src/share/classes/com/sun/tools/javac/comp/Lower.java

Tue, 28 May 2013 12:46:10 +0100

author
vromero
date
Tue, 28 May 2013 12:46:10 +0100
changeset 1783
c6df5b20f9eb
parent 1782
b391ecea538e
child 1802
8fb68f73d4b1
permissions
-rw-r--r--

6970173: Debug pointer at bad position
Reviewed-by: mcimadamore

     1 /*
     2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.  Oracle designates this
     8  * particular file as subject to the "Classpath" exception as provided
     9  * by Oracle in the LICENSE file that accompanied this code.
    10  *
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    14  * version 2 for more details (a copy is included in the LICENSE file that
    15  * accompanied this code).
    16  *
    17  * You should have received a copy of the GNU General Public License version
    18  * 2 along with this work; if not, write to the Free Software Foundation,
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    20  *
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    22  * or visit www.oracle.com if you need additional information or have any
    23  * questions.
    24  */
    26 package com.sun.tools.javac.comp;
    28 import java.util.*;
    30 import com.sun.tools.javac.code.*;
    31 import com.sun.tools.javac.code.Type.AnnotatedType;
    32 import com.sun.tools.javac.jvm.*;
    33 import com.sun.tools.javac.main.Option.PkgInfo;
    34 import com.sun.tools.javac.tree.*;
    35 import com.sun.tools.javac.util.*;
    36 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
    37 import com.sun.tools.javac.util.List;
    39 import com.sun.tools.javac.code.Symbol.*;
    40 import com.sun.tools.javac.tree.JCTree.*;
    41 import com.sun.tools.javac.code.Type.*;
    43 import com.sun.tools.javac.jvm.Target;
    44 import com.sun.tools.javac.tree.EndPosTable;
    46 import static com.sun.tools.javac.code.Flags.*;
    47 import static com.sun.tools.javac.code.Flags.BLOCK;
    48 import static com.sun.tools.javac.code.Kinds.*;
    49 import static com.sun.tools.javac.code.TypeTag.*;
    50 import static com.sun.tools.javac.jvm.ByteCodes.*;
    51 import static com.sun.tools.javac.tree.JCTree.Tag.*;
    52 import javax.lang.model.type.TypeKind;
    54 /** This pass translates away some syntactic sugar: inner classes,
    55  *  class literals, assertions, foreach loops, etc.
    56  *
    57  *  <p><b>This is NOT part of any supported API.
    58  *  If you write code that depends on this, you do so at your own risk.
    59  *  This code and its internal interfaces are subject to change or
    60  *  deletion without notice.</b>
    61  */
    62 public class Lower extends TreeTranslator {
    63     protected static final Context.Key<Lower> lowerKey =
    64         new Context.Key<Lower>();
    66     public static Lower instance(Context context) {
    67         Lower instance = context.get(lowerKey);
    68         if (instance == null)
    69             instance = new Lower(context);
    70         return instance;
    71     }
    73     private Names names;
    74     private Log log;
    75     private Symtab syms;
    76     private Resolve rs;
    77     private Check chk;
    78     private Attr attr;
    79     private TreeMaker make;
    80     private DiagnosticPosition make_pos;
    81     private ClassWriter writer;
    82     private ClassReader reader;
    83     private ConstFold cfolder;
    84     private Target target;
    85     private Source source;
    86     private boolean allowEnums;
    87     private final Name dollarAssertionsDisabled;
    88     private final Name classDollar;
    89     private Types types;
    90     private boolean debugLower;
    91     private PkgInfo pkginfoOpt;
    93     protected Lower(Context context) {
    94         context.put(lowerKey, this);
    95         names = Names.instance(context);
    96         log = Log.instance(context);
    97         syms = Symtab.instance(context);
    98         rs = Resolve.instance(context);
    99         chk = Check.instance(context);
   100         attr = Attr.instance(context);
   101         make = TreeMaker.instance(context);
   102         writer = ClassWriter.instance(context);
   103         reader = ClassReader.instance(context);
   104         cfolder = ConstFold.instance(context);
   105         target = Target.instance(context);
   106         source = Source.instance(context);
   107         allowEnums = source.allowEnums();
   108         dollarAssertionsDisabled = names.
   109             fromString(target.syntheticNameChar() + "assertionsDisabled");
   110         classDollar = names.
   111             fromString("class" + target.syntheticNameChar());
   113         types = Types.instance(context);
   114         Options options = Options.instance(context);
   115         debugLower = options.isSet("debuglower");
   116         pkginfoOpt = PkgInfo.get(options);
   117     }
   119     /** The currently enclosing class.
   120      */
   121     ClassSymbol currentClass;
   123     /** A queue of all translated classes.
   124      */
   125     ListBuffer<JCTree> translated;
   127     /** Environment for symbol lookup, set by translateTopLevelClass.
   128      */
   129     Env<AttrContext> attrEnv;
   131     /** A hash table mapping syntax trees to their ending source positions.
   132      */
   133     EndPosTable endPosTable;
   135 /**************************************************************************
   136  * Global mappings
   137  *************************************************************************/
   139     /** A hash table mapping local classes to their definitions.
   140      */
   141     Map<ClassSymbol, JCClassDecl> classdefs;
   143     /** A hash table mapping local classes to a list of pruned trees.
   144      */
   145     public Map<ClassSymbol, List<JCTree>> prunedTree = new WeakHashMap<ClassSymbol, List<JCTree>>();
   147     /** A hash table mapping virtual accessed symbols in outer subclasses
   148      *  to the actually referred symbol in superclasses.
   149      */
   150     Map<Symbol,Symbol> actualSymbols;
   152     /** The current method definition.
   153      */
   154     JCMethodDecl currentMethodDef;
   156     /** The current method symbol.
   157      */
   158     MethodSymbol currentMethodSym;
   160     /** The currently enclosing outermost class definition.
   161      */
   162     JCClassDecl outermostClassDef;
   164     /** The currently enclosing outermost member definition.
   165      */
   166     JCTree outermostMemberDef;
   168     /** A map from local variable symbols to their translation (as per LambdaToMethod).
   169      * This is required when a capturing local class is created from a lambda (in which
   170      * case the captured symbols should be replaced with the translated lambda symbols).
   171      */
   172     Map<Symbol, Symbol> lambdaTranslationMap = null;
   174     /** A navigator class for assembling a mapping from local class symbols
   175      *  to class definition trees.
   176      *  There is only one case; all other cases simply traverse down the tree.
   177      */
   178     class ClassMap extends TreeScanner {
   180         /** All encountered class defs are entered into classdefs table.
   181          */
   182         public void visitClassDef(JCClassDecl tree) {
   183             classdefs.put(tree.sym, tree);
   184             super.visitClassDef(tree);
   185         }
   186     }
   187     ClassMap classMap = new ClassMap();
   189     /** Map a class symbol to its definition.
   190      *  @param c    The class symbol of which we want to determine the definition.
   191      */
   192     JCClassDecl classDef(ClassSymbol c) {
   193         // First lookup the class in the classdefs table.
   194         JCClassDecl def = classdefs.get(c);
   195         if (def == null && outermostMemberDef != null) {
   196             // If this fails, traverse outermost member definition, entering all
   197             // local classes into classdefs, and try again.
   198             classMap.scan(outermostMemberDef);
   199             def = classdefs.get(c);
   200         }
   201         if (def == null) {
   202             // If this fails, traverse outermost class definition, entering all
   203             // local classes into classdefs, and try again.
   204             classMap.scan(outermostClassDef);
   205             def = classdefs.get(c);
   206         }
   207         return def;
   208     }
   210     /** A hash table mapping class symbols to lists of free variables.
   211      *  accessed by them. Only free variables of the method immediately containing
   212      *  a class are associated with that class.
   213      */
   214     Map<ClassSymbol,List<VarSymbol>> freevarCache;
   216     /** A navigator class for collecting the free variables accessed
   217      *  from a local class. There is only one case; all other cases simply
   218      *  traverse down the tree. This class doesn't deal with the specific
   219      *  of Lower - it's an abstract visitor that is meant to be reused in
   220      *  order to share the local variable capture logic.
   221      */
   222     abstract class BasicFreeVarCollector extends TreeScanner {
   224         /** Add all free variables of class c to fvs list
   225          *  unless they are already there.
   226          */
   227         abstract void addFreeVars(ClassSymbol c);
   229         /** If tree refers to a variable in owner of local class, add it to
   230          *  free variables list.
   231          */
   232         public void visitIdent(JCIdent tree) {
   233             visitSymbol(tree.sym);
   234         }
   235         // where
   236         abstract void visitSymbol(Symbol _sym);
   238         /** If tree refers to a class instance creation expression
   239          *  add all free variables of the freshly created class.
   240          */
   241         public void visitNewClass(JCNewClass tree) {
   242             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
   243             addFreeVars(c);
   244             super.visitNewClass(tree);
   245         }
   247         /** If tree refers to a superclass constructor call,
   248          *  add all free variables of the superclass.
   249          */
   250         public void visitApply(JCMethodInvocation tree) {
   251             if (TreeInfo.name(tree.meth) == names._super) {
   252                 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
   253             }
   254             super.visitApply(tree);
   255         }
   256     }
   258     /**
   259      * Lower-specific subclass of {@code BasicFreeVarCollector}.
   260      */
   261     class FreeVarCollector extends BasicFreeVarCollector {
   263         /** The owner of the local class.
   264          */
   265         Symbol owner;
   267         /** The local class.
   268          */
   269         ClassSymbol clazz;
   271         /** The list of owner's variables accessed from within the local class,
   272          *  without any duplicates.
   273          */
   274         List<VarSymbol> fvs;
   276         FreeVarCollector(ClassSymbol clazz) {
   277             this.clazz = clazz;
   278             this.owner = clazz.owner;
   279             this.fvs = List.nil();
   280         }
   282         /** Add free variable to fvs list unless it is already there.
   283          */
   284         private void addFreeVar(VarSymbol v) {
   285             for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
   286                 if (l.head == v) return;
   287             fvs = fvs.prepend(v);
   288         }
   290         @Override
   291         void addFreeVars(ClassSymbol c) {
   292             List<VarSymbol> fvs = freevarCache.get(c);
   293             if (fvs != null) {
   294                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
   295                     addFreeVar(l.head);
   296                 }
   297             }
   298         }
   300         @Override
   301         void visitSymbol(Symbol _sym) {
   302             Symbol sym = _sym;
   303             if (sym.kind == VAR || sym.kind == MTH) {
   304                 while (sym != null && sym.owner != owner)
   305                     sym = proxies.lookup(proxyName(sym.name)).sym;
   306                 if (sym != null && sym.owner == owner) {
   307                     VarSymbol v = (VarSymbol)sym;
   308                     if (v.getConstValue() == null) {
   309                         addFreeVar(v);
   310                     }
   311                 } else {
   312                     if (outerThisStack.head != null &&
   313                         outerThisStack.head != _sym)
   314                         visitSymbol(outerThisStack.head);
   315                 }
   316             }
   317         }
   319         /** If tree refers to a class instance creation expression
   320          *  add all free variables of the freshly created class.
   321          */
   322         public void visitNewClass(JCNewClass tree) {
   323             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
   324             if (tree.encl == null &&
   325                 c.hasOuterInstance() &&
   326                 outerThisStack.head != null)
   327                 visitSymbol(outerThisStack.head);
   328             super.visitNewClass(tree);
   329         }
   331         /** If tree refers to a qualified this or super expression
   332          *  for anything but the current class, add the outer this
   333          *  stack as a free variable.
   334          */
   335         public void visitSelect(JCFieldAccess tree) {
   336             if ((tree.name == names._this || tree.name == names._super) &&
   337                 tree.selected.type.tsym != clazz &&
   338                 outerThisStack.head != null)
   339                 visitSymbol(outerThisStack.head);
   340             super.visitSelect(tree);
   341         }
   343         /** If tree refers to a superclass constructor call,
   344          *  add all free variables of the superclass.
   345          */
   346         public void visitApply(JCMethodInvocation tree) {
   347             if (TreeInfo.name(tree.meth) == names._super) {
   348                 Symbol constructor = TreeInfo.symbol(tree.meth);
   349                 ClassSymbol c = (ClassSymbol)constructor.owner;
   350                 if (c.hasOuterInstance() &&
   351                     !tree.meth.hasTag(SELECT) &&
   352                     outerThisStack.head != null)
   353                     visitSymbol(outerThisStack.head);
   354             }
   355             super.visitApply(tree);
   356         }
   357     }
   359     /** Return the variables accessed from within a local class, which
   360      *  are declared in the local class' owner.
   361      *  (in reverse order of first access).
   362      */
   363     List<VarSymbol> freevars(ClassSymbol c)  {
   364         if ((c.owner.kind & (VAR | MTH)) != 0) {
   365             List<VarSymbol> fvs = freevarCache.get(c);
   366             if (fvs == null) {
   367                 FreeVarCollector collector = new FreeVarCollector(c);
   368                 collector.scan(classDef(c));
   369                 fvs = collector.fvs;
   370                 freevarCache.put(c, fvs);
   371             }
   372             return fvs;
   373         } else {
   374             return List.nil();
   375         }
   376     }
   378     Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
   380     EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
   381         EnumMapping map = enumSwitchMap.get(enumClass);
   382         if (map == null)
   383             enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
   384         return map;
   385     }
   387     /** This map gives a translation table to be used for enum
   388      *  switches.
   389      *
   390      *  <p>For each enum that appears as the type of a switch
   391      *  expression, we maintain an EnumMapping to assist in the
   392      *  translation, as exemplified by the following example:
   393      *
   394      *  <p>we translate
   395      *  <pre>
   396      *          switch(colorExpression) {
   397      *          case red: stmt1;
   398      *          case green: stmt2;
   399      *          }
   400      *  </pre>
   401      *  into
   402      *  <pre>
   403      *          switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
   404      *          case 1: stmt1;
   405      *          case 2: stmt2
   406      *          }
   407      *  </pre>
   408      *  with the auxiliary table initialized as follows:
   409      *  <pre>
   410      *          class Outer$0 {
   411      *              synthetic final int[] $EnumMap$Color = new int[Color.values().length];
   412      *              static {
   413      *                  try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
   414      *                  try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
   415      *              }
   416      *          }
   417      *  </pre>
   418      *  class EnumMapping provides mapping data and support methods for this translation.
   419      */
   420     class EnumMapping {
   421         EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
   422             this.forEnum = forEnum;
   423             this.values = new LinkedHashMap<VarSymbol,Integer>();
   424             this.pos = pos;
   425             Name varName = names
   426                 .fromString(target.syntheticNameChar() +
   427                             "SwitchMap" +
   428                             target.syntheticNameChar() +
   429                             writer.xClassName(forEnum.type).toString()
   430                             .replace('/', '.')
   431                             .replace('.', target.syntheticNameChar()));
   432             ClassSymbol outerCacheClass = outerCacheClass();
   433             this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
   434                                         varName,
   435                                         new ArrayType(syms.intType, syms.arrayClass),
   436                                         outerCacheClass);
   437             enterSynthetic(pos, mapVar, outerCacheClass.members());
   438         }
   440         DiagnosticPosition pos = null;
   442         // the next value to use
   443         int next = 1; // 0 (unused map elements) go to the default label
   445         // the enum for which this is a map
   446         final TypeSymbol forEnum;
   448         // the field containing the map
   449         final VarSymbol mapVar;
   451         // the mapped values
   452         final Map<VarSymbol,Integer> values;
   454         JCLiteral forConstant(VarSymbol v) {
   455             Integer result = values.get(v);
   456             if (result == null)
   457                 values.put(v, result = next++);
   458             return make.Literal(result);
   459         }
   461         // generate the field initializer for the map
   462         void translate() {
   463             make.at(pos.getStartPosition());
   464             JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
   466             // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
   467             MethodSymbol valuesMethod = lookupMethod(pos,
   468                                                      names.values,
   469                                                      forEnum.type,
   470                                                      List.<Type>nil());
   471             JCExpression size = make // Color.values().length
   472                 .Select(make.App(make.QualIdent(valuesMethod)),
   473                         syms.lengthVar);
   474             JCExpression mapVarInit = make
   475                 .NewArray(make.Type(syms.intType), List.of(size), null)
   476                 .setType(new ArrayType(syms.intType, syms.arrayClass));
   478             // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
   479             ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
   480             Symbol ordinalMethod = lookupMethod(pos,
   481                                                 names.ordinal,
   482                                                 forEnum.type,
   483                                                 List.<Type>nil());
   484             List<JCCatch> catcher = List.<JCCatch>nil()
   485                 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
   486                                                               syms.noSuchFieldErrorType,
   487                                                               syms.noSymbol),
   488                                                 null),
   489                                     make.Block(0, List.<JCStatement>nil())));
   490             for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
   491                 VarSymbol enumerator = e.getKey();
   492                 Integer mappedValue = e.getValue();
   493                 JCExpression assign = make
   494                     .Assign(make.Indexed(mapVar,
   495                                          make.App(make.Select(make.QualIdent(enumerator),
   496                                                               ordinalMethod))),
   497                             make.Literal(mappedValue))
   498                     .setType(syms.intType);
   499                 JCStatement exec = make.Exec(assign);
   500                 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
   501                 stmts.append(_try);
   502             }
   504             owner.defs = owner.defs
   505                 .prepend(make.Block(STATIC, stmts.toList()))
   506                 .prepend(make.VarDef(mapVar, mapVarInit));
   507         }
   508     }
   511 /**************************************************************************
   512  * Tree building blocks
   513  *************************************************************************/
   515     /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
   516      *  pos as make_pos, for use in diagnostics.
   517      **/
   518     TreeMaker make_at(DiagnosticPosition pos) {
   519         make_pos = pos;
   520         return make.at(pos);
   521     }
   523     /** Make an attributed tree representing a literal. This will be an
   524      *  Ident node in the case of boolean literals, a Literal node in all
   525      *  other cases.
   526      *  @param type       The literal's type.
   527      *  @param value      The literal's value.
   528      */
   529     JCExpression makeLit(Type type, Object value) {
   530         return make.Literal(type.getTag(), value).setType(type.constType(value));
   531     }
   533     /** Make an attributed tree representing null.
   534      */
   535     JCExpression makeNull() {
   536         return makeLit(syms.botType, null);
   537     }
   539     /** Make an attributed class instance creation expression.
   540      *  @param ctype    The class type.
   541      *  @param args     The constructor arguments.
   542      */
   543     JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
   544         JCNewClass tree = make.NewClass(null,
   545             null, make.QualIdent(ctype.tsym), args, null);
   546         tree.constructor = rs.resolveConstructor(
   547             make_pos, attrEnv, ctype, TreeInfo.types(args), List.<Type>nil());
   548         tree.type = ctype;
   549         return tree;
   550     }
   552     /** Make an attributed unary expression.
   553      *  @param optag    The operators tree tag.
   554      *  @param arg      The operator's argument.
   555      */
   556     JCUnary makeUnary(JCTree.Tag optag, JCExpression arg) {
   557         JCUnary tree = make.Unary(optag, arg);
   558         tree.operator = rs.resolveUnaryOperator(
   559             make_pos, optag, attrEnv, arg.type);
   560         tree.type = tree.operator.type.getReturnType();
   561         return tree;
   562     }
   564     /** Make an attributed binary expression.
   565      *  @param optag    The operators tree tag.
   566      *  @param lhs      The operator's left argument.
   567      *  @param rhs      The operator's right argument.
   568      */
   569     JCBinary makeBinary(JCTree.Tag optag, JCExpression lhs, JCExpression rhs) {
   570         JCBinary tree = make.Binary(optag, lhs, rhs);
   571         tree.operator = rs.resolveBinaryOperator(
   572             make_pos, optag, attrEnv, lhs.type, rhs.type);
   573         tree.type = tree.operator.type.getReturnType();
   574         return tree;
   575     }
   577     /** Make an attributed assignop expression.
   578      *  @param optag    The operators tree tag.
   579      *  @param lhs      The operator's left argument.
   580      *  @param rhs      The operator's right argument.
   581      */
   582     JCAssignOp makeAssignop(JCTree.Tag optag, JCTree lhs, JCTree rhs) {
   583         JCAssignOp tree = make.Assignop(optag, lhs, rhs);
   584         tree.operator = rs.resolveBinaryOperator(
   585             make_pos, tree.getTag().noAssignOp(), attrEnv, lhs.type, rhs.type);
   586         tree.type = lhs.type;
   587         return tree;
   588     }
   590     /** Convert tree into string object, unless it has already a
   591      *  reference type..
   592      */
   593     JCExpression makeString(JCExpression tree) {
   594         if (!tree.type.isPrimitiveOrVoid()) {
   595             return tree;
   596         } else {
   597             Symbol valueOfSym = lookupMethod(tree.pos(),
   598                                              names.valueOf,
   599                                              syms.stringType,
   600                                              List.of(tree.type));
   601             return make.App(make.QualIdent(valueOfSym), List.of(tree));
   602         }
   603     }
   605     /** Create an empty anonymous class definition and enter and complete
   606      *  its symbol. Return the class definition's symbol.
   607      *  and create
   608      *  @param flags    The class symbol's flags
   609      *  @param owner    The class symbol's owner
   610      */
   611     JCClassDecl makeEmptyClass(long flags, ClassSymbol owner) {
   612         return makeEmptyClass(flags, owner, null, true);
   613     }
   615     JCClassDecl makeEmptyClass(long flags, ClassSymbol owner, Name flatname,
   616             boolean addToDefs) {
   617         // Create class symbol.
   618         ClassSymbol c = reader.defineClass(names.empty, owner);
   619         if (flatname != null) {
   620             c.flatname = flatname;
   621         } else {
   622             c.flatname = chk.localClassName(c);
   623         }
   624         c.sourcefile = owner.sourcefile;
   625         c.completer = null;
   626         c.members_field = new Scope(c);
   627         c.flags_field = flags;
   628         ClassType ctype = (ClassType) c.type;
   629         ctype.supertype_field = syms.objectType;
   630         ctype.interfaces_field = List.nil();
   632         JCClassDecl odef = classDef(owner);
   634         // Enter class symbol in owner scope and compiled table.
   635         enterSynthetic(odef.pos(), c, owner.members());
   636         chk.compiled.put(c.flatname, c);
   638         // Create class definition tree.
   639         JCClassDecl cdef = make.ClassDef(
   640             make.Modifiers(flags), names.empty,
   641             List.<JCTypeParameter>nil(),
   642             null, List.<JCExpression>nil(), List.<JCTree>nil());
   643         cdef.sym = c;
   644         cdef.type = c.type;
   646         // Append class definition tree to owner's definitions.
   647         if (addToDefs) odef.defs = odef.defs.prepend(cdef);
   648         return cdef;
   649     }
   651 /**************************************************************************
   652  * Symbol manipulation utilities
   653  *************************************************************************/
   655     /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
   656      *  @param pos           Position for error reporting.
   657      *  @param sym           The symbol.
   658      *  @param s             The scope.
   659      */
   660     private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
   661         s.enter(sym);
   662     }
   664     /** Create a fresh synthetic name within a given scope - the unique name is
   665      *  obtained by appending '$' chars at the end of the name until no match
   666      *  is found.
   667      *
   668      * @param name base name
   669      * @param s scope in which the name has to be unique
   670      * @return fresh synthetic name
   671      */
   672     private Name makeSyntheticName(Name name, Scope s) {
   673         do {
   674             name = name.append(
   675                     target.syntheticNameChar(),
   676                     names.empty);
   677         } while (lookupSynthetic(name, s) != null);
   678         return name;
   679     }
   681     /** Check whether synthetic symbols generated during lowering conflict
   682      *  with user-defined symbols.
   683      *
   684      *  @param translatedTrees lowered class trees
   685      */
   686     void checkConflicts(List<JCTree> translatedTrees) {
   687         for (JCTree t : translatedTrees) {
   688             t.accept(conflictsChecker);
   689         }
   690     }
   692     JCTree.Visitor conflictsChecker = new TreeScanner() {
   694         TypeSymbol currentClass;
   696         @Override
   697         public void visitMethodDef(JCMethodDecl that) {
   698             chk.checkConflicts(that.pos(), that.sym, currentClass);
   699             super.visitMethodDef(that);
   700         }
   702         @Override
   703         public void visitVarDef(JCVariableDecl that) {
   704             if (that.sym.owner.kind == TYP) {
   705                 chk.checkConflicts(that.pos(), that.sym, currentClass);
   706             }
   707             super.visitVarDef(that);
   708         }
   710         @Override
   711         public void visitClassDef(JCClassDecl that) {
   712             TypeSymbol prevCurrentClass = currentClass;
   713             currentClass = that.sym;
   714             try {
   715                 super.visitClassDef(that);
   716             }
   717             finally {
   718                 currentClass = prevCurrentClass;
   719             }
   720         }
   721     };
   723     /** Look up a synthetic name in a given scope.
   724      *  @param s            The scope.
   725      *  @param name         The name.
   726      */
   727     private Symbol lookupSynthetic(Name name, Scope s) {
   728         Symbol sym = s.lookup(name).sym;
   729         return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
   730     }
   732     /** Look up a method in a given scope.
   733      */
   734     private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
   735         return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, List.<Type>nil());
   736     }
   738     /** Look up a constructor.
   739      */
   740     private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
   741         return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
   742     }
   744     /** Look up a field.
   745      */
   746     private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
   747         return rs.resolveInternalField(pos, attrEnv, qual, name);
   748     }
   750     /** Anon inner classes are used as access constructor tags.
   751      * accessConstructorTag will use an existing anon class if one is available,
   752      * and synthethise a class (with makeEmptyClass) if one is not available.
   753      * However, there is a small possibility that an existing class will not
   754      * be generated as expected if it is inside a conditional with a constant
   755      * expression. If that is found to be the case, create an empty class tree here.
   756      */
   757     private void checkAccessConstructorTags() {
   758         for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
   759             ClassSymbol c = l.head;
   760             if (isTranslatedClassAvailable(c))
   761                 continue;
   762             // Create class definition tree.
   763             JCClassDecl cdec = makeEmptyClass(STATIC | SYNTHETIC,
   764                     c.outermostClass(), c.flatname, false);
   765             swapAccessConstructorTag(c, cdec.sym);
   766             translated.append(cdec);
   767         }
   768     }
   769     // where
   770     private boolean isTranslatedClassAvailable(ClassSymbol c) {
   771         for (JCTree tree: translated) {
   772             if (tree.hasTag(CLASSDEF)
   773                     && ((JCClassDecl) tree).sym == c) {
   774                 return true;
   775             }
   776         }
   777         return false;
   778     }
   780     void swapAccessConstructorTag(ClassSymbol oldCTag, ClassSymbol newCTag) {
   781         for (MethodSymbol methodSymbol : accessConstrs.values()) {
   782             Assert.check(methodSymbol.type.hasTag(METHOD));
   783             MethodType oldMethodType =
   784                     (MethodType)methodSymbol.type;
   785             if (oldMethodType.argtypes.head.tsym == oldCTag)
   786                 methodSymbol.type =
   787                     types.createMethodTypeWithParameters(oldMethodType,
   788                         oldMethodType.getParameterTypes().tail
   789                             .prepend(newCTag.erasure(types)));
   790         }
   791     }
   793 /**************************************************************************
   794  * Access methods
   795  *************************************************************************/
   797     /** Access codes for dereferencing, assignment,
   798      *  and pre/post increment/decrement.
   799      *  Access codes for assignment operations are determined by method accessCode
   800      *  below.
   801      *
   802      *  All access codes for accesses to the current class are even.
   803      *  If a member of the superclass should be accessed instead (because
   804      *  access was via a qualified super), add one to the corresponding code
   805      *  for the current class, making the number odd.
   806      *  This numbering scheme is used by the backend to decide whether
   807      *  to issue an invokevirtual or invokespecial call.
   808      *
   809      *  @see Gen#visitSelect(JCFieldAccess tree)
   810      */
   811     private static final int
   812         DEREFcode = 0,
   813         ASSIGNcode = 2,
   814         PREINCcode = 4,
   815         PREDECcode = 6,
   816         POSTINCcode = 8,
   817         POSTDECcode = 10,
   818         FIRSTASGOPcode = 12;
   820     /** Number of access codes
   821      */
   822     private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
   824     /** A mapping from symbols to their access numbers.
   825      */
   826     private Map<Symbol,Integer> accessNums;
   828     /** A mapping from symbols to an array of access symbols, indexed by
   829      *  access code.
   830      */
   831     private Map<Symbol,MethodSymbol[]> accessSyms;
   833     /** A mapping from (constructor) symbols to access constructor symbols.
   834      */
   835     private Map<Symbol,MethodSymbol> accessConstrs;
   837     /** A list of all class symbols used for access constructor tags.
   838      */
   839     private List<ClassSymbol> accessConstrTags;
   841     /** A queue for all accessed symbols.
   842      */
   843     private ListBuffer<Symbol> accessed;
   845     /** Map bytecode of binary operation to access code of corresponding
   846      *  assignment operation. This is always an even number.
   847      */
   848     private static int accessCode(int bytecode) {
   849         if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
   850             return (bytecode - iadd) * 2 + FIRSTASGOPcode;
   851         else if (bytecode == ByteCodes.string_add)
   852             return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
   853         else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
   854             return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
   855         else
   856             return -1;
   857     }
   859     /** return access code for identifier,
   860      *  @param tree     The tree representing the identifier use.
   861      *  @param enclOp   The closest enclosing operation node of tree,
   862      *                  null if tree is not a subtree of an operation.
   863      */
   864     private static int accessCode(JCTree tree, JCTree enclOp) {
   865         if (enclOp == null)
   866             return DEREFcode;
   867         else if (enclOp.hasTag(ASSIGN) &&
   868                  tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
   869             return ASSIGNcode;
   870         else if (enclOp.getTag().isIncOrDecUnaryOp() &&
   871                  tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
   872             return mapTagToUnaryOpCode(enclOp.getTag());
   873         else if (enclOp.getTag().isAssignop() &&
   874                  tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
   875             return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
   876         else
   877             return DEREFcode;
   878     }
   880     /** Return binary operator that corresponds to given access code.
   881      */
   882     private OperatorSymbol binaryAccessOperator(int acode) {
   883         for (Scope.Entry e = syms.predefClass.members().elems;
   884              e != null;
   885              e = e.sibling) {
   886             if (e.sym instanceof OperatorSymbol) {
   887                 OperatorSymbol op = (OperatorSymbol)e.sym;
   888                 if (accessCode(op.opcode) == acode) return op;
   889             }
   890         }
   891         return null;
   892     }
   894     /** Return tree tag for assignment operation corresponding
   895      *  to given binary operator.
   896      */
   897     private static JCTree.Tag treeTag(OperatorSymbol operator) {
   898         switch (operator.opcode) {
   899         case ByteCodes.ior: case ByteCodes.lor:
   900             return BITOR_ASG;
   901         case ByteCodes.ixor: case ByteCodes.lxor:
   902             return BITXOR_ASG;
   903         case ByteCodes.iand: case ByteCodes.land:
   904             return BITAND_ASG;
   905         case ByteCodes.ishl: case ByteCodes.lshl:
   906         case ByteCodes.ishll: case ByteCodes.lshll:
   907             return SL_ASG;
   908         case ByteCodes.ishr: case ByteCodes.lshr:
   909         case ByteCodes.ishrl: case ByteCodes.lshrl:
   910             return SR_ASG;
   911         case ByteCodes.iushr: case ByteCodes.lushr:
   912         case ByteCodes.iushrl: case ByteCodes.lushrl:
   913             return USR_ASG;
   914         case ByteCodes.iadd: case ByteCodes.ladd:
   915         case ByteCodes.fadd: case ByteCodes.dadd:
   916         case ByteCodes.string_add:
   917             return PLUS_ASG;
   918         case ByteCodes.isub: case ByteCodes.lsub:
   919         case ByteCodes.fsub: case ByteCodes.dsub:
   920             return MINUS_ASG;
   921         case ByteCodes.imul: case ByteCodes.lmul:
   922         case ByteCodes.fmul: case ByteCodes.dmul:
   923             return MUL_ASG;
   924         case ByteCodes.idiv: case ByteCodes.ldiv:
   925         case ByteCodes.fdiv: case ByteCodes.ddiv:
   926             return DIV_ASG;
   927         case ByteCodes.imod: case ByteCodes.lmod:
   928         case ByteCodes.fmod: case ByteCodes.dmod:
   929             return MOD_ASG;
   930         default:
   931             throw new AssertionError();
   932         }
   933     }
   935     /** The name of the access method with number `anum' and access code `acode'.
   936      */
   937     Name accessName(int anum, int acode) {
   938         return names.fromString(
   939             "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
   940     }
   942     /** Return access symbol for a private or protected symbol from an inner class.
   943      *  @param sym        The accessed private symbol.
   944      *  @param tree       The accessing tree.
   945      *  @param enclOp     The closest enclosing operation node of tree,
   946      *                    null if tree is not a subtree of an operation.
   947      *  @param protAccess Is access to a protected symbol in another
   948      *                    package?
   949      *  @param refSuper   Is access via a (qualified) C.super?
   950      */
   951     MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
   952                               boolean protAccess, boolean refSuper) {
   953         ClassSymbol accOwner = refSuper && protAccess
   954             // For access via qualified super (T.super.x), place the
   955             // access symbol on T.
   956             ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
   957             // Otherwise pretend that the owner of an accessed
   958             // protected symbol is the enclosing class of the current
   959             // class which is a subclass of the symbol's owner.
   960             : accessClass(sym, protAccess, tree);
   962         Symbol vsym = sym;
   963         if (sym.owner != accOwner) {
   964             vsym = sym.clone(accOwner);
   965             actualSymbols.put(vsym, sym);
   966         }
   968         Integer anum              // The access number of the access method.
   969             = accessNums.get(vsym);
   970         if (anum == null) {
   971             anum = accessed.length();
   972             accessNums.put(vsym, anum);
   973             accessSyms.put(vsym, new MethodSymbol[NCODES]);
   974             accessed.append(vsym);
   975             // System.out.println("accessing " + vsym + " in " + vsym.location());
   976         }
   978         int acode;                // The access code of the access method.
   979         List<Type> argtypes;      // The argument types of the access method.
   980         Type restype;             // The result type of the access method.
   981         List<Type> thrown;        // The thrown exceptions of the access method.
   982         switch (vsym.kind) {
   983         case VAR:
   984             acode = accessCode(tree, enclOp);
   985             if (acode >= FIRSTASGOPcode) {
   986                 OperatorSymbol operator = binaryAccessOperator(acode);
   987                 if (operator.opcode == string_add)
   988                     argtypes = List.of(syms.objectType);
   989                 else
   990                     argtypes = operator.type.getParameterTypes().tail;
   991             } else if (acode == ASSIGNcode)
   992                 argtypes = List.of(vsym.erasure(types));
   993             else
   994                 argtypes = List.nil();
   995             restype = vsym.erasure(types);
   996             thrown = List.nil();
   997             break;
   998         case MTH:
   999             acode = DEREFcode;
  1000             argtypes = vsym.erasure(types).getParameterTypes();
  1001             restype = vsym.erasure(types).getReturnType();
  1002             thrown = vsym.type.getThrownTypes();
  1003             break;
  1004         default:
  1005             throw new AssertionError();
  1008         // For references via qualified super, increment acode by one,
  1009         // making it odd.
  1010         if (protAccess && refSuper) acode++;
  1012         // Instance access methods get instance as first parameter.
  1013         // For protected symbols this needs to be the instance as a member
  1014         // of the type containing the accessed symbol, not the class
  1015         // containing the access method.
  1016         if ((vsym.flags() & STATIC) == 0) {
  1017             argtypes = argtypes.prepend(vsym.owner.erasure(types));
  1019         MethodSymbol[] accessors = accessSyms.get(vsym);
  1020         MethodSymbol accessor = accessors[acode];
  1021         if (accessor == null) {
  1022             accessor = new MethodSymbol(
  1023                 STATIC | SYNTHETIC,
  1024                 accessName(anum.intValue(), acode),
  1025                 new MethodType(argtypes, restype, thrown, syms.methodClass),
  1026                 accOwner);
  1027             enterSynthetic(tree.pos(), accessor, accOwner.members());
  1028             accessors[acode] = accessor;
  1030         return accessor;
  1033     /** The qualifier to be used for accessing a symbol in an outer class.
  1034      *  This is either C.sym or C.this.sym, depending on whether or not
  1035      *  sym is static.
  1036      *  @param sym   The accessed symbol.
  1037      */
  1038     JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
  1039         return (sym.flags() & STATIC) != 0
  1040             ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
  1041             : makeOwnerThis(pos, sym, true);
  1044     /** Do we need an access method to reference private symbol?
  1045      */
  1046     boolean needsPrivateAccess(Symbol sym) {
  1047         if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
  1048             return false;
  1049         } else if (sym.name == names.init && (sym.owner.owner.kind & (VAR | MTH)) != 0) {
  1050             // private constructor in local class: relax protection
  1051             sym.flags_field &= ~PRIVATE;
  1052             return false;
  1053         } else {
  1054             return true;
  1058     /** Do we need an access method to reference symbol in other package?
  1059      */
  1060     boolean needsProtectedAccess(Symbol sym, JCTree tree) {
  1061         if ((sym.flags() & PROTECTED) == 0 ||
  1062             sym.owner.owner == currentClass.owner || // fast special case
  1063             sym.packge() == currentClass.packge())
  1064             return false;
  1065         if (!currentClass.isSubClass(sym.owner, types))
  1066             return true;
  1067         if ((sym.flags() & STATIC) != 0 ||
  1068             !tree.hasTag(SELECT) ||
  1069             TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
  1070             return false;
  1071         return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
  1074     /** The class in which an access method for given symbol goes.
  1075      *  @param sym        The access symbol
  1076      *  @param protAccess Is access to a protected symbol in another
  1077      *                    package?
  1078      */
  1079     ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
  1080         if (protAccess) {
  1081             Symbol qualifier = null;
  1082             ClassSymbol c = currentClass;
  1083             if (tree.hasTag(SELECT) && (sym.flags() & STATIC) == 0) {
  1084                 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
  1085                 while (!qualifier.isSubClass(c, types)) {
  1086                     c = c.owner.enclClass();
  1088                 return c;
  1089             } else {
  1090                 while (!c.isSubClass(sym.owner, types)) {
  1091                     c = c.owner.enclClass();
  1094             return c;
  1095         } else {
  1096             // the symbol is private
  1097             return sym.owner.enclClass();
  1101     private void addPrunedInfo(JCTree tree) {
  1102         List<JCTree> infoList = prunedTree.get(currentClass);
  1103         infoList = (infoList == null) ? List.of(tree) : infoList.prepend(tree);
  1104         prunedTree.put(currentClass, infoList);
  1107     /** Ensure that identifier is accessible, return tree accessing the identifier.
  1108      *  @param sym      The accessed symbol.
  1109      *  @param tree     The tree referring to the symbol.
  1110      *  @param enclOp   The closest enclosing operation node of tree,
  1111      *                  null if tree is not a subtree of an operation.
  1112      *  @param refSuper Is access via a (qualified) C.super?
  1113      */
  1114     JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
  1115         // Access a free variable via its proxy, or its proxy's proxy
  1116         while (sym.kind == VAR && sym.owner.kind == MTH &&
  1117             sym.owner.enclClass() != currentClass) {
  1118             // A constant is replaced by its constant value.
  1119             Object cv = ((VarSymbol)sym).getConstValue();
  1120             if (cv != null) {
  1121                 make.at(tree.pos);
  1122                 return makeLit(sym.type, cv);
  1124             // Otherwise replace the variable by its proxy.
  1125             sym = proxies.lookup(proxyName(sym.name)).sym;
  1126             Assert.check(sym != null && (sym.flags_field & FINAL) != 0);
  1127             tree = make.at(tree.pos).Ident(sym);
  1129         JCExpression base = (tree.hasTag(SELECT)) ? ((JCFieldAccess) tree).selected : null;
  1130         switch (sym.kind) {
  1131         case TYP:
  1132             if (sym.owner.kind != PCK) {
  1133                 // Convert type idents to
  1134                 // <flat name> or <package name> . <flat name>
  1135                 Name flatname = Convert.shortName(sym.flatName());
  1136                 while (base != null &&
  1137                        TreeInfo.symbol(base) != null &&
  1138                        TreeInfo.symbol(base).kind != PCK) {
  1139                     base = (base.hasTag(SELECT))
  1140                         ? ((JCFieldAccess) base).selected
  1141                         : null;
  1143                 if (tree.hasTag(IDENT)) {
  1144                     ((JCIdent) tree).name = flatname;
  1145                 } else if (base == null) {
  1146                     tree = make.at(tree.pos).Ident(sym);
  1147                     ((JCIdent) tree).name = flatname;
  1148                 } else {
  1149                     ((JCFieldAccess) tree).selected = base;
  1150                     ((JCFieldAccess) tree).name = flatname;
  1153             break;
  1154         case MTH: case VAR:
  1155             if (sym.owner.kind == TYP) {
  1157                 // Access methods are required for
  1158                 //  - private members,
  1159                 //  - protected members in a superclass of an
  1160                 //    enclosing class contained in another package.
  1161                 //  - all non-private members accessed via a qualified super.
  1162                 boolean protAccess = refSuper && !needsPrivateAccess(sym)
  1163                     || needsProtectedAccess(sym, tree);
  1164                 boolean accReq = protAccess || needsPrivateAccess(sym);
  1166                 // A base has to be supplied for
  1167                 //  - simple identifiers accessing variables in outer classes.
  1168                 boolean baseReq =
  1169                     base == null &&
  1170                     sym.owner != syms.predefClass &&
  1171                     !sym.isMemberOf(currentClass, types);
  1173                 if (accReq || baseReq) {
  1174                     make.at(tree.pos);
  1176                     // Constants are replaced by their constant value.
  1177                     if (sym.kind == VAR) {
  1178                         Object cv = ((VarSymbol)sym).getConstValue();
  1179                         if (cv != null) {
  1180                             addPrunedInfo(tree);
  1181                             return makeLit(sym.type, cv);
  1185                     // Private variables and methods are replaced by calls
  1186                     // to their access methods.
  1187                     if (accReq) {
  1188                         List<JCExpression> args = List.nil();
  1189                         if ((sym.flags() & STATIC) == 0) {
  1190                             // Instance access methods get instance
  1191                             // as first parameter.
  1192                             if (base == null)
  1193                                 base = makeOwnerThis(tree.pos(), sym, true);
  1194                             args = args.prepend(base);
  1195                             base = null;   // so we don't duplicate code
  1197                         Symbol access = accessSymbol(sym, tree,
  1198                                                      enclOp, protAccess,
  1199                                                      refSuper);
  1200                         JCExpression receiver = make.Select(
  1201                             base != null ? base : make.QualIdent(access.owner),
  1202                             access);
  1203                         return make.App(receiver, args);
  1205                     // Other accesses to members of outer classes get a
  1206                     // qualifier.
  1207                     } else if (baseReq) {
  1208                         return make.at(tree.pos).Select(
  1209                             accessBase(tree.pos(), sym), sym).setType(tree.type);
  1212             } else if (sym.owner.kind == MTH && lambdaTranslationMap != null) {
  1213                 //sym is a local variable - check the lambda translation map to
  1214                 //see if sym has been translated to something else in the current
  1215                 //scope (by LambdaToMethod)
  1216                 Symbol translatedSym = lambdaTranslationMap.get(sym);
  1217                 if (translatedSym != null) {
  1218                     tree = make.at(tree.pos).Ident(translatedSym);
  1222         return tree;
  1225     /** Ensure that identifier is accessible, return tree accessing the identifier.
  1226      *  @param tree     The identifier tree.
  1227      */
  1228     JCExpression access(JCExpression tree) {
  1229         Symbol sym = TreeInfo.symbol(tree);
  1230         return sym == null ? tree : access(sym, tree, null, false);
  1233     /** Return access constructor for a private constructor,
  1234      *  or the constructor itself, if no access constructor is needed.
  1235      *  @param pos       The position to report diagnostics, if any.
  1236      *  @param constr    The private constructor.
  1237      */
  1238     Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
  1239         if (needsPrivateAccess(constr)) {
  1240             ClassSymbol accOwner = constr.owner.enclClass();
  1241             MethodSymbol aconstr = accessConstrs.get(constr);
  1242             if (aconstr == null) {
  1243                 List<Type> argtypes = constr.type.getParameterTypes();
  1244                 if ((accOwner.flags_field & ENUM) != 0)
  1245                     argtypes = argtypes
  1246                         .prepend(syms.intType)
  1247                         .prepend(syms.stringType);
  1248                 aconstr = new MethodSymbol(
  1249                     SYNTHETIC,
  1250                     names.init,
  1251                     new MethodType(
  1252                         argtypes.append(
  1253                             accessConstructorTag().erasure(types)),
  1254                         constr.type.getReturnType(),
  1255                         constr.type.getThrownTypes(),
  1256                         syms.methodClass),
  1257                     accOwner);
  1258                 enterSynthetic(pos, aconstr, accOwner.members());
  1259                 accessConstrs.put(constr, aconstr);
  1260                 accessed.append(constr);
  1262             return aconstr;
  1263         } else {
  1264             return constr;
  1268     /** Return an anonymous class nested in this toplevel class.
  1269      */
  1270     ClassSymbol accessConstructorTag() {
  1271         ClassSymbol topClass = currentClass.outermostClass();
  1272         Name flatname = names.fromString("" + topClass.getQualifiedName() +
  1273                                          target.syntheticNameChar() +
  1274                                          "1");
  1275         ClassSymbol ctag = chk.compiled.get(flatname);
  1276         if (ctag == null)
  1277             ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass).sym;
  1278         // keep a record of all tags, to verify that all are generated as required
  1279         accessConstrTags = accessConstrTags.prepend(ctag);
  1280         return ctag;
  1283     /** Add all required access methods for a private symbol to enclosing class.
  1284      *  @param sym       The symbol.
  1285      */
  1286     void makeAccessible(Symbol sym) {
  1287         JCClassDecl cdef = classDef(sym.owner.enclClass());
  1288         if (cdef == null) Assert.error("class def not found: " + sym + " in " + sym.owner);
  1289         if (sym.name == names.init) {
  1290             cdef.defs = cdef.defs.prepend(
  1291                 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
  1292         } else {
  1293             MethodSymbol[] accessors = accessSyms.get(sym);
  1294             for (int i = 0; i < NCODES; i++) {
  1295                 if (accessors[i] != null)
  1296                     cdef.defs = cdef.defs.prepend(
  1297                         accessDef(cdef.pos, sym, accessors[i], i));
  1302     /** Maps unary operator integer codes to JCTree.Tag objects
  1303      *  @param unaryOpCode the unary operator code
  1304      */
  1305     private static Tag mapUnaryOpCodeToTag(int unaryOpCode){
  1306         switch (unaryOpCode){
  1307             case PREINCcode:
  1308                 return PREINC;
  1309             case PREDECcode:
  1310                 return PREDEC;
  1311             case POSTINCcode:
  1312                 return POSTINC;
  1313             case POSTDECcode:
  1314                 return POSTDEC;
  1315             default:
  1316                 return NO_TAG;
  1320     /** Maps JCTree.Tag objects to unary operator integer codes
  1321      *  @param tag the JCTree.Tag
  1322      */
  1323     private static int mapTagToUnaryOpCode(Tag tag){
  1324         switch (tag){
  1325             case PREINC:
  1326                 return PREINCcode;
  1327             case PREDEC:
  1328                 return PREDECcode;
  1329             case POSTINC:
  1330                 return POSTINCcode;
  1331             case POSTDEC:
  1332                 return POSTDECcode;
  1333             default:
  1334                 return -1;
  1338     /** Construct definition of an access method.
  1339      *  @param pos        The source code position of the definition.
  1340      *  @param vsym       The private or protected symbol.
  1341      *  @param accessor   The access method for the symbol.
  1342      *  @param acode      The access code.
  1343      */
  1344     JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
  1345 //      System.err.println("access " + vsym + " with " + accessor);//DEBUG
  1346         currentClass = vsym.owner.enclClass();
  1347         make.at(pos);
  1348         JCMethodDecl md = make.MethodDef(accessor, null);
  1350         // Find actual symbol
  1351         Symbol sym = actualSymbols.get(vsym);
  1352         if (sym == null) sym = vsym;
  1354         JCExpression ref;           // The tree referencing the private symbol.
  1355         List<JCExpression> args;    // Any additional arguments to be passed along.
  1356         if ((sym.flags() & STATIC) != 0) {
  1357             ref = make.Ident(sym);
  1358             args = make.Idents(md.params);
  1359         } else {
  1360             ref = make.Select(make.Ident(md.params.head), sym);
  1361             args = make.Idents(md.params.tail);
  1363         JCStatement stat;          // The statement accessing the private symbol.
  1364         if (sym.kind == VAR) {
  1365             // Normalize out all odd access codes by taking floor modulo 2:
  1366             int acode1 = acode - (acode & 1);
  1368             JCExpression expr;      // The access method's return value.
  1369             switch (acode1) {
  1370             case DEREFcode:
  1371                 expr = ref;
  1372                 break;
  1373             case ASSIGNcode:
  1374                 expr = make.Assign(ref, args.head);
  1375                 break;
  1376             case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
  1377                 expr = makeUnary(mapUnaryOpCodeToTag(acode1), ref);
  1378                 break;
  1379             default:
  1380                 expr = make.Assignop(
  1381                     treeTag(binaryAccessOperator(acode1)), ref, args.head);
  1382                 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
  1384             stat = make.Return(expr.setType(sym.type));
  1385         } else {
  1386             stat = make.Call(make.App(ref, args));
  1388         md.body = make.Block(0, List.of(stat));
  1390         // Make sure all parameters, result types and thrown exceptions
  1391         // are accessible.
  1392         for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
  1393             l.head.vartype = access(l.head.vartype);
  1394         md.restype = access(md.restype);
  1395         for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
  1396             l.head = access(l.head);
  1398         return md;
  1401     /** Construct definition of an access constructor.
  1402      *  @param pos        The source code position of the definition.
  1403      *  @param constr     The private constructor.
  1404      *  @param accessor   The access method for the constructor.
  1405      */
  1406     JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
  1407         make.at(pos);
  1408         JCMethodDecl md = make.MethodDef(accessor,
  1409                                       accessor.externalType(types),
  1410                                       null);
  1411         JCIdent callee = make.Ident(names._this);
  1412         callee.sym = constr;
  1413         callee.type = constr.type;
  1414         md.body =
  1415             make.Block(0, List.<JCStatement>of(
  1416                 make.Call(
  1417                     make.App(
  1418                         callee,
  1419                         make.Idents(md.params.reverse().tail.reverse())))));
  1420         return md;
  1423 /**************************************************************************
  1424  * Free variables proxies and this$n
  1425  *************************************************************************/
  1427     /** A scope containing all free variable proxies for currently translated
  1428      *  class, as well as its this$n symbol (if needed).
  1429      *  Proxy scopes are nested in the same way classes are.
  1430      *  Inside a constructor, proxies and any this$n symbol are duplicated
  1431      *  in an additional innermost scope, where they represent the constructor
  1432      *  parameters.
  1433      */
  1434     Scope proxies;
  1436     /** A scope containing all unnamed resource variables/saved
  1437      *  exception variables for translated TWR blocks
  1438      */
  1439     Scope twrVars;
  1441     /** A stack containing the this$n field of the currently translated
  1442      *  classes (if needed) in innermost first order.
  1443      *  Inside a constructor, proxies and any this$n symbol are duplicated
  1444      *  in an additional innermost scope, where they represent the constructor
  1445      *  parameters.
  1446      */
  1447     List<VarSymbol> outerThisStack;
  1449     /** The name of a free variable proxy.
  1450      */
  1451     Name proxyName(Name name) {
  1452         return names.fromString("val" + target.syntheticNameChar() + name);
  1455     /** Proxy definitions for all free variables in given list, in reverse order.
  1456      *  @param pos        The source code position of the definition.
  1457      *  @param freevars   The free variables.
  1458      *  @param owner      The class in which the definitions go.
  1459      */
  1460     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
  1461         long flags = FINAL | SYNTHETIC;
  1462         if (owner.kind == TYP &&
  1463             target.usePrivateSyntheticFields())
  1464             flags |= PRIVATE;
  1465         List<JCVariableDecl> defs = List.nil();
  1466         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
  1467             VarSymbol v = l.head;
  1468             VarSymbol proxy = new VarSymbol(
  1469                 flags, proxyName(v.name), v.erasure(types), owner);
  1470             proxies.enter(proxy);
  1471             JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
  1472             vd.vartype = access(vd.vartype);
  1473             defs = defs.prepend(vd);
  1475         return defs;
  1478     /** The name of a this$n field
  1479      *  @param type   The class referenced by the this$n field
  1480      */
  1481     Name outerThisName(Type type, Symbol owner) {
  1482         Type t = type.getEnclosingType();
  1483         int nestingLevel = 0;
  1484         while (t.hasTag(CLASS)) {
  1485             t = t.getEnclosingType();
  1486             nestingLevel++;
  1488         Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
  1489         while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
  1490             result = names.fromString(result.toString() + target.syntheticNameChar());
  1491         return result;
  1494     private VarSymbol makeOuterThisVarSymbol(Symbol owner, long flags) {
  1495         if (owner.kind == TYP &&
  1496             target.usePrivateSyntheticFields())
  1497             flags |= PRIVATE;
  1498         Type target = types.erasure(owner.enclClass().type.getEnclosingType());
  1499         VarSymbol outerThis =
  1500             new VarSymbol(flags, outerThisName(target, owner), target, owner);
  1501         outerThisStack = outerThisStack.prepend(outerThis);
  1502         return outerThis;
  1505     private JCVariableDecl makeOuterThisVarDecl(int pos, VarSymbol sym) {
  1506         JCVariableDecl vd = make.at(pos).VarDef(sym, null);
  1507         vd.vartype = access(vd.vartype);
  1508         return vd;
  1511     /** Definition for this$n field.
  1512      *  @param pos        The source code position of the definition.
  1513      *  @param owner      The method in which the definition goes.
  1514      */
  1515     JCVariableDecl outerThisDef(int pos, MethodSymbol owner) {
  1516         ClassSymbol c = owner.enclClass();
  1517         boolean isMandated =
  1518             // Anonymous constructors
  1519             (owner.isConstructor() && owner.isAnonymous()) ||
  1520             // Constructors of non-private inner member classes
  1521             (owner.isConstructor() && c.isInner() &&
  1522              !c.isPrivate() && !c.isStatic());
  1523         long flags =
  1524             FINAL | (isMandated ? MANDATED : SYNTHETIC);
  1525         VarSymbol outerThis = makeOuterThisVarSymbol(owner, flags);
  1526         owner.extraParams = owner.extraParams.prepend(outerThis);
  1527         return makeOuterThisVarDecl(pos, outerThis);
  1530     /** Definition for this$n field.
  1531      *  @param pos        The source code position of the definition.
  1532      *  @param owner      The class in which the definition goes.
  1533      */
  1534     JCVariableDecl outerThisDef(int pos, ClassSymbol owner) {
  1535         VarSymbol outerThis = makeOuterThisVarSymbol(owner, FINAL | SYNTHETIC);
  1536         return makeOuterThisVarDecl(pos, outerThis);
  1539     /** Return a list of trees that load the free variables in given list,
  1540      *  in reverse order.
  1541      *  @param pos          The source code position to be used for the trees.
  1542      *  @param freevars     The list of free variables.
  1543      */
  1544     List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
  1545         List<JCExpression> args = List.nil();
  1546         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
  1547             args = args.prepend(loadFreevar(pos, l.head));
  1548         return args;
  1550 //where
  1551         JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
  1552             return access(v, make.at(pos).Ident(v), null, false);
  1555     /** Construct a tree simulating the expression {@code C.this}.
  1556      *  @param pos           The source code position to be used for the tree.
  1557      *  @param c             The qualifier class.
  1558      */
  1559     JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
  1560         if (currentClass == c) {
  1561             // in this case, `this' works fine
  1562             return make.at(pos).This(c.erasure(types));
  1563         } else {
  1564             // need to go via this$n
  1565             return makeOuterThis(pos, c);
  1569     /**
  1570      * Optionally replace a try statement with the desugaring of a
  1571      * try-with-resources statement.  The canonical desugaring of
  1573      * try ResourceSpecification
  1574      *   Block
  1576      * is
  1578      * {
  1579      *   final VariableModifiers_minus_final R #resource = Expression;
  1580      *   Throwable #primaryException = null;
  1582      *   try ResourceSpecificationtail
  1583      *     Block
  1584      *   catch (Throwable #t) {
  1585      *     #primaryException = t;
  1586      *     throw #t;
  1587      *   } finally {
  1588      *     if (#resource != null) {
  1589      *       if (#primaryException != null) {
  1590      *         try {
  1591      *           #resource.close();
  1592      *         } catch(Throwable #suppressedException) {
  1593      *           #primaryException.addSuppressed(#suppressedException);
  1594      *         }
  1595      *       } else {
  1596      *         #resource.close();
  1597      *       }
  1598      *     }
  1599      *   }
  1601      * @param tree  The try statement to inspect.
  1602      * @return A a desugared try-with-resources tree, or the original
  1603      * try block if there are no resources to manage.
  1604      */
  1605     JCTree makeTwrTry(JCTry tree) {
  1606         make_at(tree.pos());
  1607         twrVars = twrVars.dup();
  1608         JCBlock twrBlock = makeTwrBlock(tree.resources, tree.body, 0);
  1609         if (tree.catchers.isEmpty() && tree.finalizer == null)
  1610             result = translate(twrBlock);
  1611         else
  1612             result = translate(make.Try(twrBlock, tree.catchers, tree.finalizer));
  1613         twrVars = twrVars.leave();
  1614         return result;
  1617     private JCBlock makeTwrBlock(List<JCTree> resources, JCBlock block, int depth) {
  1618         if (resources.isEmpty())
  1619             return block;
  1621         // Add resource declaration or expression to block statements
  1622         ListBuffer<JCStatement> stats = new ListBuffer<JCStatement>();
  1623         JCTree resource = resources.head;
  1624         JCExpression expr = null;
  1625         if (resource instanceof JCVariableDecl) {
  1626             JCVariableDecl var = (JCVariableDecl) resource;
  1627             expr = make.Ident(var.sym).setType(resource.type);
  1628             stats.add(var);
  1629         } else {
  1630             Assert.check(resource instanceof JCExpression);
  1631             VarSymbol syntheticTwrVar =
  1632             new VarSymbol(SYNTHETIC | FINAL,
  1633                           makeSyntheticName(names.fromString("twrVar" +
  1634                                            depth), twrVars),
  1635                           (resource.type.hasTag(BOT)) ?
  1636                           syms.autoCloseableType : resource.type,
  1637                           currentMethodSym);
  1638             twrVars.enter(syntheticTwrVar);
  1639             JCVariableDecl syntheticTwrVarDecl =
  1640                 make.VarDef(syntheticTwrVar, (JCExpression)resource);
  1641             expr = (JCExpression)make.Ident(syntheticTwrVar);
  1642             stats.add(syntheticTwrVarDecl);
  1645         // Add primaryException declaration
  1646         VarSymbol primaryException =
  1647             new VarSymbol(SYNTHETIC,
  1648                           makeSyntheticName(names.fromString("primaryException" +
  1649                           depth), twrVars),
  1650                           syms.throwableType,
  1651                           currentMethodSym);
  1652         twrVars.enter(primaryException);
  1653         JCVariableDecl primaryExceptionTreeDecl = make.VarDef(primaryException, makeNull());
  1654         stats.add(primaryExceptionTreeDecl);
  1656         // Create catch clause that saves exception and then rethrows it
  1657         VarSymbol param =
  1658             new VarSymbol(FINAL|SYNTHETIC,
  1659                           names.fromString("t" +
  1660                                            target.syntheticNameChar()),
  1661                           syms.throwableType,
  1662                           currentMethodSym);
  1663         JCVariableDecl paramTree = make.VarDef(param, null);
  1664         JCStatement assign = make.Assignment(primaryException, make.Ident(param));
  1665         JCStatement rethrowStat = make.Throw(make.Ident(param));
  1666         JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(assign, rethrowStat));
  1667         JCCatch catchClause = make.Catch(paramTree, catchBlock);
  1669         int oldPos = make.pos;
  1670         make.at(TreeInfo.endPos(block));
  1671         JCBlock finallyClause = makeTwrFinallyClause(primaryException, expr);
  1672         make.at(oldPos);
  1673         JCTry outerTry = make.Try(makeTwrBlock(resources.tail, block, depth + 1),
  1674                                   List.<JCCatch>of(catchClause),
  1675                                   finallyClause);
  1676         stats.add(outerTry);
  1677         return make.Block(0L, stats.toList());
  1680     private JCBlock makeTwrFinallyClause(Symbol primaryException, JCExpression resource) {
  1681         // primaryException.addSuppressed(catchException);
  1682         VarSymbol catchException =
  1683             new VarSymbol(0, make.paramName(2),
  1684                           syms.throwableType,
  1685                           currentMethodSym);
  1686         JCStatement addSuppressionStatement =
  1687             make.Exec(makeCall(make.Ident(primaryException),
  1688                                names.addSuppressed,
  1689                                List.<JCExpression>of(make.Ident(catchException))));
  1691         // try { resource.close(); } catch (e) { primaryException.addSuppressed(e); }
  1692         JCBlock tryBlock =
  1693             make.Block(0L, List.<JCStatement>of(makeResourceCloseInvocation(resource)));
  1694         JCVariableDecl catchExceptionDecl = make.VarDef(catchException, null);
  1695         JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(addSuppressionStatement));
  1696         List<JCCatch> catchClauses = List.<JCCatch>of(make.Catch(catchExceptionDecl, catchBlock));
  1697         JCTry tryTree = make.Try(tryBlock, catchClauses, null);
  1699         // if (primaryException != null) {try...} else resourceClose;
  1700         JCIf closeIfStatement = make.If(makeNonNullCheck(make.Ident(primaryException)),
  1701                                         tryTree,
  1702                                         makeResourceCloseInvocation(resource));
  1704         // if (#resource != null) { if (primaryException ...  }
  1705         return make.Block(0L,
  1706                           List.<JCStatement>of(make.If(makeNonNullCheck(resource),
  1707                                                        closeIfStatement,
  1708                                                        null)));
  1711     private JCStatement makeResourceCloseInvocation(JCExpression resource) {
  1712         // convert to AutoCloseable if needed
  1713         if (types.asSuper(resource.type, syms.autoCloseableType.tsym) == null) {
  1714             resource = (JCExpression) convert(resource, syms.autoCloseableType);
  1717         // create resource.close() method invocation
  1718         JCExpression resourceClose = makeCall(resource,
  1719                                               names.close,
  1720                                               List.<JCExpression>nil());
  1721         return make.Exec(resourceClose);
  1724     private JCExpression makeNonNullCheck(JCExpression expression) {
  1725         return makeBinary(NE, expression, makeNull());
  1728     /** Construct a tree that represents the outer instance
  1729      *  {@code C.this}. Never pick the current `this'.
  1730      *  @param pos           The source code position to be used for the tree.
  1731      *  @param c             The qualifier class.
  1732      */
  1733     JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
  1734         List<VarSymbol> ots = outerThisStack;
  1735         if (ots.isEmpty()) {
  1736             log.error(pos, "no.encl.instance.of.type.in.scope", c);
  1737             Assert.error();
  1738             return makeNull();
  1740         VarSymbol ot = ots.head;
  1741         JCExpression tree = access(make.at(pos).Ident(ot));
  1742         TypeSymbol otc = ot.type.tsym;
  1743         while (otc != c) {
  1744             do {
  1745                 ots = ots.tail;
  1746                 if (ots.isEmpty()) {
  1747                     log.error(pos,
  1748                               "no.encl.instance.of.type.in.scope",
  1749                               c);
  1750                     Assert.error(); // should have been caught in Attr
  1751                     return tree;
  1753                 ot = ots.head;
  1754             } while (ot.owner != otc);
  1755             if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
  1756                 chk.earlyRefError(pos, c);
  1757                 Assert.error(); // should have been caught in Attr
  1758                 return makeNull();
  1760             tree = access(make.at(pos).Select(tree, ot));
  1761             otc = ot.type.tsym;
  1763         return tree;
  1766     /** Construct a tree that represents the closest outer instance
  1767      *  {@code C.this} such that the given symbol is a member of C.
  1768      *  @param pos           The source code position to be used for the tree.
  1769      *  @param sym           The accessed symbol.
  1770      *  @param preciseMatch  should we accept a type that is a subtype of
  1771      *                       sym's owner, even if it doesn't contain sym
  1772      *                       due to hiding, overriding, or non-inheritance
  1773      *                       due to protection?
  1774      */
  1775     JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
  1776         Symbol c = sym.owner;
  1777         if (preciseMatch ? sym.isMemberOf(currentClass, types)
  1778                          : currentClass.isSubClass(sym.owner, types)) {
  1779             // in this case, `this' works fine
  1780             return make.at(pos).This(c.erasure(types));
  1781         } else {
  1782             // need to go via this$n
  1783             return makeOwnerThisN(pos, sym, preciseMatch);
  1787     /**
  1788      * Similar to makeOwnerThis but will never pick "this".
  1789      */
  1790     JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
  1791         Symbol c = sym.owner;
  1792         List<VarSymbol> ots = outerThisStack;
  1793         if (ots.isEmpty()) {
  1794             log.error(pos, "no.encl.instance.of.type.in.scope", c);
  1795             Assert.error();
  1796             return makeNull();
  1798         VarSymbol ot = ots.head;
  1799         JCExpression tree = access(make.at(pos).Ident(ot));
  1800         TypeSymbol otc = ot.type.tsym;
  1801         while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
  1802             do {
  1803                 ots = ots.tail;
  1804                 if (ots.isEmpty()) {
  1805                     log.error(pos,
  1806                         "no.encl.instance.of.type.in.scope",
  1807                         c);
  1808                     Assert.error();
  1809                     return tree;
  1811                 ot = ots.head;
  1812             } while (ot.owner != otc);
  1813             tree = access(make.at(pos).Select(tree, ot));
  1814             otc = ot.type.tsym;
  1816         return tree;
  1819     /** Return tree simulating the assignment {@code this.name = name}, where
  1820      *  name is the name of a free variable.
  1821      */
  1822     JCStatement initField(int pos, Name name) {
  1823         Scope.Entry e = proxies.lookup(name);
  1824         Symbol rhs = e.sym;
  1825         Assert.check(rhs.owner.kind == MTH);
  1826         Symbol lhs = e.next().sym;
  1827         Assert.check(rhs.owner.owner == lhs.owner);
  1828         make.at(pos);
  1829         return
  1830             make.Exec(
  1831                 make.Assign(
  1832                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
  1833                     make.Ident(rhs)).setType(lhs.erasure(types)));
  1836     /** Return tree simulating the assignment {@code this.this$n = this$n}.
  1837      */
  1838     JCStatement initOuterThis(int pos) {
  1839         VarSymbol rhs = outerThisStack.head;
  1840         Assert.check(rhs.owner.kind == MTH);
  1841         VarSymbol lhs = outerThisStack.tail.head;
  1842         Assert.check(rhs.owner.owner == lhs.owner);
  1843         make.at(pos);
  1844         return
  1845             make.Exec(
  1846                 make.Assign(
  1847                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
  1848                     make.Ident(rhs)).setType(lhs.erasure(types)));
  1851 /**************************************************************************
  1852  * Code for .class
  1853  *************************************************************************/
  1855     /** Return the symbol of a class to contain a cache of
  1856      *  compiler-generated statics such as class$ and the
  1857      *  $assertionsDisabled flag.  We create an anonymous nested class
  1858      *  (unless one already exists) and return its symbol.  However,
  1859      *  for backward compatibility in 1.4 and earlier we use the
  1860      *  top-level class itself.
  1861      */
  1862     private ClassSymbol outerCacheClass() {
  1863         ClassSymbol clazz = outermostClassDef.sym;
  1864         if ((clazz.flags() & INTERFACE) == 0 &&
  1865             !target.useInnerCacheClass()) return clazz;
  1866         Scope s = clazz.members();
  1867         for (Scope.Entry e = s.elems; e != null; e = e.sibling)
  1868             if (e.sym.kind == TYP &&
  1869                 e.sym.name == names.empty &&
  1870                 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
  1871         return makeEmptyClass(STATIC | SYNTHETIC, clazz).sym;
  1874     /** Return symbol for "class$" method. If there is no method definition
  1875      *  for class$, construct one as follows:
  1877      *    class class$(String x0) {
  1878      *      try {
  1879      *        return Class.forName(x0);
  1880      *      } catch (ClassNotFoundException x1) {
  1881      *        throw new NoClassDefFoundError(x1.getMessage());
  1882      *      }
  1883      *    }
  1884      */
  1885     private MethodSymbol classDollarSym(DiagnosticPosition pos) {
  1886         ClassSymbol outerCacheClass = outerCacheClass();
  1887         MethodSymbol classDollarSym =
  1888             (MethodSymbol)lookupSynthetic(classDollar,
  1889                                           outerCacheClass.members());
  1890         if (classDollarSym == null) {
  1891             classDollarSym = new MethodSymbol(
  1892                 STATIC | SYNTHETIC,
  1893                 classDollar,
  1894                 new MethodType(
  1895                     List.of(syms.stringType),
  1896                     types.erasure(syms.classType),
  1897                     List.<Type>nil(),
  1898                     syms.methodClass),
  1899                 outerCacheClass);
  1900             enterSynthetic(pos, classDollarSym, outerCacheClass.members());
  1902             JCMethodDecl md = make.MethodDef(classDollarSym, null);
  1903             try {
  1904                 md.body = classDollarSymBody(pos, md);
  1905             } catch (CompletionFailure ex) {
  1906                 md.body = make.Block(0, List.<JCStatement>nil());
  1907                 chk.completionError(pos, ex);
  1909             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
  1910             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
  1912         return classDollarSym;
  1915     /** Generate code for class$(String name). */
  1916     JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
  1917         MethodSymbol classDollarSym = md.sym;
  1918         ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
  1920         JCBlock returnResult;
  1922         // in 1.4.2 and above, we use
  1923         // Class.forName(String name, boolean init, ClassLoader loader);
  1924         // which requires we cache the current loader in cl$
  1925         if (target.classLiteralsNoInit()) {
  1926             // clsym = "private static ClassLoader cl$"
  1927             VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
  1928                                             names.fromString("cl" + target.syntheticNameChar()),
  1929                                             syms.classLoaderType,
  1930                                             outerCacheClass);
  1931             enterSynthetic(pos, clsym, outerCacheClass.members());
  1933             // emit "private static ClassLoader cl$;"
  1934             JCVariableDecl cldef = make.VarDef(clsym, null);
  1935             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
  1936             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
  1938             // newcache := "new cache$1[0]"
  1939             JCNewArray newcache = make.
  1940                 NewArray(make.Type(outerCacheClass.type),
  1941                          List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
  1942                          null);
  1943             newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
  1944                                           syms.arrayClass);
  1946             // forNameSym := java.lang.Class.forName(
  1947             //     String s,boolean init,ClassLoader loader)
  1948             Symbol forNameSym = lookupMethod(make_pos, names.forName,
  1949                                              types.erasure(syms.classType),
  1950                                              List.of(syms.stringType,
  1951                                                      syms.booleanType,
  1952                                                      syms.classLoaderType));
  1953             // clvalue := "(cl$ == null) ?
  1954             // $newcache.getClass().getComponentType().getClassLoader() : cl$"
  1955             JCExpression clvalue =
  1956                 make.Conditional(
  1957                     makeBinary(EQ, make.Ident(clsym), makeNull()),
  1958                     make.Assign(
  1959                         make.Ident(clsym),
  1960                         makeCall(
  1961                             makeCall(makeCall(newcache,
  1962                                               names.getClass,
  1963                                               List.<JCExpression>nil()),
  1964                                      names.getComponentType,
  1965                                      List.<JCExpression>nil()),
  1966                             names.getClassLoader,
  1967                             List.<JCExpression>nil())).setType(syms.classLoaderType),
  1968                     make.Ident(clsym)).setType(syms.classLoaderType);
  1970             // returnResult := "{ return Class.forName(param1, false, cl$); }"
  1971             List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
  1972                                               makeLit(syms.booleanType, 0),
  1973                                               clvalue);
  1974             returnResult = make.
  1975                 Block(0, List.<JCStatement>of(make.
  1976                               Call(make. // return
  1977                                    App(make.
  1978                                        Ident(forNameSym), args))));
  1979         } else {
  1980             // forNameSym := java.lang.Class.forName(String s)
  1981             Symbol forNameSym = lookupMethod(make_pos,
  1982                                              names.forName,
  1983                                              types.erasure(syms.classType),
  1984                                              List.of(syms.stringType));
  1985             // returnResult := "{ return Class.forName(param1); }"
  1986             returnResult = make.
  1987                 Block(0, List.of(make.
  1988                           Call(make. // return
  1989                               App(make.
  1990                                   QualIdent(forNameSym),
  1991                                   List.<JCExpression>of(make.
  1992                                                         Ident(md.params.
  1993                                                               head.sym))))));
  1996         // catchParam := ClassNotFoundException e1
  1997         VarSymbol catchParam =
  1998             new VarSymbol(0, make.paramName(1),
  1999                           syms.classNotFoundExceptionType,
  2000                           classDollarSym);
  2002         JCStatement rethrow;
  2003         if (target.hasInitCause()) {
  2004             // rethrow = "throw new NoClassDefFoundError().initCause(e);
  2005             JCExpression throwExpr =
  2006                 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
  2007                                       List.<JCExpression>nil()),
  2008                          names.initCause,
  2009                          List.<JCExpression>of(make.Ident(catchParam)));
  2010             rethrow = make.Throw(throwExpr);
  2011         } else {
  2012             // getMessageSym := ClassNotFoundException.getMessage()
  2013             Symbol getMessageSym = lookupMethod(make_pos,
  2014                                                 names.getMessage,
  2015                                                 syms.classNotFoundExceptionType,
  2016                                                 List.<Type>nil());
  2017             // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
  2018             rethrow = make.
  2019                 Throw(makeNewClass(syms.noClassDefFoundErrorType,
  2020                           List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
  2021                                                                      getMessageSym),
  2022                                                          List.<JCExpression>nil()))));
  2025         // rethrowStmt := "( $rethrow )"
  2026         JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
  2028         // catchBlock := "catch ($catchParam) $rethrowStmt"
  2029         JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
  2030                                       rethrowStmt);
  2032         // tryCatch := "try $returnResult $catchBlock"
  2033         JCStatement tryCatch = make.Try(returnResult,
  2034                                         List.of(catchBlock), null);
  2036         return make.Block(0, List.of(tryCatch));
  2038     // where
  2039         /** Create an attributed tree of the form left.name(). */
  2040         private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
  2041             Assert.checkNonNull(left.type);
  2042             Symbol funcsym = lookupMethod(make_pos, name, left.type,
  2043                                           TreeInfo.types(args));
  2044             return make.App(make.Select(left, funcsym), args);
  2047     /** The Name Of The variable to cache T.class values.
  2048      *  @param sig      The signature of type T.
  2049      */
  2050     private Name cacheName(String sig) {
  2051         StringBuilder buf = new StringBuilder();
  2052         if (sig.startsWith("[")) {
  2053             buf = buf.append("array");
  2054             while (sig.startsWith("[")) {
  2055                 buf = buf.append(target.syntheticNameChar());
  2056                 sig = sig.substring(1);
  2058             if (sig.startsWith("L")) {
  2059                 sig = sig.substring(0, sig.length() - 1);
  2061         } else {
  2062             buf = buf.append("class" + target.syntheticNameChar());
  2064         buf = buf.append(sig.replace('.', target.syntheticNameChar()));
  2065         return names.fromString(buf.toString());
  2068     /** The variable symbol that caches T.class values.
  2069      *  If none exists yet, create a definition.
  2070      *  @param sig      The signature of type T.
  2071      *  @param pos      The position to report diagnostics, if any.
  2072      */
  2073     private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
  2074         ClassSymbol outerCacheClass = outerCacheClass();
  2075         Name cname = cacheName(sig);
  2076         VarSymbol cacheSym =
  2077             (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
  2078         if (cacheSym == null) {
  2079             cacheSym = new VarSymbol(
  2080                 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
  2081             enterSynthetic(pos, cacheSym, outerCacheClass.members());
  2083             JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
  2084             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
  2085             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
  2087         return cacheSym;
  2090     /** The tree simulating a T.class expression.
  2091      *  @param clazz      The tree identifying type T.
  2092      */
  2093     private JCExpression classOf(JCTree clazz) {
  2094         return classOfType(clazz.type, clazz.pos());
  2097     private JCExpression classOfType(Type type, DiagnosticPosition pos) {
  2098         switch (type.getTag()) {
  2099         case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
  2100         case DOUBLE: case BOOLEAN: case VOID:
  2101             // replace with <BoxedClass>.TYPE
  2102             ClassSymbol c = types.boxedClass(type);
  2103             Symbol typeSym =
  2104                 rs.accessBase(
  2105                     rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
  2106                     pos, c.type, names.TYPE, true);
  2107             if (typeSym.kind == VAR)
  2108                 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
  2109             return make.QualIdent(typeSym);
  2110         case CLASS: case ARRAY:
  2111             if (target.hasClassLiterals()) {
  2112                 VarSymbol sym = new VarSymbol(
  2113                         STATIC | PUBLIC | FINAL, names._class,
  2114                         syms.classType, type.tsym);
  2115                 return make_at(pos).Select(make.Type(type), sym);
  2117             // replace with <cache == null ? cache = class$(tsig) : cache>
  2118             // where
  2119             //  - <tsig>  is the type signature of T,
  2120             //  - <cache> is the cache variable for tsig.
  2121             String sig =
  2122                 writer.xClassName(type).toString().replace('/', '.');
  2123             Symbol cs = cacheSym(pos, sig);
  2124             return make_at(pos).Conditional(
  2125                 makeBinary(EQ, make.Ident(cs), makeNull()),
  2126                 make.Assign(
  2127                     make.Ident(cs),
  2128                     make.App(
  2129                         make.Ident(classDollarSym(pos)),
  2130                         List.<JCExpression>of(make.Literal(CLASS, sig)
  2131                                               .setType(syms.stringType))))
  2132                 .setType(types.erasure(syms.classType)),
  2133                 make.Ident(cs)).setType(types.erasure(syms.classType));
  2134         default:
  2135             throw new AssertionError();
  2139 /**************************************************************************
  2140  * Code for enabling/disabling assertions.
  2141  *************************************************************************/
  2143     // This code is not particularly robust if the user has
  2144     // previously declared a member named '$assertionsDisabled'.
  2145     // The same faulty idiom also appears in the translation of
  2146     // class literals above.  We should report an error if a
  2147     // previous declaration is not synthetic.
  2149     private JCExpression assertFlagTest(DiagnosticPosition pos) {
  2150         // Outermost class may be either true class or an interface.
  2151         ClassSymbol outermostClass = outermostClassDef.sym;
  2153         // note that this is a class, as an interface can't contain a statement.
  2154         ClassSymbol container = currentClass;
  2156         VarSymbol assertDisabledSym =
  2157             (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
  2158                                        container.members());
  2159         if (assertDisabledSym == null) {
  2160             assertDisabledSym =
  2161                 new VarSymbol(STATIC | FINAL | SYNTHETIC,
  2162                               dollarAssertionsDisabled,
  2163                               syms.booleanType,
  2164                               container);
  2165             enterSynthetic(pos, assertDisabledSym, container.members());
  2166             Symbol desiredAssertionStatusSym = lookupMethod(pos,
  2167                                                             names.desiredAssertionStatus,
  2168                                                             types.erasure(syms.classType),
  2169                                                             List.<Type>nil());
  2170             JCClassDecl containerDef = classDef(container);
  2171             make_at(containerDef.pos());
  2172             JCExpression notStatus = makeUnary(NOT, make.App(make.Select(
  2173                     classOfType(types.erasure(outermostClass.type),
  2174                                 containerDef.pos()),
  2175                     desiredAssertionStatusSym)));
  2176             JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
  2177                                                    notStatus);
  2178             containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
  2180         make_at(pos);
  2181         return makeUnary(NOT, make.Ident(assertDisabledSym));
  2185 /**************************************************************************
  2186  * Building blocks for let expressions
  2187  *************************************************************************/
  2189     interface TreeBuilder {
  2190         JCTree build(JCTree arg);
  2193     /** Construct an expression using the builder, with the given rval
  2194      *  expression as an argument to the builder.  However, the rval
  2195      *  expression must be computed only once, even if used multiple
  2196      *  times in the result of the builder.  We do that by
  2197      *  constructing a "let" expression that saves the rvalue into a
  2198      *  temporary variable and then uses the temporary variable in
  2199      *  place of the expression built by the builder.  The complete
  2200      *  resulting expression is of the form
  2201      *  <pre>
  2202      *    (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
  2203      *     in (<b>BUILDER</b>(<b>TEMP</b>)))
  2204      *  </pre>
  2205      *  where <code><b>TEMP</b></code> is a newly declared variable
  2206      *  in the let expression.
  2207      */
  2208     JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
  2209         rval = TreeInfo.skipParens(rval);
  2210         switch (rval.getTag()) {
  2211         case LITERAL:
  2212             return builder.build(rval);
  2213         case IDENT:
  2214             JCIdent id = (JCIdent) rval;
  2215             if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
  2216                 return builder.build(rval);
  2218         VarSymbol var =
  2219             new VarSymbol(FINAL|SYNTHETIC,
  2220                           names.fromString(
  2221                                           target.syntheticNameChar()
  2222                                           + "" + rval.hashCode()),
  2223                                       type,
  2224                                       currentMethodSym);
  2225         rval = convert(rval,type);
  2226         JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
  2227         JCTree built = builder.build(make.Ident(var));
  2228         JCTree res = make.LetExpr(def, built);
  2229         res.type = built.type;
  2230         return res;
  2233     // same as above, with the type of the temporary variable computed
  2234     JCTree abstractRval(JCTree rval, TreeBuilder builder) {
  2235         return abstractRval(rval, rval.type, builder);
  2238     // same as above, but for an expression that may be used as either
  2239     // an rvalue or an lvalue.  This requires special handling for
  2240     // Select expressions, where we place the left-hand-side of the
  2241     // select in a temporary, and for Indexed expressions, where we
  2242     // place both the indexed expression and the index value in temps.
  2243     JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
  2244         lval = TreeInfo.skipParens(lval);
  2245         switch (lval.getTag()) {
  2246         case IDENT:
  2247             return builder.build(lval);
  2248         case SELECT: {
  2249             final JCFieldAccess s = (JCFieldAccess)lval;
  2250             JCTree selected = TreeInfo.skipParens(s.selected);
  2251             Symbol lid = TreeInfo.symbol(s.selected);
  2252             if (lid != null && lid.kind == TYP) return builder.build(lval);
  2253             return abstractRval(s.selected, new TreeBuilder() {
  2254                     public JCTree build(final JCTree selected) {
  2255                         return builder.build(make.Select((JCExpression)selected, s.sym));
  2257                 });
  2259         case INDEXED: {
  2260             final JCArrayAccess i = (JCArrayAccess)lval;
  2261             return abstractRval(i.indexed, new TreeBuilder() {
  2262                     public JCTree build(final JCTree indexed) {
  2263                         return abstractRval(i.index, syms.intType, new TreeBuilder() {
  2264                                 public JCTree build(final JCTree index) {
  2265                                     JCTree newLval = make.Indexed((JCExpression)indexed,
  2266                                                                 (JCExpression)index);
  2267                                     newLval.setType(i.type);
  2268                                     return builder.build(newLval);
  2270                             });
  2272                 });
  2274         case TYPECAST: {
  2275             return abstractLval(((JCTypeCast)lval).expr, builder);
  2278         throw new AssertionError(lval);
  2281     // evaluate and discard the first expression, then evaluate the second.
  2282     JCTree makeComma(final JCTree expr1, final JCTree expr2) {
  2283         return abstractRval(expr1, new TreeBuilder() {
  2284                 public JCTree build(final JCTree discarded) {
  2285                     return expr2;
  2287             });
  2290 /**************************************************************************
  2291  * Translation methods
  2292  *************************************************************************/
  2294     /** Visitor argument: enclosing operator node.
  2295      */
  2296     private JCExpression enclOp;
  2298     /** Visitor method: Translate a single node.
  2299      *  Attach the source position from the old tree to its replacement tree.
  2300      */
  2301     public <T extends JCTree> T translate(T tree) {
  2302         if (tree == null) {
  2303             return null;
  2304         } else {
  2305             make_at(tree.pos());
  2306             T result = super.translate(tree);
  2307             if (endPosTable != null && result != tree) {
  2308                 endPosTable.replaceTree(tree, result);
  2310             return result;
  2314     /** Visitor method: Translate a single node, boxing or unboxing if needed.
  2315      */
  2316     public <T extends JCTree> T translate(T tree, Type type) {
  2317         return (tree == null) ? null : boxIfNeeded(translate(tree), type);
  2320     /** Visitor method: Translate tree.
  2321      */
  2322     public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
  2323         JCExpression prevEnclOp = this.enclOp;
  2324         this.enclOp = enclOp;
  2325         T res = translate(tree);
  2326         this.enclOp = prevEnclOp;
  2327         return res;
  2330     /** Visitor method: Translate list of trees.
  2331      */
  2332     public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
  2333         JCExpression prevEnclOp = this.enclOp;
  2334         this.enclOp = enclOp;
  2335         List<T> res = translate(trees);
  2336         this.enclOp = prevEnclOp;
  2337         return res;
  2340     /** Visitor method: Translate list of trees.
  2341      */
  2342     public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
  2343         if (trees == null) return null;
  2344         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
  2345             l.head = translate(l.head, type);
  2346         return trees;
  2349     public void visitTopLevel(JCCompilationUnit tree) {
  2350         if (needPackageInfoClass(tree)) {
  2351             Name name = names.package_info;
  2352             long flags = Flags.ABSTRACT | Flags.INTERFACE;
  2353             if (target.isPackageInfoSynthetic())
  2354                 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
  2355                 flags = flags | Flags.SYNTHETIC;
  2356             JCClassDecl packageAnnotationsClass
  2357                 = make.ClassDef(make.Modifiers(flags,
  2358                                                tree.packageAnnotations),
  2359                                 name, List.<JCTypeParameter>nil(),
  2360                                 null, List.<JCExpression>nil(), List.<JCTree>nil());
  2361             ClassSymbol c = tree.packge.package_info;
  2362             c.flags_field |= flags;
  2363             c.annotations.setAttributes(tree.packge.annotations);
  2364             ClassType ctype = (ClassType) c.type;
  2365             ctype.supertype_field = syms.objectType;
  2366             ctype.interfaces_field = List.nil();
  2367             packageAnnotationsClass.sym = c;
  2369             translated.append(packageAnnotationsClass);
  2372     // where
  2373     private boolean needPackageInfoClass(JCCompilationUnit tree) {
  2374         switch (pkginfoOpt) {
  2375             case ALWAYS:
  2376                 return true;
  2377             case LEGACY:
  2378                 return tree.packageAnnotations.nonEmpty();
  2379             case NONEMPTY:
  2380                 for (Attribute.Compound a :
  2381                          tree.packge.annotations.getDeclarationAttributes()) {
  2382                     Attribute.RetentionPolicy p = types.getRetention(a);
  2383                     if (p != Attribute.RetentionPolicy.SOURCE)
  2384                         return true;
  2386                 return false;
  2388         throw new AssertionError();
  2391     public void visitClassDef(JCClassDecl tree) {
  2392         ClassSymbol currentClassPrev = currentClass;
  2393         MethodSymbol currentMethodSymPrev = currentMethodSym;
  2394         currentClass = tree.sym;
  2395         currentMethodSym = null;
  2396         classdefs.put(currentClass, tree);
  2398         proxies = proxies.dup(currentClass);
  2399         List<VarSymbol> prevOuterThisStack = outerThisStack;
  2401         // If this is an enum definition
  2402         if ((tree.mods.flags & ENUM) != 0 &&
  2403             (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
  2404             visitEnumDef(tree);
  2406         // If this is a nested class, define a this$n field for
  2407         // it and add to proxies.
  2408         JCVariableDecl otdef = null;
  2409         if (currentClass.hasOuterInstance())
  2410             otdef = outerThisDef(tree.pos, currentClass);
  2412         // If this is a local class, define proxies for all its free variables.
  2413         List<JCVariableDecl> fvdefs = freevarDefs(
  2414             tree.pos, freevars(currentClass), currentClass);
  2416         // Recursively translate superclass, interfaces.
  2417         tree.extending = translate(tree.extending);
  2418         tree.implementing = translate(tree.implementing);
  2420         if (currentClass.isLocal()) {
  2421             ClassSymbol encl = currentClass.owner.enclClass();
  2422             if (encl.trans_local == null) {
  2423                 encl.trans_local = List.nil();
  2425             encl.trans_local = encl.trans_local.prepend(currentClass);
  2428         // Recursively translate members, taking into account that new members
  2429         // might be created during the translation and prepended to the member
  2430         // list `tree.defs'.
  2431         List<JCTree> seen = List.nil();
  2432         while (tree.defs != seen) {
  2433             List<JCTree> unseen = tree.defs;
  2434             for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
  2435                 JCTree outermostMemberDefPrev = outermostMemberDef;
  2436                 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
  2437                 l.head = translate(l.head);
  2438                 outermostMemberDef = outermostMemberDefPrev;
  2440             seen = unseen;
  2443         // Convert a protected modifier to public, mask static modifier.
  2444         if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
  2445         tree.mods.flags &= ClassFlags;
  2447         // Convert name to flat representation, replacing '.' by '$'.
  2448         tree.name = Convert.shortName(currentClass.flatName());
  2450         // Add this$n and free variables proxy definitions to class.
  2451         for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
  2452             tree.defs = tree.defs.prepend(l.head);
  2453             enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
  2455         if (currentClass.hasOuterInstance()) {
  2456             tree.defs = tree.defs.prepend(otdef);
  2457             enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
  2460         proxies = proxies.leave();
  2461         outerThisStack = prevOuterThisStack;
  2463         // Append translated tree to `translated' queue.
  2464         translated.append(tree);
  2466         currentClass = currentClassPrev;
  2467         currentMethodSym = currentMethodSymPrev;
  2469         // Return empty block {} as a placeholder for an inner class.
  2470         result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
  2473     /** Translate an enum class. */
  2474     private void visitEnumDef(JCClassDecl tree) {
  2475         make_at(tree.pos());
  2477         // add the supertype, if needed
  2478         if (tree.extending == null)
  2479             tree.extending = make.Type(types.supertype(tree.type));
  2481         // classOfType adds a cache field to tree.defs unless
  2482         // target.hasClassLiterals().
  2483         JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
  2484             setType(types.erasure(syms.classType));
  2486         // process each enumeration constant, adding implicit constructor parameters
  2487         int nextOrdinal = 0;
  2488         ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
  2489         ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
  2490         ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
  2491         for (List<JCTree> defs = tree.defs;
  2492              defs.nonEmpty();
  2493              defs=defs.tail) {
  2494             if (defs.head.hasTag(VARDEF) && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
  2495                 JCVariableDecl var = (JCVariableDecl)defs.head;
  2496                 visitEnumConstantDef(var, nextOrdinal++);
  2497                 values.append(make.QualIdent(var.sym));
  2498                 enumDefs.append(var);
  2499             } else {
  2500                 otherDefs.append(defs.head);
  2504         // private static final T[] #VALUES = { a, b, c };
  2505         Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
  2506         while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
  2507             valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
  2508         Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
  2509         VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
  2510                                             valuesName,
  2511                                             arrayType,
  2512                                             tree.type.tsym);
  2513         JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
  2514                                           List.<JCExpression>nil(),
  2515                                           values.toList());
  2516         newArray.type = arrayType;
  2517         enumDefs.append(make.VarDef(valuesVar, newArray));
  2518         tree.sym.members().enter(valuesVar);
  2520         Symbol valuesSym = lookupMethod(tree.pos(), names.values,
  2521                                         tree.type, List.<Type>nil());
  2522         List<JCStatement> valuesBody;
  2523         if (useClone()) {
  2524             // return (T[]) $VALUES.clone();
  2525             JCTypeCast valuesResult =
  2526                 make.TypeCast(valuesSym.type.getReturnType(),
  2527                               make.App(make.Select(make.Ident(valuesVar),
  2528                                                    syms.arrayCloneMethod)));
  2529             valuesBody = List.<JCStatement>of(make.Return(valuesResult));
  2530         } else {
  2531             // template: T[] $result = new T[$values.length];
  2532             Name resultName = names.fromString(target.syntheticNameChar() + "result");
  2533             while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
  2534                 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
  2535             VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
  2536                                                 resultName,
  2537                                                 arrayType,
  2538                                                 valuesSym);
  2539             JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
  2540                                   List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
  2541                                   null);
  2542             resultArray.type = arrayType;
  2543             JCVariableDecl decl = make.VarDef(resultVar, resultArray);
  2545             // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
  2546             if (systemArraycopyMethod == null) {
  2547                 systemArraycopyMethod =
  2548                     new MethodSymbol(PUBLIC | STATIC,
  2549                                      names.fromString("arraycopy"),
  2550                                      new MethodType(List.<Type>of(syms.objectType,
  2551                                                             syms.intType,
  2552                                                             syms.objectType,
  2553                                                             syms.intType,
  2554                                                             syms.intType),
  2555                                                     syms.voidType,
  2556                                                     List.<Type>nil(),
  2557                                                     syms.methodClass),
  2558                                      syms.systemType.tsym);
  2560             JCStatement copy =
  2561                 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
  2562                                                systemArraycopyMethod),
  2563                           List.of(make.Ident(valuesVar), make.Literal(0),
  2564                                   make.Ident(resultVar), make.Literal(0),
  2565                                   make.Select(make.Ident(valuesVar), syms.lengthVar))));
  2567             // template: return $result;
  2568             JCStatement ret = make.Return(make.Ident(resultVar));
  2569             valuesBody = List.<JCStatement>of(decl, copy, ret);
  2572         JCMethodDecl valuesDef =
  2573              make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
  2575         enumDefs.append(valuesDef);
  2577         if (debugLower)
  2578             System.err.println(tree.sym + ".valuesDef = " + valuesDef);
  2580         /** The template for the following code is:
  2582          *     public static E valueOf(String name) {
  2583          *         return (E)Enum.valueOf(E.class, name);
  2584          *     }
  2586          *  where E is tree.sym
  2587          */
  2588         MethodSymbol valueOfSym = lookupMethod(tree.pos(),
  2589                          names.valueOf,
  2590                          tree.sym.type,
  2591                          List.of(syms.stringType));
  2592         Assert.check((valueOfSym.flags() & STATIC) != 0);
  2593         VarSymbol nameArgSym = valueOfSym.params.head;
  2594         JCIdent nameVal = make.Ident(nameArgSym);
  2595         JCStatement enum_ValueOf =
  2596             make.Return(make.TypeCast(tree.sym.type,
  2597                                       makeCall(make.Ident(syms.enumSym),
  2598                                                names.valueOf,
  2599                                                List.of(e_class, nameVal))));
  2600         JCMethodDecl valueOf = make.MethodDef(valueOfSym,
  2601                                            make.Block(0, List.of(enum_ValueOf)));
  2602         nameVal.sym = valueOf.params.head.sym;
  2603         if (debugLower)
  2604             System.err.println(tree.sym + ".valueOf = " + valueOf);
  2605         enumDefs.append(valueOf);
  2607         enumDefs.appendList(otherDefs.toList());
  2608         tree.defs = enumDefs.toList();
  2610         // where
  2611         private MethodSymbol systemArraycopyMethod;
  2612         private boolean useClone() {
  2613             try {
  2614                 Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
  2615                 return (e.sym != null);
  2617             catch (CompletionFailure e) {
  2618                 return false;
  2622     /** Translate an enumeration constant and its initializer. */
  2623     private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
  2624         JCNewClass varDef = (JCNewClass)var.init;
  2625         varDef.args = varDef.args.
  2626             prepend(makeLit(syms.intType, ordinal)).
  2627             prepend(makeLit(syms.stringType, var.name.toString()));
  2630     public void visitMethodDef(JCMethodDecl tree) {
  2631         if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
  2632             // Add "String $enum$name, int $enum$ordinal" to the beginning of the
  2633             // argument list for each constructor of an enum.
  2634             JCVariableDecl nameParam = make_at(tree.pos()).
  2635                 Param(names.fromString(target.syntheticNameChar() +
  2636                                        "enum" + target.syntheticNameChar() + "name"),
  2637                       syms.stringType, tree.sym);
  2638             nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
  2639             JCVariableDecl ordParam = make.
  2640                 Param(names.fromString(target.syntheticNameChar() +
  2641                                        "enum" + target.syntheticNameChar() +
  2642                                        "ordinal"),
  2643                       syms.intType, tree.sym);
  2644             ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
  2646             tree.params = tree.params.prepend(ordParam).prepend(nameParam);
  2648             MethodSymbol m = tree.sym;
  2649             m.extraParams = m.extraParams.prepend(ordParam.sym);
  2650             m.extraParams = m.extraParams.prepend(nameParam.sym);
  2651             Type olderasure = m.erasure(types);
  2652             m.erasure_field = new MethodType(
  2653                 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
  2654                 olderasure.getReturnType(),
  2655                 olderasure.getThrownTypes(),
  2656                 syms.methodClass);
  2659         JCMethodDecl prevMethodDef = currentMethodDef;
  2660         MethodSymbol prevMethodSym = currentMethodSym;
  2661         try {
  2662             currentMethodDef = tree;
  2663             currentMethodSym = tree.sym;
  2664             visitMethodDefInternal(tree);
  2665         } finally {
  2666             currentMethodDef = prevMethodDef;
  2667             currentMethodSym = prevMethodSym;
  2670     //where
  2671     private void visitMethodDefInternal(JCMethodDecl tree) {
  2672         if (tree.name == names.init &&
  2673             (currentClass.isInner() ||
  2674              (currentClass.owner.kind & (VAR | MTH)) != 0)) {
  2675             // We are seeing a constructor of an inner class.
  2676             MethodSymbol m = tree.sym;
  2678             // Push a new proxy scope for constructor parameters.
  2679             // and create definitions for any this$n and proxy parameters.
  2680             proxies = proxies.dup(m);
  2681             List<VarSymbol> prevOuterThisStack = outerThisStack;
  2682             List<VarSymbol> fvs = freevars(currentClass);
  2683             JCVariableDecl otdef = null;
  2684             if (currentClass.hasOuterInstance())
  2685                 otdef = outerThisDef(tree.pos, m);
  2686             List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m);
  2688             // Recursively translate result type, parameters and thrown list.
  2689             tree.restype = translate(tree.restype);
  2690             tree.params = translateVarDefs(tree.params);
  2691             tree.thrown = translate(tree.thrown);
  2693             // when compiling stubs, don't process body
  2694             if (tree.body == null) {
  2695                 result = tree;
  2696                 return;
  2699             // Add this$n (if needed) in front of and free variables behind
  2700             // constructor parameter list.
  2701             tree.params = tree.params.appendList(fvdefs);
  2702             if (currentClass.hasOuterInstance())
  2703                 tree.params = tree.params.prepend(otdef);
  2705             // If this is an initial constructor, i.e., it does not start with
  2706             // this(...), insert initializers for this$n and proxies
  2707             // before (pre-1.4, after) the call to superclass constructor.
  2708             JCStatement selfCall = translate(tree.body.stats.head);
  2710             List<JCStatement> added = List.nil();
  2711             if (fvs.nonEmpty()) {
  2712                 List<Type> addedargtypes = List.nil();
  2713                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
  2714                     if (TreeInfo.isInitialConstructor(tree))
  2715                         added = added.prepend(
  2716                             initField(tree.body.pos, proxyName(l.head.name)));
  2717                     addedargtypes = addedargtypes.prepend(l.head.erasure(types));
  2719                 Type olderasure = m.erasure(types);
  2720                 m.erasure_field = new MethodType(
  2721                     olderasure.getParameterTypes().appendList(addedargtypes),
  2722                     olderasure.getReturnType(),
  2723                     olderasure.getThrownTypes(),
  2724                     syms.methodClass);
  2726             if (currentClass.hasOuterInstance() &&
  2727                 TreeInfo.isInitialConstructor(tree))
  2729                 added = added.prepend(initOuterThis(tree.body.pos));
  2732             // pop local variables from proxy stack
  2733             proxies = proxies.leave();
  2735             // recursively translate following local statements and
  2736             // combine with this- or super-call
  2737             List<JCStatement> stats = translate(tree.body.stats.tail);
  2738             if (target.initializeFieldsBeforeSuper())
  2739                 tree.body.stats = stats.prepend(selfCall).prependList(added);
  2740             else
  2741                 tree.body.stats = stats.prependList(added).prepend(selfCall);
  2743             outerThisStack = prevOuterThisStack;
  2744         } else {
  2745             Map<Symbol, Symbol> prevLambdaTranslationMap =
  2746                     lambdaTranslationMap;
  2747             try {
  2748                 lambdaTranslationMap = (tree.sym.flags() & SYNTHETIC) != 0 &&
  2749                         tree.sym.name.startsWith(names.lambda) ?
  2750                         makeTranslationMap(tree) : null;
  2751                 super.visitMethodDef(tree);
  2752             } finally {
  2753                 lambdaTranslationMap = prevLambdaTranslationMap;
  2756         result = tree;
  2758     //where
  2759         private Map<Symbol, Symbol> makeTranslationMap(JCMethodDecl tree) {
  2760             Map<Symbol, Symbol> translationMap = new HashMap<Symbol,Symbol>();
  2761             for (JCVariableDecl vd : tree.params) {
  2762                 Symbol p = vd.sym;
  2763                 if (p != p.baseSymbol()) {
  2764                     translationMap.put(p.baseSymbol(), p);
  2767             return translationMap;
  2770     public void visitAnnotatedType(JCAnnotatedType tree) {
  2771         // No need to retain type annotations in the tree
  2772         // tree.annotations = translate(tree.annotations);
  2773         tree.annotations = List.nil();
  2774         tree.underlyingType = translate(tree.underlyingType);
  2775         // but maintain type annotations in the type.
  2776         if (tree.type.isAnnotated()) {
  2777             if (tree.underlyingType.type.isAnnotated()) {
  2778                 // The erasure of a type variable might be annotated.
  2779                 // Merge all annotations.
  2780                 AnnotatedType newat = (AnnotatedType) tree.underlyingType.type;
  2781                 AnnotatedType at = (AnnotatedType) tree.type;
  2782                 at.underlyingType = newat.underlyingType;
  2783                 newat.typeAnnotations = at.typeAnnotations.appendList(newat.typeAnnotations);
  2784                 tree.type = newat;
  2785             } else {
  2786                 // Create a new AnnotatedType to have the correct tag.
  2787                 AnnotatedType oldat = (AnnotatedType) tree.type;
  2788                 tree.type = new AnnotatedType(tree.underlyingType.type);
  2789                 ((AnnotatedType) tree.type).typeAnnotations = oldat.typeAnnotations;
  2792         result = tree;
  2795     public void visitTypeCast(JCTypeCast tree) {
  2796         tree.clazz = translate(tree.clazz);
  2797         if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
  2798             tree.expr = translate(tree.expr, tree.type);
  2799         else
  2800             tree.expr = translate(tree.expr);
  2801         result = tree;
  2804     public void visitNewClass(JCNewClass tree) {
  2805         ClassSymbol c = (ClassSymbol)tree.constructor.owner;
  2807         // Box arguments, if necessary
  2808         boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
  2809         List<Type> argTypes = tree.constructor.type.getParameterTypes();
  2810         if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
  2811         tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
  2812         tree.varargsElement = null;
  2814         // If created class is local, add free variables after
  2815         // explicit constructor arguments.
  2816         if ((c.owner.kind & (VAR | MTH)) != 0) {
  2817             tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
  2820         // If an access constructor is used, append null as a last argument.
  2821         Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
  2822         if (constructor != tree.constructor) {
  2823             tree.args = tree.args.append(makeNull());
  2824             tree.constructor = constructor;
  2827         // If created class has an outer instance, and new is qualified, pass
  2828         // qualifier as first argument. If new is not qualified, pass the
  2829         // correct outer instance as first argument.
  2830         if (c.hasOuterInstance()) {
  2831             JCExpression thisArg;
  2832             if (tree.encl != null) {
  2833                 thisArg = attr.makeNullCheck(translate(tree.encl));
  2834                 thisArg.type = tree.encl.type;
  2835             } else if ((c.owner.kind & (MTH | VAR)) != 0) {
  2836                 // local class
  2837                 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
  2838             } else {
  2839                 // nested class
  2840                 thisArg = makeOwnerThis(tree.pos(), c, false);
  2842             tree.args = tree.args.prepend(thisArg);
  2844         tree.encl = null;
  2846         // If we have an anonymous class, create its flat version, rather
  2847         // than the class or interface following new.
  2848         if (tree.def != null) {
  2849             translate(tree.def);
  2850             tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
  2851             tree.def = null;
  2852         } else {
  2853             tree.clazz = access(c, tree.clazz, enclOp, false);
  2855         result = tree;
  2858     // Simplify conditionals with known constant controlling expressions.
  2859     // This allows us to avoid generating supporting declarations for
  2860     // the dead code, which will not be eliminated during code generation.
  2861     // Note that Flow.isFalse and Flow.isTrue only return true
  2862     // for constant expressions in the sense of JLS 15.27, which
  2863     // are guaranteed to have no side-effects.  More aggressive
  2864     // constant propagation would require that we take care to
  2865     // preserve possible side-effects in the condition expression.
  2867     /** Visitor method for conditional expressions.
  2868      */
  2869     @Override
  2870     public void visitConditional(JCConditional tree) {
  2871         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
  2872         if (cond.type.isTrue()) {
  2873             result = convert(translate(tree.truepart, tree.type), tree.type);
  2874             addPrunedInfo(cond);
  2875         } else if (cond.type.isFalse()) {
  2876             result = convert(translate(tree.falsepart, tree.type), tree.type);
  2877             addPrunedInfo(cond);
  2878         } else {
  2879             // Condition is not a compile-time constant.
  2880             tree.truepart = translate(tree.truepart, tree.type);
  2881             tree.falsepart = translate(tree.falsepart, tree.type);
  2882             result = tree;
  2885 //where
  2886     private JCTree convert(JCTree tree, Type pt) {
  2887         if (tree.type == pt || tree.type.hasTag(BOT))
  2888             return tree;
  2889         JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
  2890         result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
  2891                                                        : pt;
  2892         return result;
  2895     /** Visitor method for if statements.
  2896      */
  2897     public void visitIf(JCIf tree) {
  2898         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
  2899         if (cond.type.isTrue()) {
  2900             result = translate(tree.thenpart);
  2901             addPrunedInfo(cond);
  2902         } else if (cond.type.isFalse()) {
  2903             if (tree.elsepart != null) {
  2904                 result = translate(tree.elsepart);
  2905             } else {
  2906                 result = make.Skip();
  2908             addPrunedInfo(cond);
  2909         } else {
  2910             // Condition is not a compile-time constant.
  2911             tree.thenpart = translate(tree.thenpart);
  2912             tree.elsepart = translate(tree.elsepart);
  2913             result = tree;
  2917     /** Visitor method for assert statements. Translate them away.
  2918      */
  2919     public void visitAssert(JCAssert tree) {
  2920         DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
  2921         tree.cond = translate(tree.cond, syms.booleanType);
  2922         if (!tree.cond.type.isTrue()) {
  2923             JCExpression cond = assertFlagTest(tree.pos());
  2924             List<JCExpression> exnArgs = (tree.detail == null) ?
  2925                 List.<JCExpression>nil() : List.of(translate(tree.detail));
  2926             if (!tree.cond.type.isFalse()) {
  2927                 cond = makeBinary
  2928                     (AND,
  2929                      cond,
  2930                      makeUnary(NOT, tree.cond));
  2932             result =
  2933                 make.If(cond,
  2934                         make_at(tree).
  2935                            Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
  2936                         null);
  2937         } else {
  2938             result = make.Skip();
  2942     public void visitApply(JCMethodInvocation tree) {
  2943         Symbol meth = TreeInfo.symbol(tree.meth);
  2944         List<Type> argtypes = meth.type.getParameterTypes();
  2945         if (allowEnums &&
  2946             meth.name==names.init &&
  2947             meth.owner == syms.enumSym)
  2948             argtypes = argtypes.tail.tail;
  2949         tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
  2950         tree.varargsElement = null;
  2951         Name methName = TreeInfo.name(tree.meth);
  2952         if (meth.name==names.init) {
  2953             // We are seeing a this(...) or super(...) constructor call.
  2954             // If an access constructor is used, append null as a last argument.
  2955             Symbol constructor = accessConstructor(tree.pos(), meth);
  2956             if (constructor != meth) {
  2957                 tree.args = tree.args.append(makeNull());
  2958                 TreeInfo.setSymbol(tree.meth, constructor);
  2961             // If we are calling a constructor of a local class, add
  2962             // free variables after explicit constructor arguments.
  2963             ClassSymbol c = (ClassSymbol)constructor.owner;
  2964             if ((c.owner.kind & (VAR | MTH)) != 0) {
  2965                 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
  2968             // If we are calling a constructor of an enum class, pass
  2969             // along the name and ordinal arguments
  2970             if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
  2971                 List<JCVariableDecl> params = currentMethodDef.params;
  2972                 if (currentMethodSym.owner.hasOuterInstance())
  2973                     params = params.tail; // drop this$n
  2974                 tree.args = tree.args
  2975                     .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
  2976                     .prepend(make.Ident(params.head.sym)); // name
  2979             // If we are calling a constructor of a class with an outer
  2980             // instance, and the call
  2981             // is qualified, pass qualifier as first argument in front of
  2982             // the explicit constructor arguments. If the call
  2983             // is not qualified, pass the correct outer instance as
  2984             // first argument.
  2985             if (c.hasOuterInstance()) {
  2986                 JCExpression thisArg;
  2987                 if (tree.meth.hasTag(SELECT)) {
  2988                     thisArg = attr.
  2989                         makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
  2990                     tree.meth = make.Ident(constructor);
  2991                     ((JCIdent) tree.meth).name = methName;
  2992                 } else if ((c.owner.kind & (MTH | VAR)) != 0 || methName == names._this){
  2993                     // local class or this() call
  2994                     thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
  2995                 } else {
  2996                     // super() call of nested class - never pick 'this'
  2997                     thisArg = makeOwnerThisN(tree.meth.pos(), c, false);
  2999                 tree.args = tree.args.prepend(thisArg);
  3001         } else {
  3002             // We are seeing a normal method invocation; translate this as usual.
  3003             tree.meth = translate(tree.meth);
  3005             // If the translated method itself is an Apply tree, we are
  3006             // seeing an access method invocation. In this case, append
  3007             // the method arguments to the arguments of the access method.
  3008             if (tree.meth.hasTag(APPLY)) {
  3009                 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
  3010                 app.args = tree.args.prependList(app.args);
  3011                 result = app;
  3012                 return;
  3015         result = tree;
  3018     List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
  3019         List<JCExpression> args = _args;
  3020         if (parameters.isEmpty()) return args;
  3021         boolean anyChanges = false;
  3022         ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
  3023         while (parameters.tail.nonEmpty()) {
  3024             JCExpression arg = translate(args.head, parameters.head);
  3025             anyChanges |= (arg != args.head);
  3026             result.append(arg);
  3027             args = args.tail;
  3028             parameters = parameters.tail;
  3030         Type parameter = parameters.head;
  3031         if (varargsElement != null) {
  3032             anyChanges = true;
  3033             ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
  3034             while (args.nonEmpty()) {
  3035                 JCExpression arg = translate(args.head, varargsElement);
  3036                 elems.append(arg);
  3037                 args = args.tail;
  3039             JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
  3040                                                List.<JCExpression>nil(),
  3041                                                elems.toList());
  3042             boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
  3043             result.append(boxedArgs);
  3044         } else {
  3045             if (args.length() != 1) throw new AssertionError(args);
  3046             JCExpression arg = translate(args.head, parameter);
  3047             anyChanges |= (arg != args.head);
  3048             result.append(arg);
  3049             if (!anyChanges) return _args;
  3051         return result.toList();
  3054     /** Expand a boxing or unboxing conversion if needed. */
  3055     @SuppressWarnings("unchecked") // XXX unchecked
  3056     <T extends JCTree> T boxIfNeeded(T tree, Type type) {
  3057         boolean havePrimitive = tree.type.isPrimitive();
  3058         if (havePrimitive == type.isPrimitive())
  3059             return tree;
  3060         if (havePrimitive) {
  3061             Type unboxedTarget = types.unboxedType(type);
  3062             if (!unboxedTarget.hasTag(NONE)) {
  3063                 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
  3064                     tree.type = unboxedTarget.constType(tree.type.constValue());
  3065                 return (T)boxPrimitive((JCExpression)tree, type);
  3066             } else {
  3067                 tree = (T)boxPrimitive((JCExpression)tree);
  3069         } else {
  3070             tree = (T)unbox((JCExpression)tree, type);
  3072         return tree;
  3075     /** Box up a single primitive expression. */
  3076     JCExpression boxPrimitive(JCExpression tree) {
  3077         return boxPrimitive(tree, types.boxedClass(tree.type).type);
  3080     /** Box up a single primitive expression. */
  3081     JCExpression boxPrimitive(JCExpression tree, Type box) {
  3082         make_at(tree.pos());
  3083         if (target.boxWithConstructors()) {
  3084             Symbol ctor = lookupConstructor(tree.pos(),
  3085                                             box,
  3086                                             List.<Type>nil()
  3087                                             .prepend(tree.type));
  3088             return make.Create(ctor, List.of(tree));
  3089         } else {
  3090             Symbol valueOfSym = lookupMethod(tree.pos(),
  3091                                              names.valueOf,
  3092                                              box,
  3093                                              List.<Type>nil()
  3094                                              .prepend(tree.type));
  3095             return make.App(make.QualIdent(valueOfSym), List.of(tree));
  3099     /** Unbox an object to a primitive value. */
  3100     JCExpression unbox(JCExpression tree, Type primitive) {
  3101         Type unboxedType = types.unboxedType(tree.type);
  3102         if (unboxedType.hasTag(NONE)) {
  3103             unboxedType = primitive;
  3104             if (!unboxedType.isPrimitive())
  3105                 throw new AssertionError(unboxedType);
  3106             make_at(tree.pos());
  3107             tree = make.TypeCast(types.boxedClass(unboxedType).type, tree);
  3108         } else {
  3109             // There must be a conversion from unboxedType to primitive.
  3110             if (!types.isSubtype(unboxedType, primitive))
  3111                 throw new AssertionError(tree);
  3113         make_at(tree.pos());
  3114         Symbol valueSym = lookupMethod(tree.pos(),
  3115                                        unboxedType.tsym.name.append(names.Value), // x.intValue()
  3116                                        tree.type,
  3117                                        List.<Type>nil());
  3118         return make.App(make.Select(tree, valueSym));
  3121     /** Visitor method for parenthesized expressions.
  3122      *  If the subexpression has changed, omit the parens.
  3123      */
  3124     public void visitParens(JCParens tree) {
  3125         JCTree expr = translate(tree.expr);
  3126         result = ((expr == tree.expr) ? tree : expr);
  3129     public void visitIndexed(JCArrayAccess tree) {
  3130         tree.indexed = translate(tree.indexed);
  3131         tree.index = translate(tree.index, syms.intType);
  3132         result = tree;
  3135     public void visitAssign(JCAssign tree) {
  3136         tree.lhs = translate(tree.lhs, tree);
  3137         tree.rhs = translate(tree.rhs, tree.lhs.type);
  3139         // If translated left hand side is an Apply, we are
  3140         // seeing an access method invocation. In this case, append
  3141         // right hand side as last argument of the access method.
  3142         if (tree.lhs.hasTag(APPLY)) {
  3143             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
  3144             app.args = List.of(tree.rhs).prependList(app.args);
  3145             result = app;
  3146         } else {
  3147             result = tree;
  3151     public void visitAssignop(final JCAssignOp tree) {
  3152         JCTree lhsAccess = access(TreeInfo.skipParens(tree.lhs));
  3153         final boolean boxingReq = !tree.lhs.type.isPrimitive() &&
  3154             tree.operator.type.getReturnType().isPrimitive();
  3156         if (boxingReq || lhsAccess.hasTag(APPLY)) {
  3157             // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
  3158             // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
  3159             // (but without recomputing x)
  3160             JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
  3161                     public JCTree build(final JCTree lhs) {
  3162                         JCTree.Tag newTag = tree.getTag().noAssignOp();
  3163                         // Erasure (TransTypes) can change the type of
  3164                         // tree.lhs.  However, we can still get the
  3165                         // unerased type of tree.lhs as it is stored
  3166                         // in tree.type in Attr.
  3167                         Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
  3168                                                                       newTag,
  3169                                                                       attrEnv,
  3170                                                                       tree.type,
  3171                                                                       tree.rhs.type);
  3172                         JCExpression expr = (JCExpression)lhs;
  3173                         if (expr.type != tree.type)
  3174                             expr = make.TypeCast(tree.type, expr);
  3175                         JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
  3176                         opResult.operator = newOperator;
  3177                         opResult.type = newOperator.type.getReturnType();
  3178                         JCExpression newRhs = boxingReq ?
  3179                             make.TypeCast(types.unboxedType(tree.type), opResult) :
  3180                             opResult;
  3181                         return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
  3183                 });
  3184             result = translate(newTree);
  3185             return;
  3187         tree.lhs = translate(tree.lhs, tree);
  3188         tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
  3190         // If translated left hand side is an Apply, we are
  3191         // seeing an access method invocation. In this case, append
  3192         // right hand side as last argument of the access method.
  3193         if (tree.lhs.hasTag(APPLY)) {
  3194             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
  3195             // if operation is a += on strings,
  3196             // make sure to convert argument to string
  3197             JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
  3198               ? makeString(tree.rhs)
  3199               : tree.rhs;
  3200             app.args = List.of(rhs).prependList(app.args);
  3201             result = app;
  3202         } else {
  3203             result = tree;
  3207     /** Lower a tree of the form e++ or e-- where e is an object type */
  3208     JCTree lowerBoxedPostop(final JCUnary tree) {
  3209         // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
  3210         // or
  3211         // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
  3212         // where OP is += or -=
  3213         final boolean cast = TreeInfo.skipParens(tree.arg).hasTag(TYPECAST);
  3214         return abstractLval(tree.arg, new TreeBuilder() {
  3215                 public JCTree build(final JCTree tmp1) {
  3216                     return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
  3217                             public JCTree build(final JCTree tmp2) {
  3218                                 JCTree.Tag opcode = (tree.hasTag(POSTINC))
  3219                                     ? PLUS_ASG : MINUS_ASG;
  3220                                 JCTree lhs = cast
  3221                                     ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
  3222                                     : tmp1;
  3223                                 JCTree update = makeAssignop(opcode,
  3224                                                              lhs,
  3225                                                              make.Literal(1));
  3226                                 return makeComma(update, tmp2);
  3228                         });
  3230             });
  3233     public void visitUnary(JCUnary tree) {
  3234         boolean isUpdateOperator = tree.getTag().isIncOrDecUnaryOp();
  3235         if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
  3236             switch(tree.getTag()) {
  3237             case PREINC:            // ++ e
  3238                     // translate to e += 1
  3239             case PREDEC:            // -- e
  3240                     // translate to e -= 1
  3242                     JCTree.Tag opcode = (tree.hasTag(PREINC))
  3243                         ? PLUS_ASG : MINUS_ASG;
  3244                     JCAssignOp newTree = makeAssignop(opcode,
  3245                                                     tree.arg,
  3246                                                     make.Literal(1));
  3247                     result = translate(newTree, tree.type);
  3248                     return;
  3250             case POSTINC:           // e ++
  3251             case POSTDEC:           // e --
  3253                     result = translate(lowerBoxedPostop(tree), tree.type);
  3254                     return;
  3257             throw new AssertionError(tree);
  3260         tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
  3262         if (tree.hasTag(NOT) && tree.arg.type.constValue() != null) {
  3263             tree.type = cfolder.fold1(bool_not, tree.arg.type);
  3266         // If translated left hand side is an Apply, we are
  3267         // seeing an access method invocation. In this case, return
  3268         // that access method invocation as result.
  3269         if (isUpdateOperator && tree.arg.hasTag(APPLY)) {
  3270             result = tree.arg;
  3271         } else {
  3272             result = tree;
  3276     public void visitBinary(JCBinary tree) {
  3277         List<Type> formals = tree.operator.type.getParameterTypes();
  3278         JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
  3279         switch (tree.getTag()) {
  3280         case OR:
  3281             if (lhs.type.isTrue()) {
  3282                 result = lhs;
  3283                 return;
  3285             if (lhs.type.isFalse()) {
  3286                 result = translate(tree.rhs, formals.tail.head);
  3287                 return;
  3289             break;
  3290         case AND:
  3291             if (lhs.type.isFalse()) {
  3292                 result = lhs;
  3293                 return;
  3295             if (lhs.type.isTrue()) {
  3296                 result = translate(tree.rhs, formals.tail.head);
  3297                 return;
  3299             break;
  3301         tree.rhs = translate(tree.rhs, formals.tail.head);
  3302         result = tree;
  3305     public void visitIdent(JCIdent tree) {
  3306         result = access(tree.sym, tree, enclOp, false);
  3309     /** Translate away the foreach loop.  */
  3310     public void visitForeachLoop(JCEnhancedForLoop tree) {
  3311         if (types.elemtype(tree.expr.type) == null)
  3312             visitIterableForeachLoop(tree);
  3313         else
  3314             visitArrayForeachLoop(tree);
  3316         // where
  3317         /**
  3318          * A statement of the form
  3320          * <pre>
  3321          *     for ( T v : arrayexpr ) stmt;
  3322          * </pre>
  3324          * (where arrayexpr is of an array type) gets translated to
  3326          * <pre>{@code
  3327          *     for ( { arraytype #arr = arrayexpr;
  3328          *             int #len = array.length;
  3329          *             int #i = 0; };
  3330          *           #i < #len; i$++ ) {
  3331          *         T v = arr$[#i];
  3332          *         stmt;
  3333          *     }
  3334          * }</pre>
  3336          * where #arr, #len, and #i are freshly named synthetic local variables.
  3337          */
  3338         private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
  3339             make_at(tree.expr.pos());
  3340             VarSymbol arraycache = new VarSymbol(0,
  3341                                                  names.fromString("arr" + target.syntheticNameChar()),
  3342                                                  tree.expr.type,
  3343                                                  currentMethodSym);
  3344             JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
  3345             VarSymbol lencache = new VarSymbol(0,
  3346                                                names.fromString("len" + target.syntheticNameChar()),
  3347                                                syms.intType,
  3348                                                currentMethodSym);
  3349             JCStatement lencachedef = make.
  3350                 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
  3351             VarSymbol index = new VarSymbol(0,
  3352                                             names.fromString("i" + target.syntheticNameChar()),
  3353                                             syms.intType,
  3354                                             currentMethodSym);
  3356             JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
  3357             indexdef.init.type = indexdef.type = syms.intType.constType(0);
  3359             List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
  3360             JCBinary cond = makeBinary(LT, make.Ident(index), make.Ident(lencache));
  3362             JCExpressionStatement step = make.Exec(makeUnary(PREINC, make.Ident(index)));
  3364             Type elemtype = types.elemtype(tree.expr.type);
  3365             JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
  3366                                                     make.Ident(index)).setType(elemtype);
  3367             JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
  3368                                                   tree.var.name,
  3369                                                   tree.var.vartype,
  3370                                                   loopvarinit).setType(tree.var.type);
  3371             loopvardef.sym = tree.var.sym;
  3372             JCBlock body = make.
  3373                 Block(0, List.of(loopvardef, tree.body));
  3375             result = translate(make.
  3376                                ForLoop(loopinit,
  3377                                        cond,
  3378                                        List.of(step),
  3379                                        body));
  3380             patchTargets(body, tree, result);
  3382         /** Patch up break and continue targets. */
  3383         private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
  3384             class Patcher extends TreeScanner {
  3385                 public void visitBreak(JCBreak tree) {
  3386                     if (tree.target == src)
  3387                         tree.target = dest;
  3389                 public void visitContinue(JCContinue tree) {
  3390                     if (tree.target == src)
  3391                         tree.target = dest;
  3393                 public void visitClassDef(JCClassDecl tree) {}
  3395             new Patcher().scan(body);
  3397         /**
  3398          * A statement of the form
  3400          * <pre>
  3401          *     for ( T v : coll ) stmt ;
  3402          * </pre>
  3404          * (where coll implements {@code Iterable<? extends T>}) gets translated to
  3406          * <pre>{@code
  3407          *     for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
  3408          *         T v = (T) #i.next();
  3409          *         stmt;
  3410          *     }
  3411          * }</pre>
  3413          * where #i is a freshly named synthetic local variable.
  3414          */
  3415         private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
  3416             make_at(tree.expr.pos());
  3417             Type iteratorTarget = syms.objectType;
  3418             Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
  3419                                               syms.iterableType.tsym);
  3420             if (iterableType.getTypeArguments().nonEmpty())
  3421                 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
  3422             Type eType = tree.expr.type;
  3423             while (eType.hasTag(TYPEVAR)) {
  3424                 eType = eType.getUpperBound();
  3426             tree.expr.type = types.erasure(eType);
  3427             if (eType.isCompound())
  3428                 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
  3429             Symbol iterator = lookupMethod(tree.expr.pos(),
  3430                                            names.iterator,
  3431                                            eType,
  3432                                            List.<Type>nil());
  3433             VarSymbol itvar = new VarSymbol(0, names.fromString("i" + target.syntheticNameChar()),
  3434                                             types.erasure(iterator.type.getReturnType()),
  3435                                             currentMethodSym);
  3437              JCStatement init = make.
  3438                 VarDef(itvar, make.App(make.Select(tree.expr, iterator)
  3439                      .setType(types.erasure(iterator.type))));
  3441             Symbol hasNext = lookupMethod(tree.expr.pos(),
  3442                                           names.hasNext,
  3443                                           itvar.type,
  3444                                           List.<Type>nil());
  3445             JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
  3446             Symbol next = lookupMethod(tree.expr.pos(),
  3447                                        names.next,
  3448                                        itvar.type,
  3449                                        List.<Type>nil());
  3450             JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
  3451             if (tree.var.type.isPrimitive())
  3452                 vardefinit = make.TypeCast(types.upperBound(iteratorTarget), vardefinit);
  3453             else
  3454                 vardefinit = make.TypeCast(tree.var.type, vardefinit);
  3455             JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
  3456                                                   tree.var.name,
  3457                                                   tree.var.vartype,
  3458                                                   vardefinit).setType(tree.var.type);
  3459             indexDef.sym = tree.var.sym;
  3460             JCBlock body = make.Block(0, List.of(indexDef, tree.body));
  3461             body.endpos = TreeInfo.endPos(tree.body);
  3462             result = translate(make.
  3463                 ForLoop(List.of(init),
  3464                         cond,
  3465                         List.<JCExpressionStatement>nil(),
  3466                         body));
  3467             patchTargets(body, tree, result);
  3470     public void visitVarDef(JCVariableDecl tree) {
  3471         MethodSymbol oldMethodSym = currentMethodSym;
  3472         tree.mods = translate(tree.mods);
  3473         tree.vartype = translate(tree.vartype);
  3474         if (currentMethodSym == null) {
  3475             // A class or instance field initializer.
  3476             currentMethodSym =
  3477                 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
  3478                                  names.empty, null,
  3479                                  currentClass);
  3481         if (tree.init != null) tree.init = translate(tree.init, tree.type);
  3482         result = tree;
  3483         currentMethodSym = oldMethodSym;
  3486     public void visitBlock(JCBlock tree) {
  3487         MethodSymbol oldMethodSym = currentMethodSym;
  3488         if (currentMethodSym == null) {
  3489             // Block is a static or instance initializer.
  3490             currentMethodSym =
  3491                 new MethodSymbol(tree.flags | BLOCK,
  3492                                  names.empty, null,
  3493                                  currentClass);
  3495         super.visitBlock(tree);
  3496         currentMethodSym = oldMethodSym;
  3499     public void visitDoLoop(JCDoWhileLoop tree) {
  3500         tree.body = translate(tree.body);
  3501         tree.cond = translate(tree.cond, syms.booleanType);
  3502         result = tree;
  3505     public void visitWhileLoop(JCWhileLoop tree) {
  3506         tree.cond = translate(tree.cond, syms.booleanType);
  3507         tree.body = translate(tree.body);
  3508         result = tree;
  3511     public void visitForLoop(JCForLoop tree) {
  3512         tree.init = translate(tree.init);
  3513         if (tree.cond != null)
  3514             tree.cond = translate(tree.cond, syms.booleanType);
  3515         tree.step = translate(tree.step);
  3516         tree.body = translate(tree.body);
  3517         result = tree;
  3520     public void visitReturn(JCReturn tree) {
  3521         if (tree.expr != null)
  3522             tree.expr = translate(tree.expr,
  3523                                   types.erasure(currentMethodDef
  3524                                                 .restype.type));
  3525         result = tree;
  3528     public void visitSwitch(JCSwitch tree) {
  3529         Type selsuper = types.supertype(tree.selector.type);
  3530         boolean enumSwitch = selsuper != null &&
  3531             (tree.selector.type.tsym.flags() & ENUM) != 0;
  3532         boolean stringSwitch = selsuper != null &&
  3533             types.isSameType(tree.selector.type, syms.stringType);
  3534         Type target = enumSwitch ? tree.selector.type :
  3535             (stringSwitch? syms.stringType : syms.intType);
  3536         tree.selector = translate(tree.selector, target);
  3537         tree.cases = translateCases(tree.cases);
  3538         if (enumSwitch) {
  3539             result = visitEnumSwitch(tree);
  3540         } else if (stringSwitch) {
  3541             result = visitStringSwitch(tree);
  3542         } else {
  3543             result = tree;
  3547     public JCTree visitEnumSwitch(JCSwitch tree) {
  3548         TypeSymbol enumSym = tree.selector.type.tsym;
  3549         EnumMapping map = mapForEnum(tree.pos(), enumSym);
  3550         make_at(tree.pos());
  3551         Symbol ordinalMethod = lookupMethod(tree.pos(),
  3552                                             names.ordinal,
  3553                                             tree.selector.type,
  3554                                             List.<Type>nil());
  3555         JCArrayAccess selector = make.Indexed(map.mapVar,
  3556                                         make.App(make.Select(tree.selector,
  3557                                                              ordinalMethod)));
  3558         ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
  3559         for (JCCase c : tree.cases) {
  3560             if (c.pat != null) {
  3561                 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
  3562                 JCLiteral pat = map.forConstant(label);
  3563                 cases.append(make.Case(pat, c.stats));
  3564             } else {
  3565                 cases.append(c);
  3568         JCSwitch enumSwitch = make.Switch(selector, cases.toList());
  3569         patchTargets(enumSwitch, tree, enumSwitch);
  3570         return enumSwitch;
  3573     public JCTree visitStringSwitch(JCSwitch tree) {
  3574         List<JCCase> caseList = tree.getCases();
  3575         int alternatives = caseList.size();
  3577         if (alternatives == 0) { // Strange but legal possibility
  3578             return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
  3579         } else {
  3580             /*
  3581              * The general approach used is to translate a single
  3582              * string switch statement into a series of two chained
  3583              * switch statements: the first a synthesized statement
  3584              * switching on the argument string's hash value and
  3585              * computing a string's position in the list of original
  3586              * case labels, if any, followed by a second switch on the
  3587              * computed integer value.  The second switch has the same
  3588              * code structure as the original string switch statement
  3589              * except that the string case labels are replaced with
  3590              * positional integer constants starting at 0.
  3592              * The first switch statement can be thought of as an
  3593              * inlined map from strings to their position in the case
  3594              * label list.  An alternate implementation would use an
  3595              * actual Map for this purpose, as done for enum switches.
  3597              * With some additional effort, it would be possible to
  3598              * use a single switch statement on the hash code of the
  3599              * argument, but care would need to be taken to preserve
  3600              * the proper control flow in the presence of hash
  3601              * collisions and other complications, such as
  3602              * fallthroughs.  Switch statements with one or two
  3603              * alternatives could also be specially translated into
  3604              * if-then statements to omit the computation of the hash
  3605              * code.
  3607              * The generated code assumes that the hashing algorithm
  3608              * of String is the same in the compilation environment as
  3609              * in the environment the code will run in.  The string
  3610              * hashing algorithm in the SE JDK has been unchanged
  3611              * since at least JDK 1.2.  Since the algorithm has been
  3612              * specified since that release as well, it is very
  3613              * unlikely to be changed in the future.
  3615              * Different hashing algorithms, such as the length of the
  3616              * strings or a perfect hashing algorithm over the
  3617              * particular set of case labels, could potentially be
  3618              * used instead of String.hashCode.
  3619              */
  3621             ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
  3623             // Map from String case labels to their original position in
  3624             // the list of case labels.
  3625             Map<String, Integer> caseLabelToPosition =
  3626                 new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
  3628             // Map of hash codes to the string case labels having that hashCode.
  3629             Map<Integer, Set<String>> hashToString =
  3630                 new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
  3632             int casePosition = 0;
  3633             for(JCCase oneCase : caseList) {
  3634                 JCExpression expression = oneCase.getExpression();
  3636                 if (expression != null) { // expression for a "default" case is null
  3637                     String labelExpr = (String) expression.type.constValue();
  3638                     Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
  3639                     Assert.checkNull(mapping);
  3640                     int hashCode = labelExpr.hashCode();
  3642                     Set<String> stringSet = hashToString.get(hashCode);
  3643                     if (stringSet == null) {
  3644                         stringSet = new LinkedHashSet<String>(1, 1.0f);
  3645                         stringSet.add(labelExpr);
  3646                         hashToString.put(hashCode, stringSet);
  3647                     } else {
  3648                         boolean added = stringSet.add(labelExpr);
  3649                         Assert.check(added);
  3652                 casePosition++;
  3655             // Synthesize a switch statement that has the effect of
  3656             // mapping from a string to the integer position of that
  3657             // string in the list of case labels.  This is done by
  3658             // switching on the hashCode of the string followed by an
  3659             // if-then-else chain comparing the input for equality
  3660             // with all the case labels having that hash value.
  3662             /*
  3663              * s$ = top of stack;
  3664              * tmp$ = -1;
  3665              * switch($s.hashCode()) {
  3666              *     case caseLabel.hashCode:
  3667              *         if (s$.equals("caseLabel_1")
  3668              *           tmp$ = caseLabelToPosition("caseLabel_1");
  3669              *         else if (s$.equals("caseLabel_2"))
  3670              *           tmp$ = caseLabelToPosition("caseLabel_2");
  3671              *         ...
  3672              *         break;
  3673              * ...
  3674              * }
  3675              */
  3677             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
  3678                                                names.fromString("s" + tree.pos + target.syntheticNameChar()),
  3679                                                syms.stringType,
  3680                                                currentMethodSym);
  3681             stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
  3683             VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
  3684                                                  names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
  3685                                                  syms.intType,
  3686                                                  currentMethodSym);
  3687             JCVariableDecl dollar_tmp_def =
  3688                 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
  3689             dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
  3690             stmtList.append(dollar_tmp_def);
  3691             ListBuffer<JCCase> caseBuffer = ListBuffer.lb();
  3692             // hashCode will trigger nullcheck on original switch expression
  3693             JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
  3694                                                        names.hashCode,
  3695                                                        List.<JCExpression>nil()).setType(syms.intType);
  3696             JCSwitch switch1 = make.Switch(hashCodeCall,
  3697                                         caseBuffer.toList());
  3698             for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
  3699                 int hashCode = entry.getKey();
  3700                 Set<String> stringsWithHashCode = entry.getValue();
  3701                 Assert.check(stringsWithHashCode.size() >= 1);
  3703                 JCStatement elsepart = null;
  3704                 for(String caseLabel : stringsWithHashCode ) {
  3705                     JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
  3706                                                                    names.equals,
  3707                                                                    List.<JCExpression>of(make.Literal(caseLabel)));
  3708                     elsepart = make.If(stringEqualsCall,
  3709                                        make.Exec(make.Assign(make.Ident(dollar_tmp),
  3710                                                              make.Literal(caseLabelToPosition.get(caseLabel))).
  3711                                                  setType(dollar_tmp.type)),
  3712                                        elsepart);
  3715                 ListBuffer<JCStatement> lb = ListBuffer.lb();
  3716                 JCBreak breakStmt = make.Break(null);
  3717                 breakStmt.target = switch1;
  3718                 lb.append(elsepart).append(breakStmt);
  3720                 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
  3723             switch1.cases = caseBuffer.toList();
  3724             stmtList.append(switch1);
  3726             // Make isomorphic switch tree replacing string labels
  3727             // with corresponding integer ones from the label to
  3728             // position map.
  3730             ListBuffer<JCCase> lb = ListBuffer.lb();
  3731             JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
  3732             for(JCCase oneCase : caseList ) {
  3733                 // Rewire up old unlabeled break statements to the
  3734                 // replacement switch being created.
  3735                 patchTargets(oneCase, tree, switch2);
  3737                 boolean isDefault = (oneCase.getExpression() == null);
  3738                 JCExpression caseExpr;
  3739                 if (isDefault)
  3740                     caseExpr = null;
  3741                 else {
  3742                     caseExpr = make.Literal(caseLabelToPosition.get((String)TreeInfo.skipParens(oneCase.
  3743                                                                                                 getExpression()).
  3744                                                                     type.constValue()));
  3747                 lb.append(make.Case(caseExpr,
  3748                                     oneCase.getStatements()));
  3751             switch2.cases = lb.toList();
  3752             stmtList.append(switch2);
  3754             return make.Block(0L, stmtList.toList());
  3758     public void visitNewArray(JCNewArray tree) {
  3759         tree.elemtype = translate(tree.elemtype);
  3760         for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
  3761             if (t.head != null) t.head = translate(t.head, syms.intType);
  3762         tree.elems = translate(tree.elems, types.elemtype(tree.type));
  3763         result = tree;
  3766     public void visitSelect(JCFieldAccess tree) {
  3767         // need to special case-access of the form C.super.x
  3768         // these will always need an access method, unless C
  3769         // is a default interface subclassed by the current class.
  3770         boolean qualifiedSuperAccess =
  3771             tree.selected.hasTag(SELECT) &&
  3772             TreeInfo.name(tree.selected) == names._super &&
  3773             !types.isDirectSuperInterface(((JCFieldAccess)tree.selected).selected.type.tsym, currentClass);
  3774         tree.selected = translate(tree.selected);
  3775         if (tree.name == names._class) {
  3776             result = classOf(tree.selected);
  3778         else if (tree.name == names._super &&
  3779                 types.isDirectSuperInterface(tree.selected.type.tsym, currentClass)) {
  3780             //default super call!! Not a classic qualified super call
  3781             TypeSymbol supSym = tree.selected.type.tsym;
  3782             Assert.checkNonNull(types.asSuper(currentClass.type, supSym));
  3783             result = tree;
  3785         else if (tree.name == names._this || tree.name == names._super) {
  3786             result = makeThis(tree.pos(), tree.selected.type.tsym);
  3788         else
  3789             result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
  3792     public void visitLetExpr(LetExpr tree) {
  3793         tree.defs = translateVarDefs(tree.defs);
  3794         tree.expr = translate(tree.expr, tree.type);
  3795         result = tree;
  3798     // There ought to be nothing to rewrite here;
  3799     // we don't generate code.
  3800     public void visitAnnotation(JCAnnotation tree) {
  3801         result = tree;
  3804     @Override
  3805     public void visitTry(JCTry tree) {
  3806         /* special case of try without catchers and with finally emtpy.
  3807          * Don't give it a try, translate only the body.
  3808          */
  3809         if (tree.resources.isEmpty()) {
  3810             if (tree.catchers.isEmpty() &&
  3811                 tree.finalizer.getStatements().isEmpty()) {
  3812                 result = translate(tree.body);
  3813             } else {
  3814                 super.visitTry(tree);
  3816         } else {
  3817             result = makeTwrTry(tree);
  3821 /**************************************************************************
  3822  * main method
  3823  *************************************************************************/
  3825     /** Translate a toplevel class and return a list consisting of
  3826      *  the translated class and translated versions of all inner classes.
  3827      *  @param env   The attribution environment current at the class definition.
  3828      *               We need this for resolving some additional symbols.
  3829      *  @param cdef  The tree representing the class definition.
  3830      */
  3831     public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
  3832         ListBuffer<JCTree> translated = null;
  3833         try {
  3834             attrEnv = env;
  3835             this.make = make;
  3836             endPosTable = env.toplevel.endPositions;
  3837             currentClass = null;
  3838             currentMethodDef = null;
  3839             outermostClassDef = (cdef.hasTag(CLASSDEF)) ? (JCClassDecl)cdef : null;
  3840             outermostMemberDef = null;
  3841             this.translated = new ListBuffer<JCTree>();
  3842             classdefs = new HashMap<ClassSymbol,JCClassDecl>();
  3843             actualSymbols = new HashMap<Symbol,Symbol>();
  3844             freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
  3845             proxies = new Scope(syms.noSymbol);
  3846             twrVars = new Scope(syms.noSymbol);
  3847             outerThisStack = List.nil();
  3848             accessNums = new HashMap<Symbol,Integer>();
  3849             accessSyms = new HashMap<Symbol,MethodSymbol[]>();
  3850             accessConstrs = new HashMap<Symbol,MethodSymbol>();
  3851             accessConstrTags = List.nil();
  3852             accessed = new ListBuffer<Symbol>();
  3853             translate(cdef, (JCExpression)null);
  3854             for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
  3855                 makeAccessible(l.head);
  3856             for (EnumMapping map : enumSwitchMap.values())
  3857                 map.translate();
  3858             checkConflicts(this.translated.toList());
  3859             checkAccessConstructorTags();
  3860             translated = this.translated;
  3861         } finally {
  3862             // note that recursive invocations of this method fail hard
  3863             attrEnv = null;
  3864             this.make = null;
  3865             endPosTable = null;
  3866             currentClass = null;
  3867             currentMethodDef = null;
  3868             outermostClassDef = null;
  3869             outermostMemberDef = null;
  3870             this.translated = null;
  3871             classdefs = null;
  3872             actualSymbols = null;
  3873             freevarCache = null;
  3874             proxies = null;
  3875             outerThisStack = null;
  3876             accessNums = null;
  3877             accessSyms = null;
  3878             accessConstrs = null;
  3879             accessConstrTags = null;
  3880             accessed = null;
  3881             enumSwitchMap.clear();
  3883         return translated.toList();

mercurial