set_map(alloc->_idx, n);
duke@435 1123 set_map(n->_idx, alloc);
kvn@500 1124 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
kvn@500 1125 if (t == NULL)
kvn@3254 1126 continue; // not a TypeOopPtr
kvn@682 1127 tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
duke@435 1128 igvn->hash_delete(n);
duke@435 1129 igvn->set_type(n, tinst);
duke@435 1130 n->raise_bottom_type(tinst);
duke@435 1131 igvn->hash_insert(n);
kvn@500 1132 record_for_optimizer(n);
kvn@3254 1133 if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
kvn@598 1134
kvn@598 1135 // First, put on the worklist all Field edges from Connection Graph
kvn@598 1136 // which is more accurate then putting immediate users from Ideal Graph.
kvn@598 1137 for (uint e = 0; e < ptn->edge_count(); e++) {
kvn@679 1138 Node *use = ptnode_adr(ptn->edge_target(e))->_node;
kvn@598 1139 assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
kvn@598 1140 "only AddP nodes are Field edges in CG");
kvn@598 1141 if (use->outcnt() > 0) { // Don't process dead nodes
kvn@598 1142 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
kvn@598 1143 if (addp2 != NULL) {
kvn@598 1144 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@598 1145 alloc_worklist.append_if_missing(addp2);
kvn@598 1146 }
kvn@598 1147 alloc_worklist.append_if_missing(use);
kvn@598 1148 }
kvn@598 1149 }
kvn@598 1150
kvn@500 1151 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 1152 // the users of the raw allocation result and push AddP users
kvn@500 1153 // on alloc_worklist.
kvn@500 1154 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 1155 assert (raw_result != NULL, "must have an allocation result");
kvn@500 1156 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 1157 Node *use = raw_result->fast_out(i);
kvn@500 1158 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 1159 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 1160 if (addp2 != NULL) {
kvn@500 1161 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 1162 alloc_worklist.append_if_missing(addp2);
kvn@500 1163 }
kvn@500 1164 alloc_worklist.append_if_missing(use);
kvn@1535 1165 } else if (use->is_MemBar()) {
kvn@500 1166 memnode_worklist.append_if_missing(use);
kvn@500 1167 }
kvn@500 1168 }
kvn@500 1169 }
duke@435 1170 } else if (n->is_AddP()) {
kvn@2556 1171 VectorSet* ptset = PointsTo(get_addp_base(n));
kvn@2556 1172 assert(ptset->Size() == 1, "AddP address is unique");
kvn@2556 1173 uint elem = ptset->getelem(); // Allocation node's index
kvn@1535 1174 if (elem == _phantom_object) {
kvn@1535 1175 assert(false, "escaped allocation");
kvn@500 1176 continue; // Assume the value was set outside this method.
kvn@1535 1177 }
kvn@500 1178 Node *base = get_map(elem); // CheckCastPP node
kvn@1535 1179 if (!split_AddP(n, base, igvn)) continue; // wrong type from dead path
kvn@500 1180 tinst = igvn->type(base)->isa_oopptr();
kvn@500 1181 } else if (n->is_Phi() ||
kvn@500 1182 n->is_CheckCastPP() ||
kvn@603 1183 n->is_EncodeP() ||
kvn@603 1184 n->is_DecodeN() ||
kvn@500 1185 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 1186 if (visited.test_set(n->_idx)) {
duke@435 1187 assert(n->is_Phi(), "loops only through Phi's");
duke@435 1188 continue; // already processed
duke@435 1189 }
kvn@2556 1190 VectorSet* ptset = PointsTo(n);
kvn@2556 1191 if (ptset->Size() == 1) {
kvn@2556 1192 uint elem = ptset->getelem(); // Allocation node's index
kvn@1535 1193 if (elem == _phantom_object) {
kvn@1535 1194 assert(false, "escaped allocation");
kvn@500 1195 continue; // Assume the value was set outside this method.
kvn@1535 1196 }
kvn@500 1197 Node *val = get_map(elem); // CheckCastPP node
duke@435 1198 TypeNode *tn = n->as_Type();
kvn@500 1199 tinst = igvn->type(val)->isa_oopptr();
kvn@658 1200 assert(tinst != NULL && tinst->is_known_instance() &&
kvn@658 1201 (uint)tinst->instance_id() == elem , "instance type expected.");
kvn@598 1202
kvn@598 1203 const Type *tn_type = igvn->type(tn);
kvn@658 1204 const TypeOopPtr *tn_t;
kvn@658 1205 if (tn_type->isa_narrowoop()) {
kvn@658 1206 tn_t = tn_type->make_ptr()->isa_oopptr();
kvn@658 1207 } else {
kvn@658 1208 tn_t = tn_type->isa_oopptr();
kvn@658 1209 }
duke@435 1210
kvn@1535 1211 if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
kvn@598 1212 if (tn_type->isa_narrowoop()) {
kvn@598 1213 tn_type = tinst->make_narrowoop();
kvn@598 1214 } else {
kvn@598 1215 tn_type = tinst;
kvn@598 1216 }
duke@435 1217 igvn->hash_delete(tn);
kvn@598 1218 igvn->set_type(tn, tn_type);
kvn@598 1219 tn->set_type(tn_type);
duke@435 1220 igvn->hash_insert(tn);
kvn@500 1221 record_for_optimizer(n);
kvn@728 1222 } else {
kvn@1535 1223 assert(tn_type == TypePtr::NULL_PTR ||
kvn@1535 1224 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
kvn@1535 1225 "unexpected type");
kvn@1535 1226 continue; // Skip dead path with different type
duke@435 1227 }
duke@435 1228 }
duke@435 1229 } else {
kvn@1535 1230 debug_only(n->dump();)
kvn@1535 1231 assert(false, "EA: unexpected node");
duke@435 1232 continue;
duke@435 1233 }
kvn@1535 1234 // push allocation's users on appropriate worklist
duke@435 1235 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1236 Node *use = n->fast_out(i);
duke@435 1237 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@1535 1238 // Load/store to instance's field
kvn@500 1239 memnode_worklist.append_if_missing(use);
kvn@1535 1240 } else if (use->is_MemBar()) {
kvn@500 1241 memnode_worklist.append_if_missing(use);
kvn@500 1242 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 1243 Node* addp2 = find_second_addp(use, n);
kvn@500 1244 if (addp2 != NULL) {
kvn@500 1245 alloc_worklist.append_if_missing(addp2);
kvn@500 1246 }
kvn@500 1247 alloc_worklist.append_if_missing(use);
kvn@500 1248 } else if (use->is_Phi() ||
kvn@500 1249 use->is_CheckCastPP() ||
kvn@603 1250 use->is_EncodeP() ||
kvn@603 1251 use->is_DecodeN() ||
kvn@500 1252 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 1253 alloc_worklist.append_if_missing(use);
kvn@1535 1254 #ifdef ASSERT
kvn@1535 1255 } else if (use->is_Mem()) {
kvn@1535 1256 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
kvn@1535 1257 } else if (use->is_MergeMem()) {
kvn@1535 1258 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1259 } else if (use->is_SafePoint()) {
kvn@1535 1260 // Look for MergeMem nodes for calls which reference unique allocation
kvn@1535 1261 // (through CheckCastPP nodes) even for debug info.
kvn@1535 1262 Node* m = use->in(TypeFunc::Memory);
kvn@1535 1263 if (m->is_MergeMem()) {
kvn@1535 1264 assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1265 }
kvn@1535 1266 } else {
kvn@1535 1267 uint op = use->Opcode();
kvn@1535 1268 if (!(op == Op_CmpP || op == Op_Conv2B ||
kvn@1535 1269 op == Op_CastP2X || op == Op_StoreCM ||
kvn@1535 1270 op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
kvn@1535 1271 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 1272 n->dump();
kvn@1535 1273 use->dump();
kvn@1535 1274 assert(false, "EA: missing allocation reference path");
kvn@1535 1275 }
kvn@1535 1276 #endif
duke@435 1277 }
duke@435 1278 }
duke@435 1279
duke@435 1280 }
kvn@500 1281 // New alias types were created in split_AddP().
duke@435 1282 uint new_index_end = (uint) _compile->num_alias_types();
duke@435 1283
duke@435 1284 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 1285 // compute new values for Memory inputs (the Memory inputs are not
duke@435 1286 // actually updated until phase 4.)
duke@435 1287 if (memnode_worklist.length() == 0)
duke@435 1288 return; // nothing to do
duke@435 1289
duke@435 1290 while (memnode_worklist.length() != 0) {
duke@435 1291 Node *n = memnode_worklist.pop();
kvn@500 1292 if (visited.test_set(n->_idx))
kvn@500 1293 continue;
kvn@1535 1294 if (n->is_Phi() || n->is_ClearArray()) {
kvn@1535 1295 // we don't need to do anything, but the users must be pushed
kvn@1535 1296 } else if (n->is_MemBar()) { // Initialize, MemBar nodes
kvn@1535 1297 // we don't need to do anything, but the users must be pushed
kvn@1535 1298 n = n->as_MemBar()->proj_out(TypeFunc::Memory);
kvn@500 1299 if (n == NULL)
duke@435 1300 continue;
duke@435 1301 } else {
duke@435 1302 assert(n->is_Mem(), "memory node required.");
duke@435 1303 Node *addr = n->in(MemNode::Address);
duke@435 1304 const Type *addr_t = igvn->type(addr);
duke@435 1305 if (addr_t == Type::TOP)
duke@435 1306 continue;
duke@435 1307 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 1308 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 1309 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@500 1310 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
kvn@473 1311 if (_compile->failing()) {
kvn@473 1312 return;
kvn@473 1313 }
kvn@500 1314 if (mem != n->in(MemNode::Memory)) {
kvn@1536 1315 // We delay the memory edge update since we need old one in
kvn@1536 1316 // MergeMem code below when instances memory slices are separated.
kvn@1536 1317 debug_only(Node* pn = ptnode_adr(n->_idx)->_node;)
kvn@1536 1318 assert(pn == NULL || pn == n, "wrong node");
duke@435 1319 set_map(n->_idx, mem);
kvn@679 1320 ptnode_adr(n->_idx)->_node = n;
kvn@500 1321 }
duke@435 1322 if (n->is_Load()) {
duke@435 1323 continue; // don't push users
duke@435 1324 } else if (n->is_LoadStore()) {
duke@435 1325 // get the memory projection
duke@435 1326 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1327 Node *use = n->fast_out(i);
duke@435 1328 if (use->Opcode() == Op_SCMemProj) {
duke@435 1329 n = use;
duke@435 1330 break;
duke@435 1331 }
duke@435 1332 }
duke@435 1333 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 1334 }
duke@435 1335 }
duke@435 1336 // push user on appropriate worklist
duke@435 1337 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1338 Node *use = n->fast_out(i);
kvn@1535 1339 if (use->is_Phi() || use->is_ClearArray()) {
kvn@500 1340 memnode_worklist.append_if_missing(use);
duke@435 1341 } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@1535 1342 if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
kvn@1535 1343 continue;
kvn@500 1344 memnode_worklist.append_if_missing(use);
kvn@1535 1345 } else if (use->is_MemBar()) {
kvn@500 1346 memnode_worklist.append_if_missing(use);
kvn@1535 1347 #ifdef ASSERT
kvn@1535 1348 } else if(use->is_Mem()) {
kvn@1535 1349 assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
duke@435 1350 } else if (use->is_MergeMem()) {
kvn@1535 1351 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1352 } else {
kvn@1535 1353 uint op = use->Opcode();
kvn@1535 1354 if (!(op == Op_StoreCM ||
kvn@1535 1355 (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
kvn@1535 1356 strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
kvn@1535 1357 op == Op_AryEq || op == Op_StrComp ||
kvn@1535 1358 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 1359 n->dump();
kvn@1535 1360 use->dump();
kvn@1535 1361 assert(false, "EA: missing memory path");
kvn@1535 1362 }
kvn@1535 1363 #endif
duke@435 1364 }
duke@435 1365 }
duke@435 1366 }
duke@435 1367
kvn@500 1368 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@1535 1369 // Walk each memory slice moving the first node encountered of each
kvn@500 1370 // instance type to the the input corresponding to its alias index.
kvn@1535 1371 uint length = _mergemem_worklist.length();
kvn@1535 1372 for( uint next = 0; next < length; ++next ) {
kvn@1535 1373 MergeMemNode* nmm = _mergemem_worklist.at(next);
kvn@1535 1374 assert(!visited.test_set(nmm->_idx), "should not be visited before");
duke@435 1375 // Note: we don't want to use MergeMemStream here because we only want to
kvn@1535 1376 // scan inputs which exist at the start, not ones we add during processing.
kvn@1535 1377 // Note 2: MergeMem may already contains instance memory slices added
kvn@1535 1378 // during find_inst_mem() call when memory nodes were processed above.
kvn@1535 1379 igvn->hash_delete(nmm);
duke@435 1380 uint nslices = nmm->req();
duke@435 1381 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 1382 Node* mem = nmm->in(i);
kvn@500 1383 Node* cur = NULL;
duke@435 1384 if (mem == NULL || mem->is_top())
duke@435 1385 continue;
kvn@1536 1386 // First, update mergemem by moving memory nodes to corresponding slices
kvn@1536 1387 // if their type became more precise since this mergemem was created.
duke@435 1388 while (mem->is_Mem()) {
duke@435 1389 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 1390 if (at != Type::TOP) {
duke@435 1391 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 1392 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 1393 if (idx == i) {
duke@435 1394 if (cur == NULL)
duke@435 1395 cur = mem;
duke@435 1396 } else {
duke@435 1397 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 1398 nmm->set_memory_at(idx, mem);
duke@435 1399 }
duke@435 1400 }
duke@435 1401 }
duke@435 1402 mem = mem->in(MemNode::Memory);
duke@435 1403 }
duke@435 1404 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 1405 // Find any instance of the current type if we haven't encountered
kvn@1536 1406 // already a memory slice of the instance along the memory chain.
kvn@500 1407 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1408 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 1409 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 1410 if (nmm->is_empty_memory(m)) {
kvn@500 1411 Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
kvn@500 1412 if (_compile->failing()) {
kvn@500 1413 return;
kvn@500 1414 }
kvn@500 1415 nmm->set_memory_at(ni, result);
kvn@500 1416 }
kvn@500 1417 }
kvn@500 1418 }
kvn@500 1419 }
kvn@500 1420 // Find the rest of instances values
kvn@500 1421 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@1536 1422 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
kvn@500 1423 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 1424 if (result == nmm->base_memory()) {
kvn@500 1425 // Didn't find instance memory, search through general slice recursively.
kvn@1536 1426 result = nmm->memory_at(_compile->get_general_index(ni));
kvn@500 1427 result = find_inst_mem(result, ni, orig_phis, igvn);
kvn@500 1428 if (_compile->failing()) {
kvn@500 1429 return;
kvn@500 1430 }
kvn@500 1431 nmm->set_memory_at(ni, result);
kvn@500 1432 }
kvn@500 1433 }
kvn@500 1434 igvn->hash_insert(nmm);
kvn@500 1435 record_for_optimizer(nmm);
duke@435 1436 }
duke@435 1437
kvn@500 1438 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 1439 // the Memory input of memnodes
duke@435 1440 // First update the inputs of any non-instance Phi's from
duke@435 1441 // which we split out an instance Phi. Note we don't have
duke@435 1442 // to recursively process Phi's encounted on the input memory
duke@435 1443 // chains as is done in split_memory_phi() since they will
duke@435 1444 // also be processed here.
kvn@682 1445 for (int j = 0; j < orig_phis.length(); j++) {
kvn@682 1446 PhiNode *phi = orig_phis.at(j);
duke@435 1447 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 1448 igvn->hash_delete(phi);
duke@435 1449 for (uint i = 1; i < phi->req(); i++) {
duke@435 1450 Node *mem = phi->in(i);
kvn@500 1451 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
kvn@500 1452 if (_compile->failing()) {
kvn@500 1453 return;
kvn@500 1454 }
duke@435 1455 if (mem != new_mem) {
duke@435 1456 phi->set_req(i, new_mem);
duke@435 1457 }
duke@435 1458 }
duke@435 1459 igvn->hash_insert(phi);
duke@435 1460 record_for_optimizer(phi);
duke@435 1461 }
duke@435 1462
duke@435 1463 // Update the memory inputs of MemNodes with the value we computed
kvn@1536 1464 // in Phase 2 and move stores memory users to corresponding memory slices.
kvn@2810 1465
kvn@2810 1466 // Disable memory split verification code until the fix for 6984348.
kvn@2810 1467 // Currently it produces false negative results since it does not cover all cases.
kvn@2810 1468 #if 0 // ifdef ASSERT
kvn@2556 1469 visited.Reset();
kvn@1536 1470 Node_Stack old_mems(arena, _compile->unique() >> 2);
kvn@1536 1471 #endif
kvn@679 1472 for (uint i = 0; i < nodes_size(); i++) {
duke@435 1473 Node *nmem = get_map(i);
duke@435 1474 if (nmem != NULL) {
kvn@679 1475 Node *n = ptnode_adr(i)->_node;
kvn@1536 1476 assert(n != NULL, "sanity");
kvn@1536 1477 if (n->is_Mem()) {
kvn@2810 1478 #if 0 // ifdef ASSERT
kvn@1536 1479 Node* old_mem = n->in(MemNode::Memory);
kvn@1536 1480 if (!visited.test_set(old_mem->_idx)) {
kvn@1536 1481 old_mems.push(old_mem, old_mem->outcnt());
kvn@1536 1482 }
kvn@1536 1483 #endif
kvn@1536 1484 assert(n->in(MemNode::Memory) != nmem, "sanity");
kvn@1536 1485 if (!n->is_Load()) {
kvn@1536 1486 // Move memory users of a store first.
kvn@1536 1487 move_inst_mem(n, orig_phis, igvn);
kvn@1536 1488 }
kvn@1536 1489 // Now update memory input
duke@435 1490 igvn->hash_delete(n);
duke@435 1491 n->set_req(MemNode::Memory, nmem);
duke@435 1492 igvn->hash_insert(n);
duke@435 1493 record_for_optimizer(n);
kvn@1536 1494 } else {
kvn@1536 1495 assert(n->is_Allocate() || n->is_CheckCastPP() ||
kvn@1536 1496 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
duke@435 1497 }
duke@435 1498 }
duke@435 1499 }
kvn@2810 1500 #if 0 // ifdef ASSERT
kvn@1536 1501 // Verify that memory was split correctly
kvn@1536 1502 while (old_mems.is_nonempty()) {
kvn@1536 1503 Node* old_mem = old_mems.node();
kvn@1536 1504 uint old_cnt = old_mems.index();
kvn@1536 1505 old_mems.pop();
kvn@2810 1506 assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
kvn@1536 1507 }
kvn@1536 1508 #endif
duke@435 1509 }
duke@435 1510
kvn@679 1511 bool ConnectionGraph::has_candidates(Compile *C) {
kvn@679 1512 // EA brings benefits only when the code has allocations and/or locks which
kvn@679 1513 // are represented by ideal Macro nodes.
kvn@679 1514 int cnt = C->macro_count();
kvn@679 1515 for( int i=0; i < cnt; i++ ) {
kvn@679 1516 Node *n = C->macro_node(i);
kvn@679 1517 if ( n->is_Allocate() )
kvn@679 1518 return true;
kvn@679 1519 if( n->is_Lock() ) {
kvn@679 1520 Node* obj = n->as_Lock()->obj_node()->uncast();
kvn@679 1521 if( !(obj->is_Parm() || obj->is_Con()) )
kvn@679 1522 return true;
kvn@679 1523 }
kvn@679 1524 }
kvn@679 1525 return false;
kvn@679 1526 }
kvn@679 1527
kvn@1989 1528 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
kvn@1989 1529 // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
kvn@1989 1530 // to create space for them in ConnectionGraph::_nodes[].
kvn@1989 1531 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@1989 1532 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@1989 1533
kvn@1989 1534 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
kvn@1989 1535 // Perform escape analysis
kvn@1989 1536 if (congraph->compute_escape()) {
kvn@1989 1537 // There are non escaping objects.
kvn@1989 1538 C->set_congraph(congraph);
kvn@1989 1539 }
kvn@1989 1540
kvn@1989 1541 // Cleanup.
kvn@1989 1542 if (oop_null->outcnt() == 0)
kvn@1989 1543 igvn->hash_delete(oop_null);
kvn@1989 1544 if (noop_null->outcnt() == 0)
kvn@1989 1545 igvn->hash_delete(noop_null);
kvn@1989 1546 }
kvn@1989 1547
kvn@679 1548 bool ConnectionGraph::compute_escape() {
kvn@679 1549 Compile* C = _compile;
duke@435 1550
kvn@598 1551 // 1. Populate Connection Graph (CG) with Ideal nodes.
duke@435 1552
kvn@500 1553 Unique_Node_List worklist_init;
kvn@679 1554 worklist_init.map(C->unique(), NULL); // preallocate space
kvn@500 1555
kvn@500 1556 // Initialize worklist
kvn@679 1557 if (C->root() != NULL) {
kvn@679 1558 worklist_init.push(C->root());
kvn@500 1559 }
kvn@500 1560
kvn@3254 1561 GrowableArray<Node*> alloc_worklist;
kvn@3254 1562 GrowableArray<Node*> addp_worklist;
kvn@3309 1563 GrowableArray<Node*> ptr_cmp_worklist;
kvn@1989 1564 PhaseGVN* igvn = _igvn;
kvn@500 1565 bool has_allocations = false;
kvn@500 1566
kvn@500 1567 // Push all useful nodes onto CG list and set their type.
kvn@500 1568 for( uint next = 0; next < worklist_init.size(); ++next ) {
kvn@500 1569 Node* n = worklist_init.at(next);
kvn@500 1570 record_for_escape_analysis(n, igvn);
kvn@679 1571 // Only allocations and java static calls results are checked
kvn@679 1572 // for an escape status. See process_call_result() below.
kvn@679 1573 if (n->is_Allocate() || n->is_CallStaticJava() &&
kvn@679 1574 ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@500 1575 has_allocations = true;
kvn@3254 1576 if (n->is_Allocate())
kvn@3254 1577 alloc_worklist.append(n);
kvn@3309 1578 } else if(n->is_AddP()) {
kvn@2276 1579 // Collect address nodes. Use them during stage 3 below
kvn@2276 1580 // to build initial connection graph field edges.
kvn@3254 1581 addp_worklist.append(n);
kvn@1535 1582 } else if (n->is_MergeMem()) {
kvn@1535 1583 // Collect all MergeMem nodes to add memory slices for
kvn@1535 1584 // scalar replaceable objects in split_unique_types().
kvn@1535 1585 _mergemem_worklist.append(n->as_MergeMem());
kvn@3309 1586 } else if (OptimizePtrCompare && n->is_Cmp() &&
kvn@3309 1587 (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
kvn@3309 1588 // Compare pointers nodes
kvn@3309 1589 ptr_cmp_worklist.append(n);
kvn@1535 1590 }
kvn@500 1591 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1592 Node* m = n->fast_out(i); // Get user
kvn@500 1593 worklist_init.push(m);
kvn@500 1594 }
kvn@500 1595 }
kvn@500 1596
kvn@679 1597 if (!has_allocations) {
kvn@500 1598 _collecting = false;
kvn@679 1599 return false; // Nothing to do.
kvn@500 1600 }
kvn@500 1601
kvn@500 1602 // 2. First pass to create simple CG edges (doesn't require to walk CG).
kvn@679 1603 uint delayed_size = _delayed_worklist.size();
kvn@679 1604 for( uint next = 0; next < delayed_size; ++next ) {
kvn@500 1605 Node* n = _delayed_worklist.at(next);
kvn@500 1606 build_connection_graph(n, igvn);
kvn@500 1607 }
kvn@500 1608
kvn@2276 1609 // 3. Pass to create initial fields edges (JavaObject -F-> AddP)
kvn@2276 1610 // to reduce number of iterations during stage 4 below.
kvn@3254 1611 uint addp_length = addp_worklist.length();
kvn@3254 1612 for( uint next = 0; next < addp_length; ++next ) {
kvn@3254 1613 Node* n = addp_worklist.at(next);
kvn@2276 1614 Node* base = get_addp_base(n);
kvn@3309 1615 if (base->is_Proj() && base->in(0)->is_Call())
kvn@2276 1616 base = base->in(0);
kvn@2276 1617 PointsToNode::NodeType nt = ptnode_adr(base->_idx)->node_type();
kvn@2276 1618 if (nt == PointsToNode::JavaObject) {
kvn@2276 1619 build_connection_graph(n, igvn);
kvn@2276 1620 }
kvn@500 1621 }
kvn@500 1622
kvn@3254 1623 GrowableArray<int> cg_worklist;
kvn@500 1624 cg_worklist.append(_phantom_object);
kvn@2276 1625 GrowableArray<uint> worklist;
kvn@500 1626
kvn@500 1627 // 4. Build Connection Graph which need
kvn@500 1628 // to walk the connection graph.
kvn@2276 1629 _progress = false;
kvn@679 1630 for (uint ni = 0; ni < nodes_size(); ni++) {
kvn@679 1631 PointsToNode* ptn = ptnode_adr(ni);
kvn@500 1632 Node *n = ptn->_node;
kvn@500 1633 if (n != NULL) { // Call, AddP, LoadP, StoreP
kvn@500 1634 build_connection_graph(n, igvn);
kvn@500 1635 if (ptn->node_type() != PointsToNode::UnknownType)
kvn@500 1636 cg_worklist.append(n->_idx); // Collect CG nodes
kvn@2276 1637 if (!_processed.test(n->_idx))
kvn@2276 1638 worklist.append(n->_idx); // Collect C/A/L/S nodes
kvn@500 1639 }
duke@435 1640 }
duke@435 1641
kvn@2276 1642 // After IGVN user nodes may have smaller _idx than
kvn@2276 1643 // their inputs so they will be processed first in
kvn@2276 1644 // previous loop. Because of that not all Graph
kvn@2276 1645 // edges will be created. Walk over interesting
kvn@2276 1646 // nodes again until no new edges are created.
kvn@2276 1647 //
kvn@2276 1648 // Normally only 1-3 passes needed to build
kvn@2276 1649 // Connection Graph depending on graph complexity.
kvn@2409 1650 // Observed 8 passes in jvm2008 compiler.compiler.
kvn@2409 1651 // Set limit to 20 to catch situation when something
kvn@2276 1652 // did go wrong and recompile the method without EA.
kvn@2276 1653
kvn@2409 1654 #define CG_BUILD_ITER_LIMIT 20
kvn@2276 1655
kvn@2276 1656 uint length = worklist.length();
kvn@2276 1657 int iterations = 0;
kvn@2276 1658 while(_progress && (iterations++ < CG_BUILD_ITER_LIMIT)) {
kvn@2276 1659 _progress = false;
kvn@2276 1660 for( uint next = 0; next < length; ++next ) {
kvn@2276 1661 int ni = worklist.at(next);
kvn@2276 1662 PointsToNode* ptn = ptnode_adr(ni);
kvn@2276 1663 Node* n = ptn->_node;
kvn@2276 1664 assert(n != NULL, "should be known node");
kvn@2276 1665 build_connection_graph(n, igvn);
kvn@2276 1666 }
kvn@2276 1667 }
kvn@2276 1668 if (iterations >= CG_BUILD_ITER_LIMIT) {
kvn@2276 1669 assert(iterations < CG_BUILD_ITER_LIMIT,
kvn@2276 1670 err_msg("infinite EA connection graph build with %d nodes and worklist size %d",
kvn@2276 1671 nodes_size(), length));
kvn@2276 1672 // Possible infinite build_connection_graph loop,
kvn@2276 1673 // retry compilation without escape analysis.
kvn@2276 1674 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@2276 1675 _collecting = false;
kvn@2276 1676 return false;
kvn@2276 1677 }
kvn@2276 1678 #undef CG_BUILD_ITER_LIMIT
kvn@2276 1679
kvn@1535 1680 Arena* arena = Thread::current()->resource_area();
kvn@1535 1681 VectorSet visited(arena);
kvn@3254 1682
kvn@3254 1683 // 5. Find fields initializing values for not escaped allocations
kvn@3254 1684 uint alloc_length = alloc_worklist.length();
kvn@3254 1685 for (uint next = 0; next < alloc_length; ++next) {
kvn@3254 1686 Node* n = alloc_worklist.at(next);
kvn@3254 1687 if (ptnode_adr(n->_idx)->escape_state() == PointsToNode::NoEscape) {
kvn@3254 1688 find_init_values(n, &visited, igvn);
kvn@3254 1689 }
kvn@3254 1690 }
kvn@3254 1691
kvn@2276 1692 worklist.clear();
duke@435 1693
kvn@3254 1694 // 6. Remove deferred edges from the graph.
kvn@3254 1695 uint cg_length = cg_worklist.length();
kvn@3254 1696 for (uint next = 0; next < cg_length; ++next) {
kvn@500 1697 int ni = cg_worklist.at(next);
kvn@679 1698 PointsToNode* ptn = ptnode_adr(ni);
duke@435 1699 PointsToNode::NodeType nt = ptn->node_type();
duke@435 1700 if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
kvn@2276 1701 remove_deferred(ni, &worklist, &visited);
duke@435 1702 }
duke@435 1703 }
kvn@500 1704
kvn@3254 1705 // 7. Adjust escape state of nonescaping objects.
kvn@3254 1706 for (uint next = 0; next < addp_length; ++next) {
kvn@3254 1707 Node* n = addp_worklist.at(next);
kvn@3254 1708 adjust_escape_state(n);
duke@435 1709 }
duke@435 1710
kvn@3254 1711 // 8. Propagate escape states.
kvn@3254 1712 worklist.clear();
kvn@3254 1713
kvn@3254 1714 // mark all nodes reachable from GlobalEscape nodes
kvn@3254 1715 (void)propagate_escape_state(&cg_worklist, &worklist, PointsToNode::GlobalEscape);
kvn@3254 1716
kvn@679 1717 // mark all nodes reachable from ArgEscape nodes
kvn@3254 1718 bool has_non_escaping_obj = propagate_escape_state(&cg_worklist, &worklist, PointsToNode::ArgEscape);
kvn@679 1719
kvn@500 1720 // push all NoEscape nodes on the worklist
kvn@679 1721 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1722 int nk = cg_worklist.at(next);
kvn@679 1723 if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
kvn@500 1724 worklist.push(nk);
kvn@500 1725 }
kvn@3254 1726 alloc_worklist.clear();
kvn@679 1727 // mark all nodes reachable from NoEscape nodes
kvn@500 1728 while(worklist.length() > 0) {
kvn@3242 1729 uint nk = worklist.pop();
kvn@3242 1730 PointsToNode* ptn = ptnode_adr(nk);
kvn@3242 1731 if (ptn->node_type() == PointsToNode::JavaObject &&
kvn@3242 1732 !(nk == _noop_null || nk == _oop_null))
kvn@3242 1733 has_non_escaping_obj = true; // Non Escape
kvn@679 1734 Node* n = ptn->_node;
kvn@3254 1735 bool scalar_replaceable = ptn->scalar_replaceable();
kvn@3254 1736 if (n->is_Allocate() && scalar_replaceable) {
twisti@1040 1737 // Push scalar replaceable allocations on alloc_worklist
kvn@3254 1738 // for processing in split_unique_types(). Note,
kvn@3254 1739 // following code may change scalar_replaceable value.
kvn@679 1740 alloc_worklist.append(n);
kvn@679 1741 }
kvn@679 1742 uint e_cnt = ptn->edge_count();
kvn@679 1743 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1744 uint npi = ptn->edge_target(ei);
kvn@500 1745 PointsToNode *np = ptnode_adr(npi);
kvn@500 1746 if (np->escape_state() < PointsToNode::NoEscape) {
kvn@3242 1747 set_escape_state(npi, PointsToNode::NoEscape);
kvn@3254 1748 if (!scalar_replaceable) {
kvn@3254 1749 np->set_scalar_replaceable(false);
kvn@3254 1750 }
kvn@3254 1751 worklist.push(npi);
kvn@3254 1752 } else if (np->scalar_replaceable() && !scalar_replaceable) {
kvn@3254 1753 // Propagate scalar_replaceable value.
kvn@3254 1754 np->set_scalar_replaceable(false);
kvn@679 1755 worklist.push(npi);
kvn@500 1756 }
kvn@500 1757 }
kvn@500 1758 }
kvn@500 1759
duke@435 1760 _collecting = false;
kvn@679 1761 assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
duke@435 1762
kvn@3242 1763 assert(ptnode_adr(_oop_null)->escape_state() == PointsToNode::NoEscape, "sanity");
kvn@3242 1764 if (UseCompressedOops) {
kvn@3242 1765 assert(ptnode_adr(_noop_null)->escape_state() == PointsToNode::NoEscape, "sanity");
kvn@3242 1766 }
kvn@3242 1767
kvn@3254 1768 if (EliminateLocks && has_non_escaping_obj) {
kvn@2951 1769 // Mark locks before changing ideal graph.
kvn@2951 1770 int cnt = C->macro_count();
kvn@2951 1771 for( int i=0; i < cnt; i++ ) {
kvn@2951 1772 Node *n = C->macro_node(i);
kvn@2951 1773 if (n->is_AbstractLock()) { // Lock and Unlock nodes
kvn@2951 1774 AbstractLockNode* alock = n->as_AbstractLock();
kvn@3311 1775 if (!alock->is_eliminated() || alock->is_coarsened()) {
kvn@2951 1776 PointsToNode::EscapeState es = escape_state(alock->obj_node());
kvn@2951 1777 assert(es != PointsToNode::UnknownEscape, "should know");
kvn@2951 1778 if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
kvn@3311 1779 if (!alock->is_eliminated()) {
kvn@3311 1780 // Mark it eliminated to update any counters
kvn@3311 1781 alock->set_eliminated();
kvn@3311 1782 } else {
kvn@3311 1783 // The lock could be marked eliminated by lock coarsening
kvn@3311 1784 // code during first IGVN before EA. Clear coarsened flag
kvn@3311 1785 // to eliminate all associated locks/unlocks and relock
kvn@3311 1786 // during deoptimization.
kvn@3311 1787 alock->clear_coarsened();
kvn@3311 1788 }
kvn@2951 1789 }
kvn@2951 1790 }
kvn@2951 1791 }
kvn@2951 1792 }
kvn@2951 1793 }
kvn@2951 1794
kvn@3309 1795 if (OptimizePtrCompare && has_non_escaping_obj) {
kvn@3309 1796 // Add ConI(#CC_GT) and ConI(#CC_EQ).
kvn@3309 1797 _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
kvn@3309 1798 _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
kvn@3309 1799 // Optimize objects compare.
kvn@3309 1800 while (ptr_cmp_worklist.length() != 0) {
kvn@3309 1801 Node *n = ptr_cmp_worklist.pop();
kvn@3309 1802 Node *res = optimize_ptr_compare(n);
kvn@3309 1803 if (res != NULL) {
kvn@3309 1804 #ifndef PRODUCT
kvn@3309 1805 if (PrintOptimizePtrCompare) {
kvn@3309 1806 tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
kvn@3309 1807 if (Verbose) {
kvn@3309 1808 n->dump(1);
kvn@3309 1809 }
kvn@3309 1810 }
kvn@3309 1811 #endif
kvn@3309 1812 _igvn->replace_node(n, res);
kvn@3309 1813 }
kvn@3309 1814 }
kvn@3309 1815 // cleanup
kvn@3309 1816 if (_pcmp_neq->outcnt() == 0)
kvn@3309 1817 igvn->hash_delete(_pcmp_neq);
kvn@3309 1818 if (_pcmp_eq->outcnt() == 0)
kvn@3309 1819 igvn->hash_delete(_pcmp_eq);
kvn@3309 1820 }
kvn@3309 1821
kvn@1989 1822 #ifndef PRODUCT
kvn@1989 1823 if (PrintEscapeAnalysis) {
kvn@1989 1824 dump(); // Dump ConnectionGraph
kvn@1989 1825 }
kvn@1989 1826 #endif
kvn@1989 1827
kvn@3254 1828 bool has_scalar_replaceable_candidates = false;
kvn@3254 1829 alloc_length = alloc_worklist.length();
kvn@3254 1830 for (uint next = 0; next < alloc_length; ++next) {
kvn@3254 1831 Node* n = alloc_worklist.at(next);
kvn@3254 1832 PointsToNode* ptn = ptnode_adr(n->_idx);
kvn@3254 1833 assert(ptn->escape_state() == PointsToNode::NoEscape, "sanity");
kvn@3254 1834 if (ptn->scalar_replaceable()) {
kvn@3254 1835 has_scalar_replaceable_candidates = true;
kvn@3254 1836 break;
kvn@3254 1837 }
kvn@3254 1838 }
kvn@3254 1839
kvn@679 1840 if ( has_scalar_replaceable_candidates &&
kvn@679 1841 C->AliasLevel() >= 3 && EliminateAllocations ) {
kvn@473 1842
kvn@679 1843 // Now use the escape information to create unique types for
kvn@679 1844 // scalar replaceable objects.
kvn@679 1845 split_unique_types(alloc_worklist);
duke@435 1846
kvn@679 1847 if (C->failing()) return false;
duke@435 1848
kvn@679 1849 C->print_method("After Escape Analysis", 2);
duke@435 1850
kvn@500 1851 #ifdef ASSERT
kvn@679 1852 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
kvn@500 1853 tty->print("=== No allocations eliminated for ");
kvn@679 1854 C->method()->print_short_name();
kvn@500 1855 if(!EliminateAllocations) {
kvn@500 1856 tty->print(" since EliminateAllocations is off ===");
kvn@679 1857 } else if(!has_scalar_replaceable_candidates) {
kvn@679 1858 tty->print(" since there are no scalar replaceable candidates ===");
kvn@679 1859 } else if(C->AliasLevel() < 3) {
kvn@500 1860 tty->print(" since AliasLevel < 3 ===");
duke@435 1861 }
kvn@500 1862 tty->cr();
kvn@500 1863 #endif
duke@435 1864 }
kvn@679 1865 return has_non_escaping_obj;
duke@435 1866 }
duke@435 1867
kvn@3254 1868 // Find fields initializing values for allocations.
kvn@3254 1869 void ConnectionGraph::find_init_values(Node* alloc, VectorSet* visited, PhaseTransform* phase) {
kvn@3254 1870 assert(alloc->is_Allocate(), "Should be called for Allocate nodes only");
kvn@3254 1871 PointsToNode* pta = ptnode_adr(alloc->_idx);
kvn@3254 1872 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
kvn@3254 1873 InitializeNode* ini = alloc->as_Allocate()->initialization();
kvn@1535 1874
kvn@1535 1875 Compile* C = _compile;
kvn@3254 1876 visited->Reset();
kvn@1535 1877 // Check if a oop field's initializing value is recorded and add
kvn@1535 1878 // a corresponding NULL field's value if it is not recorded.
kvn@1535 1879 // Connection Graph does not record a default initialization by NULL
kvn@1535 1880 // captured by Initialize node.
kvn@1535 1881 //
kvn@3254 1882 uint ae_cnt = pta->edge_count();
kvn@3254 1883 for (uint ei = 0; ei < ae_cnt; ei++) {
kvn@3254 1884 uint nidx = pta->edge_target(ei); // Field (AddP)
kvn@3254 1885 PointsToNode* ptn = ptnode_adr(nidx);
kvn@3254 1886 assert(ptn->_node->is_AddP(), "Should be AddP nodes only");
kvn@3254 1887 int offset = ptn->offset();
kvn@3254 1888 if (offset != Type::OffsetBot &&
kvn@3254 1889 offset != oopDesc::klass_offset_in_bytes() &&
kvn@3254 1890 !visited->test_set(offset)) {
kvn@1535 1891
kvn@1535 1892 // Check only oop fields.
kvn@3254 1893 const Type* adr_type = ptn->_node->as_AddP()->bottom_type();
kvn@1535 1894 BasicType basic_field_type = T_INT;
kvn@1535 1895 if (adr_type->isa_instptr()) {
kvn@1535 1896 ciField* field = C->alias_type(adr_type->isa_instptr())->field();
kvn@1535 1897 if (field != NULL) {
kvn@1535 1898 basic_field_type = field->layout_type();
kvn@1535 1899 } else {
kvn@1535 1900 // Ignore non field load (for example, klass load)
kvn@1535 1901 }
kvn@1535 1902 } else if (adr_type->isa_aryptr()) {
kvn@3254 1903 if (offset != arrayOopDesc::length_offset_in_bytes()) {
kvn@3254 1904 const Type* elemtype = adr_type->isa_aryptr()->elem();
kvn@3254 1905 basic_field_type = elemtype->array_element_basic_type();
kvn@3254 1906 } else {
kvn@3254 1907 // Ignore array length load
kvn@3254 1908 }
kvn@3254 1909 #ifdef ASSERT
kvn@1535 1910 } else {
kvn@3254 1911 // Raw pointers are used for initializing stores so skip it
kvn@3254 1912 // since it should be recorded already
kvn@3254 1913 Node* base = get_addp_base(ptn->_node);
kvn@1535 1914 assert(adr_type->isa_rawptr() && base->is_Proj() &&
kvn@1535 1915 (base->in(0) == alloc),"unexpected pointer type");
kvn@3254 1916 #endif
kvn@1535 1917 }
kvn@1535 1918 if (basic_field_type == T_OBJECT ||
kvn@1535 1919 basic_field_type == T_NARROWOOP ||
kvn@1535 1920 basic_field_type == T_ARRAY) {
kvn@1535 1921 Node* value = NULL;
kvn@1535 1922 if (ini != NULL) {
kvn@1535 1923 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
kvn@1535 1924 Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
kvn@1535 1925 if (store != NULL && store->is_Store()) {
kvn@1535 1926 value = store->in(MemNode::ValueIn);
kvn@1535 1927 } else if (ptn->edge_count() > 0) { // Are there oop stores?
kvn@1535 1928 // Check for a store which follows allocation without branches.
kvn@1535 1929 // For example, a volatile field store is not collected
kvn@1535 1930 // by Initialize node. TODO: it would be nice to use idom() here.
kvn@3254 1931 //
kvn@3254 1932 // Search all references to the same field which use different
kvn@3254 1933 // AddP nodes, for example, in the next case:
kvn@3254 1934 //
kvn@3254 1935 // Point p[] = new Point[1];
kvn@3254 1936 // if ( x ) { p[0] = new Point(); p[0].x = x; }
kvn@3254 1937 // if ( p[0] != null ) { y = p[0].x; } // has CastPP
kvn@3254 1938 //
kvn@3254 1939 for (uint next = ei; (next < ae_cnt) && (value == NULL); next++) {
kvn@3254 1940 uint fpi = pta->edge_target(next); // Field (AddP)
kvn@3254 1941 PointsToNode *ptf = ptnode_adr(fpi);
kvn@3254 1942 if (ptf->offset() == offset) {
kvn@3254 1943 Node* nf = ptf->_node;
kvn@3254 1944 for (DUIterator_Fast imax, i = nf->fast_outs(imax); i < imax; i++) {
kvn@3254 1945 store = nf->fast_out(i);
kvn@3254 1946 if (store->is_Store() && store->in(0) != NULL) {
kvn@3254 1947 Node* ctrl = store->in(0);
kvn@3254 1948 while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
kvn@3254 1949 ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
kvn@3254 1950 ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
kvn@3254 1951 ctrl = ctrl->in(0);
kvn@3254 1952 }
kvn@3254 1953 if (ctrl == ini || ctrl == alloc) {
kvn@3254 1954 value = store->in(MemNode::ValueIn);
kvn@3254 1955 break;
kvn@3254 1956 }
kvn@3254 1957 }
kvn@1535 1958 }
kvn@1535 1959 }
kvn@1535 1960 }
kvn@1535 1961 }
kvn@1535 1962 }
kvn@1535 1963 if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
kvn@1535 1964 // A field's initializing value was not recorded. Add NULL.
kvn@1535 1965 uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
kvn@3254 1966 add_edge_from_fields(alloc->_idx, null_idx, offset);
kvn@1535 1967 }
kvn@1535 1968 }
kvn@1535 1969 }
kvn@1535 1970 }
kvn@3254 1971 }
kvn@3254 1972
kvn@3254 1973 // Adjust escape state after Connection Graph is built.
kvn@3254 1974 void ConnectionGraph::adjust_escape_state(Node* n) {
kvn@3254 1975 PointsToNode* ptn = ptnode_adr(n->_idx);
kvn@3254 1976 assert(n->is_AddP(), "Should be called for AddP nodes only");
kvn@3254 1977 // Search for objects which are not scalar replaceable
kvn@3254 1978 // and mark them to propagate the state to referenced objects.
kvn@3254 1979 //
kvn@3254 1980
kvn@3254 1981 int offset = ptn->offset();
kvn@3254 1982 Node* base = get_addp_base(n);
kvn@3254 1983 VectorSet* ptset = PointsTo(base);
kvn@3254 1984 int ptset_size = ptset->Size();
kvn@1535 1985
kvn@1535 1986 // An object is not scalar replaceable if the field which may point
kvn@1535 1987 // to it has unknown offset (unknown element of an array of objects).
kvn@1535 1988 //
kvn@3254 1989
kvn@1535 1990 if (offset == Type::OffsetBot) {
kvn@1535 1991 uint e_cnt = ptn->edge_count();
kvn@1535 1992 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@1535 1993 uint npi = ptn->edge_target(ei);
kvn@3254 1994 ptnode_adr(npi)->set_scalar_replaceable(false);
kvn@1535 1995 }
kvn@1535 1996 }
kvn@1535 1997
kvn@1535 1998 // Currently an object is not scalar replaceable if a LoadStore node
kvn@1535 1999 // access its field since the field value is unknown after it.
kvn@1535 2000 //
kvn@1535 2001 bool has_LoadStore = false;
kvn@1535 2002 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1535 2003 Node *use = n->fast_out(i);
kvn@1535 2004 if (use->is_LoadStore()) {
kvn@1535 2005 has_LoadStore = true;
kvn@1535 2006 break;
kvn@1535 2007 }
kvn@1535 2008 }
kvn@1535 2009 // An object is not scalar replaceable if the address points
kvn@1535 2010 // to unknown field (unknown element for arrays, offset is OffsetBot).
kvn@1535 2011 //
kvn@1535 2012 // Or the address may point to more then one object. This may produce
kvn@3254 2013 // the false positive result (set not scalar replaceable)
kvn@1535 2014 // since the flow-insensitive escape analysis can't separate
kvn@1535 2015 // the case when stores overwrite the field's value from the case
kvn@1535 2016 // when stores happened on different control branches.
kvn@1535 2017 //
kvn@3254 2018 // Note: it will disable scalar replacement in some cases:
kvn@3254 2019 //
kvn@3254 2020 // Point p[] = new Point[1];
kvn@3254 2021 // p[0] = new Point(); // Will be not scalar replaced
kvn@3254 2022 //
kvn@3254 2023 // but it will save us from incorrect optimizations in next cases:
kvn@3254 2024 //
kvn@3254 2025 // Point p[] = new Point[1];
kvn@3254 2026 // if ( x ) p[0] = new Point(); // Will be not scalar replaced
kvn@3254 2027 //
kvn@1535 2028 if (ptset_size > 1 || ptset_size != 0 &&
kvn@1535 2029 (has_LoadStore || offset == Type::OffsetBot)) {
kvn@2556 2030 for( VectorSetI j(ptset); j.test(); ++j ) {
kvn@3254 2031 ptnode_adr(j.elem)->set_scalar_replaceable(false);
kvn@1535 2032 }
kvn@1535 2033 }
kvn@1535 2034 }
kvn@1535 2035
kvn@3254 2036 // Propagate escape states to referenced nodes.
kvn@3254 2037 bool ConnectionGraph::propagate_escape_state(GrowableArray<int>* cg_worklist,
kvn@3254 2038 GrowableArray<uint>* worklist,
kvn@3254 2039 PointsToNode::EscapeState esc_state) {
kvn@3254 2040 bool has_java_obj = false;
kvn@3254 2041
kvn@3254 2042 // push all nodes with the same escape state on the worklist
kvn@3254 2043 uint cg_length = cg_worklist->length();
kvn@3254 2044 for (uint next = 0; next < cg_length; ++next) {
kvn@3254 2045 int nk = cg_worklist->at(next);
kvn@3254 2046 if (ptnode_adr(nk)->escape_state() == esc_state)
kvn@3254 2047 worklist->push(nk);
kvn@3254 2048 }
kvn@3254 2049 // mark all reachable nodes
kvn@3254 2050 while (worklist->length() > 0) {
kvn@3254 2051 PointsToNode* ptn = ptnode_adr(worklist->pop());
kvn@3254 2052 if (ptn->node_type() == PointsToNode::JavaObject) {
kvn@3254 2053 has_java_obj = true;
kvn@3254 2054 }
kvn@3254 2055 uint e_cnt = ptn->edge_count();
kvn@3254 2056 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@3254 2057 uint npi = ptn->edge_target(ei);
kvn@3254 2058 PointsToNode *np = ptnode_adr(npi);
kvn@3254 2059 if (np->escape_state() < esc_state) {
kvn@3254 2060 set_escape_state(npi, esc_state);
kvn@3254 2061 worklist->push(npi);
kvn@3254 2062 }
kvn@3254 2063 }
kvn@3254 2064 }
kvn@3254 2065 // Has not escaping java objects
kvn@3254 2066 return has_java_obj && (esc_state < PointsToNode::GlobalEscape);
kvn@3254 2067 }
kvn@3254 2068
kvn@3309 2069 // Optimize objects compare.
kvn@3309 2070 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
kvn@3309 2071 assert(OptimizePtrCompare, "sanity");
kvn@3309 2072 // Clone returned Set since PointsTo() returns pointer
kvn@3309 2073 // to the same structure ConnectionGraph.pt_ptset.
kvn@3309 2074 VectorSet ptset1 = *PointsTo(n->in(1));
kvn@3309 2075 VectorSet ptset2 = *PointsTo(n->in(2));
kvn@3309 2076
kvn@3309 2077 // Check simple cases first.
kvn@3309 2078 if (ptset1.Size() == 1) {
kvn@3309 2079 uint pt1 = ptset1.getelem();
kvn@3309 2080 PointsToNode* ptn1 = ptnode_adr(pt1);
kvn@3309 2081 if (ptn1->escape_state() == PointsToNode::NoEscape) {
kvn@3309 2082 if (ptset2.Size() == 1 && ptset2.getelem() == pt1) {
kvn@3309 2083 // Comparing the same not escaping object.
kvn@3309 2084 return _pcmp_eq;
kvn@3309 2085 }
kvn@3309 2086 Node* obj = ptn1->_node;
kvn@3309 2087 // Comparing not escaping allocation.
kvn@3309 2088 if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
kvn@3309 2089 !ptset2.test(pt1)) {
kvn@3309 2090 return _pcmp_neq; // This includes nullness check.
kvn@3309 2091 }
kvn@3309 2092 }
kvn@3309 2093 } else if (ptset2.Size() == 1) {
kvn@3309 2094 uint pt2 = ptset2.getelem();
kvn@3309 2095 PointsToNode* ptn2 = ptnode_adr(pt2);
kvn@3309 2096 if (ptn2->escape_state() == PointsToNode::NoEscape) {
kvn@3309 2097 Node* obj = ptn2->_node;
kvn@3309 2098 // Comparing not escaping allocation.
kvn@3309 2099 if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
kvn@3309 2100 !ptset1.test(pt2)) {
kvn@3309 2101 return _pcmp_neq; // This includes nullness check.
kvn@3309 2102 }
kvn@3309 2103 }
kvn@3309 2104 }
kvn@3309 2105
kvn@3309 2106 if (!ptset1.disjoint(ptset2)) {
kvn@3309 2107 return NULL; // Sets are not disjoint
kvn@3309 2108 }
kvn@3309 2109
kvn@3309 2110 // Sets are disjoint.
kvn@3309 2111 bool set1_has_unknown_ptr = ptset1.test(_phantom_object) != 0;
kvn@3309 2112 bool set2_has_unknown_ptr = ptset2.test(_phantom_object) != 0;
kvn@3309 2113 bool set1_has_null_ptr = (ptset1.test(_oop_null) | ptset1.test(_noop_null)) != 0;
kvn@3309 2114 bool set2_has_null_ptr = (ptset2.test(_oop_null) | ptset2.test(_noop_null)) != 0;
kvn@3309 2115
kvn@3309 2116 if (set1_has_unknown_ptr && set2_has_null_ptr ||
kvn@3309 2117 set2_has_unknown_ptr && set1_has_null_ptr) {
kvn@3309 2118 // Check nullness of unknown object.
kvn@3309 2119 return NULL;
kvn@3309 2120 }
kvn@3309 2121
kvn@3309 2122 // Disjointness by itself is not sufficient since
kvn@3309 2123 // alias analysis is not complete for escaped objects.
kvn@3309 2124 // Disjoint sets are definitely unrelated only when
kvn@3309 2125 // at least one set has only not escaping objects.
kvn@3309 2126 if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
kvn@3309 2127 bool has_only_non_escaping_alloc = true;
kvn@3309 2128 for (VectorSetI i(&ptset1); i.test(); ++i) {
kvn@3309 2129 uint pt = i.elem;
kvn@3309 2130 PointsToNode* ptn = ptnode_adr(pt);
kvn@3309 2131 Node* obj = ptn->_node;
kvn@3309 2132 if (ptn->escape_state() != PointsToNode::NoEscape ||
kvn@3309 2133 !(obj->is_Allocate() || obj->is_CallStaticJava())) {
kvn@3309 2134 has_only_non_escaping_alloc = false;
kvn@3309 2135 break;
kvn@3309 2136 }
kvn@3309 2137 }
kvn@3309 2138 if (has_only_non_escaping_alloc) {
kvn@3309 2139 return _pcmp_neq;
kvn@3309 2140 }
kvn@3309 2141 }
kvn@3309 2142 if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
kvn@3309 2143 bool has_only_non_escaping_alloc = true;
kvn@3309 2144 for (VectorSetI i(&ptset2); i.test(); ++i) {
kvn@3309 2145 uint pt = i.elem;
kvn@3309 2146 PointsToNode* ptn = ptnode_adr(pt);
kvn@3309 2147 Node* obj = ptn->_node;
kvn@3309 2148 if (ptn->escape_state() != PointsToNode::NoEscape ||
kvn@3309 2149 !(obj->is_Allocate() || obj->is_CallStaticJava())) {
kvn@3309 2150 has_only_non_escaping_alloc = false;
kvn@3309 2151 break;
kvn@3309 2152 }
kvn@3309 2153 }
kvn@3309 2154 if (has_only_non_escaping_alloc) {
kvn@3309 2155 return _pcmp_neq;
kvn@3309 2156 }
kvn@3309 2157 }
kvn@3309 2158 return NULL;
kvn@3309 2159 }
kvn@3309 2160
duke@435 2161 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
duke@435 2162
duke@435 2163 switch (call->Opcode()) {
kvn@500 2164 #ifdef ASSERT
duke@435 2165 case Op_Allocate:
duke@435 2166 case Op_AllocateArray:
duke@435 2167 case Op_Lock:
duke@435 2168 case Op_Unlock:
kvn@500 2169 assert(false, "should be done already");
duke@435 2170 break;
kvn@500 2171 #endif
kvn@1535 2172 case Op_CallLeaf:
kvn@500 2173 case Op_CallLeafNoFP:
kvn@500 2174 {
kvn@500 2175 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@500 2176 // Adjust escape state for outgoing arguments.
kvn@500 2177 const TypeTuple * d = call->tf()->domain();
kvn@500 2178 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 2179 const Type* at = d->field_at(i);
kvn@500 2180 Node *arg = call->in(i)->uncast();
kvn@500 2181 const Type *aat = phase->type(arg);
kvn@1535 2182 if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr() &&
kvn@1535 2183 ptnode_adr(arg->_idx)->escape_state() < PointsToNode::ArgEscape) {
kvn@1535 2184
kvn@500 2185 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@500 2186 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@1535 2187 #ifdef ASSERT
kvn@1535 2188 if (!(call->Opcode() == Op_CallLeafNoFP &&
kvn@1535 2189 call->as_CallLeaf()->_name != NULL &&
kvn@1535 2190 (strstr(call->as_CallLeaf()->_name, "arraycopy") != 0) ||
kvn@1535 2191 call->as_CallLeaf()->_name != NULL &&
kvn@1535 2192 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 ||
kvn@1535 2193 strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
kvn@1535 2194 ) {
kvn@1535 2195 call->dump();
kvn@1535 2196 assert(false, "EA: unexpected CallLeaf");
kvn@1535 2197 }
kvn@1535 2198 #endif
kvn@500 2199 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 2200 if (arg->is_AddP()) {
kvn@500 2201 //
kvn@500 2202 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 2203 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 2204 //
kvn@500 2205 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@500 2206 // pointer to the base (with offset) is passed as argument.
kvn@500 2207 //
kvn@500 2208 arg = get_addp_base(arg);
kvn@500 2209 }
kvn@2556 2210 for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
kvn@500 2211 uint pt = j.elem;
kvn@500 2212 set_escape_state(pt, PointsToNode::ArgEscape);
kvn@500 2213 }
kvn@500 2214 }
kvn@500 2215 }
kvn@500 2216 break;
kvn@500 2217 }
duke@435 2218
duke@435 2219 case Op_CallStaticJava:
duke@435 2220 // For a static call, we know exactly what method is being called.
duke@435 2221 // Use bytecode estimator to record the call's escape affects
duke@435 2222 {
duke@435 2223 ciMethod *meth = call->as_CallJava()->method();
kvn@500 2224 BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@500 2225 // fall-through if not a Java method or no analyzer information
kvn@500 2226 if (call_analyzer != NULL) {
duke@435 2227 const TypeTuple * d = call->tf()->domain();
kvn@500 2228 bool copy_dependencies = false;
duke@435 2229 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 2230 const Type* at = d->field_at(i);
duke@435 2231 int k = i - TypeFunc::Parms;
kvn@1535 2232 Node *arg = call->in(i)->uncast();
duke@435 2233
kvn@1535 2234 if (at->isa_oopptr() != NULL &&
kvn@1571 2235 ptnode_adr(arg->_idx)->escape_state() < PointsToNode::GlobalEscape) {
duke@435 2236
kvn@500 2237 bool global_escapes = false;
kvn@500 2238 bool fields_escapes = false;
kvn@500 2239 if (!call_analyzer->is_arg_stack(k)) {
duke@435 2240 // The argument global escapes, mark everything it could point to
kvn@500 2241 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@500 2242 global_escapes = true;
kvn@500 2243 } else {
kvn@500 2244 if (!call_analyzer->is_arg_local(k)) {
kvn@500 2245 // The argument itself doesn't escape, but any fields might
kvn@500 2246 fields_escapes = true;
kvn@500 2247 }
kvn@500 2248 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 2249 copy_dependencies = true;
kvn@500 2250 }
duke@435 2251
kvn@2556 2252 for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
kvn@500 2253 uint pt = j.elem;
kvn@500 2254 if (global_escapes) {
kvn@500 2255 //The argument global escapes, mark everything it could point to
duke@435 2256 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@500 2257 } else {
kvn@500 2258 if (fields_escapes) {
kvn@500 2259 // The argument itself doesn't escape, but any fields might
kvn@500 2260 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
kvn@500 2261 }
kvn@500 2262 set_escape_state(pt, PointsToNode::ArgEscape);
duke@435 2263 }
duke@435 2264 }
duke@435 2265 }
duke@435 2266 }
kvn@500 2267 if (copy_dependencies)
kvn@679 2268 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 2269 break;
duke@435 2270 }
duke@435 2271 }
duke@435 2272
duke@435 2273 default:
kvn@500 2274 // Fall-through here if not a Java method or no analyzer information
kvn@500 2275 // or some other type of call, assume the worst case: all arguments
duke@435 2276 // globally escape.
duke@435 2277 {
duke@435 2278 // adjust escape state for outgoing arguments
duke@435 2279 const TypeTuple * d = call->tf()->domain();
duke@435 2280 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 2281 const Type* at = d->field_at(i);
duke@435 2282 if (at->isa_oopptr() != NULL) {
kvn@500 2283 Node *arg = call->in(i)->uncast();
kvn@500 2284 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@2556 2285 for( VectorSetI j(PointsTo(arg)); j.test(); ++j ) {
duke@435 2286 uint pt = j.elem;
duke@435 2287 set_escape_state(pt, PointsToNode::GlobalEscape);
duke@435 2288 }
duke@435 2289 }
duke@435 2290 }
duke@435 2291 }
duke@435 2292 }
duke@435 2293 }
duke@435 2294 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
kvn@679 2295 CallNode *call = resproj->in(0)->as_Call();
kvn@679 2296 uint call_idx = call->_idx;
kvn@679 2297 uint resproj_idx = resproj->_idx;
duke@435 2298
duke@435 2299 switch (call->Opcode()) {
duke@435 2300 case Op_Allocate:
duke@435 2301 {
duke@435 2302 Node *k = call->in(AllocateNode::KlassNode);
kvn@1894 2303 const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
duke@435 2304 assert(kt != NULL, "TypeKlassPtr required.");
duke@435 2305 ciKlass* cik = kt->klass();
duke@435 2306
kvn@500 2307 PointsToNode::EscapeState es;
kvn@500 2308 uint edge_to;
kvn@1894 2309 if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
kvn@1894 2310 !cik->is_instance_klass() || // StressReflectiveCode
kvn@1894 2311 cik->as_instance_klass()->has_finalizer()) {
kvn@500 2312 es = PointsToNode::GlobalEscape;
kvn@500 2313 edge_to = _phantom_object; // Could not be worse
duke@435 2314 } else {
kvn@500 2315 es = PointsToNode::NoEscape;
kvn@679 2316 edge_to = call_idx;
kvn@3254 2317 assert(ptnode_adr(call_idx)->scalar_replaceable(), "sanity");
duke@435 2318 }
kvn@679 2319 set_escape_state(call_idx, es);
kvn@679 2320 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 2321 _processed.set(resproj_idx);
duke@435 2322 break;
duke@435 2323 }
duke@435 2324
duke@435 2325 case Op_AllocateArray:
duke@435 2326 {
kvn@1894 2327
kvn@1894 2328 Node *k = call->in(AllocateNode::KlassNode);
kvn@1894 2329 const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
kvn@1894 2330 assert(kt != NULL, "TypeKlassPtr required.");
kvn@1894 2331 ciKlass* cik = kt->klass();
kvn@1894 2332
kvn@1894 2333 PointsToNode::EscapeState es;
kvn@1894 2334 uint edge_to;
kvn@1894 2335 if (!cik->is_array_klass()) { // StressReflectiveCode
kvn@1894 2336 es = PointsToNode::GlobalEscape;
kvn@1894 2337 edge_to = _phantom_object;
kvn@1894 2338 } else {
kvn@1894 2339 es = PointsToNode::NoEscape;
kvn@1894 2340 edge_to = call_idx;
kvn@3254 2341 assert(ptnode_adr(call_idx)->scalar_replaceable(), "sanity");
kvn@1894 2342 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@1894 2343 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@1894 2344 // Not scalar replaceable if the length is not constant or too big.
kvn@3254 2345 ptnode_adr(call_idx)->set_scalar_replaceable(false);
kvn@1894 2346 }
kvn@500 2347 }
kvn@1894 2348 set_escape_state(call_idx, es);
kvn@1894 2349 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 2350 _processed.set(resproj_idx);
duke@435 2351 break;
duke@435 2352 }
duke@435 2353
duke@435 2354 case Op_CallStaticJava:
duke@435 2355 // For a static call, we know exactly what method is being called.
duke@435 2356 // Use bytecode estimator to record whether the call's return value escapes
duke@435 2357 {
kvn@500 2358 bool done = true;
duke@435 2359 const TypeTuple *r = call->tf()->range();
duke@435 2360 const Type* ret_type = NULL;
duke@435 2361
duke@435 2362 if (r->cnt() > TypeFunc::Parms)
duke@435 2363 ret_type = r->field_at(TypeFunc::Parms);
duke@435 2364
duke@435 2365 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 2366 // _multianewarray functions return a TypeRawPtr.
kvn@500 2367 if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
kvn@679 2368 _processed.set(resproj_idx);
duke@435 2369 break; // doesn't return a pointer type
kvn@500 2370 }
duke@435 2371 ciMethod *meth = call->as_CallJava()->method();
kvn@500 2372 const TypeTuple * d = call->tf()->domain();
duke@435 2373 if (meth == NULL) {
duke@435 2374 // not a Java method, assume global escape
kvn@679 2375 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2376 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 2377 } else {
kvn@500 2378 BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
kvn@500 2379 bool copy_dependencies = false;
duke@435 2380
kvn@500 2381 if (call_analyzer->is_return_allocated()) {
kvn@500 2382 // Returns a newly allocated unescaped object, simply
kvn@500 2383 // update dependency information.
kvn@500 2384 // Mark it as NoEscape so that objects referenced by
kvn@500 2385 // it's fields will be marked as NoEscape at least.
kvn@679 2386 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@3254 2387 ptnode_adr(call_idx)->set_scalar_replaceable(false);
kvn@679 2388 add_pointsto_edge(resproj_idx, call_idx);
kvn@500 2389 copy_dependencies = true;
kvn@679 2390 } else if (call_analyzer->is_return_local()) {
duke@435 2391 // determine whether any arguments are returned
kvn@3254 2392 set_escape_state(call_idx, PointsToNode::ArgEscape);
kvn@742 2393 bool ret_arg = false;
duke@435 2394 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 2395 const Type* at = d->field_at(i);
duke@435 2396
duke@435 2397 if (at->isa_oopptr() != NULL) {
kvn@500 2398 Node *arg = call->in(i)->uncast();
duke@435 2399
kvn@500 2400 if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
kvn@742 2401 ret_arg = true;
kvn@679 2402 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 2403 if (arg_esp->node_type() == PointsToNode::UnknownType)
kvn@500 2404 done = false;
kvn@500 2405 else if (arg_esp->node_type() == PointsToNode::JavaObject)
kvn@679 2406 add_pointsto_edge(resproj_idx, arg->_idx);
duke@435 2407 else
kvn@679 2408 add_deferred_edge(resproj_idx, arg->_idx);
duke@435 2409 }
duke@435 2410 }
duke@435 2411 }
kvn@742 2412 if (done && !ret_arg) {
kvn@742 2413 // Returns unknown object.
kvn@742 2414 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@742 2415 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@742 2416 }
kvn@3254 2417 if (done) {
kvn@3254 2418 copy_dependencies = true;
kvn@3254 2419 }
duke@435 2420 } else {
kvn@679 2421 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2422 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 2423 }
kvn@500 2424 if (copy_dependencies)
kvn@679 2425 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 2426 }
kvn@500 2427 if (done)
kvn@679 2428 _processed.set(resproj_idx);
duke@435 2429 break;
duke@435 2430 }
duke@435 2431
duke@435 2432 default:
duke@435 2433 // Some other type of call, assume the worst case that the
duke@435 2434 // returned value, if any, globally escapes.
duke@435 2435 {
duke@435 2436 const TypeTuple *r = call->tf()->range();
duke@435 2437 if (r->cnt() > TypeFunc::Parms) {
duke@435 2438 const Type* ret_type = r->field_at(TypeFunc::Parms);
duke@435 2439
duke@435 2440 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 2441 // _multianewarray functions return a TypeRawPtr.
duke@435 2442 if (ret_type->isa_ptr() != NULL) {
kvn@679 2443 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2444 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 2445 }
duke@435 2446 }
kvn@679 2447 _processed.set(resproj_idx);
duke@435 2448 }
duke@435 2449 }
duke@435 2450 }
duke@435 2451
kvn@500 2452 // Populate Connection Graph with Ideal nodes and create simple
kvn@500 2453 // connection graph edges (do not need to check the node_type of inputs
kvn@500 2454 // or to call PointsTo() to walk the connection graph).
kvn@500 2455 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
kvn@500 2456 if (_processed.test(n->_idx))
kvn@500 2457 return; // No need to redefine node's state.
kvn@500 2458
kvn@500 2459 if (n->is_Call()) {
kvn@500 2460 // Arguments to allocation and locking don't escape.
kvn@500 2461 if (n->is_Allocate()) {
kvn@500 2462 add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
kvn@500 2463 record_for_optimizer(n);
kvn@500 2464 } else if (n->is_Lock() || n->is_Unlock()) {
kvn@500 2465 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@500 2466 // the first IGVN optimization when escape information is still available.
kvn@500 2467 record_for_optimizer(n);
kvn@500 2468 _processed.set(n->_idx);
kvn@500 2469 } else {
kvn@1535 2470 // Don't mark as processed since call's arguments have to be processed.
kvn@500 2471 PointsToNode::NodeType nt = PointsToNode::UnknownType;
kvn@1535 2472 PointsToNode::EscapeState es = PointsToNode::UnknownEscape;
kvn@500 2473
kvn@500 2474 // Check if a call returns an object.
kvn@500 2475 const TypeTuple *r = n->as_Call()->tf()->range();
kvn@1535 2476 if (r->cnt() > TypeFunc::Parms &&
kvn@1535 2477 r->field_at(TypeFunc::Parms)->isa_ptr() &&
kvn@500 2478 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
kvn@1535 2479 nt = PointsToNode::JavaObject;
kvn@1535 2480 if (!n->is_CallStaticJava()) {
kvn@1535 2481 // Since the called mathod is statically unknown assume
kvn@1535 2482 // the worst case that the returned value globally escapes.
kvn@1535 2483 es = PointsToNode::GlobalEscape;
kvn@500 2484 }
duke@435 2485 }
kvn@1535 2486 add_node(n, nt, es, false);
duke@435 2487 }
kvn@500 2488 return;
duke@435 2489 }
kvn@500 2490
kvn@500 2491 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@500 2492 // ThreadLocal has RawPrt type.
kvn@500 2493 switch (n->Opcode()) {
kvn@500 2494 case Op_AddP:
kvn@500 2495 {
kvn@500 2496 add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
kvn@500 2497 break;
kvn@500 2498 }
kvn@500 2499 case Op_CastX2P:
kvn@500 2500 { // "Unsafe" memory access.
kvn@500 2501 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2502 break;
kvn@500 2503 }
kvn@500 2504 case Op_CastPP:
kvn@500 2505 case Op_CheckCastPP:
kvn@559 2506 case Op_EncodeP:
kvn@559 2507 case Op_DecodeN:
kvn@500 2508 {
kvn@500 2509 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2510 int ti = n->in(1)->_idx;
kvn@679 2511 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2512 if (nt == PointsToNode::UnknownType) {
kvn@500 2513 _delayed_worklist.push(n); // Process it later.
kvn@500 2514 break;
kvn@500 2515 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2516 add_pointsto_edge(n->_idx, ti);
kvn@500 2517 } else {
kvn@500 2518 add_deferred_edge(n->_idx, ti);
kvn@500 2519 }
kvn@500 2520 _processed.set(n->_idx);
kvn@500 2521 break;
kvn@500 2522 }
kvn@500 2523 case Op_ConP:
kvn@500 2524 {
kvn@500 2525 // assume all pointer constants globally escape except for null
kvn@500 2526 PointsToNode::EscapeState es;
kvn@500 2527 if (phase->type(n) == TypePtr::NULL_PTR)
kvn@500 2528 es = PointsToNode::NoEscape;
kvn@500 2529 else
kvn@500 2530 es = PointsToNode::GlobalEscape;
kvn@500 2531
kvn@500 2532 add_node(n, PointsToNode::JavaObject, es, true);
kvn@500 2533 break;
kvn@500 2534 }
coleenp@548 2535 case Op_ConN:
coleenp@548 2536 {
coleenp@548 2537 // assume all narrow oop constants globally escape except for null
coleenp@548 2538 PointsToNode::EscapeState es;
coleenp@548 2539 if (phase->type(n) == TypeNarrowOop::NULL_PTR)
coleenp@548 2540 es = PointsToNode::NoEscape;
coleenp@548 2541 else
coleenp@548 2542 es = PointsToNode::GlobalEscape;
coleenp@548 2543
coleenp@548 2544 add_node(n, PointsToNode::JavaObject, es, true);
coleenp@548 2545 break;
coleenp@548 2546 }
kvn@559 2547 case Op_CreateEx:
kvn@559 2548 {
kvn@559 2549 // assume that all exception objects globally escape
kvn@559 2550 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@559 2551 break;
kvn@559 2552 }
kvn@500 2553 case Op_LoadKlass:
kvn@599 2554 case Op_LoadNKlass:
kvn@500 2555 {
kvn@500 2556 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2557 break;
kvn@500 2558 }
kvn@500 2559 case Op_LoadP:
coleenp@548 2560 case Op_LoadN:
kvn@500 2561 {
kvn@500 2562 const Type *t = phase->type(n);
kvn@688 2563 if (t->make_ptr() == NULL) {
kvn@500 2564 _processed.set(n->_idx);
kvn@500 2565 return;
kvn@500 2566 }
kvn@500 2567 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2568 break;
kvn@500 2569 }
kvn@500 2570 case Op_Parm:
kvn@500 2571 {
kvn@500 2572 _processed.set(n->_idx); // No need to redefine it state.
kvn@500 2573 uint con = n->as_Proj()->_con;
kvn@500 2574 if (con < TypeFunc::Parms)
kvn@500 2575 return;
kvn@500 2576 const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
kvn@500 2577 if (t->isa_ptr() == NULL)
kvn@500 2578 return;
kvn@500 2579 // We have to assume all input parameters globally escape
kvn@500 2580 // (Note: passing 'false' since _processed is already set).
kvn@500 2581 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
kvn@500 2582 break;
kvn@500 2583 }
kvn@3309 2584 case Op_PartialSubtypeCheck:
kvn@3309 2585 { // Produces Null or notNull and is used in CmpP.
kvn@3309 2586 add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
kvn@3309 2587 break;
kvn@3309 2588 }
kvn@500 2589 case Op_Phi:
kvn@500 2590 {
kvn@688 2591 const Type *t = n->as_Phi()->type();
kvn@688 2592 if (t->make_ptr() == NULL) {
kvn@688 2593 // nothing to do if not an oop or narrow oop
kvn@500 2594 _processed.set(n->_idx);
kvn@500 2595 return;
kvn@500 2596 }
kvn@500 2597 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2598 uint i;
kvn@500 2599 for (i = 1; i < n->req() ; i++) {
kvn@500 2600 Node* in = n->in(i);
kvn@500 2601 if (in == NULL)
kvn@500 2602 continue; // ignore NULL
kvn@500 2603 in = in->uncast();
kvn@500 2604 if (in->is_top() || in == n)
kvn@500 2605 continue; // ignore top or inputs which go back this node
kvn@500 2606 int ti = in->_idx;
kvn@679 2607 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2608 if (nt == PointsToNode::UnknownType) {
kvn@500 2609 break;
kvn@500 2610 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2611 add_pointsto_edge(n->_idx, ti);
kvn@500 2612 } else {
kvn@500 2613 add_deferred_edge(n->_idx, ti);
kvn@500 2614 }
kvn@500 2615 }
kvn@500 2616 if (i >= n->req())
kvn@500 2617 _processed.set(n->_idx);
kvn@500 2618 else
kvn@500 2619 _delayed_worklist.push(n);
kvn@500 2620 break;
kvn@500 2621 }
kvn@500 2622 case Op_Proj:
kvn@500 2623 {
kvn@1535 2624 // we are only interested in the oop result projection from a call
kvn@500 2625 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@1535 2626 const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
kvn@1535 2627 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@1535 2628 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@1535 2629 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@1535 2630 int ti = n->in(0)->_idx;
kvn@1535 2631 // The call may not be registered yet (since not all its inputs are registered)
kvn@1535 2632 // if this is the projection from backbranch edge of Phi.
kvn@1535 2633 if (ptnode_adr(ti)->node_type() != PointsToNode::UnknownType) {
kvn@1535 2634 process_call_result(n->as_Proj(), phase);
kvn@1535 2635 }
kvn@1535 2636 if (!_processed.test(n->_idx)) {
kvn@1535 2637 // The call's result may need to be processed later if the call
kvn@1535 2638 // returns it's argument and the argument is not processed yet.
kvn@1535 2639 _delayed_worklist.push(n);
kvn@1535 2640 }
kvn@1535 2641 break;
kvn@500 2642 }
kvn@500 2643 }
kvn@1535 2644 _processed.set(n->_idx);
kvn@500 2645 break;
kvn@500 2646 }
kvn@500 2647 case Op_Return:
kvn@500 2648 {
kvn@500 2649 if( n->req() > TypeFunc::Parms &&
kvn@500 2650 phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2651 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@500 2652 add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
kvn@500 2653 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@679 2654 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2655 if (nt == PointsToNode::UnknownType) {
kvn@500 2656 _delayed_worklist.push(n); // Process it later.
kvn@500 2657 break;
kvn@500 2658 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2659 add_pointsto_edge(n->_idx, ti);
kvn@500 2660 } else {
kvn@500 2661 add_deferred_edge(n->_idx, ti);
kvn@500 2662 }
kvn@500 2663 }
kvn@500 2664 _processed.set(n->_idx);
kvn@500 2665 break;
kvn@500 2666 }
kvn@500 2667 case Op_StoreP:
coleenp@548 2668 case Op_StoreN:
kvn@500 2669 {
kvn@500 2670 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2671 adr_type = adr_type->make_ptr();
kvn@500 2672 if (adr_type->isa_oopptr()) {
kvn@500 2673 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2674 } else {
kvn@500 2675 Node* adr = n->in(MemNode::Address);
kvn@500 2676 if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
kvn@500 2677 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 2678 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 2679 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2680 // We are computing a raw address for a store captured
kvn@500 2681 // by an Initialize compute an appropriate address type.
kvn@500 2682 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 2683 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 2684 } else {
kvn@500 2685 _processed.set(n->_idx);
kvn@500 2686 return;
kvn@500 2687 }
kvn@500 2688 }
kvn@500 2689 break;
kvn@500 2690 }
kvn@500 2691 case Op_StorePConditional:
kvn@500 2692 case Op_CompareAndSwapP:
coleenp@548 2693 case Op_CompareAndSwapN:
kvn@500 2694 {
kvn@500 2695 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2696 adr_type = adr_type->make_ptr();
kvn@500 2697 if (adr_type->isa_oopptr()) {
kvn@500 2698 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2699 } else {
kvn@500 2700 _processed.set(n->_idx);
kvn@500 2701 return;
kvn@500 2702 }
kvn@500 2703 break;
kvn@500 2704 }
kvn@1535 2705 case Op_AryEq:
kvn@1535 2706 case Op_StrComp:
kvn@1535 2707 case Op_StrEquals:
kvn@1535 2708 case Op_StrIndexOf:
kvn@1535 2709 {
kvn@1535 2710 // char[] arrays passed to string intrinsics are not scalar replaceable.
kvn@1535 2711 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@1535 2712 break;
kvn@1535 2713 }
kvn@500 2714 case Op_ThreadLocal:
kvn@500 2715 {
kvn@500 2716 add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
kvn@500 2717 break;
kvn@500 2718 }
kvn@500 2719 default:
kvn@500 2720 ;
kvn@500 2721 // nothing to do
kvn@500 2722 }
kvn@500 2723 return;
duke@435 2724 }
duke@435 2725
kvn@500 2726 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
kvn@679 2727 uint n_idx = n->_idx;
kvn@1535 2728 assert(ptnode_adr(n_idx)->_node != NULL, "node should be registered");
kvn@679 2729
kvn@500 2730 // Don't set processed bit for AddP, LoadP, StoreP since
kvn@500 2731 // they may need more then one pass to process.
kvn@2276 2732 // Also don't mark as processed Call nodes since their
kvn@2276 2733 // arguments may need more then one pass to process.
kvn@679 2734 if (_processed.test(n_idx))
kvn@500 2735 return; // No need to redefine node's state.
duke@435 2736
duke@435 2737 if (n->is_Call()) {
duke@435 2738 CallNode *call = n->as_Call();
duke@435 2739 process_call_arguments(call, phase);
duke@435 2740 return;
duke@435 2741 }
duke@435 2742
kvn@500 2743 switch (n->Opcode()) {
duke@435 2744 case Op_AddP:
duke@435 2745 {
kvn@500 2746 Node *base = get_addp_base(n);
kvn@3309 2747 int offset = address_offset(n, phase);
kvn@500 2748 // Create a field edge to this node from everything base could point to.
kvn@2556 2749 for( VectorSetI i(PointsTo(base)); i.test(); ++i ) {
duke@435 2750 uint pt = i.elem;
kvn@3309 2751 add_field_edge(pt, n_idx, offset);
kvn@500 2752 }
kvn@500 2753 break;
kvn@500 2754 }
kvn@500 2755 case Op_CastX2P:
kvn@500 2756 {
kvn@500 2757 assert(false, "Op_CastX2P");
kvn@500 2758 break;
kvn@500 2759 }
kvn@500 2760 case Op_CastPP:
kvn@500 2761 case Op_CheckCastPP:
coleenp@548 2762 case Op_EncodeP:
coleenp@548 2763 case Op_DecodeN:
kvn@500 2764 {
kvn@500 2765 int ti = n->in(1)->_idx;
kvn@1535 2766 assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "all nodes should be registered");
kvn@679 2767 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2768 add_pointsto_edge(n_idx, ti);
kvn@500 2769 } else {
kvn@679 2770 add_deferred_edge(n_idx, ti);
kvn@500 2771 }
kvn@679 2772 _processed.set(n_idx);
kvn@500 2773 break;
kvn@500 2774 }
kvn@500 2775 case Op_ConP:
kvn@500 2776 {
kvn@500 2777 assert(false, "Op_ConP");
kvn@500 2778 break;
kvn@500 2779 }
kvn@598 2780 case Op_ConN:
kvn@598 2781 {
kvn@598 2782 assert(false, "Op_ConN");
kvn@598 2783 break;
kvn@598 2784 }
kvn@500 2785 case Op_CreateEx:
kvn@500 2786 {
kvn@500 2787 assert(false, "Op_CreateEx");
kvn@500 2788 break;
kvn@500 2789 }
kvn@500 2790 case Op_LoadKlass:
kvn@599 2791 case Op_LoadNKlass:
kvn@500 2792 {
kvn@500 2793 assert(false, "Op_LoadKlass");
kvn@500 2794 break;
kvn@500 2795 }
kvn@500 2796 case Op_LoadP:
kvn@559 2797 case Op_LoadN:
kvn@500 2798 {
kvn@500 2799 const Type *t = phase->type(n);
kvn@500 2800 #ifdef ASSERT
kvn@688 2801 if (t->make_ptr() == NULL)
kvn@500 2802 assert(false, "Op_LoadP");
kvn@500 2803 #endif
kvn@500 2804
kvn@500 2805 Node* adr = n->in(MemNode::Address)->uncast();
kvn@500 2806 Node* adr_base;
kvn@500 2807 if (adr->is_AddP()) {
kvn@500 2808 adr_base = get_addp_base(adr);
kvn@500 2809 } else {
kvn@500 2810 adr_base = adr;
kvn@500 2811 }
kvn@500 2812
kvn@500 2813 // For everything "adr_base" could point to, create a deferred edge from
kvn@500 2814 // this node to each field with the same offset.
kvn@500 2815 int offset = address_offset(adr, phase);
kvn@2556 2816 for( VectorSetI i(PointsTo(adr_base)); i.test(); ++i ) {
kvn@500 2817 uint pt = i.elem;
kvn@3309 2818 if (adr->is_AddP()) {
kvn@3309 2819 // Add field edge if it is missing.
kvn@3309 2820 add_field_edge(pt, adr->_idx, offset);
kvn@3309 2821 }
kvn@679 2822 add_deferred_edge_to_fields(n_idx, pt, offset);
duke@435 2823 }
duke@435 2824 break;
duke@435 2825 }
duke@435 2826 case Op_Parm:
duke@435 2827 {
kvn@500 2828 assert(false, "Op_Parm");
kvn@500 2829 break;
kvn@500 2830 }
kvn@3309 2831 case Op_PartialSubtypeCheck:
kvn@3309 2832 {
kvn@3309 2833 assert(false, "Op_PartialSubtypeCheck");
kvn@3309 2834 break;
kvn@3309 2835 }
kvn@500 2836 case Op_Phi:
kvn@500 2837 {
kvn@500 2838 #ifdef ASSERT
kvn@688 2839 const Type *t = n->as_Phi()->type();
kvn@688 2840 if (t->make_ptr() == NULL)
kvn@500 2841 assert(false, "Op_Phi");
kvn@500 2842 #endif
kvn@500 2843 for (uint i = 1; i < n->req() ; i++) {
kvn@500 2844 Node* in = n->in(i);
kvn@500 2845 if (in == NULL)
kvn@500 2846 continue; // ignore NULL
kvn@500 2847 in = in->uncast();
kvn@500 2848 if (in->is_top() || in == n)
kvn@500 2849 continue; // ignore top or inputs which go back this node
kvn@500 2850 int ti = in->_idx;
kvn@742 2851 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@742 2852 assert(nt != PointsToNode::UnknownType, "all nodes should be known");
kvn@742 2853 if (nt == PointsToNode::JavaObject) {
kvn@679 2854 add_pointsto_edge(n_idx, ti);
kvn@500 2855 } else {
kvn@679 2856 add_deferred_edge(n_idx, ti);
kvn@500 2857 }
duke@435 2858 }
kvn@679 2859 _processed.set(n_idx);
duke@435 2860 break;
duke@435 2861 }
kvn@500 2862 case Op_Proj:
duke@435 2863 {
kvn@1535 2864 // we are only interested in the oop result projection from a call
kvn@500 2865 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@1535 2866 assert(ptnode_adr(n->in(0)->_idx)->node_type() != PointsToNode::UnknownType,
kvn@1535 2867 "all nodes should be registered");
kvn@1535 2868 const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
kvn@1535 2869 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@1535 2870 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@1535 2871 process_call_result(n->as_Proj(), phase);
kvn@1535 2872 assert(_processed.test(n_idx), "all call results should be processed");
kvn@1535 2873 break;
kvn@1535 2874 }
kvn@500 2875 }
kvn@1535 2876 assert(false, "Op_Proj");
duke@435 2877 break;
duke@435 2878 }
kvn@500 2879 case Op_Return:
duke@435 2880 {
kvn@500 2881 #ifdef ASSERT
kvn@500 2882 if( n->req() <= TypeFunc::Parms ||
kvn@500 2883 !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2884 assert(false, "Op_Return");
kvn@500 2885 }
kvn@500 2886 #endif
kvn@500 2887 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@1535 2888 assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "node should be registered");
kvn@679 2889 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2890 add_pointsto_edge(n_idx, ti);
kvn@500 2891 } else {
kvn@679 2892 add_deferred_edge(n_idx, ti);
kvn@500 2893 }
kvn@679 2894 _processed.set(n_idx);
duke@435 2895 break;
duke@435 2896 }
duke@435 2897 case Op_StoreP:
kvn@559 2898 case Op_StoreN:
duke@435 2899 case Op_StorePConditional:
duke@435 2900 case Op_CompareAndSwapP:
kvn@559 2901 case Op_CompareAndSwapN:
duke@435 2902 {
duke@435 2903 Node *adr = n->in(MemNode::Address);
kvn@656 2904 const Type *adr_type = phase->type(adr)->make_ptr();
kvn@500 2905 #ifdef ASSERT
duke@435 2906 if (!adr_type->isa_oopptr())
kvn@500 2907 assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
kvn@500 2908 #endif
duke@435 2909
kvn@500 2910 assert(adr->is_AddP(), "expecting an AddP");
kvn@500 2911 Node *adr_base = get_addp_base(adr);
kvn@500 2912 Node *val = n->in(MemNode::ValueIn)->uncast();
kvn@3309 2913 int offset = address_offset(adr, phase);
kvn@500 2914 // For everything "adr_base" could point to, create a deferred edge
kvn@500 2915 // to "val" from each field with the same offset.
kvn@2556 2916 for( VectorSetI i(PointsTo(adr_base)); i.test(); ++i ) {
duke@435 2917 uint pt = i.elem;
kvn@3309 2918 // Add field edge if it is missing.
kvn@3309 2919 add_field_edge(pt, adr->_idx, offset);
kvn@3309 2920 add_edge_from_fields(pt, val->_idx, offset);
duke@435 2921 }
duke@435 2922 break;
duke@435 2923 }
kvn@1535 2924 case Op_AryEq:
kvn@1535 2925 case Op_StrComp:
kvn@1535 2926 case Op_StrEquals:
kvn@1535 2927 case Op_StrIndexOf:
kvn@1535 2928 {
kvn@1535 2929 // char[] arrays passed to string intrinsic do not escape but
kvn@1535 2930 // they are not scalar replaceable. Adjust escape state for them.
kvn@1535 2931 // Start from in(2) edge since in(1) is memory edge.
kvn@1535 2932 for (uint i = 2; i < n->req(); i++) {
kvn@1535 2933 Node* adr = n->in(i)->uncast();
kvn@1535 2934 const Type *at = phase->type(adr);
kvn@1535 2935 if (!adr->is_top() && at->isa_ptr()) {
kvn@1535 2936 assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
kvn@1535 2937 at->isa_ptr() != NULL, "expecting an Ptr");
kvn@1535 2938 if (adr->is_AddP()) {
kvn@1535 2939 adr = get_addp_base(adr);
kvn@1535 2940 }
kvn@1535 2941 // Mark as ArgEscape everything "adr" could point to.
kvn@1535 2942 set_escape_state(adr->_idx, PointsToNode::ArgEscape);
kvn@1535 2943 }
kvn@1535 2944 }
kvn@1535 2945 _processed.set(n_idx);
kvn@1535 2946 break;
kvn@1535 2947 }
kvn@500 2948 case Op_ThreadLocal:
duke@435 2949 {
kvn@500 2950 assert(false, "Op_ThreadLocal");
duke@435 2951 break;
duke@435 2952 }
duke@435 2953 default:
kvn@1535 2954 // This method should be called only for EA specific nodes.
kvn@1535 2955 ShouldNotReachHere();
duke@435 2956 }
duke@435 2957 }
duke@435 2958
duke@435 2959 #ifndef PRODUCT
duke@435 2960 void ConnectionGraph::dump() {
duke@435 2961 bool first = true;
duke@435 2962
kvn@679 2963 uint size = nodes_size();
kvn@500 2964 for (uint ni = 0; ni < size; ni++) {
kvn@679 2965 PointsToNode *ptn = ptnode_adr(ni);
kvn@500 2966 PointsToNode::NodeType ptn_type = ptn->node_type();
kvn@500 2967
kvn@500 2968 if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
duke@435 2969 continue;
kvn@1989 2970 PointsToNode::EscapeState es = escape_state(ptn->_node);
kvn@500 2971 if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
kvn@500 2972 if (first) {
kvn@500 2973 tty->cr();
kvn@500 2974 tty->print("======== Connection graph for ");
kvn@679 2975 _compile->method()->print_short_name();
kvn@500 2976 tty->cr();
kvn@500 2977 first = false;
kvn@500 2978 }
kvn@500 2979 tty->print("%6d ", ni);
kvn@500 2980 ptn->dump();
kvn@500 2981 // Print all locals which reference this allocation
kvn@500 2982 for (uint li = ni; li < size; li++) {
kvn@679 2983 PointsToNode *ptn_loc = ptnode_adr(li);
kvn@500 2984 PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
kvn@500 2985 if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
kvn@500 2986 ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
kvn@688 2987 ptnode_adr(li)->dump(false);
duke@435 2988 }
duke@435 2989 }
kvn@500 2990 if (Verbose) {
kvn@500 2991 // Print all fields which reference this allocation
kvn@500 2992 for (uint i = 0; i < ptn->edge_count(); i++) {
kvn@500 2993 uint ei = ptn->edge_target(i);
kvn@688 2994 ptnode_adr(ei)->dump(false);
kvn@500 2995 }
kvn@500 2996 }
kvn@500 2997 tty->cr();
duke@435 2998 }
duke@435 2999 }
duke@435 3000 }
duke@435 3001 #endif

mercurial