src/share/classes/com/sun/tools/javac/comp/Lower.java

Tue, 28 May 2013 12:46:10 +0100

author
vromero
date
Tue, 28 May 2013 12:46:10 +0100
changeset 1783
c6df5b20f9eb
parent 1782
b391ecea538e
child 1802
8fb68f73d4b1
permissions
-rw-r--r--

6970173: Debug pointer at bad position
Reviewed-by: mcimadamore

duke@1 1 /*
jjg@1521 2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29
duke@1 30 import com.sun.tools.javac.code.*;
jjg@1755 31 import com.sun.tools.javac.code.Type.AnnotatedType;
duke@1 32 import com.sun.tools.javac.jvm.*;
jjg@1157 33 import com.sun.tools.javac.main.Option.PkgInfo;
duke@1 34 import com.sun.tools.javac.tree.*;
duke@1 35 import com.sun.tools.javac.util.*;
duke@1 36 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 37 import com.sun.tools.javac.util.List;
duke@1 38
duke@1 39 import com.sun.tools.javac.code.Symbol.*;
duke@1 40 import com.sun.tools.javac.tree.JCTree.*;
duke@1 41 import com.sun.tools.javac.code.Type.*;
duke@1 42
duke@1 43 import com.sun.tools.javac.jvm.Target;
jjg@1280 44 import com.sun.tools.javac.tree.EndPosTable;
duke@1 45
duke@1 46 import static com.sun.tools.javac.code.Flags.*;
jjg@1127 47 import static com.sun.tools.javac.code.Flags.BLOCK;
duke@1 48 import static com.sun.tools.javac.code.Kinds.*;
jjg@1374 49 import static com.sun.tools.javac.code.TypeTag.*;
duke@1 50 import static com.sun.tools.javac.jvm.ByteCodes.*;
jjg@1127 51 import static com.sun.tools.javac.tree.JCTree.Tag.*;
vromero@1687 52 import javax.lang.model.type.TypeKind;
duke@1 53
duke@1 54 /** This pass translates away some syntactic sugar: inner classes,
duke@1 55 * class literals, assertions, foreach loops, etc.
duke@1 56 *
jjg@581 57 * <p><b>This is NOT part of any supported API.
jjg@581 58 * If you write code that depends on this, you do so at your own risk.
duke@1 59 * This code and its internal interfaces are subject to change or
duke@1 60 * deletion without notice.</b>
duke@1 61 */
duke@1 62 public class Lower extends TreeTranslator {
duke@1 63 protected static final Context.Key<Lower> lowerKey =
duke@1 64 new Context.Key<Lower>();
duke@1 65
duke@1 66 public static Lower instance(Context context) {
duke@1 67 Lower instance = context.get(lowerKey);
duke@1 68 if (instance == null)
duke@1 69 instance = new Lower(context);
duke@1 70 return instance;
duke@1 71 }
duke@1 72
jjg@113 73 private Names names;
duke@1 74 private Log log;
duke@1 75 private Symtab syms;
duke@1 76 private Resolve rs;
duke@1 77 private Check chk;
duke@1 78 private Attr attr;
duke@1 79 private TreeMaker make;
duke@1 80 private DiagnosticPosition make_pos;
duke@1 81 private ClassWriter writer;
duke@1 82 private ClassReader reader;
duke@1 83 private ConstFold cfolder;
duke@1 84 private Target target;
duke@1 85 private Source source;
duke@1 86 private boolean allowEnums;
duke@1 87 private final Name dollarAssertionsDisabled;
duke@1 88 private final Name classDollar;
duke@1 89 private Types types;
duke@1 90 private boolean debugLower;
jjg@657 91 private PkgInfo pkginfoOpt;
duke@1 92
duke@1 93 protected Lower(Context context) {
duke@1 94 context.put(lowerKey, this);
jjg@113 95 names = Names.instance(context);
duke@1 96 log = Log.instance(context);
duke@1 97 syms = Symtab.instance(context);
duke@1 98 rs = Resolve.instance(context);
duke@1 99 chk = Check.instance(context);
duke@1 100 attr = Attr.instance(context);
duke@1 101 make = TreeMaker.instance(context);
duke@1 102 writer = ClassWriter.instance(context);
duke@1 103 reader = ClassReader.instance(context);
duke@1 104 cfolder = ConstFold.instance(context);
duke@1 105 target = Target.instance(context);
duke@1 106 source = Source.instance(context);
duke@1 107 allowEnums = source.allowEnums();
duke@1 108 dollarAssertionsDisabled = names.
duke@1 109 fromString(target.syntheticNameChar() + "assertionsDisabled");
duke@1 110 classDollar = names.
duke@1 111 fromString("class" + target.syntheticNameChar());
duke@1 112
duke@1 113 types = Types.instance(context);
duke@1 114 Options options = Options.instance(context);
jjg@700 115 debugLower = options.isSet("debuglower");
jjg@657 116 pkginfoOpt = PkgInfo.get(options);
duke@1 117 }
duke@1 118
duke@1 119 /** The currently enclosing class.
duke@1 120 */
duke@1 121 ClassSymbol currentClass;
duke@1 122
duke@1 123 /** A queue of all translated classes.
duke@1 124 */
duke@1 125 ListBuffer<JCTree> translated;
duke@1 126
duke@1 127 /** Environment for symbol lookup, set by translateTopLevelClass.
duke@1 128 */
duke@1 129 Env<AttrContext> attrEnv;
duke@1 130
duke@1 131 /** A hash table mapping syntax trees to their ending source positions.
duke@1 132 */
ksrini@1138 133 EndPosTable endPosTable;
duke@1 134
duke@1 135 /**************************************************************************
duke@1 136 * Global mappings
duke@1 137 *************************************************************************/
duke@1 138
duke@1 139 /** A hash table mapping local classes to their definitions.
duke@1 140 */
duke@1 141 Map<ClassSymbol, JCClassDecl> classdefs;
duke@1 142
vromero@1432 143 /** A hash table mapping local classes to a list of pruned trees.
vromero@1432 144 */
vromero@1432 145 public Map<ClassSymbol, List<JCTree>> prunedTree = new WeakHashMap<ClassSymbol, List<JCTree>>();
vromero@1432 146
duke@1 147 /** A hash table mapping virtual accessed symbols in outer subclasses
duke@1 148 * to the actually referred symbol in superclasses.
duke@1 149 */
duke@1 150 Map<Symbol,Symbol> actualSymbols;
duke@1 151
duke@1 152 /** The current method definition.
duke@1 153 */
duke@1 154 JCMethodDecl currentMethodDef;
duke@1 155
duke@1 156 /** The current method symbol.
duke@1 157 */
duke@1 158 MethodSymbol currentMethodSym;
duke@1 159
duke@1 160 /** The currently enclosing outermost class definition.
duke@1 161 */
duke@1 162 JCClassDecl outermostClassDef;
duke@1 163
duke@1 164 /** The currently enclosing outermost member definition.
duke@1 165 */
duke@1 166 JCTree outermostMemberDef;
duke@1 167
mcimadamore@1612 168 /** A map from local variable symbols to their translation (as per LambdaToMethod).
mcimadamore@1612 169 * This is required when a capturing local class is created from a lambda (in which
mcimadamore@1612 170 * case the captured symbols should be replaced with the translated lambda symbols).
mcimadamore@1612 171 */
mcimadamore@1612 172 Map<Symbol, Symbol> lambdaTranslationMap = null;
mcimadamore@1612 173
duke@1 174 /** A navigator class for assembling a mapping from local class symbols
duke@1 175 * to class definition trees.
duke@1 176 * There is only one case; all other cases simply traverse down the tree.
duke@1 177 */
duke@1 178 class ClassMap extends TreeScanner {
duke@1 179
duke@1 180 /** All encountered class defs are entered into classdefs table.
duke@1 181 */
duke@1 182 public void visitClassDef(JCClassDecl tree) {
duke@1 183 classdefs.put(tree.sym, tree);
duke@1 184 super.visitClassDef(tree);
duke@1 185 }
duke@1 186 }
duke@1 187 ClassMap classMap = new ClassMap();
duke@1 188
duke@1 189 /** Map a class symbol to its definition.
duke@1 190 * @param c The class symbol of which we want to determine the definition.
duke@1 191 */
duke@1 192 JCClassDecl classDef(ClassSymbol c) {
duke@1 193 // First lookup the class in the classdefs table.
duke@1 194 JCClassDecl def = classdefs.get(c);
duke@1 195 if (def == null && outermostMemberDef != null) {
duke@1 196 // If this fails, traverse outermost member definition, entering all
duke@1 197 // local classes into classdefs, and try again.
duke@1 198 classMap.scan(outermostMemberDef);
duke@1 199 def = classdefs.get(c);
duke@1 200 }
duke@1 201 if (def == null) {
duke@1 202 // If this fails, traverse outermost class definition, entering all
duke@1 203 // local classes into classdefs, and try again.
duke@1 204 classMap.scan(outermostClassDef);
duke@1 205 def = classdefs.get(c);
duke@1 206 }
duke@1 207 return def;
duke@1 208 }
duke@1 209
duke@1 210 /** A hash table mapping class symbols to lists of free variables.
duke@1 211 * accessed by them. Only free variables of the method immediately containing
duke@1 212 * a class are associated with that class.
duke@1 213 */
duke@1 214 Map<ClassSymbol,List<VarSymbol>> freevarCache;
duke@1 215
duke@1 216 /** A navigator class for collecting the free variables accessed
mcimadamore@1612 217 * from a local class. There is only one case; all other cases simply
mcimadamore@1612 218 * traverse down the tree. This class doesn't deal with the specific
mcimadamore@1612 219 * of Lower - it's an abstract visitor that is meant to be reused in
mcimadamore@1612 220 * order to share the local variable capture logic.
duke@1 221 */
mcimadamore@1612 222 abstract class BasicFreeVarCollector extends TreeScanner {
mcimadamore@1612 223
mcimadamore@1612 224 /** Add all free variables of class c to fvs list
mcimadamore@1612 225 * unless they are already there.
mcimadamore@1612 226 */
mcimadamore@1612 227 abstract void addFreeVars(ClassSymbol c);
mcimadamore@1612 228
mcimadamore@1612 229 /** If tree refers to a variable in owner of local class, add it to
mcimadamore@1612 230 * free variables list.
mcimadamore@1612 231 */
mcimadamore@1612 232 public void visitIdent(JCIdent tree) {
mcimadamore@1612 233 visitSymbol(tree.sym);
mcimadamore@1612 234 }
mcimadamore@1612 235 // where
mcimadamore@1612 236 abstract void visitSymbol(Symbol _sym);
mcimadamore@1612 237
mcimadamore@1612 238 /** If tree refers to a class instance creation expression
mcimadamore@1612 239 * add all free variables of the freshly created class.
mcimadamore@1612 240 */
mcimadamore@1612 241 public void visitNewClass(JCNewClass tree) {
mcimadamore@1612 242 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
mcimadamore@1612 243 addFreeVars(c);
mcimadamore@1612 244 super.visitNewClass(tree);
mcimadamore@1612 245 }
mcimadamore@1612 246
mcimadamore@1612 247 /** If tree refers to a superclass constructor call,
mcimadamore@1612 248 * add all free variables of the superclass.
mcimadamore@1612 249 */
mcimadamore@1612 250 public void visitApply(JCMethodInvocation tree) {
mcimadamore@1612 251 if (TreeInfo.name(tree.meth) == names._super) {
mcimadamore@1612 252 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
mcimadamore@1612 253 }
mcimadamore@1612 254 super.visitApply(tree);
mcimadamore@1612 255 }
mcimadamore@1612 256 }
mcimadamore@1612 257
mcimadamore@1612 258 /**
mcimadamore@1612 259 * Lower-specific subclass of {@code BasicFreeVarCollector}.
mcimadamore@1612 260 */
mcimadamore@1612 261 class FreeVarCollector extends BasicFreeVarCollector {
duke@1 262
duke@1 263 /** The owner of the local class.
duke@1 264 */
duke@1 265 Symbol owner;
duke@1 266
duke@1 267 /** The local class.
duke@1 268 */
duke@1 269 ClassSymbol clazz;
duke@1 270
duke@1 271 /** The list of owner's variables accessed from within the local class,
duke@1 272 * without any duplicates.
duke@1 273 */
duke@1 274 List<VarSymbol> fvs;
duke@1 275
duke@1 276 FreeVarCollector(ClassSymbol clazz) {
duke@1 277 this.clazz = clazz;
duke@1 278 this.owner = clazz.owner;
duke@1 279 this.fvs = List.nil();
duke@1 280 }
duke@1 281
duke@1 282 /** Add free variable to fvs list unless it is already there.
duke@1 283 */
duke@1 284 private void addFreeVar(VarSymbol v) {
duke@1 285 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
duke@1 286 if (l.head == v) return;
duke@1 287 fvs = fvs.prepend(v);
duke@1 288 }
duke@1 289
mcimadamore@1612 290 @Override
mcimadamore@1612 291 void addFreeVars(ClassSymbol c) {
duke@1 292 List<VarSymbol> fvs = freevarCache.get(c);
duke@1 293 if (fvs != null) {
duke@1 294 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
duke@1 295 addFreeVar(l.head);
duke@1 296 }
duke@1 297 }
duke@1 298 }
duke@1 299
mcimadamore@1612 300 @Override
mcimadamore@1612 301 void visitSymbol(Symbol _sym) {
duke@1 302 Symbol sym = _sym;
duke@1 303 if (sym.kind == VAR || sym.kind == MTH) {
duke@1 304 while (sym != null && sym.owner != owner)
duke@1 305 sym = proxies.lookup(proxyName(sym.name)).sym;
duke@1 306 if (sym != null && sym.owner == owner) {
duke@1 307 VarSymbol v = (VarSymbol)sym;
duke@1 308 if (v.getConstValue() == null) {
duke@1 309 addFreeVar(v);
duke@1 310 }
duke@1 311 } else {
duke@1 312 if (outerThisStack.head != null &&
duke@1 313 outerThisStack.head != _sym)
duke@1 314 visitSymbol(outerThisStack.head);
duke@1 315 }
duke@1 316 }
duke@1 317 }
duke@1 318
duke@1 319 /** If tree refers to a class instance creation expression
duke@1 320 * add all free variables of the freshly created class.
duke@1 321 */
duke@1 322 public void visitNewClass(JCNewClass tree) {
duke@1 323 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
duke@1 324 if (tree.encl == null &&
duke@1 325 c.hasOuterInstance() &&
duke@1 326 outerThisStack.head != null)
duke@1 327 visitSymbol(outerThisStack.head);
duke@1 328 super.visitNewClass(tree);
duke@1 329 }
duke@1 330
duke@1 331 /** If tree refers to a qualified this or super expression
duke@1 332 * for anything but the current class, add the outer this
duke@1 333 * stack as a free variable.
duke@1 334 */
duke@1 335 public void visitSelect(JCFieldAccess tree) {
duke@1 336 if ((tree.name == names._this || tree.name == names._super) &&
duke@1 337 tree.selected.type.tsym != clazz &&
duke@1 338 outerThisStack.head != null)
duke@1 339 visitSymbol(outerThisStack.head);
duke@1 340 super.visitSelect(tree);
duke@1 341 }
duke@1 342
duke@1 343 /** If tree refers to a superclass constructor call,
duke@1 344 * add all free variables of the superclass.
duke@1 345 */
duke@1 346 public void visitApply(JCMethodInvocation tree) {
duke@1 347 if (TreeInfo.name(tree.meth) == names._super) {
duke@1 348 Symbol constructor = TreeInfo.symbol(tree.meth);
duke@1 349 ClassSymbol c = (ClassSymbol)constructor.owner;
duke@1 350 if (c.hasOuterInstance() &&
jjg@1127 351 !tree.meth.hasTag(SELECT) &&
duke@1 352 outerThisStack.head != null)
duke@1 353 visitSymbol(outerThisStack.head);
duke@1 354 }
duke@1 355 super.visitApply(tree);
duke@1 356 }
duke@1 357 }
duke@1 358
duke@1 359 /** Return the variables accessed from within a local class, which
duke@1 360 * are declared in the local class' owner.
duke@1 361 * (in reverse order of first access).
duke@1 362 */
duke@1 363 List<VarSymbol> freevars(ClassSymbol c) {
duke@1 364 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 365 List<VarSymbol> fvs = freevarCache.get(c);
duke@1 366 if (fvs == null) {
duke@1 367 FreeVarCollector collector = new FreeVarCollector(c);
duke@1 368 collector.scan(classDef(c));
duke@1 369 fvs = collector.fvs;
duke@1 370 freevarCache.put(c, fvs);
duke@1 371 }
duke@1 372 return fvs;
duke@1 373 } else {
duke@1 374 return List.nil();
duke@1 375 }
duke@1 376 }
duke@1 377
duke@1 378 Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
duke@1 379
duke@1 380 EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
duke@1 381 EnumMapping map = enumSwitchMap.get(enumClass);
duke@1 382 if (map == null)
duke@1 383 enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
duke@1 384 return map;
duke@1 385 }
duke@1 386
duke@1 387 /** This map gives a translation table to be used for enum
duke@1 388 * switches.
duke@1 389 *
duke@1 390 * <p>For each enum that appears as the type of a switch
duke@1 391 * expression, we maintain an EnumMapping to assist in the
duke@1 392 * translation, as exemplified by the following example:
duke@1 393 *
duke@1 394 * <p>we translate
duke@1 395 * <pre>
duke@1 396 * switch(colorExpression) {
duke@1 397 * case red: stmt1;
duke@1 398 * case green: stmt2;
duke@1 399 * }
duke@1 400 * </pre>
duke@1 401 * into
duke@1 402 * <pre>
duke@1 403 * switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
duke@1 404 * case 1: stmt1;
duke@1 405 * case 2: stmt2
duke@1 406 * }
duke@1 407 * </pre>
darcy@430 408 * with the auxiliary table initialized as follows:
duke@1 409 * <pre>
duke@1 410 * class Outer$0 {
duke@1 411 * synthetic final int[] $EnumMap$Color = new int[Color.values().length];
duke@1 412 * static {
duke@1 413 * try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
duke@1 414 * try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
duke@1 415 * }
duke@1 416 * }
duke@1 417 * </pre>
duke@1 418 * class EnumMapping provides mapping data and support methods for this translation.
duke@1 419 */
duke@1 420 class EnumMapping {
duke@1 421 EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
duke@1 422 this.forEnum = forEnum;
duke@1 423 this.values = new LinkedHashMap<VarSymbol,Integer>();
duke@1 424 this.pos = pos;
duke@1 425 Name varName = names
duke@1 426 .fromString(target.syntheticNameChar() +
duke@1 427 "SwitchMap" +
duke@1 428 target.syntheticNameChar() +
duke@1 429 writer.xClassName(forEnum.type).toString()
duke@1 430 .replace('/', '.')
duke@1 431 .replace('.', target.syntheticNameChar()));
duke@1 432 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 433 this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
duke@1 434 varName,
duke@1 435 new ArrayType(syms.intType, syms.arrayClass),
duke@1 436 outerCacheClass);
duke@1 437 enterSynthetic(pos, mapVar, outerCacheClass.members());
duke@1 438 }
duke@1 439
duke@1 440 DiagnosticPosition pos = null;
duke@1 441
duke@1 442 // the next value to use
duke@1 443 int next = 1; // 0 (unused map elements) go to the default label
duke@1 444
duke@1 445 // the enum for which this is a map
duke@1 446 final TypeSymbol forEnum;
duke@1 447
duke@1 448 // the field containing the map
duke@1 449 final VarSymbol mapVar;
duke@1 450
duke@1 451 // the mapped values
duke@1 452 final Map<VarSymbol,Integer> values;
duke@1 453
duke@1 454 JCLiteral forConstant(VarSymbol v) {
duke@1 455 Integer result = values.get(v);
duke@1 456 if (result == null)
duke@1 457 values.put(v, result = next++);
duke@1 458 return make.Literal(result);
duke@1 459 }
duke@1 460
duke@1 461 // generate the field initializer for the map
duke@1 462 void translate() {
duke@1 463 make.at(pos.getStartPosition());
duke@1 464 JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
duke@1 465
duke@1 466 // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
duke@1 467 MethodSymbol valuesMethod = lookupMethod(pos,
duke@1 468 names.values,
duke@1 469 forEnum.type,
duke@1 470 List.<Type>nil());
duke@1 471 JCExpression size = make // Color.values().length
duke@1 472 .Select(make.App(make.QualIdent(valuesMethod)),
duke@1 473 syms.lengthVar);
duke@1 474 JCExpression mapVarInit = make
duke@1 475 .NewArray(make.Type(syms.intType), List.of(size), null)
duke@1 476 .setType(new ArrayType(syms.intType, syms.arrayClass));
duke@1 477
duke@1 478 // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
duke@1 479 ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
duke@1 480 Symbol ordinalMethod = lookupMethod(pos,
duke@1 481 names.ordinal,
duke@1 482 forEnum.type,
duke@1 483 List.<Type>nil());
duke@1 484 List<JCCatch> catcher = List.<JCCatch>nil()
duke@1 485 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
duke@1 486 syms.noSuchFieldErrorType,
duke@1 487 syms.noSymbol),
duke@1 488 null),
duke@1 489 make.Block(0, List.<JCStatement>nil())));
duke@1 490 for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
duke@1 491 VarSymbol enumerator = e.getKey();
duke@1 492 Integer mappedValue = e.getValue();
duke@1 493 JCExpression assign = make
duke@1 494 .Assign(make.Indexed(mapVar,
duke@1 495 make.App(make.Select(make.QualIdent(enumerator),
duke@1 496 ordinalMethod))),
duke@1 497 make.Literal(mappedValue))
duke@1 498 .setType(syms.intType);
duke@1 499 JCStatement exec = make.Exec(assign);
duke@1 500 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
duke@1 501 stmts.append(_try);
duke@1 502 }
duke@1 503
duke@1 504 owner.defs = owner.defs
duke@1 505 .prepend(make.Block(STATIC, stmts.toList()))
duke@1 506 .prepend(make.VarDef(mapVar, mapVarInit));
duke@1 507 }
duke@1 508 }
duke@1 509
duke@1 510
duke@1 511 /**************************************************************************
duke@1 512 * Tree building blocks
duke@1 513 *************************************************************************/
duke@1 514
duke@1 515 /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
duke@1 516 * pos as make_pos, for use in diagnostics.
duke@1 517 **/
duke@1 518 TreeMaker make_at(DiagnosticPosition pos) {
duke@1 519 make_pos = pos;
duke@1 520 return make.at(pos);
duke@1 521 }
duke@1 522
duke@1 523 /** Make an attributed tree representing a literal. This will be an
duke@1 524 * Ident node in the case of boolean literals, a Literal node in all
duke@1 525 * other cases.
duke@1 526 * @param type The literal's type.
duke@1 527 * @param value The literal's value.
duke@1 528 */
duke@1 529 JCExpression makeLit(Type type, Object value) {
jjg@1374 530 return make.Literal(type.getTag(), value).setType(type.constType(value));
duke@1 531 }
duke@1 532
duke@1 533 /** Make an attributed tree representing null.
duke@1 534 */
duke@1 535 JCExpression makeNull() {
duke@1 536 return makeLit(syms.botType, null);
duke@1 537 }
duke@1 538
duke@1 539 /** Make an attributed class instance creation expression.
duke@1 540 * @param ctype The class type.
duke@1 541 * @param args The constructor arguments.
duke@1 542 */
duke@1 543 JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
duke@1 544 JCNewClass tree = make.NewClass(null,
duke@1 545 null, make.QualIdent(ctype.tsym), args, null);
duke@1 546 tree.constructor = rs.resolveConstructor(
mcimadamore@1394 547 make_pos, attrEnv, ctype, TreeInfo.types(args), List.<Type>nil());
duke@1 548 tree.type = ctype;
duke@1 549 return tree;
duke@1 550 }
duke@1 551
duke@1 552 /** Make an attributed unary expression.
duke@1 553 * @param optag The operators tree tag.
duke@1 554 * @param arg The operator's argument.
duke@1 555 */
jjg@1127 556 JCUnary makeUnary(JCTree.Tag optag, JCExpression arg) {
duke@1 557 JCUnary tree = make.Unary(optag, arg);
duke@1 558 tree.operator = rs.resolveUnaryOperator(
duke@1 559 make_pos, optag, attrEnv, arg.type);
duke@1 560 tree.type = tree.operator.type.getReturnType();
duke@1 561 return tree;
duke@1 562 }
duke@1 563
duke@1 564 /** Make an attributed binary expression.
duke@1 565 * @param optag The operators tree tag.
duke@1 566 * @param lhs The operator's left argument.
duke@1 567 * @param rhs The operator's right argument.
duke@1 568 */
jjg@1127 569 JCBinary makeBinary(JCTree.Tag optag, JCExpression lhs, JCExpression rhs) {
duke@1 570 JCBinary tree = make.Binary(optag, lhs, rhs);
duke@1 571 tree.operator = rs.resolveBinaryOperator(
duke@1 572 make_pos, optag, attrEnv, lhs.type, rhs.type);
duke@1 573 tree.type = tree.operator.type.getReturnType();
duke@1 574 return tree;
duke@1 575 }
duke@1 576
duke@1 577 /** Make an attributed assignop expression.
duke@1 578 * @param optag The operators tree tag.
duke@1 579 * @param lhs The operator's left argument.
duke@1 580 * @param rhs The operator's right argument.
duke@1 581 */
jjg@1127 582 JCAssignOp makeAssignop(JCTree.Tag optag, JCTree lhs, JCTree rhs) {
duke@1 583 JCAssignOp tree = make.Assignop(optag, lhs, rhs);
duke@1 584 tree.operator = rs.resolveBinaryOperator(
jjg@1127 585 make_pos, tree.getTag().noAssignOp(), attrEnv, lhs.type, rhs.type);
duke@1 586 tree.type = lhs.type;
duke@1 587 return tree;
duke@1 588 }
duke@1 589
duke@1 590 /** Convert tree into string object, unless it has already a
duke@1 591 * reference type..
duke@1 592 */
duke@1 593 JCExpression makeString(JCExpression tree) {
jjg@1374 594 if (!tree.type.isPrimitiveOrVoid()) {
duke@1 595 return tree;
duke@1 596 } else {
duke@1 597 Symbol valueOfSym = lookupMethod(tree.pos(),
duke@1 598 names.valueOf,
duke@1 599 syms.stringType,
duke@1 600 List.of(tree.type));
duke@1 601 return make.App(make.QualIdent(valueOfSym), List.of(tree));
duke@1 602 }
duke@1 603 }
duke@1 604
duke@1 605 /** Create an empty anonymous class definition and enter and complete
duke@1 606 * its symbol. Return the class definition's symbol.
duke@1 607 * and create
duke@1 608 * @param flags The class symbol's flags
duke@1 609 * @param owner The class symbol's owner
duke@1 610 */
vromero@1542 611 JCClassDecl makeEmptyClass(long flags, ClassSymbol owner) {
vromero@1542 612 return makeEmptyClass(flags, owner, null, true);
vromero@1542 613 }
vromero@1542 614
vromero@1542 615 JCClassDecl makeEmptyClass(long flags, ClassSymbol owner, Name flatname,
vromero@1542 616 boolean addToDefs) {
duke@1 617 // Create class symbol.
duke@1 618 ClassSymbol c = reader.defineClass(names.empty, owner);
vromero@1542 619 if (flatname != null) {
vromero@1542 620 c.flatname = flatname;
vromero@1542 621 } else {
vromero@1542 622 c.flatname = chk.localClassName(c);
vromero@1542 623 }
duke@1 624 c.sourcefile = owner.sourcefile;
duke@1 625 c.completer = null;
mcimadamore@858 626 c.members_field = new Scope(c);
duke@1 627 c.flags_field = flags;
duke@1 628 ClassType ctype = (ClassType) c.type;
duke@1 629 ctype.supertype_field = syms.objectType;
duke@1 630 ctype.interfaces_field = List.nil();
duke@1 631
duke@1 632 JCClassDecl odef = classDef(owner);
duke@1 633
duke@1 634 // Enter class symbol in owner scope and compiled table.
duke@1 635 enterSynthetic(odef.pos(), c, owner.members());
duke@1 636 chk.compiled.put(c.flatname, c);
duke@1 637
duke@1 638 // Create class definition tree.
duke@1 639 JCClassDecl cdef = make.ClassDef(
duke@1 640 make.Modifiers(flags), names.empty,
duke@1 641 List.<JCTypeParameter>nil(),
duke@1 642 null, List.<JCExpression>nil(), List.<JCTree>nil());
duke@1 643 cdef.sym = c;
duke@1 644 cdef.type = c.type;
duke@1 645
duke@1 646 // Append class definition tree to owner's definitions.
vromero@1542 647 if (addToDefs) odef.defs = odef.defs.prepend(cdef);
vromero@1542 648 return cdef;
duke@1 649 }
duke@1 650
duke@1 651 /**************************************************************************
duke@1 652 * Symbol manipulation utilities
duke@1 653 *************************************************************************/
duke@1 654
duke@1 655 /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
duke@1 656 * @param pos Position for error reporting.
duke@1 657 * @param sym The symbol.
duke@1 658 * @param s The scope.
duke@1 659 */
duke@1 660 private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
mcimadamore@359 661 s.enter(sym);
mcimadamore@359 662 }
mcimadamore@359 663
darcy@609 664 /** Create a fresh synthetic name within a given scope - the unique name is
darcy@609 665 * obtained by appending '$' chars at the end of the name until no match
darcy@609 666 * is found.
darcy@609 667 *
darcy@609 668 * @param name base name
darcy@609 669 * @param s scope in which the name has to be unique
darcy@609 670 * @return fresh synthetic name
darcy@609 671 */
darcy@609 672 private Name makeSyntheticName(Name name, Scope s) {
darcy@609 673 do {
darcy@609 674 name = name.append(
darcy@609 675 target.syntheticNameChar(),
darcy@609 676 names.empty);
darcy@609 677 } while (lookupSynthetic(name, s) != null);
darcy@609 678 return name;
darcy@609 679 }
darcy@609 680
mcimadamore@359 681 /** Check whether synthetic symbols generated during lowering conflict
mcimadamore@359 682 * with user-defined symbols.
mcimadamore@359 683 *
mcimadamore@359 684 * @param translatedTrees lowered class trees
mcimadamore@359 685 */
mcimadamore@359 686 void checkConflicts(List<JCTree> translatedTrees) {
mcimadamore@359 687 for (JCTree t : translatedTrees) {
mcimadamore@359 688 t.accept(conflictsChecker);
mcimadamore@359 689 }
mcimadamore@359 690 }
mcimadamore@359 691
mcimadamore@359 692 JCTree.Visitor conflictsChecker = new TreeScanner() {
mcimadamore@359 693
mcimadamore@359 694 TypeSymbol currentClass;
mcimadamore@359 695
mcimadamore@359 696 @Override
mcimadamore@359 697 public void visitMethodDef(JCMethodDecl that) {
mcimadamore@359 698 chk.checkConflicts(that.pos(), that.sym, currentClass);
mcimadamore@359 699 super.visitMethodDef(that);
mcimadamore@359 700 }
mcimadamore@359 701
mcimadamore@359 702 @Override
mcimadamore@359 703 public void visitVarDef(JCVariableDecl that) {
mcimadamore@359 704 if (that.sym.owner.kind == TYP) {
mcimadamore@359 705 chk.checkConflicts(that.pos(), that.sym, currentClass);
mcimadamore@359 706 }
mcimadamore@359 707 super.visitVarDef(that);
mcimadamore@359 708 }
mcimadamore@359 709
mcimadamore@359 710 @Override
mcimadamore@359 711 public void visitClassDef(JCClassDecl that) {
mcimadamore@359 712 TypeSymbol prevCurrentClass = currentClass;
mcimadamore@359 713 currentClass = that.sym;
mcimadamore@359 714 try {
mcimadamore@359 715 super.visitClassDef(that);
mcimadamore@359 716 }
mcimadamore@359 717 finally {
mcimadamore@359 718 currentClass = prevCurrentClass;
duke@1 719 }
duke@1 720 }
mcimadamore@359 721 };
duke@1 722
duke@1 723 /** Look up a synthetic name in a given scope.
jjg@1358 724 * @param s The scope.
duke@1 725 * @param name The name.
duke@1 726 */
duke@1 727 private Symbol lookupSynthetic(Name name, Scope s) {
duke@1 728 Symbol sym = s.lookup(name).sym;
duke@1 729 return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
duke@1 730 }
duke@1 731
duke@1 732 /** Look up a method in a given scope.
duke@1 733 */
duke@1 734 private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
mcimadamore@1415 735 return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, List.<Type>nil());
duke@1 736 }
duke@1 737
duke@1 738 /** Look up a constructor.
duke@1 739 */
duke@1 740 private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
duke@1 741 return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
duke@1 742 }
duke@1 743
duke@1 744 /** Look up a field.
duke@1 745 */
duke@1 746 private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
duke@1 747 return rs.resolveInternalField(pos, attrEnv, qual, name);
duke@1 748 }
duke@1 749
jjg@595 750 /** Anon inner classes are used as access constructor tags.
jjg@595 751 * accessConstructorTag will use an existing anon class if one is available,
jjg@595 752 * and synthethise a class (with makeEmptyClass) if one is not available.
jjg@595 753 * However, there is a small possibility that an existing class will not
jjg@595 754 * be generated as expected if it is inside a conditional with a constant
vromero@1542 755 * expression. If that is found to be the case, create an empty class tree here.
jjg@595 756 */
jjg@595 757 private void checkAccessConstructorTags() {
jjg@595 758 for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
jjg@595 759 ClassSymbol c = l.head;
jjg@595 760 if (isTranslatedClassAvailable(c))
jjg@595 761 continue;
jjg@595 762 // Create class definition tree.
vromero@1542 763 JCClassDecl cdec = makeEmptyClass(STATIC | SYNTHETIC,
vromero@1542 764 c.outermostClass(), c.flatname, false);
vromero@1542 765 swapAccessConstructorTag(c, cdec.sym);
vromero@1542 766 translated.append(cdec);
jjg@595 767 }
jjg@595 768 }
jjg@595 769 // where
jjg@595 770 private boolean isTranslatedClassAvailable(ClassSymbol c) {
jjg@595 771 for (JCTree tree: translated) {
jjg@1127 772 if (tree.hasTag(CLASSDEF)
jjg@595 773 && ((JCClassDecl) tree).sym == c) {
jjg@595 774 return true;
jjg@595 775 }
jjg@595 776 }
jjg@595 777 return false;
jjg@595 778 }
jjg@595 779
vromero@1542 780 void swapAccessConstructorTag(ClassSymbol oldCTag, ClassSymbol newCTag) {
vromero@1542 781 for (MethodSymbol methodSymbol : accessConstrs.values()) {
vromero@1542 782 Assert.check(methodSymbol.type.hasTag(METHOD));
vromero@1542 783 MethodType oldMethodType =
vromero@1542 784 (MethodType)methodSymbol.type;
vromero@1542 785 if (oldMethodType.argtypes.head.tsym == oldCTag)
vromero@1542 786 methodSymbol.type =
vromero@1542 787 types.createMethodTypeWithParameters(oldMethodType,
vromero@1542 788 oldMethodType.getParameterTypes().tail
vromero@1542 789 .prepend(newCTag.erasure(types)));
vromero@1542 790 }
vromero@1542 791 }
vromero@1542 792
duke@1 793 /**************************************************************************
duke@1 794 * Access methods
duke@1 795 *************************************************************************/
duke@1 796
duke@1 797 /** Access codes for dereferencing, assignment,
duke@1 798 * and pre/post increment/decrement.
duke@1 799 * Access codes for assignment operations are determined by method accessCode
duke@1 800 * below.
duke@1 801 *
duke@1 802 * All access codes for accesses to the current class are even.
duke@1 803 * If a member of the superclass should be accessed instead (because
duke@1 804 * access was via a qualified super), add one to the corresponding code
duke@1 805 * for the current class, making the number odd.
duke@1 806 * This numbering scheme is used by the backend to decide whether
duke@1 807 * to issue an invokevirtual or invokespecial call.
duke@1 808 *
jjg@1358 809 * @see Gen#visitSelect(JCFieldAccess tree)
duke@1 810 */
duke@1 811 private static final int
duke@1 812 DEREFcode = 0,
duke@1 813 ASSIGNcode = 2,
duke@1 814 PREINCcode = 4,
duke@1 815 PREDECcode = 6,
duke@1 816 POSTINCcode = 8,
duke@1 817 POSTDECcode = 10,
duke@1 818 FIRSTASGOPcode = 12;
duke@1 819
duke@1 820 /** Number of access codes
duke@1 821 */
duke@1 822 private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
duke@1 823
duke@1 824 /** A mapping from symbols to their access numbers.
duke@1 825 */
duke@1 826 private Map<Symbol,Integer> accessNums;
duke@1 827
duke@1 828 /** A mapping from symbols to an array of access symbols, indexed by
duke@1 829 * access code.
duke@1 830 */
duke@1 831 private Map<Symbol,MethodSymbol[]> accessSyms;
duke@1 832
duke@1 833 /** A mapping from (constructor) symbols to access constructor symbols.
duke@1 834 */
duke@1 835 private Map<Symbol,MethodSymbol> accessConstrs;
duke@1 836
jjg@595 837 /** A list of all class symbols used for access constructor tags.
jjg@595 838 */
jjg@595 839 private List<ClassSymbol> accessConstrTags;
jjg@595 840
duke@1 841 /** A queue for all accessed symbols.
duke@1 842 */
duke@1 843 private ListBuffer<Symbol> accessed;
duke@1 844
duke@1 845 /** Map bytecode of binary operation to access code of corresponding
duke@1 846 * assignment operation. This is always an even number.
duke@1 847 */
duke@1 848 private static int accessCode(int bytecode) {
duke@1 849 if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
duke@1 850 return (bytecode - iadd) * 2 + FIRSTASGOPcode;
duke@1 851 else if (bytecode == ByteCodes.string_add)
duke@1 852 return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
duke@1 853 else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
duke@1 854 return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
duke@1 855 else
duke@1 856 return -1;
duke@1 857 }
duke@1 858
duke@1 859 /** return access code for identifier,
duke@1 860 * @param tree The tree representing the identifier use.
duke@1 861 * @param enclOp The closest enclosing operation node of tree,
duke@1 862 * null if tree is not a subtree of an operation.
duke@1 863 */
duke@1 864 private static int accessCode(JCTree tree, JCTree enclOp) {
duke@1 865 if (enclOp == null)
duke@1 866 return DEREFcode;
jjg@1127 867 else if (enclOp.hasTag(ASSIGN) &&
duke@1 868 tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
duke@1 869 return ASSIGNcode;
jjg@1127 870 else if (enclOp.getTag().isIncOrDecUnaryOp() &&
duke@1 871 tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
jjg@1127 872 return mapTagToUnaryOpCode(enclOp.getTag());
jjg@1127 873 else if (enclOp.getTag().isAssignop() &&
duke@1 874 tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
duke@1 875 return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
duke@1 876 else
duke@1 877 return DEREFcode;
duke@1 878 }
duke@1 879
duke@1 880 /** Return binary operator that corresponds to given access code.
duke@1 881 */
duke@1 882 private OperatorSymbol binaryAccessOperator(int acode) {
duke@1 883 for (Scope.Entry e = syms.predefClass.members().elems;
duke@1 884 e != null;
duke@1 885 e = e.sibling) {
duke@1 886 if (e.sym instanceof OperatorSymbol) {
duke@1 887 OperatorSymbol op = (OperatorSymbol)e.sym;
duke@1 888 if (accessCode(op.opcode) == acode) return op;
duke@1 889 }
duke@1 890 }
duke@1 891 return null;
duke@1 892 }
duke@1 893
duke@1 894 /** Return tree tag for assignment operation corresponding
duke@1 895 * to given binary operator.
duke@1 896 */
jjg@1127 897 private static JCTree.Tag treeTag(OperatorSymbol operator) {
duke@1 898 switch (operator.opcode) {
duke@1 899 case ByteCodes.ior: case ByteCodes.lor:
jjg@1127 900 return BITOR_ASG;
duke@1 901 case ByteCodes.ixor: case ByteCodes.lxor:
jjg@1127 902 return BITXOR_ASG;
duke@1 903 case ByteCodes.iand: case ByteCodes.land:
jjg@1127 904 return BITAND_ASG;
duke@1 905 case ByteCodes.ishl: case ByteCodes.lshl:
duke@1 906 case ByteCodes.ishll: case ByteCodes.lshll:
jjg@1127 907 return SL_ASG;
duke@1 908 case ByteCodes.ishr: case ByteCodes.lshr:
duke@1 909 case ByteCodes.ishrl: case ByteCodes.lshrl:
jjg@1127 910 return SR_ASG;
duke@1 911 case ByteCodes.iushr: case ByteCodes.lushr:
duke@1 912 case ByteCodes.iushrl: case ByteCodes.lushrl:
jjg@1127 913 return USR_ASG;
duke@1 914 case ByteCodes.iadd: case ByteCodes.ladd:
duke@1 915 case ByteCodes.fadd: case ByteCodes.dadd:
duke@1 916 case ByteCodes.string_add:
jjg@1127 917 return PLUS_ASG;
duke@1 918 case ByteCodes.isub: case ByteCodes.lsub:
duke@1 919 case ByteCodes.fsub: case ByteCodes.dsub:
jjg@1127 920 return MINUS_ASG;
duke@1 921 case ByteCodes.imul: case ByteCodes.lmul:
duke@1 922 case ByteCodes.fmul: case ByteCodes.dmul:
jjg@1127 923 return MUL_ASG;
duke@1 924 case ByteCodes.idiv: case ByteCodes.ldiv:
duke@1 925 case ByteCodes.fdiv: case ByteCodes.ddiv:
jjg@1127 926 return DIV_ASG;
duke@1 927 case ByteCodes.imod: case ByteCodes.lmod:
duke@1 928 case ByteCodes.fmod: case ByteCodes.dmod:
jjg@1127 929 return MOD_ASG;
duke@1 930 default:
duke@1 931 throw new AssertionError();
duke@1 932 }
duke@1 933 }
duke@1 934
duke@1 935 /** The name of the access method with number `anum' and access code `acode'.
duke@1 936 */
duke@1 937 Name accessName(int anum, int acode) {
duke@1 938 return names.fromString(
duke@1 939 "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
duke@1 940 }
duke@1 941
duke@1 942 /** Return access symbol for a private or protected symbol from an inner class.
duke@1 943 * @param sym The accessed private symbol.
duke@1 944 * @param tree The accessing tree.
duke@1 945 * @param enclOp The closest enclosing operation node of tree,
duke@1 946 * null if tree is not a subtree of an operation.
duke@1 947 * @param protAccess Is access to a protected symbol in another
duke@1 948 * package?
duke@1 949 * @param refSuper Is access via a (qualified) C.super?
duke@1 950 */
duke@1 951 MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
duke@1 952 boolean protAccess, boolean refSuper) {
duke@1 953 ClassSymbol accOwner = refSuper && protAccess
duke@1 954 // For access via qualified super (T.super.x), place the
duke@1 955 // access symbol on T.
duke@1 956 ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
duke@1 957 // Otherwise pretend that the owner of an accessed
duke@1 958 // protected symbol is the enclosing class of the current
duke@1 959 // class which is a subclass of the symbol's owner.
duke@1 960 : accessClass(sym, protAccess, tree);
duke@1 961
duke@1 962 Symbol vsym = sym;
duke@1 963 if (sym.owner != accOwner) {
duke@1 964 vsym = sym.clone(accOwner);
duke@1 965 actualSymbols.put(vsym, sym);
duke@1 966 }
duke@1 967
duke@1 968 Integer anum // The access number of the access method.
duke@1 969 = accessNums.get(vsym);
duke@1 970 if (anum == null) {
duke@1 971 anum = accessed.length();
duke@1 972 accessNums.put(vsym, anum);
duke@1 973 accessSyms.put(vsym, new MethodSymbol[NCODES]);
duke@1 974 accessed.append(vsym);
duke@1 975 // System.out.println("accessing " + vsym + " in " + vsym.location());
duke@1 976 }
duke@1 977
duke@1 978 int acode; // The access code of the access method.
duke@1 979 List<Type> argtypes; // The argument types of the access method.
duke@1 980 Type restype; // The result type of the access method.
darcy@430 981 List<Type> thrown; // The thrown exceptions of the access method.
duke@1 982 switch (vsym.kind) {
duke@1 983 case VAR:
duke@1 984 acode = accessCode(tree, enclOp);
duke@1 985 if (acode >= FIRSTASGOPcode) {
duke@1 986 OperatorSymbol operator = binaryAccessOperator(acode);
duke@1 987 if (operator.opcode == string_add)
duke@1 988 argtypes = List.of(syms.objectType);
duke@1 989 else
duke@1 990 argtypes = operator.type.getParameterTypes().tail;
duke@1 991 } else if (acode == ASSIGNcode)
duke@1 992 argtypes = List.of(vsym.erasure(types));
duke@1 993 else
duke@1 994 argtypes = List.nil();
duke@1 995 restype = vsym.erasure(types);
duke@1 996 thrown = List.nil();
duke@1 997 break;
duke@1 998 case MTH:
duke@1 999 acode = DEREFcode;
duke@1 1000 argtypes = vsym.erasure(types).getParameterTypes();
duke@1 1001 restype = vsym.erasure(types).getReturnType();
duke@1 1002 thrown = vsym.type.getThrownTypes();
duke@1 1003 break;
duke@1 1004 default:
duke@1 1005 throw new AssertionError();
duke@1 1006 }
duke@1 1007
duke@1 1008 // For references via qualified super, increment acode by one,
duke@1 1009 // making it odd.
duke@1 1010 if (protAccess && refSuper) acode++;
duke@1 1011
duke@1 1012 // Instance access methods get instance as first parameter.
duke@1 1013 // For protected symbols this needs to be the instance as a member
duke@1 1014 // of the type containing the accessed symbol, not the class
duke@1 1015 // containing the access method.
duke@1 1016 if ((vsym.flags() & STATIC) == 0) {
duke@1 1017 argtypes = argtypes.prepend(vsym.owner.erasure(types));
duke@1 1018 }
duke@1 1019 MethodSymbol[] accessors = accessSyms.get(vsym);
duke@1 1020 MethodSymbol accessor = accessors[acode];
duke@1 1021 if (accessor == null) {
duke@1 1022 accessor = new MethodSymbol(
duke@1 1023 STATIC | SYNTHETIC,
duke@1 1024 accessName(anum.intValue(), acode),
duke@1 1025 new MethodType(argtypes, restype, thrown, syms.methodClass),
duke@1 1026 accOwner);
duke@1 1027 enterSynthetic(tree.pos(), accessor, accOwner.members());
duke@1 1028 accessors[acode] = accessor;
duke@1 1029 }
duke@1 1030 return accessor;
duke@1 1031 }
duke@1 1032
duke@1 1033 /** The qualifier to be used for accessing a symbol in an outer class.
duke@1 1034 * This is either C.sym or C.this.sym, depending on whether or not
duke@1 1035 * sym is static.
duke@1 1036 * @param sym The accessed symbol.
duke@1 1037 */
duke@1 1038 JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
duke@1 1039 return (sym.flags() & STATIC) != 0
duke@1 1040 ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
duke@1 1041 : makeOwnerThis(pos, sym, true);
duke@1 1042 }
duke@1 1043
duke@1 1044 /** Do we need an access method to reference private symbol?
duke@1 1045 */
duke@1 1046 boolean needsPrivateAccess(Symbol sym) {
duke@1 1047 if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
duke@1 1048 return false;
duke@1 1049 } else if (sym.name == names.init && (sym.owner.owner.kind & (VAR | MTH)) != 0) {
duke@1 1050 // private constructor in local class: relax protection
duke@1 1051 sym.flags_field &= ~PRIVATE;
duke@1 1052 return false;
duke@1 1053 } else {
duke@1 1054 return true;
duke@1 1055 }
duke@1 1056 }
duke@1 1057
duke@1 1058 /** Do we need an access method to reference symbol in other package?
duke@1 1059 */
duke@1 1060 boolean needsProtectedAccess(Symbol sym, JCTree tree) {
duke@1 1061 if ((sym.flags() & PROTECTED) == 0 ||
duke@1 1062 sym.owner.owner == currentClass.owner || // fast special case
duke@1 1063 sym.packge() == currentClass.packge())
duke@1 1064 return false;
duke@1 1065 if (!currentClass.isSubClass(sym.owner, types))
duke@1 1066 return true;
duke@1 1067 if ((sym.flags() & STATIC) != 0 ||
jjg@1127 1068 !tree.hasTag(SELECT) ||
duke@1 1069 TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
duke@1 1070 return false;
duke@1 1071 return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
duke@1 1072 }
duke@1 1073
duke@1 1074 /** The class in which an access method for given symbol goes.
duke@1 1075 * @param sym The access symbol
duke@1 1076 * @param protAccess Is access to a protected symbol in another
duke@1 1077 * package?
duke@1 1078 */
duke@1 1079 ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
duke@1 1080 if (protAccess) {
duke@1 1081 Symbol qualifier = null;
duke@1 1082 ClassSymbol c = currentClass;
jjg@1127 1083 if (tree.hasTag(SELECT) && (sym.flags() & STATIC) == 0) {
duke@1 1084 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
duke@1 1085 while (!qualifier.isSubClass(c, types)) {
duke@1 1086 c = c.owner.enclClass();
duke@1 1087 }
duke@1 1088 return c;
duke@1 1089 } else {
duke@1 1090 while (!c.isSubClass(sym.owner, types)) {
duke@1 1091 c = c.owner.enclClass();
duke@1 1092 }
duke@1 1093 }
duke@1 1094 return c;
duke@1 1095 } else {
duke@1 1096 // the symbol is private
duke@1 1097 return sym.owner.enclClass();
duke@1 1098 }
duke@1 1099 }
duke@1 1100
vromero@1432 1101 private void addPrunedInfo(JCTree tree) {
vromero@1432 1102 List<JCTree> infoList = prunedTree.get(currentClass);
vromero@1432 1103 infoList = (infoList == null) ? List.of(tree) : infoList.prepend(tree);
vromero@1432 1104 prunedTree.put(currentClass, infoList);
vromero@1432 1105 }
vromero@1432 1106
duke@1 1107 /** Ensure that identifier is accessible, return tree accessing the identifier.
duke@1 1108 * @param sym The accessed symbol.
duke@1 1109 * @param tree The tree referring to the symbol.
duke@1 1110 * @param enclOp The closest enclosing operation node of tree,
duke@1 1111 * null if tree is not a subtree of an operation.
duke@1 1112 * @param refSuper Is access via a (qualified) C.super?
duke@1 1113 */
duke@1 1114 JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
duke@1 1115 // Access a free variable via its proxy, or its proxy's proxy
duke@1 1116 while (sym.kind == VAR && sym.owner.kind == MTH &&
duke@1 1117 sym.owner.enclClass() != currentClass) {
duke@1 1118 // A constant is replaced by its constant value.
duke@1 1119 Object cv = ((VarSymbol)sym).getConstValue();
duke@1 1120 if (cv != null) {
duke@1 1121 make.at(tree.pos);
duke@1 1122 return makeLit(sym.type, cv);
duke@1 1123 }
duke@1 1124 // Otherwise replace the variable by its proxy.
duke@1 1125 sym = proxies.lookup(proxyName(sym.name)).sym;
jjg@816 1126 Assert.check(sym != null && (sym.flags_field & FINAL) != 0);
duke@1 1127 tree = make.at(tree.pos).Ident(sym);
duke@1 1128 }
jjg@1127 1129 JCExpression base = (tree.hasTag(SELECT)) ? ((JCFieldAccess) tree).selected : null;
duke@1 1130 switch (sym.kind) {
duke@1 1131 case TYP:
duke@1 1132 if (sym.owner.kind != PCK) {
duke@1 1133 // Convert type idents to
duke@1 1134 // <flat name> or <package name> . <flat name>
duke@1 1135 Name flatname = Convert.shortName(sym.flatName());
duke@1 1136 while (base != null &&
duke@1 1137 TreeInfo.symbol(base) != null &&
duke@1 1138 TreeInfo.symbol(base).kind != PCK) {
jjg@1127 1139 base = (base.hasTag(SELECT))
duke@1 1140 ? ((JCFieldAccess) base).selected
duke@1 1141 : null;
duke@1 1142 }
jjg@1127 1143 if (tree.hasTag(IDENT)) {
duke@1 1144 ((JCIdent) tree).name = flatname;
duke@1 1145 } else if (base == null) {
duke@1 1146 tree = make.at(tree.pos).Ident(sym);
duke@1 1147 ((JCIdent) tree).name = flatname;
duke@1 1148 } else {
duke@1 1149 ((JCFieldAccess) tree).selected = base;
duke@1 1150 ((JCFieldAccess) tree).name = flatname;
duke@1 1151 }
duke@1 1152 }
duke@1 1153 break;
duke@1 1154 case MTH: case VAR:
duke@1 1155 if (sym.owner.kind == TYP) {
duke@1 1156
duke@1 1157 // Access methods are required for
duke@1 1158 // - private members,
duke@1 1159 // - protected members in a superclass of an
duke@1 1160 // enclosing class contained in another package.
duke@1 1161 // - all non-private members accessed via a qualified super.
duke@1 1162 boolean protAccess = refSuper && !needsPrivateAccess(sym)
duke@1 1163 || needsProtectedAccess(sym, tree);
duke@1 1164 boolean accReq = protAccess || needsPrivateAccess(sym);
duke@1 1165
duke@1 1166 // A base has to be supplied for
duke@1 1167 // - simple identifiers accessing variables in outer classes.
duke@1 1168 boolean baseReq =
duke@1 1169 base == null &&
duke@1 1170 sym.owner != syms.predefClass &&
duke@1 1171 !sym.isMemberOf(currentClass, types);
duke@1 1172
duke@1 1173 if (accReq || baseReq) {
duke@1 1174 make.at(tree.pos);
duke@1 1175
duke@1 1176 // Constants are replaced by their constant value.
duke@1 1177 if (sym.kind == VAR) {
duke@1 1178 Object cv = ((VarSymbol)sym).getConstValue();
vromero@1432 1179 if (cv != null) {
vromero@1432 1180 addPrunedInfo(tree);
vromero@1432 1181 return makeLit(sym.type, cv);
vromero@1432 1182 }
duke@1 1183 }
duke@1 1184
duke@1 1185 // Private variables and methods are replaced by calls
duke@1 1186 // to their access methods.
duke@1 1187 if (accReq) {
duke@1 1188 List<JCExpression> args = List.nil();
duke@1 1189 if ((sym.flags() & STATIC) == 0) {
duke@1 1190 // Instance access methods get instance
duke@1 1191 // as first parameter.
duke@1 1192 if (base == null)
duke@1 1193 base = makeOwnerThis(tree.pos(), sym, true);
duke@1 1194 args = args.prepend(base);
duke@1 1195 base = null; // so we don't duplicate code
duke@1 1196 }
duke@1 1197 Symbol access = accessSymbol(sym, tree,
duke@1 1198 enclOp, protAccess,
duke@1 1199 refSuper);
duke@1 1200 JCExpression receiver = make.Select(
duke@1 1201 base != null ? base : make.QualIdent(access.owner),
duke@1 1202 access);
duke@1 1203 return make.App(receiver, args);
duke@1 1204
duke@1 1205 // Other accesses to members of outer classes get a
duke@1 1206 // qualifier.
duke@1 1207 } else if (baseReq) {
duke@1 1208 return make.at(tree.pos).Select(
duke@1 1209 accessBase(tree.pos(), sym), sym).setType(tree.type);
duke@1 1210 }
duke@1 1211 }
mcimadamore@1612 1212 } else if (sym.owner.kind == MTH && lambdaTranslationMap != null) {
mcimadamore@1612 1213 //sym is a local variable - check the lambda translation map to
mcimadamore@1612 1214 //see if sym has been translated to something else in the current
mcimadamore@1612 1215 //scope (by LambdaToMethod)
mcimadamore@1612 1216 Symbol translatedSym = lambdaTranslationMap.get(sym);
mcimadamore@1612 1217 if (translatedSym != null) {
mcimadamore@1612 1218 tree = make.at(tree.pos).Ident(translatedSym);
mcimadamore@1612 1219 }
duke@1 1220 }
duke@1 1221 }
duke@1 1222 return tree;
duke@1 1223 }
duke@1 1224
duke@1 1225 /** Ensure that identifier is accessible, return tree accessing the identifier.
duke@1 1226 * @param tree The identifier tree.
duke@1 1227 */
duke@1 1228 JCExpression access(JCExpression tree) {
duke@1 1229 Symbol sym = TreeInfo.symbol(tree);
duke@1 1230 return sym == null ? tree : access(sym, tree, null, false);
duke@1 1231 }
duke@1 1232
duke@1 1233 /** Return access constructor for a private constructor,
duke@1 1234 * or the constructor itself, if no access constructor is needed.
duke@1 1235 * @param pos The position to report diagnostics, if any.
duke@1 1236 * @param constr The private constructor.
duke@1 1237 */
duke@1 1238 Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
duke@1 1239 if (needsPrivateAccess(constr)) {
duke@1 1240 ClassSymbol accOwner = constr.owner.enclClass();
duke@1 1241 MethodSymbol aconstr = accessConstrs.get(constr);
duke@1 1242 if (aconstr == null) {
duke@1 1243 List<Type> argtypes = constr.type.getParameterTypes();
duke@1 1244 if ((accOwner.flags_field & ENUM) != 0)
duke@1 1245 argtypes = argtypes
duke@1 1246 .prepend(syms.intType)
duke@1 1247 .prepend(syms.stringType);
duke@1 1248 aconstr = new MethodSymbol(
duke@1 1249 SYNTHETIC,
duke@1 1250 names.init,
duke@1 1251 new MethodType(
duke@1 1252 argtypes.append(
duke@1 1253 accessConstructorTag().erasure(types)),
duke@1 1254 constr.type.getReturnType(),
duke@1 1255 constr.type.getThrownTypes(),
duke@1 1256 syms.methodClass),
duke@1 1257 accOwner);
duke@1 1258 enterSynthetic(pos, aconstr, accOwner.members());
duke@1 1259 accessConstrs.put(constr, aconstr);
duke@1 1260 accessed.append(constr);
duke@1 1261 }
duke@1 1262 return aconstr;
duke@1 1263 } else {
duke@1 1264 return constr;
duke@1 1265 }
duke@1 1266 }
duke@1 1267
duke@1 1268 /** Return an anonymous class nested in this toplevel class.
duke@1 1269 */
duke@1 1270 ClassSymbol accessConstructorTag() {
duke@1 1271 ClassSymbol topClass = currentClass.outermostClass();
duke@1 1272 Name flatname = names.fromString("" + topClass.getQualifiedName() +
duke@1 1273 target.syntheticNameChar() +
duke@1 1274 "1");
duke@1 1275 ClassSymbol ctag = chk.compiled.get(flatname);
duke@1 1276 if (ctag == null)
vromero@1542 1277 ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass).sym;
jjg@595 1278 // keep a record of all tags, to verify that all are generated as required
jjg@595 1279 accessConstrTags = accessConstrTags.prepend(ctag);
duke@1 1280 return ctag;
duke@1 1281 }
duke@1 1282
duke@1 1283 /** Add all required access methods for a private symbol to enclosing class.
duke@1 1284 * @param sym The symbol.
duke@1 1285 */
duke@1 1286 void makeAccessible(Symbol sym) {
duke@1 1287 JCClassDecl cdef = classDef(sym.owner.enclClass());
jjg@816 1288 if (cdef == null) Assert.error("class def not found: " + sym + " in " + sym.owner);
duke@1 1289 if (sym.name == names.init) {
duke@1 1290 cdef.defs = cdef.defs.prepend(
duke@1 1291 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
duke@1 1292 } else {
duke@1 1293 MethodSymbol[] accessors = accessSyms.get(sym);
duke@1 1294 for (int i = 0; i < NCODES; i++) {
duke@1 1295 if (accessors[i] != null)
duke@1 1296 cdef.defs = cdef.defs.prepend(
duke@1 1297 accessDef(cdef.pos, sym, accessors[i], i));
duke@1 1298 }
duke@1 1299 }
duke@1 1300 }
duke@1 1301
jjg@1127 1302 /** Maps unary operator integer codes to JCTree.Tag objects
jjg@1127 1303 * @param unaryOpCode the unary operator code
jjg@1127 1304 */
jjg@1127 1305 private static Tag mapUnaryOpCodeToTag(int unaryOpCode){
jjg@1127 1306 switch (unaryOpCode){
jjg@1127 1307 case PREINCcode:
jjg@1127 1308 return PREINC;
jjg@1127 1309 case PREDECcode:
jjg@1127 1310 return PREDEC;
jjg@1127 1311 case POSTINCcode:
jjg@1127 1312 return POSTINC;
jjg@1127 1313 case POSTDECcode:
jjg@1127 1314 return POSTDEC;
jjg@1127 1315 default:
jjg@1127 1316 return NO_TAG;
jjg@1127 1317 }
jjg@1127 1318 }
jjg@1127 1319
jjg@1127 1320 /** Maps JCTree.Tag objects to unary operator integer codes
jjg@1127 1321 * @param tag the JCTree.Tag
jjg@1127 1322 */
jjg@1127 1323 private static int mapTagToUnaryOpCode(Tag tag){
jjg@1127 1324 switch (tag){
jjg@1127 1325 case PREINC:
jjg@1127 1326 return PREINCcode;
jjg@1127 1327 case PREDEC:
jjg@1127 1328 return PREDECcode;
jjg@1127 1329 case POSTINC:
jjg@1127 1330 return POSTINCcode;
jjg@1127 1331 case POSTDEC:
jjg@1127 1332 return POSTDECcode;
jjg@1127 1333 default:
jjg@1127 1334 return -1;
jjg@1127 1335 }
jjg@1127 1336 }
jjg@1127 1337
duke@1 1338 /** Construct definition of an access method.
duke@1 1339 * @param pos The source code position of the definition.
duke@1 1340 * @param vsym The private or protected symbol.
duke@1 1341 * @param accessor The access method for the symbol.
duke@1 1342 * @param acode The access code.
duke@1 1343 */
duke@1 1344 JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
duke@1 1345 // System.err.println("access " + vsym + " with " + accessor);//DEBUG
duke@1 1346 currentClass = vsym.owner.enclClass();
duke@1 1347 make.at(pos);
duke@1 1348 JCMethodDecl md = make.MethodDef(accessor, null);
duke@1 1349
duke@1 1350 // Find actual symbol
duke@1 1351 Symbol sym = actualSymbols.get(vsym);
duke@1 1352 if (sym == null) sym = vsym;
duke@1 1353
duke@1 1354 JCExpression ref; // The tree referencing the private symbol.
duke@1 1355 List<JCExpression> args; // Any additional arguments to be passed along.
duke@1 1356 if ((sym.flags() & STATIC) != 0) {
duke@1 1357 ref = make.Ident(sym);
duke@1 1358 args = make.Idents(md.params);
duke@1 1359 } else {
duke@1 1360 ref = make.Select(make.Ident(md.params.head), sym);
duke@1 1361 args = make.Idents(md.params.tail);
duke@1 1362 }
duke@1 1363 JCStatement stat; // The statement accessing the private symbol.
duke@1 1364 if (sym.kind == VAR) {
duke@1 1365 // Normalize out all odd access codes by taking floor modulo 2:
duke@1 1366 int acode1 = acode - (acode & 1);
duke@1 1367
duke@1 1368 JCExpression expr; // The access method's return value.
duke@1 1369 switch (acode1) {
duke@1 1370 case DEREFcode:
duke@1 1371 expr = ref;
duke@1 1372 break;
duke@1 1373 case ASSIGNcode:
duke@1 1374 expr = make.Assign(ref, args.head);
duke@1 1375 break;
duke@1 1376 case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
jjg@1127 1377 expr = makeUnary(mapUnaryOpCodeToTag(acode1), ref);
duke@1 1378 break;
duke@1 1379 default:
duke@1 1380 expr = make.Assignop(
duke@1 1381 treeTag(binaryAccessOperator(acode1)), ref, args.head);
duke@1 1382 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
duke@1 1383 }
duke@1 1384 stat = make.Return(expr.setType(sym.type));
duke@1 1385 } else {
duke@1 1386 stat = make.Call(make.App(ref, args));
duke@1 1387 }
duke@1 1388 md.body = make.Block(0, List.of(stat));
duke@1 1389
duke@1 1390 // Make sure all parameters, result types and thrown exceptions
duke@1 1391 // are accessible.
duke@1 1392 for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
duke@1 1393 l.head.vartype = access(l.head.vartype);
duke@1 1394 md.restype = access(md.restype);
duke@1 1395 for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
duke@1 1396 l.head = access(l.head);
duke@1 1397
duke@1 1398 return md;
duke@1 1399 }
duke@1 1400
duke@1 1401 /** Construct definition of an access constructor.
duke@1 1402 * @param pos The source code position of the definition.
duke@1 1403 * @param constr The private constructor.
duke@1 1404 * @param accessor The access method for the constructor.
duke@1 1405 */
duke@1 1406 JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
duke@1 1407 make.at(pos);
duke@1 1408 JCMethodDecl md = make.MethodDef(accessor,
duke@1 1409 accessor.externalType(types),
duke@1 1410 null);
duke@1 1411 JCIdent callee = make.Ident(names._this);
duke@1 1412 callee.sym = constr;
duke@1 1413 callee.type = constr.type;
duke@1 1414 md.body =
duke@1 1415 make.Block(0, List.<JCStatement>of(
duke@1 1416 make.Call(
duke@1 1417 make.App(
duke@1 1418 callee,
duke@1 1419 make.Idents(md.params.reverse().tail.reverse())))));
duke@1 1420 return md;
duke@1 1421 }
duke@1 1422
duke@1 1423 /**************************************************************************
duke@1 1424 * Free variables proxies and this$n
duke@1 1425 *************************************************************************/
duke@1 1426
duke@1 1427 /** A scope containing all free variable proxies for currently translated
duke@1 1428 * class, as well as its this$n symbol (if needed).
duke@1 1429 * Proxy scopes are nested in the same way classes are.
duke@1 1430 * Inside a constructor, proxies and any this$n symbol are duplicated
duke@1 1431 * in an additional innermost scope, where they represent the constructor
duke@1 1432 * parameters.
duke@1 1433 */
duke@1 1434 Scope proxies;
duke@1 1435
darcy@609 1436 /** A scope containing all unnamed resource variables/saved
darcy@609 1437 * exception variables for translated TWR blocks
darcy@609 1438 */
darcy@609 1439 Scope twrVars;
darcy@609 1440
duke@1 1441 /** A stack containing the this$n field of the currently translated
duke@1 1442 * classes (if needed) in innermost first order.
duke@1 1443 * Inside a constructor, proxies and any this$n symbol are duplicated
duke@1 1444 * in an additional innermost scope, where they represent the constructor
duke@1 1445 * parameters.
duke@1 1446 */
duke@1 1447 List<VarSymbol> outerThisStack;
duke@1 1448
duke@1 1449 /** The name of a free variable proxy.
duke@1 1450 */
duke@1 1451 Name proxyName(Name name) {
duke@1 1452 return names.fromString("val" + target.syntheticNameChar() + name);
duke@1 1453 }
duke@1 1454
duke@1 1455 /** Proxy definitions for all free variables in given list, in reverse order.
duke@1 1456 * @param pos The source code position of the definition.
duke@1 1457 * @param freevars The free variables.
duke@1 1458 * @param owner The class in which the definitions go.
duke@1 1459 */
duke@1 1460 List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
duke@1 1461 long flags = FINAL | SYNTHETIC;
duke@1 1462 if (owner.kind == TYP &&
duke@1 1463 target.usePrivateSyntheticFields())
duke@1 1464 flags |= PRIVATE;
duke@1 1465 List<JCVariableDecl> defs = List.nil();
duke@1 1466 for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
duke@1 1467 VarSymbol v = l.head;
duke@1 1468 VarSymbol proxy = new VarSymbol(
duke@1 1469 flags, proxyName(v.name), v.erasure(types), owner);
duke@1 1470 proxies.enter(proxy);
duke@1 1471 JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
duke@1 1472 vd.vartype = access(vd.vartype);
duke@1 1473 defs = defs.prepend(vd);
duke@1 1474 }
duke@1 1475 return defs;
duke@1 1476 }
duke@1 1477
duke@1 1478 /** The name of a this$n field
duke@1 1479 * @param type The class referenced by the this$n field
duke@1 1480 */
duke@1 1481 Name outerThisName(Type type, Symbol owner) {
duke@1 1482 Type t = type.getEnclosingType();
duke@1 1483 int nestingLevel = 0;
jjg@1374 1484 while (t.hasTag(CLASS)) {
duke@1 1485 t = t.getEnclosingType();
duke@1 1486 nestingLevel++;
duke@1 1487 }
duke@1 1488 Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
duke@1 1489 while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
duke@1 1490 result = names.fromString(result.toString() + target.syntheticNameChar());
duke@1 1491 return result;
duke@1 1492 }
duke@1 1493
mcimadamore@1565 1494 private VarSymbol makeOuterThisVarSymbol(Symbol owner, long flags) {
mcimadamore@1565 1495 if (owner.kind == TYP &&
mcimadamore@1565 1496 target.usePrivateSyntheticFields())
mcimadamore@1565 1497 flags |= PRIVATE;
mcimadamore@1565 1498 Type target = types.erasure(owner.enclClass().type.getEnclosingType());
mcimadamore@1565 1499 VarSymbol outerThis =
mcimadamore@1565 1500 new VarSymbol(flags, outerThisName(target, owner), target, owner);
mcimadamore@1565 1501 outerThisStack = outerThisStack.prepend(outerThis);
mcimadamore@1565 1502 return outerThis;
mcimadamore@1565 1503 }
mcimadamore@1565 1504
mcimadamore@1565 1505 private JCVariableDecl makeOuterThisVarDecl(int pos, VarSymbol sym) {
mcimadamore@1565 1506 JCVariableDecl vd = make.at(pos).VarDef(sym, null);
mcimadamore@1565 1507 vd.vartype = access(vd.vartype);
mcimadamore@1565 1508 return vd;
mcimadamore@1565 1509 }
mcimadamore@1565 1510
mcimadamore@1565 1511 /** Definition for this$n field.
mcimadamore@1565 1512 * @param pos The source code position of the definition.
mcimadamore@1565 1513 * @param owner The method in which the definition goes.
mcimadamore@1565 1514 */
mcimadamore@1565 1515 JCVariableDecl outerThisDef(int pos, MethodSymbol owner) {
mcimadamore@1565 1516 ClassSymbol c = owner.enclClass();
mcimadamore@1565 1517 boolean isMandated =
mcimadamore@1565 1518 // Anonymous constructors
mcimadamore@1565 1519 (owner.isConstructor() && owner.isAnonymous()) ||
mcimadamore@1565 1520 // Constructors of non-private inner member classes
mcimadamore@1565 1521 (owner.isConstructor() && c.isInner() &&
mcimadamore@1565 1522 !c.isPrivate() && !c.isStatic());
mcimadamore@1565 1523 long flags =
mcimadamore@1565 1524 FINAL | (isMandated ? MANDATED : SYNTHETIC);
mcimadamore@1565 1525 VarSymbol outerThis = makeOuterThisVarSymbol(owner, flags);
mcimadamore@1565 1526 owner.extraParams = owner.extraParams.prepend(outerThis);
mcimadamore@1565 1527 return makeOuterThisVarDecl(pos, outerThis);
mcimadamore@1565 1528 }
mcimadamore@1565 1529
duke@1 1530 /** Definition for this$n field.
duke@1 1531 * @param pos The source code position of the definition.
duke@1 1532 * @param owner The class in which the definition goes.
duke@1 1533 */
mcimadamore@1565 1534 JCVariableDecl outerThisDef(int pos, ClassSymbol owner) {
mcimadamore@1565 1535 VarSymbol outerThis = makeOuterThisVarSymbol(owner, FINAL | SYNTHETIC);
mcimadamore@1565 1536 return makeOuterThisVarDecl(pos, outerThis);
duke@1 1537 }
duke@1 1538
duke@1 1539 /** Return a list of trees that load the free variables in given list,
duke@1 1540 * in reverse order.
duke@1 1541 * @param pos The source code position to be used for the trees.
duke@1 1542 * @param freevars The list of free variables.
duke@1 1543 */
duke@1 1544 List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
duke@1 1545 List<JCExpression> args = List.nil();
duke@1 1546 for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
duke@1 1547 args = args.prepend(loadFreevar(pos, l.head));
duke@1 1548 return args;
duke@1 1549 }
duke@1 1550 //where
duke@1 1551 JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
duke@1 1552 return access(v, make.at(pos).Ident(v), null, false);
duke@1 1553 }
duke@1 1554
jjg@1326 1555 /** Construct a tree simulating the expression {@code C.this}.
duke@1 1556 * @param pos The source code position to be used for the tree.
duke@1 1557 * @param c The qualifier class.
duke@1 1558 */
duke@1 1559 JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
duke@1 1560 if (currentClass == c) {
duke@1 1561 // in this case, `this' works fine
duke@1 1562 return make.at(pos).This(c.erasure(types));
duke@1 1563 } else {
duke@1 1564 // need to go via this$n
duke@1 1565 return makeOuterThis(pos, c);
duke@1 1566 }
duke@1 1567 }
duke@1 1568
darcy@884 1569 /**
darcy@884 1570 * Optionally replace a try statement with the desugaring of a
darcy@884 1571 * try-with-resources statement. The canonical desugaring of
darcy@884 1572 *
darcy@884 1573 * try ResourceSpecification
darcy@884 1574 * Block
darcy@884 1575 *
darcy@884 1576 * is
darcy@884 1577 *
darcy@884 1578 * {
darcy@884 1579 * final VariableModifiers_minus_final R #resource = Expression;
darcy@884 1580 * Throwable #primaryException = null;
darcy@884 1581 *
darcy@884 1582 * try ResourceSpecificationtail
darcy@884 1583 * Block
darcy@884 1584 * catch (Throwable #t) {
darcy@884 1585 * #primaryException = t;
darcy@884 1586 * throw #t;
darcy@884 1587 * } finally {
darcy@884 1588 * if (#resource != null) {
darcy@884 1589 * if (#primaryException != null) {
darcy@884 1590 * try {
darcy@884 1591 * #resource.close();
darcy@884 1592 * } catch(Throwable #suppressedException) {
darcy@884 1593 * #primaryException.addSuppressed(#suppressedException);
darcy@884 1594 * }
darcy@884 1595 * } else {
darcy@884 1596 * #resource.close();
darcy@884 1597 * }
darcy@884 1598 * }
darcy@884 1599 * }
darcy@884 1600 *
darcy@609 1601 * @param tree The try statement to inspect.
darcy@884 1602 * @return A a desugared try-with-resources tree, or the original
darcy@884 1603 * try block if there are no resources to manage.
darcy@609 1604 */
darcy@884 1605 JCTree makeTwrTry(JCTry tree) {
darcy@609 1606 make_at(tree.pos());
darcy@609 1607 twrVars = twrVars.dup();
darcy@884 1608 JCBlock twrBlock = makeTwrBlock(tree.resources, tree.body, 0);
darcy@609 1609 if (tree.catchers.isEmpty() && tree.finalizer == null)
darcy@884 1610 result = translate(twrBlock);
darcy@609 1611 else
darcy@884 1612 result = translate(make.Try(twrBlock, tree.catchers, tree.finalizer));
darcy@609 1613 twrVars = twrVars.leave();
darcy@609 1614 return result;
darcy@609 1615 }
darcy@609 1616
darcy@884 1617 private JCBlock makeTwrBlock(List<JCTree> resources, JCBlock block, int depth) {
darcy@609 1618 if (resources.isEmpty())
darcy@609 1619 return block;
darcy@609 1620
darcy@609 1621 // Add resource declaration or expression to block statements
darcy@609 1622 ListBuffer<JCStatement> stats = new ListBuffer<JCStatement>();
darcy@609 1623 JCTree resource = resources.head;
darcy@609 1624 JCExpression expr = null;
darcy@609 1625 if (resource instanceof JCVariableDecl) {
darcy@609 1626 JCVariableDecl var = (JCVariableDecl) resource;
darcy@609 1627 expr = make.Ident(var.sym).setType(resource.type);
darcy@609 1628 stats.add(var);
darcy@609 1629 } else {
jjg@816 1630 Assert.check(resource instanceof JCExpression);
darcy@609 1631 VarSymbol syntheticTwrVar =
darcy@609 1632 new VarSymbol(SYNTHETIC | FINAL,
darcy@609 1633 makeSyntheticName(names.fromString("twrVar" +
darcy@609 1634 depth), twrVars),
jjg@1374 1635 (resource.type.hasTag(BOT)) ?
darcy@609 1636 syms.autoCloseableType : resource.type,
darcy@609 1637 currentMethodSym);
darcy@609 1638 twrVars.enter(syntheticTwrVar);
darcy@609 1639 JCVariableDecl syntheticTwrVarDecl =
darcy@609 1640 make.VarDef(syntheticTwrVar, (JCExpression)resource);
darcy@609 1641 expr = (JCExpression)make.Ident(syntheticTwrVar);
darcy@609 1642 stats.add(syntheticTwrVarDecl);
darcy@609 1643 }
darcy@609 1644
darcy@609 1645 // Add primaryException declaration
darcy@609 1646 VarSymbol primaryException =
darcy@609 1647 new VarSymbol(SYNTHETIC,
darcy@609 1648 makeSyntheticName(names.fromString("primaryException" +
darcy@609 1649 depth), twrVars),
darcy@609 1650 syms.throwableType,
darcy@609 1651 currentMethodSym);
darcy@609 1652 twrVars.enter(primaryException);
darcy@609 1653 JCVariableDecl primaryExceptionTreeDecl = make.VarDef(primaryException, makeNull());
darcy@609 1654 stats.add(primaryExceptionTreeDecl);
darcy@609 1655
darcy@609 1656 // Create catch clause that saves exception and then rethrows it
darcy@609 1657 VarSymbol param =
darcy@609 1658 new VarSymbol(FINAL|SYNTHETIC,
darcy@609 1659 names.fromString("t" +
darcy@609 1660 target.syntheticNameChar()),
darcy@609 1661 syms.throwableType,
darcy@609 1662 currentMethodSym);
darcy@609 1663 JCVariableDecl paramTree = make.VarDef(param, null);
darcy@609 1664 JCStatement assign = make.Assignment(primaryException, make.Ident(param));
darcy@609 1665 JCStatement rethrowStat = make.Throw(make.Ident(param));
darcy@609 1666 JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(assign, rethrowStat));
darcy@609 1667 JCCatch catchClause = make.Catch(paramTree, catchBlock);
darcy@609 1668
darcy@609 1669 int oldPos = make.pos;
darcy@609 1670 make.at(TreeInfo.endPos(block));
darcy@884 1671 JCBlock finallyClause = makeTwrFinallyClause(primaryException, expr);
darcy@609 1672 make.at(oldPos);
darcy@884 1673 JCTry outerTry = make.Try(makeTwrBlock(resources.tail, block, depth + 1),
darcy@609 1674 List.<JCCatch>of(catchClause),
darcy@609 1675 finallyClause);
darcy@609 1676 stats.add(outerTry);
darcy@609 1677 return make.Block(0L, stats.toList());
darcy@609 1678 }
darcy@609 1679
darcy@884 1680 private JCBlock makeTwrFinallyClause(Symbol primaryException, JCExpression resource) {
darcy@745 1681 // primaryException.addSuppressed(catchException);
darcy@609 1682 VarSymbol catchException =
darcy@609 1683 new VarSymbol(0, make.paramName(2),
darcy@609 1684 syms.throwableType,
darcy@609 1685 currentMethodSym);
darcy@609 1686 JCStatement addSuppressionStatement =
darcy@609 1687 make.Exec(makeCall(make.Ident(primaryException),
darcy@745 1688 names.addSuppressed,
darcy@609 1689 List.<JCExpression>of(make.Ident(catchException))));
darcy@609 1690
darcy@745 1691 // try { resource.close(); } catch (e) { primaryException.addSuppressed(e); }
darcy@609 1692 JCBlock tryBlock =
darcy@609 1693 make.Block(0L, List.<JCStatement>of(makeResourceCloseInvocation(resource)));
darcy@609 1694 JCVariableDecl catchExceptionDecl = make.VarDef(catchException, null);
darcy@609 1695 JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(addSuppressionStatement));
darcy@609 1696 List<JCCatch> catchClauses = List.<JCCatch>of(make.Catch(catchExceptionDecl, catchBlock));
darcy@609 1697 JCTry tryTree = make.Try(tryBlock, catchClauses, null);
darcy@609 1698
darcy@884 1699 // if (primaryException != null) {try...} else resourceClose;
darcy@884 1700 JCIf closeIfStatement = make.If(makeNonNullCheck(make.Ident(primaryException)),
darcy@609 1701 tryTree,
darcy@609 1702 makeResourceCloseInvocation(resource));
darcy@884 1703
darcy@884 1704 // if (#resource != null) { if (primaryException ... }
darcy@884 1705 return make.Block(0L,
darcy@884 1706 List.<JCStatement>of(make.If(makeNonNullCheck(resource),
darcy@884 1707 closeIfStatement,
darcy@884 1708 null)));
darcy@609 1709 }
darcy@609 1710
darcy@609 1711 private JCStatement makeResourceCloseInvocation(JCExpression resource) {
sundar@1260 1712 // convert to AutoCloseable if needed
sundar@1260 1713 if (types.asSuper(resource.type, syms.autoCloseableType.tsym) == null) {
sundar@1260 1714 resource = (JCExpression) convert(resource, syms.autoCloseableType);
sundar@1260 1715 }
sundar@1260 1716
darcy@609 1717 // create resource.close() method invocation
darcy@884 1718 JCExpression resourceClose = makeCall(resource,
darcy@884 1719 names.close,
darcy@884 1720 List.<JCExpression>nil());
darcy@609 1721 return make.Exec(resourceClose);
darcy@609 1722 }
darcy@609 1723
darcy@884 1724 private JCExpression makeNonNullCheck(JCExpression expression) {
jjg@1127 1725 return makeBinary(NE, expression, makeNull());
darcy@884 1726 }
darcy@884 1727
duke@1 1728 /** Construct a tree that represents the outer instance
jjg@1326 1729 * {@code C.this}. Never pick the current `this'.
duke@1 1730 * @param pos The source code position to be used for the tree.
duke@1 1731 * @param c The qualifier class.
duke@1 1732 */
duke@1 1733 JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
duke@1 1734 List<VarSymbol> ots = outerThisStack;
duke@1 1735 if (ots.isEmpty()) {
duke@1 1736 log.error(pos, "no.encl.instance.of.type.in.scope", c);
jjg@816 1737 Assert.error();
duke@1 1738 return makeNull();
duke@1 1739 }
duke@1 1740 VarSymbol ot = ots.head;
duke@1 1741 JCExpression tree = access(make.at(pos).Ident(ot));
duke@1 1742 TypeSymbol otc = ot.type.tsym;
duke@1 1743 while (otc != c) {
duke@1 1744 do {
duke@1 1745 ots = ots.tail;
duke@1 1746 if (ots.isEmpty()) {
duke@1 1747 log.error(pos,
duke@1 1748 "no.encl.instance.of.type.in.scope",
duke@1 1749 c);
jjg@816 1750 Assert.error(); // should have been caught in Attr
duke@1 1751 return tree;
duke@1 1752 }
duke@1 1753 ot = ots.head;
duke@1 1754 } while (ot.owner != otc);
duke@1 1755 if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
duke@1 1756 chk.earlyRefError(pos, c);
jjg@816 1757 Assert.error(); // should have been caught in Attr
duke@1 1758 return makeNull();
duke@1 1759 }
duke@1 1760 tree = access(make.at(pos).Select(tree, ot));
duke@1 1761 otc = ot.type.tsym;
duke@1 1762 }
duke@1 1763 return tree;
duke@1 1764 }
duke@1 1765
duke@1 1766 /** Construct a tree that represents the closest outer instance
jjg@1326 1767 * {@code C.this} such that the given symbol is a member of C.
duke@1 1768 * @param pos The source code position to be used for the tree.
duke@1 1769 * @param sym The accessed symbol.
duke@1 1770 * @param preciseMatch should we accept a type that is a subtype of
duke@1 1771 * sym's owner, even if it doesn't contain sym
duke@1 1772 * due to hiding, overriding, or non-inheritance
duke@1 1773 * due to protection?
duke@1 1774 */
duke@1 1775 JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
duke@1 1776 Symbol c = sym.owner;
duke@1 1777 if (preciseMatch ? sym.isMemberOf(currentClass, types)
duke@1 1778 : currentClass.isSubClass(sym.owner, types)) {
duke@1 1779 // in this case, `this' works fine
duke@1 1780 return make.at(pos).This(c.erasure(types));
duke@1 1781 } else {
duke@1 1782 // need to go via this$n
duke@1 1783 return makeOwnerThisN(pos, sym, preciseMatch);
duke@1 1784 }
duke@1 1785 }
duke@1 1786
duke@1 1787 /**
duke@1 1788 * Similar to makeOwnerThis but will never pick "this".
duke@1 1789 */
duke@1 1790 JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
duke@1 1791 Symbol c = sym.owner;
duke@1 1792 List<VarSymbol> ots = outerThisStack;
duke@1 1793 if (ots.isEmpty()) {
duke@1 1794 log.error(pos, "no.encl.instance.of.type.in.scope", c);
jjg@816 1795 Assert.error();
duke@1 1796 return makeNull();
duke@1 1797 }
duke@1 1798 VarSymbol ot = ots.head;
duke@1 1799 JCExpression tree = access(make.at(pos).Ident(ot));
duke@1 1800 TypeSymbol otc = ot.type.tsym;
duke@1 1801 while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
duke@1 1802 do {
duke@1 1803 ots = ots.tail;
duke@1 1804 if (ots.isEmpty()) {
duke@1 1805 log.error(pos,
duke@1 1806 "no.encl.instance.of.type.in.scope",
duke@1 1807 c);
jjg@816 1808 Assert.error();
duke@1 1809 return tree;
duke@1 1810 }
duke@1 1811 ot = ots.head;
duke@1 1812 } while (ot.owner != otc);
duke@1 1813 tree = access(make.at(pos).Select(tree, ot));
duke@1 1814 otc = ot.type.tsym;
duke@1 1815 }
duke@1 1816 return tree;
duke@1 1817 }
duke@1 1818
jjg@1326 1819 /** Return tree simulating the assignment {@code this.name = name}, where
duke@1 1820 * name is the name of a free variable.
duke@1 1821 */
duke@1 1822 JCStatement initField(int pos, Name name) {
duke@1 1823 Scope.Entry e = proxies.lookup(name);
duke@1 1824 Symbol rhs = e.sym;
jjg@816 1825 Assert.check(rhs.owner.kind == MTH);
duke@1 1826 Symbol lhs = e.next().sym;
jjg@816 1827 Assert.check(rhs.owner.owner == lhs.owner);
duke@1 1828 make.at(pos);
duke@1 1829 return
duke@1 1830 make.Exec(
duke@1 1831 make.Assign(
duke@1 1832 make.Select(make.This(lhs.owner.erasure(types)), lhs),
duke@1 1833 make.Ident(rhs)).setType(lhs.erasure(types)));
duke@1 1834 }
duke@1 1835
jjg@1326 1836 /** Return tree simulating the assignment {@code this.this$n = this$n}.
duke@1 1837 */
duke@1 1838 JCStatement initOuterThis(int pos) {
duke@1 1839 VarSymbol rhs = outerThisStack.head;
jjg@816 1840 Assert.check(rhs.owner.kind == MTH);
duke@1 1841 VarSymbol lhs = outerThisStack.tail.head;
jjg@816 1842 Assert.check(rhs.owner.owner == lhs.owner);
duke@1 1843 make.at(pos);
duke@1 1844 return
duke@1 1845 make.Exec(
duke@1 1846 make.Assign(
duke@1 1847 make.Select(make.This(lhs.owner.erasure(types)), lhs),
duke@1 1848 make.Ident(rhs)).setType(lhs.erasure(types)));
duke@1 1849 }
duke@1 1850
duke@1 1851 /**************************************************************************
duke@1 1852 * Code for .class
duke@1 1853 *************************************************************************/
duke@1 1854
duke@1 1855 /** Return the symbol of a class to contain a cache of
duke@1 1856 * compiler-generated statics such as class$ and the
duke@1 1857 * $assertionsDisabled flag. We create an anonymous nested class
duke@1 1858 * (unless one already exists) and return its symbol. However,
duke@1 1859 * for backward compatibility in 1.4 and earlier we use the
duke@1 1860 * top-level class itself.
duke@1 1861 */
duke@1 1862 private ClassSymbol outerCacheClass() {
duke@1 1863 ClassSymbol clazz = outermostClassDef.sym;
duke@1 1864 if ((clazz.flags() & INTERFACE) == 0 &&
duke@1 1865 !target.useInnerCacheClass()) return clazz;
duke@1 1866 Scope s = clazz.members();
duke@1 1867 for (Scope.Entry e = s.elems; e != null; e = e.sibling)
duke@1 1868 if (e.sym.kind == TYP &&
duke@1 1869 e.sym.name == names.empty &&
duke@1 1870 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
vromero@1542 1871 return makeEmptyClass(STATIC | SYNTHETIC, clazz).sym;
duke@1 1872 }
duke@1 1873
duke@1 1874 /** Return symbol for "class$" method. If there is no method definition
duke@1 1875 * for class$, construct one as follows:
duke@1 1876 *
duke@1 1877 * class class$(String x0) {
duke@1 1878 * try {
duke@1 1879 * return Class.forName(x0);
duke@1 1880 * } catch (ClassNotFoundException x1) {
duke@1 1881 * throw new NoClassDefFoundError(x1.getMessage());
duke@1 1882 * }
duke@1 1883 * }
duke@1 1884 */
duke@1 1885 private MethodSymbol classDollarSym(DiagnosticPosition pos) {
duke@1 1886 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 1887 MethodSymbol classDollarSym =
duke@1 1888 (MethodSymbol)lookupSynthetic(classDollar,
duke@1 1889 outerCacheClass.members());
duke@1 1890 if (classDollarSym == null) {
duke@1 1891 classDollarSym = new MethodSymbol(
duke@1 1892 STATIC | SYNTHETIC,
duke@1 1893 classDollar,
duke@1 1894 new MethodType(
duke@1 1895 List.of(syms.stringType),
duke@1 1896 types.erasure(syms.classType),
duke@1 1897 List.<Type>nil(),
duke@1 1898 syms.methodClass),
duke@1 1899 outerCacheClass);
duke@1 1900 enterSynthetic(pos, classDollarSym, outerCacheClass.members());
duke@1 1901
duke@1 1902 JCMethodDecl md = make.MethodDef(classDollarSym, null);
duke@1 1903 try {
duke@1 1904 md.body = classDollarSymBody(pos, md);
duke@1 1905 } catch (CompletionFailure ex) {
duke@1 1906 md.body = make.Block(0, List.<JCStatement>nil());
duke@1 1907 chk.completionError(pos, ex);
duke@1 1908 }
duke@1 1909 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1910 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
duke@1 1911 }
duke@1 1912 return classDollarSym;
duke@1 1913 }
duke@1 1914
duke@1 1915 /** Generate code for class$(String name). */
duke@1 1916 JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
duke@1 1917 MethodSymbol classDollarSym = md.sym;
duke@1 1918 ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
duke@1 1919
duke@1 1920 JCBlock returnResult;
duke@1 1921
duke@1 1922 // in 1.4.2 and above, we use
duke@1 1923 // Class.forName(String name, boolean init, ClassLoader loader);
duke@1 1924 // which requires we cache the current loader in cl$
duke@1 1925 if (target.classLiteralsNoInit()) {
duke@1 1926 // clsym = "private static ClassLoader cl$"
duke@1 1927 VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
duke@1 1928 names.fromString("cl" + target.syntheticNameChar()),
duke@1 1929 syms.classLoaderType,
duke@1 1930 outerCacheClass);
duke@1 1931 enterSynthetic(pos, clsym, outerCacheClass.members());
duke@1 1932
duke@1 1933 // emit "private static ClassLoader cl$;"
duke@1 1934 JCVariableDecl cldef = make.VarDef(clsym, null);
duke@1 1935 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1936 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
duke@1 1937
duke@1 1938 // newcache := "new cache$1[0]"
duke@1 1939 JCNewArray newcache = make.
duke@1 1940 NewArray(make.Type(outerCacheClass.type),
duke@1 1941 List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
duke@1 1942 null);
duke@1 1943 newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
duke@1 1944 syms.arrayClass);
duke@1 1945
duke@1 1946 // forNameSym := java.lang.Class.forName(
duke@1 1947 // String s,boolean init,ClassLoader loader)
duke@1 1948 Symbol forNameSym = lookupMethod(make_pos, names.forName,
duke@1 1949 types.erasure(syms.classType),
duke@1 1950 List.of(syms.stringType,
duke@1 1951 syms.booleanType,
duke@1 1952 syms.classLoaderType));
duke@1 1953 // clvalue := "(cl$ == null) ?
duke@1 1954 // $newcache.getClass().getComponentType().getClassLoader() : cl$"
duke@1 1955 JCExpression clvalue =
duke@1 1956 make.Conditional(
jjg@1127 1957 makeBinary(EQ, make.Ident(clsym), makeNull()),
duke@1 1958 make.Assign(
duke@1 1959 make.Ident(clsym),
duke@1 1960 makeCall(
duke@1 1961 makeCall(makeCall(newcache,
duke@1 1962 names.getClass,
duke@1 1963 List.<JCExpression>nil()),
duke@1 1964 names.getComponentType,
duke@1 1965 List.<JCExpression>nil()),
duke@1 1966 names.getClassLoader,
duke@1 1967 List.<JCExpression>nil())).setType(syms.classLoaderType),
duke@1 1968 make.Ident(clsym)).setType(syms.classLoaderType);
duke@1 1969
duke@1 1970 // returnResult := "{ return Class.forName(param1, false, cl$); }"
duke@1 1971 List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
duke@1 1972 makeLit(syms.booleanType, 0),
duke@1 1973 clvalue);
duke@1 1974 returnResult = make.
duke@1 1975 Block(0, List.<JCStatement>of(make.
duke@1 1976 Call(make. // return
duke@1 1977 App(make.
duke@1 1978 Ident(forNameSym), args))));
duke@1 1979 } else {
duke@1 1980 // forNameSym := java.lang.Class.forName(String s)
duke@1 1981 Symbol forNameSym = lookupMethod(make_pos,
duke@1 1982 names.forName,
duke@1 1983 types.erasure(syms.classType),
duke@1 1984 List.of(syms.stringType));
duke@1 1985 // returnResult := "{ return Class.forName(param1); }"
duke@1 1986 returnResult = make.
duke@1 1987 Block(0, List.of(make.
duke@1 1988 Call(make. // return
duke@1 1989 App(make.
duke@1 1990 QualIdent(forNameSym),
duke@1 1991 List.<JCExpression>of(make.
duke@1 1992 Ident(md.params.
duke@1 1993 head.sym))))));
duke@1 1994 }
duke@1 1995
duke@1 1996 // catchParam := ClassNotFoundException e1
duke@1 1997 VarSymbol catchParam =
duke@1 1998 new VarSymbol(0, make.paramName(1),
duke@1 1999 syms.classNotFoundExceptionType,
duke@1 2000 classDollarSym);
duke@1 2001
duke@1 2002 JCStatement rethrow;
duke@1 2003 if (target.hasInitCause()) {
duke@1 2004 // rethrow = "throw new NoClassDefFoundError().initCause(e);
vromero@1782 2005 JCExpression throwExpr =
duke@1 2006 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
duke@1 2007 List.<JCExpression>nil()),
duke@1 2008 names.initCause,
duke@1 2009 List.<JCExpression>of(make.Ident(catchParam)));
duke@1 2010 rethrow = make.Throw(throwExpr);
duke@1 2011 } else {
duke@1 2012 // getMessageSym := ClassNotFoundException.getMessage()
duke@1 2013 Symbol getMessageSym = lookupMethod(make_pos,
duke@1 2014 names.getMessage,
duke@1 2015 syms.classNotFoundExceptionType,
duke@1 2016 List.<Type>nil());
duke@1 2017 // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
duke@1 2018 rethrow = make.
duke@1 2019 Throw(makeNewClass(syms.noClassDefFoundErrorType,
duke@1 2020 List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
duke@1 2021 getMessageSym),
duke@1 2022 List.<JCExpression>nil()))));
duke@1 2023 }
duke@1 2024
duke@1 2025 // rethrowStmt := "( $rethrow )"
duke@1 2026 JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
duke@1 2027
duke@1 2028 // catchBlock := "catch ($catchParam) $rethrowStmt"
duke@1 2029 JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
duke@1 2030 rethrowStmt);
duke@1 2031
duke@1 2032 // tryCatch := "try $returnResult $catchBlock"
duke@1 2033 JCStatement tryCatch = make.Try(returnResult,
duke@1 2034 List.of(catchBlock), null);
duke@1 2035
duke@1 2036 return make.Block(0, List.of(tryCatch));
duke@1 2037 }
duke@1 2038 // where
duke@1 2039 /** Create an attributed tree of the form left.name(). */
duke@1 2040 private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
jjg@816 2041 Assert.checkNonNull(left.type);
duke@1 2042 Symbol funcsym = lookupMethod(make_pos, name, left.type,
duke@1 2043 TreeInfo.types(args));
duke@1 2044 return make.App(make.Select(left, funcsym), args);
duke@1 2045 }
duke@1 2046
duke@1 2047 /** The Name Of The variable to cache T.class values.
duke@1 2048 * @param sig The signature of type T.
duke@1 2049 */
duke@1 2050 private Name cacheName(String sig) {
jjg@1362 2051 StringBuilder buf = new StringBuilder();
duke@1 2052 if (sig.startsWith("[")) {
duke@1 2053 buf = buf.append("array");
duke@1 2054 while (sig.startsWith("[")) {
duke@1 2055 buf = buf.append(target.syntheticNameChar());
duke@1 2056 sig = sig.substring(1);
duke@1 2057 }
duke@1 2058 if (sig.startsWith("L")) {
duke@1 2059 sig = sig.substring(0, sig.length() - 1);
duke@1 2060 }
duke@1 2061 } else {
duke@1 2062 buf = buf.append("class" + target.syntheticNameChar());
duke@1 2063 }
duke@1 2064 buf = buf.append(sig.replace('.', target.syntheticNameChar()));
duke@1 2065 return names.fromString(buf.toString());
duke@1 2066 }
duke@1 2067
duke@1 2068 /** The variable symbol that caches T.class values.
duke@1 2069 * If none exists yet, create a definition.
duke@1 2070 * @param sig The signature of type T.
duke@1 2071 * @param pos The position to report diagnostics, if any.
duke@1 2072 */
duke@1 2073 private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
duke@1 2074 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 2075 Name cname = cacheName(sig);
duke@1 2076 VarSymbol cacheSym =
duke@1 2077 (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
duke@1 2078 if (cacheSym == null) {
duke@1 2079 cacheSym = new VarSymbol(
duke@1 2080 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
duke@1 2081 enterSynthetic(pos, cacheSym, outerCacheClass.members());
duke@1 2082
duke@1 2083 JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
duke@1 2084 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 2085 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
duke@1 2086 }
duke@1 2087 return cacheSym;
duke@1 2088 }
duke@1 2089
duke@1 2090 /** The tree simulating a T.class expression.
duke@1 2091 * @param clazz The tree identifying type T.
duke@1 2092 */
duke@1 2093 private JCExpression classOf(JCTree clazz) {
duke@1 2094 return classOfType(clazz.type, clazz.pos());
duke@1 2095 }
duke@1 2096
duke@1 2097 private JCExpression classOfType(Type type, DiagnosticPosition pos) {
jjg@1374 2098 switch (type.getTag()) {
duke@1 2099 case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
duke@1 2100 case DOUBLE: case BOOLEAN: case VOID:
duke@1 2101 // replace with <BoxedClass>.TYPE
duke@1 2102 ClassSymbol c = types.boxedClass(type);
duke@1 2103 Symbol typeSym =
mcimadamore@1347 2104 rs.accessBase(
duke@1 2105 rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
duke@1 2106 pos, c.type, names.TYPE, true);
duke@1 2107 if (typeSym.kind == VAR)
duke@1 2108 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
duke@1 2109 return make.QualIdent(typeSym);
duke@1 2110 case CLASS: case ARRAY:
duke@1 2111 if (target.hasClassLiterals()) {
duke@1 2112 VarSymbol sym = new VarSymbol(
duke@1 2113 STATIC | PUBLIC | FINAL, names._class,
duke@1 2114 syms.classType, type.tsym);
duke@1 2115 return make_at(pos).Select(make.Type(type), sym);
duke@1 2116 }
duke@1 2117 // replace with <cache == null ? cache = class$(tsig) : cache>
duke@1 2118 // where
duke@1 2119 // - <tsig> is the type signature of T,
duke@1 2120 // - <cache> is the cache variable for tsig.
duke@1 2121 String sig =
duke@1 2122 writer.xClassName(type).toString().replace('/', '.');
duke@1 2123 Symbol cs = cacheSym(pos, sig);
duke@1 2124 return make_at(pos).Conditional(
jjg@1127 2125 makeBinary(EQ, make.Ident(cs), makeNull()),
duke@1 2126 make.Assign(
duke@1 2127 make.Ident(cs),
duke@1 2128 make.App(
duke@1 2129 make.Ident(classDollarSym(pos)),
duke@1 2130 List.<JCExpression>of(make.Literal(CLASS, sig)
duke@1 2131 .setType(syms.stringType))))
duke@1 2132 .setType(types.erasure(syms.classType)),
duke@1 2133 make.Ident(cs)).setType(types.erasure(syms.classType));
duke@1 2134 default:
duke@1 2135 throw new AssertionError();
duke@1 2136 }
duke@1 2137 }
duke@1 2138
duke@1 2139 /**************************************************************************
duke@1 2140 * Code for enabling/disabling assertions.
duke@1 2141 *************************************************************************/
duke@1 2142
duke@1 2143 // This code is not particularly robust if the user has
duke@1 2144 // previously declared a member named '$assertionsDisabled'.
duke@1 2145 // The same faulty idiom also appears in the translation of
duke@1 2146 // class literals above. We should report an error if a
duke@1 2147 // previous declaration is not synthetic.
duke@1 2148
duke@1 2149 private JCExpression assertFlagTest(DiagnosticPosition pos) {
duke@1 2150 // Outermost class may be either true class or an interface.
duke@1 2151 ClassSymbol outermostClass = outermostClassDef.sym;
duke@1 2152
duke@1 2153 // note that this is a class, as an interface can't contain a statement.
duke@1 2154 ClassSymbol container = currentClass;
duke@1 2155
duke@1 2156 VarSymbol assertDisabledSym =
duke@1 2157 (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
duke@1 2158 container.members());
duke@1 2159 if (assertDisabledSym == null) {
duke@1 2160 assertDisabledSym =
duke@1 2161 new VarSymbol(STATIC | FINAL | SYNTHETIC,
duke@1 2162 dollarAssertionsDisabled,
duke@1 2163 syms.booleanType,
duke@1 2164 container);
duke@1 2165 enterSynthetic(pos, assertDisabledSym, container.members());
duke@1 2166 Symbol desiredAssertionStatusSym = lookupMethod(pos,
duke@1 2167 names.desiredAssertionStatus,
duke@1 2168 types.erasure(syms.classType),
duke@1 2169 List.<Type>nil());
duke@1 2170 JCClassDecl containerDef = classDef(container);
duke@1 2171 make_at(containerDef.pos());
jjg@1127 2172 JCExpression notStatus = makeUnary(NOT, make.App(make.Select(
duke@1 2173 classOfType(types.erasure(outermostClass.type),
duke@1 2174 containerDef.pos()),
duke@1 2175 desiredAssertionStatusSym)));
duke@1 2176 JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
duke@1 2177 notStatus);
duke@1 2178 containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
duke@1 2179 }
duke@1 2180 make_at(pos);
jjg@1127 2181 return makeUnary(NOT, make.Ident(assertDisabledSym));
duke@1 2182 }
duke@1 2183
duke@1 2184
duke@1 2185 /**************************************************************************
duke@1 2186 * Building blocks for let expressions
duke@1 2187 *************************************************************************/
duke@1 2188
duke@1 2189 interface TreeBuilder {
duke@1 2190 JCTree build(JCTree arg);
duke@1 2191 }
duke@1 2192
duke@1 2193 /** Construct an expression using the builder, with the given rval
duke@1 2194 * expression as an argument to the builder. However, the rval
duke@1 2195 * expression must be computed only once, even if used multiple
duke@1 2196 * times in the result of the builder. We do that by
duke@1 2197 * constructing a "let" expression that saves the rvalue into a
duke@1 2198 * temporary variable and then uses the temporary variable in
duke@1 2199 * place of the expression built by the builder. The complete
duke@1 2200 * resulting expression is of the form
duke@1 2201 * <pre>
duke@1 2202 * (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
duke@1 2203 * in (<b>BUILDER</b>(<b>TEMP</b>)))
duke@1 2204 * </pre>
duke@1 2205 * where <code><b>TEMP</b></code> is a newly declared variable
duke@1 2206 * in the let expression.
duke@1 2207 */
duke@1 2208 JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
duke@1 2209 rval = TreeInfo.skipParens(rval);
duke@1 2210 switch (rval.getTag()) {
jjg@1127 2211 case LITERAL:
duke@1 2212 return builder.build(rval);
jjg@1127 2213 case IDENT:
duke@1 2214 JCIdent id = (JCIdent) rval;
duke@1 2215 if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
duke@1 2216 return builder.build(rval);
duke@1 2217 }
duke@1 2218 VarSymbol var =
duke@1 2219 new VarSymbol(FINAL|SYNTHETIC,
jjg@113 2220 names.fromString(
duke@1 2221 target.syntheticNameChar()
duke@1 2222 + "" + rval.hashCode()),
duke@1 2223 type,
duke@1 2224 currentMethodSym);
mcimadamore@4 2225 rval = convert(rval,type);
duke@1 2226 JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
duke@1 2227 JCTree built = builder.build(make.Ident(var));
duke@1 2228 JCTree res = make.LetExpr(def, built);
duke@1 2229 res.type = built.type;
duke@1 2230 return res;
duke@1 2231 }
duke@1 2232
duke@1 2233 // same as above, with the type of the temporary variable computed
duke@1 2234 JCTree abstractRval(JCTree rval, TreeBuilder builder) {
duke@1 2235 return abstractRval(rval, rval.type, builder);
duke@1 2236 }
duke@1 2237
duke@1 2238 // same as above, but for an expression that may be used as either
duke@1 2239 // an rvalue or an lvalue. This requires special handling for
duke@1 2240 // Select expressions, where we place the left-hand-side of the
duke@1 2241 // select in a temporary, and for Indexed expressions, where we
duke@1 2242 // place both the indexed expression and the index value in temps.
duke@1 2243 JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
duke@1 2244 lval = TreeInfo.skipParens(lval);
duke@1 2245 switch (lval.getTag()) {
jjg@1127 2246 case IDENT:
duke@1 2247 return builder.build(lval);
jjg@1127 2248 case SELECT: {
duke@1 2249 final JCFieldAccess s = (JCFieldAccess)lval;
duke@1 2250 JCTree selected = TreeInfo.skipParens(s.selected);
duke@1 2251 Symbol lid = TreeInfo.symbol(s.selected);
duke@1 2252 if (lid != null && lid.kind == TYP) return builder.build(lval);
duke@1 2253 return abstractRval(s.selected, new TreeBuilder() {
duke@1 2254 public JCTree build(final JCTree selected) {
duke@1 2255 return builder.build(make.Select((JCExpression)selected, s.sym));
duke@1 2256 }
duke@1 2257 });
duke@1 2258 }
jjg@1127 2259 case INDEXED: {
duke@1 2260 final JCArrayAccess i = (JCArrayAccess)lval;
duke@1 2261 return abstractRval(i.indexed, new TreeBuilder() {
duke@1 2262 public JCTree build(final JCTree indexed) {
duke@1 2263 return abstractRval(i.index, syms.intType, new TreeBuilder() {
duke@1 2264 public JCTree build(final JCTree index) {
duke@1 2265 JCTree newLval = make.Indexed((JCExpression)indexed,
duke@1 2266 (JCExpression)index);
duke@1 2267 newLval.setType(i.type);
duke@1 2268 return builder.build(newLval);
duke@1 2269 }
duke@1 2270 });
duke@1 2271 }
duke@1 2272 });
duke@1 2273 }
jjg@1127 2274 case TYPECAST: {
mcimadamore@133 2275 return abstractLval(((JCTypeCast)lval).expr, builder);
mcimadamore@133 2276 }
duke@1 2277 }
duke@1 2278 throw new AssertionError(lval);
duke@1 2279 }
duke@1 2280
duke@1 2281 // evaluate and discard the first expression, then evaluate the second.
duke@1 2282 JCTree makeComma(final JCTree expr1, final JCTree expr2) {
duke@1 2283 return abstractRval(expr1, new TreeBuilder() {
duke@1 2284 public JCTree build(final JCTree discarded) {
duke@1 2285 return expr2;
duke@1 2286 }
duke@1 2287 });
duke@1 2288 }
duke@1 2289
duke@1 2290 /**************************************************************************
duke@1 2291 * Translation methods
duke@1 2292 *************************************************************************/
duke@1 2293
duke@1 2294 /** Visitor argument: enclosing operator node.
duke@1 2295 */
duke@1 2296 private JCExpression enclOp;
duke@1 2297
duke@1 2298 /** Visitor method: Translate a single node.
duke@1 2299 * Attach the source position from the old tree to its replacement tree.
duke@1 2300 */
duke@1 2301 public <T extends JCTree> T translate(T tree) {
duke@1 2302 if (tree == null) {
duke@1 2303 return null;
duke@1 2304 } else {
duke@1 2305 make_at(tree.pos());
duke@1 2306 T result = super.translate(tree);
ksrini@1138 2307 if (endPosTable != null && result != tree) {
ksrini@1138 2308 endPosTable.replaceTree(tree, result);
duke@1 2309 }
duke@1 2310 return result;
duke@1 2311 }
duke@1 2312 }
duke@1 2313
duke@1 2314 /** Visitor method: Translate a single node, boxing or unboxing if needed.
duke@1 2315 */
duke@1 2316 public <T extends JCTree> T translate(T tree, Type type) {
duke@1 2317 return (tree == null) ? null : boxIfNeeded(translate(tree), type);
duke@1 2318 }
duke@1 2319
duke@1 2320 /** Visitor method: Translate tree.
duke@1 2321 */
duke@1 2322 public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
duke@1 2323 JCExpression prevEnclOp = this.enclOp;
duke@1 2324 this.enclOp = enclOp;
duke@1 2325 T res = translate(tree);
duke@1 2326 this.enclOp = prevEnclOp;
duke@1 2327 return res;
duke@1 2328 }
duke@1 2329
duke@1 2330 /** Visitor method: Translate list of trees.
duke@1 2331 */
duke@1 2332 public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
duke@1 2333 JCExpression prevEnclOp = this.enclOp;
duke@1 2334 this.enclOp = enclOp;
duke@1 2335 List<T> res = translate(trees);
duke@1 2336 this.enclOp = prevEnclOp;
duke@1 2337 return res;
duke@1 2338 }
duke@1 2339
duke@1 2340 /** Visitor method: Translate list of trees.
duke@1 2341 */
duke@1 2342 public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
duke@1 2343 if (trees == null) return null;
duke@1 2344 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
duke@1 2345 l.head = translate(l.head, type);
duke@1 2346 return trees;
duke@1 2347 }
duke@1 2348
duke@1 2349 public void visitTopLevel(JCCompilationUnit tree) {
jjg@657 2350 if (needPackageInfoClass(tree)) {
duke@1 2351 Name name = names.package_info;
duke@1 2352 long flags = Flags.ABSTRACT | Flags.INTERFACE;
duke@1 2353 if (target.isPackageInfoSynthetic())
duke@1 2354 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
duke@1 2355 flags = flags | Flags.SYNTHETIC;
duke@1 2356 JCClassDecl packageAnnotationsClass
duke@1 2357 = make.ClassDef(make.Modifiers(flags,
duke@1 2358 tree.packageAnnotations),
duke@1 2359 name, List.<JCTypeParameter>nil(),
duke@1 2360 null, List.<JCExpression>nil(), List.<JCTree>nil());
jjg@483 2361 ClassSymbol c = tree.packge.package_info;
jjg@483 2362 c.flags_field |= flags;
jfranck@1313 2363 c.annotations.setAttributes(tree.packge.annotations);
duke@1 2364 ClassType ctype = (ClassType) c.type;
duke@1 2365 ctype.supertype_field = syms.objectType;
duke@1 2366 ctype.interfaces_field = List.nil();
duke@1 2367 packageAnnotationsClass.sym = c;
duke@1 2368
duke@1 2369 translated.append(packageAnnotationsClass);
duke@1 2370 }
duke@1 2371 }
jjg@657 2372 // where
jjg@657 2373 private boolean needPackageInfoClass(JCCompilationUnit tree) {
jjg@657 2374 switch (pkginfoOpt) {
jjg@657 2375 case ALWAYS:
jjg@657 2376 return true;
jjg@657 2377 case LEGACY:
jjg@657 2378 return tree.packageAnnotations.nonEmpty();
jjg@657 2379 case NONEMPTY:
jfranck@1313 2380 for (Attribute.Compound a :
jjg@1521 2381 tree.packge.annotations.getDeclarationAttributes()) {
jjg@657 2382 Attribute.RetentionPolicy p = types.getRetention(a);
jjg@657 2383 if (p != Attribute.RetentionPolicy.SOURCE)
jjg@657 2384 return true;
jjg@657 2385 }
jjg@657 2386 return false;
jjg@657 2387 }
jjg@657 2388 throw new AssertionError();
jjg@657 2389 }
duke@1 2390
duke@1 2391 public void visitClassDef(JCClassDecl tree) {
duke@1 2392 ClassSymbol currentClassPrev = currentClass;
duke@1 2393 MethodSymbol currentMethodSymPrev = currentMethodSym;
duke@1 2394 currentClass = tree.sym;
duke@1 2395 currentMethodSym = null;
duke@1 2396 classdefs.put(currentClass, tree);
duke@1 2397
duke@1 2398 proxies = proxies.dup(currentClass);
duke@1 2399 List<VarSymbol> prevOuterThisStack = outerThisStack;
duke@1 2400
duke@1 2401 // If this is an enum definition
duke@1 2402 if ((tree.mods.flags & ENUM) != 0 &&
duke@1 2403 (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
duke@1 2404 visitEnumDef(tree);
duke@1 2405
duke@1 2406 // If this is a nested class, define a this$n field for
duke@1 2407 // it and add to proxies.
duke@1 2408 JCVariableDecl otdef = null;
duke@1 2409 if (currentClass.hasOuterInstance())
duke@1 2410 otdef = outerThisDef(tree.pos, currentClass);
duke@1 2411
duke@1 2412 // If this is a local class, define proxies for all its free variables.
duke@1 2413 List<JCVariableDecl> fvdefs = freevarDefs(
duke@1 2414 tree.pos, freevars(currentClass), currentClass);
duke@1 2415
duke@1 2416 // Recursively translate superclass, interfaces.
duke@1 2417 tree.extending = translate(tree.extending);
duke@1 2418 tree.implementing = translate(tree.implementing);
duke@1 2419
mcimadamore@1086 2420 if (currentClass.isLocal()) {
mcimadamore@1086 2421 ClassSymbol encl = currentClass.owner.enclClass();
mcimadamore@1086 2422 if (encl.trans_local == null) {
mcimadamore@1086 2423 encl.trans_local = List.nil();
mcimadamore@1086 2424 }
mcimadamore@1086 2425 encl.trans_local = encl.trans_local.prepend(currentClass);
mcimadamore@1086 2426 }
mcimadamore@1086 2427
duke@1 2428 // Recursively translate members, taking into account that new members
duke@1 2429 // might be created during the translation and prepended to the member
duke@1 2430 // list `tree.defs'.
duke@1 2431 List<JCTree> seen = List.nil();
duke@1 2432 while (tree.defs != seen) {
duke@1 2433 List<JCTree> unseen = tree.defs;
duke@1 2434 for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
duke@1 2435 JCTree outermostMemberDefPrev = outermostMemberDef;
duke@1 2436 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
duke@1 2437 l.head = translate(l.head);
duke@1 2438 outermostMemberDef = outermostMemberDefPrev;
duke@1 2439 }
duke@1 2440 seen = unseen;
duke@1 2441 }
duke@1 2442
duke@1 2443 // Convert a protected modifier to public, mask static modifier.
duke@1 2444 if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
duke@1 2445 tree.mods.flags &= ClassFlags;
duke@1 2446
duke@1 2447 // Convert name to flat representation, replacing '.' by '$'.
duke@1 2448 tree.name = Convert.shortName(currentClass.flatName());
duke@1 2449
duke@1 2450 // Add this$n and free variables proxy definitions to class.
duke@1 2451 for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
duke@1 2452 tree.defs = tree.defs.prepend(l.head);
duke@1 2453 enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
duke@1 2454 }
duke@1 2455 if (currentClass.hasOuterInstance()) {
duke@1 2456 tree.defs = tree.defs.prepend(otdef);
duke@1 2457 enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
duke@1 2458 }
duke@1 2459
duke@1 2460 proxies = proxies.leave();
duke@1 2461 outerThisStack = prevOuterThisStack;
duke@1 2462
duke@1 2463 // Append translated tree to `translated' queue.
duke@1 2464 translated.append(tree);
duke@1 2465
duke@1 2466 currentClass = currentClassPrev;
duke@1 2467 currentMethodSym = currentMethodSymPrev;
duke@1 2468
duke@1 2469 // Return empty block {} as a placeholder for an inner class.
duke@1 2470 result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
duke@1 2471 }
duke@1 2472
duke@1 2473 /** Translate an enum class. */
duke@1 2474 private void visitEnumDef(JCClassDecl tree) {
duke@1 2475 make_at(tree.pos());
duke@1 2476
duke@1 2477 // add the supertype, if needed
duke@1 2478 if (tree.extending == null)
duke@1 2479 tree.extending = make.Type(types.supertype(tree.type));
duke@1 2480
duke@1 2481 // classOfType adds a cache field to tree.defs unless
duke@1 2482 // target.hasClassLiterals().
duke@1 2483 JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
duke@1 2484 setType(types.erasure(syms.classType));
duke@1 2485
duke@1 2486 // process each enumeration constant, adding implicit constructor parameters
duke@1 2487 int nextOrdinal = 0;
duke@1 2488 ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
duke@1 2489 ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
duke@1 2490 ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
duke@1 2491 for (List<JCTree> defs = tree.defs;
duke@1 2492 defs.nonEmpty();
duke@1 2493 defs=defs.tail) {
jjg@1127 2494 if (defs.head.hasTag(VARDEF) && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
duke@1 2495 JCVariableDecl var = (JCVariableDecl)defs.head;
duke@1 2496 visitEnumConstantDef(var, nextOrdinal++);
duke@1 2497 values.append(make.QualIdent(var.sym));
duke@1 2498 enumDefs.append(var);
duke@1 2499 } else {
duke@1 2500 otherDefs.append(defs.head);
duke@1 2501 }
duke@1 2502 }
duke@1 2503
duke@1 2504 // private static final T[] #VALUES = { a, b, c };
duke@1 2505 Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
duke@1 2506 while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
duke@1 2507 valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
duke@1 2508 Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
duke@1 2509 VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
duke@1 2510 valuesName,
duke@1 2511 arrayType,
duke@1 2512 tree.type.tsym);
duke@1 2513 JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
duke@1 2514 List.<JCExpression>nil(),
duke@1 2515 values.toList());
duke@1 2516 newArray.type = arrayType;
duke@1 2517 enumDefs.append(make.VarDef(valuesVar, newArray));
duke@1 2518 tree.sym.members().enter(valuesVar);
duke@1 2519
duke@1 2520 Symbol valuesSym = lookupMethod(tree.pos(), names.values,
duke@1 2521 tree.type, List.<Type>nil());
jjg@86 2522 List<JCStatement> valuesBody;
jjg@86 2523 if (useClone()) {
jjg@86 2524 // return (T[]) $VALUES.clone();
jjg@86 2525 JCTypeCast valuesResult =
jjg@86 2526 make.TypeCast(valuesSym.type.getReturnType(),
jjg@86 2527 make.App(make.Select(make.Ident(valuesVar),
jjg@86 2528 syms.arrayCloneMethod)));
jjg@86 2529 valuesBody = List.<JCStatement>of(make.Return(valuesResult));
jjg@86 2530 } else {
jjg@86 2531 // template: T[] $result = new T[$values.length];
jjg@86 2532 Name resultName = names.fromString(target.syntheticNameChar() + "result");
jjg@86 2533 while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
jjg@86 2534 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
jjg@86 2535 VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
jjg@86 2536 resultName,
jjg@86 2537 arrayType,
jjg@86 2538 valuesSym);
jjg@86 2539 JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
jjg@86 2540 List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
jjg@86 2541 null);
jjg@86 2542 resultArray.type = arrayType;
jjg@86 2543 JCVariableDecl decl = make.VarDef(resultVar, resultArray);
jjg@86 2544
jjg@86 2545 // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
jjg@86 2546 if (systemArraycopyMethod == null) {
jjg@86 2547 systemArraycopyMethod =
jjg@86 2548 new MethodSymbol(PUBLIC | STATIC,
jjg@86 2549 names.fromString("arraycopy"),
jjg@86 2550 new MethodType(List.<Type>of(syms.objectType,
jjg@86 2551 syms.intType,
jjg@86 2552 syms.objectType,
jjg@86 2553 syms.intType,
jjg@86 2554 syms.intType),
jjg@86 2555 syms.voidType,
jjg@86 2556 List.<Type>nil(),
jjg@86 2557 syms.methodClass),
jjg@86 2558 syms.systemType.tsym);
jjg@86 2559 }
jjg@86 2560 JCStatement copy =
jjg@86 2561 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
jjg@86 2562 systemArraycopyMethod),
jjg@86 2563 List.of(make.Ident(valuesVar), make.Literal(0),
jjg@86 2564 make.Ident(resultVar), make.Literal(0),
jjg@86 2565 make.Select(make.Ident(valuesVar), syms.lengthVar))));
jjg@86 2566
jjg@86 2567 // template: return $result;
jjg@86 2568 JCStatement ret = make.Return(make.Ident(resultVar));
jjg@86 2569 valuesBody = List.<JCStatement>of(decl, copy, ret);
jjg@86 2570 }
jjg@86 2571
duke@1 2572 JCMethodDecl valuesDef =
jjg@86 2573 make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
jjg@86 2574
duke@1 2575 enumDefs.append(valuesDef);
duke@1 2576
jjg@86 2577 if (debugLower)
jjg@86 2578 System.err.println(tree.sym + ".valuesDef = " + valuesDef);
jjg@86 2579
duke@1 2580 /** The template for the following code is:
duke@1 2581 *
duke@1 2582 * public static E valueOf(String name) {
duke@1 2583 * return (E)Enum.valueOf(E.class, name);
duke@1 2584 * }
duke@1 2585 *
duke@1 2586 * where E is tree.sym
duke@1 2587 */
duke@1 2588 MethodSymbol valueOfSym = lookupMethod(tree.pos(),
duke@1 2589 names.valueOf,
duke@1 2590 tree.sym.type,
duke@1 2591 List.of(syms.stringType));
jjg@816 2592 Assert.check((valueOfSym.flags() & STATIC) != 0);
duke@1 2593 VarSymbol nameArgSym = valueOfSym.params.head;
duke@1 2594 JCIdent nameVal = make.Ident(nameArgSym);
duke@1 2595 JCStatement enum_ValueOf =
duke@1 2596 make.Return(make.TypeCast(tree.sym.type,
duke@1 2597 makeCall(make.Ident(syms.enumSym),
duke@1 2598 names.valueOf,
duke@1 2599 List.of(e_class, nameVal))));
duke@1 2600 JCMethodDecl valueOf = make.MethodDef(valueOfSym,
duke@1 2601 make.Block(0, List.of(enum_ValueOf)));
duke@1 2602 nameVal.sym = valueOf.params.head.sym;
duke@1 2603 if (debugLower)
duke@1 2604 System.err.println(tree.sym + ".valueOf = " + valueOf);
duke@1 2605 enumDefs.append(valueOf);
duke@1 2606
duke@1 2607 enumDefs.appendList(otherDefs.toList());
duke@1 2608 tree.defs = enumDefs.toList();
duke@1 2609 }
jjg@86 2610 // where
jjg@86 2611 private MethodSymbol systemArraycopyMethod;
jjg@86 2612 private boolean useClone() {
jjg@86 2613 try {
jjg@86 2614 Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
jjg@86 2615 return (e.sym != null);
jjg@86 2616 }
jjg@86 2617 catch (CompletionFailure e) {
jjg@86 2618 return false;
jjg@86 2619 }
jjg@86 2620 }
duke@1 2621
duke@1 2622 /** Translate an enumeration constant and its initializer. */
duke@1 2623 private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
duke@1 2624 JCNewClass varDef = (JCNewClass)var.init;
duke@1 2625 varDef.args = varDef.args.
duke@1 2626 prepend(makeLit(syms.intType, ordinal)).
duke@1 2627 prepend(makeLit(syms.stringType, var.name.toString()));
duke@1 2628 }
duke@1 2629
duke@1 2630 public void visitMethodDef(JCMethodDecl tree) {
duke@1 2631 if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
duke@1 2632 // Add "String $enum$name, int $enum$ordinal" to the beginning of the
duke@1 2633 // argument list for each constructor of an enum.
duke@1 2634 JCVariableDecl nameParam = make_at(tree.pos()).
duke@1 2635 Param(names.fromString(target.syntheticNameChar() +
duke@1 2636 "enum" + target.syntheticNameChar() + "name"),
duke@1 2637 syms.stringType, tree.sym);
duke@1 2638 nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
duke@1 2639 JCVariableDecl ordParam = make.
duke@1 2640 Param(names.fromString(target.syntheticNameChar() +
duke@1 2641 "enum" + target.syntheticNameChar() +
duke@1 2642 "ordinal"),
duke@1 2643 syms.intType, tree.sym);
duke@1 2644 ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
duke@1 2645
duke@1 2646 tree.params = tree.params.prepend(ordParam).prepend(nameParam);
duke@1 2647
duke@1 2648 MethodSymbol m = tree.sym;
mcimadamore@1565 2649 m.extraParams = m.extraParams.prepend(ordParam.sym);
mcimadamore@1565 2650 m.extraParams = m.extraParams.prepend(nameParam.sym);
duke@1 2651 Type olderasure = m.erasure(types);
duke@1 2652 m.erasure_field = new MethodType(
duke@1 2653 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
duke@1 2654 olderasure.getReturnType(),
duke@1 2655 olderasure.getThrownTypes(),
duke@1 2656 syms.methodClass);
duke@1 2657 }
duke@1 2658
duke@1 2659 JCMethodDecl prevMethodDef = currentMethodDef;
duke@1 2660 MethodSymbol prevMethodSym = currentMethodSym;
duke@1 2661 try {
duke@1 2662 currentMethodDef = tree;
duke@1 2663 currentMethodSym = tree.sym;
duke@1 2664 visitMethodDefInternal(tree);
duke@1 2665 } finally {
duke@1 2666 currentMethodDef = prevMethodDef;
duke@1 2667 currentMethodSym = prevMethodSym;
duke@1 2668 }
duke@1 2669 }
duke@1 2670 //where
duke@1 2671 private void visitMethodDefInternal(JCMethodDecl tree) {
duke@1 2672 if (tree.name == names.init &&
duke@1 2673 (currentClass.isInner() ||
duke@1 2674 (currentClass.owner.kind & (VAR | MTH)) != 0)) {
duke@1 2675 // We are seeing a constructor of an inner class.
duke@1 2676 MethodSymbol m = tree.sym;
duke@1 2677
duke@1 2678 // Push a new proxy scope for constructor parameters.
duke@1 2679 // and create definitions for any this$n and proxy parameters.
duke@1 2680 proxies = proxies.dup(m);
duke@1 2681 List<VarSymbol> prevOuterThisStack = outerThisStack;
duke@1 2682 List<VarSymbol> fvs = freevars(currentClass);
duke@1 2683 JCVariableDecl otdef = null;
duke@1 2684 if (currentClass.hasOuterInstance())
duke@1 2685 otdef = outerThisDef(tree.pos, m);
duke@1 2686 List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m);
duke@1 2687
duke@1 2688 // Recursively translate result type, parameters and thrown list.
duke@1 2689 tree.restype = translate(tree.restype);
duke@1 2690 tree.params = translateVarDefs(tree.params);
duke@1 2691 tree.thrown = translate(tree.thrown);
duke@1 2692
duke@1 2693 // when compiling stubs, don't process body
duke@1 2694 if (tree.body == null) {
duke@1 2695 result = tree;
duke@1 2696 return;
duke@1 2697 }
duke@1 2698
duke@1 2699 // Add this$n (if needed) in front of and free variables behind
duke@1 2700 // constructor parameter list.
duke@1 2701 tree.params = tree.params.appendList(fvdefs);
duke@1 2702 if (currentClass.hasOuterInstance())
duke@1 2703 tree.params = tree.params.prepend(otdef);
duke@1 2704
duke@1 2705 // If this is an initial constructor, i.e., it does not start with
duke@1 2706 // this(...), insert initializers for this$n and proxies
duke@1 2707 // before (pre-1.4, after) the call to superclass constructor.
duke@1 2708 JCStatement selfCall = translate(tree.body.stats.head);
duke@1 2709
duke@1 2710 List<JCStatement> added = List.nil();
duke@1 2711 if (fvs.nonEmpty()) {
duke@1 2712 List<Type> addedargtypes = List.nil();
duke@1 2713 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
duke@1 2714 if (TreeInfo.isInitialConstructor(tree))
duke@1 2715 added = added.prepend(
duke@1 2716 initField(tree.body.pos, proxyName(l.head.name)));
duke@1 2717 addedargtypes = addedargtypes.prepend(l.head.erasure(types));
duke@1 2718 }
duke@1 2719 Type olderasure = m.erasure(types);
duke@1 2720 m.erasure_field = new MethodType(
duke@1 2721 olderasure.getParameterTypes().appendList(addedargtypes),
duke@1 2722 olderasure.getReturnType(),
duke@1 2723 olderasure.getThrownTypes(),
duke@1 2724 syms.methodClass);
duke@1 2725 }
duke@1 2726 if (currentClass.hasOuterInstance() &&
duke@1 2727 TreeInfo.isInitialConstructor(tree))
duke@1 2728 {
duke@1 2729 added = added.prepend(initOuterThis(tree.body.pos));
duke@1 2730 }
duke@1 2731
duke@1 2732 // pop local variables from proxy stack
duke@1 2733 proxies = proxies.leave();
duke@1 2734
duke@1 2735 // recursively translate following local statements and
duke@1 2736 // combine with this- or super-call
duke@1 2737 List<JCStatement> stats = translate(tree.body.stats.tail);
duke@1 2738 if (target.initializeFieldsBeforeSuper())
duke@1 2739 tree.body.stats = stats.prepend(selfCall).prependList(added);
duke@1 2740 else
duke@1 2741 tree.body.stats = stats.prependList(added).prepend(selfCall);
duke@1 2742
duke@1 2743 outerThisStack = prevOuterThisStack;
duke@1 2744 } else {
mcimadamore@1612 2745 Map<Symbol, Symbol> prevLambdaTranslationMap =
mcimadamore@1612 2746 lambdaTranslationMap;
mcimadamore@1612 2747 try {
mcimadamore@1612 2748 lambdaTranslationMap = (tree.sym.flags() & SYNTHETIC) != 0 &&
mcimadamore@1612 2749 tree.sym.name.startsWith(names.lambda) ?
mcimadamore@1612 2750 makeTranslationMap(tree) : null;
mcimadamore@1612 2751 super.visitMethodDef(tree);
mcimadamore@1612 2752 } finally {
mcimadamore@1612 2753 lambdaTranslationMap = prevLambdaTranslationMap;
mcimadamore@1612 2754 }
duke@1 2755 }
duke@1 2756 result = tree;
duke@1 2757 }
mcimadamore@1612 2758 //where
mcimadamore@1612 2759 private Map<Symbol, Symbol> makeTranslationMap(JCMethodDecl tree) {
mcimadamore@1612 2760 Map<Symbol, Symbol> translationMap = new HashMap<Symbol,Symbol>();
mcimadamore@1612 2761 for (JCVariableDecl vd : tree.params) {
mcimadamore@1612 2762 Symbol p = vd.sym;
mcimadamore@1612 2763 if (p != p.baseSymbol()) {
mcimadamore@1612 2764 translationMap.put(p.baseSymbol(), p);
mcimadamore@1612 2765 }
mcimadamore@1612 2766 }
mcimadamore@1612 2767 return translationMap;
mcimadamore@1612 2768 }
duke@1 2769
jjg@1521 2770 public void visitAnnotatedType(JCAnnotatedType tree) {
jjg@1755 2771 // No need to retain type annotations in the tree
jjg@1521 2772 // tree.annotations = translate(tree.annotations);
jjg@1755 2773 tree.annotations = List.nil();
jjg@1521 2774 tree.underlyingType = translate(tree.underlyingType);
jjg@1755 2775 // but maintain type annotations in the type.
jjg@1755 2776 if (tree.type.isAnnotated()) {
jjg@1755 2777 if (tree.underlyingType.type.isAnnotated()) {
jjg@1755 2778 // The erasure of a type variable might be annotated.
jjg@1755 2779 // Merge all annotations.
jjg@1755 2780 AnnotatedType newat = (AnnotatedType) tree.underlyingType.type;
jjg@1755 2781 AnnotatedType at = (AnnotatedType) tree.type;
jjg@1755 2782 at.underlyingType = newat.underlyingType;
jjg@1755 2783 newat.typeAnnotations = at.typeAnnotations.appendList(newat.typeAnnotations);
jjg@1755 2784 tree.type = newat;
jjg@1755 2785 } else {
jjg@1755 2786 // Create a new AnnotatedType to have the correct tag.
jjg@1755 2787 AnnotatedType oldat = (AnnotatedType) tree.type;
jjg@1755 2788 tree.type = new AnnotatedType(tree.underlyingType.type);
jjg@1755 2789 ((AnnotatedType) tree.type).typeAnnotations = oldat.typeAnnotations;
jjg@1755 2790 }
jjg@1755 2791 }
jjg@1755 2792 result = tree;
jjg@1521 2793 }
jjg@1521 2794
duke@1 2795 public void visitTypeCast(JCTypeCast tree) {
duke@1 2796 tree.clazz = translate(tree.clazz);
duke@1 2797 if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
duke@1 2798 tree.expr = translate(tree.expr, tree.type);
duke@1 2799 else
duke@1 2800 tree.expr = translate(tree.expr);
duke@1 2801 result = tree;
duke@1 2802 }
duke@1 2803
duke@1 2804 public void visitNewClass(JCNewClass tree) {
duke@1 2805 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
duke@1 2806
duke@1 2807 // Box arguments, if necessary
duke@1 2808 boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
duke@1 2809 List<Type> argTypes = tree.constructor.type.getParameterTypes();
duke@1 2810 if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
duke@1 2811 tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
duke@1 2812 tree.varargsElement = null;
duke@1 2813
duke@1 2814 // If created class is local, add free variables after
duke@1 2815 // explicit constructor arguments.
duke@1 2816 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 2817 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
duke@1 2818 }
duke@1 2819
duke@1 2820 // If an access constructor is used, append null as a last argument.
duke@1 2821 Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
duke@1 2822 if (constructor != tree.constructor) {
duke@1 2823 tree.args = tree.args.append(makeNull());
duke@1 2824 tree.constructor = constructor;
duke@1 2825 }
duke@1 2826
duke@1 2827 // If created class has an outer instance, and new is qualified, pass
duke@1 2828 // qualifier as first argument. If new is not qualified, pass the
duke@1 2829 // correct outer instance as first argument.
duke@1 2830 if (c.hasOuterInstance()) {
duke@1 2831 JCExpression thisArg;
duke@1 2832 if (tree.encl != null) {
duke@1 2833 thisArg = attr.makeNullCheck(translate(tree.encl));
duke@1 2834 thisArg.type = tree.encl.type;
duke@1 2835 } else if ((c.owner.kind & (MTH | VAR)) != 0) {
duke@1 2836 // local class
duke@1 2837 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
duke@1 2838 } else {
duke@1 2839 // nested class
duke@1 2840 thisArg = makeOwnerThis(tree.pos(), c, false);
duke@1 2841 }
duke@1 2842 tree.args = tree.args.prepend(thisArg);
duke@1 2843 }
duke@1 2844 tree.encl = null;
duke@1 2845
duke@1 2846 // If we have an anonymous class, create its flat version, rather
duke@1 2847 // than the class or interface following new.
duke@1 2848 if (tree.def != null) {
duke@1 2849 translate(tree.def);
duke@1 2850 tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
duke@1 2851 tree.def = null;
duke@1 2852 } else {
duke@1 2853 tree.clazz = access(c, tree.clazz, enclOp, false);
duke@1 2854 }
duke@1 2855 result = tree;
duke@1 2856 }
duke@1 2857
duke@1 2858 // Simplify conditionals with known constant controlling expressions.
duke@1 2859 // This allows us to avoid generating supporting declarations for
duke@1 2860 // the dead code, which will not be eliminated during code generation.
duke@1 2861 // Note that Flow.isFalse and Flow.isTrue only return true
duke@1 2862 // for constant expressions in the sense of JLS 15.27, which
darcy@430 2863 // are guaranteed to have no side-effects. More aggressive
duke@1 2864 // constant propagation would require that we take care to
duke@1 2865 // preserve possible side-effects in the condition expression.
duke@1 2866
duke@1 2867 /** Visitor method for conditional expressions.
duke@1 2868 */
vromero@1432 2869 @Override
duke@1 2870 public void visitConditional(JCConditional tree) {
duke@1 2871 JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2872 if (cond.type.isTrue()) {
duke@1 2873 result = convert(translate(tree.truepart, tree.type), tree.type);
vromero@1432 2874 addPrunedInfo(cond);
duke@1 2875 } else if (cond.type.isFalse()) {
duke@1 2876 result = convert(translate(tree.falsepart, tree.type), tree.type);
vromero@1432 2877 addPrunedInfo(cond);
duke@1 2878 } else {
duke@1 2879 // Condition is not a compile-time constant.
duke@1 2880 tree.truepart = translate(tree.truepart, tree.type);
duke@1 2881 tree.falsepart = translate(tree.falsepart, tree.type);
duke@1 2882 result = tree;
duke@1 2883 }
duke@1 2884 }
duke@1 2885 //where
vromero@1432 2886 private JCTree convert(JCTree tree, Type pt) {
vromero@1432 2887 if (tree.type == pt || tree.type.hasTag(BOT))
vromero@1432 2888 return tree;
vromero@1432 2889 JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
vromero@1432 2890 result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
vromero@1432 2891 : pt;
vromero@1432 2892 return result;
vromero@1432 2893 }
duke@1 2894
duke@1 2895 /** Visitor method for if statements.
duke@1 2896 */
duke@1 2897 public void visitIf(JCIf tree) {
duke@1 2898 JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2899 if (cond.type.isTrue()) {
duke@1 2900 result = translate(tree.thenpart);
vromero@1432 2901 addPrunedInfo(cond);
duke@1 2902 } else if (cond.type.isFalse()) {
duke@1 2903 if (tree.elsepart != null) {
duke@1 2904 result = translate(tree.elsepart);
duke@1 2905 } else {
duke@1 2906 result = make.Skip();
duke@1 2907 }
vromero@1432 2908 addPrunedInfo(cond);
duke@1 2909 } else {
duke@1 2910 // Condition is not a compile-time constant.
duke@1 2911 tree.thenpart = translate(tree.thenpart);
duke@1 2912 tree.elsepart = translate(tree.elsepart);
duke@1 2913 result = tree;
duke@1 2914 }
duke@1 2915 }
duke@1 2916
duke@1 2917 /** Visitor method for assert statements. Translate them away.
duke@1 2918 */
duke@1 2919 public void visitAssert(JCAssert tree) {
duke@1 2920 DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
duke@1 2921 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2922 if (!tree.cond.type.isTrue()) {
duke@1 2923 JCExpression cond = assertFlagTest(tree.pos());
duke@1 2924 List<JCExpression> exnArgs = (tree.detail == null) ?
duke@1 2925 List.<JCExpression>nil() : List.of(translate(tree.detail));
duke@1 2926 if (!tree.cond.type.isFalse()) {
duke@1 2927 cond = makeBinary
jjg@1127 2928 (AND,
duke@1 2929 cond,
jjg@1127 2930 makeUnary(NOT, tree.cond));
duke@1 2931 }
duke@1 2932 result =
duke@1 2933 make.If(cond,
vromero@1783 2934 make_at(tree).
duke@1 2935 Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
duke@1 2936 null);
duke@1 2937 } else {
duke@1 2938 result = make.Skip();
duke@1 2939 }
duke@1 2940 }
duke@1 2941
duke@1 2942 public void visitApply(JCMethodInvocation tree) {
duke@1 2943 Symbol meth = TreeInfo.symbol(tree.meth);
duke@1 2944 List<Type> argtypes = meth.type.getParameterTypes();
duke@1 2945 if (allowEnums &&
duke@1 2946 meth.name==names.init &&
duke@1 2947 meth.owner == syms.enumSym)
duke@1 2948 argtypes = argtypes.tail.tail;
duke@1 2949 tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
duke@1 2950 tree.varargsElement = null;
duke@1 2951 Name methName = TreeInfo.name(tree.meth);
duke@1 2952 if (meth.name==names.init) {
duke@1 2953 // We are seeing a this(...) or super(...) constructor call.
duke@1 2954 // If an access constructor is used, append null as a last argument.
duke@1 2955 Symbol constructor = accessConstructor(tree.pos(), meth);
duke@1 2956 if (constructor != meth) {
duke@1 2957 tree.args = tree.args.append(makeNull());
duke@1 2958 TreeInfo.setSymbol(tree.meth, constructor);
duke@1 2959 }
duke@1 2960
duke@1 2961 // If we are calling a constructor of a local class, add
duke@1 2962 // free variables after explicit constructor arguments.
duke@1 2963 ClassSymbol c = (ClassSymbol)constructor.owner;
duke@1 2964 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 2965 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
duke@1 2966 }
duke@1 2967
duke@1 2968 // If we are calling a constructor of an enum class, pass
duke@1 2969 // along the name and ordinal arguments
duke@1 2970 if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
duke@1 2971 List<JCVariableDecl> params = currentMethodDef.params;
duke@1 2972 if (currentMethodSym.owner.hasOuterInstance())
duke@1 2973 params = params.tail; // drop this$n
duke@1 2974 tree.args = tree.args
duke@1 2975 .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
duke@1 2976 .prepend(make.Ident(params.head.sym)); // name
duke@1 2977 }
duke@1 2978
duke@1 2979 // If we are calling a constructor of a class with an outer
duke@1 2980 // instance, and the call
duke@1 2981 // is qualified, pass qualifier as first argument in front of
duke@1 2982 // the explicit constructor arguments. If the call
duke@1 2983 // is not qualified, pass the correct outer instance as
duke@1 2984 // first argument.
duke@1 2985 if (c.hasOuterInstance()) {
duke@1 2986 JCExpression thisArg;
jjg@1127 2987 if (tree.meth.hasTag(SELECT)) {
duke@1 2988 thisArg = attr.
duke@1 2989 makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
duke@1 2990 tree.meth = make.Ident(constructor);
duke@1 2991 ((JCIdent) tree.meth).name = methName;
duke@1 2992 } else if ((c.owner.kind & (MTH | VAR)) != 0 || methName == names._this){
duke@1 2993 // local class or this() call
duke@1 2994 thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
duke@1 2995 } else {
mcimadamore@901 2996 // super() call of nested class - never pick 'this'
mcimadamore@901 2997 thisArg = makeOwnerThisN(tree.meth.pos(), c, false);
duke@1 2998 }
duke@1 2999 tree.args = tree.args.prepend(thisArg);
duke@1 3000 }
duke@1 3001 } else {
duke@1 3002 // We are seeing a normal method invocation; translate this as usual.
duke@1 3003 tree.meth = translate(tree.meth);
duke@1 3004
duke@1 3005 // If the translated method itself is an Apply tree, we are
duke@1 3006 // seeing an access method invocation. In this case, append
duke@1 3007 // the method arguments to the arguments of the access method.
jjg@1127 3008 if (tree.meth.hasTag(APPLY)) {
duke@1 3009 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
duke@1 3010 app.args = tree.args.prependList(app.args);
duke@1 3011 result = app;
duke@1 3012 return;
duke@1 3013 }
duke@1 3014 }
duke@1 3015 result = tree;
duke@1 3016 }
duke@1 3017
duke@1 3018 List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
duke@1 3019 List<JCExpression> args = _args;
duke@1 3020 if (parameters.isEmpty()) return args;
duke@1 3021 boolean anyChanges = false;
duke@1 3022 ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
duke@1 3023 while (parameters.tail.nonEmpty()) {
duke@1 3024 JCExpression arg = translate(args.head, parameters.head);
duke@1 3025 anyChanges |= (arg != args.head);
duke@1 3026 result.append(arg);
duke@1 3027 args = args.tail;
duke@1 3028 parameters = parameters.tail;
duke@1 3029 }
duke@1 3030 Type parameter = parameters.head;
duke@1 3031 if (varargsElement != null) {
duke@1 3032 anyChanges = true;
duke@1 3033 ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
duke@1 3034 while (args.nonEmpty()) {
duke@1 3035 JCExpression arg = translate(args.head, varargsElement);
duke@1 3036 elems.append(arg);
duke@1 3037 args = args.tail;
duke@1 3038 }
duke@1 3039 JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
duke@1 3040 List.<JCExpression>nil(),
duke@1 3041 elems.toList());
duke@1 3042 boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
duke@1 3043 result.append(boxedArgs);
duke@1 3044 } else {
duke@1 3045 if (args.length() != 1) throw new AssertionError(args);
duke@1 3046 JCExpression arg = translate(args.head, parameter);
duke@1 3047 anyChanges |= (arg != args.head);
duke@1 3048 result.append(arg);
duke@1 3049 if (!anyChanges) return _args;
duke@1 3050 }
duke@1 3051 return result.toList();
duke@1 3052 }
duke@1 3053
duke@1 3054 /** Expand a boxing or unboxing conversion if needed. */
duke@1 3055 @SuppressWarnings("unchecked") // XXX unchecked
duke@1 3056 <T extends JCTree> T boxIfNeeded(T tree, Type type) {
duke@1 3057 boolean havePrimitive = tree.type.isPrimitive();
duke@1 3058 if (havePrimitive == type.isPrimitive())
duke@1 3059 return tree;
duke@1 3060 if (havePrimitive) {
duke@1 3061 Type unboxedTarget = types.unboxedType(type);
jjg@1374 3062 if (!unboxedTarget.hasTag(NONE)) {
mcimadamore@253 3063 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
mcimadamore@253 3064 tree.type = unboxedTarget.constType(tree.type.constValue());
duke@1 3065 return (T)boxPrimitive((JCExpression)tree, type);
duke@1 3066 } else {
duke@1 3067 tree = (T)boxPrimitive((JCExpression)tree);
duke@1 3068 }
duke@1 3069 } else {
duke@1 3070 tree = (T)unbox((JCExpression)tree, type);
duke@1 3071 }
duke@1 3072 return tree;
duke@1 3073 }
duke@1 3074
duke@1 3075 /** Box up a single primitive expression. */
duke@1 3076 JCExpression boxPrimitive(JCExpression tree) {
duke@1 3077 return boxPrimitive(tree, types.boxedClass(tree.type).type);
duke@1 3078 }
duke@1 3079
duke@1 3080 /** Box up a single primitive expression. */
duke@1 3081 JCExpression boxPrimitive(JCExpression tree, Type box) {
duke@1 3082 make_at(tree.pos());
duke@1 3083 if (target.boxWithConstructors()) {
duke@1 3084 Symbol ctor = lookupConstructor(tree.pos(),
duke@1 3085 box,
duke@1 3086 List.<Type>nil()
duke@1 3087 .prepend(tree.type));
duke@1 3088 return make.Create(ctor, List.of(tree));
duke@1 3089 } else {
duke@1 3090 Symbol valueOfSym = lookupMethod(tree.pos(),
duke@1 3091 names.valueOf,
duke@1 3092 box,
duke@1 3093 List.<Type>nil()
duke@1 3094 .prepend(tree.type));
duke@1 3095 return make.App(make.QualIdent(valueOfSym), List.of(tree));
duke@1 3096 }
duke@1 3097 }
duke@1 3098
duke@1 3099 /** Unbox an object to a primitive value. */
duke@1 3100 JCExpression unbox(JCExpression tree, Type primitive) {
duke@1 3101 Type unboxedType = types.unboxedType(tree.type);
jjg@1374 3102 if (unboxedType.hasTag(NONE)) {
jrose@665 3103 unboxedType = primitive;
jrose@665 3104 if (!unboxedType.isPrimitive())
jrose@665 3105 throw new AssertionError(unboxedType);
jrose@665 3106 make_at(tree.pos());
jrose@665 3107 tree = make.TypeCast(types.boxedClass(unboxedType).type, tree);
jrose@665 3108 } else {
jrose@665 3109 // There must be a conversion from unboxedType to primitive.
jrose@665 3110 if (!types.isSubtype(unboxedType, primitive))
jrose@665 3111 throw new AssertionError(tree);
jrose@665 3112 }
duke@1 3113 make_at(tree.pos());
duke@1 3114 Symbol valueSym = lookupMethod(tree.pos(),
duke@1 3115 unboxedType.tsym.name.append(names.Value), // x.intValue()
duke@1 3116 tree.type,
duke@1 3117 List.<Type>nil());
duke@1 3118 return make.App(make.Select(tree, valueSym));
duke@1 3119 }
duke@1 3120
duke@1 3121 /** Visitor method for parenthesized expressions.
duke@1 3122 * If the subexpression has changed, omit the parens.
duke@1 3123 */
duke@1 3124 public void visitParens(JCParens tree) {
duke@1 3125 JCTree expr = translate(tree.expr);
duke@1 3126 result = ((expr == tree.expr) ? tree : expr);
duke@1 3127 }
duke@1 3128
duke@1 3129 public void visitIndexed(JCArrayAccess tree) {
duke@1 3130 tree.indexed = translate(tree.indexed);
duke@1 3131 tree.index = translate(tree.index, syms.intType);
duke@1 3132 result = tree;
duke@1 3133 }
duke@1 3134
duke@1 3135 public void visitAssign(JCAssign tree) {
duke@1 3136 tree.lhs = translate(tree.lhs, tree);
duke@1 3137 tree.rhs = translate(tree.rhs, tree.lhs.type);
duke@1 3138
duke@1 3139 // If translated left hand side is an Apply, we are
duke@1 3140 // seeing an access method invocation. In this case, append
duke@1 3141 // right hand side as last argument of the access method.
jjg@1127 3142 if (tree.lhs.hasTag(APPLY)) {
duke@1 3143 JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
duke@1 3144 app.args = List.of(tree.rhs).prependList(app.args);
duke@1 3145 result = app;
duke@1 3146 } else {
duke@1 3147 result = tree;
duke@1 3148 }
duke@1 3149 }
duke@1 3150
duke@1 3151 public void visitAssignop(final JCAssignOp tree) {
vromero@1621 3152 JCTree lhsAccess = access(TreeInfo.skipParens(tree.lhs));
vromero@1557 3153 final boolean boxingReq = !tree.lhs.type.isPrimitive() &&
vromero@1557 3154 tree.operator.type.getReturnType().isPrimitive();
vromero@1557 3155
vromero@1621 3156 if (boxingReq || lhsAccess.hasTag(APPLY)) {
vromero@1621 3157 // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
vromero@1621 3158 // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
vromero@1621 3159 // (but without recomputing x)
vromero@1621 3160 JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
vromero@1621 3161 public JCTree build(final JCTree lhs) {
vromero@1621 3162 JCTree.Tag newTag = tree.getTag().noAssignOp();
vromero@1621 3163 // Erasure (TransTypes) can change the type of
vromero@1621 3164 // tree.lhs. However, we can still get the
vromero@1621 3165 // unerased type of tree.lhs as it is stored
vromero@1621 3166 // in tree.type in Attr.
vromero@1621 3167 Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
vromero@1621 3168 newTag,
vromero@1621 3169 attrEnv,
vromero@1621 3170 tree.type,
vromero@1621 3171 tree.rhs.type);
vromero@1621 3172 JCExpression expr = (JCExpression)lhs;
vromero@1621 3173 if (expr.type != tree.type)
vromero@1621 3174 expr = make.TypeCast(tree.type, expr);
vromero@1621 3175 JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
vromero@1621 3176 opResult.operator = newOperator;
vromero@1621 3177 opResult.type = newOperator.type.getReturnType();
vromero@1621 3178 JCExpression newRhs = boxingReq ?
vromero@1621 3179 make.TypeCast(types.unboxedType(tree.type), opResult) :
vromero@1557 3180 opResult;
vromero@1621 3181 return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
vromero@1621 3182 }
vromero@1621 3183 });
vromero@1621 3184 result = translate(newTree);
vromero@1621 3185 return;
vromero@1621 3186 }
vromero@1621 3187 tree.lhs = translate(tree.lhs, tree);
vromero@1621 3188 tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
vromero@1621 3189
vromero@1621 3190 // If translated left hand side is an Apply, we are
vromero@1621 3191 // seeing an access method invocation. In this case, append
vromero@1621 3192 // right hand side as last argument of the access method.
vromero@1621 3193 if (tree.lhs.hasTag(APPLY)) {
vromero@1621 3194 JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
vromero@1621 3195 // if operation is a += on strings,
vromero@1621 3196 // make sure to convert argument to string
vromero@1621 3197 JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
vromero@1621 3198 ? makeString(tree.rhs)
vromero@1621 3199 : tree.rhs;
vromero@1621 3200 app.args = List.of(rhs).prependList(app.args);
vromero@1621 3201 result = app;
vromero@1621 3202 } else {
vromero@1621 3203 result = tree;
vromero@1621 3204 }
duke@1 3205 }
duke@1 3206
duke@1 3207 /** Lower a tree of the form e++ or e-- where e is an object type */
duke@1 3208 JCTree lowerBoxedPostop(final JCUnary tree) {
duke@1 3209 // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
duke@1 3210 // or
duke@1 3211 // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
duke@1 3212 // where OP is += or -=
jjg@1127 3213 final boolean cast = TreeInfo.skipParens(tree.arg).hasTag(TYPECAST);
mcimadamore@133 3214 return abstractLval(tree.arg, new TreeBuilder() {
duke@1 3215 public JCTree build(final JCTree tmp1) {
duke@1 3216 return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
duke@1 3217 public JCTree build(final JCTree tmp2) {
jjg@1127 3218 JCTree.Tag opcode = (tree.hasTag(POSTINC))
jjg@1127 3219 ? PLUS_ASG : MINUS_ASG;
duke@1 3220 JCTree lhs = cast
duke@1 3221 ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
duke@1 3222 : tmp1;
duke@1 3223 JCTree update = makeAssignop(opcode,
duke@1 3224 lhs,
duke@1 3225 make.Literal(1));
duke@1 3226 return makeComma(update, tmp2);
duke@1 3227 }
duke@1 3228 });
duke@1 3229 }
duke@1 3230 });
duke@1 3231 }
duke@1 3232
duke@1 3233 public void visitUnary(JCUnary tree) {
jjg@1127 3234 boolean isUpdateOperator = tree.getTag().isIncOrDecUnaryOp();
duke@1 3235 if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
duke@1 3236 switch(tree.getTag()) {
jjg@1127 3237 case PREINC: // ++ e
duke@1 3238 // translate to e += 1
jjg@1127 3239 case PREDEC: // -- e
duke@1 3240 // translate to e -= 1
duke@1 3241 {
jjg@1127 3242 JCTree.Tag opcode = (tree.hasTag(PREINC))
jjg@1127 3243 ? PLUS_ASG : MINUS_ASG;
duke@1 3244 JCAssignOp newTree = makeAssignop(opcode,
duke@1 3245 tree.arg,
duke@1 3246 make.Literal(1));
duke@1 3247 result = translate(newTree, tree.type);
duke@1 3248 return;
duke@1 3249 }
jjg@1127 3250 case POSTINC: // e ++
jjg@1127 3251 case POSTDEC: // e --
duke@1 3252 {
duke@1 3253 result = translate(lowerBoxedPostop(tree), tree.type);
duke@1 3254 return;
duke@1 3255 }
duke@1 3256 }
duke@1 3257 throw new AssertionError(tree);
duke@1 3258 }
duke@1 3259
duke@1 3260 tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
duke@1 3261
jjg@1127 3262 if (tree.hasTag(NOT) && tree.arg.type.constValue() != null) {
duke@1 3263 tree.type = cfolder.fold1(bool_not, tree.arg.type);
duke@1 3264 }
duke@1 3265
duke@1 3266 // If translated left hand side is an Apply, we are
duke@1 3267 // seeing an access method invocation. In this case, return
darcy@430 3268 // that access method invocation as result.
jjg@1127 3269 if (isUpdateOperator && tree.arg.hasTag(APPLY)) {
duke@1 3270 result = tree.arg;
duke@1 3271 } else {
duke@1 3272 result = tree;
duke@1 3273 }
duke@1 3274 }
duke@1 3275
duke@1 3276 public void visitBinary(JCBinary tree) {
duke@1 3277 List<Type> formals = tree.operator.type.getParameterTypes();
duke@1 3278 JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
duke@1 3279 switch (tree.getTag()) {
jjg@1127 3280 case OR:
duke@1 3281 if (lhs.type.isTrue()) {
duke@1 3282 result = lhs;
duke@1 3283 return;
duke@1 3284 }
duke@1 3285 if (lhs.type.isFalse()) {
duke@1 3286 result = translate(tree.rhs, formals.tail.head);
duke@1 3287 return;
duke@1 3288 }
duke@1 3289 break;
jjg@1127 3290 case AND:
duke@1 3291 if (lhs.type.isFalse()) {
duke@1 3292 result = lhs;
duke@1 3293 return;
duke@1 3294 }
duke@1 3295 if (lhs.type.isTrue()) {
duke@1 3296 result = translate(tree.rhs, formals.tail.head);
duke@1 3297 return;
duke@1 3298 }
duke@1 3299 break;
duke@1 3300 }
duke@1 3301 tree.rhs = translate(tree.rhs, formals.tail.head);
duke@1 3302 result = tree;
duke@1 3303 }
duke@1 3304
duke@1 3305 public void visitIdent(JCIdent tree) {
duke@1 3306 result = access(tree.sym, tree, enclOp, false);
duke@1 3307 }
duke@1 3308
duke@1 3309 /** Translate away the foreach loop. */
duke@1 3310 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 3311 if (types.elemtype(tree.expr.type) == null)
duke@1 3312 visitIterableForeachLoop(tree);
duke@1 3313 else
duke@1 3314 visitArrayForeachLoop(tree);
duke@1 3315 }
duke@1 3316 // where
duke@1 3317 /**
darcy@430 3318 * A statement of the form
duke@1 3319 *
duke@1 3320 * <pre>
duke@1 3321 * for ( T v : arrayexpr ) stmt;
duke@1 3322 * </pre>
duke@1 3323 *
duke@1 3324 * (where arrayexpr is of an array type) gets translated to
duke@1 3325 *
jjg@1326 3326 * <pre>{@code
duke@1 3327 * for ( { arraytype #arr = arrayexpr;
duke@1 3328 * int #len = array.length;
duke@1 3329 * int #i = 0; };
duke@1 3330 * #i < #len; i$++ ) {
duke@1 3331 * T v = arr$[#i];
duke@1 3332 * stmt;
duke@1 3333 * }
jjg@1326 3334 * }</pre>
duke@1 3335 *
duke@1 3336 * where #arr, #len, and #i are freshly named synthetic local variables.
duke@1 3337 */
duke@1 3338 private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
duke@1 3339 make_at(tree.expr.pos());
duke@1 3340 VarSymbol arraycache = new VarSymbol(0,
duke@1 3341 names.fromString("arr" + target.syntheticNameChar()),
duke@1 3342 tree.expr.type,
duke@1 3343 currentMethodSym);
duke@1 3344 JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
duke@1 3345 VarSymbol lencache = new VarSymbol(0,
duke@1 3346 names.fromString("len" + target.syntheticNameChar()),
duke@1 3347 syms.intType,
duke@1 3348 currentMethodSym);
duke@1 3349 JCStatement lencachedef = make.
duke@1 3350 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
duke@1 3351 VarSymbol index = new VarSymbol(0,
duke@1 3352 names.fromString("i" + target.syntheticNameChar()),
duke@1 3353 syms.intType,
duke@1 3354 currentMethodSym);
duke@1 3355
duke@1 3356 JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
duke@1 3357 indexdef.init.type = indexdef.type = syms.intType.constType(0);
duke@1 3358
duke@1 3359 List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
jjg@1127 3360 JCBinary cond = makeBinary(LT, make.Ident(index), make.Ident(lencache));
jjg@1127 3361
jjg@1127 3362 JCExpressionStatement step = make.Exec(makeUnary(PREINC, make.Ident(index)));
duke@1 3363
duke@1 3364 Type elemtype = types.elemtype(tree.expr.type);
mcimadamore@33 3365 JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
mcimadamore@33 3366 make.Ident(index)).setType(elemtype);
mcimadamore@33 3367 JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
mcimadamore@33 3368 tree.var.name,
mcimadamore@33 3369 tree.var.vartype,
mcimadamore@33 3370 loopvarinit).setType(tree.var.type);
mcimadamore@33 3371 loopvardef.sym = tree.var.sym;
duke@1 3372 JCBlock body = make.
mcimadamore@33 3373 Block(0, List.of(loopvardef, tree.body));
duke@1 3374
duke@1 3375 result = translate(make.
duke@1 3376 ForLoop(loopinit,
duke@1 3377 cond,
duke@1 3378 List.of(step),
duke@1 3379 body));
duke@1 3380 patchTargets(body, tree, result);
duke@1 3381 }
duke@1 3382 /** Patch up break and continue targets. */
duke@1 3383 private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
duke@1 3384 class Patcher extends TreeScanner {
duke@1 3385 public void visitBreak(JCBreak tree) {
duke@1 3386 if (tree.target == src)
duke@1 3387 tree.target = dest;
duke@1 3388 }
duke@1 3389 public void visitContinue(JCContinue tree) {
duke@1 3390 if (tree.target == src)
duke@1 3391 tree.target = dest;
duke@1 3392 }
duke@1 3393 public void visitClassDef(JCClassDecl tree) {}
duke@1 3394 }
duke@1 3395 new Patcher().scan(body);
duke@1 3396 }
duke@1 3397 /**
duke@1 3398 * A statement of the form
duke@1 3399 *
duke@1 3400 * <pre>
duke@1 3401 * for ( T v : coll ) stmt ;
duke@1 3402 * </pre>
duke@1 3403 *
jjg@1326 3404 * (where coll implements {@code Iterable<? extends T>}) gets translated to
duke@1 3405 *
jjg@1326 3406 * <pre>{@code
duke@1 3407 * for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
duke@1 3408 * T v = (T) #i.next();
duke@1 3409 * stmt;
duke@1 3410 * }
jjg@1326 3411 * }</pre>
duke@1 3412 *
duke@1 3413 * where #i is a freshly named synthetic local variable.
duke@1 3414 */
duke@1 3415 private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
duke@1 3416 make_at(tree.expr.pos());
duke@1 3417 Type iteratorTarget = syms.objectType;
duke@1 3418 Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
duke@1 3419 syms.iterableType.tsym);
duke@1 3420 if (iterableType.getTypeArguments().nonEmpty())
duke@1 3421 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
duke@1 3422 Type eType = tree.expr.type;
vromero@1687 3423 while (eType.hasTag(TYPEVAR)) {
vromero@1687 3424 eType = eType.getUpperBound();
vromero@1687 3425 }
duke@1 3426 tree.expr.type = types.erasure(eType);
vromero@1687 3427 if (eType.isCompound())
duke@1 3428 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
duke@1 3429 Symbol iterator = lookupMethod(tree.expr.pos(),
duke@1 3430 names.iterator,
vromero@1640 3431 eType,
duke@1 3432 List.<Type>nil());
duke@1 3433 VarSymbol itvar = new VarSymbol(0, names.fromString("i" + target.syntheticNameChar()),
duke@1 3434 types.erasure(iterator.type.getReturnType()),
duke@1 3435 currentMethodSym);
vromero@1640 3436
vromero@1640 3437 JCStatement init = make.
vromero@1640 3438 VarDef(itvar, make.App(make.Select(tree.expr, iterator)
vromero@1640 3439 .setType(types.erasure(iterator.type))));
vromero@1640 3440
duke@1 3441 Symbol hasNext = lookupMethod(tree.expr.pos(),
duke@1 3442 names.hasNext,
duke@1 3443 itvar.type,
duke@1 3444 List.<Type>nil());
duke@1 3445 JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
duke@1 3446 Symbol next = lookupMethod(tree.expr.pos(),
duke@1 3447 names.next,
duke@1 3448 itvar.type,
duke@1 3449 List.<Type>nil());
duke@1 3450 JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
mcimadamore@81 3451 if (tree.var.type.isPrimitive())
mcimadamore@81 3452 vardefinit = make.TypeCast(types.upperBound(iteratorTarget), vardefinit);
mcimadamore@81 3453 else
mcimadamore@81 3454 vardefinit = make.TypeCast(tree.var.type, vardefinit);
mcimadamore@33 3455 JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
mcimadamore@33 3456 tree.var.name,
mcimadamore@33 3457 tree.var.vartype,
mcimadamore@33 3458 vardefinit).setType(tree.var.type);
mcimadamore@33 3459 indexDef.sym = tree.var.sym;
duke@1 3460 JCBlock body = make.Block(0, List.of(indexDef, tree.body));
mcimadamore@237 3461 body.endpos = TreeInfo.endPos(tree.body);
duke@1 3462 result = translate(make.
duke@1 3463 ForLoop(List.of(init),
duke@1 3464 cond,
duke@1 3465 List.<JCExpressionStatement>nil(),
duke@1 3466 body));
duke@1 3467 patchTargets(body, tree, result);
duke@1 3468 }
duke@1 3469
duke@1 3470 public void visitVarDef(JCVariableDecl tree) {
duke@1 3471 MethodSymbol oldMethodSym = currentMethodSym;
duke@1 3472 tree.mods = translate(tree.mods);
duke@1 3473 tree.vartype = translate(tree.vartype);
duke@1 3474 if (currentMethodSym == null) {
duke@1 3475 // A class or instance field initializer.
duke@1 3476 currentMethodSym =
duke@1 3477 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
duke@1 3478 names.empty, null,
duke@1 3479 currentClass);
duke@1 3480 }
duke@1 3481 if (tree.init != null) tree.init = translate(tree.init, tree.type);
duke@1 3482 result = tree;
duke@1 3483 currentMethodSym = oldMethodSym;
duke@1 3484 }
duke@1 3485
duke@1 3486 public void visitBlock(JCBlock tree) {
duke@1 3487 MethodSymbol oldMethodSym = currentMethodSym;
duke@1 3488 if (currentMethodSym == null) {
duke@1 3489 // Block is a static or instance initializer.
duke@1 3490 currentMethodSym =
duke@1 3491 new MethodSymbol(tree.flags | BLOCK,
duke@1 3492 names.empty, null,
duke@1 3493 currentClass);
duke@1 3494 }
duke@1 3495 super.visitBlock(tree);
duke@1 3496 currentMethodSym = oldMethodSym;
duke@1 3497 }
duke@1 3498
duke@1 3499 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 3500 tree.body = translate(tree.body);
duke@1 3501 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3502 result = tree;
duke@1 3503 }
duke@1 3504
duke@1 3505 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 3506 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3507 tree.body = translate(tree.body);
duke@1 3508 result = tree;
duke@1 3509 }
duke@1 3510
duke@1 3511 public void visitForLoop(JCForLoop tree) {
duke@1 3512 tree.init = translate(tree.init);
duke@1 3513 if (tree.cond != null)
duke@1 3514 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3515 tree.step = translate(tree.step);
duke@1 3516 tree.body = translate(tree.body);
duke@1 3517 result = tree;
duke@1 3518 }
duke@1 3519
duke@1 3520 public void visitReturn(JCReturn tree) {
duke@1 3521 if (tree.expr != null)
duke@1 3522 tree.expr = translate(tree.expr,
duke@1 3523 types.erasure(currentMethodDef
duke@1 3524 .restype.type));
duke@1 3525 result = tree;
duke@1 3526 }
duke@1 3527
duke@1 3528 public void visitSwitch(JCSwitch tree) {
duke@1 3529 Type selsuper = types.supertype(tree.selector.type);
duke@1 3530 boolean enumSwitch = selsuper != null &&
duke@1 3531 (tree.selector.type.tsym.flags() & ENUM) != 0;
darcy@430 3532 boolean stringSwitch = selsuper != null &&
darcy@430 3533 types.isSameType(tree.selector.type, syms.stringType);
darcy@430 3534 Type target = enumSwitch ? tree.selector.type :
darcy@430 3535 (stringSwitch? syms.stringType : syms.intType);
duke@1 3536 tree.selector = translate(tree.selector, target);
duke@1 3537 tree.cases = translateCases(tree.cases);
duke@1 3538 if (enumSwitch) {
duke@1 3539 result = visitEnumSwitch(tree);
darcy@430 3540 } else if (stringSwitch) {
darcy@430 3541 result = visitStringSwitch(tree);
duke@1 3542 } else {
duke@1 3543 result = tree;
duke@1 3544 }
duke@1 3545 }
duke@1 3546
duke@1 3547 public JCTree visitEnumSwitch(JCSwitch tree) {
duke@1 3548 TypeSymbol enumSym = tree.selector.type.tsym;
duke@1 3549 EnumMapping map = mapForEnum(tree.pos(), enumSym);
duke@1 3550 make_at(tree.pos());
duke@1 3551 Symbol ordinalMethod = lookupMethod(tree.pos(),
duke@1 3552 names.ordinal,
duke@1 3553 tree.selector.type,
duke@1 3554 List.<Type>nil());
duke@1 3555 JCArrayAccess selector = make.Indexed(map.mapVar,
duke@1 3556 make.App(make.Select(tree.selector,
duke@1 3557 ordinalMethod)));
duke@1 3558 ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
duke@1 3559 for (JCCase c : tree.cases) {
duke@1 3560 if (c.pat != null) {
duke@1 3561 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
duke@1 3562 JCLiteral pat = map.forConstant(label);
duke@1 3563 cases.append(make.Case(pat, c.stats));
duke@1 3564 } else {
duke@1 3565 cases.append(c);
duke@1 3566 }
duke@1 3567 }
darcy@443 3568 JCSwitch enumSwitch = make.Switch(selector, cases.toList());
darcy@443 3569 patchTargets(enumSwitch, tree, enumSwitch);
darcy@443 3570 return enumSwitch;
duke@1 3571 }
duke@1 3572
darcy@430 3573 public JCTree visitStringSwitch(JCSwitch tree) {
darcy@430 3574 List<JCCase> caseList = tree.getCases();
darcy@430 3575 int alternatives = caseList.size();
darcy@430 3576
darcy@430 3577 if (alternatives == 0) { // Strange but legal possibility
darcy@430 3578 return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
darcy@430 3579 } else {
darcy@430 3580 /*
darcy@430 3581 * The general approach used is to translate a single
darcy@430 3582 * string switch statement into a series of two chained
darcy@430 3583 * switch statements: the first a synthesized statement
darcy@430 3584 * switching on the argument string's hash value and
darcy@430 3585 * computing a string's position in the list of original
darcy@430 3586 * case labels, if any, followed by a second switch on the
darcy@430 3587 * computed integer value. The second switch has the same
darcy@430 3588 * code structure as the original string switch statement
darcy@430 3589 * except that the string case labels are replaced with
darcy@430 3590 * positional integer constants starting at 0.
darcy@430 3591 *
darcy@430 3592 * The first switch statement can be thought of as an
darcy@430 3593 * inlined map from strings to their position in the case
darcy@430 3594 * label list. An alternate implementation would use an
darcy@430 3595 * actual Map for this purpose, as done for enum switches.
darcy@430 3596 *
darcy@430 3597 * With some additional effort, it would be possible to
darcy@430 3598 * use a single switch statement on the hash code of the
darcy@430 3599 * argument, but care would need to be taken to preserve
darcy@430 3600 * the proper control flow in the presence of hash
darcy@430 3601 * collisions and other complications, such as
darcy@430 3602 * fallthroughs. Switch statements with one or two
darcy@430 3603 * alternatives could also be specially translated into
darcy@430 3604 * if-then statements to omit the computation of the hash
darcy@430 3605 * code.
darcy@430 3606 *
darcy@430 3607 * The generated code assumes that the hashing algorithm
darcy@430 3608 * of String is the same in the compilation environment as
darcy@430 3609 * in the environment the code will run in. The string
darcy@430 3610 * hashing algorithm in the SE JDK has been unchanged
darcy@443 3611 * since at least JDK 1.2. Since the algorithm has been
darcy@443 3612 * specified since that release as well, it is very
darcy@443 3613 * unlikely to be changed in the future.
darcy@443 3614 *
darcy@443 3615 * Different hashing algorithms, such as the length of the
darcy@443 3616 * strings or a perfect hashing algorithm over the
darcy@443 3617 * particular set of case labels, could potentially be
darcy@443 3618 * used instead of String.hashCode.
darcy@430 3619 */
darcy@430 3620
darcy@430 3621 ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
darcy@430 3622
darcy@430 3623 // Map from String case labels to their original position in
darcy@430 3624 // the list of case labels.
darcy@430 3625 Map<String, Integer> caseLabelToPosition =
darcy@430 3626 new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
darcy@430 3627
darcy@430 3628 // Map of hash codes to the string case labels having that hashCode.
darcy@430 3629 Map<Integer, Set<String>> hashToString =
darcy@430 3630 new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
darcy@430 3631
darcy@430 3632 int casePosition = 0;
darcy@430 3633 for(JCCase oneCase : caseList) {
darcy@430 3634 JCExpression expression = oneCase.getExpression();
darcy@430 3635
darcy@430 3636 if (expression != null) { // expression for a "default" case is null
darcy@430 3637 String labelExpr = (String) expression.type.constValue();
darcy@430 3638 Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
jjg@816 3639 Assert.checkNull(mapping);
darcy@430 3640 int hashCode = labelExpr.hashCode();
darcy@430 3641
darcy@430 3642 Set<String> stringSet = hashToString.get(hashCode);
darcy@430 3643 if (stringSet == null) {
darcy@430 3644 stringSet = new LinkedHashSet<String>(1, 1.0f);
darcy@430 3645 stringSet.add(labelExpr);
darcy@430 3646 hashToString.put(hashCode, stringSet);
darcy@430 3647 } else {
darcy@430 3648 boolean added = stringSet.add(labelExpr);
jjg@816 3649 Assert.check(added);
darcy@430 3650 }
darcy@430 3651 }
darcy@430 3652 casePosition++;
darcy@430 3653 }
darcy@430 3654
darcy@430 3655 // Synthesize a switch statement that has the effect of
darcy@430 3656 // mapping from a string to the integer position of that
darcy@430 3657 // string in the list of case labels. This is done by
darcy@430 3658 // switching on the hashCode of the string followed by an
darcy@430 3659 // if-then-else chain comparing the input for equality
darcy@430 3660 // with all the case labels having that hash value.
darcy@430 3661
darcy@430 3662 /*
darcy@430 3663 * s$ = top of stack;
darcy@430 3664 * tmp$ = -1;
darcy@430 3665 * switch($s.hashCode()) {
darcy@430 3666 * case caseLabel.hashCode:
darcy@430 3667 * if (s$.equals("caseLabel_1")
darcy@430 3668 * tmp$ = caseLabelToPosition("caseLabel_1");
darcy@430 3669 * else if (s$.equals("caseLabel_2"))
darcy@430 3670 * tmp$ = caseLabelToPosition("caseLabel_2");
darcy@430 3671 * ...
darcy@430 3672 * break;
darcy@430 3673 * ...
darcy@430 3674 * }
darcy@430 3675 */
darcy@430 3676
darcy@430 3677 VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
darcy@430 3678 names.fromString("s" + tree.pos + target.syntheticNameChar()),
darcy@430 3679 syms.stringType,
darcy@430 3680 currentMethodSym);
darcy@430 3681 stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
darcy@430 3682
darcy@430 3683 VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
darcy@430 3684 names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
darcy@430 3685 syms.intType,
darcy@430 3686 currentMethodSym);
darcy@430 3687 JCVariableDecl dollar_tmp_def =
darcy@430 3688 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
darcy@430 3689 dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
darcy@430 3690 stmtList.append(dollar_tmp_def);
darcy@430 3691 ListBuffer<JCCase> caseBuffer = ListBuffer.lb();
darcy@430 3692 // hashCode will trigger nullcheck on original switch expression
darcy@430 3693 JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
darcy@430 3694 names.hashCode,
darcy@430 3695 List.<JCExpression>nil()).setType(syms.intType);
darcy@430 3696 JCSwitch switch1 = make.Switch(hashCodeCall,
darcy@430 3697 caseBuffer.toList());
darcy@430 3698 for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
darcy@430 3699 int hashCode = entry.getKey();
darcy@430 3700 Set<String> stringsWithHashCode = entry.getValue();
jjg@816 3701 Assert.check(stringsWithHashCode.size() >= 1);
darcy@430 3702
darcy@430 3703 JCStatement elsepart = null;
darcy@430 3704 for(String caseLabel : stringsWithHashCode ) {
darcy@430 3705 JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
darcy@430 3706 names.equals,
darcy@430 3707 List.<JCExpression>of(make.Literal(caseLabel)));
darcy@430 3708 elsepart = make.If(stringEqualsCall,
darcy@430 3709 make.Exec(make.Assign(make.Ident(dollar_tmp),
darcy@430 3710 make.Literal(caseLabelToPosition.get(caseLabel))).
darcy@430 3711 setType(dollar_tmp.type)),
darcy@430 3712 elsepart);
darcy@430 3713 }
darcy@430 3714
darcy@430 3715 ListBuffer<JCStatement> lb = ListBuffer.lb();
darcy@430 3716 JCBreak breakStmt = make.Break(null);
darcy@430 3717 breakStmt.target = switch1;
darcy@430 3718 lb.append(elsepart).append(breakStmt);
darcy@430 3719
darcy@430 3720 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
darcy@430 3721 }
darcy@430 3722
darcy@430 3723 switch1.cases = caseBuffer.toList();
darcy@430 3724 stmtList.append(switch1);
darcy@430 3725
darcy@430 3726 // Make isomorphic switch tree replacing string labels
darcy@430 3727 // with corresponding integer ones from the label to
darcy@430 3728 // position map.
darcy@430 3729
darcy@430 3730 ListBuffer<JCCase> lb = ListBuffer.lb();
darcy@430 3731 JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
darcy@430 3732 for(JCCase oneCase : caseList ) {
darcy@430 3733 // Rewire up old unlabeled break statements to the
darcy@430 3734 // replacement switch being created.
darcy@430 3735 patchTargets(oneCase, tree, switch2);
darcy@430 3736
darcy@430 3737 boolean isDefault = (oneCase.getExpression() == null);
darcy@430 3738 JCExpression caseExpr;
darcy@430 3739 if (isDefault)
darcy@430 3740 caseExpr = null;
darcy@430 3741 else {
darcy@1063 3742 caseExpr = make.Literal(caseLabelToPosition.get((String)TreeInfo.skipParens(oneCase.
darcy@1063 3743 getExpression()).
darcy@430 3744 type.constValue()));
darcy@430 3745 }
darcy@430 3746
darcy@430 3747 lb.append(make.Case(caseExpr,
darcy@430 3748 oneCase.getStatements()));
darcy@430 3749 }
darcy@430 3750
darcy@430 3751 switch2.cases = lb.toList();
darcy@430 3752 stmtList.append(switch2);
darcy@430 3753
darcy@430 3754 return make.Block(0L, stmtList.toList());
darcy@430 3755 }
darcy@430 3756 }
darcy@430 3757
duke@1 3758 public void visitNewArray(JCNewArray tree) {
duke@1 3759 tree.elemtype = translate(tree.elemtype);
duke@1 3760 for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
duke@1 3761 if (t.head != null) t.head = translate(t.head, syms.intType);
duke@1 3762 tree.elems = translate(tree.elems, types.elemtype(tree.type));
duke@1 3763 result = tree;
duke@1 3764 }
duke@1 3765
duke@1 3766 public void visitSelect(JCFieldAccess tree) {
duke@1 3767 // need to special case-access of the form C.super.x
mcimadamore@1393 3768 // these will always need an access method, unless C
mcimadamore@1393 3769 // is a default interface subclassed by the current class.
duke@1 3770 boolean qualifiedSuperAccess =
jjg@1127 3771 tree.selected.hasTag(SELECT) &&
mcimadamore@1393 3772 TreeInfo.name(tree.selected) == names._super &&
mcimadamore@1415 3773 !types.isDirectSuperInterface(((JCFieldAccess)tree.selected).selected.type.tsym, currentClass);
duke@1 3774 tree.selected = translate(tree.selected);
mcimadamore@1393 3775 if (tree.name == names._class) {
duke@1 3776 result = classOf(tree.selected);
mcimadamore@1393 3777 }
mcimadamore@1393 3778 else if (tree.name == names._super &&
mcimadamore@1415 3779 types.isDirectSuperInterface(tree.selected.type.tsym, currentClass)) {
mcimadamore@1393 3780 //default super call!! Not a classic qualified super call
mcimadamore@1393 3781 TypeSymbol supSym = tree.selected.type.tsym;
mcimadamore@1393 3782 Assert.checkNonNull(types.asSuper(currentClass.type, supSym));
mcimadamore@1393 3783 result = tree;
mcimadamore@1393 3784 }
mcimadamore@1393 3785 else if (tree.name == names._this || tree.name == names._super) {
duke@1 3786 result = makeThis(tree.pos(), tree.selected.type.tsym);
mcimadamore@1393 3787 }
duke@1 3788 else
duke@1 3789 result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
duke@1 3790 }
duke@1 3791
duke@1 3792 public void visitLetExpr(LetExpr tree) {
duke@1 3793 tree.defs = translateVarDefs(tree.defs);
duke@1 3794 tree.expr = translate(tree.expr, tree.type);
duke@1 3795 result = tree;
duke@1 3796 }
duke@1 3797
duke@1 3798 // There ought to be nothing to rewrite here;
duke@1 3799 // we don't generate code.
duke@1 3800 public void visitAnnotation(JCAnnotation tree) {
duke@1 3801 result = tree;
duke@1 3802 }
duke@1 3803
darcy@609 3804 @Override
darcy@609 3805 public void visitTry(JCTry tree) {
vromero@1623 3806 /* special case of try without catchers and with finally emtpy.
vromero@1623 3807 * Don't give it a try, translate only the body.
vromero@1623 3808 */
darcy@609 3809 if (tree.resources.isEmpty()) {
vromero@1623 3810 if (tree.catchers.isEmpty() &&
vromero@1623 3811 tree.finalizer.getStatements().isEmpty()) {
vromero@1623 3812 result = translate(tree.body);
vromero@1623 3813 } else {
vromero@1623 3814 super.visitTry(tree);
vromero@1623 3815 }
darcy@609 3816 } else {
darcy@884 3817 result = makeTwrTry(tree);
darcy@609 3818 }
darcy@609 3819 }
darcy@609 3820
duke@1 3821 /**************************************************************************
duke@1 3822 * main method
duke@1 3823 *************************************************************************/
duke@1 3824
duke@1 3825 /** Translate a toplevel class and return a list consisting of
duke@1 3826 * the translated class and translated versions of all inner classes.
duke@1 3827 * @param env The attribution environment current at the class definition.
duke@1 3828 * We need this for resolving some additional symbols.
duke@1 3829 * @param cdef The tree representing the class definition.
duke@1 3830 */
duke@1 3831 public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
duke@1 3832 ListBuffer<JCTree> translated = null;
duke@1 3833 try {
duke@1 3834 attrEnv = env;
duke@1 3835 this.make = make;
ksrini@1138 3836 endPosTable = env.toplevel.endPositions;
duke@1 3837 currentClass = null;
duke@1 3838 currentMethodDef = null;
jjg@1127 3839 outermostClassDef = (cdef.hasTag(CLASSDEF)) ? (JCClassDecl)cdef : null;
duke@1 3840 outermostMemberDef = null;
duke@1 3841 this.translated = new ListBuffer<JCTree>();
duke@1 3842 classdefs = new HashMap<ClassSymbol,JCClassDecl>();
duke@1 3843 actualSymbols = new HashMap<Symbol,Symbol>();
duke@1 3844 freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
duke@1 3845 proxies = new Scope(syms.noSymbol);
darcy@609 3846 twrVars = new Scope(syms.noSymbol);
duke@1 3847 outerThisStack = List.nil();
duke@1 3848 accessNums = new HashMap<Symbol,Integer>();
duke@1 3849 accessSyms = new HashMap<Symbol,MethodSymbol[]>();
duke@1 3850 accessConstrs = new HashMap<Symbol,MethodSymbol>();
jjg@595 3851 accessConstrTags = List.nil();
duke@1 3852 accessed = new ListBuffer<Symbol>();
duke@1 3853 translate(cdef, (JCExpression)null);
duke@1 3854 for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
duke@1 3855 makeAccessible(l.head);
duke@1 3856 for (EnumMapping map : enumSwitchMap.values())
duke@1 3857 map.translate();
mcimadamore@359 3858 checkConflicts(this.translated.toList());
jjg@595 3859 checkAccessConstructorTags();
duke@1 3860 translated = this.translated;
duke@1 3861 } finally {
duke@1 3862 // note that recursive invocations of this method fail hard
duke@1 3863 attrEnv = null;
duke@1 3864 this.make = null;
ksrini@1138 3865 endPosTable = null;
duke@1 3866 currentClass = null;
duke@1 3867 currentMethodDef = null;
duke@1 3868 outermostClassDef = null;
duke@1 3869 outermostMemberDef = null;
duke@1 3870 this.translated = null;
duke@1 3871 classdefs = null;
duke@1 3872 actualSymbols = null;
duke@1 3873 freevarCache = null;
duke@1 3874 proxies = null;
duke@1 3875 outerThisStack = null;
duke@1 3876 accessNums = null;
duke@1 3877 accessSyms = null;
duke@1 3878 accessConstrs = null;
jjg@595 3879 accessConstrTags = null;
duke@1 3880 accessed = null;
duke@1 3881 enumSwitchMap.clear();
duke@1 3882 }
duke@1 3883 return translated.toList();
duke@1 3884 }
duke@1 3885 }

mercurial