src/share/classes/com/sun/tools/javac/comp/Lower.java

Mon, 14 Nov 2011 15:11:10 -0800

author
ksrini
date
Mon, 14 Nov 2011 15:11:10 -0800
changeset 1138
7375d4979bd3
parent 1127
ca49d50318dc
child 1157
3809292620c9
permissions
-rw-r--r--

7106166: (javac) re-factor EndPos parser
Reviewed-by: jjg

duke@1 1 /*
jjg@815 2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29
duke@1 30 import com.sun.tools.javac.code.*;
duke@1 31 import com.sun.tools.javac.jvm.*;
jjg@657 32 import com.sun.tools.javac.main.RecognizedOptions.PkgInfo;
duke@1 33 import com.sun.tools.javac.tree.*;
duke@1 34 import com.sun.tools.javac.util.*;
duke@1 35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 36 import com.sun.tools.javac.util.List;
duke@1 37
duke@1 38 import com.sun.tools.javac.code.Symbol.*;
duke@1 39 import com.sun.tools.javac.tree.JCTree.*;
duke@1 40 import com.sun.tools.javac.code.Type.*;
duke@1 41
duke@1 42 import com.sun.tools.javac.jvm.Target;
ksrini@1138 43 import com.sun.tools.javac.parser.EndPosTable;
duke@1 44
duke@1 45 import static com.sun.tools.javac.code.Flags.*;
jjg@1127 46 import static com.sun.tools.javac.code.Flags.BLOCK;
duke@1 47 import static com.sun.tools.javac.code.Kinds.*;
duke@1 48 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 49 import static com.sun.tools.javac.jvm.ByteCodes.*;
jjg@1127 50 import static com.sun.tools.javac.tree.JCTree.Tag.*;
duke@1 51
duke@1 52 /** This pass translates away some syntactic sugar: inner classes,
duke@1 53 * class literals, assertions, foreach loops, etc.
duke@1 54 *
jjg@581 55 * <p><b>This is NOT part of any supported API.
jjg@581 56 * If you write code that depends on this, you do so at your own risk.
duke@1 57 * This code and its internal interfaces are subject to change or
duke@1 58 * deletion without notice.</b>
duke@1 59 */
duke@1 60 public class Lower extends TreeTranslator {
duke@1 61 protected static final Context.Key<Lower> lowerKey =
duke@1 62 new Context.Key<Lower>();
duke@1 63
duke@1 64 public static Lower instance(Context context) {
duke@1 65 Lower instance = context.get(lowerKey);
duke@1 66 if (instance == null)
duke@1 67 instance = new Lower(context);
duke@1 68 return instance;
duke@1 69 }
duke@1 70
jjg@113 71 private Names names;
duke@1 72 private Log log;
duke@1 73 private Symtab syms;
duke@1 74 private Resolve rs;
duke@1 75 private Check chk;
duke@1 76 private Attr attr;
duke@1 77 private TreeMaker make;
duke@1 78 private DiagnosticPosition make_pos;
duke@1 79 private ClassWriter writer;
duke@1 80 private ClassReader reader;
duke@1 81 private ConstFold cfolder;
duke@1 82 private Target target;
duke@1 83 private Source source;
duke@1 84 private boolean allowEnums;
duke@1 85 private final Name dollarAssertionsDisabled;
duke@1 86 private final Name classDollar;
duke@1 87 private Types types;
duke@1 88 private boolean debugLower;
jjg@657 89 private PkgInfo pkginfoOpt;
duke@1 90
duke@1 91 protected Lower(Context context) {
duke@1 92 context.put(lowerKey, this);
jjg@113 93 names = Names.instance(context);
duke@1 94 log = Log.instance(context);
duke@1 95 syms = Symtab.instance(context);
duke@1 96 rs = Resolve.instance(context);
duke@1 97 chk = Check.instance(context);
duke@1 98 attr = Attr.instance(context);
duke@1 99 make = TreeMaker.instance(context);
duke@1 100 writer = ClassWriter.instance(context);
duke@1 101 reader = ClassReader.instance(context);
duke@1 102 cfolder = ConstFold.instance(context);
duke@1 103 target = Target.instance(context);
duke@1 104 source = Source.instance(context);
duke@1 105 allowEnums = source.allowEnums();
duke@1 106 dollarAssertionsDisabled = names.
duke@1 107 fromString(target.syntheticNameChar() + "assertionsDisabled");
duke@1 108 classDollar = names.
duke@1 109 fromString("class" + target.syntheticNameChar());
duke@1 110
duke@1 111 types = Types.instance(context);
duke@1 112 Options options = Options.instance(context);
jjg@700 113 debugLower = options.isSet("debuglower");
jjg@657 114 pkginfoOpt = PkgInfo.get(options);
duke@1 115 }
duke@1 116
duke@1 117 /** The currently enclosing class.
duke@1 118 */
duke@1 119 ClassSymbol currentClass;
duke@1 120
duke@1 121 /** A queue of all translated classes.
duke@1 122 */
duke@1 123 ListBuffer<JCTree> translated;
duke@1 124
duke@1 125 /** Environment for symbol lookup, set by translateTopLevelClass.
duke@1 126 */
duke@1 127 Env<AttrContext> attrEnv;
duke@1 128
duke@1 129 /** A hash table mapping syntax trees to their ending source positions.
duke@1 130 */
ksrini@1138 131 EndPosTable endPosTable;
duke@1 132
duke@1 133 /**************************************************************************
duke@1 134 * Global mappings
duke@1 135 *************************************************************************/
duke@1 136
duke@1 137 /** A hash table mapping local classes to their definitions.
duke@1 138 */
duke@1 139 Map<ClassSymbol, JCClassDecl> classdefs;
duke@1 140
duke@1 141 /** A hash table mapping virtual accessed symbols in outer subclasses
duke@1 142 * to the actually referred symbol in superclasses.
duke@1 143 */
duke@1 144 Map<Symbol,Symbol> actualSymbols;
duke@1 145
duke@1 146 /** The current method definition.
duke@1 147 */
duke@1 148 JCMethodDecl currentMethodDef;
duke@1 149
duke@1 150 /** The current method symbol.
duke@1 151 */
duke@1 152 MethodSymbol currentMethodSym;
duke@1 153
duke@1 154 /** The currently enclosing outermost class definition.
duke@1 155 */
duke@1 156 JCClassDecl outermostClassDef;
duke@1 157
duke@1 158 /** The currently enclosing outermost member definition.
duke@1 159 */
duke@1 160 JCTree outermostMemberDef;
duke@1 161
duke@1 162 /** A navigator class for assembling a mapping from local class symbols
duke@1 163 * to class definition trees.
duke@1 164 * There is only one case; all other cases simply traverse down the tree.
duke@1 165 */
duke@1 166 class ClassMap extends TreeScanner {
duke@1 167
duke@1 168 /** All encountered class defs are entered into classdefs table.
duke@1 169 */
duke@1 170 public void visitClassDef(JCClassDecl tree) {
duke@1 171 classdefs.put(tree.sym, tree);
duke@1 172 super.visitClassDef(tree);
duke@1 173 }
duke@1 174 }
duke@1 175 ClassMap classMap = new ClassMap();
duke@1 176
duke@1 177 /** Map a class symbol to its definition.
duke@1 178 * @param c The class symbol of which we want to determine the definition.
duke@1 179 */
duke@1 180 JCClassDecl classDef(ClassSymbol c) {
duke@1 181 // First lookup the class in the classdefs table.
duke@1 182 JCClassDecl def = classdefs.get(c);
duke@1 183 if (def == null && outermostMemberDef != null) {
duke@1 184 // If this fails, traverse outermost member definition, entering all
duke@1 185 // local classes into classdefs, and try again.
duke@1 186 classMap.scan(outermostMemberDef);
duke@1 187 def = classdefs.get(c);
duke@1 188 }
duke@1 189 if (def == null) {
duke@1 190 // If this fails, traverse outermost class definition, entering all
duke@1 191 // local classes into classdefs, and try again.
duke@1 192 classMap.scan(outermostClassDef);
duke@1 193 def = classdefs.get(c);
duke@1 194 }
duke@1 195 return def;
duke@1 196 }
duke@1 197
duke@1 198 /** A hash table mapping class symbols to lists of free variables.
duke@1 199 * accessed by them. Only free variables of the method immediately containing
duke@1 200 * a class are associated with that class.
duke@1 201 */
duke@1 202 Map<ClassSymbol,List<VarSymbol>> freevarCache;
duke@1 203
duke@1 204 /** A navigator class for collecting the free variables accessed
duke@1 205 * from a local class.
duke@1 206 * There is only one case; all other cases simply traverse down the tree.
duke@1 207 */
duke@1 208 class FreeVarCollector extends TreeScanner {
duke@1 209
duke@1 210 /** The owner of the local class.
duke@1 211 */
duke@1 212 Symbol owner;
duke@1 213
duke@1 214 /** The local class.
duke@1 215 */
duke@1 216 ClassSymbol clazz;
duke@1 217
duke@1 218 /** The list of owner's variables accessed from within the local class,
duke@1 219 * without any duplicates.
duke@1 220 */
duke@1 221 List<VarSymbol> fvs;
duke@1 222
duke@1 223 FreeVarCollector(ClassSymbol clazz) {
duke@1 224 this.clazz = clazz;
duke@1 225 this.owner = clazz.owner;
duke@1 226 this.fvs = List.nil();
duke@1 227 }
duke@1 228
duke@1 229 /** Add free variable to fvs list unless it is already there.
duke@1 230 */
duke@1 231 private void addFreeVar(VarSymbol v) {
duke@1 232 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
duke@1 233 if (l.head == v) return;
duke@1 234 fvs = fvs.prepend(v);
duke@1 235 }
duke@1 236
duke@1 237 /** Add all free variables of class c to fvs list
duke@1 238 * unless they are already there.
duke@1 239 */
duke@1 240 private void addFreeVars(ClassSymbol c) {
duke@1 241 List<VarSymbol> fvs = freevarCache.get(c);
duke@1 242 if (fvs != null) {
duke@1 243 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
duke@1 244 addFreeVar(l.head);
duke@1 245 }
duke@1 246 }
duke@1 247 }
duke@1 248
duke@1 249 /** If tree refers to a variable in owner of local class, add it to
duke@1 250 * free variables list.
duke@1 251 */
duke@1 252 public void visitIdent(JCIdent tree) {
duke@1 253 result = tree;
duke@1 254 visitSymbol(tree.sym);
duke@1 255 }
duke@1 256 // where
duke@1 257 private void visitSymbol(Symbol _sym) {
duke@1 258 Symbol sym = _sym;
duke@1 259 if (sym.kind == VAR || sym.kind == MTH) {
duke@1 260 while (sym != null && sym.owner != owner)
duke@1 261 sym = proxies.lookup(proxyName(sym.name)).sym;
duke@1 262 if (sym != null && sym.owner == owner) {
duke@1 263 VarSymbol v = (VarSymbol)sym;
duke@1 264 if (v.getConstValue() == null) {
duke@1 265 addFreeVar(v);
duke@1 266 }
duke@1 267 } else {
duke@1 268 if (outerThisStack.head != null &&
duke@1 269 outerThisStack.head != _sym)
duke@1 270 visitSymbol(outerThisStack.head);
duke@1 271 }
duke@1 272 }
duke@1 273 }
duke@1 274
duke@1 275 /** If tree refers to a class instance creation expression
duke@1 276 * add all free variables of the freshly created class.
duke@1 277 */
duke@1 278 public void visitNewClass(JCNewClass tree) {
duke@1 279 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
duke@1 280 addFreeVars(c);
duke@1 281 if (tree.encl == null &&
duke@1 282 c.hasOuterInstance() &&
duke@1 283 outerThisStack.head != null)
duke@1 284 visitSymbol(outerThisStack.head);
duke@1 285 super.visitNewClass(tree);
duke@1 286 }
duke@1 287
duke@1 288 /** If tree refers to a qualified this or super expression
duke@1 289 * for anything but the current class, add the outer this
duke@1 290 * stack as a free variable.
duke@1 291 */
duke@1 292 public void visitSelect(JCFieldAccess tree) {
duke@1 293 if ((tree.name == names._this || tree.name == names._super) &&
duke@1 294 tree.selected.type.tsym != clazz &&
duke@1 295 outerThisStack.head != null)
duke@1 296 visitSymbol(outerThisStack.head);
duke@1 297 super.visitSelect(tree);
duke@1 298 }
duke@1 299
duke@1 300 /** If tree refers to a superclass constructor call,
duke@1 301 * add all free variables of the superclass.
duke@1 302 */
duke@1 303 public void visitApply(JCMethodInvocation tree) {
duke@1 304 if (TreeInfo.name(tree.meth) == names._super) {
duke@1 305 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
duke@1 306 Symbol constructor = TreeInfo.symbol(tree.meth);
duke@1 307 ClassSymbol c = (ClassSymbol)constructor.owner;
duke@1 308 if (c.hasOuterInstance() &&
jjg@1127 309 !tree.meth.hasTag(SELECT) &&
duke@1 310 outerThisStack.head != null)
duke@1 311 visitSymbol(outerThisStack.head);
duke@1 312 }
duke@1 313 super.visitApply(tree);
duke@1 314 }
duke@1 315 }
duke@1 316
duke@1 317 /** Return the variables accessed from within a local class, which
duke@1 318 * are declared in the local class' owner.
duke@1 319 * (in reverse order of first access).
duke@1 320 */
duke@1 321 List<VarSymbol> freevars(ClassSymbol c) {
duke@1 322 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 323 List<VarSymbol> fvs = freevarCache.get(c);
duke@1 324 if (fvs == null) {
duke@1 325 FreeVarCollector collector = new FreeVarCollector(c);
duke@1 326 collector.scan(classDef(c));
duke@1 327 fvs = collector.fvs;
duke@1 328 freevarCache.put(c, fvs);
duke@1 329 }
duke@1 330 return fvs;
duke@1 331 } else {
duke@1 332 return List.nil();
duke@1 333 }
duke@1 334 }
duke@1 335
duke@1 336 Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
duke@1 337
duke@1 338 EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
duke@1 339 EnumMapping map = enumSwitchMap.get(enumClass);
duke@1 340 if (map == null)
duke@1 341 enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
duke@1 342 return map;
duke@1 343 }
duke@1 344
duke@1 345 /** This map gives a translation table to be used for enum
duke@1 346 * switches.
duke@1 347 *
duke@1 348 * <p>For each enum that appears as the type of a switch
duke@1 349 * expression, we maintain an EnumMapping to assist in the
duke@1 350 * translation, as exemplified by the following example:
duke@1 351 *
duke@1 352 * <p>we translate
duke@1 353 * <pre>
duke@1 354 * switch(colorExpression) {
duke@1 355 * case red: stmt1;
duke@1 356 * case green: stmt2;
duke@1 357 * }
duke@1 358 * </pre>
duke@1 359 * into
duke@1 360 * <pre>
duke@1 361 * switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
duke@1 362 * case 1: stmt1;
duke@1 363 * case 2: stmt2
duke@1 364 * }
duke@1 365 * </pre>
darcy@430 366 * with the auxiliary table initialized as follows:
duke@1 367 * <pre>
duke@1 368 * class Outer$0 {
duke@1 369 * synthetic final int[] $EnumMap$Color = new int[Color.values().length];
duke@1 370 * static {
duke@1 371 * try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
duke@1 372 * try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
duke@1 373 * }
duke@1 374 * }
duke@1 375 * </pre>
duke@1 376 * class EnumMapping provides mapping data and support methods for this translation.
duke@1 377 */
duke@1 378 class EnumMapping {
duke@1 379 EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
duke@1 380 this.forEnum = forEnum;
duke@1 381 this.values = new LinkedHashMap<VarSymbol,Integer>();
duke@1 382 this.pos = pos;
duke@1 383 Name varName = names
duke@1 384 .fromString(target.syntheticNameChar() +
duke@1 385 "SwitchMap" +
duke@1 386 target.syntheticNameChar() +
duke@1 387 writer.xClassName(forEnum.type).toString()
duke@1 388 .replace('/', '.')
duke@1 389 .replace('.', target.syntheticNameChar()));
duke@1 390 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 391 this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
duke@1 392 varName,
duke@1 393 new ArrayType(syms.intType, syms.arrayClass),
duke@1 394 outerCacheClass);
duke@1 395 enterSynthetic(pos, mapVar, outerCacheClass.members());
duke@1 396 }
duke@1 397
duke@1 398 DiagnosticPosition pos = null;
duke@1 399
duke@1 400 // the next value to use
duke@1 401 int next = 1; // 0 (unused map elements) go to the default label
duke@1 402
duke@1 403 // the enum for which this is a map
duke@1 404 final TypeSymbol forEnum;
duke@1 405
duke@1 406 // the field containing the map
duke@1 407 final VarSymbol mapVar;
duke@1 408
duke@1 409 // the mapped values
duke@1 410 final Map<VarSymbol,Integer> values;
duke@1 411
duke@1 412 JCLiteral forConstant(VarSymbol v) {
duke@1 413 Integer result = values.get(v);
duke@1 414 if (result == null)
duke@1 415 values.put(v, result = next++);
duke@1 416 return make.Literal(result);
duke@1 417 }
duke@1 418
duke@1 419 // generate the field initializer for the map
duke@1 420 void translate() {
duke@1 421 make.at(pos.getStartPosition());
duke@1 422 JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
duke@1 423
duke@1 424 // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
duke@1 425 MethodSymbol valuesMethod = lookupMethod(pos,
duke@1 426 names.values,
duke@1 427 forEnum.type,
duke@1 428 List.<Type>nil());
duke@1 429 JCExpression size = make // Color.values().length
duke@1 430 .Select(make.App(make.QualIdent(valuesMethod)),
duke@1 431 syms.lengthVar);
duke@1 432 JCExpression mapVarInit = make
duke@1 433 .NewArray(make.Type(syms.intType), List.of(size), null)
duke@1 434 .setType(new ArrayType(syms.intType, syms.arrayClass));
duke@1 435
duke@1 436 // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
duke@1 437 ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
duke@1 438 Symbol ordinalMethod = lookupMethod(pos,
duke@1 439 names.ordinal,
duke@1 440 forEnum.type,
duke@1 441 List.<Type>nil());
duke@1 442 List<JCCatch> catcher = List.<JCCatch>nil()
duke@1 443 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
duke@1 444 syms.noSuchFieldErrorType,
duke@1 445 syms.noSymbol),
duke@1 446 null),
duke@1 447 make.Block(0, List.<JCStatement>nil())));
duke@1 448 for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
duke@1 449 VarSymbol enumerator = e.getKey();
duke@1 450 Integer mappedValue = e.getValue();
duke@1 451 JCExpression assign = make
duke@1 452 .Assign(make.Indexed(mapVar,
duke@1 453 make.App(make.Select(make.QualIdent(enumerator),
duke@1 454 ordinalMethod))),
duke@1 455 make.Literal(mappedValue))
duke@1 456 .setType(syms.intType);
duke@1 457 JCStatement exec = make.Exec(assign);
duke@1 458 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
duke@1 459 stmts.append(_try);
duke@1 460 }
duke@1 461
duke@1 462 owner.defs = owner.defs
duke@1 463 .prepend(make.Block(STATIC, stmts.toList()))
duke@1 464 .prepend(make.VarDef(mapVar, mapVarInit));
duke@1 465 }
duke@1 466 }
duke@1 467
duke@1 468
duke@1 469 /**************************************************************************
duke@1 470 * Tree building blocks
duke@1 471 *************************************************************************/
duke@1 472
duke@1 473 /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
duke@1 474 * pos as make_pos, for use in diagnostics.
duke@1 475 **/
duke@1 476 TreeMaker make_at(DiagnosticPosition pos) {
duke@1 477 make_pos = pos;
duke@1 478 return make.at(pos);
duke@1 479 }
duke@1 480
duke@1 481 /** Make an attributed tree representing a literal. This will be an
duke@1 482 * Ident node in the case of boolean literals, a Literal node in all
duke@1 483 * other cases.
duke@1 484 * @param type The literal's type.
duke@1 485 * @param value The literal's value.
duke@1 486 */
duke@1 487 JCExpression makeLit(Type type, Object value) {
duke@1 488 return make.Literal(type.tag, value).setType(type.constType(value));
duke@1 489 }
duke@1 490
duke@1 491 /** Make an attributed tree representing null.
duke@1 492 */
duke@1 493 JCExpression makeNull() {
duke@1 494 return makeLit(syms.botType, null);
duke@1 495 }
duke@1 496
duke@1 497 /** Make an attributed class instance creation expression.
duke@1 498 * @param ctype The class type.
duke@1 499 * @param args The constructor arguments.
duke@1 500 */
duke@1 501 JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
duke@1 502 JCNewClass tree = make.NewClass(null,
duke@1 503 null, make.QualIdent(ctype.tsym), args, null);
duke@1 504 tree.constructor = rs.resolveConstructor(
duke@1 505 make_pos, attrEnv, ctype, TreeInfo.types(args), null, false, false);
duke@1 506 tree.type = ctype;
duke@1 507 return tree;
duke@1 508 }
duke@1 509
duke@1 510 /** Make an attributed unary expression.
duke@1 511 * @param optag The operators tree tag.
duke@1 512 * @param arg The operator's argument.
duke@1 513 */
jjg@1127 514 JCUnary makeUnary(JCTree.Tag optag, JCExpression arg) {
duke@1 515 JCUnary tree = make.Unary(optag, arg);
duke@1 516 tree.operator = rs.resolveUnaryOperator(
duke@1 517 make_pos, optag, attrEnv, arg.type);
duke@1 518 tree.type = tree.operator.type.getReturnType();
duke@1 519 return tree;
duke@1 520 }
duke@1 521
duke@1 522 /** Make an attributed binary expression.
duke@1 523 * @param optag The operators tree tag.
duke@1 524 * @param lhs The operator's left argument.
duke@1 525 * @param rhs The operator's right argument.
duke@1 526 */
jjg@1127 527 JCBinary makeBinary(JCTree.Tag optag, JCExpression lhs, JCExpression rhs) {
duke@1 528 JCBinary tree = make.Binary(optag, lhs, rhs);
duke@1 529 tree.operator = rs.resolveBinaryOperator(
duke@1 530 make_pos, optag, attrEnv, lhs.type, rhs.type);
duke@1 531 tree.type = tree.operator.type.getReturnType();
duke@1 532 return tree;
duke@1 533 }
duke@1 534
duke@1 535 /** Make an attributed assignop expression.
duke@1 536 * @param optag The operators tree tag.
duke@1 537 * @param lhs The operator's left argument.
duke@1 538 * @param rhs The operator's right argument.
duke@1 539 */
jjg@1127 540 JCAssignOp makeAssignop(JCTree.Tag optag, JCTree lhs, JCTree rhs) {
duke@1 541 JCAssignOp tree = make.Assignop(optag, lhs, rhs);
duke@1 542 tree.operator = rs.resolveBinaryOperator(
jjg@1127 543 make_pos, tree.getTag().noAssignOp(), attrEnv, lhs.type, rhs.type);
duke@1 544 tree.type = lhs.type;
duke@1 545 return tree;
duke@1 546 }
duke@1 547
duke@1 548 /** Convert tree into string object, unless it has already a
duke@1 549 * reference type..
duke@1 550 */
duke@1 551 JCExpression makeString(JCExpression tree) {
duke@1 552 if (tree.type.tag >= CLASS) {
duke@1 553 return tree;
duke@1 554 } else {
duke@1 555 Symbol valueOfSym = lookupMethod(tree.pos(),
duke@1 556 names.valueOf,
duke@1 557 syms.stringType,
duke@1 558 List.of(tree.type));
duke@1 559 return make.App(make.QualIdent(valueOfSym), List.of(tree));
duke@1 560 }
duke@1 561 }
duke@1 562
duke@1 563 /** Create an empty anonymous class definition and enter and complete
duke@1 564 * its symbol. Return the class definition's symbol.
duke@1 565 * and create
duke@1 566 * @param flags The class symbol's flags
duke@1 567 * @param owner The class symbol's owner
duke@1 568 */
duke@1 569 ClassSymbol makeEmptyClass(long flags, ClassSymbol owner) {
duke@1 570 // Create class symbol.
duke@1 571 ClassSymbol c = reader.defineClass(names.empty, owner);
duke@1 572 c.flatname = chk.localClassName(c);
duke@1 573 c.sourcefile = owner.sourcefile;
duke@1 574 c.completer = null;
mcimadamore@858 575 c.members_field = new Scope(c);
duke@1 576 c.flags_field = flags;
duke@1 577 ClassType ctype = (ClassType) c.type;
duke@1 578 ctype.supertype_field = syms.objectType;
duke@1 579 ctype.interfaces_field = List.nil();
duke@1 580
duke@1 581 JCClassDecl odef = classDef(owner);
duke@1 582
duke@1 583 // Enter class symbol in owner scope and compiled table.
duke@1 584 enterSynthetic(odef.pos(), c, owner.members());
duke@1 585 chk.compiled.put(c.flatname, c);
duke@1 586
duke@1 587 // Create class definition tree.
duke@1 588 JCClassDecl cdef = make.ClassDef(
duke@1 589 make.Modifiers(flags), names.empty,
duke@1 590 List.<JCTypeParameter>nil(),
duke@1 591 null, List.<JCExpression>nil(), List.<JCTree>nil());
duke@1 592 cdef.sym = c;
duke@1 593 cdef.type = c.type;
duke@1 594
duke@1 595 // Append class definition tree to owner's definitions.
duke@1 596 odef.defs = odef.defs.prepend(cdef);
duke@1 597
duke@1 598 return c;
duke@1 599 }
duke@1 600
duke@1 601 /**************************************************************************
duke@1 602 * Symbol manipulation utilities
duke@1 603 *************************************************************************/
duke@1 604
duke@1 605 /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
duke@1 606 * @param pos Position for error reporting.
duke@1 607 * @param sym The symbol.
duke@1 608 * @param s The scope.
duke@1 609 */
duke@1 610 private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
mcimadamore@359 611 s.enter(sym);
mcimadamore@359 612 }
mcimadamore@359 613
darcy@609 614 /** Create a fresh synthetic name within a given scope - the unique name is
darcy@609 615 * obtained by appending '$' chars at the end of the name until no match
darcy@609 616 * is found.
darcy@609 617 *
darcy@609 618 * @param name base name
darcy@609 619 * @param s scope in which the name has to be unique
darcy@609 620 * @return fresh synthetic name
darcy@609 621 */
darcy@609 622 private Name makeSyntheticName(Name name, Scope s) {
darcy@609 623 do {
darcy@609 624 name = name.append(
darcy@609 625 target.syntheticNameChar(),
darcy@609 626 names.empty);
darcy@609 627 } while (lookupSynthetic(name, s) != null);
darcy@609 628 return name;
darcy@609 629 }
darcy@609 630
mcimadamore@359 631 /** Check whether synthetic symbols generated during lowering conflict
mcimadamore@359 632 * with user-defined symbols.
mcimadamore@359 633 *
mcimadamore@359 634 * @param translatedTrees lowered class trees
mcimadamore@359 635 */
mcimadamore@359 636 void checkConflicts(List<JCTree> translatedTrees) {
mcimadamore@359 637 for (JCTree t : translatedTrees) {
mcimadamore@359 638 t.accept(conflictsChecker);
mcimadamore@359 639 }
mcimadamore@359 640 }
mcimadamore@359 641
mcimadamore@359 642 JCTree.Visitor conflictsChecker = new TreeScanner() {
mcimadamore@359 643
mcimadamore@359 644 TypeSymbol currentClass;
mcimadamore@359 645
mcimadamore@359 646 @Override
mcimadamore@359 647 public void visitMethodDef(JCMethodDecl that) {
mcimadamore@359 648 chk.checkConflicts(that.pos(), that.sym, currentClass);
mcimadamore@359 649 super.visitMethodDef(that);
mcimadamore@359 650 }
mcimadamore@359 651
mcimadamore@359 652 @Override
mcimadamore@359 653 public void visitVarDef(JCVariableDecl that) {
mcimadamore@359 654 if (that.sym.owner.kind == TYP) {
mcimadamore@359 655 chk.checkConflicts(that.pos(), that.sym, currentClass);
mcimadamore@359 656 }
mcimadamore@359 657 super.visitVarDef(that);
mcimadamore@359 658 }
mcimadamore@359 659
mcimadamore@359 660 @Override
mcimadamore@359 661 public void visitClassDef(JCClassDecl that) {
mcimadamore@359 662 TypeSymbol prevCurrentClass = currentClass;
mcimadamore@359 663 currentClass = that.sym;
mcimadamore@359 664 try {
mcimadamore@359 665 super.visitClassDef(that);
mcimadamore@359 666 }
mcimadamore@359 667 finally {
mcimadamore@359 668 currentClass = prevCurrentClass;
duke@1 669 }
duke@1 670 }
mcimadamore@359 671 };
duke@1 672
duke@1 673 /** Look up a synthetic name in a given scope.
duke@1 674 * @param scope The scope.
duke@1 675 * @param name The name.
duke@1 676 */
duke@1 677 private Symbol lookupSynthetic(Name name, Scope s) {
duke@1 678 Symbol sym = s.lookup(name).sym;
duke@1 679 return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
duke@1 680 }
duke@1 681
duke@1 682 /** Look up a method in a given scope.
duke@1 683 */
duke@1 684 private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
duke@1 685 return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, null);
duke@1 686 }
duke@1 687
duke@1 688 /** Look up a constructor.
duke@1 689 */
duke@1 690 private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
duke@1 691 return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
duke@1 692 }
duke@1 693
duke@1 694 /** Look up a field.
duke@1 695 */
duke@1 696 private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
duke@1 697 return rs.resolveInternalField(pos, attrEnv, qual, name);
duke@1 698 }
duke@1 699
jjg@595 700 /** Anon inner classes are used as access constructor tags.
jjg@595 701 * accessConstructorTag will use an existing anon class if one is available,
jjg@595 702 * and synthethise a class (with makeEmptyClass) if one is not available.
jjg@595 703 * However, there is a small possibility that an existing class will not
jjg@595 704 * be generated as expected if it is inside a conditional with a constant
jjg@595 705 * expression. If that is found to be the case, create an empty class here.
jjg@595 706 */
jjg@595 707 private void checkAccessConstructorTags() {
jjg@595 708 for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
jjg@595 709 ClassSymbol c = l.head;
jjg@595 710 if (isTranslatedClassAvailable(c))
jjg@595 711 continue;
jjg@595 712 // Create class definition tree.
jjg@595 713 JCClassDecl cdef = make.ClassDef(
jjg@595 714 make.Modifiers(STATIC | SYNTHETIC), names.empty,
jjg@595 715 List.<JCTypeParameter>nil(),
jjg@595 716 null, List.<JCExpression>nil(), List.<JCTree>nil());
jjg@595 717 cdef.sym = c;
jjg@595 718 cdef.type = c.type;
jjg@595 719 // add it to the list of classes to be generated
jjg@595 720 translated.append(cdef);
jjg@595 721 }
jjg@595 722 }
jjg@595 723 // where
jjg@595 724 private boolean isTranslatedClassAvailable(ClassSymbol c) {
jjg@595 725 for (JCTree tree: translated) {
jjg@1127 726 if (tree.hasTag(CLASSDEF)
jjg@595 727 && ((JCClassDecl) tree).sym == c) {
jjg@595 728 return true;
jjg@595 729 }
jjg@595 730 }
jjg@595 731 return false;
jjg@595 732 }
jjg@595 733
duke@1 734 /**************************************************************************
duke@1 735 * Access methods
duke@1 736 *************************************************************************/
duke@1 737
duke@1 738 /** Access codes for dereferencing, assignment,
duke@1 739 * and pre/post increment/decrement.
duke@1 740 * Access codes for assignment operations are determined by method accessCode
duke@1 741 * below.
duke@1 742 *
duke@1 743 * All access codes for accesses to the current class are even.
duke@1 744 * If a member of the superclass should be accessed instead (because
duke@1 745 * access was via a qualified super), add one to the corresponding code
duke@1 746 * for the current class, making the number odd.
duke@1 747 * This numbering scheme is used by the backend to decide whether
duke@1 748 * to issue an invokevirtual or invokespecial call.
duke@1 749 *
duke@1 750 * @see Gen.visitSelect(Select tree)
duke@1 751 */
duke@1 752 private static final int
duke@1 753 DEREFcode = 0,
duke@1 754 ASSIGNcode = 2,
duke@1 755 PREINCcode = 4,
duke@1 756 PREDECcode = 6,
duke@1 757 POSTINCcode = 8,
duke@1 758 POSTDECcode = 10,
duke@1 759 FIRSTASGOPcode = 12;
duke@1 760
duke@1 761 /** Number of access codes
duke@1 762 */
duke@1 763 private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
duke@1 764
duke@1 765 /** A mapping from symbols to their access numbers.
duke@1 766 */
duke@1 767 private Map<Symbol,Integer> accessNums;
duke@1 768
duke@1 769 /** A mapping from symbols to an array of access symbols, indexed by
duke@1 770 * access code.
duke@1 771 */
duke@1 772 private Map<Symbol,MethodSymbol[]> accessSyms;
duke@1 773
duke@1 774 /** A mapping from (constructor) symbols to access constructor symbols.
duke@1 775 */
duke@1 776 private Map<Symbol,MethodSymbol> accessConstrs;
duke@1 777
jjg@595 778 /** A list of all class symbols used for access constructor tags.
jjg@595 779 */
jjg@595 780 private List<ClassSymbol> accessConstrTags;
jjg@595 781
duke@1 782 /** A queue for all accessed symbols.
duke@1 783 */
duke@1 784 private ListBuffer<Symbol> accessed;
duke@1 785
duke@1 786 /** Map bytecode of binary operation to access code of corresponding
duke@1 787 * assignment operation. This is always an even number.
duke@1 788 */
duke@1 789 private static int accessCode(int bytecode) {
duke@1 790 if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
duke@1 791 return (bytecode - iadd) * 2 + FIRSTASGOPcode;
duke@1 792 else if (bytecode == ByteCodes.string_add)
duke@1 793 return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
duke@1 794 else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
duke@1 795 return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
duke@1 796 else
duke@1 797 return -1;
duke@1 798 }
duke@1 799
duke@1 800 /** return access code for identifier,
duke@1 801 * @param tree The tree representing the identifier use.
duke@1 802 * @param enclOp The closest enclosing operation node of tree,
duke@1 803 * null if tree is not a subtree of an operation.
duke@1 804 */
duke@1 805 private static int accessCode(JCTree tree, JCTree enclOp) {
duke@1 806 if (enclOp == null)
duke@1 807 return DEREFcode;
jjg@1127 808 else if (enclOp.hasTag(ASSIGN) &&
duke@1 809 tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
duke@1 810 return ASSIGNcode;
jjg@1127 811 else if (enclOp.getTag().isIncOrDecUnaryOp() &&
duke@1 812 tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
jjg@1127 813 return mapTagToUnaryOpCode(enclOp.getTag());
jjg@1127 814 else if (enclOp.getTag().isAssignop() &&
duke@1 815 tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
duke@1 816 return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
duke@1 817 else
duke@1 818 return DEREFcode;
duke@1 819 }
duke@1 820
duke@1 821 /** Return binary operator that corresponds to given access code.
duke@1 822 */
duke@1 823 private OperatorSymbol binaryAccessOperator(int acode) {
duke@1 824 for (Scope.Entry e = syms.predefClass.members().elems;
duke@1 825 e != null;
duke@1 826 e = e.sibling) {
duke@1 827 if (e.sym instanceof OperatorSymbol) {
duke@1 828 OperatorSymbol op = (OperatorSymbol)e.sym;
duke@1 829 if (accessCode(op.opcode) == acode) return op;
duke@1 830 }
duke@1 831 }
duke@1 832 return null;
duke@1 833 }
duke@1 834
duke@1 835 /** Return tree tag for assignment operation corresponding
duke@1 836 * to given binary operator.
duke@1 837 */
jjg@1127 838 private static JCTree.Tag treeTag(OperatorSymbol operator) {
duke@1 839 switch (operator.opcode) {
duke@1 840 case ByteCodes.ior: case ByteCodes.lor:
jjg@1127 841 return BITOR_ASG;
duke@1 842 case ByteCodes.ixor: case ByteCodes.lxor:
jjg@1127 843 return BITXOR_ASG;
duke@1 844 case ByteCodes.iand: case ByteCodes.land:
jjg@1127 845 return BITAND_ASG;
duke@1 846 case ByteCodes.ishl: case ByteCodes.lshl:
duke@1 847 case ByteCodes.ishll: case ByteCodes.lshll:
jjg@1127 848 return SL_ASG;
duke@1 849 case ByteCodes.ishr: case ByteCodes.lshr:
duke@1 850 case ByteCodes.ishrl: case ByteCodes.lshrl:
jjg@1127 851 return SR_ASG;
duke@1 852 case ByteCodes.iushr: case ByteCodes.lushr:
duke@1 853 case ByteCodes.iushrl: case ByteCodes.lushrl:
jjg@1127 854 return USR_ASG;
duke@1 855 case ByteCodes.iadd: case ByteCodes.ladd:
duke@1 856 case ByteCodes.fadd: case ByteCodes.dadd:
duke@1 857 case ByteCodes.string_add:
jjg@1127 858 return PLUS_ASG;
duke@1 859 case ByteCodes.isub: case ByteCodes.lsub:
duke@1 860 case ByteCodes.fsub: case ByteCodes.dsub:
jjg@1127 861 return MINUS_ASG;
duke@1 862 case ByteCodes.imul: case ByteCodes.lmul:
duke@1 863 case ByteCodes.fmul: case ByteCodes.dmul:
jjg@1127 864 return MUL_ASG;
duke@1 865 case ByteCodes.idiv: case ByteCodes.ldiv:
duke@1 866 case ByteCodes.fdiv: case ByteCodes.ddiv:
jjg@1127 867 return DIV_ASG;
duke@1 868 case ByteCodes.imod: case ByteCodes.lmod:
duke@1 869 case ByteCodes.fmod: case ByteCodes.dmod:
jjg@1127 870 return MOD_ASG;
duke@1 871 default:
duke@1 872 throw new AssertionError();
duke@1 873 }
duke@1 874 }
duke@1 875
duke@1 876 /** The name of the access method with number `anum' and access code `acode'.
duke@1 877 */
duke@1 878 Name accessName(int anum, int acode) {
duke@1 879 return names.fromString(
duke@1 880 "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
duke@1 881 }
duke@1 882
duke@1 883 /** Return access symbol for a private or protected symbol from an inner class.
duke@1 884 * @param sym The accessed private symbol.
duke@1 885 * @param tree The accessing tree.
duke@1 886 * @param enclOp The closest enclosing operation node of tree,
duke@1 887 * null if tree is not a subtree of an operation.
duke@1 888 * @param protAccess Is access to a protected symbol in another
duke@1 889 * package?
duke@1 890 * @param refSuper Is access via a (qualified) C.super?
duke@1 891 */
duke@1 892 MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
duke@1 893 boolean protAccess, boolean refSuper) {
duke@1 894 ClassSymbol accOwner = refSuper && protAccess
duke@1 895 // For access via qualified super (T.super.x), place the
duke@1 896 // access symbol on T.
duke@1 897 ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
duke@1 898 // Otherwise pretend that the owner of an accessed
duke@1 899 // protected symbol is the enclosing class of the current
duke@1 900 // class which is a subclass of the symbol's owner.
duke@1 901 : accessClass(sym, protAccess, tree);
duke@1 902
duke@1 903 Symbol vsym = sym;
duke@1 904 if (sym.owner != accOwner) {
duke@1 905 vsym = sym.clone(accOwner);
duke@1 906 actualSymbols.put(vsym, sym);
duke@1 907 }
duke@1 908
duke@1 909 Integer anum // The access number of the access method.
duke@1 910 = accessNums.get(vsym);
duke@1 911 if (anum == null) {
duke@1 912 anum = accessed.length();
duke@1 913 accessNums.put(vsym, anum);
duke@1 914 accessSyms.put(vsym, new MethodSymbol[NCODES]);
duke@1 915 accessed.append(vsym);
duke@1 916 // System.out.println("accessing " + vsym + " in " + vsym.location());
duke@1 917 }
duke@1 918
duke@1 919 int acode; // The access code of the access method.
duke@1 920 List<Type> argtypes; // The argument types of the access method.
duke@1 921 Type restype; // The result type of the access method.
darcy@430 922 List<Type> thrown; // The thrown exceptions of the access method.
duke@1 923 switch (vsym.kind) {
duke@1 924 case VAR:
duke@1 925 acode = accessCode(tree, enclOp);
duke@1 926 if (acode >= FIRSTASGOPcode) {
duke@1 927 OperatorSymbol operator = binaryAccessOperator(acode);
duke@1 928 if (operator.opcode == string_add)
duke@1 929 argtypes = List.of(syms.objectType);
duke@1 930 else
duke@1 931 argtypes = operator.type.getParameterTypes().tail;
duke@1 932 } else if (acode == ASSIGNcode)
duke@1 933 argtypes = List.of(vsym.erasure(types));
duke@1 934 else
duke@1 935 argtypes = List.nil();
duke@1 936 restype = vsym.erasure(types);
duke@1 937 thrown = List.nil();
duke@1 938 break;
duke@1 939 case MTH:
duke@1 940 acode = DEREFcode;
duke@1 941 argtypes = vsym.erasure(types).getParameterTypes();
duke@1 942 restype = vsym.erasure(types).getReturnType();
duke@1 943 thrown = vsym.type.getThrownTypes();
duke@1 944 break;
duke@1 945 default:
duke@1 946 throw new AssertionError();
duke@1 947 }
duke@1 948
duke@1 949 // For references via qualified super, increment acode by one,
duke@1 950 // making it odd.
duke@1 951 if (protAccess && refSuper) acode++;
duke@1 952
duke@1 953 // Instance access methods get instance as first parameter.
duke@1 954 // For protected symbols this needs to be the instance as a member
duke@1 955 // of the type containing the accessed symbol, not the class
duke@1 956 // containing the access method.
duke@1 957 if ((vsym.flags() & STATIC) == 0) {
duke@1 958 argtypes = argtypes.prepend(vsym.owner.erasure(types));
duke@1 959 }
duke@1 960 MethodSymbol[] accessors = accessSyms.get(vsym);
duke@1 961 MethodSymbol accessor = accessors[acode];
duke@1 962 if (accessor == null) {
duke@1 963 accessor = new MethodSymbol(
duke@1 964 STATIC | SYNTHETIC,
duke@1 965 accessName(anum.intValue(), acode),
duke@1 966 new MethodType(argtypes, restype, thrown, syms.methodClass),
duke@1 967 accOwner);
duke@1 968 enterSynthetic(tree.pos(), accessor, accOwner.members());
duke@1 969 accessors[acode] = accessor;
duke@1 970 }
duke@1 971 return accessor;
duke@1 972 }
duke@1 973
duke@1 974 /** The qualifier to be used for accessing a symbol in an outer class.
duke@1 975 * This is either C.sym or C.this.sym, depending on whether or not
duke@1 976 * sym is static.
duke@1 977 * @param sym The accessed symbol.
duke@1 978 */
duke@1 979 JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
duke@1 980 return (sym.flags() & STATIC) != 0
duke@1 981 ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
duke@1 982 : makeOwnerThis(pos, sym, true);
duke@1 983 }
duke@1 984
duke@1 985 /** Do we need an access method to reference private symbol?
duke@1 986 */
duke@1 987 boolean needsPrivateAccess(Symbol sym) {
duke@1 988 if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
duke@1 989 return false;
duke@1 990 } else if (sym.name == names.init && (sym.owner.owner.kind & (VAR | MTH)) != 0) {
duke@1 991 // private constructor in local class: relax protection
duke@1 992 sym.flags_field &= ~PRIVATE;
duke@1 993 return false;
duke@1 994 } else {
duke@1 995 return true;
duke@1 996 }
duke@1 997 }
duke@1 998
duke@1 999 /** Do we need an access method to reference symbol in other package?
duke@1 1000 */
duke@1 1001 boolean needsProtectedAccess(Symbol sym, JCTree tree) {
duke@1 1002 if ((sym.flags() & PROTECTED) == 0 ||
duke@1 1003 sym.owner.owner == currentClass.owner || // fast special case
duke@1 1004 sym.packge() == currentClass.packge())
duke@1 1005 return false;
duke@1 1006 if (!currentClass.isSubClass(sym.owner, types))
duke@1 1007 return true;
duke@1 1008 if ((sym.flags() & STATIC) != 0 ||
jjg@1127 1009 !tree.hasTag(SELECT) ||
duke@1 1010 TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
duke@1 1011 return false;
duke@1 1012 return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
duke@1 1013 }
duke@1 1014
duke@1 1015 /** The class in which an access method for given symbol goes.
duke@1 1016 * @param sym The access symbol
duke@1 1017 * @param protAccess Is access to a protected symbol in another
duke@1 1018 * package?
duke@1 1019 */
duke@1 1020 ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
duke@1 1021 if (protAccess) {
duke@1 1022 Symbol qualifier = null;
duke@1 1023 ClassSymbol c = currentClass;
jjg@1127 1024 if (tree.hasTag(SELECT) && (sym.flags() & STATIC) == 0) {
duke@1 1025 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
duke@1 1026 while (!qualifier.isSubClass(c, types)) {
duke@1 1027 c = c.owner.enclClass();
duke@1 1028 }
duke@1 1029 return c;
duke@1 1030 } else {
duke@1 1031 while (!c.isSubClass(sym.owner, types)) {
duke@1 1032 c = c.owner.enclClass();
duke@1 1033 }
duke@1 1034 }
duke@1 1035 return c;
duke@1 1036 } else {
duke@1 1037 // the symbol is private
duke@1 1038 return sym.owner.enclClass();
duke@1 1039 }
duke@1 1040 }
duke@1 1041
duke@1 1042 /** Ensure that identifier is accessible, return tree accessing the identifier.
duke@1 1043 * @param sym The accessed symbol.
duke@1 1044 * @param tree The tree referring to the symbol.
duke@1 1045 * @param enclOp The closest enclosing operation node of tree,
duke@1 1046 * null if tree is not a subtree of an operation.
duke@1 1047 * @param refSuper Is access via a (qualified) C.super?
duke@1 1048 */
duke@1 1049 JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
duke@1 1050 // Access a free variable via its proxy, or its proxy's proxy
duke@1 1051 while (sym.kind == VAR && sym.owner.kind == MTH &&
duke@1 1052 sym.owner.enclClass() != currentClass) {
duke@1 1053 // A constant is replaced by its constant value.
duke@1 1054 Object cv = ((VarSymbol)sym).getConstValue();
duke@1 1055 if (cv != null) {
duke@1 1056 make.at(tree.pos);
duke@1 1057 return makeLit(sym.type, cv);
duke@1 1058 }
duke@1 1059 // Otherwise replace the variable by its proxy.
duke@1 1060 sym = proxies.lookup(proxyName(sym.name)).sym;
jjg@816 1061 Assert.check(sym != null && (sym.flags_field & FINAL) != 0);
duke@1 1062 tree = make.at(tree.pos).Ident(sym);
duke@1 1063 }
jjg@1127 1064 JCExpression base = (tree.hasTag(SELECT)) ? ((JCFieldAccess) tree).selected : null;
duke@1 1065 switch (sym.kind) {
duke@1 1066 case TYP:
duke@1 1067 if (sym.owner.kind != PCK) {
duke@1 1068 // Convert type idents to
duke@1 1069 // <flat name> or <package name> . <flat name>
duke@1 1070 Name flatname = Convert.shortName(sym.flatName());
duke@1 1071 while (base != null &&
duke@1 1072 TreeInfo.symbol(base) != null &&
duke@1 1073 TreeInfo.symbol(base).kind != PCK) {
jjg@1127 1074 base = (base.hasTag(SELECT))
duke@1 1075 ? ((JCFieldAccess) base).selected
duke@1 1076 : null;
duke@1 1077 }
jjg@1127 1078 if (tree.hasTag(IDENT)) {
duke@1 1079 ((JCIdent) tree).name = flatname;
duke@1 1080 } else if (base == null) {
duke@1 1081 tree = make.at(tree.pos).Ident(sym);
duke@1 1082 ((JCIdent) tree).name = flatname;
duke@1 1083 } else {
duke@1 1084 ((JCFieldAccess) tree).selected = base;
duke@1 1085 ((JCFieldAccess) tree).name = flatname;
duke@1 1086 }
duke@1 1087 }
duke@1 1088 break;
duke@1 1089 case MTH: case VAR:
duke@1 1090 if (sym.owner.kind == TYP) {
duke@1 1091
duke@1 1092 // Access methods are required for
duke@1 1093 // - private members,
duke@1 1094 // - protected members in a superclass of an
duke@1 1095 // enclosing class contained in another package.
duke@1 1096 // - all non-private members accessed via a qualified super.
duke@1 1097 boolean protAccess = refSuper && !needsPrivateAccess(sym)
duke@1 1098 || needsProtectedAccess(sym, tree);
duke@1 1099 boolean accReq = protAccess || needsPrivateAccess(sym);
duke@1 1100
duke@1 1101 // A base has to be supplied for
duke@1 1102 // - simple identifiers accessing variables in outer classes.
duke@1 1103 boolean baseReq =
duke@1 1104 base == null &&
duke@1 1105 sym.owner != syms.predefClass &&
duke@1 1106 !sym.isMemberOf(currentClass, types);
duke@1 1107
duke@1 1108 if (accReq || baseReq) {
duke@1 1109 make.at(tree.pos);
duke@1 1110
duke@1 1111 // Constants are replaced by their constant value.
duke@1 1112 if (sym.kind == VAR) {
duke@1 1113 Object cv = ((VarSymbol)sym).getConstValue();
duke@1 1114 if (cv != null) return makeLit(sym.type, cv);
duke@1 1115 }
duke@1 1116
duke@1 1117 // Private variables and methods are replaced by calls
duke@1 1118 // to their access methods.
duke@1 1119 if (accReq) {
duke@1 1120 List<JCExpression> args = List.nil();
duke@1 1121 if ((sym.flags() & STATIC) == 0) {
duke@1 1122 // Instance access methods get instance
duke@1 1123 // as first parameter.
duke@1 1124 if (base == null)
duke@1 1125 base = makeOwnerThis(tree.pos(), sym, true);
duke@1 1126 args = args.prepend(base);
duke@1 1127 base = null; // so we don't duplicate code
duke@1 1128 }
duke@1 1129 Symbol access = accessSymbol(sym, tree,
duke@1 1130 enclOp, protAccess,
duke@1 1131 refSuper);
duke@1 1132 JCExpression receiver = make.Select(
duke@1 1133 base != null ? base : make.QualIdent(access.owner),
duke@1 1134 access);
duke@1 1135 return make.App(receiver, args);
duke@1 1136
duke@1 1137 // Other accesses to members of outer classes get a
duke@1 1138 // qualifier.
duke@1 1139 } else if (baseReq) {
duke@1 1140 return make.at(tree.pos).Select(
duke@1 1141 accessBase(tree.pos(), sym), sym).setType(tree.type);
duke@1 1142 }
duke@1 1143 }
duke@1 1144 }
duke@1 1145 }
duke@1 1146 return tree;
duke@1 1147 }
duke@1 1148
duke@1 1149 /** Ensure that identifier is accessible, return tree accessing the identifier.
duke@1 1150 * @param tree The identifier tree.
duke@1 1151 */
duke@1 1152 JCExpression access(JCExpression tree) {
duke@1 1153 Symbol sym = TreeInfo.symbol(tree);
duke@1 1154 return sym == null ? tree : access(sym, tree, null, false);
duke@1 1155 }
duke@1 1156
duke@1 1157 /** Return access constructor for a private constructor,
duke@1 1158 * or the constructor itself, if no access constructor is needed.
duke@1 1159 * @param pos The position to report diagnostics, if any.
duke@1 1160 * @param constr The private constructor.
duke@1 1161 */
duke@1 1162 Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
duke@1 1163 if (needsPrivateAccess(constr)) {
duke@1 1164 ClassSymbol accOwner = constr.owner.enclClass();
duke@1 1165 MethodSymbol aconstr = accessConstrs.get(constr);
duke@1 1166 if (aconstr == null) {
duke@1 1167 List<Type> argtypes = constr.type.getParameterTypes();
duke@1 1168 if ((accOwner.flags_field & ENUM) != 0)
duke@1 1169 argtypes = argtypes
duke@1 1170 .prepend(syms.intType)
duke@1 1171 .prepend(syms.stringType);
duke@1 1172 aconstr = new MethodSymbol(
duke@1 1173 SYNTHETIC,
duke@1 1174 names.init,
duke@1 1175 new MethodType(
duke@1 1176 argtypes.append(
duke@1 1177 accessConstructorTag().erasure(types)),
duke@1 1178 constr.type.getReturnType(),
duke@1 1179 constr.type.getThrownTypes(),
duke@1 1180 syms.methodClass),
duke@1 1181 accOwner);
duke@1 1182 enterSynthetic(pos, aconstr, accOwner.members());
duke@1 1183 accessConstrs.put(constr, aconstr);
duke@1 1184 accessed.append(constr);
duke@1 1185 }
duke@1 1186 return aconstr;
duke@1 1187 } else {
duke@1 1188 return constr;
duke@1 1189 }
duke@1 1190 }
duke@1 1191
duke@1 1192 /** Return an anonymous class nested in this toplevel class.
duke@1 1193 */
duke@1 1194 ClassSymbol accessConstructorTag() {
duke@1 1195 ClassSymbol topClass = currentClass.outermostClass();
duke@1 1196 Name flatname = names.fromString("" + topClass.getQualifiedName() +
duke@1 1197 target.syntheticNameChar() +
duke@1 1198 "1");
duke@1 1199 ClassSymbol ctag = chk.compiled.get(flatname);
duke@1 1200 if (ctag == null)
duke@1 1201 ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass);
jjg@595 1202 // keep a record of all tags, to verify that all are generated as required
jjg@595 1203 accessConstrTags = accessConstrTags.prepend(ctag);
duke@1 1204 return ctag;
duke@1 1205 }
duke@1 1206
duke@1 1207 /** Add all required access methods for a private symbol to enclosing class.
duke@1 1208 * @param sym The symbol.
duke@1 1209 */
duke@1 1210 void makeAccessible(Symbol sym) {
duke@1 1211 JCClassDecl cdef = classDef(sym.owner.enclClass());
jjg@816 1212 if (cdef == null) Assert.error("class def not found: " + sym + " in " + sym.owner);
duke@1 1213 if (sym.name == names.init) {
duke@1 1214 cdef.defs = cdef.defs.prepend(
duke@1 1215 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
duke@1 1216 } else {
duke@1 1217 MethodSymbol[] accessors = accessSyms.get(sym);
duke@1 1218 for (int i = 0; i < NCODES; i++) {
duke@1 1219 if (accessors[i] != null)
duke@1 1220 cdef.defs = cdef.defs.prepend(
duke@1 1221 accessDef(cdef.pos, sym, accessors[i], i));
duke@1 1222 }
duke@1 1223 }
duke@1 1224 }
duke@1 1225
jjg@1127 1226 /** Maps unary operator integer codes to JCTree.Tag objects
jjg@1127 1227 * @param unaryOpCode the unary operator code
jjg@1127 1228 */
jjg@1127 1229 private static Tag mapUnaryOpCodeToTag(int unaryOpCode){
jjg@1127 1230 switch (unaryOpCode){
jjg@1127 1231 case PREINCcode:
jjg@1127 1232 return PREINC;
jjg@1127 1233 case PREDECcode:
jjg@1127 1234 return PREDEC;
jjg@1127 1235 case POSTINCcode:
jjg@1127 1236 return POSTINC;
jjg@1127 1237 case POSTDECcode:
jjg@1127 1238 return POSTDEC;
jjg@1127 1239 default:
jjg@1127 1240 return NO_TAG;
jjg@1127 1241 }
jjg@1127 1242 }
jjg@1127 1243
jjg@1127 1244 /** Maps JCTree.Tag objects to unary operator integer codes
jjg@1127 1245 * @param tag the JCTree.Tag
jjg@1127 1246 */
jjg@1127 1247 private static int mapTagToUnaryOpCode(Tag tag){
jjg@1127 1248 switch (tag){
jjg@1127 1249 case PREINC:
jjg@1127 1250 return PREINCcode;
jjg@1127 1251 case PREDEC:
jjg@1127 1252 return PREDECcode;
jjg@1127 1253 case POSTINC:
jjg@1127 1254 return POSTINCcode;
jjg@1127 1255 case POSTDEC:
jjg@1127 1256 return POSTDECcode;
jjg@1127 1257 default:
jjg@1127 1258 return -1;
jjg@1127 1259 }
jjg@1127 1260 }
jjg@1127 1261
duke@1 1262 /** Construct definition of an access method.
duke@1 1263 * @param pos The source code position of the definition.
duke@1 1264 * @param vsym The private or protected symbol.
duke@1 1265 * @param accessor The access method for the symbol.
duke@1 1266 * @param acode The access code.
duke@1 1267 */
duke@1 1268 JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
duke@1 1269 // System.err.println("access " + vsym + " with " + accessor);//DEBUG
duke@1 1270 currentClass = vsym.owner.enclClass();
duke@1 1271 make.at(pos);
duke@1 1272 JCMethodDecl md = make.MethodDef(accessor, null);
duke@1 1273
duke@1 1274 // Find actual symbol
duke@1 1275 Symbol sym = actualSymbols.get(vsym);
duke@1 1276 if (sym == null) sym = vsym;
duke@1 1277
duke@1 1278 JCExpression ref; // The tree referencing the private symbol.
duke@1 1279 List<JCExpression> args; // Any additional arguments to be passed along.
duke@1 1280 if ((sym.flags() & STATIC) != 0) {
duke@1 1281 ref = make.Ident(sym);
duke@1 1282 args = make.Idents(md.params);
duke@1 1283 } else {
duke@1 1284 ref = make.Select(make.Ident(md.params.head), sym);
duke@1 1285 args = make.Idents(md.params.tail);
duke@1 1286 }
duke@1 1287 JCStatement stat; // The statement accessing the private symbol.
duke@1 1288 if (sym.kind == VAR) {
duke@1 1289 // Normalize out all odd access codes by taking floor modulo 2:
duke@1 1290 int acode1 = acode - (acode & 1);
duke@1 1291
duke@1 1292 JCExpression expr; // The access method's return value.
duke@1 1293 switch (acode1) {
duke@1 1294 case DEREFcode:
duke@1 1295 expr = ref;
duke@1 1296 break;
duke@1 1297 case ASSIGNcode:
duke@1 1298 expr = make.Assign(ref, args.head);
duke@1 1299 break;
duke@1 1300 case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
jjg@1127 1301 expr = makeUnary(mapUnaryOpCodeToTag(acode1), ref);
duke@1 1302 break;
duke@1 1303 default:
duke@1 1304 expr = make.Assignop(
duke@1 1305 treeTag(binaryAccessOperator(acode1)), ref, args.head);
duke@1 1306 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
duke@1 1307 }
duke@1 1308 stat = make.Return(expr.setType(sym.type));
duke@1 1309 } else {
duke@1 1310 stat = make.Call(make.App(ref, args));
duke@1 1311 }
duke@1 1312 md.body = make.Block(0, List.of(stat));
duke@1 1313
duke@1 1314 // Make sure all parameters, result types and thrown exceptions
duke@1 1315 // are accessible.
duke@1 1316 for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
duke@1 1317 l.head.vartype = access(l.head.vartype);
duke@1 1318 md.restype = access(md.restype);
duke@1 1319 for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
duke@1 1320 l.head = access(l.head);
duke@1 1321
duke@1 1322 return md;
duke@1 1323 }
duke@1 1324
duke@1 1325 /** Construct definition of an access constructor.
duke@1 1326 * @param pos The source code position of the definition.
duke@1 1327 * @param constr The private constructor.
duke@1 1328 * @param accessor The access method for the constructor.
duke@1 1329 */
duke@1 1330 JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
duke@1 1331 make.at(pos);
duke@1 1332 JCMethodDecl md = make.MethodDef(accessor,
duke@1 1333 accessor.externalType(types),
duke@1 1334 null);
duke@1 1335 JCIdent callee = make.Ident(names._this);
duke@1 1336 callee.sym = constr;
duke@1 1337 callee.type = constr.type;
duke@1 1338 md.body =
duke@1 1339 make.Block(0, List.<JCStatement>of(
duke@1 1340 make.Call(
duke@1 1341 make.App(
duke@1 1342 callee,
duke@1 1343 make.Idents(md.params.reverse().tail.reverse())))));
duke@1 1344 return md;
duke@1 1345 }
duke@1 1346
duke@1 1347 /**************************************************************************
duke@1 1348 * Free variables proxies and this$n
duke@1 1349 *************************************************************************/
duke@1 1350
duke@1 1351 /** A scope containing all free variable proxies for currently translated
duke@1 1352 * class, as well as its this$n symbol (if needed).
duke@1 1353 * Proxy scopes are nested in the same way classes are.
duke@1 1354 * Inside a constructor, proxies and any this$n symbol are duplicated
duke@1 1355 * in an additional innermost scope, where they represent the constructor
duke@1 1356 * parameters.
duke@1 1357 */
duke@1 1358 Scope proxies;
duke@1 1359
darcy@609 1360 /** A scope containing all unnamed resource variables/saved
darcy@609 1361 * exception variables for translated TWR blocks
darcy@609 1362 */
darcy@609 1363 Scope twrVars;
darcy@609 1364
duke@1 1365 /** A stack containing the this$n field of the currently translated
duke@1 1366 * classes (if needed) in innermost first order.
duke@1 1367 * Inside a constructor, proxies and any this$n symbol are duplicated
duke@1 1368 * in an additional innermost scope, where they represent the constructor
duke@1 1369 * parameters.
duke@1 1370 */
duke@1 1371 List<VarSymbol> outerThisStack;
duke@1 1372
duke@1 1373 /** The name of a free variable proxy.
duke@1 1374 */
duke@1 1375 Name proxyName(Name name) {
duke@1 1376 return names.fromString("val" + target.syntheticNameChar() + name);
duke@1 1377 }
duke@1 1378
duke@1 1379 /** Proxy definitions for all free variables in given list, in reverse order.
duke@1 1380 * @param pos The source code position of the definition.
duke@1 1381 * @param freevars The free variables.
duke@1 1382 * @param owner The class in which the definitions go.
duke@1 1383 */
duke@1 1384 List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
duke@1 1385 long flags = FINAL | SYNTHETIC;
duke@1 1386 if (owner.kind == TYP &&
duke@1 1387 target.usePrivateSyntheticFields())
duke@1 1388 flags |= PRIVATE;
duke@1 1389 List<JCVariableDecl> defs = List.nil();
duke@1 1390 for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
duke@1 1391 VarSymbol v = l.head;
duke@1 1392 VarSymbol proxy = new VarSymbol(
duke@1 1393 flags, proxyName(v.name), v.erasure(types), owner);
duke@1 1394 proxies.enter(proxy);
duke@1 1395 JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
duke@1 1396 vd.vartype = access(vd.vartype);
duke@1 1397 defs = defs.prepend(vd);
duke@1 1398 }
duke@1 1399 return defs;
duke@1 1400 }
duke@1 1401
duke@1 1402 /** The name of a this$n field
duke@1 1403 * @param type The class referenced by the this$n field
duke@1 1404 */
duke@1 1405 Name outerThisName(Type type, Symbol owner) {
duke@1 1406 Type t = type.getEnclosingType();
duke@1 1407 int nestingLevel = 0;
duke@1 1408 while (t.tag == CLASS) {
duke@1 1409 t = t.getEnclosingType();
duke@1 1410 nestingLevel++;
duke@1 1411 }
duke@1 1412 Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
duke@1 1413 while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
duke@1 1414 result = names.fromString(result.toString() + target.syntheticNameChar());
duke@1 1415 return result;
duke@1 1416 }
duke@1 1417
duke@1 1418 /** Definition for this$n field.
duke@1 1419 * @param pos The source code position of the definition.
duke@1 1420 * @param owner The class in which the definition goes.
duke@1 1421 */
duke@1 1422 JCVariableDecl outerThisDef(int pos, Symbol owner) {
duke@1 1423 long flags = FINAL | SYNTHETIC;
duke@1 1424 if (owner.kind == TYP &&
duke@1 1425 target.usePrivateSyntheticFields())
duke@1 1426 flags |= PRIVATE;
duke@1 1427 Type target = types.erasure(owner.enclClass().type.getEnclosingType());
duke@1 1428 VarSymbol outerThis = new VarSymbol(
duke@1 1429 flags, outerThisName(target, owner), target, owner);
duke@1 1430 outerThisStack = outerThisStack.prepend(outerThis);
duke@1 1431 JCVariableDecl vd = make.at(pos).VarDef(outerThis, null);
duke@1 1432 vd.vartype = access(vd.vartype);
duke@1 1433 return vd;
duke@1 1434 }
duke@1 1435
duke@1 1436 /** Return a list of trees that load the free variables in given list,
duke@1 1437 * in reverse order.
duke@1 1438 * @param pos The source code position to be used for the trees.
duke@1 1439 * @param freevars The list of free variables.
duke@1 1440 */
duke@1 1441 List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
duke@1 1442 List<JCExpression> args = List.nil();
duke@1 1443 for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
duke@1 1444 args = args.prepend(loadFreevar(pos, l.head));
duke@1 1445 return args;
duke@1 1446 }
duke@1 1447 //where
duke@1 1448 JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
duke@1 1449 return access(v, make.at(pos).Ident(v), null, false);
duke@1 1450 }
duke@1 1451
duke@1 1452 /** Construct a tree simulating the expression <C.this>.
duke@1 1453 * @param pos The source code position to be used for the tree.
duke@1 1454 * @param c The qualifier class.
duke@1 1455 */
duke@1 1456 JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
duke@1 1457 if (currentClass == c) {
duke@1 1458 // in this case, `this' works fine
duke@1 1459 return make.at(pos).This(c.erasure(types));
duke@1 1460 } else {
duke@1 1461 // need to go via this$n
duke@1 1462 return makeOuterThis(pos, c);
duke@1 1463 }
duke@1 1464 }
duke@1 1465
darcy@884 1466 /**
darcy@884 1467 * Optionally replace a try statement with the desugaring of a
darcy@884 1468 * try-with-resources statement. The canonical desugaring of
darcy@884 1469 *
darcy@884 1470 * try ResourceSpecification
darcy@884 1471 * Block
darcy@884 1472 *
darcy@884 1473 * is
darcy@884 1474 *
darcy@884 1475 * {
darcy@884 1476 * final VariableModifiers_minus_final R #resource = Expression;
darcy@884 1477 * Throwable #primaryException = null;
darcy@884 1478 *
darcy@884 1479 * try ResourceSpecificationtail
darcy@884 1480 * Block
darcy@884 1481 * catch (Throwable #t) {
darcy@884 1482 * #primaryException = t;
darcy@884 1483 * throw #t;
darcy@884 1484 * } finally {
darcy@884 1485 * if (#resource != null) {
darcy@884 1486 * if (#primaryException != null) {
darcy@884 1487 * try {
darcy@884 1488 * #resource.close();
darcy@884 1489 * } catch(Throwable #suppressedException) {
darcy@884 1490 * #primaryException.addSuppressed(#suppressedException);
darcy@884 1491 * }
darcy@884 1492 * } else {
darcy@884 1493 * #resource.close();
darcy@884 1494 * }
darcy@884 1495 * }
darcy@884 1496 * }
darcy@884 1497 *
darcy@609 1498 * @param tree The try statement to inspect.
darcy@884 1499 * @return A a desugared try-with-resources tree, or the original
darcy@884 1500 * try block if there are no resources to manage.
darcy@609 1501 */
darcy@884 1502 JCTree makeTwrTry(JCTry tree) {
darcy@609 1503 make_at(tree.pos());
darcy@609 1504 twrVars = twrVars.dup();
darcy@884 1505 JCBlock twrBlock = makeTwrBlock(tree.resources, tree.body, 0);
darcy@609 1506 if (tree.catchers.isEmpty() && tree.finalizer == null)
darcy@884 1507 result = translate(twrBlock);
darcy@609 1508 else
darcy@884 1509 result = translate(make.Try(twrBlock, tree.catchers, tree.finalizer));
darcy@609 1510 twrVars = twrVars.leave();
darcy@609 1511 return result;
darcy@609 1512 }
darcy@609 1513
darcy@884 1514 private JCBlock makeTwrBlock(List<JCTree> resources, JCBlock block, int depth) {
darcy@609 1515 if (resources.isEmpty())
darcy@609 1516 return block;
darcy@609 1517
darcy@609 1518 // Add resource declaration or expression to block statements
darcy@609 1519 ListBuffer<JCStatement> stats = new ListBuffer<JCStatement>();
darcy@609 1520 JCTree resource = resources.head;
darcy@609 1521 JCExpression expr = null;
darcy@609 1522 if (resource instanceof JCVariableDecl) {
darcy@609 1523 JCVariableDecl var = (JCVariableDecl) resource;
darcy@609 1524 expr = make.Ident(var.sym).setType(resource.type);
darcy@609 1525 stats.add(var);
darcy@609 1526 } else {
jjg@816 1527 Assert.check(resource instanceof JCExpression);
darcy@609 1528 VarSymbol syntheticTwrVar =
darcy@609 1529 new VarSymbol(SYNTHETIC | FINAL,
darcy@609 1530 makeSyntheticName(names.fromString("twrVar" +
darcy@609 1531 depth), twrVars),
darcy@609 1532 (resource.type.tag == TypeTags.BOT) ?
darcy@609 1533 syms.autoCloseableType : resource.type,
darcy@609 1534 currentMethodSym);
darcy@609 1535 twrVars.enter(syntheticTwrVar);
darcy@609 1536 JCVariableDecl syntheticTwrVarDecl =
darcy@609 1537 make.VarDef(syntheticTwrVar, (JCExpression)resource);
darcy@609 1538 expr = (JCExpression)make.Ident(syntheticTwrVar);
darcy@609 1539 stats.add(syntheticTwrVarDecl);
darcy@609 1540 }
darcy@609 1541
darcy@609 1542 // Add primaryException declaration
darcy@609 1543 VarSymbol primaryException =
darcy@609 1544 new VarSymbol(SYNTHETIC,
darcy@609 1545 makeSyntheticName(names.fromString("primaryException" +
darcy@609 1546 depth), twrVars),
darcy@609 1547 syms.throwableType,
darcy@609 1548 currentMethodSym);
darcy@609 1549 twrVars.enter(primaryException);
darcy@609 1550 JCVariableDecl primaryExceptionTreeDecl = make.VarDef(primaryException, makeNull());
darcy@609 1551 stats.add(primaryExceptionTreeDecl);
darcy@609 1552
darcy@609 1553 // Create catch clause that saves exception and then rethrows it
darcy@609 1554 VarSymbol param =
darcy@609 1555 new VarSymbol(FINAL|SYNTHETIC,
darcy@609 1556 names.fromString("t" +
darcy@609 1557 target.syntheticNameChar()),
darcy@609 1558 syms.throwableType,
darcy@609 1559 currentMethodSym);
darcy@609 1560 JCVariableDecl paramTree = make.VarDef(param, null);
darcy@609 1561 JCStatement assign = make.Assignment(primaryException, make.Ident(param));
darcy@609 1562 JCStatement rethrowStat = make.Throw(make.Ident(param));
darcy@609 1563 JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(assign, rethrowStat));
darcy@609 1564 JCCatch catchClause = make.Catch(paramTree, catchBlock);
darcy@609 1565
darcy@609 1566 int oldPos = make.pos;
darcy@609 1567 make.at(TreeInfo.endPos(block));
darcy@884 1568 JCBlock finallyClause = makeTwrFinallyClause(primaryException, expr);
darcy@609 1569 make.at(oldPos);
darcy@884 1570 JCTry outerTry = make.Try(makeTwrBlock(resources.tail, block, depth + 1),
darcy@609 1571 List.<JCCatch>of(catchClause),
darcy@609 1572 finallyClause);
darcy@609 1573 stats.add(outerTry);
darcy@609 1574 return make.Block(0L, stats.toList());
darcy@609 1575 }
darcy@609 1576
darcy@884 1577 private JCBlock makeTwrFinallyClause(Symbol primaryException, JCExpression resource) {
darcy@745 1578 // primaryException.addSuppressed(catchException);
darcy@609 1579 VarSymbol catchException =
darcy@609 1580 new VarSymbol(0, make.paramName(2),
darcy@609 1581 syms.throwableType,
darcy@609 1582 currentMethodSym);
darcy@609 1583 JCStatement addSuppressionStatement =
darcy@609 1584 make.Exec(makeCall(make.Ident(primaryException),
darcy@745 1585 names.addSuppressed,
darcy@609 1586 List.<JCExpression>of(make.Ident(catchException))));
darcy@609 1587
darcy@745 1588 // try { resource.close(); } catch (e) { primaryException.addSuppressed(e); }
darcy@609 1589 JCBlock tryBlock =
darcy@609 1590 make.Block(0L, List.<JCStatement>of(makeResourceCloseInvocation(resource)));
darcy@609 1591 JCVariableDecl catchExceptionDecl = make.VarDef(catchException, null);
darcy@609 1592 JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(addSuppressionStatement));
darcy@609 1593 List<JCCatch> catchClauses = List.<JCCatch>of(make.Catch(catchExceptionDecl, catchBlock));
darcy@609 1594 JCTry tryTree = make.Try(tryBlock, catchClauses, null);
darcy@609 1595
darcy@884 1596 // if (primaryException != null) {try...} else resourceClose;
darcy@884 1597 JCIf closeIfStatement = make.If(makeNonNullCheck(make.Ident(primaryException)),
darcy@609 1598 tryTree,
darcy@609 1599 makeResourceCloseInvocation(resource));
darcy@884 1600
darcy@884 1601 // if (#resource != null) { if (primaryException ... }
darcy@884 1602 return make.Block(0L,
darcy@884 1603 List.<JCStatement>of(make.If(makeNonNullCheck(resource),
darcy@884 1604 closeIfStatement,
darcy@884 1605 null)));
darcy@609 1606 }
darcy@609 1607
darcy@609 1608 private JCStatement makeResourceCloseInvocation(JCExpression resource) {
darcy@609 1609 // create resource.close() method invocation
darcy@884 1610 JCExpression resourceClose = makeCall(resource,
darcy@884 1611 names.close,
darcy@884 1612 List.<JCExpression>nil());
darcy@609 1613 return make.Exec(resourceClose);
darcy@609 1614 }
darcy@609 1615
darcy@884 1616 private JCExpression makeNonNullCheck(JCExpression expression) {
jjg@1127 1617 return makeBinary(NE, expression, makeNull());
darcy@884 1618 }
darcy@884 1619
duke@1 1620 /** Construct a tree that represents the outer instance
duke@1 1621 * <C.this>. Never pick the current `this'.
duke@1 1622 * @param pos The source code position to be used for the tree.
duke@1 1623 * @param c The qualifier class.
duke@1 1624 */
duke@1 1625 JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
duke@1 1626 List<VarSymbol> ots = outerThisStack;
duke@1 1627 if (ots.isEmpty()) {
duke@1 1628 log.error(pos, "no.encl.instance.of.type.in.scope", c);
jjg@816 1629 Assert.error();
duke@1 1630 return makeNull();
duke@1 1631 }
duke@1 1632 VarSymbol ot = ots.head;
duke@1 1633 JCExpression tree = access(make.at(pos).Ident(ot));
duke@1 1634 TypeSymbol otc = ot.type.tsym;
duke@1 1635 while (otc != c) {
duke@1 1636 do {
duke@1 1637 ots = ots.tail;
duke@1 1638 if (ots.isEmpty()) {
duke@1 1639 log.error(pos,
duke@1 1640 "no.encl.instance.of.type.in.scope",
duke@1 1641 c);
jjg@816 1642 Assert.error(); // should have been caught in Attr
duke@1 1643 return tree;
duke@1 1644 }
duke@1 1645 ot = ots.head;
duke@1 1646 } while (ot.owner != otc);
duke@1 1647 if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
duke@1 1648 chk.earlyRefError(pos, c);
jjg@816 1649 Assert.error(); // should have been caught in Attr
duke@1 1650 return makeNull();
duke@1 1651 }
duke@1 1652 tree = access(make.at(pos).Select(tree, ot));
duke@1 1653 otc = ot.type.tsym;
duke@1 1654 }
duke@1 1655 return tree;
duke@1 1656 }
duke@1 1657
duke@1 1658 /** Construct a tree that represents the closest outer instance
duke@1 1659 * <C.this> such that the given symbol is a member of C.
duke@1 1660 * @param pos The source code position to be used for the tree.
duke@1 1661 * @param sym The accessed symbol.
duke@1 1662 * @param preciseMatch should we accept a type that is a subtype of
duke@1 1663 * sym's owner, even if it doesn't contain sym
duke@1 1664 * due to hiding, overriding, or non-inheritance
duke@1 1665 * due to protection?
duke@1 1666 */
duke@1 1667 JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
duke@1 1668 Symbol c = sym.owner;
duke@1 1669 if (preciseMatch ? sym.isMemberOf(currentClass, types)
duke@1 1670 : currentClass.isSubClass(sym.owner, types)) {
duke@1 1671 // in this case, `this' works fine
duke@1 1672 return make.at(pos).This(c.erasure(types));
duke@1 1673 } else {
duke@1 1674 // need to go via this$n
duke@1 1675 return makeOwnerThisN(pos, sym, preciseMatch);
duke@1 1676 }
duke@1 1677 }
duke@1 1678
duke@1 1679 /**
duke@1 1680 * Similar to makeOwnerThis but will never pick "this".
duke@1 1681 */
duke@1 1682 JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
duke@1 1683 Symbol c = sym.owner;
duke@1 1684 List<VarSymbol> ots = outerThisStack;
duke@1 1685 if (ots.isEmpty()) {
duke@1 1686 log.error(pos, "no.encl.instance.of.type.in.scope", c);
jjg@816 1687 Assert.error();
duke@1 1688 return makeNull();
duke@1 1689 }
duke@1 1690 VarSymbol ot = ots.head;
duke@1 1691 JCExpression tree = access(make.at(pos).Ident(ot));
duke@1 1692 TypeSymbol otc = ot.type.tsym;
duke@1 1693 while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
duke@1 1694 do {
duke@1 1695 ots = ots.tail;
duke@1 1696 if (ots.isEmpty()) {
duke@1 1697 log.error(pos,
duke@1 1698 "no.encl.instance.of.type.in.scope",
duke@1 1699 c);
jjg@816 1700 Assert.error();
duke@1 1701 return tree;
duke@1 1702 }
duke@1 1703 ot = ots.head;
duke@1 1704 } while (ot.owner != otc);
duke@1 1705 tree = access(make.at(pos).Select(tree, ot));
duke@1 1706 otc = ot.type.tsym;
duke@1 1707 }
duke@1 1708 return tree;
duke@1 1709 }
duke@1 1710
duke@1 1711 /** Return tree simulating the assignment <this.name = name>, where
duke@1 1712 * name is the name of a free variable.
duke@1 1713 */
duke@1 1714 JCStatement initField(int pos, Name name) {
duke@1 1715 Scope.Entry e = proxies.lookup(name);
duke@1 1716 Symbol rhs = e.sym;
jjg@816 1717 Assert.check(rhs.owner.kind == MTH);
duke@1 1718 Symbol lhs = e.next().sym;
jjg@816 1719 Assert.check(rhs.owner.owner == lhs.owner);
duke@1 1720 make.at(pos);
duke@1 1721 return
duke@1 1722 make.Exec(
duke@1 1723 make.Assign(
duke@1 1724 make.Select(make.This(lhs.owner.erasure(types)), lhs),
duke@1 1725 make.Ident(rhs)).setType(lhs.erasure(types)));
duke@1 1726 }
duke@1 1727
duke@1 1728 /** Return tree simulating the assignment <this.this$n = this$n>.
duke@1 1729 */
duke@1 1730 JCStatement initOuterThis(int pos) {
duke@1 1731 VarSymbol rhs = outerThisStack.head;
jjg@816 1732 Assert.check(rhs.owner.kind == MTH);
duke@1 1733 VarSymbol lhs = outerThisStack.tail.head;
jjg@816 1734 Assert.check(rhs.owner.owner == lhs.owner);
duke@1 1735 make.at(pos);
duke@1 1736 return
duke@1 1737 make.Exec(
duke@1 1738 make.Assign(
duke@1 1739 make.Select(make.This(lhs.owner.erasure(types)), lhs),
duke@1 1740 make.Ident(rhs)).setType(lhs.erasure(types)));
duke@1 1741 }
duke@1 1742
duke@1 1743 /**************************************************************************
duke@1 1744 * Code for .class
duke@1 1745 *************************************************************************/
duke@1 1746
duke@1 1747 /** Return the symbol of a class to contain a cache of
duke@1 1748 * compiler-generated statics such as class$ and the
duke@1 1749 * $assertionsDisabled flag. We create an anonymous nested class
duke@1 1750 * (unless one already exists) and return its symbol. However,
duke@1 1751 * for backward compatibility in 1.4 and earlier we use the
duke@1 1752 * top-level class itself.
duke@1 1753 */
duke@1 1754 private ClassSymbol outerCacheClass() {
duke@1 1755 ClassSymbol clazz = outermostClassDef.sym;
duke@1 1756 if ((clazz.flags() & INTERFACE) == 0 &&
duke@1 1757 !target.useInnerCacheClass()) return clazz;
duke@1 1758 Scope s = clazz.members();
duke@1 1759 for (Scope.Entry e = s.elems; e != null; e = e.sibling)
duke@1 1760 if (e.sym.kind == TYP &&
duke@1 1761 e.sym.name == names.empty &&
duke@1 1762 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
duke@1 1763 return makeEmptyClass(STATIC | SYNTHETIC, clazz);
duke@1 1764 }
duke@1 1765
duke@1 1766 /** Return symbol for "class$" method. If there is no method definition
duke@1 1767 * for class$, construct one as follows:
duke@1 1768 *
duke@1 1769 * class class$(String x0) {
duke@1 1770 * try {
duke@1 1771 * return Class.forName(x0);
duke@1 1772 * } catch (ClassNotFoundException x1) {
duke@1 1773 * throw new NoClassDefFoundError(x1.getMessage());
duke@1 1774 * }
duke@1 1775 * }
duke@1 1776 */
duke@1 1777 private MethodSymbol classDollarSym(DiagnosticPosition pos) {
duke@1 1778 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 1779 MethodSymbol classDollarSym =
duke@1 1780 (MethodSymbol)lookupSynthetic(classDollar,
duke@1 1781 outerCacheClass.members());
duke@1 1782 if (classDollarSym == null) {
duke@1 1783 classDollarSym = new MethodSymbol(
duke@1 1784 STATIC | SYNTHETIC,
duke@1 1785 classDollar,
duke@1 1786 new MethodType(
duke@1 1787 List.of(syms.stringType),
duke@1 1788 types.erasure(syms.classType),
duke@1 1789 List.<Type>nil(),
duke@1 1790 syms.methodClass),
duke@1 1791 outerCacheClass);
duke@1 1792 enterSynthetic(pos, classDollarSym, outerCacheClass.members());
duke@1 1793
duke@1 1794 JCMethodDecl md = make.MethodDef(classDollarSym, null);
duke@1 1795 try {
duke@1 1796 md.body = classDollarSymBody(pos, md);
duke@1 1797 } catch (CompletionFailure ex) {
duke@1 1798 md.body = make.Block(0, List.<JCStatement>nil());
duke@1 1799 chk.completionError(pos, ex);
duke@1 1800 }
duke@1 1801 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1802 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
duke@1 1803 }
duke@1 1804 return classDollarSym;
duke@1 1805 }
duke@1 1806
duke@1 1807 /** Generate code for class$(String name). */
duke@1 1808 JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
duke@1 1809 MethodSymbol classDollarSym = md.sym;
duke@1 1810 ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
duke@1 1811
duke@1 1812 JCBlock returnResult;
duke@1 1813
duke@1 1814 // in 1.4.2 and above, we use
duke@1 1815 // Class.forName(String name, boolean init, ClassLoader loader);
duke@1 1816 // which requires we cache the current loader in cl$
duke@1 1817 if (target.classLiteralsNoInit()) {
duke@1 1818 // clsym = "private static ClassLoader cl$"
duke@1 1819 VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
duke@1 1820 names.fromString("cl" + target.syntheticNameChar()),
duke@1 1821 syms.classLoaderType,
duke@1 1822 outerCacheClass);
duke@1 1823 enterSynthetic(pos, clsym, outerCacheClass.members());
duke@1 1824
duke@1 1825 // emit "private static ClassLoader cl$;"
duke@1 1826 JCVariableDecl cldef = make.VarDef(clsym, null);
duke@1 1827 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1828 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
duke@1 1829
duke@1 1830 // newcache := "new cache$1[0]"
duke@1 1831 JCNewArray newcache = make.
duke@1 1832 NewArray(make.Type(outerCacheClass.type),
duke@1 1833 List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
duke@1 1834 null);
duke@1 1835 newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
duke@1 1836 syms.arrayClass);
duke@1 1837
duke@1 1838 // forNameSym := java.lang.Class.forName(
duke@1 1839 // String s,boolean init,ClassLoader loader)
duke@1 1840 Symbol forNameSym = lookupMethod(make_pos, names.forName,
duke@1 1841 types.erasure(syms.classType),
duke@1 1842 List.of(syms.stringType,
duke@1 1843 syms.booleanType,
duke@1 1844 syms.classLoaderType));
duke@1 1845 // clvalue := "(cl$ == null) ?
duke@1 1846 // $newcache.getClass().getComponentType().getClassLoader() : cl$"
duke@1 1847 JCExpression clvalue =
duke@1 1848 make.Conditional(
jjg@1127 1849 makeBinary(EQ, make.Ident(clsym), makeNull()),
duke@1 1850 make.Assign(
duke@1 1851 make.Ident(clsym),
duke@1 1852 makeCall(
duke@1 1853 makeCall(makeCall(newcache,
duke@1 1854 names.getClass,
duke@1 1855 List.<JCExpression>nil()),
duke@1 1856 names.getComponentType,
duke@1 1857 List.<JCExpression>nil()),
duke@1 1858 names.getClassLoader,
duke@1 1859 List.<JCExpression>nil())).setType(syms.classLoaderType),
duke@1 1860 make.Ident(clsym)).setType(syms.classLoaderType);
duke@1 1861
duke@1 1862 // returnResult := "{ return Class.forName(param1, false, cl$); }"
duke@1 1863 List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
duke@1 1864 makeLit(syms.booleanType, 0),
duke@1 1865 clvalue);
duke@1 1866 returnResult = make.
duke@1 1867 Block(0, List.<JCStatement>of(make.
duke@1 1868 Call(make. // return
duke@1 1869 App(make.
duke@1 1870 Ident(forNameSym), args))));
duke@1 1871 } else {
duke@1 1872 // forNameSym := java.lang.Class.forName(String s)
duke@1 1873 Symbol forNameSym = lookupMethod(make_pos,
duke@1 1874 names.forName,
duke@1 1875 types.erasure(syms.classType),
duke@1 1876 List.of(syms.stringType));
duke@1 1877 // returnResult := "{ return Class.forName(param1); }"
duke@1 1878 returnResult = make.
duke@1 1879 Block(0, List.of(make.
duke@1 1880 Call(make. // return
duke@1 1881 App(make.
duke@1 1882 QualIdent(forNameSym),
duke@1 1883 List.<JCExpression>of(make.
duke@1 1884 Ident(md.params.
duke@1 1885 head.sym))))));
duke@1 1886 }
duke@1 1887
duke@1 1888 // catchParam := ClassNotFoundException e1
duke@1 1889 VarSymbol catchParam =
duke@1 1890 new VarSymbol(0, make.paramName(1),
duke@1 1891 syms.classNotFoundExceptionType,
duke@1 1892 classDollarSym);
duke@1 1893
duke@1 1894 JCStatement rethrow;
duke@1 1895 if (target.hasInitCause()) {
duke@1 1896 // rethrow = "throw new NoClassDefFoundError().initCause(e);
duke@1 1897 JCTree throwExpr =
duke@1 1898 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
duke@1 1899 List.<JCExpression>nil()),
duke@1 1900 names.initCause,
duke@1 1901 List.<JCExpression>of(make.Ident(catchParam)));
duke@1 1902 rethrow = make.Throw(throwExpr);
duke@1 1903 } else {
duke@1 1904 // getMessageSym := ClassNotFoundException.getMessage()
duke@1 1905 Symbol getMessageSym = lookupMethod(make_pos,
duke@1 1906 names.getMessage,
duke@1 1907 syms.classNotFoundExceptionType,
duke@1 1908 List.<Type>nil());
duke@1 1909 // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
duke@1 1910 rethrow = make.
duke@1 1911 Throw(makeNewClass(syms.noClassDefFoundErrorType,
duke@1 1912 List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
duke@1 1913 getMessageSym),
duke@1 1914 List.<JCExpression>nil()))));
duke@1 1915 }
duke@1 1916
duke@1 1917 // rethrowStmt := "( $rethrow )"
duke@1 1918 JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
duke@1 1919
duke@1 1920 // catchBlock := "catch ($catchParam) $rethrowStmt"
duke@1 1921 JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
duke@1 1922 rethrowStmt);
duke@1 1923
duke@1 1924 // tryCatch := "try $returnResult $catchBlock"
duke@1 1925 JCStatement tryCatch = make.Try(returnResult,
duke@1 1926 List.of(catchBlock), null);
duke@1 1927
duke@1 1928 return make.Block(0, List.of(tryCatch));
duke@1 1929 }
duke@1 1930 // where
duke@1 1931 /** Create an attributed tree of the form left.name(). */
duke@1 1932 private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
jjg@816 1933 Assert.checkNonNull(left.type);
duke@1 1934 Symbol funcsym = lookupMethod(make_pos, name, left.type,
duke@1 1935 TreeInfo.types(args));
duke@1 1936 return make.App(make.Select(left, funcsym), args);
duke@1 1937 }
duke@1 1938
duke@1 1939 /** The Name Of The variable to cache T.class values.
duke@1 1940 * @param sig The signature of type T.
duke@1 1941 */
duke@1 1942 private Name cacheName(String sig) {
duke@1 1943 StringBuffer buf = new StringBuffer();
duke@1 1944 if (sig.startsWith("[")) {
duke@1 1945 buf = buf.append("array");
duke@1 1946 while (sig.startsWith("[")) {
duke@1 1947 buf = buf.append(target.syntheticNameChar());
duke@1 1948 sig = sig.substring(1);
duke@1 1949 }
duke@1 1950 if (sig.startsWith("L")) {
duke@1 1951 sig = sig.substring(0, sig.length() - 1);
duke@1 1952 }
duke@1 1953 } else {
duke@1 1954 buf = buf.append("class" + target.syntheticNameChar());
duke@1 1955 }
duke@1 1956 buf = buf.append(sig.replace('.', target.syntheticNameChar()));
duke@1 1957 return names.fromString(buf.toString());
duke@1 1958 }
duke@1 1959
duke@1 1960 /** The variable symbol that caches T.class values.
duke@1 1961 * If none exists yet, create a definition.
duke@1 1962 * @param sig The signature of type T.
duke@1 1963 * @param pos The position to report diagnostics, if any.
duke@1 1964 */
duke@1 1965 private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
duke@1 1966 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 1967 Name cname = cacheName(sig);
duke@1 1968 VarSymbol cacheSym =
duke@1 1969 (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
duke@1 1970 if (cacheSym == null) {
duke@1 1971 cacheSym = new VarSymbol(
duke@1 1972 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
duke@1 1973 enterSynthetic(pos, cacheSym, outerCacheClass.members());
duke@1 1974
duke@1 1975 JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
duke@1 1976 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1977 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
duke@1 1978 }
duke@1 1979 return cacheSym;
duke@1 1980 }
duke@1 1981
duke@1 1982 /** The tree simulating a T.class expression.
duke@1 1983 * @param clazz The tree identifying type T.
duke@1 1984 */
duke@1 1985 private JCExpression classOf(JCTree clazz) {
duke@1 1986 return classOfType(clazz.type, clazz.pos());
duke@1 1987 }
duke@1 1988
duke@1 1989 private JCExpression classOfType(Type type, DiagnosticPosition pos) {
duke@1 1990 switch (type.tag) {
duke@1 1991 case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
duke@1 1992 case DOUBLE: case BOOLEAN: case VOID:
duke@1 1993 // replace with <BoxedClass>.TYPE
duke@1 1994 ClassSymbol c = types.boxedClass(type);
duke@1 1995 Symbol typeSym =
duke@1 1996 rs.access(
duke@1 1997 rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
duke@1 1998 pos, c.type, names.TYPE, true);
duke@1 1999 if (typeSym.kind == VAR)
duke@1 2000 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
duke@1 2001 return make.QualIdent(typeSym);
duke@1 2002 case CLASS: case ARRAY:
duke@1 2003 if (target.hasClassLiterals()) {
duke@1 2004 VarSymbol sym = new VarSymbol(
duke@1 2005 STATIC | PUBLIC | FINAL, names._class,
duke@1 2006 syms.classType, type.tsym);
duke@1 2007 return make_at(pos).Select(make.Type(type), sym);
duke@1 2008 }
duke@1 2009 // replace with <cache == null ? cache = class$(tsig) : cache>
duke@1 2010 // where
duke@1 2011 // - <tsig> is the type signature of T,
duke@1 2012 // - <cache> is the cache variable for tsig.
duke@1 2013 String sig =
duke@1 2014 writer.xClassName(type).toString().replace('/', '.');
duke@1 2015 Symbol cs = cacheSym(pos, sig);
duke@1 2016 return make_at(pos).Conditional(
jjg@1127 2017 makeBinary(EQ, make.Ident(cs), makeNull()),
duke@1 2018 make.Assign(
duke@1 2019 make.Ident(cs),
duke@1 2020 make.App(
duke@1 2021 make.Ident(classDollarSym(pos)),
duke@1 2022 List.<JCExpression>of(make.Literal(CLASS, sig)
duke@1 2023 .setType(syms.stringType))))
duke@1 2024 .setType(types.erasure(syms.classType)),
duke@1 2025 make.Ident(cs)).setType(types.erasure(syms.classType));
duke@1 2026 default:
duke@1 2027 throw new AssertionError();
duke@1 2028 }
duke@1 2029 }
duke@1 2030
duke@1 2031 /**************************************************************************
duke@1 2032 * Code for enabling/disabling assertions.
duke@1 2033 *************************************************************************/
duke@1 2034
duke@1 2035 // This code is not particularly robust if the user has
duke@1 2036 // previously declared a member named '$assertionsDisabled'.
duke@1 2037 // The same faulty idiom also appears in the translation of
duke@1 2038 // class literals above. We should report an error if a
duke@1 2039 // previous declaration is not synthetic.
duke@1 2040
duke@1 2041 private JCExpression assertFlagTest(DiagnosticPosition pos) {
duke@1 2042 // Outermost class may be either true class or an interface.
duke@1 2043 ClassSymbol outermostClass = outermostClassDef.sym;
duke@1 2044
duke@1 2045 // note that this is a class, as an interface can't contain a statement.
duke@1 2046 ClassSymbol container = currentClass;
duke@1 2047
duke@1 2048 VarSymbol assertDisabledSym =
duke@1 2049 (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
duke@1 2050 container.members());
duke@1 2051 if (assertDisabledSym == null) {
duke@1 2052 assertDisabledSym =
duke@1 2053 new VarSymbol(STATIC | FINAL | SYNTHETIC,
duke@1 2054 dollarAssertionsDisabled,
duke@1 2055 syms.booleanType,
duke@1 2056 container);
duke@1 2057 enterSynthetic(pos, assertDisabledSym, container.members());
duke@1 2058 Symbol desiredAssertionStatusSym = lookupMethod(pos,
duke@1 2059 names.desiredAssertionStatus,
duke@1 2060 types.erasure(syms.classType),
duke@1 2061 List.<Type>nil());
duke@1 2062 JCClassDecl containerDef = classDef(container);
duke@1 2063 make_at(containerDef.pos());
jjg@1127 2064 JCExpression notStatus = makeUnary(NOT, make.App(make.Select(
duke@1 2065 classOfType(types.erasure(outermostClass.type),
duke@1 2066 containerDef.pos()),
duke@1 2067 desiredAssertionStatusSym)));
duke@1 2068 JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
duke@1 2069 notStatus);
duke@1 2070 containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
duke@1 2071 }
duke@1 2072 make_at(pos);
jjg@1127 2073 return makeUnary(NOT, make.Ident(assertDisabledSym));
duke@1 2074 }
duke@1 2075
duke@1 2076
duke@1 2077 /**************************************************************************
duke@1 2078 * Building blocks for let expressions
duke@1 2079 *************************************************************************/
duke@1 2080
duke@1 2081 interface TreeBuilder {
duke@1 2082 JCTree build(JCTree arg);
duke@1 2083 }
duke@1 2084
duke@1 2085 /** Construct an expression using the builder, with the given rval
duke@1 2086 * expression as an argument to the builder. However, the rval
duke@1 2087 * expression must be computed only once, even if used multiple
duke@1 2088 * times in the result of the builder. We do that by
duke@1 2089 * constructing a "let" expression that saves the rvalue into a
duke@1 2090 * temporary variable and then uses the temporary variable in
duke@1 2091 * place of the expression built by the builder. The complete
duke@1 2092 * resulting expression is of the form
duke@1 2093 * <pre>
duke@1 2094 * (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
duke@1 2095 * in (<b>BUILDER</b>(<b>TEMP</b>)))
duke@1 2096 * </pre>
duke@1 2097 * where <code><b>TEMP</b></code> is a newly declared variable
duke@1 2098 * in the let expression.
duke@1 2099 */
duke@1 2100 JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
duke@1 2101 rval = TreeInfo.skipParens(rval);
duke@1 2102 switch (rval.getTag()) {
jjg@1127 2103 case LITERAL:
duke@1 2104 return builder.build(rval);
jjg@1127 2105 case IDENT:
duke@1 2106 JCIdent id = (JCIdent) rval;
duke@1 2107 if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
duke@1 2108 return builder.build(rval);
duke@1 2109 }
duke@1 2110 VarSymbol var =
duke@1 2111 new VarSymbol(FINAL|SYNTHETIC,
jjg@113 2112 names.fromString(
duke@1 2113 target.syntheticNameChar()
duke@1 2114 + "" + rval.hashCode()),
duke@1 2115 type,
duke@1 2116 currentMethodSym);
mcimadamore@4 2117 rval = convert(rval,type);
duke@1 2118 JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
duke@1 2119 JCTree built = builder.build(make.Ident(var));
duke@1 2120 JCTree res = make.LetExpr(def, built);
duke@1 2121 res.type = built.type;
duke@1 2122 return res;
duke@1 2123 }
duke@1 2124
duke@1 2125 // same as above, with the type of the temporary variable computed
duke@1 2126 JCTree abstractRval(JCTree rval, TreeBuilder builder) {
duke@1 2127 return abstractRval(rval, rval.type, builder);
duke@1 2128 }
duke@1 2129
duke@1 2130 // same as above, but for an expression that may be used as either
duke@1 2131 // an rvalue or an lvalue. This requires special handling for
duke@1 2132 // Select expressions, where we place the left-hand-side of the
duke@1 2133 // select in a temporary, and for Indexed expressions, where we
duke@1 2134 // place both the indexed expression and the index value in temps.
duke@1 2135 JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
duke@1 2136 lval = TreeInfo.skipParens(lval);
duke@1 2137 switch (lval.getTag()) {
jjg@1127 2138 case IDENT:
duke@1 2139 return builder.build(lval);
jjg@1127 2140 case SELECT: {
duke@1 2141 final JCFieldAccess s = (JCFieldAccess)lval;
duke@1 2142 JCTree selected = TreeInfo.skipParens(s.selected);
duke@1 2143 Symbol lid = TreeInfo.symbol(s.selected);
duke@1 2144 if (lid != null && lid.kind == TYP) return builder.build(lval);
duke@1 2145 return abstractRval(s.selected, new TreeBuilder() {
duke@1 2146 public JCTree build(final JCTree selected) {
duke@1 2147 return builder.build(make.Select((JCExpression)selected, s.sym));
duke@1 2148 }
duke@1 2149 });
duke@1 2150 }
jjg@1127 2151 case INDEXED: {
duke@1 2152 final JCArrayAccess i = (JCArrayAccess)lval;
duke@1 2153 return abstractRval(i.indexed, new TreeBuilder() {
duke@1 2154 public JCTree build(final JCTree indexed) {
duke@1 2155 return abstractRval(i.index, syms.intType, new TreeBuilder() {
duke@1 2156 public JCTree build(final JCTree index) {
duke@1 2157 JCTree newLval = make.Indexed((JCExpression)indexed,
duke@1 2158 (JCExpression)index);
duke@1 2159 newLval.setType(i.type);
duke@1 2160 return builder.build(newLval);
duke@1 2161 }
duke@1 2162 });
duke@1 2163 }
duke@1 2164 });
duke@1 2165 }
jjg@1127 2166 case TYPECAST: {
mcimadamore@133 2167 return abstractLval(((JCTypeCast)lval).expr, builder);
mcimadamore@133 2168 }
duke@1 2169 }
duke@1 2170 throw new AssertionError(lval);
duke@1 2171 }
duke@1 2172
duke@1 2173 // evaluate and discard the first expression, then evaluate the second.
duke@1 2174 JCTree makeComma(final JCTree expr1, final JCTree expr2) {
duke@1 2175 return abstractRval(expr1, new TreeBuilder() {
duke@1 2176 public JCTree build(final JCTree discarded) {
duke@1 2177 return expr2;
duke@1 2178 }
duke@1 2179 });
duke@1 2180 }
duke@1 2181
duke@1 2182 /**************************************************************************
duke@1 2183 * Translation methods
duke@1 2184 *************************************************************************/
duke@1 2185
duke@1 2186 /** Visitor argument: enclosing operator node.
duke@1 2187 */
duke@1 2188 private JCExpression enclOp;
duke@1 2189
duke@1 2190 /** Visitor method: Translate a single node.
duke@1 2191 * Attach the source position from the old tree to its replacement tree.
duke@1 2192 */
duke@1 2193 public <T extends JCTree> T translate(T tree) {
duke@1 2194 if (tree == null) {
duke@1 2195 return null;
duke@1 2196 } else {
duke@1 2197 make_at(tree.pos());
duke@1 2198 T result = super.translate(tree);
ksrini@1138 2199 if (endPosTable != null && result != tree) {
ksrini@1138 2200 endPosTable.replaceTree(tree, result);
duke@1 2201 }
duke@1 2202 return result;
duke@1 2203 }
duke@1 2204 }
duke@1 2205
duke@1 2206 /** Visitor method: Translate a single node, boxing or unboxing if needed.
duke@1 2207 */
duke@1 2208 public <T extends JCTree> T translate(T tree, Type type) {
duke@1 2209 return (tree == null) ? null : boxIfNeeded(translate(tree), type);
duke@1 2210 }
duke@1 2211
duke@1 2212 /** Visitor method: Translate tree.
duke@1 2213 */
duke@1 2214 public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
duke@1 2215 JCExpression prevEnclOp = this.enclOp;
duke@1 2216 this.enclOp = enclOp;
duke@1 2217 T res = translate(tree);
duke@1 2218 this.enclOp = prevEnclOp;
duke@1 2219 return res;
duke@1 2220 }
duke@1 2221
duke@1 2222 /** Visitor method: Translate list of trees.
duke@1 2223 */
duke@1 2224 public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
duke@1 2225 JCExpression prevEnclOp = this.enclOp;
duke@1 2226 this.enclOp = enclOp;
duke@1 2227 List<T> res = translate(trees);
duke@1 2228 this.enclOp = prevEnclOp;
duke@1 2229 return res;
duke@1 2230 }
duke@1 2231
duke@1 2232 /** Visitor method: Translate list of trees.
duke@1 2233 */
duke@1 2234 public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
duke@1 2235 if (trees == null) return null;
duke@1 2236 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
duke@1 2237 l.head = translate(l.head, type);
duke@1 2238 return trees;
duke@1 2239 }
duke@1 2240
duke@1 2241 public void visitTopLevel(JCCompilationUnit tree) {
jjg@657 2242 if (needPackageInfoClass(tree)) {
duke@1 2243 Name name = names.package_info;
duke@1 2244 long flags = Flags.ABSTRACT | Flags.INTERFACE;
duke@1 2245 if (target.isPackageInfoSynthetic())
duke@1 2246 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
duke@1 2247 flags = flags | Flags.SYNTHETIC;
duke@1 2248 JCClassDecl packageAnnotationsClass
duke@1 2249 = make.ClassDef(make.Modifiers(flags,
duke@1 2250 tree.packageAnnotations),
duke@1 2251 name, List.<JCTypeParameter>nil(),
duke@1 2252 null, List.<JCExpression>nil(), List.<JCTree>nil());
jjg@483 2253 ClassSymbol c = tree.packge.package_info;
jjg@483 2254 c.flags_field |= flags;
duke@1 2255 c.attributes_field = tree.packge.attributes_field;
duke@1 2256 ClassType ctype = (ClassType) c.type;
duke@1 2257 ctype.supertype_field = syms.objectType;
duke@1 2258 ctype.interfaces_field = List.nil();
duke@1 2259 packageAnnotationsClass.sym = c;
duke@1 2260
duke@1 2261 translated.append(packageAnnotationsClass);
duke@1 2262 }
duke@1 2263 }
jjg@657 2264 // where
jjg@657 2265 private boolean needPackageInfoClass(JCCompilationUnit tree) {
jjg@657 2266 switch (pkginfoOpt) {
jjg@657 2267 case ALWAYS:
jjg@657 2268 return true;
jjg@657 2269 case LEGACY:
jjg@657 2270 return tree.packageAnnotations.nonEmpty();
jjg@657 2271 case NONEMPTY:
jjg@657 2272 for (Attribute.Compound a: tree.packge.attributes_field) {
jjg@657 2273 Attribute.RetentionPolicy p = types.getRetention(a);
jjg@657 2274 if (p != Attribute.RetentionPolicy.SOURCE)
jjg@657 2275 return true;
jjg@657 2276 }
jjg@657 2277 return false;
jjg@657 2278 }
jjg@657 2279 throw new AssertionError();
jjg@657 2280 }
duke@1 2281
duke@1 2282 public void visitClassDef(JCClassDecl tree) {
duke@1 2283 ClassSymbol currentClassPrev = currentClass;
duke@1 2284 MethodSymbol currentMethodSymPrev = currentMethodSym;
duke@1 2285 currentClass = tree.sym;
duke@1 2286 currentMethodSym = null;
duke@1 2287 classdefs.put(currentClass, tree);
duke@1 2288
duke@1 2289 proxies = proxies.dup(currentClass);
duke@1 2290 List<VarSymbol> prevOuterThisStack = outerThisStack;
duke@1 2291
duke@1 2292 // If this is an enum definition
duke@1 2293 if ((tree.mods.flags & ENUM) != 0 &&
duke@1 2294 (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
duke@1 2295 visitEnumDef(tree);
duke@1 2296
duke@1 2297 // If this is a nested class, define a this$n field for
duke@1 2298 // it and add to proxies.
duke@1 2299 JCVariableDecl otdef = null;
duke@1 2300 if (currentClass.hasOuterInstance())
duke@1 2301 otdef = outerThisDef(tree.pos, currentClass);
duke@1 2302
duke@1 2303 // If this is a local class, define proxies for all its free variables.
duke@1 2304 List<JCVariableDecl> fvdefs = freevarDefs(
duke@1 2305 tree.pos, freevars(currentClass), currentClass);
duke@1 2306
duke@1 2307 // Recursively translate superclass, interfaces.
duke@1 2308 tree.extending = translate(tree.extending);
duke@1 2309 tree.implementing = translate(tree.implementing);
duke@1 2310
mcimadamore@1086 2311 if (currentClass.isLocal()) {
mcimadamore@1086 2312 ClassSymbol encl = currentClass.owner.enclClass();
mcimadamore@1086 2313 if (encl.trans_local == null) {
mcimadamore@1086 2314 encl.trans_local = List.nil();
mcimadamore@1086 2315 }
mcimadamore@1086 2316 encl.trans_local = encl.trans_local.prepend(currentClass);
mcimadamore@1086 2317 }
mcimadamore@1086 2318
duke@1 2319 // Recursively translate members, taking into account that new members
duke@1 2320 // might be created during the translation and prepended to the member
duke@1 2321 // list `tree.defs'.
duke@1 2322 List<JCTree> seen = List.nil();
duke@1 2323 while (tree.defs != seen) {
duke@1 2324 List<JCTree> unseen = tree.defs;
duke@1 2325 for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
duke@1 2326 JCTree outermostMemberDefPrev = outermostMemberDef;
duke@1 2327 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
duke@1 2328 l.head = translate(l.head);
duke@1 2329 outermostMemberDef = outermostMemberDefPrev;
duke@1 2330 }
duke@1 2331 seen = unseen;
duke@1 2332 }
duke@1 2333
duke@1 2334 // Convert a protected modifier to public, mask static modifier.
duke@1 2335 if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
duke@1 2336 tree.mods.flags &= ClassFlags;
duke@1 2337
duke@1 2338 // Convert name to flat representation, replacing '.' by '$'.
duke@1 2339 tree.name = Convert.shortName(currentClass.flatName());
duke@1 2340
duke@1 2341 // Add this$n and free variables proxy definitions to class.
duke@1 2342 for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
duke@1 2343 tree.defs = tree.defs.prepend(l.head);
duke@1 2344 enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
duke@1 2345 }
duke@1 2346 if (currentClass.hasOuterInstance()) {
duke@1 2347 tree.defs = tree.defs.prepend(otdef);
duke@1 2348 enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
duke@1 2349 }
duke@1 2350
duke@1 2351 proxies = proxies.leave();
duke@1 2352 outerThisStack = prevOuterThisStack;
duke@1 2353
duke@1 2354 // Append translated tree to `translated' queue.
duke@1 2355 translated.append(tree);
duke@1 2356
duke@1 2357 currentClass = currentClassPrev;
duke@1 2358 currentMethodSym = currentMethodSymPrev;
duke@1 2359
duke@1 2360 // Return empty block {} as a placeholder for an inner class.
duke@1 2361 result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
duke@1 2362 }
duke@1 2363
duke@1 2364 /** Translate an enum class. */
duke@1 2365 private void visitEnumDef(JCClassDecl tree) {
duke@1 2366 make_at(tree.pos());
duke@1 2367
duke@1 2368 // add the supertype, if needed
duke@1 2369 if (tree.extending == null)
duke@1 2370 tree.extending = make.Type(types.supertype(tree.type));
duke@1 2371
duke@1 2372 // classOfType adds a cache field to tree.defs unless
duke@1 2373 // target.hasClassLiterals().
duke@1 2374 JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
duke@1 2375 setType(types.erasure(syms.classType));
duke@1 2376
duke@1 2377 // process each enumeration constant, adding implicit constructor parameters
duke@1 2378 int nextOrdinal = 0;
duke@1 2379 ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
duke@1 2380 ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
duke@1 2381 ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
duke@1 2382 for (List<JCTree> defs = tree.defs;
duke@1 2383 defs.nonEmpty();
duke@1 2384 defs=defs.tail) {
jjg@1127 2385 if (defs.head.hasTag(VARDEF) && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
duke@1 2386 JCVariableDecl var = (JCVariableDecl)defs.head;
duke@1 2387 visitEnumConstantDef(var, nextOrdinal++);
duke@1 2388 values.append(make.QualIdent(var.sym));
duke@1 2389 enumDefs.append(var);
duke@1 2390 } else {
duke@1 2391 otherDefs.append(defs.head);
duke@1 2392 }
duke@1 2393 }
duke@1 2394
duke@1 2395 // private static final T[] #VALUES = { a, b, c };
duke@1 2396 Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
duke@1 2397 while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
duke@1 2398 valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
duke@1 2399 Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
duke@1 2400 VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
duke@1 2401 valuesName,
duke@1 2402 arrayType,
duke@1 2403 tree.type.tsym);
duke@1 2404 JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
duke@1 2405 List.<JCExpression>nil(),
duke@1 2406 values.toList());
duke@1 2407 newArray.type = arrayType;
duke@1 2408 enumDefs.append(make.VarDef(valuesVar, newArray));
duke@1 2409 tree.sym.members().enter(valuesVar);
duke@1 2410
duke@1 2411 Symbol valuesSym = lookupMethod(tree.pos(), names.values,
duke@1 2412 tree.type, List.<Type>nil());
jjg@86 2413 List<JCStatement> valuesBody;
jjg@86 2414 if (useClone()) {
jjg@86 2415 // return (T[]) $VALUES.clone();
jjg@86 2416 JCTypeCast valuesResult =
jjg@86 2417 make.TypeCast(valuesSym.type.getReturnType(),
jjg@86 2418 make.App(make.Select(make.Ident(valuesVar),
jjg@86 2419 syms.arrayCloneMethod)));
jjg@86 2420 valuesBody = List.<JCStatement>of(make.Return(valuesResult));
jjg@86 2421 } else {
jjg@86 2422 // template: T[] $result = new T[$values.length];
jjg@86 2423 Name resultName = names.fromString(target.syntheticNameChar() + "result");
jjg@86 2424 while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
jjg@86 2425 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
jjg@86 2426 VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
jjg@86 2427 resultName,
jjg@86 2428 arrayType,
jjg@86 2429 valuesSym);
jjg@86 2430 JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
jjg@86 2431 List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
jjg@86 2432 null);
jjg@86 2433 resultArray.type = arrayType;
jjg@86 2434 JCVariableDecl decl = make.VarDef(resultVar, resultArray);
jjg@86 2435
jjg@86 2436 // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
jjg@86 2437 if (systemArraycopyMethod == null) {
jjg@86 2438 systemArraycopyMethod =
jjg@86 2439 new MethodSymbol(PUBLIC | STATIC,
jjg@86 2440 names.fromString("arraycopy"),
jjg@86 2441 new MethodType(List.<Type>of(syms.objectType,
jjg@86 2442 syms.intType,
jjg@86 2443 syms.objectType,
jjg@86 2444 syms.intType,
jjg@86 2445 syms.intType),
jjg@86 2446 syms.voidType,
jjg@86 2447 List.<Type>nil(),
jjg@86 2448 syms.methodClass),
jjg@86 2449 syms.systemType.tsym);
jjg@86 2450 }
jjg@86 2451 JCStatement copy =
jjg@86 2452 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
jjg@86 2453 systemArraycopyMethod),
jjg@86 2454 List.of(make.Ident(valuesVar), make.Literal(0),
jjg@86 2455 make.Ident(resultVar), make.Literal(0),
jjg@86 2456 make.Select(make.Ident(valuesVar), syms.lengthVar))));
jjg@86 2457
jjg@86 2458 // template: return $result;
jjg@86 2459 JCStatement ret = make.Return(make.Ident(resultVar));
jjg@86 2460 valuesBody = List.<JCStatement>of(decl, copy, ret);
jjg@86 2461 }
jjg@86 2462
duke@1 2463 JCMethodDecl valuesDef =
jjg@86 2464 make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
jjg@86 2465
duke@1 2466 enumDefs.append(valuesDef);
duke@1 2467
jjg@86 2468 if (debugLower)
jjg@86 2469 System.err.println(tree.sym + ".valuesDef = " + valuesDef);
jjg@86 2470
duke@1 2471 /** The template for the following code is:
duke@1 2472 *
duke@1 2473 * public static E valueOf(String name) {
duke@1 2474 * return (E)Enum.valueOf(E.class, name);
duke@1 2475 * }
duke@1 2476 *
duke@1 2477 * where E is tree.sym
duke@1 2478 */
duke@1 2479 MethodSymbol valueOfSym = lookupMethod(tree.pos(),
duke@1 2480 names.valueOf,
duke@1 2481 tree.sym.type,
duke@1 2482 List.of(syms.stringType));
jjg@816 2483 Assert.check((valueOfSym.flags() & STATIC) != 0);
duke@1 2484 VarSymbol nameArgSym = valueOfSym.params.head;
duke@1 2485 JCIdent nameVal = make.Ident(nameArgSym);
duke@1 2486 JCStatement enum_ValueOf =
duke@1 2487 make.Return(make.TypeCast(tree.sym.type,
duke@1 2488 makeCall(make.Ident(syms.enumSym),
duke@1 2489 names.valueOf,
duke@1 2490 List.of(e_class, nameVal))));
duke@1 2491 JCMethodDecl valueOf = make.MethodDef(valueOfSym,
duke@1 2492 make.Block(0, List.of(enum_ValueOf)));
duke@1 2493 nameVal.sym = valueOf.params.head.sym;
duke@1 2494 if (debugLower)
duke@1 2495 System.err.println(tree.sym + ".valueOf = " + valueOf);
duke@1 2496 enumDefs.append(valueOf);
duke@1 2497
duke@1 2498 enumDefs.appendList(otherDefs.toList());
duke@1 2499 tree.defs = enumDefs.toList();
duke@1 2500
duke@1 2501 // Add the necessary members for the EnumCompatibleMode
duke@1 2502 if (target.compilerBootstrap(tree.sym)) {
duke@1 2503 addEnumCompatibleMembers(tree);
duke@1 2504 }
duke@1 2505 }
jjg@86 2506 // where
jjg@86 2507 private MethodSymbol systemArraycopyMethod;
jjg@86 2508 private boolean useClone() {
jjg@86 2509 try {
jjg@86 2510 Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
jjg@86 2511 return (e.sym != null);
jjg@86 2512 }
jjg@86 2513 catch (CompletionFailure e) {
jjg@86 2514 return false;
jjg@86 2515 }
jjg@86 2516 }
duke@1 2517
duke@1 2518 /** Translate an enumeration constant and its initializer. */
duke@1 2519 private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
duke@1 2520 JCNewClass varDef = (JCNewClass)var.init;
duke@1 2521 varDef.args = varDef.args.
duke@1 2522 prepend(makeLit(syms.intType, ordinal)).
duke@1 2523 prepend(makeLit(syms.stringType, var.name.toString()));
duke@1 2524 }
duke@1 2525
duke@1 2526 public void visitMethodDef(JCMethodDecl tree) {
duke@1 2527 if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
duke@1 2528 // Add "String $enum$name, int $enum$ordinal" to the beginning of the
duke@1 2529 // argument list for each constructor of an enum.
duke@1 2530 JCVariableDecl nameParam = make_at(tree.pos()).
duke@1 2531 Param(names.fromString(target.syntheticNameChar() +
duke@1 2532 "enum" + target.syntheticNameChar() + "name"),
duke@1 2533 syms.stringType, tree.sym);
duke@1 2534 nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
duke@1 2535
duke@1 2536 JCVariableDecl ordParam = make.
duke@1 2537 Param(names.fromString(target.syntheticNameChar() +
duke@1 2538 "enum" + target.syntheticNameChar() +
duke@1 2539 "ordinal"),
duke@1 2540 syms.intType, tree.sym);
duke@1 2541 ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
duke@1 2542
duke@1 2543 tree.params = tree.params.prepend(ordParam).prepend(nameParam);
duke@1 2544
duke@1 2545 MethodSymbol m = tree.sym;
duke@1 2546 Type olderasure = m.erasure(types);
duke@1 2547 m.erasure_field = new MethodType(
duke@1 2548 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
duke@1 2549 olderasure.getReturnType(),
duke@1 2550 olderasure.getThrownTypes(),
duke@1 2551 syms.methodClass);
duke@1 2552
duke@1 2553 if (target.compilerBootstrap(m.owner)) {
duke@1 2554 // Initialize synthetic name field
duke@1 2555 Symbol nameVarSym = lookupSynthetic(names.fromString("$name"),
duke@1 2556 tree.sym.owner.members());
duke@1 2557 JCIdent nameIdent = make.Ident(nameParam.sym);
duke@1 2558 JCIdent id1 = make.Ident(nameVarSym);
duke@1 2559 JCAssign newAssign = make.Assign(id1, nameIdent);
duke@1 2560 newAssign.type = id1.type;
duke@1 2561 JCExpressionStatement nameAssign = make.Exec(newAssign);
duke@1 2562 nameAssign.type = id1.type;
duke@1 2563 tree.body.stats = tree.body.stats.prepend(nameAssign);
duke@1 2564
duke@1 2565 // Initialize synthetic ordinal field
duke@1 2566 Symbol ordinalVarSym = lookupSynthetic(names.fromString("$ordinal"),
duke@1 2567 tree.sym.owner.members());
duke@1 2568 JCIdent ordIdent = make.Ident(ordParam.sym);
duke@1 2569 id1 = make.Ident(ordinalVarSym);
duke@1 2570 newAssign = make.Assign(id1, ordIdent);
duke@1 2571 newAssign.type = id1.type;
duke@1 2572 JCExpressionStatement ordinalAssign = make.Exec(newAssign);
duke@1 2573 ordinalAssign.type = id1.type;
duke@1 2574 tree.body.stats = tree.body.stats.prepend(ordinalAssign);
duke@1 2575 }
duke@1 2576 }
duke@1 2577
duke@1 2578 JCMethodDecl prevMethodDef = currentMethodDef;
duke@1 2579 MethodSymbol prevMethodSym = currentMethodSym;
duke@1 2580 try {
duke@1 2581 currentMethodDef = tree;
duke@1 2582 currentMethodSym = tree.sym;
duke@1 2583 visitMethodDefInternal(tree);
duke@1 2584 } finally {
duke@1 2585 currentMethodDef = prevMethodDef;
duke@1 2586 currentMethodSym = prevMethodSym;
duke@1 2587 }
duke@1 2588 }
duke@1 2589 //where
duke@1 2590 private void visitMethodDefInternal(JCMethodDecl tree) {
duke@1 2591 if (tree.name == names.init &&
duke@1 2592 (currentClass.isInner() ||
duke@1 2593 (currentClass.owner.kind & (VAR | MTH)) != 0)) {
duke@1 2594 // We are seeing a constructor of an inner class.
duke@1 2595 MethodSymbol m = tree.sym;
duke@1 2596
duke@1 2597 // Push a new proxy scope for constructor parameters.
duke@1 2598 // and create definitions for any this$n and proxy parameters.
duke@1 2599 proxies = proxies.dup(m);
duke@1 2600 List<VarSymbol> prevOuterThisStack = outerThisStack;
duke@1 2601 List<VarSymbol> fvs = freevars(currentClass);
duke@1 2602 JCVariableDecl otdef = null;
duke@1 2603 if (currentClass.hasOuterInstance())
duke@1 2604 otdef = outerThisDef(tree.pos, m);
duke@1 2605 List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m);
duke@1 2606
duke@1 2607 // Recursively translate result type, parameters and thrown list.
duke@1 2608 tree.restype = translate(tree.restype);
duke@1 2609 tree.params = translateVarDefs(tree.params);
duke@1 2610 tree.thrown = translate(tree.thrown);
duke@1 2611
duke@1 2612 // when compiling stubs, don't process body
duke@1 2613 if (tree.body == null) {
duke@1 2614 result = tree;
duke@1 2615 return;
duke@1 2616 }
duke@1 2617
duke@1 2618 // Add this$n (if needed) in front of and free variables behind
duke@1 2619 // constructor parameter list.
duke@1 2620 tree.params = tree.params.appendList(fvdefs);
duke@1 2621 if (currentClass.hasOuterInstance())
duke@1 2622 tree.params = tree.params.prepend(otdef);
duke@1 2623
duke@1 2624 // If this is an initial constructor, i.e., it does not start with
duke@1 2625 // this(...), insert initializers for this$n and proxies
duke@1 2626 // before (pre-1.4, after) the call to superclass constructor.
duke@1 2627 JCStatement selfCall = translate(tree.body.stats.head);
duke@1 2628
duke@1 2629 List<JCStatement> added = List.nil();
duke@1 2630 if (fvs.nonEmpty()) {
duke@1 2631 List<Type> addedargtypes = List.nil();
duke@1 2632 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
duke@1 2633 if (TreeInfo.isInitialConstructor(tree))
duke@1 2634 added = added.prepend(
duke@1 2635 initField(tree.body.pos, proxyName(l.head.name)));
duke@1 2636 addedargtypes = addedargtypes.prepend(l.head.erasure(types));
duke@1 2637 }
duke@1 2638 Type olderasure = m.erasure(types);
duke@1 2639 m.erasure_field = new MethodType(
duke@1 2640 olderasure.getParameterTypes().appendList(addedargtypes),
duke@1 2641 olderasure.getReturnType(),
duke@1 2642 olderasure.getThrownTypes(),
duke@1 2643 syms.methodClass);
duke@1 2644 }
duke@1 2645 if (currentClass.hasOuterInstance() &&
duke@1 2646 TreeInfo.isInitialConstructor(tree))
duke@1 2647 {
duke@1 2648 added = added.prepend(initOuterThis(tree.body.pos));
duke@1 2649 }
duke@1 2650
duke@1 2651 // pop local variables from proxy stack
duke@1 2652 proxies = proxies.leave();
duke@1 2653
duke@1 2654 // recursively translate following local statements and
duke@1 2655 // combine with this- or super-call
duke@1 2656 List<JCStatement> stats = translate(tree.body.stats.tail);
duke@1 2657 if (target.initializeFieldsBeforeSuper())
duke@1 2658 tree.body.stats = stats.prepend(selfCall).prependList(added);
duke@1 2659 else
duke@1 2660 tree.body.stats = stats.prependList(added).prepend(selfCall);
duke@1 2661
duke@1 2662 outerThisStack = prevOuterThisStack;
duke@1 2663 } else {
duke@1 2664 super.visitMethodDef(tree);
duke@1 2665 }
duke@1 2666 result = tree;
duke@1 2667 }
duke@1 2668
duke@1 2669 public void visitTypeCast(JCTypeCast tree) {
duke@1 2670 tree.clazz = translate(tree.clazz);
duke@1 2671 if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
duke@1 2672 tree.expr = translate(tree.expr, tree.type);
duke@1 2673 else
duke@1 2674 tree.expr = translate(tree.expr);
duke@1 2675 result = tree;
duke@1 2676 }
duke@1 2677
duke@1 2678 public void visitNewClass(JCNewClass tree) {
duke@1 2679 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
duke@1 2680
duke@1 2681 // Box arguments, if necessary
duke@1 2682 boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
duke@1 2683 List<Type> argTypes = tree.constructor.type.getParameterTypes();
duke@1 2684 if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
duke@1 2685 tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
duke@1 2686 tree.varargsElement = null;
duke@1 2687
duke@1 2688 // If created class is local, add free variables after
duke@1 2689 // explicit constructor arguments.
duke@1 2690 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 2691 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
duke@1 2692 }
duke@1 2693
duke@1 2694 // If an access constructor is used, append null as a last argument.
duke@1 2695 Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
duke@1 2696 if (constructor != tree.constructor) {
duke@1 2697 tree.args = tree.args.append(makeNull());
duke@1 2698 tree.constructor = constructor;
duke@1 2699 }
duke@1 2700
duke@1 2701 // If created class has an outer instance, and new is qualified, pass
duke@1 2702 // qualifier as first argument. If new is not qualified, pass the
duke@1 2703 // correct outer instance as first argument.
duke@1 2704 if (c.hasOuterInstance()) {
duke@1 2705 JCExpression thisArg;
duke@1 2706 if (tree.encl != null) {
duke@1 2707 thisArg = attr.makeNullCheck(translate(tree.encl));
duke@1 2708 thisArg.type = tree.encl.type;
duke@1 2709 } else if ((c.owner.kind & (MTH | VAR)) != 0) {
duke@1 2710 // local class
duke@1 2711 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
duke@1 2712 } else {
duke@1 2713 // nested class
duke@1 2714 thisArg = makeOwnerThis(tree.pos(), c, false);
duke@1 2715 }
duke@1 2716 tree.args = tree.args.prepend(thisArg);
duke@1 2717 }
duke@1 2718 tree.encl = null;
duke@1 2719
duke@1 2720 // If we have an anonymous class, create its flat version, rather
duke@1 2721 // than the class or interface following new.
duke@1 2722 if (tree.def != null) {
duke@1 2723 translate(tree.def);
duke@1 2724 tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
duke@1 2725 tree.def = null;
duke@1 2726 } else {
duke@1 2727 tree.clazz = access(c, tree.clazz, enclOp, false);
duke@1 2728 }
duke@1 2729 result = tree;
duke@1 2730 }
duke@1 2731
duke@1 2732 // Simplify conditionals with known constant controlling expressions.
duke@1 2733 // This allows us to avoid generating supporting declarations for
duke@1 2734 // the dead code, which will not be eliminated during code generation.
duke@1 2735 // Note that Flow.isFalse and Flow.isTrue only return true
duke@1 2736 // for constant expressions in the sense of JLS 15.27, which
darcy@430 2737 // are guaranteed to have no side-effects. More aggressive
duke@1 2738 // constant propagation would require that we take care to
duke@1 2739 // preserve possible side-effects in the condition expression.
duke@1 2740
duke@1 2741 /** Visitor method for conditional expressions.
duke@1 2742 */
duke@1 2743 public void visitConditional(JCConditional tree) {
duke@1 2744 JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2745 if (cond.type.isTrue()) {
duke@1 2746 result = convert(translate(tree.truepart, tree.type), tree.type);
duke@1 2747 } else if (cond.type.isFalse()) {
duke@1 2748 result = convert(translate(tree.falsepart, tree.type), tree.type);
duke@1 2749 } else {
duke@1 2750 // Condition is not a compile-time constant.
duke@1 2751 tree.truepart = translate(tree.truepart, tree.type);
duke@1 2752 tree.falsepart = translate(tree.falsepart, tree.type);
duke@1 2753 result = tree;
duke@1 2754 }
duke@1 2755 }
duke@1 2756 //where
duke@1 2757 private JCTree convert(JCTree tree, Type pt) {
sundar@691 2758 if (tree.type == pt || tree.type.tag == TypeTags.BOT)
sundar@691 2759 return tree;
duke@1 2760 JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
duke@1 2761 result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
duke@1 2762 : pt;
duke@1 2763 return result;
duke@1 2764 }
duke@1 2765
duke@1 2766 /** Visitor method for if statements.
duke@1 2767 */
duke@1 2768 public void visitIf(JCIf tree) {
duke@1 2769 JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2770 if (cond.type.isTrue()) {
duke@1 2771 result = translate(tree.thenpart);
duke@1 2772 } else if (cond.type.isFalse()) {
duke@1 2773 if (tree.elsepart != null) {
duke@1 2774 result = translate(tree.elsepart);
duke@1 2775 } else {
duke@1 2776 result = make.Skip();
duke@1 2777 }
duke@1 2778 } else {
duke@1 2779 // Condition is not a compile-time constant.
duke@1 2780 tree.thenpart = translate(tree.thenpart);
duke@1 2781 tree.elsepart = translate(tree.elsepart);
duke@1 2782 result = tree;
duke@1 2783 }
duke@1 2784 }
duke@1 2785
duke@1 2786 /** Visitor method for assert statements. Translate them away.
duke@1 2787 */
duke@1 2788 public void visitAssert(JCAssert tree) {
duke@1 2789 DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
duke@1 2790 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2791 if (!tree.cond.type.isTrue()) {
duke@1 2792 JCExpression cond = assertFlagTest(tree.pos());
duke@1 2793 List<JCExpression> exnArgs = (tree.detail == null) ?
duke@1 2794 List.<JCExpression>nil() : List.of(translate(tree.detail));
duke@1 2795 if (!tree.cond.type.isFalse()) {
duke@1 2796 cond = makeBinary
jjg@1127 2797 (AND,
duke@1 2798 cond,
jjg@1127 2799 makeUnary(NOT, tree.cond));
duke@1 2800 }
duke@1 2801 result =
duke@1 2802 make.If(cond,
duke@1 2803 make_at(detailPos).
duke@1 2804 Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
duke@1 2805 null);
duke@1 2806 } else {
duke@1 2807 result = make.Skip();
duke@1 2808 }
duke@1 2809 }
duke@1 2810
duke@1 2811 public void visitApply(JCMethodInvocation tree) {
duke@1 2812 Symbol meth = TreeInfo.symbol(tree.meth);
duke@1 2813 List<Type> argtypes = meth.type.getParameterTypes();
duke@1 2814 if (allowEnums &&
duke@1 2815 meth.name==names.init &&
duke@1 2816 meth.owner == syms.enumSym)
duke@1 2817 argtypes = argtypes.tail.tail;
duke@1 2818 tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
duke@1 2819 tree.varargsElement = null;
duke@1 2820 Name methName = TreeInfo.name(tree.meth);
duke@1 2821 if (meth.name==names.init) {
duke@1 2822 // We are seeing a this(...) or super(...) constructor call.
duke@1 2823 // If an access constructor is used, append null as a last argument.
duke@1 2824 Symbol constructor = accessConstructor(tree.pos(), meth);
duke@1 2825 if (constructor != meth) {
duke@1 2826 tree.args = tree.args.append(makeNull());
duke@1 2827 TreeInfo.setSymbol(tree.meth, constructor);
duke@1 2828 }
duke@1 2829
duke@1 2830 // If we are calling a constructor of a local class, add
duke@1 2831 // free variables after explicit constructor arguments.
duke@1 2832 ClassSymbol c = (ClassSymbol)constructor.owner;
duke@1 2833 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 2834 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
duke@1 2835 }
duke@1 2836
duke@1 2837 // If we are calling a constructor of an enum class, pass
duke@1 2838 // along the name and ordinal arguments
duke@1 2839 if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
duke@1 2840 List<JCVariableDecl> params = currentMethodDef.params;
duke@1 2841 if (currentMethodSym.owner.hasOuterInstance())
duke@1 2842 params = params.tail; // drop this$n
duke@1 2843 tree.args = tree.args
duke@1 2844 .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
duke@1 2845 .prepend(make.Ident(params.head.sym)); // name
duke@1 2846 }
duke@1 2847
duke@1 2848 // If we are calling a constructor of a class with an outer
duke@1 2849 // instance, and the call
duke@1 2850 // is qualified, pass qualifier as first argument in front of
duke@1 2851 // the explicit constructor arguments. If the call
duke@1 2852 // is not qualified, pass the correct outer instance as
duke@1 2853 // first argument.
duke@1 2854 if (c.hasOuterInstance()) {
duke@1 2855 JCExpression thisArg;
jjg@1127 2856 if (tree.meth.hasTag(SELECT)) {
duke@1 2857 thisArg = attr.
duke@1 2858 makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
duke@1 2859 tree.meth = make.Ident(constructor);
duke@1 2860 ((JCIdent) tree.meth).name = methName;
duke@1 2861 } else if ((c.owner.kind & (MTH | VAR)) != 0 || methName == names._this){
duke@1 2862 // local class or this() call
duke@1 2863 thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
duke@1 2864 } else {
mcimadamore@901 2865 // super() call of nested class - never pick 'this'
mcimadamore@901 2866 thisArg = makeOwnerThisN(tree.meth.pos(), c, false);
duke@1 2867 }
duke@1 2868 tree.args = tree.args.prepend(thisArg);
duke@1 2869 }
duke@1 2870 } else {
duke@1 2871 // We are seeing a normal method invocation; translate this as usual.
duke@1 2872 tree.meth = translate(tree.meth);
duke@1 2873
duke@1 2874 // If the translated method itself is an Apply tree, we are
duke@1 2875 // seeing an access method invocation. In this case, append
duke@1 2876 // the method arguments to the arguments of the access method.
jjg@1127 2877 if (tree.meth.hasTag(APPLY)) {
duke@1 2878 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
duke@1 2879 app.args = tree.args.prependList(app.args);
duke@1 2880 result = app;
duke@1 2881 return;
duke@1 2882 }
duke@1 2883 }
duke@1 2884 result = tree;
duke@1 2885 }
duke@1 2886
duke@1 2887 List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
duke@1 2888 List<JCExpression> args = _args;
duke@1 2889 if (parameters.isEmpty()) return args;
duke@1 2890 boolean anyChanges = false;
duke@1 2891 ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
duke@1 2892 while (parameters.tail.nonEmpty()) {
duke@1 2893 JCExpression arg = translate(args.head, parameters.head);
duke@1 2894 anyChanges |= (arg != args.head);
duke@1 2895 result.append(arg);
duke@1 2896 args = args.tail;
duke@1 2897 parameters = parameters.tail;
duke@1 2898 }
duke@1 2899 Type parameter = parameters.head;
duke@1 2900 if (varargsElement != null) {
duke@1 2901 anyChanges = true;
duke@1 2902 ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
duke@1 2903 while (args.nonEmpty()) {
duke@1 2904 JCExpression arg = translate(args.head, varargsElement);
duke@1 2905 elems.append(arg);
duke@1 2906 args = args.tail;
duke@1 2907 }
duke@1 2908 JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
duke@1 2909 List.<JCExpression>nil(),
duke@1 2910 elems.toList());
duke@1 2911 boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
duke@1 2912 result.append(boxedArgs);
duke@1 2913 } else {
duke@1 2914 if (args.length() != 1) throw new AssertionError(args);
duke@1 2915 JCExpression arg = translate(args.head, parameter);
duke@1 2916 anyChanges |= (arg != args.head);
duke@1 2917 result.append(arg);
duke@1 2918 if (!anyChanges) return _args;
duke@1 2919 }
duke@1 2920 return result.toList();
duke@1 2921 }
duke@1 2922
duke@1 2923 /** Expand a boxing or unboxing conversion if needed. */
duke@1 2924 @SuppressWarnings("unchecked") // XXX unchecked
duke@1 2925 <T extends JCTree> T boxIfNeeded(T tree, Type type) {
duke@1 2926 boolean havePrimitive = tree.type.isPrimitive();
duke@1 2927 if (havePrimitive == type.isPrimitive())
duke@1 2928 return tree;
duke@1 2929 if (havePrimitive) {
duke@1 2930 Type unboxedTarget = types.unboxedType(type);
duke@1 2931 if (unboxedTarget.tag != NONE) {
mcimadamore@253 2932 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
mcimadamore@253 2933 tree.type = unboxedTarget.constType(tree.type.constValue());
duke@1 2934 return (T)boxPrimitive((JCExpression)tree, type);
duke@1 2935 } else {
duke@1 2936 tree = (T)boxPrimitive((JCExpression)tree);
duke@1 2937 }
duke@1 2938 } else {
duke@1 2939 tree = (T)unbox((JCExpression)tree, type);
duke@1 2940 }
duke@1 2941 return tree;
duke@1 2942 }
duke@1 2943
duke@1 2944 /** Box up a single primitive expression. */
duke@1 2945 JCExpression boxPrimitive(JCExpression tree) {
duke@1 2946 return boxPrimitive(tree, types.boxedClass(tree.type).type);
duke@1 2947 }
duke@1 2948
duke@1 2949 /** Box up a single primitive expression. */
duke@1 2950 JCExpression boxPrimitive(JCExpression tree, Type box) {
duke@1 2951 make_at(tree.pos());
duke@1 2952 if (target.boxWithConstructors()) {
duke@1 2953 Symbol ctor = lookupConstructor(tree.pos(),
duke@1 2954 box,
duke@1 2955 List.<Type>nil()
duke@1 2956 .prepend(tree.type));
duke@1 2957 return make.Create(ctor, List.of(tree));
duke@1 2958 } else {
duke@1 2959 Symbol valueOfSym = lookupMethod(tree.pos(),
duke@1 2960 names.valueOf,
duke@1 2961 box,
duke@1 2962 List.<Type>nil()
duke@1 2963 .prepend(tree.type));
duke@1 2964 return make.App(make.QualIdent(valueOfSym), List.of(tree));
duke@1 2965 }
duke@1 2966 }
duke@1 2967
duke@1 2968 /** Unbox an object to a primitive value. */
duke@1 2969 JCExpression unbox(JCExpression tree, Type primitive) {
duke@1 2970 Type unboxedType = types.unboxedType(tree.type);
jrose@665 2971 if (unboxedType.tag == NONE) {
jrose@665 2972 unboxedType = primitive;
jrose@665 2973 if (!unboxedType.isPrimitive())
jrose@665 2974 throw new AssertionError(unboxedType);
jrose@665 2975 make_at(tree.pos());
jrose@665 2976 tree = make.TypeCast(types.boxedClass(unboxedType).type, tree);
jrose@665 2977 } else {
jrose@665 2978 // There must be a conversion from unboxedType to primitive.
jrose@665 2979 if (!types.isSubtype(unboxedType, primitive))
jrose@665 2980 throw new AssertionError(tree);
jrose@665 2981 }
duke@1 2982 make_at(tree.pos());
duke@1 2983 Symbol valueSym = lookupMethod(tree.pos(),
duke@1 2984 unboxedType.tsym.name.append(names.Value), // x.intValue()
duke@1 2985 tree.type,
duke@1 2986 List.<Type>nil());
duke@1 2987 return make.App(make.Select(tree, valueSym));
duke@1 2988 }
duke@1 2989
duke@1 2990 /** Visitor method for parenthesized expressions.
duke@1 2991 * If the subexpression has changed, omit the parens.
duke@1 2992 */
duke@1 2993 public void visitParens(JCParens tree) {
duke@1 2994 JCTree expr = translate(tree.expr);
duke@1 2995 result = ((expr == tree.expr) ? tree : expr);
duke@1 2996 }
duke@1 2997
duke@1 2998 public void visitIndexed(JCArrayAccess tree) {
duke@1 2999 tree.indexed = translate(tree.indexed);
duke@1 3000 tree.index = translate(tree.index, syms.intType);
duke@1 3001 result = tree;
duke@1 3002 }
duke@1 3003
duke@1 3004 public void visitAssign(JCAssign tree) {
duke@1 3005 tree.lhs = translate(tree.lhs, tree);
duke@1 3006 tree.rhs = translate(tree.rhs, tree.lhs.type);
duke@1 3007
duke@1 3008 // If translated left hand side is an Apply, we are
duke@1 3009 // seeing an access method invocation. In this case, append
duke@1 3010 // right hand side as last argument of the access method.
jjg@1127 3011 if (tree.lhs.hasTag(APPLY)) {
duke@1 3012 JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
duke@1 3013 app.args = List.of(tree.rhs).prependList(app.args);
duke@1 3014 result = app;
duke@1 3015 } else {
duke@1 3016 result = tree;
duke@1 3017 }
duke@1 3018 }
duke@1 3019
duke@1 3020 public void visitAssignop(final JCAssignOp tree) {
duke@1 3021 if (!tree.lhs.type.isPrimitive() &&
duke@1 3022 tree.operator.type.getReturnType().isPrimitive()) {
duke@1 3023 // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
duke@1 3024 // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
duke@1 3025 // (but without recomputing x)
mcimadamore@133 3026 JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
duke@1 3027 public JCTree build(final JCTree lhs) {
jjg@1127 3028 JCTree.Tag newTag = tree.getTag().noAssignOp();
duke@1 3029 // Erasure (TransTypes) can change the type of
duke@1 3030 // tree.lhs. However, we can still get the
duke@1 3031 // unerased type of tree.lhs as it is stored
duke@1 3032 // in tree.type in Attr.
duke@1 3033 Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
duke@1 3034 newTag,
duke@1 3035 attrEnv,
duke@1 3036 tree.type,
duke@1 3037 tree.rhs.type);
duke@1 3038 JCExpression expr = (JCExpression)lhs;
duke@1 3039 if (expr.type != tree.type)
duke@1 3040 expr = make.TypeCast(tree.type, expr);
duke@1 3041 JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
duke@1 3042 opResult.operator = newOperator;
duke@1 3043 opResult.type = newOperator.type.getReturnType();
duke@1 3044 JCTypeCast newRhs = make.TypeCast(types.unboxedType(tree.type),
duke@1 3045 opResult);
duke@1 3046 return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
duke@1 3047 }
duke@1 3048 });
duke@1 3049 result = translate(newTree);
duke@1 3050 return;
duke@1 3051 }
duke@1 3052 tree.lhs = translate(tree.lhs, tree);
duke@1 3053 tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
duke@1 3054
duke@1 3055 // If translated left hand side is an Apply, we are
duke@1 3056 // seeing an access method invocation. In this case, append
duke@1 3057 // right hand side as last argument of the access method.
jjg@1127 3058 if (tree.lhs.hasTag(APPLY)) {
duke@1 3059 JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
duke@1 3060 // if operation is a += on strings,
duke@1 3061 // make sure to convert argument to string
duke@1 3062 JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
duke@1 3063 ? makeString(tree.rhs)
duke@1 3064 : tree.rhs;
duke@1 3065 app.args = List.of(rhs).prependList(app.args);
duke@1 3066 result = app;
duke@1 3067 } else {
duke@1 3068 result = tree;
duke@1 3069 }
duke@1 3070 }
duke@1 3071
duke@1 3072 /** Lower a tree of the form e++ or e-- where e is an object type */
duke@1 3073 JCTree lowerBoxedPostop(final JCUnary tree) {
duke@1 3074 // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
duke@1 3075 // or
duke@1 3076 // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
duke@1 3077 // where OP is += or -=
jjg@1127 3078 final boolean cast = TreeInfo.skipParens(tree.arg).hasTag(TYPECAST);
mcimadamore@133 3079 return abstractLval(tree.arg, new TreeBuilder() {
duke@1 3080 public JCTree build(final JCTree tmp1) {
duke@1 3081 return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
duke@1 3082 public JCTree build(final JCTree tmp2) {
jjg@1127 3083 JCTree.Tag opcode = (tree.hasTag(POSTINC))
jjg@1127 3084 ? PLUS_ASG : MINUS_ASG;
duke@1 3085 JCTree lhs = cast
duke@1 3086 ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
duke@1 3087 : tmp1;
duke@1 3088 JCTree update = makeAssignop(opcode,
duke@1 3089 lhs,
duke@1 3090 make.Literal(1));
duke@1 3091 return makeComma(update, tmp2);
duke@1 3092 }
duke@1 3093 });
duke@1 3094 }
duke@1 3095 });
duke@1 3096 }
duke@1 3097
duke@1 3098 public void visitUnary(JCUnary tree) {
jjg@1127 3099 boolean isUpdateOperator = tree.getTag().isIncOrDecUnaryOp();
duke@1 3100 if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
duke@1 3101 switch(tree.getTag()) {
jjg@1127 3102 case PREINC: // ++ e
duke@1 3103 // translate to e += 1
jjg@1127 3104 case PREDEC: // -- e
duke@1 3105 // translate to e -= 1
duke@1 3106 {
jjg@1127 3107 JCTree.Tag opcode = (tree.hasTag(PREINC))
jjg@1127 3108 ? PLUS_ASG : MINUS_ASG;
duke@1 3109 JCAssignOp newTree = makeAssignop(opcode,
duke@1 3110 tree.arg,
duke@1 3111 make.Literal(1));
duke@1 3112 result = translate(newTree, tree.type);
duke@1 3113 return;
duke@1 3114 }
jjg@1127 3115 case POSTINC: // e ++
jjg@1127 3116 case POSTDEC: // e --
duke@1 3117 {
duke@1 3118 result = translate(lowerBoxedPostop(tree), tree.type);
duke@1 3119 return;
duke@1 3120 }
duke@1 3121 }
duke@1 3122 throw new AssertionError(tree);
duke@1 3123 }
duke@1 3124
duke@1 3125 tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
duke@1 3126
jjg@1127 3127 if (tree.hasTag(NOT) && tree.arg.type.constValue() != null) {
duke@1 3128 tree.type = cfolder.fold1(bool_not, tree.arg.type);
duke@1 3129 }
duke@1 3130
duke@1 3131 // If translated left hand side is an Apply, we are
duke@1 3132 // seeing an access method invocation. In this case, return
darcy@430 3133 // that access method invocation as result.
jjg@1127 3134 if (isUpdateOperator && tree.arg.hasTag(APPLY)) {
duke@1 3135 result = tree.arg;
duke@1 3136 } else {
duke@1 3137 result = tree;
duke@1 3138 }
duke@1 3139 }
duke@1 3140
duke@1 3141 public void visitBinary(JCBinary tree) {
duke@1 3142 List<Type> formals = tree.operator.type.getParameterTypes();
duke@1 3143 JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
duke@1 3144 switch (tree.getTag()) {
jjg@1127 3145 case OR:
duke@1 3146 if (lhs.type.isTrue()) {
duke@1 3147 result = lhs;
duke@1 3148 return;
duke@1 3149 }
duke@1 3150 if (lhs.type.isFalse()) {
duke@1 3151 result = translate(tree.rhs, formals.tail.head);
duke@1 3152 return;
duke@1 3153 }
duke@1 3154 break;
jjg@1127 3155 case AND:
duke@1 3156 if (lhs.type.isFalse()) {
duke@1 3157 result = lhs;
duke@1 3158 return;
duke@1 3159 }
duke@1 3160 if (lhs.type.isTrue()) {
duke@1 3161 result = translate(tree.rhs, formals.tail.head);
duke@1 3162 return;
duke@1 3163 }
duke@1 3164 break;
duke@1 3165 }
duke@1 3166 tree.rhs = translate(tree.rhs, formals.tail.head);
duke@1 3167 result = tree;
duke@1 3168 }
duke@1 3169
duke@1 3170 public void visitIdent(JCIdent tree) {
duke@1 3171 result = access(tree.sym, tree, enclOp, false);
duke@1 3172 }
duke@1 3173
duke@1 3174 /** Translate away the foreach loop. */
duke@1 3175 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 3176 if (types.elemtype(tree.expr.type) == null)
duke@1 3177 visitIterableForeachLoop(tree);
duke@1 3178 else
duke@1 3179 visitArrayForeachLoop(tree);
duke@1 3180 }
duke@1 3181 // where
duke@1 3182 /**
darcy@430 3183 * A statement of the form
duke@1 3184 *
duke@1 3185 * <pre>
duke@1 3186 * for ( T v : arrayexpr ) stmt;
duke@1 3187 * </pre>
duke@1 3188 *
duke@1 3189 * (where arrayexpr is of an array type) gets translated to
duke@1 3190 *
duke@1 3191 * <pre>
duke@1 3192 * for ( { arraytype #arr = arrayexpr;
duke@1 3193 * int #len = array.length;
duke@1 3194 * int #i = 0; };
duke@1 3195 * #i < #len; i$++ ) {
duke@1 3196 * T v = arr$[#i];
duke@1 3197 * stmt;
duke@1 3198 * }
duke@1 3199 * </pre>
duke@1 3200 *
duke@1 3201 * where #arr, #len, and #i are freshly named synthetic local variables.
duke@1 3202 */
duke@1 3203 private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
duke@1 3204 make_at(tree.expr.pos());
duke@1 3205 VarSymbol arraycache = new VarSymbol(0,
duke@1 3206 names.fromString("arr" + target.syntheticNameChar()),
duke@1 3207 tree.expr.type,
duke@1 3208 currentMethodSym);
duke@1 3209 JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
duke@1 3210 VarSymbol lencache = new VarSymbol(0,
duke@1 3211 names.fromString("len" + target.syntheticNameChar()),
duke@1 3212 syms.intType,
duke@1 3213 currentMethodSym);
duke@1 3214 JCStatement lencachedef = make.
duke@1 3215 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
duke@1 3216 VarSymbol index = new VarSymbol(0,
duke@1 3217 names.fromString("i" + target.syntheticNameChar()),
duke@1 3218 syms.intType,
duke@1 3219 currentMethodSym);
duke@1 3220
duke@1 3221 JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
duke@1 3222 indexdef.init.type = indexdef.type = syms.intType.constType(0);
duke@1 3223
duke@1 3224 List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
jjg@1127 3225 JCBinary cond = makeBinary(LT, make.Ident(index), make.Ident(lencache));
jjg@1127 3226
jjg@1127 3227 JCExpressionStatement step = make.Exec(makeUnary(PREINC, make.Ident(index)));
duke@1 3228
duke@1 3229 Type elemtype = types.elemtype(tree.expr.type);
mcimadamore@33 3230 JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
mcimadamore@33 3231 make.Ident(index)).setType(elemtype);
mcimadamore@33 3232 JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
mcimadamore@33 3233 tree.var.name,
mcimadamore@33 3234 tree.var.vartype,
mcimadamore@33 3235 loopvarinit).setType(tree.var.type);
mcimadamore@33 3236 loopvardef.sym = tree.var.sym;
duke@1 3237 JCBlock body = make.
mcimadamore@33 3238 Block(0, List.of(loopvardef, tree.body));
duke@1 3239
duke@1 3240 result = translate(make.
duke@1 3241 ForLoop(loopinit,
duke@1 3242 cond,
duke@1 3243 List.of(step),
duke@1 3244 body));
duke@1 3245 patchTargets(body, tree, result);
duke@1 3246 }
duke@1 3247 /** Patch up break and continue targets. */
duke@1 3248 private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
duke@1 3249 class Patcher extends TreeScanner {
duke@1 3250 public void visitBreak(JCBreak tree) {
duke@1 3251 if (tree.target == src)
duke@1 3252 tree.target = dest;
duke@1 3253 }
duke@1 3254 public void visitContinue(JCContinue tree) {
duke@1 3255 if (tree.target == src)
duke@1 3256 tree.target = dest;
duke@1 3257 }
duke@1 3258 public void visitClassDef(JCClassDecl tree) {}
duke@1 3259 }
duke@1 3260 new Patcher().scan(body);
duke@1 3261 }
duke@1 3262 /**
duke@1 3263 * A statement of the form
duke@1 3264 *
duke@1 3265 * <pre>
duke@1 3266 * for ( T v : coll ) stmt ;
duke@1 3267 * </pre>
duke@1 3268 *
duke@1 3269 * (where coll implements Iterable<? extends T>) gets translated to
duke@1 3270 *
duke@1 3271 * <pre>
duke@1 3272 * for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
duke@1 3273 * T v = (T) #i.next();
duke@1 3274 * stmt;
duke@1 3275 * }
duke@1 3276 * </pre>
duke@1 3277 *
duke@1 3278 * where #i is a freshly named synthetic local variable.
duke@1 3279 */
duke@1 3280 private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
duke@1 3281 make_at(tree.expr.pos());
duke@1 3282 Type iteratorTarget = syms.objectType;
duke@1 3283 Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
duke@1 3284 syms.iterableType.tsym);
duke@1 3285 if (iterableType.getTypeArguments().nonEmpty())
duke@1 3286 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
duke@1 3287 Type eType = tree.expr.type;
duke@1 3288 tree.expr.type = types.erasure(eType);
duke@1 3289 if (eType.tag == TYPEVAR && eType.getUpperBound().isCompound())
duke@1 3290 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
duke@1 3291 Symbol iterator = lookupMethod(tree.expr.pos(),
duke@1 3292 names.iterator,
duke@1 3293 types.erasure(syms.iterableType),
duke@1 3294 List.<Type>nil());
duke@1 3295 VarSymbol itvar = new VarSymbol(0, names.fromString("i" + target.syntheticNameChar()),
duke@1 3296 types.erasure(iterator.type.getReturnType()),
duke@1 3297 currentMethodSym);
duke@1 3298 JCStatement init = make.
duke@1 3299 VarDef(itvar,
duke@1 3300 make.App(make.Select(tree.expr, iterator)));
duke@1 3301 Symbol hasNext = lookupMethod(tree.expr.pos(),
duke@1 3302 names.hasNext,
duke@1 3303 itvar.type,
duke@1 3304 List.<Type>nil());
duke@1 3305 JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
duke@1 3306 Symbol next = lookupMethod(tree.expr.pos(),
duke@1 3307 names.next,
duke@1 3308 itvar.type,
duke@1 3309 List.<Type>nil());
duke@1 3310 JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
mcimadamore@81 3311 if (tree.var.type.isPrimitive())
mcimadamore@81 3312 vardefinit = make.TypeCast(types.upperBound(iteratorTarget), vardefinit);
mcimadamore@81 3313 else
mcimadamore@81 3314 vardefinit = make.TypeCast(tree.var.type, vardefinit);
mcimadamore@33 3315 JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
mcimadamore@33 3316 tree.var.name,
mcimadamore@33 3317 tree.var.vartype,
mcimadamore@33 3318 vardefinit).setType(tree.var.type);
mcimadamore@33 3319 indexDef.sym = tree.var.sym;
duke@1 3320 JCBlock body = make.Block(0, List.of(indexDef, tree.body));
mcimadamore@237 3321 body.endpos = TreeInfo.endPos(tree.body);
duke@1 3322 result = translate(make.
duke@1 3323 ForLoop(List.of(init),
duke@1 3324 cond,
duke@1 3325 List.<JCExpressionStatement>nil(),
duke@1 3326 body));
duke@1 3327 patchTargets(body, tree, result);
duke@1 3328 }
duke@1 3329
duke@1 3330 public void visitVarDef(JCVariableDecl tree) {
duke@1 3331 MethodSymbol oldMethodSym = currentMethodSym;
duke@1 3332 tree.mods = translate(tree.mods);
duke@1 3333 tree.vartype = translate(tree.vartype);
duke@1 3334 if (currentMethodSym == null) {
duke@1 3335 // A class or instance field initializer.
duke@1 3336 currentMethodSym =
duke@1 3337 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
duke@1 3338 names.empty, null,
duke@1 3339 currentClass);
duke@1 3340 }
duke@1 3341 if (tree.init != null) tree.init = translate(tree.init, tree.type);
duke@1 3342 result = tree;
duke@1 3343 currentMethodSym = oldMethodSym;
duke@1 3344 }
duke@1 3345
duke@1 3346 public void visitBlock(JCBlock tree) {
duke@1 3347 MethodSymbol oldMethodSym = currentMethodSym;
duke@1 3348 if (currentMethodSym == null) {
duke@1 3349 // Block is a static or instance initializer.
duke@1 3350 currentMethodSym =
duke@1 3351 new MethodSymbol(tree.flags | BLOCK,
duke@1 3352 names.empty, null,
duke@1 3353 currentClass);
duke@1 3354 }
duke@1 3355 super.visitBlock(tree);
duke@1 3356 currentMethodSym = oldMethodSym;
duke@1 3357 }
duke@1 3358
duke@1 3359 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 3360 tree.body = translate(tree.body);
duke@1 3361 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3362 result = tree;
duke@1 3363 }
duke@1 3364
duke@1 3365 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 3366 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3367 tree.body = translate(tree.body);
duke@1 3368 result = tree;
duke@1 3369 }
duke@1 3370
duke@1 3371 public void visitForLoop(JCForLoop tree) {
duke@1 3372 tree.init = translate(tree.init);
duke@1 3373 if (tree.cond != null)
duke@1 3374 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3375 tree.step = translate(tree.step);
duke@1 3376 tree.body = translate(tree.body);
duke@1 3377 result = tree;
duke@1 3378 }
duke@1 3379
duke@1 3380 public void visitReturn(JCReturn tree) {
duke@1 3381 if (tree.expr != null)
duke@1 3382 tree.expr = translate(tree.expr,
duke@1 3383 types.erasure(currentMethodDef
duke@1 3384 .restype.type));
duke@1 3385 result = tree;
duke@1 3386 }
duke@1 3387
duke@1 3388 public void visitSwitch(JCSwitch tree) {
duke@1 3389 Type selsuper = types.supertype(tree.selector.type);
duke@1 3390 boolean enumSwitch = selsuper != null &&
duke@1 3391 (tree.selector.type.tsym.flags() & ENUM) != 0;
darcy@430 3392 boolean stringSwitch = selsuper != null &&
darcy@430 3393 types.isSameType(tree.selector.type, syms.stringType);
darcy@430 3394 Type target = enumSwitch ? tree.selector.type :
darcy@430 3395 (stringSwitch? syms.stringType : syms.intType);
duke@1 3396 tree.selector = translate(tree.selector, target);
duke@1 3397 tree.cases = translateCases(tree.cases);
duke@1 3398 if (enumSwitch) {
duke@1 3399 result = visitEnumSwitch(tree);
darcy@430 3400 } else if (stringSwitch) {
darcy@430 3401 result = visitStringSwitch(tree);
duke@1 3402 } else {
duke@1 3403 result = tree;
duke@1 3404 }
duke@1 3405 }
duke@1 3406
duke@1 3407 public JCTree visitEnumSwitch(JCSwitch tree) {
duke@1 3408 TypeSymbol enumSym = tree.selector.type.tsym;
duke@1 3409 EnumMapping map = mapForEnum(tree.pos(), enumSym);
duke@1 3410 make_at(tree.pos());
duke@1 3411 Symbol ordinalMethod = lookupMethod(tree.pos(),
duke@1 3412 names.ordinal,
duke@1 3413 tree.selector.type,
duke@1 3414 List.<Type>nil());
duke@1 3415 JCArrayAccess selector = make.Indexed(map.mapVar,
duke@1 3416 make.App(make.Select(tree.selector,
duke@1 3417 ordinalMethod)));
duke@1 3418 ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
duke@1 3419 for (JCCase c : tree.cases) {
duke@1 3420 if (c.pat != null) {
duke@1 3421 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
duke@1 3422 JCLiteral pat = map.forConstant(label);
duke@1 3423 cases.append(make.Case(pat, c.stats));
duke@1 3424 } else {
duke@1 3425 cases.append(c);
duke@1 3426 }
duke@1 3427 }
darcy@443 3428 JCSwitch enumSwitch = make.Switch(selector, cases.toList());
darcy@443 3429 patchTargets(enumSwitch, tree, enumSwitch);
darcy@443 3430 return enumSwitch;
duke@1 3431 }
duke@1 3432
darcy@430 3433 public JCTree visitStringSwitch(JCSwitch tree) {
darcy@430 3434 List<JCCase> caseList = tree.getCases();
darcy@430 3435 int alternatives = caseList.size();
darcy@430 3436
darcy@430 3437 if (alternatives == 0) { // Strange but legal possibility
darcy@430 3438 return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
darcy@430 3439 } else {
darcy@430 3440 /*
darcy@430 3441 * The general approach used is to translate a single
darcy@430 3442 * string switch statement into a series of two chained
darcy@430 3443 * switch statements: the first a synthesized statement
darcy@430 3444 * switching on the argument string's hash value and
darcy@430 3445 * computing a string's position in the list of original
darcy@430 3446 * case labels, if any, followed by a second switch on the
darcy@430 3447 * computed integer value. The second switch has the same
darcy@430 3448 * code structure as the original string switch statement
darcy@430 3449 * except that the string case labels are replaced with
darcy@430 3450 * positional integer constants starting at 0.
darcy@430 3451 *
darcy@430 3452 * The first switch statement can be thought of as an
darcy@430 3453 * inlined map from strings to their position in the case
darcy@430 3454 * label list. An alternate implementation would use an
darcy@430 3455 * actual Map for this purpose, as done for enum switches.
darcy@430 3456 *
darcy@430 3457 * With some additional effort, it would be possible to
darcy@430 3458 * use a single switch statement on the hash code of the
darcy@430 3459 * argument, but care would need to be taken to preserve
darcy@430 3460 * the proper control flow in the presence of hash
darcy@430 3461 * collisions and other complications, such as
darcy@430 3462 * fallthroughs. Switch statements with one or two
darcy@430 3463 * alternatives could also be specially translated into
darcy@430 3464 * if-then statements to omit the computation of the hash
darcy@430 3465 * code.
darcy@430 3466 *
darcy@430 3467 * The generated code assumes that the hashing algorithm
darcy@430 3468 * of String is the same in the compilation environment as
darcy@430 3469 * in the environment the code will run in. The string
darcy@430 3470 * hashing algorithm in the SE JDK has been unchanged
darcy@443 3471 * since at least JDK 1.2. Since the algorithm has been
darcy@443 3472 * specified since that release as well, it is very
darcy@443 3473 * unlikely to be changed in the future.
darcy@443 3474 *
darcy@443 3475 * Different hashing algorithms, such as the length of the
darcy@443 3476 * strings or a perfect hashing algorithm over the
darcy@443 3477 * particular set of case labels, could potentially be
darcy@443 3478 * used instead of String.hashCode.
darcy@430 3479 */
darcy@430 3480
darcy@430 3481 ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
darcy@430 3482
darcy@430 3483 // Map from String case labels to their original position in
darcy@430 3484 // the list of case labels.
darcy@430 3485 Map<String, Integer> caseLabelToPosition =
darcy@430 3486 new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
darcy@430 3487
darcy@430 3488 // Map of hash codes to the string case labels having that hashCode.
darcy@430 3489 Map<Integer, Set<String>> hashToString =
darcy@430 3490 new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
darcy@430 3491
darcy@430 3492 int casePosition = 0;
darcy@430 3493 for(JCCase oneCase : caseList) {
darcy@430 3494 JCExpression expression = oneCase.getExpression();
darcy@430 3495
darcy@430 3496 if (expression != null) { // expression for a "default" case is null
darcy@1063 3497 expression = TreeInfo.skipParens(expression);
darcy@430 3498 String labelExpr = (String) expression.type.constValue();
darcy@430 3499 Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
jjg@816 3500 Assert.checkNull(mapping);
darcy@430 3501 int hashCode = labelExpr.hashCode();
darcy@430 3502
darcy@430 3503 Set<String> stringSet = hashToString.get(hashCode);
darcy@430 3504 if (stringSet == null) {
darcy@430 3505 stringSet = new LinkedHashSet<String>(1, 1.0f);
darcy@430 3506 stringSet.add(labelExpr);
darcy@430 3507 hashToString.put(hashCode, stringSet);
darcy@430 3508 } else {
darcy@430 3509 boolean added = stringSet.add(labelExpr);
jjg@816 3510 Assert.check(added);
darcy@430 3511 }
darcy@430 3512 }
darcy@430 3513 casePosition++;
darcy@430 3514 }
darcy@430 3515
darcy@430 3516 // Synthesize a switch statement that has the effect of
darcy@430 3517 // mapping from a string to the integer position of that
darcy@430 3518 // string in the list of case labels. This is done by
darcy@430 3519 // switching on the hashCode of the string followed by an
darcy@430 3520 // if-then-else chain comparing the input for equality
darcy@430 3521 // with all the case labels having that hash value.
darcy@430 3522
darcy@430 3523 /*
darcy@430 3524 * s$ = top of stack;
darcy@430 3525 * tmp$ = -1;
darcy@430 3526 * switch($s.hashCode()) {
darcy@430 3527 * case caseLabel.hashCode:
darcy@430 3528 * if (s$.equals("caseLabel_1")
darcy@430 3529 * tmp$ = caseLabelToPosition("caseLabel_1");
darcy@430 3530 * else if (s$.equals("caseLabel_2"))
darcy@430 3531 * tmp$ = caseLabelToPosition("caseLabel_2");
darcy@430 3532 * ...
darcy@430 3533 * break;
darcy@430 3534 * ...
darcy@430 3535 * }
darcy@430 3536 */
darcy@430 3537
darcy@430 3538 VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
darcy@430 3539 names.fromString("s" + tree.pos + target.syntheticNameChar()),
darcy@430 3540 syms.stringType,
darcy@430 3541 currentMethodSym);
darcy@430 3542 stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
darcy@430 3543
darcy@430 3544 VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
darcy@430 3545 names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
darcy@430 3546 syms.intType,
darcy@430 3547 currentMethodSym);
darcy@430 3548 JCVariableDecl dollar_tmp_def =
darcy@430 3549 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
darcy@430 3550 dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
darcy@430 3551 stmtList.append(dollar_tmp_def);
darcy@430 3552 ListBuffer<JCCase> caseBuffer = ListBuffer.lb();
darcy@430 3553 // hashCode will trigger nullcheck on original switch expression
darcy@430 3554 JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
darcy@430 3555 names.hashCode,
darcy@430 3556 List.<JCExpression>nil()).setType(syms.intType);
darcy@430 3557 JCSwitch switch1 = make.Switch(hashCodeCall,
darcy@430 3558 caseBuffer.toList());
darcy@430 3559 for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
darcy@430 3560 int hashCode = entry.getKey();
darcy@430 3561 Set<String> stringsWithHashCode = entry.getValue();
jjg@816 3562 Assert.check(stringsWithHashCode.size() >= 1);
darcy@430 3563
darcy@430 3564 JCStatement elsepart = null;
darcy@430 3565 for(String caseLabel : stringsWithHashCode ) {
darcy@430 3566 JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
darcy@430 3567 names.equals,
darcy@430 3568 List.<JCExpression>of(make.Literal(caseLabel)));
darcy@430 3569 elsepart = make.If(stringEqualsCall,
darcy@430 3570 make.Exec(make.Assign(make.Ident(dollar_tmp),
darcy@430 3571 make.Literal(caseLabelToPosition.get(caseLabel))).
darcy@430 3572 setType(dollar_tmp.type)),
darcy@430 3573 elsepart);
darcy@430 3574 }
darcy@430 3575
darcy@430 3576 ListBuffer<JCStatement> lb = ListBuffer.lb();
darcy@430 3577 JCBreak breakStmt = make.Break(null);
darcy@430 3578 breakStmt.target = switch1;
darcy@430 3579 lb.append(elsepart).append(breakStmt);
darcy@430 3580
darcy@430 3581 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
darcy@430 3582 }
darcy@430 3583
darcy@430 3584 switch1.cases = caseBuffer.toList();
darcy@430 3585 stmtList.append(switch1);
darcy@430 3586
darcy@430 3587 // Make isomorphic switch tree replacing string labels
darcy@430 3588 // with corresponding integer ones from the label to
darcy@430 3589 // position map.
darcy@430 3590
darcy@430 3591 ListBuffer<JCCase> lb = ListBuffer.lb();
darcy@430 3592 JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
darcy@430 3593 for(JCCase oneCase : caseList ) {
darcy@430 3594 // Rewire up old unlabeled break statements to the
darcy@430 3595 // replacement switch being created.
darcy@430 3596 patchTargets(oneCase, tree, switch2);
darcy@430 3597
darcy@430 3598 boolean isDefault = (oneCase.getExpression() == null);
darcy@430 3599 JCExpression caseExpr;
darcy@430 3600 if (isDefault)
darcy@430 3601 caseExpr = null;
darcy@430 3602 else {
darcy@1063 3603 caseExpr = make.Literal(caseLabelToPosition.get((String)TreeInfo.skipParens(oneCase.
darcy@1063 3604 getExpression()).
darcy@430 3605 type.constValue()));
darcy@430 3606 }
darcy@430 3607
darcy@430 3608 lb.append(make.Case(caseExpr,
darcy@430 3609 oneCase.getStatements()));
darcy@430 3610 }
darcy@430 3611
darcy@430 3612 switch2.cases = lb.toList();
darcy@430 3613 stmtList.append(switch2);
darcy@430 3614
darcy@430 3615 return make.Block(0L, stmtList.toList());
darcy@430 3616 }
darcy@430 3617 }
darcy@430 3618
duke@1 3619 public void visitNewArray(JCNewArray tree) {
duke@1 3620 tree.elemtype = translate(tree.elemtype);
duke@1 3621 for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
duke@1 3622 if (t.head != null) t.head = translate(t.head, syms.intType);
duke@1 3623 tree.elems = translate(tree.elems, types.elemtype(tree.type));
duke@1 3624 result = tree;
duke@1 3625 }
duke@1 3626
duke@1 3627 public void visitSelect(JCFieldAccess tree) {
duke@1 3628 // need to special case-access of the form C.super.x
duke@1 3629 // these will always need an access method.
duke@1 3630 boolean qualifiedSuperAccess =
jjg@1127 3631 tree.selected.hasTag(SELECT) &&
duke@1 3632 TreeInfo.name(tree.selected) == names._super;
duke@1 3633 tree.selected = translate(tree.selected);
duke@1 3634 if (tree.name == names._class)
duke@1 3635 result = classOf(tree.selected);
duke@1 3636 else if (tree.name == names._this || tree.name == names._super)
duke@1 3637 result = makeThis(tree.pos(), tree.selected.type.tsym);
duke@1 3638 else
duke@1 3639 result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
duke@1 3640 }
duke@1 3641
duke@1 3642 public void visitLetExpr(LetExpr tree) {
duke@1 3643 tree.defs = translateVarDefs(tree.defs);
duke@1 3644 tree.expr = translate(tree.expr, tree.type);
duke@1 3645 result = tree;
duke@1 3646 }
duke@1 3647
duke@1 3648 // There ought to be nothing to rewrite here;
duke@1 3649 // we don't generate code.
duke@1 3650 public void visitAnnotation(JCAnnotation tree) {
duke@1 3651 result = tree;
duke@1 3652 }
duke@1 3653
darcy@609 3654 @Override
darcy@609 3655 public void visitTry(JCTry tree) {
darcy@609 3656 if (tree.resources.isEmpty()) {
darcy@609 3657 super.visitTry(tree);
darcy@609 3658 } else {
darcy@884 3659 result = makeTwrTry(tree);
darcy@609 3660 }
darcy@609 3661 }
darcy@609 3662
duke@1 3663 /**************************************************************************
duke@1 3664 * main method
duke@1 3665 *************************************************************************/
duke@1 3666
duke@1 3667 /** Translate a toplevel class and return a list consisting of
duke@1 3668 * the translated class and translated versions of all inner classes.
duke@1 3669 * @param env The attribution environment current at the class definition.
duke@1 3670 * We need this for resolving some additional symbols.
duke@1 3671 * @param cdef The tree representing the class definition.
duke@1 3672 */
duke@1 3673 public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
duke@1 3674 ListBuffer<JCTree> translated = null;
duke@1 3675 try {
duke@1 3676 attrEnv = env;
duke@1 3677 this.make = make;
ksrini@1138 3678 endPosTable = env.toplevel.endPositions;
duke@1 3679 currentClass = null;
duke@1 3680 currentMethodDef = null;
jjg@1127 3681 outermostClassDef = (cdef.hasTag(CLASSDEF)) ? (JCClassDecl)cdef : null;
duke@1 3682 outermostMemberDef = null;
duke@1 3683 this.translated = new ListBuffer<JCTree>();
duke@1 3684 classdefs = new HashMap<ClassSymbol,JCClassDecl>();
duke@1 3685 actualSymbols = new HashMap<Symbol,Symbol>();
duke@1 3686 freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
duke@1 3687 proxies = new Scope(syms.noSymbol);
darcy@609 3688 twrVars = new Scope(syms.noSymbol);
duke@1 3689 outerThisStack = List.nil();
duke@1 3690 accessNums = new HashMap<Symbol,Integer>();
duke@1 3691 accessSyms = new HashMap<Symbol,MethodSymbol[]>();
duke@1 3692 accessConstrs = new HashMap<Symbol,MethodSymbol>();
jjg@595 3693 accessConstrTags = List.nil();
duke@1 3694 accessed = new ListBuffer<Symbol>();
duke@1 3695 translate(cdef, (JCExpression)null);
duke@1 3696 for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
duke@1 3697 makeAccessible(l.head);
duke@1 3698 for (EnumMapping map : enumSwitchMap.values())
duke@1 3699 map.translate();
mcimadamore@359 3700 checkConflicts(this.translated.toList());
jjg@595 3701 checkAccessConstructorTags();
duke@1 3702 translated = this.translated;
duke@1 3703 } finally {
duke@1 3704 // note that recursive invocations of this method fail hard
duke@1 3705 attrEnv = null;
duke@1 3706 this.make = null;
ksrini@1138 3707 endPosTable = null;
duke@1 3708 currentClass = null;
duke@1 3709 currentMethodDef = null;
duke@1 3710 outermostClassDef = null;
duke@1 3711 outermostMemberDef = null;
duke@1 3712 this.translated = null;
duke@1 3713 classdefs = null;
duke@1 3714 actualSymbols = null;
duke@1 3715 freevarCache = null;
duke@1 3716 proxies = null;
duke@1 3717 outerThisStack = null;
duke@1 3718 accessNums = null;
duke@1 3719 accessSyms = null;
duke@1 3720 accessConstrs = null;
jjg@595 3721 accessConstrTags = null;
duke@1 3722 accessed = null;
duke@1 3723 enumSwitchMap.clear();
duke@1 3724 }
duke@1 3725 return translated.toList();
duke@1 3726 }
duke@1 3727
duke@1 3728 //////////////////////////////////////////////////////////////
duke@1 3729 // The following contributed by Borland for bootstrapping purposes
duke@1 3730 //////////////////////////////////////////////////////////////
duke@1 3731 private void addEnumCompatibleMembers(JCClassDecl cdef) {
duke@1 3732 make_at(null);
duke@1 3733
duke@1 3734 // Add the special enum fields
duke@1 3735 VarSymbol ordinalFieldSym = addEnumOrdinalField(cdef);
duke@1 3736 VarSymbol nameFieldSym = addEnumNameField(cdef);
duke@1 3737
duke@1 3738 // Add the accessor methods for name and ordinal
duke@1 3739 MethodSymbol ordinalMethodSym = addEnumFieldOrdinalMethod(cdef, ordinalFieldSym);
duke@1 3740 MethodSymbol nameMethodSym = addEnumFieldNameMethod(cdef, nameFieldSym);
duke@1 3741
duke@1 3742 // Add the toString method
duke@1 3743 addEnumToString(cdef, nameFieldSym);
duke@1 3744
duke@1 3745 // Add the compareTo method
duke@1 3746 addEnumCompareTo(cdef, ordinalFieldSym);
duke@1 3747 }
duke@1 3748
duke@1 3749 private VarSymbol addEnumOrdinalField(JCClassDecl cdef) {
duke@1 3750 VarSymbol ordinal = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
duke@1 3751 names.fromString("$ordinal"),
duke@1 3752 syms.intType,
duke@1 3753 cdef.sym);
duke@1 3754 cdef.sym.members().enter(ordinal);
duke@1 3755 cdef.defs = cdef.defs.prepend(make.VarDef(ordinal, null));
duke@1 3756 return ordinal;
duke@1 3757 }
duke@1 3758
duke@1 3759 private VarSymbol addEnumNameField(JCClassDecl cdef) {
duke@1 3760 VarSymbol name = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
duke@1 3761 names.fromString("$name"),
duke@1 3762 syms.stringType,
duke@1 3763 cdef.sym);
duke@1 3764 cdef.sym.members().enter(name);
duke@1 3765 cdef.defs = cdef.defs.prepend(make.VarDef(name, null));
duke@1 3766 return name;
duke@1 3767 }
duke@1 3768
duke@1 3769 private MethodSymbol addEnumFieldOrdinalMethod(JCClassDecl cdef, VarSymbol ordinalSymbol) {
duke@1 3770 // Add the accessor methods for ordinal
duke@1 3771 Symbol ordinalSym = lookupMethod(cdef.pos(),
duke@1 3772 names.ordinal,
duke@1 3773 cdef.type,
duke@1 3774 List.<Type>nil());
duke@1 3775
jjg@816 3776 Assert.check(ordinalSym instanceof MethodSymbol);
duke@1 3777
duke@1 3778 JCStatement ret = make.Return(make.Ident(ordinalSymbol));
duke@1 3779 cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)ordinalSym,
duke@1 3780 make.Block(0L, List.of(ret))));
duke@1 3781
duke@1 3782 return (MethodSymbol)ordinalSym;
duke@1 3783 }
duke@1 3784
duke@1 3785 private MethodSymbol addEnumFieldNameMethod(JCClassDecl cdef, VarSymbol nameSymbol) {
duke@1 3786 // Add the accessor methods for name
duke@1 3787 Symbol nameSym = lookupMethod(cdef.pos(),
duke@1 3788 names._name,
duke@1 3789 cdef.type,
duke@1 3790 List.<Type>nil());
duke@1 3791
jjg@816 3792 Assert.check(nameSym instanceof MethodSymbol);
duke@1 3793
duke@1 3794 JCStatement ret = make.Return(make.Ident(nameSymbol));
duke@1 3795
duke@1 3796 cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)nameSym,
duke@1 3797 make.Block(0L, List.of(ret))));
duke@1 3798
duke@1 3799 return (MethodSymbol)nameSym;
duke@1 3800 }
duke@1 3801
duke@1 3802 private MethodSymbol addEnumToString(JCClassDecl cdef,
duke@1 3803 VarSymbol nameSymbol) {
duke@1 3804 Symbol toStringSym = lookupMethod(cdef.pos(),
duke@1 3805 names.toString,
duke@1 3806 cdef.type,
duke@1 3807 List.<Type>nil());
duke@1 3808
duke@1 3809 JCTree toStringDecl = null;
duke@1 3810 if (toStringSym != null)
duke@1 3811 toStringDecl = TreeInfo.declarationFor(toStringSym, cdef);
duke@1 3812
duke@1 3813 if (toStringDecl != null)
duke@1 3814 return (MethodSymbol)toStringSym;
duke@1 3815
duke@1 3816 JCStatement ret = make.Return(make.Ident(nameSymbol));
duke@1 3817
duke@1 3818 JCTree resTypeTree = make.Type(syms.stringType);
duke@1 3819
duke@1 3820 MethodType toStringType = new MethodType(List.<Type>nil(),
duke@1 3821 syms.stringType,
duke@1 3822 List.<Type>nil(),
duke@1 3823 cdef.sym);
duke@1 3824 toStringSym = new MethodSymbol(PUBLIC,
duke@1 3825 names.toString,
duke@1 3826 toStringType,
duke@1 3827 cdef.type.tsym);
duke@1 3828 toStringDecl = make.MethodDef((MethodSymbol)toStringSym,
duke@1 3829 make.Block(0L, List.of(ret)));
duke@1 3830
duke@1 3831 cdef.defs = cdef.defs.prepend(toStringDecl);
duke@1 3832 cdef.sym.members().enter(toStringSym);
duke@1 3833
duke@1 3834 return (MethodSymbol)toStringSym;
duke@1 3835 }
duke@1 3836
duke@1 3837 private MethodSymbol addEnumCompareTo(JCClassDecl cdef, VarSymbol ordinalSymbol) {
duke@1 3838 Symbol compareToSym = lookupMethod(cdef.pos(),
duke@1 3839 names.compareTo,
duke@1 3840 cdef.type,
duke@1 3841 List.of(cdef.sym.type));
duke@1 3842
jjg@816 3843 Assert.check(compareToSym instanceof MethodSymbol);
duke@1 3844
duke@1 3845 JCMethodDecl compareToDecl = (JCMethodDecl) TreeInfo.declarationFor(compareToSym, cdef);
duke@1 3846
duke@1 3847 ListBuffer<JCStatement> blockStatements = new ListBuffer<JCStatement>();
duke@1 3848
duke@1 3849 JCModifiers mod1 = make.Modifiers(0L);
jjg@113 3850 Name oName = names.fromString("o");
duke@1 3851 JCVariableDecl par1 = make.Param(oName, cdef.type, compareToSym);
duke@1 3852
duke@1 3853 JCIdent paramId1 = make.Ident(names.java_lang_Object);
duke@1 3854 paramId1.type = cdef.type;
duke@1 3855 paramId1.sym = par1.sym;
duke@1 3856
duke@1 3857 ((MethodSymbol)compareToSym).params = List.of(par1.sym);
duke@1 3858
duke@1 3859 JCIdent par1UsageId = make.Ident(par1.sym);
duke@1 3860 JCIdent castTargetIdent = make.Ident(cdef.sym);
duke@1 3861 JCTypeCast cast = make.TypeCast(castTargetIdent, par1UsageId);
duke@1 3862 cast.setType(castTargetIdent.type);
duke@1 3863
jjg@113 3864 Name otherName = names.fromString("other");
duke@1 3865
duke@1 3866 VarSymbol otherVarSym = new VarSymbol(mod1.flags,
duke@1 3867 otherName,
duke@1 3868 cdef.type,
duke@1 3869 compareToSym);
duke@1 3870 JCVariableDecl otherVar = make.VarDef(otherVarSym, cast);
duke@1 3871 blockStatements.append(otherVar);
duke@1 3872
duke@1 3873 JCIdent id1 = make.Ident(ordinalSymbol);
duke@1 3874
duke@1 3875 JCIdent fLocUsageId = make.Ident(otherVarSym);
duke@1 3876 JCExpression sel = make.Select(fLocUsageId, ordinalSymbol);
jjg@1127 3877 JCBinary bin = makeBinary(MINUS, id1, sel);
duke@1 3878 JCReturn ret = make.Return(bin);
duke@1 3879 blockStatements.append(ret);
duke@1 3880 JCMethodDecl compareToMethod = make.MethodDef((MethodSymbol)compareToSym,
duke@1 3881 make.Block(0L,
duke@1 3882 blockStatements.toList()));
duke@1 3883 compareToMethod.params = List.of(par1);
duke@1 3884 cdef.defs = cdef.defs.append(compareToMethod);
duke@1 3885
duke@1 3886 return (MethodSymbol)compareToSym;
duke@1 3887 }
duke@1 3888 //////////////////////////////////////////////////////////////
duke@1 3889 // The above contributed by Borland for bootstrapping purposes
duke@1 3890 //////////////////////////////////////////////////////////////
duke@1 3891 }

mercurial