src/share/classes/com/sun/tools/javac/comp/Lower.java

Mon, 07 Feb 2011 18:10:13 +0000

author
mcimadamore
date
Mon, 07 Feb 2011 18:10:13 +0000
changeset 858
96d4226bdd60
parent 816
7c537f4298fb
child 884
75e25df50873
permissions
-rw-r--r--

7007615: java_util/generics/phase2/NameClashTest02 fails since jdk7/pit/b123.
Summary: override clash algorithm is not implemented correctly
Reviewed-by: jjg

duke@1 1 /*
jjg@815 2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29
duke@1 30 import com.sun.tools.javac.code.*;
duke@1 31 import com.sun.tools.javac.jvm.*;
jjg@657 32 import com.sun.tools.javac.main.RecognizedOptions.PkgInfo;
duke@1 33 import com.sun.tools.javac.tree.*;
duke@1 34 import com.sun.tools.javac.util.*;
duke@1 35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 36 import com.sun.tools.javac.util.List;
duke@1 37
duke@1 38 import com.sun.tools.javac.code.Symbol.*;
duke@1 39 import com.sun.tools.javac.tree.JCTree.*;
duke@1 40 import com.sun.tools.javac.code.Type.*;
duke@1 41
duke@1 42 import com.sun.tools.javac.jvm.Target;
duke@1 43
duke@1 44 import static com.sun.tools.javac.code.Flags.*;
duke@1 45 import static com.sun.tools.javac.code.Kinds.*;
duke@1 46 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 47 import static com.sun.tools.javac.jvm.ByteCodes.*;
duke@1 48
duke@1 49 /** This pass translates away some syntactic sugar: inner classes,
duke@1 50 * class literals, assertions, foreach loops, etc.
duke@1 51 *
jjg@581 52 * <p><b>This is NOT part of any supported API.
jjg@581 53 * If you write code that depends on this, you do so at your own risk.
duke@1 54 * This code and its internal interfaces are subject to change or
duke@1 55 * deletion without notice.</b>
duke@1 56 */
duke@1 57 public class Lower extends TreeTranslator {
duke@1 58 protected static final Context.Key<Lower> lowerKey =
duke@1 59 new Context.Key<Lower>();
duke@1 60
duke@1 61 public static Lower instance(Context context) {
duke@1 62 Lower instance = context.get(lowerKey);
duke@1 63 if (instance == null)
duke@1 64 instance = new Lower(context);
duke@1 65 return instance;
duke@1 66 }
duke@1 67
jjg@113 68 private Names names;
duke@1 69 private Log log;
duke@1 70 private Symtab syms;
duke@1 71 private Resolve rs;
duke@1 72 private Check chk;
duke@1 73 private Attr attr;
duke@1 74 private TreeMaker make;
duke@1 75 private DiagnosticPosition make_pos;
duke@1 76 private ClassWriter writer;
duke@1 77 private ClassReader reader;
duke@1 78 private ConstFold cfolder;
duke@1 79 private Target target;
duke@1 80 private Source source;
duke@1 81 private boolean allowEnums;
duke@1 82 private final Name dollarAssertionsDisabled;
duke@1 83 private final Name classDollar;
duke@1 84 private Types types;
duke@1 85 private boolean debugLower;
jjg@657 86 private PkgInfo pkginfoOpt;
duke@1 87
duke@1 88 protected Lower(Context context) {
duke@1 89 context.put(lowerKey, this);
jjg@113 90 names = Names.instance(context);
duke@1 91 log = Log.instance(context);
duke@1 92 syms = Symtab.instance(context);
duke@1 93 rs = Resolve.instance(context);
duke@1 94 chk = Check.instance(context);
duke@1 95 attr = Attr.instance(context);
duke@1 96 make = TreeMaker.instance(context);
duke@1 97 writer = ClassWriter.instance(context);
duke@1 98 reader = ClassReader.instance(context);
duke@1 99 cfolder = ConstFold.instance(context);
duke@1 100 target = Target.instance(context);
duke@1 101 source = Source.instance(context);
duke@1 102 allowEnums = source.allowEnums();
duke@1 103 dollarAssertionsDisabled = names.
duke@1 104 fromString(target.syntheticNameChar() + "assertionsDisabled");
duke@1 105 classDollar = names.
duke@1 106 fromString("class" + target.syntheticNameChar());
duke@1 107
duke@1 108 types = Types.instance(context);
duke@1 109 Options options = Options.instance(context);
jjg@700 110 debugLower = options.isSet("debuglower");
jjg@657 111 pkginfoOpt = PkgInfo.get(options);
duke@1 112 }
duke@1 113
duke@1 114 /** The currently enclosing class.
duke@1 115 */
duke@1 116 ClassSymbol currentClass;
duke@1 117
duke@1 118 /** A queue of all translated classes.
duke@1 119 */
duke@1 120 ListBuffer<JCTree> translated;
duke@1 121
duke@1 122 /** Environment for symbol lookup, set by translateTopLevelClass.
duke@1 123 */
duke@1 124 Env<AttrContext> attrEnv;
duke@1 125
duke@1 126 /** A hash table mapping syntax trees to their ending source positions.
duke@1 127 */
duke@1 128 Map<JCTree, Integer> endPositions;
duke@1 129
duke@1 130 /**************************************************************************
duke@1 131 * Global mappings
duke@1 132 *************************************************************************/
duke@1 133
duke@1 134 /** A hash table mapping local classes to their definitions.
duke@1 135 */
duke@1 136 Map<ClassSymbol, JCClassDecl> classdefs;
duke@1 137
duke@1 138 /** A hash table mapping virtual accessed symbols in outer subclasses
duke@1 139 * to the actually referred symbol in superclasses.
duke@1 140 */
duke@1 141 Map<Symbol,Symbol> actualSymbols;
duke@1 142
duke@1 143 /** The current method definition.
duke@1 144 */
duke@1 145 JCMethodDecl currentMethodDef;
duke@1 146
duke@1 147 /** The current method symbol.
duke@1 148 */
duke@1 149 MethodSymbol currentMethodSym;
duke@1 150
duke@1 151 /** The currently enclosing outermost class definition.
duke@1 152 */
duke@1 153 JCClassDecl outermostClassDef;
duke@1 154
duke@1 155 /** The currently enclosing outermost member definition.
duke@1 156 */
duke@1 157 JCTree outermostMemberDef;
duke@1 158
duke@1 159 /** A navigator class for assembling a mapping from local class symbols
duke@1 160 * to class definition trees.
duke@1 161 * There is only one case; all other cases simply traverse down the tree.
duke@1 162 */
duke@1 163 class ClassMap extends TreeScanner {
duke@1 164
duke@1 165 /** All encountered class defs are entered into classdefs table.
duke@1 166 */
duke@1 167 public void visitClassDef(JCClassDecl tree) {
duke@1 168 classdefs.put(tree.sym, tree);
duke@1 169 super.visitClassDef(tree);
duke@1 170 }
duke@1 171 }
duke@1 172 ClassMap classMap = new ClassMap();
duke@1 173
duke@1 174 /** Map a class symbol to its definition.
duke@1 175 * @param c The class symbol of which we want to determine the definition.
duke@1 176 */
duke@1 177 JCClassDecl classDef(ClassSymbol c) {
duke@1 178 // First lookup the class in the classdefs table.
duke@1 179 JCClassDecl def = classdefs.get(c);
duke@1 180 if (def == null && outermostMemberDef != null) {
duke@1 181 // If this fails, traverse outermost member definition, entering all
duke@1 182 // local classes into classdefs, and try again.
duke@1 183 classMap.scan(outermostMemberDef);
duke@1 184 def = classdefs.get(c);
duke@1 185 }
duke@1 186 if (def == null) {
duke@1 187 // If this fails, traverse outermost class definition, entering all
duke@1 188 // local classes into classdefs, and try again.
duke@1 189 classMap.scan(outermostClassDef);
duke@1 190 def = classdefs.get(c);
duke@1 191 }
duke@1 192 return def;
duke@1 193 }
duke@1 194
duke@1 195 /** A hash table mapping class symbols to lists of free variables.
duke@1 196 * accessed by them. Only free variables of the method immediately containing
duke@1 197 * a class are associated with that class.
duke@1 198 */
duke@1 199 Map<ClassSymbol,List<VarSymbol>> freevarCache;
duke@1 200
duke@1 201 /** A navigator class for collecting the free variables accessed
duke@1 202 * from a local class.
duke@1 203 * There is only one case; all other cases simply traverse down the tree.
duke@1 204 */
duke@1 205 class FreeVarCollector extends TreeScanner {
duke@1 206
duke@1 207 /** The owner of the local class.
duke@1 208 */
duke@1 209 Symbol owner;
duke@1 210
duke@1 211 /** The local class.
duke@1 212 */
duke@1 213 ClassSymbol clazz;
duke@1 214
duke@1 215 /** The list of owner's variables accessed from within the local class,
duke@1 216 * without any duplicates.
duke@1 217 */
duke@1 218 List<VarSymbol> fvs;
duke@1 219
duke@1 220 FreeVarCollector(ClassSymbol clazz) {
duke@1 221 this.clazz = clazz;
duke@1 222 this.owner = clazz.owner;
duke@1 223 this.fvs = List.nil();
duke@1 224 }
duke@1 225
duke@1 226 /** Add free variable to fvs list unless it is already there.
duke@1 227 */
duke@1 228 private void addFreeVar(VarSymbol v) {
duke@1 229 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
duke@1 230 if (l.head == v) return;
duke@1 231 fvs = fvs.prepend(v);
duke@1 232 }
duke@1 233
duke@1 234 /** Add all free variables of class c to fvs list
duke@1 235 * unless they are already there.
duke@1 236 */
duke@1 237 private void addFreeVars(ClassSymbol c) {
duke@1 238 List<VarSymbol> fvs = freevarCache.get(c);
duke@1 239 if (fvs != null) {
duke@1 240 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
duke@1 241 addFreeVar(l.head);
duke@1 242 }
duke@1 243 }
duke@1 244 }
duke@1 245
duke@1 246 /** If tree refers to a variable in owner of local class, add it to
duke@1 247 * free variables list.
duke@1 248 */
duke@1 249 public void visitIdent(JCIdent tree) {
duke@1 250 result = tree;
duke@1 251 visitSymbol(tree.sym);
duke@1 252 }
duke@1 253 // where
duke@1 254 private void visitSymbol(Symbol _sym) {
duke@1 255 Symbol sym = _sym;
duke@1 256 if (sym.kind == VAR || sym.kind == MTH) {
duke@1 257 while (sym != null && sym.owner != owner)
duke@1 258 sym = proxies.lookup(proxyName(sym.name)).sym;
duke@1 259 if (sym != null && sym.owner == owner) {
duke@1 260 VarSymbol v = (VarSymbol)sym;
duke@1 261 if (v.getConstValue() == null) {
duke@1 262 addFreeVar(v);
duke@1 263 }
duke@1 264 } else {
duke@1 265 if (outerThisStack.head != null &&
duke@1 266 outerThisStack.head != _sym)
duke@1 267 visitSymbol(outerThisStack.head);
duke@1 268 }
duke@1 269 }
duke@1 270 }
duke@1 271
duke@1 272 /** If tree refers to a class instance creation expression
duke@1 273 * add all free variables of the freshly created class.
duke@1 274 */
duke@1 275 public void visitNewClass(JCNewClass tree) {
duke@1 276 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
duke@1 277 addFreeVars(c);
duke@1 278 if (tree.encl == null &&
duke@1 279 c.hasOuterInstance() &&
duke@1 280 outerThisStack.head != null)
duke@1 281 visitSymbol(outerThisStack.head);
duke@1 282 super.visitNewClass(tree);
duke@1 283 }
duke@1 284
duke@1 285 /** If tree refers to a qualified this or super expression
duke@1 286 * for anything but the current class, add the outer this
duke@1 287 * stack as a free variable.
duke@1 288 */
duke@1 289 public void visitSelect(JCFieldAccess tree) {
duke@1 290 if ((tree.name == names._this || tree.name == names._super) &&
duke@1 291 tree.selected.type.tsym != clazz &&
duke@1 292 outerThisStack.head != null)
duke@1 293 visitSymbol(outerThisStack.head);
duke@1 294 super.visitSelect(tree);
duke@1 295 }
duke@1 296
duke@1 297 /** If tree refers to a superclass constructor call,
duke@1 298 * add all free variables of the superclass.
duke@1 299 */
duke@1 300 public void visitApply(JCMethodInvocation tree) {
duke@1 301 if (TreeInfo.name(tree.meth) == names._super) {
duke@1 302 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
duke@1 303 Symbol constructor = TreeInfo.symbol(tree.meth);
duke@1 304 ClassSymbol c = (ClassSymbol)constructor.owner;
duke@1 305 if (c.hasOuterInstance() &&
duke@1 306 tree.meth.getTag() != JCTree.SELECT &&
duke@1 307 outerThisStack.head != null)
duke@1 308 visitSymbol(outerThisStack.head);
duke@1 309 }
duke@1 310 super.visitApply(tree);
duke@1 311 }
duke@1 312 }
duke@1 313
duke@1 314 /** Return the variables accessed from within a local class, which
duke@1 315 * are declared in the local class' owner.
duke@1 316 * (in reverse order of first access).
duke@1 317 */
duke@1 318 List<VarSymbol> freevars(ClassSymbol c) {
duke@1 319 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 320 List<VarSymbol> fvs = freevarCache.get(c);
duke@1 321 if (fvs == null) {
duke@1 322 FreeVarCollector collector = new FreeVarCollector(c);
duke@1 323 collector.scan(classDef(c));
duke@1 324 fvs = collector.fvs;
duke@1 325 freevarCache.put(c, fvs);
duke@1 326 }
duke@1 327 return fvs;
duke@1 328 } else {
duke@1 329 return List.nil();
duke@1 330 }
duke@1 331 }
duke@1 332
duke@1 333 Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
duke@1 334
duke@1 335 EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
duke@1 336 EnumMapping map = enumSwitchMap.get(enumClass);
duke@1 337 if (map == null)
duke@1 338 enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
duke@1 339 return map;
duke@1 340 }
duke@1 341
duke@1 342 /** This map gives a translation table to be used for enum
duke@1 343 * switches.
duke@1 344 *
duke@1 345 * <p>For each enum that appears as the type of a switch
duke@1 346 * expression, we maintain an EnumMapping to assist in the
duke@1 347 * translation, as exemplified by the following example:
duke@1 348 *
duke@1 349 * <p>we translate
duke@1 350 * <pre>
duke@1 351 * switch(colorExpression) {
duke@1 352 * case red: stmt1;
duke@1 353 * case green: stmt2;
duke@1 354 * }
duke@1 355 * </pre>
duke@1 356 * into
duke@1 357 * <pre>
duke@1 358 * switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
duke@1 359 * case 1: stmt1;
duke@1 360 * case 2: stmt2
duke@1 361 * }
duke@1 362 * </pre>
darcy@430 363 * with the auxiliary table initialized as follows:
duke@1 364 * <pre>
duke@1 365 * class Outer$0 {
duke@1 366 * synthetic final int[] $EnumMap$Color = new int[Color.values().length];
duke@1 367 * static {
duke@1 368 * try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
duke@1 369 * try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
duke@1 370 * }
duke@1 371 * }
duke@1 372 * </pre>
duke@1 373 * class EnumMapping provides mapping data and support methods for this translation.
duke@1 374 */
duke@1 375 class EnumMapping {
duke@1 376 EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
duke@1 377 this.forEnum = forEnum;
duke@1 378 this.values = new LinkedHashMap<VarSymbol,Integer>();
duke@1 379 this.pos = pos;
duke@1 380 Name varName = names
duke@1 381 .fromString(target.syntheticNameChar() +
duke@1 382 "SwitchMap" +
duke@1 383 target.syntheticNameChar() +
duke@1 384 writer.xClassName(forEnum.type).toString()
duke@1 385 .replace('/', '.')
duke@1 386 .replace('.', target.syntheticNameChar()));
duke@1 387 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 388 this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
duke@1 389 varName,
duke@1 390 new ArrayType(syms.intType, syms.arrayClass),
duke@1 391 outerCacheClass);
duke@1 392 enterSynthetic(pos, mapVar, outerCacheClass.members());
duke@1 393 }
duke@1 394
duke@1 395 DiagnosticPosition pos = null;
duke@1 396
duke@1 397 // the next value to use
duke@1 398 int next = 1; // 0 (unused map elements) go to the default label
duke@1 399
duke@1 400 // the enum for which this is a map
duke@1 401 final TypeSymbol forEnum;
duke@1 402
duke@1 403 // the field containing the map
duke@1 404 final VarSymbol mapVar;
duke@1 405
duke@1 406 // the mapped values
duke@1 407 final Map<VarSymbol,Integer> values;
duke@1 408
duke@1 409 JCLiteral forConstant(VarSymbol v) {
duke@1 410 Integer result = values.get(v);
duke@1 411 if (result == null)
duke@1 412 values.put(v, result = next++);
duke@1 413 return make.Literal(result);
duke@1 414 }
duke@1 415
duke@1 416 // generate the field initializer for the map
duke@1 417 void translate() {
duke@1 418 make.at(pos.getStartPosition());
duke@1 419 JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
duke@1 420
duke@1 421 // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
duke@1 422 MethodSymbol valuesMethod = lookupMethod(pos,
duke@1 423 names.values,
duke@1 424 forEnum.type,
duke@1 425 List.<Type>nil());
duke@1 426 JCExpression size = make // Color.values().length
duke@1 427 .Select(make.App(make.QualIdent(valuesMethod)),
duke@1 428 syms.lengthVar);
duke@1 429 JCExpression mapVarInit = make
duke@1 430 .NewArray(make.Type(syms.intType), List.of(size), null)
duke@1 431 .setType(new ArrayType(syms.intType, syms.arrayClass));
duke@1 432
duke@1 433 // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
duke@1 434 ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
duke@1 435 Symbol ordinalMethod = lookupMethod(pos,
duke@1 436 names.ordinal,
duke@1 437 forEnum.type,
duke@1 438 List.<Type>nil());
duke@1 439 List<JCCatch> catcher = List.<JCCatch>nil()
duke@1 440 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
duke@1 441 syms.noSuchFieldErrorType,
duke@1 442 syms.noSymbol),
duke@1 443 null),
duke@1 444 make.Block(0, List.<JCStatement>nil())));
duke@1 445 for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
duke@1 446 VarSymbol enumerator = e.getKey();
duke@1 447 Integer mappedValue = e.getValue();
duke@1 448 JCExpression assign = make
duke@1 449 .Assign(make.Indexed(mapVar,
duke@1 450 make.App(make.Select(make.QualIdent(enumerator),
duke@1 451 ordinalMethod))),
duke@1 452 make.Literal(mappedValue))
duke@1 453 .setType(syms.intType);
duke@1 454 JCStatement exec = make.Exec(assign);
duke@1 455 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
duke@1 456 stmts.append(_try);
duke@1 457 }
duke@1 458
duke@1 459 owner.defs = owner.defs
duke@1 460 .prepend(make.Block(STATIC, stmts.toList()))
duke@1 461 .prepend(make.VarDef(mapVar, mapVarInit));
duke@1 462 }
duke@1 463 }
duke@1 464
duke@1 465
duke@1 466 /**************************************************************************
duke@1 467 * Tree building blocks
duke@1 468 *************************************************************************/
duke@1 469
duke@1 470 /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
duke@1 471 * pos as make_pos, for use in diagnostics.
duke@1 472 **/
duke@1 473 TreeMaker make_at(DiagnosticPosition pos) {
duke@1 474 make_pos = pos;
duke@1 475 return make.at(pos);
duke@1 476 }
duke@1 477
duke@1 478 /** Make an attributed tree representing a literal. This will be an
duke@1 479 * Ident node in the case of boolean literals, a Literal node in all
duke@1 480 * other cases.
duke@1 481 * @param type The literal's type.
duke@1 482 * @param value The literal's value.
duke@1 483 */
duke@1 484 JCExpression makeLit(Type type, Object value) {
duke@1 485 return make.Literal(type.tag, value).setType(type.constType(value));
duke@1 486 }
duke@1 487
duke@1 488 /** Make an attributed tree representing null.
duke@1 489 */
duke@1 490 JCExpression makeNull() {
duke@1 491 return makeLit(syms.botType, null);
duke@1 492 }
duke@1 493
duke@1 494 /** Make an attributed class instance creation expression.
duke@1 495 * @param ctype The class type.
duke@1 496 * @param args The constructor arguments.
duke@1 497 */
duke@1 498 JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
duke@1 499 JCNewClass tree = make.NewClass(null,
duke@1 500 null, make.QualIdent(ctype.tsym), args, null);
duke@1 501 tree.constructor = rs.resolveConstructor(
duke@1 502 make_pos, attrEnv, ctype, TreeInfo.types(args), null, false, false);
duke@1 503 tree.type = ctype;
duke@1 504 return tree;
duke@1 505 }
duke@1 506
duke@1 507 /** Make an attributed unary expression.
duke@1 508 * @param optag The operators tree tag.
duke@1 509 * @param arg The operator's argument.
duke@1 510 */
duke@1 511 JCUnary makeUnary(int optag, JCExpression arg) {
duke@1 512 JCUnary tree = make.Unary(optag, arg);
duke@1 513 tree.operator = rs.resolveUnaryOperator(
duke@1 514 make_pos, optag, attrEnv, arg.type);
duke@1 515 tree.type = tree.operator.type.getReturnType();
duke@1 516 return tree;
duke@1 517 }
duke@1 518
duke@1 519 /** Make an attributed binary expression.
duke@1 520 * @param optag The operators tree tag.
duke@1 521 * @param lhs The operator's left argument.
duke@1 522 * @param rhs The operator's right argument.
duke@1 523 */
duke@1 524 JCBinary makeBinary(int optag, JCExpression lhs, JCExpression rhs) {
duke@1 525 JCBinary tree = make.Binary(optag, lhs, rhs);
duke@1 526 tree.operator = rs.resolveBinaryOperator(
duke@1 527 make_pos, optag, attrEnv, lhs.type, rhs.type);
duke@1 528 tree.type = tree.operator.type.getReturnType();
duke@1 529 return tree;
duke@1 530 }
duke@1 531
duke@1 532 /** Make an attributed assignop expression.
duke@1 533 * @param optag The operators tree tag.
duke@1 534 * @param lhs The operator's left argument.
duke@1 535 * @param rhs The operator's right argument.
duke@1 536 */
duke@1 537 JCAssignOp makeAssignop(int optag, JCTree lhs, JCTree rhs) {
duke@1 538 JCAssignOp tree = make.Assignop(optag, lhs, rhs);
duke@1 539 tree.operator = rs.resolveBinaryOperator(
duke@1 540 make_pos, tree.getTag() - JCTree.ASGOffset, attrEnv, lhs.type, rhs.type);
duke@1 541 tree.type = lhs.type;
duke@1 542 return tree;
duke@1 543 }
duke@1 544
duke@1 545 /** Convert tree into string object, unless it has already a
duke@1 546 * reference type..
duke@1 547 */
duke@1 548 JCExpression makeString(JCExpression tree) {
duke@1 549 if (tree.type.tag >= CLASS) {
duke@1 550 return tree;
duke@1 551 } else {
duke@1 552 Symbol valueOfSym = lookupMethod(tree.pos(),
duke@1 553 names.valueOf,
duke@1 554 syms.stringType,
duke@1 555 List.of(tree.type));
duke@1 556 return make.App(make.QualIdent(valueOfSym), List.of(tree));
duke@1 557 }
duke@1 558 }
duke@1 559
duke@1 560 /** Create an empty anonymous class definition and enter and complete
duke@1 561 * its symbol. Return the class definition's symbol.
duke@1 562 * and create
duke@1 563 * @param flags The class symbol's flags
duke@1 564 * @param owner The class symbol's owner
duke@1 565 */
duke@1 566 ClassSymbol makeEmptyClass(long flags, ClassSymbol owner) {
duke@1 567 // Create class symbol.
duke@1 568 ClassSymbol c = reader.defineClass(names.empty, owner);
duke@1 569 c.flatname = chk.localClassName(c);
duke@1 570 c.sourcefile = owner.sourcefile;
duke@1 571 c.completer = null;
mcimadamore@858 572 c.members_field = new Scope(c);
duke@1 573 c.flags_field = flags;
duke@1 574 ClassType ctype = (ClassType) c.type;
duke@1 575 ctype.supertype_field = syms.objectType;
duke@1 576 ctype.interfaces_field = List.nil();
duke@1 577
duke@1 578 JCClassDecl odef = classDef(owner);
duke@1 579
duke@1 580 // Enter class symbol in owner scope and compiled table.
duke@1 581 enterSynthetic(odef.pos(), c, owner.members());
duke@1 582 chk.compiled.put(c.flatname, c);
duke@1 583
duke@1 584 // Create class definition tree.
duke@1 585 JCClassDecl cdef = make.ClassDef(
duke@1 586 make.Modifiers(flags), names.empty,
duke@1 587 List.<JCTypeParameter>nil(),
duke@1 588 null, List.<JCExpression>nil(), List.<JCTree>nil());
duke@1 589 cdef.sym = c;
duke@1 590 cdef.type = c.type;
duke@1 591
duke@1 592 // Append class definition tree to owner's definitions.
duke@1 593 odef.defs = odef.defs.prepend(cdef);
duke@1 594
duke@1 595 return c;
duke@1 596 }
duke@1 597
duke@1 598 /**************************************************************************
duke@1 599 * Symbol manipulation utilities
duke@1 600 *************************************************************************/
duke@1 601
duke@1 602 /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
duke@1 603 * @param pos Position for error reporting.
duke@1 604 * @param sym The symbol.
duke@1 605 * @param s The scope.
duke@1 606 */
duke@1 607 private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
mcimadamore@359 608 s.enter(sym);
mcimadamore@359 609 }
mcimadamore@359 610
darcy@609 611 /** Create a fresh synthetic name within a given scope - the unique name is
darcy@609 612 * obtained by appending '$' chars at the end of the name until no match
darcy@609 613 * is found.
darcy@609 614 *
darcy@609 615 * @param name base name
darcy@609 616 * @param s scope in which the name has to be unique
darcy@609 617 * @return fresh synthetic name
darcy@609 618 */
darcy@609 619 private Name makeSyntheticName(Name name, Scope s) {
darcy@609 620 do {
darcy@609 621 name = name.append(
darcy@609 622 target.syntheticNameChar(),
darcy@609 623 names.empty);
darcy@609 624 } while (lookupSynthetic(name, s) != null);
darcy@609 625 return name;
darcy@609 626 }
darcy@609 627
mcimadamore@359 628 /** Check whether synthetic symbols generated during lowering conflict
mcimadamore@359 629 * with user-defined symbols.
mcimadamore@359 630 *
mcimadamore@359 631 * @param translatedTrees lowered class trees
mcimadamore@359 632 */
mcimadamore@359 633 void checkConflicts(List<JCTree> translatedTrees) {
mcimadamore@359 634 for (JCTree t : translatedTrees) {
mcimadamore@359 635 t.accept(conflictsChecker);
mcimadamore@359 636 }
mcimadamore@359 637 }
mcimadamore@359 638
mcimadamore@359 639 JCTree.Visitor conflictsChecker = new TreeScanner() {
mcimadamore@359 640
mcimadamore@359 641 TypeSymbol currentClass;
mcimadamore@359 642
mcimadamore@359 643 @Override
mcimadamore@359 644 public void visitMethodDef(JCMethodDecl that) {
mcimadamore@359 645 chk.checkConflicts(that.pos(), that.sym, currentClass);
mcimadamore@359 646 super.visitMethodDef(that);
mcimadamore@359 647 }
mcimadamore@359 648
mcimadamore@359 649 @Override
mcimadamore@359 650 public void visitVarDef(JCVariableDecl that) {
mcimadamore@359 651 if (that.sym.owner.kind == TYP) {
mcimadamore@359 652 chk.checkConflicts(that.pos(), that.sym, currentClass);
mcimadamore@359 653 }
mcimadamore@359 654 super.visitVarDef(that);
mcimadamore@359 655 }
mcimadamore@359 656
mcimadamore@359 657 @Override
mcimadamore@359 658 public void visitClassDef(JCClassDecl that) {
mcimadamore@359 659 TypeSymbol prevCurrentClass = currentClass;
mcimadamore@359 660 currentClass = that.sym;
mcimadamore@359 661 try {
mcimadamore@359 662 super.visitClassDef(that);
mcimadamore@359 663 }
mcimadamore@359 664 finally {
mcimadamore@359 665 currentClass = prevCurrentClass;
duke@1 666 }
duke@1 667 }
mcimadamore@359 668 };
duke@1 669
duke@1 670 /** Look up a synthetic name in a given scope.
duke@1 671 * @param scope The scope.
duke@1 672 * @param name The name.
duke@1 673 */
duke@1 674 private Symbol lookupSynthetic(Name name, Scope s) {
duke@1 675 Symbol sym = s.lookup(name).sym;
duke@1 676 return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
duke@1 677 }
duke@1 678
duke@1 679 /** Look up a method in a given scope.
duke@1 680 */
duke@1 681 private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
duke@1 682 return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, null);
duke@1 683 }
duke@1 684
duke@1 685 /** Look up a constructor.
duke@1 686 */
duke@1 687 private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
duke@1 688 return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
duke@1 689 }
duke@1 690
duke@1 691 /** Look up a field.
duke@1 692 */
duke@1 693 private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
duke@1 694 return rs.resolveInternalField(pos, attrEnv, qual, name);
duke@1 695 }
duke@1 696
jjg@595 697 /** Anon inner classes are used as access constructor tags.
jjg@595 698 * accessConstructorTag will use an existing anon class if one is available,
jjg@595 699 * and synthethise a class (with makeEmptyClass) if one is not available.
jjg@595 700 * However, there is a small possibility that an existing class will not
jjg@595 701 * be generated as expected if it is inside a conditional with a constant
jjg@595 702 * expression. If that is found to be the case, create an empty class here.
jjg@595 703 */
jjg@595 704 private void checkAccessConstructorTags() {
jjg@595 705 for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
jjg@595 706 ClassSymbol c = l.head;
jjg@595 707 if (isTranslatedClassAvailable(c))
jjg@595 708 continue;
jjg@595 709 // Create class definition tree.
jjg@595 710 JCClassDecl cdef = make.ClassDef(
jjg@595 711 make.Modifiers(STATIC | SYNTHETIC), names.empty,
jjg@595 712 List.<JCTypeParameter>nil(),
jjg@595 713 null, List.<JCExpression>nil(), List.<JCTree>nil());
jjg@595 714 cdef.sym = c;
jjg@595 715 cdef.type = c.type;
jjg@595 716 // add it to the list of classes to be generated
jjg@595 717 translated.append(cdef);
jjg@595 718 }
jjg@595 719 }
jjg@595 720 // where
jjg@595 721 private boolean isTranslatedClassAvailable(ClassSymbol c) {
jjg@595 722 for (JCTree tree: translated) {
jjg@595 723 if (tree.getTag() == JCTree.CLASSDEF
jjg@595 724 && ((JCClassDecl) tree).sym == c) {
jjg@595 725 return true;
jjg@595 726 }
jjg@595 727 }
jjg@595 728 return false;
jjg@595 729 }
jjg@595 730
duke@1 731 /**************************************************************************
duke@1 732 * Access methods
duke@1 733 *************************************************************************/
duke@1 734
duke@1 735 /** Access codes for dereferencing, assignment,
duke@1 736 * and pre/post increment/decrement.
duke@1 737 * Access codes for assignment operations are determined by method accessCode
duke@1 738 * below.
duke@1 739 *
duke@1 740 * All access codes for accesses to the current class are even.
duke@1 741 * If a member of the superclass should be accessed instead (because
duke@1 742 * access was via a qualified super), add one to the corresponding code
duke@1 743 * for the current class, making the number odd.
duke@1 744 * This numbering scheme is used by the backend to decide whether
duke@1 745 * to issue an invokevirtual or invokespecial call.
duke@1 746 *
duke@1 747 * @see Gen.visitSelect(Select tree)
duke@1 748 */
duke@1 749 private static final int
duke@1 750 DEREFcode = 0,
duke@1 751 ASSIGNcode = 2,
duke@1 752 PREINCcode = 4,
duke@1 753 PREDECcode = 6,
duke@1 754 POSTINCcode = 8,
duke@1 755 POSTDECcode = 10,
duke@1 756 FIRSTASGOPcode = 12;
duke@1 757
duke@1 758 /** Number of access codes
duke@1 759 */
duke@1 760 private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
duke@1 761
duke@1 762 /** A mapping from symbols to their access numbers.
duke@1 763 */
duke@1 764 private Map<Symbol,Integer> accessNums;
duke@1 765
duke@1 766 /** A mapping from symbols to an array of access symbols, indexed by
duke@1 767 * access code.
duke@1 768 */
duke@1 769 private Map<Symbol,MethodSymbol[]> accessSyms;
duke@1 770
duke@1 771 /** A mapping from (constructor) symbols to access constructor symbols.
duke@1 772 */
duke@1 773 private Map<Symbol,MethodSymbol> accessConstrs;
duke@1 774
jjg@595 775 /** A list of all class symbols used for access constructor tags.
jjg@595 776 */
jjg@595 777 private List<ClassSymbol> accessConstrTags;
jjg@595 778
duke@1 779 /** A queue for all accessed symbols.
duke@1 780 */
duke@1 781 private ListBuffer<Symbol> accessed;
duke@1 782
duke@1 783 /** Map bytecode of binary operation to access code of corresponding
duke@1 784 * assignment operation. This is always an even number.
duke@1 785 */
duke@1 786 private static int accessCode(int bytecode) {
duke@1 787 if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
duke@1 788 return (bytecode - iadd) * 2 + FIRSTASGOPcode;
duke@1 789 else if (bytecode == ByteCodes.string_add)
duke@1 790 return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
duke@1 791 else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
duke@1 792 return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
duke@1 793 else
duke@1 794 return -1;
duke@1 795 }
duke@1 796
duke@1 797 /** return access code for identifier,
duke@1 798 * @param tree The tree representing the identifier use.
duke@1 799 * @param enclOp The closest enclosing operation node of tree,
duke@1 800 * null if tree is not a subtree of an operation.
duke@1 801 */
duke@1 802 private static int accessCode(JCTree tree, JCTree enclOp) {
duke@1 803 if (enclOp == null)
duke@1 804 return DEREFcode;
duke@1 805 else if (enclOp.getTag() == JCTree.ASSIGN &&
duke@1 806 tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
duke@1 807 return ASSIGNcode;
duke@1 808 else if (JCTree.PREINC <= enclOp.getTag() && enclOp.getTag() <= JCTree.POSTDEC &&
duke@1 809 tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
duke@1 810 return (enclOp.getTag() - JCTree.PREINC) * 2 + PREINCcode;
duke@1 811 else if (JCTree.BITOR_ASG <= enclOp.getTag() && enclOp.getTag() <= JCTree.MOD_ASG &&
duke@1 812 tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
duke@1 813 return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
duke@1 814 else
duke@1 815 return DEREFcode;
duke@1 816 }
duke@1 817
duke@1 818 /** Return binary operator that corresponds to given access code.
duke@1 819 */
duke@1 820 private OperatorSymbol binaryAccessOperator(int acode) {
duke@1 821 for (Scope.Entry e = syms.predefClass.members().elems;
duke@1 822 e != null;
duke@1 823 e = e.sibling) {
duke@1 824 if (e.sym instanceof OperatorSymbol) {
duke@1 825 OperatorSymbol op = (OperatorSymbol)e.sym;
duke@1 826 if (accessCode(op.opcode) == acode) return op;
duke@1 827 }
duke@1 828 }
duke@1 829 return null;
duke@1 830 }
duke@1 831
duke@1 832 /** Return tree tag for assignment operation corresponding
duke@1 833 * to given binary operator.
duke@1 834 */
duke@1 835 private static int treeTag(OperatorSymbol operator) {
duke@1 836 switch (operator.opcode) {
duke@1 837 case ByteCodes.ior: case ByteCodes.lor:
duke@1 838 return JCTree.BITOR_ASG;
duke@1 839 case ByteCodes.ixor: case ByteCodes.lxor:
duke@1 840 return JCTree.BITXOR_ASG;
duke@1 841 case ByteCodes.iand: case ByteCodes.land:
duke@1 842 return JCTree.BITAND_ASG;
duke@1 843 case ByteCodes.ishl: case ByteCodes.lshl:
duke@1 844 case ByteCodes.ishll: case ByteCodes.lshll:
duke@1 845 return JCTree.SL_ASG;
duke@1 846 case ByteCodes.ishr: case ByteCodes.lshr:
duke@1 847 case ByteCodes.ishrl: case ByteCodes.lshrl:
duke@1 848 return JCTree.SR_ASG;
duke@1 849 case ByteCodes.iushr: case ByteCodes.lushr:
duke@1 850 case ByteCodes.iushrl: case ByteCodes.lushrl:
duke@1 851 return JCTree.USR_ASG;
duke@1 852 case ByteCodes.iadd: case ByteCodes.ladd:
duke@1 853 case ByteCodes.fadd: case ByteCodes.dadd:
duke@1 854 case ByteCodes.string_add:
duke@1 855 return JCTree.PLUS_ASG;
duke@1 856 case ByteCodes.isub: case ByteCodes.lsub:
duke@1 857 case ByteCodes.fsub: case ByteCodes.dsub:
duke@1 858 return JCTree.MINUS_ASG;
duke@1 859 case ByteCodes.imul: case ByteCodes.lmul:
duke@1 860 case ByteCodes.fmul: case ByteCodes.dmul:
duke@1 861 return JCTree.MUL_ASG;
duke@1 862 case ByteCodes.idiv: case ByteCodes.ldiv:
duke@1 863 case ByteCodes.fdiv: case ByteCodes.ddiv:
duke@1 864 return JCTree.DIV_ASG;
duke@1 865 case ByteCodes.imod: case ByteCodes.lmod:
duke@1 866 case ByteCodes.fmod: case ByteCodes.dmod:
duke@1 867 return JCTree.MOD_ASG;
duke@1 868 default:
duke@1 869 throw new AssertionError();
duke@1 870 }
duke@1 871 }
duke@1 872
duke@1 873 /** The name of the access method with number `anum' and access code `acode'.
duke@1 874 */
duke@1 875 Name accessName(int anum, int acode) {
duke@1 876 return names.fromString(
duke@1 877 "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
duke@1 878 }
duke@1 879
duke@1 880 /** Return access symbol for a private or protected symbol from an inner class.
duke@1 881 * @param sym The accessed private symbol.
duke@1 882 * @param tree The accessing tree.
duke@1 883 * @param enclOp The closest enclosing operation node of tree,
duke@1 884 * null if tree is not a subtree of an operation.
duke@1 885 * @param protAccess Is access to a protected symbol in another
duke@1 886 * package?
duke@1 887 * @param refSuper Is access via a (qualified) C.super?
duke@1 888 */
duke@1 889 MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
duke@1 890 boolean protAccess, boolean refSuper) {
duke@1 891 ClassSymbol accOwner = refSuper && protAccess
duke@1 892 // For access via qualified super (T.super.x), place the
duke@1 893 // access symbol on T.
duke@1 894 ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
duke@1 895 // Otherwise pretend that the owner of an accessed
duke@1 896 // protected symbol is the enclosing class of the current
duke@1 897 // class which is a subclass of the symbol's owner.
duke@1 898 : accessClass(sym, protAccess, tree);
duke@1 899
duke@1 900 Symbol vsym = sym;
duke@1 901 if (sym.owner != accOwner) {
duke@1 902 vsym = sym.clone(accOwner);
duke@1 903 actualSymbols.put(vsym, sym);
duke@1 904 }
duke@1 905
duke@1 906 Integer anum // The access number of the access method.
duke@1 907 = accessNums.get(vsym);
duke@1 908 if (anum == null) {
duke@1 909 anum = accessed.length();
duke@1 910 accessNums.put(vsym, anum);
duke@1 911 accessSyms.put(vsym, new MethodSymbol[NCODES]);
duke@1 912 accessed.append(vsym);
duke@1 913 // System.out.println("accessing " + vsym + " in " + vsym.location());
duke@1 914 }
duke@1 915
duke@1 916 int acode; // The access code of the access method.
duke@1 917 List<Type> argtypes; // The argument types of the access method.
duke@1 918 Type restype; // The result type of the access method.
darcy@430 919 List<Type> thrown; // The thrown exceptions of the access method.
duke@1 920 switch (vsym.kind) {
duke@1 921 case VAR:
duke@1 922 acode = accessCode(tree, enclOp);
duke@1 923 if (acode >= FIRSTASGOPcode) {
duke@1 924 OperatorSymbol operator = binaryAccessOperator(acode);
duke@1 925 if (operator.opcode == string_add)
duke@1 926 argtypes = List.of(syms.objectType);
duke@1 927 else
duke@1 928 argtypes = operator.type.getParameterTypes().tail;
duke@1 929 } else if (acode == ASSIGNcode)
duke@1 930 argtypes = List.of(vsym.erasure(types));
duke@1 931 else
duke@1 932 argtypes = List.nil();
duke@1 933 restype = vsym.erasure(types);
duke@1 934 thrown = List.nil();
duke@1 935 break;
duke@1 936 case MTH:
duke@1 937 acode = DEREFcode;
duke@1 938 argtypes = vsym.erasure(types).getParameterTypes();
duke@1 939 restype = vsym.erasure(types).getReturnType();
duke@1 940 thrown = vsym.type.getThrownTypes();
duke@1 941 break;
duke@1 942 default:
duke@1 943 throw new AssertionError();
duke@1 944 }
duke@1 945
duke@1 946 // For references via qualified super, increment acode by one,
duke@1 947 // making it odd.
duke@1 948 if (protAccess && refSuper) acode++;
duke@1 949
duke@1 950 // Instance access methods get instance as first parameter.
duke@1 951 // For protected symbols this needs to be the instance as a member
duke@1 952 // of the type containing the accessed symbol, not the class
duke@1 953 // containing the access method.
duke@1 954 if ((vsym.flags() & STATIC) == 0) {
duke@1 955 argtypes = argtypes.prepend(vsym.owner.erasure(types));
duke@1 956 }
duke@1 957 MethodSymbol[] accessors = accessSyms.get(vsym);
duke@1 958 MethodSymbol accessor = accessors[acode];
duke@1 959 if (accessor == null) {
duke@1 960 accessor = new MethodSymbol(
duke@1 961 STATIC | SYNTHETIC,
duke@1 962 accessName(anum.intValue(), acode),
duke@1 963 new MethodType(argtypes, restype, thrown, syms.methodClass),
duke@1 964 accOwner);
duke@1 965 enterSynthetic(tree.pos(), accessor, accOwner.members());
duke@1 966 accessors[acode] = accessor;
duke@1 967 }
duke@1 968 return accessor;
duke@1 969 }
duke@1 970
duke@1 971 /** The qualifier to be used for accessing a symbol in an outer class.
duke@1 972 * This is either C.sym or C.this.sym, depending on whether or not
duke@1 973 * sym is static.
duke@1 974 * @param sym The accessed symbol.
duke@1 975 */
duke@1 976 JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
duke@1 977 return (sym.flags() & STATIC) != 0
duke@1 978 ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
duke@1 979 : makeOwnerThis(pos, sym, true);
duke@1 980 }
duke@1 981
duke@1 982 /** Do we need an access method to reference private symbol?
duke@1 983 */
duke@1 984 boolean needsPrivateAccess(Symbol sym) {
duke@1 985 if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
duke@1 986 return false;
duke@1 987 } else if (sym.name == names.init && (sym.owner.owner.kind & (VAR | MTH)) != 0) {
duke@1 988 // private constructor in local class: relax protection
duke@1 989 sym.flags_field &= ~PRIVATE;
duke@1 990 return false;
duke@1 991 } else {
duke@1 992 return true;
duke@1 993 }
duke@1 994 }
duke@1 995
duke@1 996 /** Do we need an access method to reference symbol in other package?
duke@1 997 */
duke@1 998 boolean needsProtectedAccess(Symbol sym, JCTree tree) {
duke@1 999 if ((sym.flags() & PROTECTED) == 0 ||
duke@1 1000 sym.owner.owner == currentClass.owner || // fast special case
duke@1 1001 sym.packge() == currentClass.packge())
duke@1 1002 return false;
duke@1 1003 if (!currentClass.isSubClass(sym.owner, types))
duke@1 1004 return true;
duke@1 1005 if ((sym.flags() & STATIC) != 0 ||
duke@1 1006 tree.getTag() != JCTree.SELECT ||
duke@1 1007 TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
duke@1 1008 return false;
duke@1 1009 return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
duke@1 1010 }
duke@1 1011
duke@1 1012 /** The class in which an access method for given symbol goes.
duke@1 1013 * @param sym The access symbol
duke@1 1014 * @param protAccess Is access to a protected symbol in another
duke@1 1015 * package?
duke@1 1016 */
duke@1 1017 ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
duke@1 1018 if (protAccess) {
duke@1 1019 Symbol qualifier = null;
duke@1 1020 ClassSymbol c = currentClass;
duke@1 1021 if (tree.getTag() == JCTree.SELECT && (sym.flags() & STATIC) == 0) {
duke@1 1022 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
duke@1 1023 while (!qualifier.isSubClass(c, types)) {
duke@1 1024 c = c.owner.enclClass();
duke@1 1025 }
duke@1 1026 return c;
duke@1 1027 } else {
duke@1 1028 while (!c.isSubClass(sym.owner, types)) {
duke@1 1029 c = c.owner.enclClass();
duke@1 1030 }
duke@1 1031 }
duke@1 1032 return c;
duke@1 1033 } else {
duke@1 1034 // the symbol is private
duke@1 1035 return sym.owner.enclClass();
duke@1 1036 }
duke@1 1037 }
duke@1 1038
duke@1 1039 /** Ensure that identifier is accessible, return tree accessing the identifier.
duke@1 1040 * @param sym The accessed symbol.
duke@1 1041 * @param tree The tree referring to the symbol.
duke@1 1042 * @param enclOp The closest enclosing operation node of tree,
duke@1 1043 * null if tree is not a subtree of an operation.
duke@1 1044 * @param refSuper Is access via a (qualified) C.super?
duke@1 1045 */
duke@1 1046 JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
duke@1 1047 // Access a free variable via its proxy, or its proxy's proxy
duke@1 1048 while (sym.kind == VAR && sym.owner.kind == MTH &&
duke@1 1049 sym.owner.enclClass() != currentClass) {
duke@1 1050 // A constant is replaced by its constant value.
duke@1 1051 Object cv = ((VarSymbol)sym).getConstValue();
duke@1 1052 if (cv != null) {
duke@1 1053 make.at(tree.pos);
duke@1 1054 return makeLit(sym.type, cv);
duke@1 1055 }
duke@1 1056 // Otherwise replace the variable by its proxy.
duke@1 1057 sym = proxies.lookup(proxyName(sym.name)).sym;
jjg@816 1058 Assert.check(sym != null && (sym.flags_field & FINAL) != 0);
duke@1 1059 tree = make.at(tree.pos).Ident(sym);
duke@1 1060 }
duke@1 1061 JCExpression base = (tree.getTag() == JCTree.SELECT) ? ((JCFieldAccess) tree).selected : null;
duke@1 1062 switch (sym.kind) {
duke@1 1063 case TYP:
duke@1 1064 if (sym.owner.kind != PCK) {
duke@1 1065 // Convert type idents to
duke@1 1066 // <flat name> or <package name> . <flat name>
duke@1 1067 Name flatname = Convert.shortName(sym.flatName());
duke@1 1068 while (base != null &&
duke@1 1069 TreeInfo.symbol(base) != null &&
duke@1 1070 TreeInfo.symbol(base).kind != PCK) {
duke@1 1071 base = (base.getTag() == JCTree.SELECT)
duke@1 1072 ? ((JCFieldAccess) base).selected
duke@1 1073 : null;
duke@1 1074 }
duke@1 1075 if (tree.getTag() == JCTree.IDENT) {
duke@1 1076 ((JCIdent) tree).name = flatname;
duke@1 1077 } else if (base == null) {
duke@1 1078 tree = make.at(tree.pos).Ident(sym);
duke@1 1079 ((JCIdent) tree).name = flatname;
duke@1 1080 } else {
duke@1 1081 ((JCFieldAccess) tree).selected = base;
duke@1 1082 ((JCFieldAccess) tree).name = flatname;
duke@1 1083 }
duke@1 1084 }
duke@1 1085 break;
duke@1 1086 case MTH: case VAR:
duke@1 1087 if (sym.owner.kind == TYP) {
duke@1 1088
duke@1 1089 // Access methods are required for
duke@1 1090 // - private members,
duke@1 1091 // - protected members in a superclass of an
duke@1 1092 // enclosing class contained in another package.
duke@1 1093 // - all non-private members accessed via a qualified super.
duke@1 1094 boolean protAccess = refSuper && !needsPrivateAccess(sym)
duke@1 1095 || needsProtectedAccess(sym, tree);
duke@1 1096 boolean accReq = protAccess || needsPrivateAccess(sym);
duke@1 1097
duke@1 1098 // A base has to be supplied for
duke@1 1099 // - simple identifiers accessing variables in outer classes.
duke@1 1100 boolean baseReq =
duke@1 1101 base == null &&
duke@1 1102 sym.owner != syms.predefClass &&
duke@1 1103 !sym.isMemberOf(currentClass, types);
duke@1 1104
duke@1 1105 if (accReq || baseReq) {
duke@1 1106 make.at(tree.pos);
duke@1 1107
duke@1 1108 // Constants are replaced by their constant value.
duke@1 1109 if (sym.kind == VAR) {
duke@1 1110 Object cv = ((VarSymbol)sym).getConstValue();
duke@1 1111 if (cv != null) return makeLit(sym.type, cv);
duke@1 1112 }
duke@1 1113
duke@1 1114 // Private variables and methods are replaced by calls
duke@1 1115 // to their access methods.
duke@1 1116 if (accReq) {
duke@1 1117 List<JCExpression> args = List.nil();
duke@1 1118 if ((sym.flags() & STATIC) == 0) {
duke@1 1119 // Instance access methods get instance
duke@1 1120 // as first parameter.
duke@1 1121 if (base == null)
duke@1 1122 base = makeOwnerThis(tree.pos(), sym, true);
duke@1 1123 args = args.prepend(base);
duke@1 1124 base = null; // so we don't duplicate code
duke@1 1125 }
duke@1 1126 Symbol access = accessSymbol(sym, tree,
duke@1 1127 enclOp, protAccess,
duke@1 1128 refSuper);
duke@1 1129 JCExpression receiver = make.Select(
duke@1 1130 base != null ? base : make.QualIdent(access.owner),
duke@1 1131 access);
duke@1 1132 return make.App(receiver, args);
duke@1 1133
duke@1 1134 // Other accesses to members of outer classes get a
duke@1 1135 // qualifier.
duke@1 1136 } else if (baseReq) {
duke@1 1137 return make.at(tree.pos).Select(
duke@1 1138 accessBase(tree.pos(), sym), sym).setType(tree.type);
duke@1 1139 }
duke@1 1140 }
duke@1 1141 }
duke@1 1142 }
duke@1 1143 return tree;
duke@1 1144 }
duke@1 1145
duke@1 1146 /** Ensure that identifier is accessible, return tree accessing the identifier.
duke@1 1147 * @param tree The identifier tree.
duke@1 1148 */
duke@1 1149 JCExpression access(JCExpression tree) {
duke@1 1150 Symbol sym = TreeInfo.symbol(tree);
duke@1 1151 return sym == null ? tree : access(sym, tree, null, false);
duke@1 1152 }
duke@1 1153
duke@1 1154 /** Return access constructor for a private constructor,
duke@1 1155 * or the constructor itself, if no access constructor is needed.
duke@1 1156 * @param pos The position to report diagnostics, if any.
duke@1 1157 * @param constr The private constructor.
duke@1 1158 */
duke@1 1159 Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
duke@1 1160 if (needsPrivateAccess(constr)) {
duke@1 1161 ClassSymbol accOwner = constr.owner.enclClass();
duke@1 1162 MethodSymbol aconstr = accessConstrs.get(constr);
duke@1 1163 if (aconstr == null) {
duke@1 1164 List<Type> argtypes = constr.type.getParameterTypes();
duke@1 1165 if ((accOwner.flags_field & ENUM) != 0)
duke@1 1166 argtypes = argtypes
duke@1 1167 .prepend(syms.intType)
duke@1 1168 .prepend(syms.stringType);
duke@1 1169 aconstr = new MethodSymbol(
duke@1 1170 SYNTHETIC,
duke@1 1171 names.init,
duke@1 1172 new MethodType(
duke@1 1173 argtypes.append(
duke@1 1174 accessConstructorTag().erasure(types)),
duke@1 1175 constr.type.getReturnType(),
duke@1 1176 constr.type.getThrownTypes(),
duke@1 1177 syms.methodClass),
duke@1 1178 accOwner);
duke@1 1179 enterSynthetic(pos, aconstr, accOwner.members());
duke@1 1180 accessConstrs.put(constr, aconstr);
duke@1 1181 accessed.append(constr);
duke@1 1182 }
duke@1 1183 return aconstr;
duke@1 1184 } else {
duke@1 1185 return constr;
duke@1 1186 }
duke@1 1187 }
duke@1 1188
duke@1 1189 /** Return an anonymous class nested in this toplevel class.
duke@1 1190 */
duke@1 1191 ClassSymbol accessConstructorTag() {
duke@1 1192 ClassSymbol topClass = currentClass.outermostClass();
duke@1 1193 Name flatname = names.fromString("" + topClass.getQualifiedName() +
duke@1 1194 target.syntheticNameChar() +
duke@1 1195 "1");
duke@1 1196 ClassSymbol ctag = chk.compiled.get(flatname);
duke@1 1197 if (ctag == null)
duke@1 1198 ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass);
jjg@595 1199 // keep a record of all tags, to verify that all are generated as required
jjg@595 1200 accessConstrTags = accessConstrTags.prepend(ctag);
duke@1 1201 return ctag;
duke@1 1202 }
duke@1 1203
duke@1 1204 /** Add all required access methods for a private symbol to enclosing class.
duke@1 1205 * @param sym The symbol.
duke@1 1206 */
duke@1 1207 void makeAccessible(Symbol sym) {
duke@1 1208 JCClassDecl cdef = classDef(sym.owner.enclClass());
jjg@816 1209 if (cdef == null) Assert.error("class def not found: " + sym + " in " + sym.owner);
duke@1 1210 if (sym.name == names.init) {
duke@1 1211 cdef.defs = cdef.defs.prepend(
duke@1 1212 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
duke@1 1213 } else {
duke@1 1214 MethodSymbol[] accessors = accessSyms.get(sym);
duke@1 1215 for (int i = 0; i < NCODES; i++) {
duke@1 1216 if (accessors[i] != null)
duke@1 1217 cdef.defs = cdef.defs.prepend(
duke@1 1218 accessDef(cdef.pos, sym, accessors[i], i));
duke@1 1219 }
duke@1 1220 }
duke@1 1221 }
duke@1 1222
duke@1 1223 /** Construct definition of an access method.
duke@1 1224 * @param pos The source code position of the definition.
duke@1 1225 * @param vsym The private or protected symbol.
duke@1 1226 * @param accessor The access method for the symbol.
duke@1 1227 * @param acode The access code.
duke@1 1228 */
duke@1 1229 JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
duke@1 1230 // System.err.println("access " + vsym + " with " + accessor);//DEBUG
duke@1 1231 currentClass = vsym.owner.enclClass();
duke@1 1232 make.at(pos);
duke@1 1233 JCMethodDecl md = make.MethodDef(accessor, null);
duke@1 1234
duke@1 1235 // Find actual symbol
duke@1 1236 Symbol sym = actualSymbols.get(vsym);
duke@1 1237 if (sym == null) sym = vsym;
duke@1 1238
duke@1 1239 JCExpression ref; // The tree referencing the private symbol.
duke@1 1240 List<JCExpression> args; // Any additional arguments to be passed along.
duke@1 1241 if ((sym.flags() & STATIC) != 0) {
duke@1 1242 ref = make.Ident(sym);
duke@1 1243 args = make.Idents(md.params);
duke@1 1244 } else {
duke@1 1245 ref = make.Select(make.Ident(md.params.head), sym);
duke@1 1246 args = make.Idents(md.params.tail);
duke@1 1247 }
duke@1 1248 JCStatement stat; // The statement accessing the private symbol.
duke@1 1249 if (sym.kind == VAR) {
duke@1 1250 // Normalize out all odd access codes by taking floor modulo 2:
duke@1 1251 int acode1 = acode - (acode & 1);
duke@1 1252
duke@1 1253 JCExpression expr; // The access method's return value.
duke@1 1254 switch (acode1) {
duke@1 1255 case DEREFcode:
duke@1 1256 expr = ref;
duke@1 1257 break;
duke@1 1258 case ASSIGNcode:
duke@1 1259 expr = make.Assign(ref, args.head);
duke@1 1260 break;
duke@1 1261 case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
duke@1 1262 expr = makeUnary(
duke@1 1263 ((acode1 - PREINCcode) >> 1) + JCTree.PREINC, ref);
duke@1 1264 break;
duke@1 1265 default:
duke@1 1266 expr = make.Assignop(
duke@1 1267 treeTag(binaryAccessOperator(acode1)), ref, args.head);
duke@1 1268 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
duke@1 1269 }
duke@1 1270 stat = make.Return(expr.setType(sym.type));
duke@1 1271 } else {
duke@1 1272 stat = make.Call(make.App(ref, args));
duke@1 1273 }
duke@1 1274 md.body = make.Block(0, List.of(stat));
duke@1 1275
duke@1 1276 // Make sure all parameters, result types and thrown exceptions
duke@1 1277 // are accessible.
duke@1 1278 for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
duke@1 1279 l.head.vartype = access(l.head.vartype);
duke@1 1280 md.restype = access(md.restype);
duke@1 1281 for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
duke@1 1282 l.head = access(l.head);
duke@1 1283
duke@1 1284 return md;
duke@1 1285 }
duke@1 1286
duke@1 1287 /** Construct definition of an access constructor.
duke@1 1288 * @param pos The source code position of the definition.
duke@1 1289 * @param constr The private constructor.
duke@1 1290 * @param accessor The access method for the constructor.
duke@1 1291 */
duke@1 1292 JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
duke@1 1293 make.at(pos);
duke@1 1294 JCMethodDecl md = make.MethodDef(accessor,
duke@1 1295 accessor.externalType(types),
duke@1 1296 null);
duke@1 1297 JCIdent callee = make.Ident(names._this);
duke@1 1298 callee.sym = constr;
duke@1 1299 callee.type = constr.type;
duke@1 1300 md.body =
duke@1 1301 make.Block(0, List.<JCStatement>of(
duke@1 1302 make.Call(
duke@1 1303 make.App(
duke@1 1304 callee,
duke@1 1305 make.Idents(md.params.reverse().tail.reverse())))));
duke@1 1306 return md;
duke@1 1307 }
duke@1 1308
duke@1 1309 /**************************************************************************
duke@1 1310 * Free variables proxies and this$n
duke@1 1311 *************************************************************************/
duke@1 1312
duke@1 1313 /** A scope containing all free variable proxies for currently translated
duke@1 1314 * class, as well as its this$n symbol (if needed).
duke@1 1315 * Proxy scopes are nested in the same way classes are.
duke@1 1316 * Inside a constructor, proxies and any this$n symbol are duplicated
duke@1 1317 * in an additional innermost scope, where they represent the constructor
duke@1 1318 * parameters.
duke@1 1319 */
duke@1 1320 Scope proxies;
duke@1 1321
darcy@609 1322 /** A scope containing all unnamed resource variables/saved
darcy@609 1323 * exception variables for translated TWR blocks
darcy@609 1324 */
darcy@609 1325 Scope twrVars;
darcy@609 1326
duke@1 1327 /** A stack containing the this$n field of the currently translated
duke@1 1328 * classes (if needed) in innermost first order.
duke@1 1329 * Inside a constructor, proxies and any this$n symbol are duplicated
duke@1 1330 * in an additional innermost scope, where they represent the constructor
duke@1 1331 * parameters.
duke@1 1332 */
duke@1 1333 List<VarSymbol> outerThisStack;
duke@1 1334
duke@1 1335 /** The name of a free variable proxy.
duke@1 1336 */
duke@1 1337 Name proxyName(Name name) {
duke@1 1338 return names.fromString("val" + target.syntheticNameChar() + name);
duke@1 1339 }
duke@1 1340
duke@1 1341 /** Proxy definitions for all free variables in given list, in reverse order.
duke@1 1342 * @param pos The source code position of the definition.
duke@1 1343 * @param freevars The free variables.
duke@1 1344 * @param owner The class in which the definitions go.
duke@1 1345 */
duke@1 1346 List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
duke@1 1347 long flags = FINAL | SYNTHETIC;
duke@1 1348 if (owner.kind == TYP &&
duke@1 1349 target.usePrivateSyntheticFields())
duke@1 1350 flags |= PRIVATE;
duke@1 1351 List<JCVariableDecl> defs = List.nil();
duke@1 1352 for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
duke@1 1353 VarSymbol v = l.head;
duke@1 1354 VarSymbol proxy = new VarSymbol(
duke@1 1355 flags, proxyName(v.name), v.erasure(types), owner);
duke@1 1356 proxies.enter(proxy);
duke@1 1357 JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
duke@1 1358 vd.vartype = access(vd.vartype);
duke@1 1359 defs = defs.prepend(vd);
duke@1 1360 }
duke@1 1361 return defs;
duke@1 1362 }
duke@1 1363
duke@1 1364 /** The name of a this$n field
duke@1 1365 * @param type The class referenced by the this$n field
duke@1 1366 */
duke@1 1367 Name outerThisName(Type type, Symbol owner) {
duke@1 1368 Type t = type.getEnclosingType();
duke@1 1369 int nestingLevel = 0;
duke@1 1370 while (t.tag == CLASS) {
duke@1 1371 t = t.getEnclosingType();
duke@1 1372 nestingLevel++;
duke@1 1373 }
duke@1 1374 Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
duke@1 1375 while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
duke@1 1376 result = names.fromString(result.toString() + target.syntheticNameChar());
duke@1 1377 return result;
duke@1 1378 }
duke@1 1379
duke@1 1380 /** Definition for this$n field.
duke@1 1381 * @param pos The source code position of the definition.
duke@1 1382 * @param owner The class in which the definition goes.
duke@1 1383 */
duke@1 1384 JCVariableDecl outerThisDef(int pos, Symbol owner) {
duke@1 1385 long flags = FINAL | SYNTHETIC;
duke@1 1386 if (owner.kind == TYP &&
duke@1 1387 target.usePrivateSyntheticFields())
duke@1 1388 flags |= PRIVATE;
duke@1 1389 Type target = types.erasure(owner.enclClass().type.getEnclosingType());
duke@1 1390 VarSymbol outerThis = new VarSymbol(
duke@1 1391 flags, outerThisName(target, owner), target, owner);
duke@1 1392 outerThisStack = outerThisStack.prepend(outerThis);
duke@1 1393 JCVariableDecl vd = make.at(pos).VarDef(outerThis, null);
duke@1 1394 vd.vartype = access(vd.vartype);
duke@1 1395 return vd;
duke@1 1396 }
duke@1 1397
duke@1 1398 /** Return a list of trees that load the free variables in given list,
duke@1 1399 * in reverse order.
duke@1 1400 * @param pos The source code position to be used for the trees.
duke@1 1401 * @param freevars The list of free variables.
duke@1 1402 */
duke@1 1403 List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
duke@1 1404 List<JCExpression> args = List.nil();
duke@1 1405 for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
duke@1 1406 args = args.prepend(loadFreevar(pos, l.head));
duke@1 1407 return args;
duke@1 1408 }
duke@1 1409 //where
duke@1 1410 JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
duke@1 1411 return access(v, make.at(pos).Ident(v), null, false);
duke@1 1412 }
duke@1 1413
duke@1 1414 /** Construct a tree simulating the expression <C.this>.
duke@1 1415 * @param pos The source code position to be used for the tree.
duke@1 1416 * @param c The qualifier class.
duke@1 1417 */
duke@1 1418 JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
duke@1 1419 if (currentClass == c) {
duke@1 1420 // in this case, `this' works fine
duke@1 1421 return make.at(pos).This(c.erasure(types));
duke@1 1422 } else {
duke@1 1423 // need to go via this$n
duke@1 1424 return makeOuterThis(pos, c);
duke@1 1425 }
duke@1 1426 }
duke@1 1427
darcy@609 1428 /** Optionally replace a try statement with an automatic resource
darcy@609 1429 * management (ARM) block.
darcy@609 1430 * @param tree The try statement to inspect.
darcy@609 1431 * @return An ARM block, or the original try block if there are no
darcy@609 1432 * resources to manage.
darcy@609 1433 */
darcy@609 1434 JCTree makeArmTry(JCTry tree) {
darcy@609 1435 make_at(tree.pos());
darcy@609 1436 twrVars = twrVars.dup();
darcy@609 1437 JCBlock armBlock = makeArmBlock(tree.resources, tree.body, 0);
darcy@609 1438 if (tree.catchers.isEmpty() && tree.finalizer == null)
darcy@609 1439 result = translate(armBlock);
darcy@609 1440 else
darcy@609 1441 result = translate(make.Try(armBlock, tree.catchers, tree.finalizer));
darcy@609 1442 twrVars = twrVars.leave();
darcy@609 1443 return result;
darcy@609 1444 }
darcy@609 1445
darcy@609 1446 private JCBlock makeArmBlock(List<JCTree> resources, JCBlock block, int depth) {
darcy@609 1447 if (resources.isEmpty())
darcy@609 1448 return block;
darcy@609 1449
darcy@609 1450 // Add resource declaration or expression to block statements
darcy@609 1451 ListBuffer<JCStatement> stats = new ListBuffer<JCStatement>();
darcy@609 1452 JCTree resource = resources.head;
darcy@609 1453 JCExpression expr = null;
darcy@609 1454 if (resource instanceof JCVariableDecl) {
darcy@609 1455 JCVariableDecl var = (JCVariableDecl) resource;
darcy@609 1456 expr = make.Ident(var.sym).setType(resource.type);
darcy@609 1457 stats.add(var);
darcy@609 1458 } else {
jjg@816 1459 Assert.check(resource instanceof JCExpression);
darcy@609 1460 VarSymbol syntheticTwrVar =
darcy@609 1461 new VarSymbol(SYNTHETIC | FINAL,
darcy@609 1462 makeSyntheticName(names.fromString("twrVar" +
darcy@609 1463 depth), twrVars),
darcy@609 1464 (resource.type.tag == TypeTags.BOT) ?
darcy@609 1465 syms.autoCloseableType : resource.type,
darcy@609 1466 currentMethodSym);
darcy@609 1467 twrVars.enter(syntheticTwrVar);
darcy@609 1468 JCVariableDecl syntheticTwrVarDecl =
darcy@609 1469 make.VarDef(syntheticTwrVar, (JCExpression)resource);
darcy@609 1470 expr = (JCExpression)make.Ident(syntheticTwrVar);
darcy@609 1471 stats.add(syntheticTwrVarDecl);
darcy@609 1472 }
darcy@609 1473
darcy@609 1474 // Add primaryException declaration
darcy@609 1475 VarSymbol primaryException =
darcy@609 1476 new VarSymbol(SYNTHETIC,
darcy@609 1477 makeSyntheticName(names.fromString("primaryException" +
darcy@609 1478 depth), twrVars),
darcy@609 1479 syms.throwableType,
darcy@609 1480 currentMethodSym);
darcy@609 1481 twrVars.enter(primaryException);
darcy@609 1482 JCVariableDecl primaryExceptionTreeDecl = make.VarDef(primaryException, makeNull());
darcy@609 1483 stats.add(primaryExceptionTreeDecl);
darcy@609 1484
darcy@609 1485 // Create catch clause that saves exception and then rethrows it
darcy@609 1486 VarSymbol param =
darcy@609 1487 new VarSymbol(FINAL|SYNTHETIC,
darcy@609 1488 names.fromString("t" +
darcy@609 1489 target.syntheticNameChar()),
darcy@609 1490 syms.throwableType,
darcy@609 1491 currentMethodSym);
darcy@609 1492 JCVariableDecl paramTree = make.VarDef(param, null);
darcy@609 1493 JCStatement assign = make.Assignment(primaryException, make.Ident(param));
darcy@609 1494 JCStatement rethrowStat = make.Throw(make.Ident(param));
darcy@609 1495 JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(assign, rethrowStat));
darcy@609 1496 JCCatch catchClause = make.Catch(paramTree, catchBlock);
darcy@609 1497
darcy@609 1498 int oldPos = make.pos;
darcy@609 1499 make.at(TreeInfo.endPos(block));
darcy@609 1500 JCBlock finallyClause = makeArmFinallyClause(primaryException, expr);
darcy@609 1501 make.at(oldPos);
darcy@609 1502 JCTry outerTry = make.Try(makeArmBlock(resources.tail, block, depth + 1),
darcy@609 1503 List.<JCCatch>of(catchClause),
darcy@609 1504 finallyClause);
darcy@609 1505 stats.add(outerTry);
darcy@609 1506 return make.Block(0L, stats.toList());
darcy@609 1507 }
darcy@609 1508
darcy@609 1509 private JCBlock makeArmFinallyClause(Symbol primaryException, JCExpression resource) {
darcy@745 1510 // primaryException.addSuppressed(catchException);
darcy@609 1511 VarSymbol catchException =
darcy@609 1512 new VarSymbol(0, make.paramName(2),
darcy@609 1513 syms.throwableType,
darcy@609 1514 currentMethodSym);
darcy@609 1515 JCStatement addSuppressionStatement =
darcy@609 1516 make.Exec(makeCall(make.Ident(primaryException),
darcy@745 1517 names.addSuppressed,
darcy@609 1518 List.<JCExpression>of(make.Ident(catchException))));
darcy@609 1519
darcy@745 1520 // try { resource.close(); } catch (e) { primaryException.addSuppressed(e); }
darcy@609 1521 JCBlock tryBlock =
darcy@609 1522 make.Block(0L, List.<JCStatement>of(makeResourceCloseInvocation(resource)));
darcy@609 1523 JCVariableDecl catchExceptionDecl = make.VarDef(catchException, null);
darcy@609 1524 JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(addSuppressionStatement));
darcy@609 1525 List<JCCatch> catchClauses = List.<JCCatch>of(make.Catch(catchExceptionDecl, catchBlock));
darcy@609 1526 JCTry tryTree = make.Try(tryBlock, catchClauses, null);
darcy@609 1527
darcy@609 1528 // if (resource != null) resourceClose;
darcy@609 1529 JCExpression nullCheck = makeBinary(JCTree.NE,
darcy@609 1530 make.Ident(primaryException),
darcy@609 1531 makeNull());
darcy@609 1532 JCIf closeIfStatement = make.If(nullCheck,
darcy@609 1533 tryTree,
darcy@609 1534 makeResourceCloseInvocation(resource));
darcy@609 1535 return make.Block(0L, List.<JCStatement>of(closeIfStatement));
darcy@609 1536 }
darcy@609 1537
darcy@609 1538 private JCStatement makeResourceCloseInvocation(JCExpression resource) {
darcy@609 1539 // create resource.close() method invocation
darcy@609 1540 JCExpression resourceClose = makeCall(resource, names.close, List.<JCExpression>nil());
darcy@609 1541 return make.Exec(resourceClose);
darcy@609 1542 }
darcy@609 1543
duke@1 1544 /** Construct a tree that represents the outer instance
duke@1 1545 * <C.this>. Never pick the current `this'.
duke@1 1546 * @param pos The source code position to be used for the tree.
duke@1 1547 * @param c The qualifier class.
duke@1 1548 */
duke@1 1549 JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
duke@1 1550 List<VarSymbol> ots = outerThisStack;
duke@1 1551 if (ots.isEmpty()) {
duke@1 1552 log.error(pos, "no.encl.instance.of.type.in.scope", c);
jjg@816 1553 Assert.error();
duke@1 1554 return makeNull();
duke@1 1555 }
duke@1 1556 VarSymbol ot = ots.head;
duke@1 1557 JCExpression tree = access(make.at(pos).Ident(ot));
duke@1 1558 TypeSymbol otc = ot.type.tsym;
duke@1 1559 while (otc != c) {
duke@1 1560 do {
duke@1 1561 ots = ots.tail;
duke@1 1562 if (ots.isEmpty()) {
duke@1 1563 log.error(pos,
duke@1 1564 "no.encl.instance.of.type.in.scope",
duke@1 1565 c);
jjg@816 1566 Assert.error(); // should have been caught in Attr
duke@1 1567 return tree;
duke@1 1568 }
duke@1 1569 ot = ots.head;
duke@1 1570 } while (ot.owner != otc);
duke@1 1571 if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
duke@1 1572 chk.earlyRefError(pos, c);
jjg@816 1573 Assert.error(); // should have been caught in Attr
duke@1 1574 return makeNull();
duke@1 1575 }
duke@1 1576 tree = access(make.at(pos).Select(tree, ot));
duke@1 1577 otc = ot.type.tsym;
duke@1 1578 }
duke@1 1579 return tree;
duke@1 1580 }
duke@1 1581
duke@1 1582 /** Construct a tree that represents the closest outer instance
duke@1 1583 * <C.this> such that the given symbol is a member of C.
duke@1 1584 * @param pos The source code position to be used for the tree.
duke@1 1585 * @param sym The accessed symbol.
duke@1 1586 * @param preciseMatch should we accept a type that is a subtype of
duke@1 1587 * sym's owner, even if it doesn't contain sym
duke@1 1588 * due to hiding, overriding, or non-inheritance
duke@1 1589 * due to protection?
duke@1 1590 */
duke@1 1591 JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
duke@1 1592 Symbol c = sym.owner;
duke@1 1593 if (preciseMatch ? sym.isMemberOf(currentClass, types)
duke@1 1594 : currentClass.isSubClass(sym.owner, types)) {
duke@1 1595 // in this case, `this' works fine
duke@1 1596 return make.at(pos).This(c.erasure(types));
duke@1 1597 } else {
duke@1 1598 // need to go via this$n
duke@1 1599 return makeOwnerThisN(pos, sym, preciseMatch);
duke@1 1600 }
duke@1 1601 }
duke@1 1602
duke@1 1603 /**
duke@1 1604 * Similar to makeOwnerThis but will never pick "this".
duke@1 1605 */
duke@1 1606 JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
duke@1 1607 Symbol c = sym.owner;
duke@1 1608 List<VarSymbol> ots = outerThisStack;
duke@1 1609 if (ots.isEmpty()) {
duke@1 1610 log.error(pos, "no.encl.instance.of.type.in.scope", c);
jjg@816 1611 Assert.error();
duke@1 1612 return makeNull();
duke@1 1613 }
duke@1 1614 VarSymbol ot = ots.head;
duke@1 1615 JCExpression tree = access(make.at(pos).Ident(ot));
duke@1 1616 TypeSymbol otc = ot.type.tsym;
duke@1 1617 while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
duke@1 1618 do {
duke@1 1619 ots = ots.tail;
duke@1 1620 if (ots.isEmpty()) {
duke@1 1621 log.error(pos,
duke@1 1622 "no.encl.instance.of.type.in.scope",
duke@1 1623 c);
jjg@816 1624 Assert.error();
duke@1 1625 return tree;
duke@1 1626 }
duke@1 1627 ot = ots.head;
duke@1 1628 } while (ot.owner != otc);
duke@1 1629 tree = access(make.at(pos).Select(tree, ot));
duke@1 1630 otc = ot.type.tsym;
duke@1 1631 }
duke@1 1632 return tree;
duke@1 1633 }
duke@1 1634
duke@1 1635 /** Return tree simulating the assignment <this.name = name>, where
duke@1 1636 * name is the name of a free variable.
duke@1 1637 */
duke@1 1638 JCStatement initField(int pos, Name name) {
duke@1 1639 Scope.Entry e = proxies.lookup(name);
duke@1 1640 Symbol rhs = e.sym;
jjg@816 1641 Assert.check(rhs.owner.kind == MTH);
duke@1 1642 Symbol lhs = e.next().sym;
jjg@816 1643 Assert.check(rhs.owner.owner == lhs.owner);
duke@1 1644 make.at(pos);
duke@1 1645 return
duke@1 1646 make.Exec(
duke@1 1647 make.Assign(
duke@1 1648 make.Select(make.This(lhs.owner.erasure(types)), lhs),
duke@1 1649 make.Ident(rhs)).setType(lhs.erasure(types)));
duke@1 1650 }
duke@1 1651
duke@1 1652 /** Return tree simulating the assignment <this.this$n = this$n>.
duke@1 1653 */
duke@1 1654 JCStatement initOuterThis(int pos) {
duke@1 1655 VarSymbol rhs = outerThisStack.head;
jjg@816 1656 Assert.check(rhs.owner.kind == MTH);
duke@1 1657 VarSymbol lhs = outerThisStack.tail.head;
jjg@816 1658 Assert.check(rhs.owner.owner == lhs.owner);
duke@1 1659 make.at(pos);
duke@1 1660 return
duke@1 1661 make.Exec(
duke@1 1662 make.Assign(
duke@1 1663 make.Select(make.This(lhs.owner.erasure(types)), lhs),
duke@1 1664 make.Ident(rhs)).setType(lhs.erasure(types)));
duke@1 1665 }
duke@1 1666
duke@1 1667 /**************************************************************************
duke@1 1668 * Code for .class
duke@1 1669 *************************************************************************/
duke@1 1670
duke@1 1671 /** Return the symbol of a class to contain a cache of
duke@1 1672 * compiler-generated statics such as class$ and the
duke@1 1673 * $assertionsDisabled flag. We create an anonymous nested class
duke@1 1674 * (unless one already exists) and return its symbol. However,
duke@1 1675 * for backward compatibility in 1.4 and earlier we use the
duke@1 1676 * top-level class itself.
duke@1 1677 */
duke@1 1678 private ClassSymbol outerCacheClass() {
duke@1 1679 ClassSymbol clazz = outermostClassDef.sym;
duke@1 1680 if ((clazz.flags() & INTERFACE) == 0 &&
duke@1 1681 !target.useInnerCacheClass()) return clazz;
duke@1 1682 Scope s = clazz.members();
duke@1 1683 for (Scope.Entry e = s.elems; e != null; e = e.sibling)
duke@1 1684 if (e.sym.kind == TYP &&
duke@1 1685 e.sym.name == names.empty &&
duke@1 1686 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
duke@1 1687 return makeEmptyClass(STATIC | SYNTHETIC, clazz);
duke@1 1688 }
duke@1 1689
duke@1 1690 /** Return symbol for "class$" method. If there is no method definition
duke@1 1691 * for class$, construct one as follows:
duke@1 1692 *
duke@1 1693 * class class$(String x0) {
duke@1 1694 * try {
duke@1 1695 * return Class.forName(x0);
duke@1 1696 * } catch (ClassNotFoundException x1) {
duke@1 1697 * throw new NoClassDefFoundError(x1.getMessage());
duke@1 1698 * }
duke@1 1699 * }
duke@1 1700 */
duke@1 1701 private MethodSymbol classDollarSym(DiagnosticPosition pos) {
duke@1 1702 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 1703 MethodSymbol classDollarSym =
duke@1 1704 (MethodSymbol)lookupSynthetic(classDollar,
duke@1 1705 outerCacheClass.members());
duke@1 1706 if (classDollarSym == null) {
duke@1 1707 classDollarSym = new MethodSymbol(
duke@1 1708 STATIC | SYNTHETIC,
duke@1 1709 classDollar,
duke@1 1710 new MethodType(
duke@1 1711 List.of(syms.stringType),
duke@1 1712 types.erasure(syms.classType),
duke@1 1713 List.<Type>nil(),
duke@1 1714 syms.methodClass),
duke@1 1715 outerCacheClass);
duke@1 1716 enterSynthetic(pos, classDollarSym, outerCacheClass.members());
duke@1 1717
duke@1 1718 JCMethodDecl md = make.MethodDef(classDollarSym, null);
duke@1 1719 try {
duke@1 1720 md.body = classDollarSymBody(pos, md);
duke@1 1721 } catch (CompletionFailure ex) {
duke@1 1722 md.body = make.Block(0, List.<JCStatement>nil());
duke@1 1723 chk.completionError(pos, ex);
duke@1 1724 }
duke@1 1725 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1726 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
duke@1 1727 }
duke@1 1728 return classDollarSym;
duke@1 1729 }
duke@1 1730
duke@1 1731 /** Generate code for class$(String name). */
duke@1 1732 JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
duke@1 1733 MethodSymbol classDollarSym = md.sym;
duke@1 1734 ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
duke@1 1735
duke@1 1736 JCBlock returnResult;
duke@1 1737
duke@1 1738 // in 1.4.2 and above, we use
duke@1 1739 // Class.forName(String name, boolean init, ClassLoader loader);
duke@1 1740 // which requires we cache the current loader in cl$
duke@1 1741 if (target.classLiteralsNoInit()) {
duke@1 1742 // clsym = "private static ClassLoader cl$"
duke@1 1743 VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
duke@1 1744 names.fromString("cl" + target.syntheticNameChar()),
duke@1 1745 syms.classLoaderType,
duke@1 1746 outerCacheClass);
duke@1 1747 enterSynthetic(pos, clsym, outerCacheClass.members());
duke@1 1748
duke@1 1749 // emit "private static ClassLoader cl$;"
duke@1 1750 JCVariableDecl cldef = make.VarDef(clsym, null);
duke@1 1751 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1752 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
duke@1 1753
duke@1 1754 // newcache := "new cache$1[0]"
duke@1 1755 JCNewArray newcache = make.
duke@1 1756 NewArray(make.Type(outerCacheClass.type),
duke@1 1757 List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
duke@1 1758 null);
duke@1 1759 newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
duke@1 1760 syms.arrayClass);
duke@1 1761
duke@1 1762 // forNameSym := java.lang.Class.forName(
duke@1 1763 // String s,boolean init,ClassLoader loader)
duke@1 1764 Symbol forNameSym = lookupMethod(make_pos, names.forName,
duke@1 1765 types.erasure(syms.classType),
duke@1 1766 List.of(syms.stringType,
duke@1 1767 syms.booleanType,
duke@1 1768 syms.classLoaderType));
duke@1 1769 // clvalue := "(cl$ == null) ?
duke@1 1770 // $newcache.getClass().getComponentType().getClassLoader() : cl$"
duke@1 1771 JCExpression clvalue =
duke@1 1772 make.Conditional(
duke@1 1773 makeBinary(JCTree.EQ, make.Ident(clsym), makeNull()),
duke@1 1774 make.Assign(
duke@1 1775 make.Ident(clsym),
duke@1 1776 makeCall(
duke@1 1777 makeCall(makeCall(newcache,
duke@1 1778 names.getClass,
duke@1 1779 List.<JCExpression>nil()),
duke@1 1780 names.getComponentType,
duke@1 1781 List.<JCExpression>nil()),
duke@1 1782 names.getClassLoader,
duke@1 1783 List.<JCExpression>nil())).setType(syms.classLoaderType),
duke@1 1784 make.Ident(clsym)).setType(syms.classLoaderType);
duke@1 1785
duke@1 1786 // returnResult := "{ return Class.forName(param1, false, cl$); }"
duke@1 1787 List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
duke@1 1788 makeLit(syms.booleanType, 0),
duke@1 1789 clvalue);
duke@1 1790 returnResult = make.
duke@1 1791 Block(0, List.<JCStatement>of(make.
duke@1 1792 Call(make. // return
duke@1 1793 App(make.
duke@1 1794 Ident(forNameSym), args))));
duke@1 1795 } else {
duke@1 1796 // forNameSym := java.lang.Class.forName(String s)
duke@1 1797 Symbol forNameSym = lookupMethod(make_pos,
duke@1 1798 names.forName,
duke@1 1799 types.erasure(syms.classType),
duke@1 1800 List.of(syms.stringType));
duke@1 1801 // returnResult := "{ return Class.forName(param1); }"
duke@1 1802 returnResult = make.
duke@1 1803 Block(0, List.of(make.
duke@1 1804 Call(make. // return
duke@1 1805 App(make.
duke@1 1806 QualIdent(forNameSym),
duke@1 1807 List.<JCExpression>of(make.
duke@1 1808 Ident(md.params.
duke@1 1809 head.sym))))));
duke@1 1810 }
duke@1 1811
duke@1 1812 // catchParam := ClassNotFoundException e1
duke@1 1813 VarSymbol catchParam =
duke@1 1814 new VarSymbol(0, make.paramName(1),
duke@1 1815 syms.classNotFoundExceptionType,
duke@1 1816 classDollarSym);
duke@1 1817
duke@1 1818 JCStatement rethrow;
duke@1 1819 if (target.hasInitCause()) {
duke@1 1820 // rethrow = "throw new NoClassDefFoundError().initCause(e);
duke@1 1821 JCTree throwExpr =
duke@1 1822 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
duke@1 1823 List.<JCExpression>nil()),
duke@1 1824 names.initCause,
duke@1 1825 List.<JCExpression>of(make.Ident(catchParam)));
duke@1 1826 rethrow = make.Throw(throwExpr);
duke@1 1827 } else {
duke@1 1828 // getMessageSym := ClassNotFoundException.getMessage()
duke@1 1829 Symbol getMessageSym = lookupMethod(make_pos,
duke@1 1830 names.getMessage,
duke@1 1831 syms.classNotFoundExceptionType,
duke@1 1832 List.<Type>nil());
duke@1 1833 // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
duke@1 1834 rethrow = make.
duke@1 1835 Throw(makeNewClass(syms.noClassDefFoundErrorType,
duke@1 1836 List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
duke@1 1837 getMessageSym),
duke@1 1838 List.<JCExpression>nil()))));
duke@1 1839 }
duke@1 1840
duke@1 1841 // rethrowStmt := "( $rethrow )"
duke@1 1842 JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
duke@1 1843
duke@1 1844 // catchBlock := "catch ($catchParam) $rethrowStmt"
duke@1 1845 JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
duke@1 1846 rethrowStmt);
duke@1 1847
duke@1 1848 // tryCatch := "try $returnResult $catchBlock"
duke@1 1849 JCStatement tryCatch = make.Try(returnResult,
duke@1 1850 List.of(catchBlock), null);
duke@1 1851
duke@1 1852 return make.Block(0, List.of(tryCatch));
duke@1 1853 }
duke@1 1854 // where
duke@1 1855 /** Create an attributed tree of the form left.name(). */
duke@1 1856 private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
jjg@816 1857 Assert.checkNonNull(left.type);
duke@1 1858 Symbol funcsym = lookupMethod(make_pos, name, left.type,
duke@1 1859 TreeInfo.types(args));
duke@1 1860 return make.App(make.Select(left, funcsym), args);
duke@1 1861 }
duke@1 1862
duke@1 1863 /** The Name Of The variable to cache T.class values.
duke@1 1864 * @param sig The signature of type T.
duke@1 1865 */
duke@1 1866 private Name cacheName(String sig) {
duke@1 1867 StringBuffer buf = new StringBuffer();
duke@1 1868 if (sig.startsWith("[")) {
duke@1 1869 buf = buf.append("array");
duke@1 1870 while (sig.startsWith("[")) {
duke@1 1871 buf = buf.append(target.syntheticNameChar());
duke@1 1872 sig = sig.substring(1);
duke@1 1873 }
duke@1 1874 if (sig.startsWith("L")) {
duke@1 1875 sig = sig.substring(0, sig.length() - 1);
duke@1 1876 }
duke@1 1877 } else {
duke@1 1878 buf = buf.append("class" + target.syntheticNameChar());
duke@1 1879 }
duke@1 1880 buf = buf.append(sig.replace('.', target.syntheticNameChar()));
duke@1 1881 return names.fromString(buf.toString());
duke@1 1882 }
duke@1 1883
duke@1 1884 /** The variable symbol that caches T.class values.
duke@1 1885 * If none exists yet, create a definition.
duke@1 1886 * @param sig The signature of type T.
duke@1 1887 * @param pos The position to report diagnostics, if any.
duke@1 1888 */
duke@1 1889 private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
duke@1 1890 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 1891 Name cname = cacheName(sig);
duke@1 1892 VarSymbol cacheSym =
duke@1 1893 (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
duke@1 1894 if (cacheSym == null) {
duke@1 1895 cacheSym = new VarSymbol(
duke@1 1896 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
duke@1 1897 enterSynthetic(pos, cacheSym, outerCacheClass.members());
duke@1 1898
duke@1 1899 JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
duke@1 1900 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1901 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
duke@1 1902 }
duke@1 1903 return cacheSym;
duke@1 1904 }
duke@1 1905
duke@1 1906 /** The tree simulating a T.class expression.
duke@1 1907 * @param clazz The tree identifying type T.
duke@1 1908 */
duke@1 1909 private JCExpression classOf(JCTree clazz) {
duke@1 1910 return classOfType(clazz.type, clazz.pos());
duke@1 1911 }
duke@1 1912
duke@1 1913 private JCExpression classOfType(Type type, DiagnosticPosition pos) {
duke@1 1914 switch (type.tag) {
duke@1 1915 case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
duke@1 1916 case DOUBLE: case BOOLEAN: case VOID:
duke@1 1917 // replace with <BoxedClass>.TYPE
duke@1 1918 ClassSymbol c = types.boxedClass(type);
duke@1 1919 Symbol typeSym =
duke@1 1920 rs.access(
duke@1 1921 rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
duke@1 1922 pos, c.type, names.TYPE, true);
duke@1 1923 if (typeSym.kind == VAR)
duke@1 1924 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
duke@1 1925 return make.QualIdent(typeSym);
duke@1 1926 case CLASS: case ARRAY:
duke@1 1927 if (target.hasClassLiterals()) {
duke@1 1928 VarSymbol sym = new VarSymbol(
duke@1 1929 STATIC | PUBLIC | FINAL, names._class,
duke@1 1930 syms.classType, type.tsym);
duke@1 1931 return make_at(pos).Select(make.Type(type), sym);
duke@1 1932 }
duke@1 1933 // replace with <cache == null ? cache = class$(tsig) : cache>
duke@1 1934 // where
duke@1 1935 // - <tsig> is the type signature of T,
duke@1 1936 // - <cache> is the cache variable for tsig.
duke@1 1937 String sig =
duke@1 1938 writer.xClassName(type).toString().replace('/', '.');
duke@1 1939 Symbol cs = cacheSym(pos, sig);
duke@1 1940 return make_at(pos).Conditional(
duke@1 1941 makeBinary(JCTree.EQ, make.Ident(cs), makeNull()),
duke@1 1942 make.Assign(
duke@1 1943 make.Ident(cs),
duke@1 1944 make.App(
duke@1 1945 make.Ident(classDollarSym(pos)),
duke@1 1946 List.<JCExpression>of(make.Literal(CLASS, sig)
duke@1 1947 .setType(syms.stringType))))
duke@1 1948 .setType(types.erasure(syms.classType)),
duke@1 1949 make.Ident(cs)).setType(types.erasure(syms.classType));
duke@1 1950 default:
duke@1 1951 throw new AssertionError();
duke@1 1952 }
duke@1 1953 }
duke@1 1954
duke@1 1955 /**************************************************************************
duke@1 1956 * Code for enabling/disabling assertions.
duke@1 1957 *************************************************************************/
duke@1 1958
duke@1 1959 // This code is not particularly robust if the user has
duke@1 1960 // previously declared a member named '$assertionsDisabled'.
duke@1 1961 // The same faulty idiom also appears in the translation of
duke@1 1962 // class literals above. We should report an error if a
duke@1 1963 // previous declaration is not synthetic.
duke@1 1964
duke@1 1965 private JCExpression assertFlagTest(DiagnosticPosition pos) {
duke@1 1966 // Outermost class may be either true class or an interface.
duke@1 1967 ClassSymbol outermostClass = outermostClassDef.sym;
duke@1 1968
duke@1 1969 // note that this is a class, as an interface can't contain a statement.
duke@1 1970 ClassSymbol container = currentClass;
duke@1 1971
duke@1 1972 VarSymbol assertDisabledSym =
duke@1 1973 (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
duke@1 1974 container.members());
duke@1 1975 if (assertDisabledSym == null) {
duke@1 1976 assertDisabledSym =
duke@1 1977 new VarSymbol(STATIC | FINAL | SYNTHETIC,
duke@1 1978 dollarAssertionsDisabled,
duke@1 1979 syms.booleanType,
duke@1 1980 container);
duke@1 1981 enterSynthetic(pos, assertDisabledSym, container.members());
duke@1 1982 Symbol desiredAssertionStatusSym = lookupMethod(pos,
duke@1 1983 names.desiredAssertionStatus,
duke@1 1984 types.erasure(syms.classType),
duke@1 1985 List.<Type>nil());
duke@1 1986 JCClassDecl containerDef = classDef(container);
duke@1 1987 make_at(containerDef.pos());
duke@1 1988 JCExpression notStatus = makeUnary(JCTree.NOT, make.App(make.Select(
duke@1 1989 classOfType(types.erasure(outermostClass.type),
duke@1 1990 containerDef.pos()),
duke@1 1991 desiredAssertionStatusSym)));
duke@1 1992 JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
duke@1 1993 notStatus);
duke@1 1994 containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
duke@1 1995 }
duke@1 1996 make_at(pos);
duke@1 1997 return makeUnary(JCTree.NOT, make.Ident(assertDisabledSym));
duke@1 1998 }
duke@1 1999
duke@1 2000
duke@1 2001 /**************************************************************************
duke@1 2002 * Building blocks for let expressions
duke@1 2003 *************************************************************************/
duke@1 2004
duke@1 2005 interface TreeBuilder {
duke@1 2006 JCTree build(JCTree arg);
duke@1 2007 }
duke@1 2008
duke@1 2009 /** Construct an expression using the builder, with the given rval
duke@1 2010 * expression as an argument to the builder. However, the rval
duke@1 2011 * expression must be computed only once, even if used multiple
duke@1 2012 * times in the result of the builder. We do that by
duke@1 2013 * constructing a "let" expression that saves the rvalue into a
duke@1 2014 * temporary variable and then uses the temporary variable in
duke@1 2015 * place of the expression built by the builder. The complete
duke@1 2016 * resulting expression is of the form
duke@1 2017 * <pre>
duke@1 2018 * (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
duke@1 2019 * in (<b>BUILDER</b>(<b>TEMP</b>)))
duke@1 2020 * </pre>
duke@1 2021 * where <code><b>TEMP</b></code> is a newly declared variable
duke@1 2022 * in the let expression.
duke@1 2023 */
duke@1 2024 JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
duke@1 2025 rval = TreeInfo.skipParens(rval);
duke@1 2026 switch (rval.getTag()) {
duke@1 2027 case JCTree.LITERAL:
duke@1 2028 return builder.build(rval);
duke@1 2029 case JCTree.IDENT:
duke@1 2030 JCIdent id = (JCIdent) rval;
duke@1 2031 if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
duke@1 2032 return builder.build(rval);
duke@1 2033 }
duke@1 2034 VarSymbol var =
duke@1 2035 new VarSymbol(FINAL|SYNTHETIC,
jjg@113 2036 names.fromString(
duke@1 2037 target.syntheticNameChar()
duke@1 2038 + "" + rval.hashCode()),
duke@1 2039 type,
duke@1 2040 currentMethodSym);
mcimadamore@4 2041 rval = convert(rval,type);
duke@1 2042 JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
duke@1 2043 JCTree built = builder.build(make.Ident(var));
duke@1 2044 JCTree res = make.LetExpr(def, built);
duke@1 2045 res.type = built.type;
duke@1 2046 return res;
duke@1 2047 }
duke@1 2048
duke@1 2049 // same as above, with the type of the temporary variable computed
duke@1 2050 JCTree abstractRval(JCTree rval, TreeBuilder builder) {
duke@1 2051 return abstractRval(rval, rval.type, builder);
duke@1 2052 }
duke@1 2053
duke@1 2054 // same as above, but for an expression that may be used as either
duke@1 2055 // an rvalue or an lvalue. This requires special handling for
duke@1 2056 // Select expressions, where we place the left-hand-side of the
duke@1 2057 // select in a temporary, and for Indexed expressions, where we
duke@1 2058 // place both the indexed expression and the index value in temps.
duke@1 2059 JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
duke@1 2060 lval = TreeInfo.skipParens(lval);
duke@1 2061 switch (lval.getTag()) {
duke@1 2062 case JCTree.IDENT:
duke@1 2063 return builder.build(lval);
duke@1 2064 case JCTree.SELECT: {
duke@1 2065 final JCFieldAccess s = (JCFieldAccess)lval;
duke@1 2066 JCTree selected = TreeInfo.skipParens(s.selected);
duke@1 2067 Symbol lid = TreeInfo.symbol(s.selected);
duke@1 2068 if (lid != null && lid.kind == TYP) return builder.build(lval);
duke@1 2069 return abstractRval(s.selected, new TreeBuilder() {
duke@1 2070 public JCTree build(final JCTree selected) {
duke@1 2071 return builder.build(make.Select((JCExpression)selected, s.sym));
duke@1 2072 }
duke@1 2073 });
duke@1 2074 }
duke@1 2075 case JCTree.INDEXED: {
duke@1 2076 final JCArrayAccess i = (JCArrayAccess)lval;
duke@1 2077 return abstractRval(i.indexed, new TreeBuilder() {
duke@1 2078 public JCTree build(final JCTree indexed) {
duke@1 2079 return abstractRval(i.index, syms.intType, new TreeBuilder() {
duke@1 2080 public JCTree build(final JCTree index) {
duke@1 2081 JCTree newLval = make.Indexed((JCExpression)indexed,
duke@1 2082 (JCExpression)index);
duke@1 2083 newLval.setType(i.type);
duke@1 2084 return builder.build(newLval);
duke@1 2085 }
duke@1 2086 });
duke@1 2087 }
duke@1 2088 });
duke@1 2089 }
mcimadamore@133 2090 case JCTree.TYPECAST: {
mcimadamore@133 2091 return abstractLval(((JCTypeCast)lval).expr, builder);
mcimadamore@133 2092 }
duke@1 2093 }
duke@1 2094 throw new AssertionError(lval);
duke@1 2095 }
duke@1 2096
duke@1 2097 // evaluate and discard the first expression, then evaluate the second.
duke@1 2098 JCTree makeComma(final JCTree expr1, final JCTree expr2) {
duke@1 2099 return abstractRval(expr1, new TreeBuilder() {
duke@1 2100 public JCTree build(final JCTree discarded) {
duke@1 2101 return expr2;
duke@1 2102 }
duke@1 2103 });
duke@1 2104 }
duke@1 2105
duke@1 2106 /**************************************************************************
duke@1 2107 * Translation methods
duke@1 2108 *************************************************************************/
duke@1 2109
duke@1 2110 /** Visitor argument: enclosing operator node.
duke@1 2111 */
duke@1 2112 private JCExpression enclOp;
duke@1 2113
duke@1 2114 /** Visitor method: Translate a single node.
duke@1 2115 * Attach the source position from the old tree to its replacement tree.
duke@1 2116 */
duke@1 2117 public <T extends JCTree> T translate(T tree) {
duke@1 2118 if (tree == null) {
duke@1 2119 return null;
duke@1 2120 } else {
duke@1 2121 make_at(tree.pos());
duke@1 2122 T result = super.translate(tree);
duke@1 2123 if (endPositions != null && result != tree) {
duke@1 2124 Integer endPos = endPositions.remove(tree);
duke@1 2125 if (endPos != null) endPositions.put(result, endPos);
duke@1 2126 }
duke@1 2127 return result;
duke@1 2128 }
duke@1 2129 }
duke@1 2130
duke@1 2131 /** Visitor method: Translate a single node, boxing or unboxing if needed.
duke@1 2132 */
duke@1 2133 public <T extends JCTree> T translate(T tree, Type type) {
duke@1 2134 return (tree == null) ? null : boxIfNeeded(translate(tree), type);
duke@1 2135 }
duke@1 2136
duke@1 2137 /** Visitor method: Translate tree.
duke@1 2138 */
duke@1 2139 public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
duke@1 2140 JCExpression prevEnclOp = this.enclOp;
duke@1 2141 this.enclOp = enclOp;
duke@1 2142 T res = translate(tree);
duke@1 2143 this.enclOp = prevEnclOp;
duke@1 2144 return res;
duke@1 2145 }
duke@1 2146
duke@1 2147 /** Visitor method: Translate list of trees.
duke@1 2148 */
duke@1 2149 public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
duke@1 2150 JCExpression prevEnclOp = this.enclOp;
duke@1 2151 this.enclOp = enclOp;
duke@1 2152 List<T> res = translate(trees);
duke@1 2153 this.enclOp = prevEnclOp;
duke@1 2154 return res;
duke@1 2155 }
duke@1 2156
duke@1 2157 /** Visitor method: Translate list of trees.
duke@1 2158 */
duke@1 2159 public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
duke@1 2160 if (trees == null) return null;
duke@1 2161 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
duke@1 2162 l.head = translate(l.head, type);
duke@1 2163 return trees;
duke@1 2164 }
duke@1 2165
duke@1 2166 public void visitTopLevel(JCCompilationUnit tree) {
jjg@657 2167 if (needPackageInfoClass(tree)) {
duke@1 2168 Name name = names.package_info;
duke@1 2169 long flags = Flags.ABSTRACT | Flags.INTERFACE;
duke@1 2170 if (target.isPackageInfoSynthetic())
duke@1 2171 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
duke@1 2172 flags = flags | Flags.SYNTHETIC;
duke@1 2173 JCClassDecl packageAnnotationsClass
duke@1 2174 = make.ClassDef(make.Modifiers(flags,
duke@1 2175 tree.packageAnnotations),
duke@1 2176 name, List.<JCTypeParameter>nil(),
duke@1 2177 null, List.<JCExpression>nil(), List.<JCTree>nil());
jjg@483 2178 ClassSymbol c = tree.packge.package_info;
jjg@483 2179 c.flags_field |= flags;
duke@1 2180 c.attributes_field = tree.packge.attributes_field;
duke@1 2181 ClassType ctype = (ClassType) c.type;
duke@1 2182 ctype.supertype_field = syms.objectType;
duke@1 2183 ctype.interfaces_field = List.nil();
duke@1 2184 packageAnnotationsClass.sym = c;
duke@1 2185
duke@1 2186 translated.append(packageAnnotationsClass);
duke@1 2187 }
duke@1 2188 }
jjg@657 2189 // where
jjg@657 2190 private boolean needPackageInfoClass(JCCompilationUnit tree) {
jjg@657 2191 switch (pkginfoOpt) {
jjg@657 2192 case ALWAYS:
jjg@657 2193 return true;
jjg@657 2194 case LEGACY:
jjg@657 2195 return tree.packageAnnotations.nonEmpty();
jjg@657 2196 case NONEMPTY:
jjg@657 2197 for (Attribute.Compound a: tree.packge.attributes_field) {
jjg@657 2198 Attribute.RetentionPolicy p = types.getRetention(a);
jjg@657 2199 if (p != Attribute.RetentionPolicy.SOURCE)
jjg@657 2200 return true;
jjg@657 2201 }
jjg@657 2202 return false;
jjg@657 2203 }
jjg@657 2204 throw new AssertionError();
jjg@657 2205 }
duke@1 2206
duke@1 2207 public void visitClassDef(JCClassDecl tree) {
duke@1 2208 ClassSymbol currentClassPrev = currentClass;
duke@1 2209 MethodSymbol currentMethodSymPrev = currentMethodSym;
duke@1 2210 currentClass = tree.sym;
duke@1 2211 currentMethodSym = null;
duke@1 2212 classdefs.put(currentClass, tree);
duke@1 2213
duke@1 2214 proxies = proxies.dup(currentClass);
duke@1 2215 List<VarSymbol> prevOuterThisStack = outerThisStack;
duke@1 2216
duke@1 2217 // If this is an enum definition
duke@1 2218 if ((tree.mods.flags & ENUM) != 0 &&
duke@1 2219 (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
duke@1 2220 visitEnumDef(tree);
duke@1 2221
duke@1 2222 // If this is a nested class, define a this$n field for
duke@1 2223 // it and add to proxies.
duke@1 2224 JCVariableDecl otdef = null;
duke@1 2225 if (currentClass.hasOuterInstance())
duke@1 2226 otdef = outerThisDef(tree.pos, currentClass);
duke@1 2227
duke@1 2228 // If this is a local class, define proxies for all its free variables.
duke@1 2229 List<JCVariableDecl> fvdefs = freevarDefs(
duke@1 2230 tree.pos, freevars(currentClass), currentClass);
duke@1 2231
duke@1 2232 // Recursively translate superclass, interfaces.
duke@1 2233 tree.extending = translate(tree.extending);
duke@1 2234 tree.implementing = translate(tree.implementing);
duke@1 2235
duke@1 2236 // Recursively translate members, taking into account that new members
duke@1 2237 // might be created during the translation and prepended to the member
duke@1 2238 // list `tree.defs'.
duke@1 2239 List<JCTree> seen = List.nil();
duke@1 2240 while (tree.defs != seen) {
duke@1 2241 List<JCTree> unseen = tree.defs;
duke@1 2242 for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
duke@1 2243 JCTree outermostMemberDefPrev = outermostMemberDef;
duke@1 2244 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
duke@1 2245 l.head = translate(l.head);
duke@1 2246 outermostMemberDef = outermostMemberDefPrev;
duke@1 2247 }
duke@1 2248 seen = unseen;
duke@1 2249 }
duke@1 2250
duke@1 2251 // Convert a protected modifier to public, mask static modifier.
duke@1 2252 if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
duke@1 2253 tree.mods.flags &= ClassFlags;
duke@1 2254
duke@1 2255 // Convert name to flat representation, replacing '.' by '$'.
duke@1 2256 tree.name = Convert.shortName(currentClass.flatName());
duke@1 2257
duke@1 2258 // Add this$n and free variables proxy definitions to class.
duke@1 2259 for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
duke@1 2260 tree.defs = tree.defs.prepend(l.head);
duke@1 2261 enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
duke@1 2262 }
duke@1 2263 if (currentClass.hasOuterInstance()) {
duke@1 2264 tree.defs = tree.defs.prepend(otdef);
duke@1 2265 enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
duke@1 2266 }
duke@1 2267
duke@1 2268 proxies = proxies.leave();
duke@1 2269 outerThisStack = prevOuterThisStack;
duke@1 2270
duke@1 2271 // Append translated tree to `translated' queue.
duke@1 2272 translated.append(tree);
duke@1 2273
duke@1 2274 currentClass = currentClassPrev;
duke@1 2275 currentMethodSym = currentMethodSymPrev;
duke@1 2276
duke@1 2277 // Return empty block {} as a placeholder for an inner class.
duke@1 2278 result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
duke@1 2279 }
duke@1 2280
duke@1 2281 /** Translate an enum class. */
duke@1 2282 private void visitEnumDef(JCClassDecl tree) {
duke@1 2283 make_at(tree.pos());
duke@1 2284
duke@1 2285 // add the supertype, if needed
duke@1 2286 if (tree.extending == null)
duke@1 2287 tree.extending = make.Type(types.supertype(tree.type));
duke@1 2288
duke@1 2289 // classOfType adds a cache field to tree.defs unless
duke@1 2290 // target.hasClassLiterals().
duke@1 2291 JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
duke@1 2292 setType(types.erasure(syms.classType));
duke@1 2293
duke@1 2294 // process each enumeration constant, adding implicit constructor parameters
duke@1 2295 int nextOrdinal = 0;
duke@1 2296 ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
duke@1 2297 ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
duke@1 2298 ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
duke@1 2299 for (List<JCTree> defs = tree.defs;
duke@1 2300 defs.nonEmpty();
duke@1 2301 defs=defs.tail) {
duke@1 2302 if (defs.head.getTag() == JCTree.VARDEF && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
duke@1 2303 JCVariableDecl var = (JCVariableDecl)defs.head;
duke@1 2304 visitEnumConstantDef(var, nextOrdinal++);
duke@1 2305 values.append(make.QualIdent(var.sym));
duke@1 2306 enumDefs.append(var);
duke@1 2307 } else {
duke@1 2308 otherDefs.append(defs.head);
duke@1 2309 }
duke@1 2310 }
duke@1 2311
duke@1 2312 // private static final T[] #VALUES = { a, b, c };
duke@1 2313 Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
duke@1 2314 while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
duke@1 2315 valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
duke@1 2316 Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
duke@1 2317 VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
duke@1 2318 valuesName,
duke@1 2319 arrayType,
duke@1 2320 tree.type.tsym);
duke@1 2321 JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
duke@1 2322 List.<JCExpression>nil(),
duke@1 2323 values.toList());
duke@1 2324 newArray.type = arrayType;
duke@1 2325 enumDefs.append(make.VarDef(valuesVar, newArray));
duke@1 2326 tree.sym.members().enter(valuesVar);
duke@1 2327
duke@1 2328 Symbol valuesSym = lookupMethod(tree.pos(), names.values,
duke@1 2329 tree.type, List.<Type>nil());
jjg@86 2330 List<JCStatement> valuesBody;
jjg@86 2331 if (useClone()) {
jjg@86 2332 // return (T[]) $VALUES.clone();
jjg@86 2333 JCTypeCast valuesResult =
jjg@86 2334 make.TypeCast(valuesSym.type.getReturnType(),
jjg@86 2335 make.App(make.Select(make.Ident(valuesVar),
jjg@86 2336 syms.arrayCloneMethod)));
jjg@86 2337 valuesBody = List.<JCStatement>of(make.Return(valuesResult));
jjg@86 2338 } else {
jjg@86 2339 // template: T[] $result = new T[$values.length];
jjg@86 2340 Name resultName = names.fromString(target.syntheticNameChar() + "result");
jjg@86 2341 while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
jjg@86 2342 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
jjg@86 2343 VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
jjg@86 2344 resultName,
jjg@86 2345 arrayType,
jjg@86 2346 valuesSym);
jjg@86 2347 JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
jjg@86 2348 List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
jjg@86 2349 null);
jjg@86 2350 resultArray.type = arrayType;
jjg@86 2351 JCVariableDecl decl = make.VarDef(resultVar, resultArray);
jjg@86 2352
jjg@86 2353 // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
jjg@86 2354 if (systemArraycopyMethod == null) {
jjg@86 2355 systemArraycopyMethod =
jjg@86 2356 new MethodSymbol(PUBLIC | STATIC,
jjg@86 2357 names.fromString("arraycopy"),
jjg@86 2358 new MethodType(List.<Type>of(syms.objectType,
jjg@86 2359 syms.intType,
jjg@86 2360 syms.objectType,
jjg@86 2361 syms.intType,
jjg@86 2362 syms.intType),
jjg@86 2363 syms.voidType,
jjg@86 2364 List.<Type>nil(),
jjg@86 2365 syms.methodClass),
jjg@86 2366 syms.systemType.tsym);
jjg@86 2367 }
jjg@86 2368 JCStatement copy =
jjg@86 2369 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
jjg@86 2370 systemArraycopyMethod),
jjg@86 2371 List.of(make.Ident(valuesVar), make.Literal(0),
jjg@86 2372 make.Ident(resultVar), make.Literal(0),
jjg@86 2373 make.Select(make.Ident(valuesVar), syms.lengthVar))));
jjg@86 2374
jjg@86 2375 // template: return $result;
jjg@86 2376 JCStatement ret = make.Return(make.Ident(resultVar));
jjg@86 2377 valuesBody = List.<JCStatement>of(decl, copy, ret);
jjg@86 2378 }
jjg@86 2379
duke@1 2380 JCMethodDecl valuesDef =
jjg@86 2381 make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
jjg@86 2382
duke@1 2383 enumDefs.append(valuesDef);
duke@1 2384
jjg@86 2385 if (debugLower)
jjg@86 2386 System.err.println(tree.sym + ".valuesDef = " + valuesDef);
jjg@86 2387
duke@1 2388 /** The template for the following code is:
duke@1 2389 *
duke@1 2390 * public static E valueOf(String name) {
duke@1 2391 * return (E)Enum.valueOf(E.class, name);
duke@1 2392 * }
duke@1 2393 *
duke@1 2394 * where E is tree.sym
duke@1 2395 */
duke@1 2396 MethodSymbol valueOfSym = lookupMethod(tree.pos(),
duke@1 2397 names.valueOf,
duke@1 2398 tree.sym.type,
duke@1 2399 List.of(syms.stringType));
jjg@816 2400 Assert.check((valueOfSym.flags() & STATIC) != 0);
duke@1 2401 VarSymbol nameArgSym = valueOfSym.params.head;
duke@1 2402 JCIdent nameVal = make.Ident(nameArgSym);
duke@1 2403 JCStatement enum_ValueOf =
duke@1 2404 make.Return(make.TypeCast(tree.sym.type,
duke@1 2405 makeCall(make.Ident(syms.enumSym),
duke@1 2406 names.valueOf,
duke@1 2407 List.of(e_class, nameVal))));
duke@1 2408 JCMethodDecl valueOf = make.MethodDef(valueOfSym,
duke@1 2409 make.Block(0, List.of(enum_ValueOf)));
duke@1 2410 nameVal.sym = valueOf.params.head.sym;
duke@1 2411 if (debugLower)
duke@1 2412 System.err.println(tree.sym + ".valueOf = " + valueOf);
duke@1 2413 enumDefs.append(valueOf);
duke@1 2414
duke@1 2415 enumDefs.appendList(otherDefs.toList());
duke@1 2416 tree.defs = enumDefs.toList();
duke@1 2417
duke@1 2418 // Add the necessary members for the EnumCompatibleMode
duke@1 2419 if (target.compilerBootstrap(tree.sym)) {
duke@1 2420 addEnumCompatibleMembers(tree);
duke@1 2421 }
duke@1 2422 }
jjg@86 2423 // where
jjg@86 2424 private MethodSymbol systemArraycopyMethod;
jjg@86 2425 private boolean useClone() {
jjg@86 2426 try {
jjg@86 2427 Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
jjg@86 2428 return (e.sym != null);
jjg@86 2429 }
jjg@86 2430 catch (CompletionFailure e) {
jjg@86 2431 return false;
jjg@86 2432 }
jjg@86 2433 }
duke@1 2434
duke@1 2435 /** Translate an enumeration constant and its initializer. */
duke@1 2436 private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
duke@1 2437 JCNewClass varDef = (JCNewClass)var.init;
duke@1 2438 varDef.args = varDef.args.
duke@1 2439 prepend(makeLit(syms.intType, ordinal)).
duke@1 2440 prepend(makeLit(syms.stringType, var.name.toString()));
duke@1 2441 }
duke@1 2442
duke@1 2443 public void visitMethodDef(JCMethodDecl tree) {
duke@1 2444 if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
duke@1 2445 // Add "String $enum$name, int $enum$ordinal" to the beginning of the
duke@1 2446 // argument list for each constructor of an enum.
duke@1 2447 JCVariableDecl nameParam = make_at(tree.pos()).
duke@1 2448 Param(names.fromString(target.syntheticNameChar() +
duke@1 2449 "enum" + target.syntheticNameChar() + "name"),
duke@1 2450 syms.stringType, tree.sym);
duke@1 2451 nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
duke@1 2452
duke@1 2453 JCVariableDecl ordParam = make.
duke@1 2454 Param(names.fromString(target.syntheticNameChar() +
duke@1 2455 "enum" + target.syntheticNameChar() +
duke@1 2456 "ordinal"),
duke@1 2457 syms.intType, tree.sym);
duke@1 2458 ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
duke@1 2459
duke@1 2460 tree.params = tree.params.prepend(ordParam).prepend(nameParam);
duke@1 2461
duke@1 2462 MethodSymbol m = tree.sym;
duke@1 2463 Type olderasure = m.erasure(types);
duke@1 2464 m.erasure_field = new MethodType(
duke@1 2465 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
duke@1 2466 olderasure.getReturnType(),
duke@1 2467 olderasure.getThrownTypes(),
duke@1 2468 syms.methodClass);
duke@1 2469
duke@1 2470 if (target.compilerBootstrap(m.owner)) {
duke@1 2471 // Initialize synthetic name field
duke@1 2472 Symbol nameVarSym = lookupSynthetic(names.fromString("$name"),
duke@1 2473 tree.sym.owner.members());
duke@1 2474 JCIdent nameIdent = make.Ident(nameParam.sym);
duke@1 2475 JCIdent id1 = make.Ident(nameVarSym);
duke@1 2476 JCAssign newAssign = make.Assign(id1, nameIdent);
duke@1 2477 newAssign.type = id1.type;
duke@1 2478 JCExpressionStatement nameAssign = make.Exec(newAssign);
duke@1 2479 nameAssign.type = id1.type;
duke@1 2480 tree.body.stats = tree.body.stats.prepend(nameAssign);
duke@1 2481
duke@1 2482 // Initialize synthetic ordinal field
duke@1 2483 Symbol ordinalVarSym = lookupSynthetic(names.fromString("$ordinal"),
duke@1 2484 tree.sym.owner.members());
duke@1 2485 JCIdent ordIdent = make.Ident(ordParam.sym);
duke@1 2486 id1 = make.Ident(ordinalVarSym);
duke@1 2487 newAssign = make.Assign(id1, ordIdent);
duke@1 2488 newAssign.type = id1.type;
duke@1 2489 JCExpressionStatement ordinalAssign = make.Exec(newAssign);
duke@1 2490 ordinalAssign.type = id1.type;
duke@1 2491 tree.body.stats = tree.body.stats.prepend(ordinalAssign);
duke@1 2492 }
duke@1 2493 }
duke@1 2494
duke@1 2495 JCMethodDecl prevMethodDef = currentMethodDef;
duke@1 2496 MethodSymbol prevMethodSym = currentMethodSym;
duke@1 2497 try {
duke@1 2498 currentMethodDef = tree;
duke@1 2499 currentMethodSym = tree.sym;
duke@1 2500 visitMethodDefInternal(tree);
duke@1 2501 } finally {
duke@1 2502 currentMethodDef = prevMethodDef;
duke@1 2503 currentMethodSym = prevMethodSym;
duke@1 2504 }
duke@1 2505 }
duke@1 2506 //where
duke@1 2507 private void visitMethodDefInternal(JCMethodDecl tree) {
duke@1 2508 if (tree.name == names.init &&
duke@1 2509 (currentClass.isInner() ||
duke@1 2510 (currentClass.owner.kind & (VAR | MTH)) != 0)) {
duke@1 2511 // We are seeing a constructor of an inner class.
duke@1 2512 MethodSymbol m = tree.sym;
duke@1 2513
duke@1 2514 // Push a new proxy scope for constructor parameters.
duke@1 2515 // and create definitions for any this$n and proxy parameters.
duke@1 2516 proxies = proxies.dup(m);
duke@1 2517 List<VarSymbol> prevOuterThisStack = outerThisStack;
duke@1 2518 List<VarSymbol> fvs = freevars(currentClass);
duke@1 2519 JCVariableDecl otdef = null;
duke@1 2520 if (currentClass.hasOuterInstance())
duke@1 2521 otdef = outerThisDef(tree.pos, m);
duke@1 2522 List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m);
duke@1 2523
duke@1 2524 // Recursively translate result type, parameters and thrown list.
duke@1 2525 tree.restype = translate(tree.restype);
duke@1 2526 tree.params = translateVarDefs(tree.params);
duke@1 2527 tree.thrown = translate(tree.thrown);
duke@1 2528
duke@1 2529 // when compiling stubs, don't process body
duke@1 2530 if (tree.body == null) {
duke@1 2531 result = tree;
duke@1 2532 return;
duke@1 2533 }
duke@1 2534
duke@1 2535 // Add this$n (if needed) in front of and free variables behind
duke@1 2536 // constructor parameter list.
duke@1 2537 tree.params = tree.params.appendList(fvdefs);
duke@1 2538 if (currentClass.hasOuterInstance())
duke@1 2539 tree.params = tree.params.prepend(otdef);
duke@1 2540
duke@1 2541 // If this is an initial constructor, i.e., it does not start with
duke@1 2542 // this(...), insert initializers for this$n and proxies
duke@1 2543 // before (pre-1.4, after) the call to superclass constructor.
duke@1 2544 JCStatement selfCall = translate(tree.body.stats.head);
duke@1 2545
duke@1 2546 List<JCStatement> added = List.nil();
duke@1 2547 if (fvs.nonEmpty()) {
duke@1 2548 List<Type> addedargtypes = List.nil();
duke@1 2549 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
duke@1 2550 if (TreeInfo.isInitialConstructor(tree))
duke@1 2551 added = added.prepend(
duke@1 2552 initField(tree.body.pos, proxyName(l.head.name)));
duke@1 2553 addedargtypes = addedargtypes.prepend(l.head.erasure(types));
duke@1 2554 }
duke@1 2555 Type olderasure = m.erasure(types);
duke@1 2556 m.erasure_field = new MethodType(
duke@1 2557 olderasure.getParameterTypes().appendList(addedargtypes),
duke@1 2558 olderasure.getReturnType(),
duke@1 2559 olderasure.getThrownTypes(),
duke@1 2560 syms.methodClass);
duke@1 2561 }
duke@1 2562 if (currentClass.hasOuterInstance() &&
duke@1 2563 TreeInfo.isInitialConstructor(tree))
duke@1 2564 {
duke@1 2565 added = added.prepend(initOuterThis(tree.body.pos));
duke@1 2566 }
duke@1 2567
duke@1 2568 // pop local variables from proxy stack
duke@1 2569 proxies = proxies.leave();
duke@1 2570
duke@1 2571 // recursively translate following local statements and
duke@1 2572 // combine with this- or super-call
duke@1 2573 List<JCStatement> stats = translate(tree.body.stats.tail);
duke@1 2574 if (target.initializeFieldsBeforeSuper())
duke@1 2575 tree.body.stats = stats.prepend(selfCall).prependList(added);
duke@1 2576 else
duke@1 2577 tree.body.stats = stats.prependList(added).prepend(selfCall);
duke@1 2578
duke@1 2579 outerThisStack = prevOuterThisStack;
duke@1 2580 } else {
duke@1 2581 super.visitMethodDef(tree);
duke@1 2582 }
duke@1 2583 result = tree;
duke@1 2584 }
duke@1 2585
duke@1 2586 public void visitTypeCast(JCTypeCast tree) {
duke@1 2587 tree.clazz = translate(tree.clazz);
duke@1 2588 if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
duke@1 2589 tree.expr = translate(tree.expr, tree.type);
duke@1 2590 else
duke@1 2591 tree.expr = translate(tree.expr);
duke@1 2592 result = tree;
duke@1 2593 }
duke@1 2594
duke@1 2595 public void visitNewClass(JCNewClass tree) {
duke@1 2596 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
duke@1 2597
duke@1 2598 // Box arguments, if necessary
duke@1 2599 boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
duke@1 2600 List<Type> argTypes = tree.constructor.type.getParameterTypes();
duke@1 2601 if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
duke@1 2602 tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
duke@1 2603 tree.varargsElement = null;
duke@1 2604
duke@1 2605 // If created class is local, add free variables after
duke@1 2606 // explicit constructor arguments.
duke@1 2607 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 2608 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
duke@1 2609 }
duke@1 2610
duke@1 2611 // If an access constructor is used, append null as a last argument.
duke@1 2612 Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
duke@1 2613 if (constructor != tree.constructor) {
duke@1 2614 tree.args = tree.args.append(makeNull());
duke@1 2615 tree.constructor = constructor;
duke@1 2616 }
duke@1 2617
duke@1 2618 // If created class has an outer instance, and new is qualified, pass
duke@1 2619 // qualifier as first argument. If new is not qualified, pass the
duke@1 2620 // correct outer instance as first argument.
duke@1 2621 if (c.hasOuterInstance()) {
duke@1 2622 JCExpression thisArg;
duke@1 2623 if (tree.encl != null) {
duke@1 2624 thisArg = attr.makeNullCheck(translate(tree.encl));
duke@1 2625 thisArg.type = tree.encl.type;
duke@1 2626 } else if ((c.owner.kind & (MTH | VAR)) != 0) {
duke@1 2627 // local class
duke@1 2628 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
duke@1 2629 } else {
duke@1 2630 // nested class
duke@1 2631 thisArg = makeOwnerThis(tree.pos(), c, false);
duke@1 2632 }
duke@1 2633 tree.args = tree.args.prepend(thisArg);
duke@1 2634 }
duke@1 2635 tree.encl = null;
duke@1 2636
duke@1 2637 // If we have an anonymous class, create its flat version, rather
duke@1 2638 // than the class or interface following new.
duke@1 2639 if (tree.def != null) {
duke@1 2640 translate(tree.def);
duke@1 2641 tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
duke@1 2642 tree.def = null;
duke@1 2643 } else {
duke@1 2644 tree.clazz = access(c, tree.clazz, enclOp, false);
duke@1 2645 }
duke@1 2646 result = tree;
duke@1 2647 }
duke@1 2648
duke@1 2649 // Simplify conditionals with known constant controlling expressions.
duke@1 2650 // This allows us to avoid generating supporting declarations for
duke@1 2651 // the dead code, which will not be eliminated during code generation.
duke@1 2652 // Note that Flow.isFalse and Flow.isTrue only return true
duke@1 2653 // for constant expressions in the sense of JLS 15.27, which
darcy@430 2654 // are guaranteed to have no side-effects. More aggressive
duke@1 2655 // constant propagation would require that we take care to
duke@1 2656 // preserve possible side-effects in the condition expression.
duke@1 2657
duke@1 2658 /** Visitor method for conditional expressions.
duke@1 2659 */
duke@1 2660 public void visitConditional(JCConditional tree) {
duke@1 2661 JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2662 if (cond.type.isTrue()) {
duke@1 2663 result = convert(translate(tree.truepart, tree.type), tree.type);
duke@1 2664 } else if (cond.type.isFalse()) {
duke@1 2665 result = convert(translate(tree.falsepart, tree.type), tree.type);
duke@1 2666 } else {
duke@1 2667 // Condition is not a compile-time constant.
duke@1 2668 tree.truepart = translate(tree.truepart, tree.type);
duke@1 2669 tree.falsepart = translate(tree.falsepart, tree.type);
duke@1 2670 result = tree;
duke@1 2671 }
duke@1 2672 }
duke@1 2673 //where
duke@1 2674 private JCTree convert(JCTree tree, Type pt) {
sundar@691 2675 if (tree.type == pt || tree.type.tag == TypeTags.BOT)
sundar@691 2676 return tree;
duke@1 2677 JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
duke@1 2678 result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
duke@1 2679 : pt;
duke@1 2680 return result;
duke@1 2681 }
duke@1 2682
duke@1 2683 /** Visitor method for if statements.
duke@1 2684 */
duke@1 2685 public void visitIf(JCIf tree) {
duke@1 2686 JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2687 if (cond.type.isTrue()) {
duke@1 2688 result = translate(tree.thenpart);
duke@1 2689 } else if (cond.type.isFalse()) {
duke@1 2690 if (tree.elsepart != null) {
duke@1 2691 result = translate(tree.elsepart);
duke@1 2692 } else {
duke@1 2693 result = make.Skip();
duke@1 2694 }
duke@1 2695 } else {
duke@1 2696 // Condition is not a compile-time constant.
duke@1 2697 tree.thenpart = translate(tree.thenpart);
duke@1 2698 tree.elsepart = translate(tree.elsepart);
duke@1 2699 result = tree;
duke@1 2700 }
duke@1 2701 }
duke@1 2702
duke@1 2703 /** Visitor method for assert statements. Translate them away.
duke@1 2704 */
duke@1 2705 public void visitAssert(JCAssert tree) {
duke@1 2706 DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
duke@1 2707 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2708 if (!tree.cond.type.isTrue()) {
duke@1 2709 JCExpression cond = assertFlagTest(tree.pos());
duke@1 2710 List<JCExpression> exnArgs = (tree.detail == null) ?
duke@1 2711 List.<JCExpression>nil() : List.of(translate(tree.detail));
duke@1 2712 if (!tree.cond.type.isFalse()) {
duke@1 2713 cond = makeBinary
duke@1 2714 (JCTree.AND,
duke@1 2715 cond,
duke@1 2716 makeUnary(JCTree.NOT, tree.cond));
duke@1 2717 }
duke@1 2718 result =
duke@1 2719 make.If(cond,
duke@1 2720 make_at(detailPos).
duke@1 2721 Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
duke@1 2722 null);
duke@1 2723 } else {
duke@1 2724 result = make.Skip();
duke@1 2725 }
duke@1 2726 }
duke@1 2727
duke@1 2728 public void visitApply(JCMethodInvocation tree) {
duke@1 2729 Symbol meth = TreeInfo.symbol(tree.meth);
duke@1 2730 List<Type> argtypes = meth.type.getParameterTypes();
duke@1 2731 if (allowEnums &&
duke@1 2732 meth.name==names.init &&
duke@1 2733 meth.owner == syms.enumSym)
duke@1 2734 argtypes = argtypes.tail.tail;
duke@1 2735 tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
duke@1 2736 tree.varargsElement = null;
duke@1 2737 Name methName = TreeInfo.name(tree.meth);
duke@1 2738 if (meth.name==names.init) {
duke@1 2739 // We are seeing a this(...) or super(...) constructor call.
duke@1 2740 // If an access constructor is used, append null as a last argument.
duke@1 2741 Symbol constructor = accessConstructor(tree.pos(), meth);
duke@1 2742 if (constructor != meth) {
duke@1 2743 tree.args = tree.args.append(makeNull());
duke@1 2744 TreeInfo.setSymbol(tree.meth, constructor);
duke@1 2745 }
duke@1 2746
duke@1 2747 // If we are calling a constructor of a local class, add
duke@1 2748 // free variables after explicit constructor arguments.
duke@1 2749 ClassSymbol c = (ClassSymbol)constructor.owner;
duke@1 2750 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 2751 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
duke@1 2752 }
duke@1 2753
duke@1 2754 // If we are calling a constructor of an enum class, pass
duke@1 2755 // along the name and ordinal arguments
duke@1 2756 if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
duke@1 2757 List<JCVariableDecl> params = currentMethodDef.params;
duke@1 2758 if (currentMethodSym.owner.hasOuterInstance())
duke@1 2759 params = params.tail; // drop this$n
duke@1 2760 tree.args = tree.args
duke@1 2761 .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
duke@1 2762 .prepend(make.Ident(params.head.sym)); // name
duke@1 2763 }
duke@1 2764
duke@1 2765 // If we are calling a constructor of a class with an outer
duke@1 2766 // instance, and the call
duke@1 2767 // is qualified, pass qualifier as first argument in front of
duke@1 2768 // the explicit constructor arguments. If the call
duke@1 2769 // is not qualified, pass the correct outer instance as
duke@1 2770 // first argument.
duke@1 2771 if (c.hasOuterInstance()) {
duke@1 2772 JCExpression thisArg;
duke@1 2773 if (tree.meth.getTag() == JCTree.SELECT) {
duke@1 2774 thisArg = attr.
duke@1 2775 makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
duke@1 2776 tree.meth = make.Ident(constructor);
duke@1 2777 ((JCIdent) tree.meth).name = methName;
duke@1 2778 } else if ((c.owner.kind & (MTH | VAR)) != 0 || methName == names._this){
duke@1 2779 // local class or this() call
duke@1 2780 thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
duke@1 2781 } else {
duke@1 2782 // super() call of nested class
duke@1 2783 thisArg = makeOwnerThis(tree.meth.pos(), c, false);
duke@1 2784 }
duke@1 2785 tree.args = tree.args.prepend(thisArg);
duke@1 2786 }
duke@1 2787 } else {
duke@1 2788 // We are seeing a normal method invocation; translate this as usual.
duke@1 2789 tree.meth = translate(tree.meth);
duke@1 2790
duke@1 2791 // If the translated method itself is an Apply tree, we are
duke@1 2792 // seeing an access method invocation. In this case, append
duke@1 2793 // the method arguments to the arguments of the access method.
duke@1 2794 if (tree.meth.getTag() == JCTree.APPLY) {
duke@1 2795 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
duke@1 2796 app.args = tree.args.prependList(app.args);
duke@1 2797 result = app;
duke@1 2798 return;
duke@1 2799 }
duke@1 2800 }
duke@1 2801 result = tree;
duke@1 2802 }
duke@1 2803
duke@1 2804 List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
duke@1 2805 List<JCExpression> args = _args;
duke@1 2806 if (parameters.isEmpty()) return args;
duke@1 2807 boolean anyChanges = false;
duke@1 2808 ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
duke@1 2809 while (parameters.tail.nonEmpty()) {
duke@1 2810 JCExpression arg = translate(args.head, parameters.head);
duke@1 2811 anyChanges |= (arg != args.head);
duke@1 2812 result.append(arg);
duke@1 2813 args = args.tail;
duke@1 2814 parameters = parameters.tail;
duke@1 2815 }
duke@1 2816 Type parameter = parameters.head;
duke@1 2817 if (varargsElement != null) {
duke@1 2818 anyChanges = true;
duke@1 2819 ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
duke@1 2820 while (args.nonEmpty()) {
duke@1 2821 JCExpression arg = translate(args.head, varargsElement);
duke@1 2822 elems.append(arg);
duke@1 2823 args = args.tail;
duke@1 2824 }
duke@1 2825 JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
duke@1 2826 List.<JCExpression>nil(),
duke@1 2827 elems.toList());
duke@1 2828 boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
duke@1 2829 result.append(boxedArgs);
duke@1 2830 } else {
duke@1 2831 if (args.length() != 1) throw new AssertionError(args);
duke@1 2832 JCExpression arg = translate(args.head, parameter);
duke@1 2833 anyChanges |= (arg != args.head);
duke@1 2834 result.append(arg);
duke@1 2835 if (!anyChanges) return _args;
duke@1 2836 }
duke@1 2837 return result.toList();
duke@1 2838 }
duke@1 2839
duke@1 2840 /** Expand a boxing or unboxing conversion if needed. */
duke@1 2841 @SuppressWarnings("unchecked") // XXX unchecked
duke@1 2842 <T extends JCTree> T boxIfNeeded(T tree, Type type) {
duke@1 2843 boolean havePrimitive = tree.type.isPrimitive();
duke@1 2844 if (havePrimitive == type.isPrimitive())
duke@1 2845 return tree;
duke@1 2846 if (havePrimitive) {
duke@1 2847 Type unboxedTarget = types.unboxedType(type);
duke@1 2848 if (unboxedTarget.tag != NONE) {
mcimadamore@253 2849 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
mcimadamore@253 2850 tree.type = unboxedTarget.constType(tree.type.constValue());
duke@1 2851 return (T)boxPrimitive((JCExpression)tree, type);
duke@1 2852 } else {
duke@1 2853 tree = (T)boxPrimitive((JCExpression)tree);
duke@1 2854 }
duke@1 2855 } else {
duke@1 2856 tree = (T)unbox((JCExpression)tree, type);
duke@1 2857 }
duke@1 2858 return tree;
duke@1 2859 }
duke@1 2860
duke@1 2861 /** Box up a single primitive expression. */
duke@1 2862 JCExpression boxPrimitive(JCExpression tree) {
duke@1 2863 return boxPrimitive(tree, types.boxedClass(tree.type).type);
duke@1 2864 }
duke@1 2865
duke@1 2866 /** Box up a single primitive expression. */
duke@1 2867 JCExpression boxPrimitive(JCExpression tree, Type box) {
duke@1 2868 make_at(tree.pos());
duke@1 2869 if (target.boxWithConstructors()) {
duke@1 2870 Symbol ctor = lookupConstructor(tree.pos(),
duke@1 2871 box,
duke@1 2872 List.<Type>nil()
duke@1 2873 .prepend(tree.type));
duke@1 2874 return make.Create(ctor, List.of(tree));
duke@1 2875 } else {
duke@1 2876 Symbol valueOfSym = lookupMethod(tree.pos(),
duke@1 2877 names.valueOf,
duke@1 2878 box,
duke@1 2879 List.<Type>nil()
duke@1 2880 .prepend(tree.type));
duke@1 2881 return make.App(make.QualIdent(valueOfSym), List.of(tree));
duke@1 2882 }
duke@1 2883 }
duke@1 2884
duke@1 2885 /** Unbox an object to a primitive value. */
duke@1 2886 JCExpression unbox(JCExpression tree, Type primitive) {
duke@1 2887 Type unboxedType = types.unboxedType(tree.type);
jrose@665 2888 if (unboxedType.tag == NONE) {
jrose@665 2889 unboxedType = primitive;
jrose@665 2890 if (!unboxedType.isPrimitive())
jrose@665 2891 throw new AssertionError(unboxedType);
jrose@665 2892 make_at(tree.pos());
jrose@665 2893 tree = make.TypeCast(types.boxedClass(unboxedType).type, tree);
jrose@665 2894 } else {
jrose@665 2895 // There must be a conversion from unboxedType to primitive.
jrose@665 2896 if (!types.isSubtype(unboxedType, primitive))
jrose@665 2897 throw new AssertionError(tree);
jrose@665 2898 }
duke@1 2899 make_at(tree.pos());
duke@1 2900 Symbol valueSym = lookupMethod(tree.pos(),
duke@1 2901 unboxedType.tsym.name.append(names.Value), // x.intValue()
duke@1 2902 tree.type,
duke@1 2903 List.<Type>nil());
duke@1 2904 return make.App(make.Select(tree, valueSym));
duke@1 2905 }
duke@1 2906
duke@1 2907 /** Visitor method for parenthesized expressions.
duke@1 2908 * If the subexpression has changed, omit the parens.
duke@1 2909 */
duke@1 2910 public void visitParens(JCParens tree) {
duke@1 2911 JCTree expr = translate(tree.expr);
duke@1 2912 result = ((expr == tree.expr) ? tree : expr);
duke@1 2913 }
duke@1 2914
duke@1 2915 public void visitIndexed(JCArrayAccess tree) {
duke@1 2916 tree.indexed = translate(tree.indexed);
duke@1 2917 tree.index = translate(tree.index, syms.intType);
duke@1 2918 result = tree;
duke@1 2919 }
duke@1 2920
duke@1 2921 public void visitAssign(JCAssign tree) {
duke@1 2922 tree.lhs = translate(tree.lhs, tree);
duke@1 2923 tree.rhs = translate(tree.rhs, tree.lhs.type);
duke@1 2924
duke@1 2925 // If translated left hand side is an Apply, we are
duke@1 2926 // seeing an access method invocation. In this case, append
duke@1 2927 // right hand side as last argument of the access method.
duke@1 2928 if (tree.lhs.getTag() == JCTree.APPLY) {
duke@1 2929 JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
duke@1 2930 app.args = List.of(tree.rhs).prependList(app.args);
duke@1 2931 result = app;
duke@1 2932 } else {
duke@1 2933 result = tree;
duke@1 2934 }
duke@1 2935 }
duke@1 2936
duke@1 2937 public void visitAssignop(final JCAssignOp tree) {
duke@1 2938 if (!tree.lhs.type.isPrimitive() &&
duke@1 2939 tree.operator.type.getReturnType().isPrimitive()) {
duke@1 2940 // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
duke@1 2941 // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
duke@1 2942 // (but without recomputing x)
mcimadamore@133 2943 JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
duke@1 2944 public JCTree build(final JCTree lhs) {
duke@1 2945 int newTag = tree.getTag() - JCTree.ASGOffset;
duke@1 2946 // Erasure (TransTypes) can change the type of
duke@1 2947 // tree.lhs. However, we can still get the
duke@1 2948 // unerased type of tree.lhs as it is stored
duke@1 2949 // in tree.type in Attr.
duke@1 2950 Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
duke@1 2951 newTag,
duke@1 2952 attrEnv,
duke@1 2953 tree.type,
duke@1 2954 tree.rhs.type);
duke@1 2955 JCExpression expr = (JCExpression)lhs;
duke@1 2956 if (expr.type != tree.type)
duke@1 2957 expr = make.TypeCast(tree.type, expr);
duke@1 2958 JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
duke@1 2959 opResult.operator = newOperator;
duke@1 2960 opResult.type = newOperator.type.getReturnType();
duke@1 2961 JCTypeCast newRhs = make.TypeCast(types.unboxedType(tree.type),
duke@1 2962 opResult);
duke@1 2963 return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
duke@1 2964 }
duke@1 2965 });
duke@1 2966 result = translate(newTree);
duke@1 2967 return;
duke@1 2968 }
duke@1 2969 tree.lhs = translate(tree.lhs, tree);
duke@1 2970 tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
duke@1 2971
duke@1 2972 // If translated left hand side is an Apply, we are
duke@1 2973 // seeing an access method invocation. In this case, append
duke@1 2974 // right hand side as last argument of the access method.
duke@1 2975 if (tree.lhs.getTag() == JCTree.APPLY) {
duke@1 2976 JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
duke@1 2977 // if operation is a += on strings,
duke@1 2978 // make sure to convert argument to string
duke@1 2979 JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
duke@1 2980 ? makeString(tree.rhs)
duke@1 2981 : tree.rhs;
duke@1 2982 app.args = List.of(rhs).prependList(app.args);
duke@1 2983 result = app;
duke@1 2984 } else {
duke@1 2985 result = tree;
duke@1 2986 }
duke@1 2987 }
duke@1 2988
duke@1 2989 /** Lower a tree of the form e++ or e-- where e is an object type */
duke@1 2990 JCTree lowerBoxedPostop(final JCUnary tree) {
duke@1 2991 // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
duke@1 2992 // or
duke@1 2993 // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
duke@1 2994 // where OP is += or -=
mcimadamore@133 2995 final boolean cast = TreeInfo.skipParens(tree.arg).getTag() == JCTree.TYPECAST;
mcimadamore@133 2996 return abstractLval(tree.arg, new TreeBuilder() {
duke@1 2997 public JCTree build(final JCTree tmp1) {
duke@1 2998 return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
duke@1 2999 public JCTree build(final JCTree tmp2) {
duke@1 3000 int opcode = (tree.getTag() == JCTree.POSTINC)
duke@1 3001 ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
duke@1 3002 JCTree lhs = cast
duke@1 3003 ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
duke@1 3004 : tmp1;
duke@1 3005 JCTree update = makeAssignop(opcode,
duke@1 3006 lhs,
duke@1 3007 make.Literal(1));
duke@1 3008 return makeComma(update, tmp2);
duke@1 3009 }
duke@1 3010 });
duke@1 3011 }
duke@1 3012 });
duke@1 3013 }
duke@1 3014
duke@1 3015 public void visitUnary(JCUnary tree) {
duke@1 3016 boolean isUpdateOperator =
duke@1 3017 JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC;
duke@1 3018 if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
duke@1 3019 switch(tree.getTag()) {
duke@1 3020 case JCTree.PREINC: // ++ e
duke@1 3021 // translate to e += 1
duke@1 3022 case JCTree.PREDEC: // -- e
duke@1 3023 // translate to e -= 1
duke@1 3024 {
duke@1 3025 int opcode = (tree.getTag() == JCTree.PREINC)
duke@1 3026 ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
duke@1 3027 JCAssignOp newTree = makeAssignop(opcode,
duke@1 3028 tree.arg,
duke@1 3029 make.Literal(1));
duke@1 3030 result = translate(newTree, tree.type);
duke@1 3031 return;
duke@1 3032 }
duke@1 3033 case JCTree.POSTINC: // e ++
duke@1 3034 case JCTree.POSTDEC: // e --
duke@1 3035 {
duke@1 3036 result = translate(lowerBoxedPostop(tree), tree.type);
duke@1 3037 return;
duke@1 3038 }
duke@1 3039 }
duke@1 3040 throw new AssertionError(tree);
duke@1 3041 }
duke@1 3042
duke@1 3043 tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
duke@1 3044
duke@1 3045 if (tree.getTag() == JCTree.NOT && tree.arg.type.constValue() != null) {
duke@1 3046 tree.type = cfolder.fold1(bool_not, tree.arg.type);
duke@1 3047 }
duke@1 3048
duke@1 3049 // If translated left hand side is an Apply, we are
duke@1 3050 // seeing an access method invocation. In this case, return
darcy@430 3051 // that access method invocation as result.
duke@1 3052 if (isUpdateOperator && tree.arg.getTag() == JCTree.APPLY) {
duke@1 3053 result = tree.arg;
duke@1 3054 } else {
duke@1 3055 result = tree;
duke@1 3056 }
duke@1 3057 }
duke@1 3058
duke@1 3059 public void visitBinary(JCBinary tree) {
duke@1 3060 List<Type> formals = tree.operator.type.getParameterTypes();
duke@1 3061 JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
duke@1 3062 switch (tree.getTag()) {
duke@1 3063 case JCTree.OR:
duke@1 3064 if (lhs.type.isTrue()) {
duke@1 3065 result = lhs;
duke@1 3066 return;
duke@1 3067 }
duke@1 3068 if (lhs.type.isFalse()) {
duke@1 3069 result = translate(tree.rhs, formals.tail.head);
duke@1 3070 return;
duke@1 3071 }
duke@1 3072 break;
duke@1 3073 case JCTree.AND:
duke@1 3074 if (lhs.type.isFalse()) {
duke@1 3075 result = lhs;
duke@1 3076 return;
duke@1 3077 }
duke@1 3078 if (lhs.type.isTrue()) {
duke@1 3079 result = translate(tree.rhs, formals.tail.head);
duke@1 3080 return;
duke@1 3081 }
duke@1 3082 break;
duke@1 3083 }
duke@1 3084 tree.rhs = translate(tree.rhs, formals.tail.head);
duke@1 3085 result = tree;
duke@1 3086 }
duke@1 3087
duke@1 3088 public void visitIdent(JCIdent tree) {
duke@1 3089 result = access(tree.sym, tree, enclOp, false);
duke@1 3090 }
duke@1 3091
duke@1 3092 /** Translate away the foreach loop. */
duke@1 3093 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 3094 if (types.elemtype(tree.expr.type) == null)
duke@1 3095 visitIterableForeachLoop(tree);
duke@1 3096 else
duke@1 3097 visitArrayForeachLoop(tree);
duke@1 3098 }
duke@1 3099 // where
duke@1 3100 /**
darcy@430 3101 * A statement of the form
duke@1 3102 *
duke@1 3103 * <pre>
duke@1 3104 * for ( T v : arrayexpr ) stmt;
duke@1 3105 * </pre>
duke@1 3106 *
duke@1 3107 * (where arrayexpr is of an array type) gets translated to
duke@1 3108 *
duke@1 3109 * <pre>
duke@1 3110 * for ( { arraytype #arr = arrayexpr;
duke@1 3111 * int #len = array.length;
duke@1 3112 * int #i = 0; };
duke@1 3113 * #i < #len; i$++ ) {
duke@1 3114 * T v = arr$[#i];
duke@1 3115 * stmt;
duke@1 3116 * }
duke@1 3117 * </pre>
duke@1 3118 *
duke@1 3119 * where #arr, #len, and #i are freshly named synthetic local variables.
duke@1 3120 */
duke@1 3121 private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
duke@1 3122 make_at(tree.expr.pos());
duke@1 3123 VarSymbol arraycache = new VarSymbol(0,
duke@1 3124 names.fromString("arr" + target.syntheticNameChar()),
duke@1 3125 tree.expr.type,
duke@1 3126 currentMethodSym);
duke@1 3127 JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
duke@1 3128 VarSymbol lencache = new VarSymbol(0,
duke@1 3129 names.fromString("len" + target.syntheticNameChar()),
duke@1 3130 syms.intType,
duke@1 3131 currentMethodSym);
duke@1 3132 JCStatement lencachedef = make.
duke@1 3133 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
duke@1 3134 VarSymbol index = new VarSymbol(0,
duke@1 3135 names.fromString("i" + target.syntheticNameChar()),
duke@1 3136 syms.intType,
duke@1 3137 currentMethodSym);
duke@1 3138
duke@1 3139 JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
duke@1 3140 indexdef.init.type = indexdef.type = syms.intType.constType(0);
duke@1 3141
duke@1 3142 List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
duke@1 3143 JCBinary cond = makeBinary(JCTree.LT, make.Ident(index), make.Ident(lencache));
duke@1 3144
duke@1 3145 JCExpressionStatement step = make.Exec(makeUnary(JCTree.PREINC, make.Ident(index)));
duke@1 3146
duke@1 3147 Type elemtype = types.elemtype(tree.expr.type);
mcimadamore@33 3148 JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
mcimadamore@33 3149 make.Ident(index)).setType(elemtype);
mcimadamore@33 3150 JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
mcimadamore@33 3151 tree.var.name,
mcimadamore@33 3152 tree.var.vartype,
mcimadamore@33 3153 loopvarinit).setType(tree.var.type);
mcimadamore@33 3154 loopvardef.sym = tree.var.sym;
duke@1 3155 JCBlock body = make.
mcimadamore@33 3156 Block(0, List.of(loopvardef, tree.body));
duke@1 3157
duke@1 3158 result = translate(make.
duke@1 3159 ForLoop(loopinit,
duke@1 3160 cond,
duke@1 3161 List.of(step),
duke@1 3162 body));
duke@1 3163 patchTargets(body, tree, result);
duke@1 3164 }
duke@1 3165 /** Patch up break and continue targets. */
duke@1 3166 private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
duke@1 3167 class Patcher extends TreeScanner {
duke@1 3168 public void visitBreak(JCBreak tree) {
duke@1 3169 if (tree.target == src)
duke@1 3170 tree.target = dest;
duke@1 3171 }
duke@1 3172 public void visitContinue(JCContinue tree) {
duke@1 3173 if (tree.target == src)
duke@1 3174 tree.target = dest;
duke@1 3175 }
duke@1 3176 public void visitClassDef(JCClassDecl tree) {}
duke@1 3177 }
duke@1 3178 new Patcher().scan(body);
duke@1 3179 }
duke@1 3180 /**
duke@1 3181 * A statement of the form
duke@1 3182 *
duke@1 3183 * <pre>
duke@1 3184 * for ( T v : coll ) stmt ;
duke@1 3185 * </pre>
duke@1 3186 *
duke@1 3187 * (where coll implements Iterable<? extends T>) gets translated to
duke@1 3188 *
duke@1 3189 * <pre>
duke@1 3190 * for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
duke@1 3191 * T v = (T) #i.next();
duke@1 3192 * stmt;
duke@1 3193 * }
duke@1 3194 * </pre>
duke@1 3195 *
duke@1 3196 * where #i is a freshly named synthetic local variable.
duke@1 3197 */
duke@1 3198 private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
duke@1 3199 make_at(tree.expr.pos());
duke@1 3200 Type iteratorTarget = syms.objectType;
duke@1 3201 Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
duke@1 3202 syms.iterableType.tsym);
duke@1 3203 if (iterableType.getTypeArguments().nonEmpty())
duke@1 3204 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
duke@1 3205 Type eType = tree.expr.type;
duke@1 3206 tree.expr.type = types.erasure(eType);
duke@1 3207 if (eType.tag == TYPEVAR && eType.getUpperBound().isCompound())
duke@1 3208 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
duke@1 3209 Symbol iterator = lookupMethod(tree.expr.pos(),
duke@1 3210 names.iterator,
duke@1 3211 types.erasure(syms.iterableType),
duke@1 3212 List.<Type>nil());
duke@1 3213 VarSymbol itvar = new VarSymbol(0, names.fromString("i" + target.syntheticNameChar()),
duke@1 3214 types.erasure(iterator.type.getReturnType()),
duke@1 3215 currentMethodSym);
duke@1 3216 JCStatement init = make.
duke@1 3217 VarDef(itvar,
duke@1 3218 make.App(make.Select(tree.expr, iterator)));
duke@1 3219 Symbol hasNext = lookupMethod(tree.expr.pos(),
duke@1 3220 names.hasNext,
duke@1 3221 itvar.type,
duke@1 3222 List.<Type>nil());
duke@1 3223 JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
duke@1 3224 Symbol next = lookupMethod(tree.expr.pos(),
duke@1 3225 names.next,
duke@1 3226 itvar.type,
duke@1 3227 List.<Type>nil());
duke@1 3228 JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
mcimadamore@81 3229 if (tree.var.type.isPrimitive())
mcimadamore@81 3230 vardefinit = make.TypeCast(types.upperBound(iteratorTarget), vardefinit);
mcimadamore@81 3231 else
mcimadamore@81 3232 vardefinit = make.TypeCast(tree.var.type, vardefinit);
mcimadamore@33 3233 JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
mcimadamore@33 3234 tree.var.name,
mcimadamore@33 3235 tree.var.vartype,
mcimadamore@33 3236 vardefinit).setType(tree.var.type);
mcimadamore@33 3237 indexDef.sym = tree.var.sym;
duke@1 3238 JCBlock body = make.Block(0, List.of(indexDef, tree.body));
mcimadamore@237 3239 body.endpos = TreeInfo.endPos(tree.body);
duke@1 3240 result = translate(make.
duke@1 3241 ForLoop(List.of(init),
duke@1 3242 cond,
duke@1 3243 List.<JCExpressionStatement>nil(),
duke@1 3244 body));
duke@1 3245 patchTargets(body, tree, result);
duke@1 3246 }
duke@1 3247
duke@1 3248 public void visitVarDef(JCVariableDecl tree) {
duke@1 3249 MethodSymbol oldMethodSym = currentMethodSym;
duke@1 3250 tree.mods = translate(tree.mods);
duke@1 3251 tree.vartype = translate(tree.vartype);
duke@1 3252 if (currentMethodSym == null) {
duke@1 3253 // A class or instance field initializer.
duke@1 3254 currentMethodSym =
duke@1 3255 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
duke@1 3256 names.empty, null,
duke@1 3257 currentClass);
duke@1 3258 }
duke@1 3259 if (tree.init != null) tree.init = translate(tree.init, tree.type);
duke@1 3260 result = tree;
duke@1 3261 currentMethodSym = oldMethodSym;
duke@1 3262 }
duke@1 3263
duke@1 3264 public void visitBlock(JCBlock tree) {
duke@1 3265 MethodSymbol oldMethodSym = currentMethodSym;
duke@1 3266 if (currentMethodSym == null) {
duke@1 3267 // Block is a static or instance initializer.
duke@1 3268 currentMethodSym =
duke@1 3269 new MethodSymbol(tree.flags | BLOCK,
duke@1 3270 names.empty, null,
duke@1 3271 currentClass);
duke@1 3272 }
duke@1 3273 super.visitBlock(tree);
duke@1 3274 currentMethodSym = oldMethodSym;
duke@1 3275 }
duke@1 3276
duke@1 3277 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 3278 tree.body = translate(tree.body);
duke@1 3279 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3280 result = tree;
duke@1 3281 }
duke@1 3282
duke@1 3283 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 3284 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3285 tree.body = translate(tree.body);
duke@1 3286 result = tree;
duke@1 3287 }
duke@1 3288
duke@1 3289 public void visitForLoop(JCForLoop tree) {
duke@1 3290 tree.init = translate(tree.init);
duke@1 3291 if (tree.cond != null)
duke@1 3292 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3293 tree.step = translate(tree.step);
duke@1 3294 tree.body = translate(tree.body);
duke@1 3295 result = tree;
duke@1 3296 }
duke@1 3297
duke@1 3298 public void visitReturn(JCReturn tree) {
duke@1 3299 if (tree.expr != null)
duke@1 3300 tree.expr = translate(tree.expr,
duke@1 3301 types.erasure(currentMethodDef
duke@1 3302 .restype.type));
duke@1 3303 result = tree;
duke@1 3304 }
duke@1 3305
duke@1 3306 public void visitSwitch(JCSwitch tree) {
duke@1 3307 Type selsuper = types.supertype(tree.selector.type);
duke@1 3308 boolean enumSwitch = selsuper != null &&
duke@1 3309 (tree.selector.type.tsym.flags() & ENUM) != 0;
darcy@430 3310 boolean stringSwitch = selsuper != null &&
darcy@430 3311 types.isSameType(tree.selector.type, syms.stringType);
darcy@430 3312 Type target = enumSwitch ? tree.selector.type :
darcy@430 3313 (stringSwitch? syms.stringType : syms.intType);
duke@1 3314 tree.selector = translate(tree.selector, target);
duke@1 3315 tree.cases = translateCases(tree.cases);
duke@1 3316 if (enumSwitch) {
duke@1 3317 result = visitEnumSwitch(tree);
darcy@430 3318 } else if (stringSwitch) {
darcy@430 3319 result = visitStringSwitch(tree);
duke@1 3320 } else {
duke@1 3321 result = tree;
duke@1 3322 }
duke@1 3323 }
duke@1 3324
duke@1 3325 public JCTree visitEnumSwitch(JCSwitch tree) {
duke@1 3326 TypeSymbol enumSym = tree.selector.type.tsym;
duke@1 3327 EnumMapping map = mapForEnum(tree.pos(), enumSym);
duke@1 3328 make_at(tree.pos());
duke@1 3329 Symbol ordinalMethod = lookupMethod(tree.pos(),
duke@1 3330 names.ordinal,
duke@1 3331 tree.selector.type,
duke@1 3332 List.<Type>nil());
duke@1 3333 JCArrayAccess selector = make.Indexed(map.mapVar,
duke@1 3334 make.App(make.Select(tree.selector,
duke@1 3335 ordinalMethod)));
duke@1 3336 ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
duke@1 3337 for (JCCase c : tree.cases) {
duke@1 3338 if (c.pat != null) {
duke@1 3339 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
duke@1 3340 JCLiteral pat = map.forConstant(label);
duke@1 3341 cases.append(make.Case(pat, c.stats));
duke@1 3342 } else {
duke@1 3343 cases.append(c);
duke@1 3344 }
duke@1 3345 }
darcy@443 3346 JCSwitch enumSwitch = make.Switch(selector, cases.toList());
darcy@443 3347 patchTargets(enumSwitch, tree, enumSwitch);
darcy@443 3348 return enumSwitch;
duke@1 3349 }
duke@1 3350
darcy@430 3351 public JCTree visitStringSwitch(JCSwitch tree) {
darcy@430 3352 List<JCCase> caseList = tree.getCases();
darcy@430 3353 int alternatives = caseList.size();
darcy@430 3354
darcy@430 3355 if (alternatives == 0) { // Strange but legal possibility
darcy@430 3356 return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
darcy@430 3357 } else {
darcy@430 3358 /*
darcy@430 3359 * The general approach used is to translate a single
darcy@430 3360 * string switch statement into a series of two chained
darcy@430 3361 * switch statements: the first a synthesized statement
darcy@430 3362 * switching on the argument string's hash value and
darcy@430 3363 * computing a string's position in the list of original
darcy@430 3364 * case labels, if any, followed by a second switch on the
darcy@430 3365 * computed integer value. The second switch has the same
darcy@430 3366 * code structure as the original string switch statement
darcy@430 3367 * except that the string case labels are replaced with
darcy@430 3368 * positional integer constants starting at 0.
darcy@430 3369 *
darcy@430 3370 * The first switch statement can be thought of as an
darcy@430 3371 * inlined map from strings to their position in the case
darcy@430 3372 * label list. An alternate implementation would use an
darcy@430 3373 * actual Map for this purpose, as done for enum switches.
darcy@430 3374 *
darcy@430 3375 * With some additional effort, it would be possible to
darcy@430 3376 * use a single switch statement on the hash code of the
darcy@430 3377 * argument, but care would need to be taken to preserve
darcy@430 3378 * the proper control flow in the presence of hash
darcy@430 3379 * collisions and other complications, such as
darcy@430 3380 * fallthroughs. Switch statements with one or two
darcy@430 3381 * alternatives could also be specially translated into
darcy@430 3382 * if-then statements to omit the computation of the hash
darcy@430 3383 * code.
darcy@430 3384 *
darcy@430 3385 * The generated code assumes that the hashing algorithm
darcy@430 3386 * of String is the same in the compilation environment as
darcy@430 3387 * in the environment the code will run in. The string
darcy@430 3388 * hashing algorithm in the SE JDK has been unchanged
darcy@443 3389 * since at least JDK 1.2. Since the algorithm has been
darcy@443 3390 * specified since that release as well, it is very
darcy@443 3391 * unlikely to be changed in the future.
darcy@443 3392 *
darcy@443 3393 * Different hashing algorithms, such as the length of the
darcy@443 3394 * strings or a perfect hashing algorithm over the
darcy@443 3395 * particular set of case labels, could potentially be
darcy@443 3396 * used instead of String.hashCode.
darcy@430 3397 */
darcy@430 3398
darcy@430 3399 ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
darcy@430 3400
darcy@430 3401 // Map from String case labels to their original position in
darcy@430 3402 // the list of case labels.
darcy@430 3403 Map<String, Integer> caseLabelToPosition =
darcy@430 3404 new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
darcy@430 3405
darcy@430 3406 // Map of hash codes to the string case labels having that hashCode.
darcy@430 3407 Map<Integer, Set<String>> hashToString =
darcy@430 3408 new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
darcy@430 3409
darcy@430 3410 int casePosition = 0;
darcy@430 3411 for(JCCase oneCase : caseList) {
darcy@430 3412 JCExpression expression = oneCase.getExpression();
darcy@430 3413
darcy@430 3414 if (expression != null) { // expression for a "default" case is null
darcy@430 3415 String labelExpr = (String) expression.type.constValue();
darcy@430 3416 Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
jjg@816 3417 Assert.checkNull(mapping);
darcy@430 3418 int hashCode = labelExpr.hashCode();
darcy@430 3419
darcy@430 3420 Set<String> stringSet = hashToString.get(hashCode);
darcy@430 3421 if (stringSet == null) {
darcy@430 3422 stringSet = new LinkedHashSet<String>(1, 1.0f);
darcy@430 3423 stringSet.add(labelExpr);
darcy@430 3424 hashToString.put(hashCode, stringSet);
darcy@430 3425 } else {
darcy@430 3426 boolean added = stringSet.add(labelExpr);
jjg@816 3427 Assert.check(added);
darcy@430 3428 }
darcy@430 3429 }
darcy@430 3430 casePosition++;
darcy@430 3431 }
darcy@430 3432
darcy@430 3433 // Synthesize a switch statement that has the effect of
darcy@430 3434 // mapping from a string to the integer position of that
darcy@430 3435 // string in the list of case labels. This is done by
darcy@430 3436 // switching on the hashCode of the string followed by an
darcy@430 3437 // if-then-else chain comparing the input for equality
darcy@430 3438 // with all the case labels having that hash value.
darcy@430 3439
darcy@430 3440 /*
darcy@430 3441 * s$ = top of stack;
darcy@430 3442 * tmp$ = -1;
darcy@430 3443 * switch($s.hashCode()) {
darcy@430 3444 * case caseLabel.hashCode:
darcy@430 3445 * if (s$.equals("caseLabel_1")
darcy@430 3446 * tmp$ = caseLabelToPosition("caseLabel_1");
darcy@430 3447 * else if (s$.equals("caseLabel_2"))
darcy@430 3448 * tmp$ = caseLabelToPosition("caseLabel_2");
darcy@430 3449 * ...
darcy@430 3450 * break;
darcy@430 3451 * ...
darcy@430 3452 * }
darcy@430 3453 */
darcy@430 3454
darcy@430 3455 VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
darcy@430 3456 names.fromString("s" + tree.pos + target.syntheticNameChar()),
darcy@430 3457 syms.stringType,
darcy@430 3458 currentMethodSym);
darcy@430 3459 stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
darcy@430 3460
darcy@430 3461 VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
darcy@430 3462 names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
darcy@430 3463 syms.intType,
darcy@430 3464 currentMethodSym);
darcy@430 3465 JCVariableDecl dollar_tmp_def =
darcy@430 3466 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
darcy@430 3467 dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
darcy@430 3468 stmtList.append(dollar_tmp_def);
darcy@430 3469 ListBuffer<JCCase> caseBuffer = ListBuffer.lb();
darcy@430 3470 // hashCode will trigger nullcheck on original switch expression
darcy@430 3471 JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
darcy@430 3472 names.hashCode,
darcy@430 3473 List.<JCExpression>nil()).setType(syms.intType);
darcy@430 3474 JCSwitch switch1 = make.Switch(hashCodeCall,
darcy@430 3475 caseBuffer.toList());
darcy@430 3476 for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
darcy@430 3477 int hashCode = entry.getKey();
darcy@430 3478 Set<String> stringsWithHashCode = entry.getValue();
jjg@816 3479 Assert.check(stringsWithHashCode.size() >= 1);
darcy@430 3480
darcy@430 3481 JCStatement elsepart = null;
darcy@430 3482 for(String caseLabel : stringsWithHashCode ) {
darcy@430 3483 JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
darcy@430 3484 names.equals,
darcy@430 3485 List.<JCExpression>of(make.Literal(caseLabel)));
darcy@430 3486 elsepart = make.If(stringEqualsCall,
darcy@430 3487 make.Exec(make.Assign(make.Ident(dollar_tmp),
darcy@430 3488 make.Literal(caseLabelToPosition.get(caseLabel))).
darcy@430 3489 setType(dollar_tmp.type)),
darcy@430 3490 elsepart);
darcy@430 3491 }
darcy@430 3492
darcy@430 3493 ListBuffer<JCStatement> lb = ListBuffer.lb();
darcy@430 3494 JCBreak breakStmt = make.Break(null);
darcy@430 3495 breakStmt.target = switch1;
darcy@430 3496 lb.append(elsepart).append(breakStmt);
darcy@430 3497
darcy@430 3498 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
darcy@430 3499 }
darcy@430 3500
darcy@430 3501 switch1.cases = caseBuffer.toList();
darcy@430 3502 stmtList.append(switch1);
darcy@430 3503
darcy@430 3504 // Make isomorphic switch tree replacing string labels
darcy@430 3505 // with corresponding integer ones from the label to
darcy@430 3506 // position map.
darcy@430 3507
darcy@430 3508 ListBuffer<JCCase> lb = ListBuffer.lb();
darcy@430 3509 JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
darcy@430 3510 for(JCCase oneCase : caseList ) {
darcy@430 3511 // Rewire up old unlabeled break statements to the
darcy@430 3512 // replacement switch being created.
darcy@430 3513 patchTargets(oneCase, tree, switch2);
darcy@430 3514
darcy@430 3515 boolean isDefault = (oneCase.getExpression() == null);
darcy@430 3516 JCExpression caseExpr;
darcy@430 3517 if (isDefault)
darcy@430 3518 caseExpr = null;
darcy@430 3519 else {
darcy@430 3520 caseExpr = make.Literal(caseLabelToPosition.get((String)oneCase.
darcy@430 3521 getExpression().
darcy@430 3522 type.constValue()));
darcy@430 3523 }
darcy@430 3524
darcy@430 3525 lb.append(make.Case(caseExpr,
darcy@430 3526 oneCase.getStatements()));
darcy@430 3527 }
darcy@430 3528
darcy@430 3529 switch2.cases = lb.toList();
darcy@430 3530 stmtList.append(switch2);
darcy@430 3531
darcy@430 3532 return make.Block(0L, stmtList.toList());
darcy@430 3533 }
darcy@430 3534 }
darcy@430 3535
duke@1 3536 public void visitNewArray(JCNewArray tree) {
duke@1 3537 tree.elemtype = translate(tree.elemtype);
duke@1 3538 for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
duke@1 3539 if (t.head != null) t.head = translate(t.head, syms.intType);
duke@1 3540 tree.elems = translate(tree.elems, types.elemtype(tree.type));
duke@1 3541 result = tree;
duke@1 3542 }
duke@1 3543
duke@1 3544 public void visitSelect(JCFieldAccess tree) {
duke@1 3545 // need to special case-access of the form C.super.x
duke@1 3546 // these will always need an access method.
duke@1 3547 boolean qualifiedSuperAccess =
duke@1 3548 tree.selected.getTag() == JCTree.SELECT &&
duke@1 3549 TreeInfo.name(tree.selected) == names._super;
duke@1 3550 tree.selected = translate(tree.selected);
duke@1 3551 if (tree.name == names._class)
duke@1 3552 result = classOf(tree.selected);
duke@1 3553 else if (tree.name == names._this || tree.name == names._super)
duke@1 3554 result = makeThis(tree.pos(), tree.selected.type.tsym);
duke@1 3555 else
duke@1 3556 result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
duke@1 3557 }
duke@1 3558
duke@1 3559 public void visitLetExpr(LetExpr tree) {
duke@1 3560 tree.defs = translateVarDefs(tree.defs);
duke@1 3561 tree.expr = translate(tree.expr, tree.type);
duke@1 3562 result = tree;
duke@1 3563 }
duke@1 3564
duke@1 3565 // There ought to be nothing to rewrite here;
duke@1 3566 // we don't generate code.
duke@1 3567 public void visitAnnotation(JCAnnotation tree) {
duke@1 3568 result = tree;
duke@1 3569 }
duke@1 3570
darcy@609 3571 @Override
darcy@609 3572 public void visitTry(JCTry tree) {
darcy@609 3573 if (tree.resources.isEmpty()) {
darcy@609 3574 super.visitTry(tree);
darcy@609 3575 } else {
darcy@609 3576 result = makeArmTry(tree);
darcy@609 3577 }
darcy@609 3578 }
darcy@609 3579
duke@1 3580 /**************************************************************************
duke@1 3581 * main method
duke@1 3582 *************************************************************************/
duke@1 3583
duke@1 3584 /** Translate a toplevel class and return a list consisting of
duke@1 3585 * the translated class and translated versions of all inner classes.
duke@1 3586 * @param env The attribution environment current at the class definition.
duke@1 3587 * We need this for resolving some additional symbols.
duke@1 3588 * @param cdef The tree representing the class definition.
duke@1 3589 */
duke@1 3590 public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
duke@1 3591 ListBuffer<JCTree> translated = null;
duke@1 3592 try {
duke@1 3593 attrEnv = env;
duke@1 3594 this.make = make;
duke@1 3595 endPositions = env.toplevel.endPositions;
duke@1 3596 currentClass = null;
duke@1 3597 currentMethodDef = null;
duke@1 3598 outermostClassDef = (cdef.getTag() == JCTree.CLASSDEF) ? (JCClassDecl)cdef : null;
duke@1 3599 outermostMemberDef = null;
duke@1 3600 this.translated = new ListBuffer<JCTree>();
duke@1 3601 classdefs = new HashMap<ClassSymbol,JCClassDecl>();
duke@1 3602 actualSymbols = new HashMap<Symbol,Symbol>();
duke@1 3603 freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
duke@1 3604 proxies = new Scope(syms.noSymbol);
darcy@609 3605 twrVars = new Scope(syms.noSymbol);
duke@1 3606 outerThisStack = List.nil();
duke@1 3607 accessNums = new HashMap<Symbol,Integer>();
duke@1 3608 accessSyms = new HashMap<Symbol,MethodSymbol[]>();
duke@1 3609 accessConstrs = new HashMap<Symbol,MethodSymbol>();
jjg@595 3610 accessConstrTags = List.nil();
duke@1 3611 accessed = new ListBuffer<Symbol>();
duke@1 3612 translate(cdef, (JCExpression)null);
duke@1 3613 for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
duke@1 3614 makeAccessible(l.head);
duke@1 3615 for (EnumMapping map : enumSwitchMap.values())
duke@1 3616 map.translate();
mcimadamore@359 3617 checkConflicts(this.translated.toList());
jjg@595 3618 checkAccessConstructorTags();
duke@1 3619 translated = this.translated;
duke@1 3620 } finally {
duke@1 3621 // note that recursive invocations of this method fail hard
duke@1 3622 attrEnv = null;
duke@1 3623 this.make = null;
duke@1 3624 endPositions = null;
duke@1 3625 currentClass = null;
duke@1 3626 currentMethodDef = null;
duke@1 3627 outermostClassDef = null;
duke@1 3628 outermostMemberDef = null;
duke@1 3629 this.translated = null;
duke@1 3630 classdefs = null;
duke@1 3631 actualSymbols = null;
duke@1 3632 freevarCache = null;
duke@1 3633 proxies = null;
duke@1 3634 outerThisStack = null;
duke@1 3635 accessNums = null;
duke@1 3636 accessSyms = null;
duke@1 3637 accessConstrs = null;
jjg@595 3638 accessConstrTags = null;
duke@1 3639 accessed = null;
duke@1 3640 enumSwitchMap.clear();
duke@1 3641 }
duke@1 3642 return translated.toList();
duke@1 3643 }
duke@1 3644
duke@1 3645 //////////////////////////////////////////////////////////////
duke@1 3646 // The following contributed by Borland for bootstrapping purposes
duke@1 3647 //////////////////////////////////////////////////////////////
duke@1 3648 private void addEnumCompatibleMembers(JCClassDecl cdef) {
duke@1 3649 make_at(null);
duke@1 3650
duke@1 3651 // Add the special enum fields
duke@1 3652 VarSymbol ordinalFieldSym = addEnumOrdinalField(cdef);
duke@1 3653 VarSymbol nameFieldSym = addEnumNameField(cdef);
duke@1 3654
duke@1 3655 // Add the accessor methods for name and ordinal
duke@1 3656 MethodSymbol ordinalMethodSym = addEnumFieldOrdinalMethod(cdef, ordinalFieldSym);
duke@1 3657 MethodSymbol nameMethodSym = addEnumFieldNameMethod(cdef, nameFieldSym);
duke@1 3658
duke@1 3659 // Add the toString method
duke@1 3660 addEnumToString(cdef, nameFieldSym);
duke@1 3661
duke@1 3662 // Add the compareTo method
duke@1 3663 addEnumCompareTo(cdef, ordinalFieldSym);
duke@1 3664 }
duke@1 3665
duke@1 3666 private VarSymbol addEnumOrdinalField(JCClassDecl cdef) {
duke@1 3667 VarSymbol ordinal = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
duke@1 3668 names.fromString("$ordinal"),
duke@1 3669 syms.intType,
duke@1 3670 cdef.sym);
duke@1 3671 cdef.sym.members().enter(ordinal);
duke@1 3672 cdef.defs = cdef.defs.prepend(make.VarDef(ordinal, null));
duke@1 3673 return ordinal;
duke@1 3674 }
duke@1 3675
duke@1 3676 private VarSymbol addEnumNameField(JCClassDecl cdef) {
duke@1 3677 VarSymbol name = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
duke@1 3678 names.fromString("$name"),
duke@1 3679 syms.stringType,
duke@1 3680 cdef.sym);
duke@1 3681 cdef.sym.members().enter(name);
duke@1 3682 cdef.defs = cdef.defs.prepend(make.VarDef(name, null));
duke@1 3683 return name;
duke@1 3684 }
duke@1 3685
duke@1 3686 private MethodSymbol addEnumFieldOrdinalMethod(JCClassDecl cdef, VarSymbol ordinalSymbol) {
duke@1 3687 // Add the accessor methods for ordinal
duke@1 3688 Symbol ordinalSym = lookupMethod(cdef.pos(),
duke@1 3689 names.ordinal,
duke@1 3690 cdef.type,
duke@1 3691 List.<Type>nil());
duke@1 3692
jjg@816 3693 Assert.check(ordinalSym instanceof MethodSymbol);
duke@1 3694
duke@1 3695 JCStatement ret = make.Return(make.Ident(ordinalSymbol));
duke@1 3696 cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)ordinalSym,
duke@1 3697 make.Block(0L, List.of(ret))));
duke@1 3698
duke@1 3699 return (MethodSymbol)ordinalSym;
duke@1 3700 }
duke@1 3701
duke@1 3702 private MethodSymbol addEnumFieldNameMethod(JCClassDecl cdef, VarSymbol nameSymbol) {
duke@1 3703 // Add the accessor methods for name
duke@1 3704 Symbol nameSym = lookupMethod(cdef.pos(),
duke@1 3705 names._name,
duke@1 3706 cdef.type,
duke@1 3707 List.<Type>nil());
duke@1 3708
jjg@816 3709 Assert.check(nameSym instanceof MethodSymbol);
duke@1 3710
duke@1 3711 JCStatement ret = make.Return(make.Ident(nameSymbol));
duke@1 3712
duke@1 3713 cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)nameSym,
duke@1 3714 make.Block(0L, List.of(ret))));
duke@1 3715
duke@1 3716 return (MethodSymbol)nameSym;
duke@1 3717 }
duke@1 3718
duke@1 3719 private MethodSymbol addEnumToString(JCClassDecl cdef,
duke@1 3720 VarSymbol nameSymbol) {
duke@1 3721 Symbol toStringSym = lookupMethod(cdef.pos(),
duke@1 3722 names.toString,
duke@1 3723 cdef.type,
duke@1 3724 List.<Type>nil());
duke@1 3725
duke@1 3726 JCTree toStringDecl = null;
duke@1 3727 if (toStringSym != null)
duke@1 3728 toStringDecl = TreeInfo.declarationFor(toStringSym, cdef);
duke@1 3729
duke@1 3730 if (toStringDecl != null)
duke@1 3731 return (MethodSymbol)toStringSym;
duke@1 3732
duke@1 3733 JCStatement ret = make.Return(make.Ident(nameSymbol));
duke@1 3734
duke@1 3735 JCTree resTypeTree = make.Type(syms.stringType);
duke@1 3736
duke@1 3737 MethodType toStringType = new MethodType(List.<Type>nil(),
duke@1 3738 syms.stringType,
duke@1 3739 List.<Type>nil(),
duke@1 3740 cdef.sym);
duke@1 3741 toStringSym = new MethodSymbol(PUBLIC,
duke@1 3742 names.toString,
duke@1 3743 toStringType,
duke@1 3744 cdef.type.tsym);
duke@1 3745 toStringDecl = make.MethodDef((MethodSymbol)toStringSym,
duke@1 3746 make.Block(0L, List.of(ret)));
duke@1 3747
duke@1 3748 cdef.defs = cdef.defs.prepend(toStringDecl);
duke@1 3749 cdef.sym.members().enter(toStringSym);
duke@1 3750
duke@1 3751 return (MethodSymbol)toStringSym;
duke@1 3752 }
duke@1 3753
duke@1 3754 private MethodSymbol addEnumCompareTo(JCClassDecl cdef, VarSymbol ordinalSymbol) {
duke@1 3755 Symbol compareToSym = lookupMethod(cdef.pos(),
duke@1 3756 names.compareTo,
duke@1 3757 cdef.type,
duke@1 3758 List.of(cdef.sym.type));
duke@1 3759
jjg@816 3760 Assert.check(compareToSym instanceof MethodSymbol);
duke@1 3761
duke@1 3762 JCMethodDecl compareToDecl = (JCMethodDecl) TreeInfo.declarationFor(compareToSym, cdef);
duke@1 3763
duke@1 3764 ListBuffer<JCStatement> blockStatements = new ListBuffer<JCStatement>();
duke@1 3765
duke@1 3766 JCModifiers mod1 = make.Modifiers(0L);
jjg@113 3767 Name oName = names.fromString("o");
duke@1 3768 JCVariableDecl par1 = make.Param(oName, cdef.type, compareToSym);
duke@1 3769
duke@1 3770 JCIdent paramId1 = make.Ident(names.java_lang_Object);
duke@1 3771 paramId1.type = cdef.type;
duke@1 3772 paramId1.sym = par1.sym;
duke@1 3773
duke@1 3774 ((MethodSymbol)compareToSym).params = List.of(par1.sym);
duke@1 3775
duke@1 3776 JCIdent par1UsageId = make.Ident(par1.sym);
duke@1 3777 JCIdent castTargetIdent = make.Ident(cdef.sym);
duke@1 3778 JCTypeCast cast = make.TypeCast(castTargetIdent, par1UsageId);
duke@1 3779 cast.setType(castTargetIdent.type);
duke@1 3780
jjg@113 3781 Name otherName = names.fromString("other");
duke@1 3782
duke@1 3783 VarSymbol otherVarSym = new VarSymbol(mod1.flags,
duke@1 3784 otherName,
duke@1 3785 cdef.type,
duke@1 3786 compareToSym);
duke@1 3787 JCVariableDecl otherVar = make.VarDef(otherVarSym, cast);
duke@1 3788 blockStatements.append(otherVar);
duke@1 3789
duke@1 3790 JCIdent id1 = make.Ident(ordinalSymbol);
duke@1 3791
duke@1 3792 JCIdent fLocUsageId = make.Ident(otherVarSym);
duke@1 3793 JCExpression sel = make.Select(fLocUsageId, ordinalSymbol);
duke@1 3794 JCBinary bin = makeBinary(JCTree.MINUS, id1, sel);
duke@1 3795 JCReturn ret = make.Return(bin);
duke@1 3796 blockStatements.append(ret);
duke@1 3797 JCMethodDecl compareToMethod = make.MethodDef((MethodSymbol)compareToSym,
duke@1 3798 make.Block(0L,
duke@1 3799 blockStatements.toList()));
duke@1 3800 compareToMethod.params = List.of(par1);
duke@1 3801 cdef.defs = cdef.defs.append(compareToMethod);
duke@1 3802
duke@1 3803 return (MethodSymbol)compareToSym;
duke@1 3804 }
duke@1 3805 //////////////////////////////////////////////////////////////
duke@1 3806 // The above contributed by Borland for bootstrapping purposes
duke@1 3807 //////////////////////////////////////////////////////////////
duke@1 3808 }

mercurial