src/share/classes/com/sun/tools/javac/comp/Lower.java

Fri, 18 Feb 2011 15:55:20 -0800

author
darcy
date
Fri, 18 Feb 2011 15:55:20 -0800
changeset 884
75e25df50873
parent 858
96d4226bdd60
child 901
02b699d97a55
permissions
-rw-r--r--

7020047: Project Coin: generate null-check around try-with-resources close call
Reviewed-by: jjg

duke@1 1 /*
jjg@815 2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29
duke@1 30 import com.sun.tools.javac.code.*;
duke@1 31 import com.sun.tools.javac.jvm.*;
jjg@657 32 import com.sun.tools.javac.main.RecognizedOptions.PkgInfo;
duke@1 33 import com.sun.tools.javac.tree.*;
duke@1 34 import com.sun.tools.javac.util.*;
duke@1 35 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 36 import com.sun.tools.javac.util.List;
duke@1 37
duke@1 38 import com.sun.tools.javac.code.Symbol.*;
duke@1 39 import com.sun.tools.javac.tree.JCTree.*;
duke@1 40 import com.sun.tools.javac.code.Type.*;
duke@1 41
duke@1 42 import com.sun.tools.javac.jvm.Target;
duke@1 43
duke@1 44 import static com.sun.tools.javac.code.Flags.*;
duke@1 45 import static com.sun.tools.javac.code.Kinds.*;
duke@1 46 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 47 import static com.sun.tools.javac.jvm.ByteCodes.*;
duke@1 48
duke@1 49 /** This pass translates away some syntactic sugar: inner classes,
duke@1 50 * class literals, assertions, foreach loops, etc.
duke@1 51 *
jjg@581 52 * <p><b>This is NOT part of any supported API.
jjg@581 53 * If you write code that depends on this, you do so at your own risk.
duke@1 54 * This code and its internal interfaces are subject to change or
duke@1 55 * deletion without notice.</b>
duke@1 56 */
duke@1 57 public class Lower extends TreeTranslator {
duke@1 58 protected static final Context.Key<Lower> lowerKey =
duke@1 59 new Context.Key<Lower>();
duke@1 60
duke@1 61 public static Lower instance(Context context) {
duke@1 62 Lower instance = context.get(lowerKey);
duke@1 63 if (instance == null)
duke@1 64 instance = new Lower(context);
duke@1 65 return instance;
duke@1 66 }
duke@1 67
jjg@113 68 private Names names;
duke@1 69 private Log log;
duke@1 70 private Symtab syms;
duke@1 71 private Resolve rs;
duke@1 72 private Check chk;
duke@1 73 private Attr attr;
duke@1 74 private TreeMaker make;
duke@1 75 private DiagnosticPosition make_pos;
duke@1 76 private ClassWriter writer;
duke@1 77 private ClassReader reader;
duke@1 78 private ConstFold cfolder;
duke@1 79 private Target target;
duke@1 80 private Source source;
duke@1 81 private boolean allowEnums;
duke@1 82 private final Name dollarAssertionsDisabled;
duke@1 83 private final Name classDollar;
duke@1 84 private Types types;
duke@1 85 private boolean debugLower;
jjg@657 86 private PkgInfo pkginfoOpt;
duke@1 87
duke@1 88 protected Lower(Context context) {
duke@1 89 context.put(lowerKey, this);
jjg@113 90 names = Names.instance(context);
duke@1 91 log = Log.instance(context);
duke@1 92 syms = Symtab.instance(context);
duke@1 93 rs = Resolve.instance(context);
duke@1 94 chk = Check.instance(context);
duke@1 95 attr = Attr.instance(context);
duke@1 96 make = TreeMaker.instance(context);
duke@1 97 writer = ClassWriter.instance(context);
duke@1 98 reader = ClassReader.instance(context);
duke@1 99 cfolder = ConstFold.instance(context);
duke@1 100 target = Target.instance(context);
duke@1 101 source = Source.instance(context);
duke@1 102 allowEnums = source.allowEnums();
duke@1 103 dollarAssertionsDisabled = names.
duke@1 104 fromString(target.syntheticNameChar() + "assertionsDisabled");
duke@1 105 classDollar = names.
duke@1 106 fromString("class" + target.syntheticNameChar());
duke@1 107
duke@1 108 types = Types.instance(context);
duke@1 109 Options options = Options.instance(context);
jjg@700 110 debugLower = options.isSet("debuglower");
jjg@657 111 pkginfoOpt = PkgInfo.get(options);
duke@1 112 }
duke@1 113
duke@1 114 /** The currently enclosing class.
duke@1 115 */
duke@1 116 ClassSymbol currentClass;
duke@1 117
duke@1 118 /** A queue of all translated classes.
duke@1 119 */
duke@1 120 ListBuffer<JCTree> translated;
duke@1 121
duke@1 122 /** Environment for symbol lookup, set by translateTopLevelClass.
duke@1 123 */
duke@1 124 Env<AttrContext> attrEnv;
duke@1 125
duke@1 126 /** A hash table mapping syntax trees to their ending source positions.
duke@1 127 */
duke@1 128 Map<JCTree, Integer> endPositions;
duke@1 129
duke@1 130 /**************************************************************************
duke@1 131 * Global mappings
duke@1 132 *************************************************************************/
duke@1 133
duke@1 134 /** A hash table mapping local classes to their definitions.
duke@1 135 */
duke@1 136 Map<ClassSymbol, JCClassDecl> classdefs;
duke@1 137
duke@1 138 /** A hash table mapping virtual accessed symbols in outer subclasses
duke@1 139 * to the actually referred symbol in superclasses.
duke@1 140 */
duke@1 141 Map<Symbol,Symbol> actualSymbols;
duke@1 142
duke@1 143 /** The current method definition.
duke@1 144 */
duke@1 145 JCMethodDecl currentMethodDef;
duke@1 146
duke@1 147 /** The current method symbol.
duke@1 148 */
duke@1 149 MethodSymbol currentMethodSym;
duke@1 150
duke@1 151 /** The currently enclosing outermost class definition.
duke@1 152 */
duke@1 153 JCClassDecl outermostClassDef;
duke@1 154
duke@1 155 /** The currently enclosing outermost member definition.
duke@1 156 */
duke@1 157 JCTree outermostMemberDef;
duke@1 158
duke@1 159 /** A navigator class for assembling a mapping from local class symbols
duke@1 160 * to class definition trees.
duke@1 161 * There is only one case; all other cases simply traverse down the tree.
duke@1 162 */
duke@1 163 class ClassMap extends TreeScanner {
duke@1 164
duke@1 165 /** All encountered class defs are entered into classdefs table.
duke@1 166 */
duke@1 167 public void visitClassDef(JCClassDecl tree) {
duke@1 168 classdefs.put(tree.sym, tree);
duke@1 169 super.visitClassDef(tree);
duke@1 170 }
duke@1 171 }
duke@1 172 ClassMap classMap = new ClassMap();
duke@1 173
duke@1 174 /** Map a class symbol to its definition.
duke@1 175 * @param c The class symbol of which we want to determine the definition.
duke@1 176 */
duke@1 177 JCClassDecl classDef(ClassSymbol c) {
duke@1 178 // First lookup the class in the classdefs table.
duke@1 179 JCClassDecl def = classdefs.get(c);
duke@1 180 if (def == null && outermostMemberDef != null) {
duke@1 181 // If this fails, traverse outermost member definition, entering all
duke@1 182 // local classes into classdefs, and try again.
duke@1 183 classMap.scan(outermostMemberDef);
duke@1 184 def = classdefs.get(c);
duke@1 185 }
duke@1 186 if (def == null) {
duke@1 187 // If this fails, traverse outermost class definition, entering all
duke@1 188 // local classes into classdefs, and try again.
duke@1 189 classMap.scan(outermostClassDef);
duke@1 190 def = classdefs.get(c);
duke@1 191 }
duke@1 192 return def;
duke@1 193 }
duke@1 194
duke@1 195 /** A hash table mapping class symbols to lists of free variables.
duke@1 196 * accessed by them. Only free variables of the method immediately containing
duke@1 197 * a class are associated with that class.
duke@1 198 */
duke@1 199 Map<ClassSymbol,List<VarSymbol>> freevarCache;
duke@1 200
duke@1 201 /** A navigator class for collecting the free variables accessed
duke@1 202 * from a local class.
duke@1 203 * There is only one case; all other cases simply traverse down the tree.
duke@1 204 */
duke@1 205 class FreeVarCollector extends TreeScanner {
duke@1 206
duke@1 207 /** The owner of the local class.
duke@1 208 */
duke@1 209 Symbol owner;
duke@1 210
duke@1 211 /** The local class.
duke@1 212 */
duke@1 213 ClassSymbol clazz;
duke@1 214
duke@1 215 /** The list of owner's variables accessed from within the local class,
duke@1 216 * without any duplicates.
duke@1 217 */
duke@1 218 List<VarSymbol> fvs;
duke@1 219
duke@1 220 FreeVarCollector(ClassSymbol clazz) {
duke@1 221 this.clazz = clazz;
duke@1 222 this.owner = clazz.owner;
duke@1 223 this.fvs = List.nil();
duke@1 224 }
duke@1 225
duke@1 226 /** Add free variable to fvs list unless it is already there.
duke@1 227 */
duke@1 228 private void addFreeVar(VarSymbol v) {
duke@1 229 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
duke@1 230 if (l.head == v) return;
duke@1 231 fvs = fvs.prepend(v);
duke@1 232 }
duke@1 233
duke@1 234 /** Add all free variables of class c to fvs list
duke@1 235 * unless they are already there.
duke@1 236 */
duke@1 237 private void addFreeVars(ClassSymbol c) {
duke@1 238 List<VarSymbol> fvs = freevarCache.get(c);
duke@1 239 if (fvs != null) {
duke@1 240 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
duke@1 241 addFreeVar(l.head);
duke@1 242 }
duke@1 243 }
duke@1 244 }
duke@1 245
duke@1 246 /** If tree refers to a variable in owner of local class, add it to
duke@1 247 * free variables list.
duke@1 248 */
duke@1 249 public void visitIdent(JCIdent tree) {
duke@1 250 result = tree;
duke@1 251 visitSymbol(tree.sym);
duke@1 252 }
duke@1 253 // where
duke@1 254 private void visitSymbol(Symbol _sym) {
duke@1 255 Symbol sym = _sym;
duke@1 256 if (sym.kind == VAR || sym.kind == MTH) {
duke@1 257 while (sym != null && sym.owner != owner)
duke@1 258 sym = proxies.lookup(proxyName(sym.name)).sym;
duke@1 259 if (sym != null && sym.owner == owner) {
duke@1 260 VarSymbol v = (VarSymbol)sym;
duke@1 261 if (v.getConstValue() == null) {
duke@1 262 addFreeVar(v);
duke@1 263 }
duke@1 264 } else {
duke@1 265 if (outerThisStack.head != null &&
duke@1 266 outerThisStack.head != _sym)
duke@1 267 visitSymbol(outerThisStack.head);
duke@1 268 }
duke@1 269 }
duke@1 270 }
duke@1 271
duke@1 272 /** If tree refers to a class instance creation expression
duke@1 273 * add all free variables of the freshly created class.
duke@1 274 */
duke@1 275 public void visitNewClass(JCNewClass tree) {
duke@1 276 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
duke@1 277 addFreeVars(c);
duke@1 278 if (tree.encl == null &&
duke@1 279 c.hasOuterInstance() &&
duke@1 280 outerThisStack.head != null)
duke@1 281 visitSymbol(outerThisStack.head);
duke@1 282 super.visitNewClass(tree);
duke@1 283 }
duke@1 284
duke@1 285 /** If tree refers to a qualified this or super expression
duke@1 286 * for anything but the current class, add the outer this
duke@1 287 * stack as a free variable.
duke@1 288 */
duke@1 289 public void visitSelect(JCFieldAccess tree) {
duke@1 290 if ((tree.name == names._this || tree.name == names._super) &&
duke@1 291 tree.selected.type.tsym != clazz &&
duke@1 292 outerThisStack.head != null)
duke@1 293 visitSymbol(outerThisStack.head);
duke@1 294 super.visitSelect(tree);
duke@1 295 }
duke@1 296
duke@1 297 /** If tree refers to a superclass constructor call,
duke@1 298 * add all free variables of the superclass.
duke@1 299 */
duke@1 300 public void visitApply(JCMethodInvocation tree) {
duke@1 301 if (TreeInfo.name(tree.meth) == names._super) {
duke@1 302 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
duke@1 303 Symbol constructor = TreeInfo.symbol(tree.meth);
duke@1 304 ClassSymbol c = (ClassSymbol)constructor.owner;
duke@1 305 if (c.hasOuterInstance() &&
duke@1 306 tree.meth.getTag() != JCTree.SELECT &&
duke@1 307 outerThisStack.head != null)
duke@1 308 visitSymbol(outerThisStack.head);
duke@1 309 }
duke@1 310 super.visitApply(tree);
duke@1 311 }
duke@1 312 }
duke@1 313
duke@1 314 /** Return the variables accessed from within a local class, which
duke@1 315 * are declared in the local class' owner.
duke@1 316 * (in reverse order of first access).
duke@1 317 */
duke@1 318 List<VarSymbol> freevars(ClassSymbol c) {
duke@1 319 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 320 List<VarSymbol> fvs = freevarCache.get(c);
duke@1 321 if (fvs == null) {
duke@1 322 FreeVarCollector collector = new FreeVarCollector(c);
duke@1 323 collector.scan(classDef(c));
duke@1 324 fvs = collector.fvs;
duke@1 325 freevarCache.put(c, fvs);
duke@1 326 }
duke@1 327 return fvs;
duke@1 328 } else {
duke@1 329 return List.nil();
duke@1 330 }
duke@1 331 }
duke@1 332
duke@1 333 Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
duke@1 334
duke@1 335 EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
duke@1 336 EnumMapping map = enumSwitchMap.get(enumClass);
duke@1 337 if (map == null)
duke@1 338 enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
duke@1 339 return map;
duke@1 340 }
duke@1 341
duke@1 342 /** This map gives a translation table to be used for enum
duke@1 343 * switches.
duke@1 344 *
duke@1 345 * <p>For each enum that appears as the type of a switch
duke@1 346 * expression, we maintain an EnumMapping to assist in the
duke@1 347 * translation, as exemplified by the following example:
duke@1 348 *
duke@1 349 * <p>we translate
duke@1 350 * <pre>
duke@1 351 * switch(colorExpression) {
duke@1 352 * case red: stmt1;
duke@1 353 * case green: stmt2;
duke@1 354 * }
duke@1 355 * </pre>
duke@1 356 * into
duke@1 357 * <pre>
duke@1 358 * switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
duke@1 359 * case 1: stmt1;
duke@1 360 * case 2: stmt2
duke@1 361 * }
duke@1 362 * </pre>
darcy@430 363 * with the auxiliary table initialized as follows:
duke@1 364 * <pre>
duke@1 365 * class Outer$0 {
duke@1 366 * synthetic final int[] $EnumMap$Color = new int[Color.values().length];
duke@1 367 * static {
duke@1 368 * try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
duke@1 369 * try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
duke@1 370 * }
duke@1 371 * }
duke@1 372 * </pre>
duke@1 373 * class EnumMapping provides mapping data and support methods for this translation.
duke@1 374 */
duke@1 375 class EnumMapping {
duke@1 376 EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
duke@1 377 this.forEnum = forEnum;
duke@1 378 this.values = new LinkedHashMap<VarSymbol,Integer>();
duke@1 379 this.pos = pos;
duke@1 380 Name varName = names
duke@1 381 .fromString(target.syntheticNameChar() +
duke@1 382 "SwitchMap" +
duke@1 383 target.syntheticNameChar() +
duke@1 384 writer.xClassName(forEnum.type).toString()
duke@1 385 .replace('/', '.')
duke@1 386 .replace('.', target.syntheticNameChar()));
duke@1 387 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 388 this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
duke@1 389 varName,
duke@1 390 new ArrayType(syms.intType, syms.arrayClass),
duke@1 391 outerCacheClass);
duke@1 392 enterSynthetic(pos, mapVar, outerCacheClass.members());
duke@1 393 }
duke@1 394
duke@1 395 DiagnosticPosition pos = null;
duke@1 396
duke@1 397 // the next value to use
duke@1 398 int next = 1; // 0 (unused map elements) go to the default label
duke@1 399
duke@1 400 // the enum for which this is a map
duke@1 401 final TypeSymbol forEnum;
duke@1 402
duke@1 403 // the field containing the map
duke@1 404 final VarSymbol mapVar;
duke@1 405
duke@1 406 // the mapped values
duke@1 407 final Map<VarSymbol,Integer> values;
duke@1 408
duke@1 409 JCLiteral forConstant(VarSymbol v) {
duke@1 410 Integer result = values.get(v);
duke@1 411 if (result == null)
duke@1 412 values.put(v, result = next++);
duke@1 413 return make.Literal(result);
duke@1 414 }
duke@1 415
duke@1 416 // generate the field initializer for the map
duke@1 417 void translate() {
duke@1 418 make.at(pos.getStartPosition());
duke@1 419 JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
duke@1 420
duke@1 421 // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
duke@1 422 MethodSymbol valuesMethod = lookupMethod(pos,
duke@1 423 names.values,
duke@1 424 forEnum.type,
duke@1 425 List.<Type>nil());
duke@1 426 JCExpression size = make // Color.values().length
duke@1 427 .Select(make.App(make.QualIdent(valuesMethod)),
duke@1 428 syms.lengthVar);
duke@1 429 JCExpression mapVarInit = make
duke@1 430 .NewArray(make.Type(syms.intType), List.of(size), null)
duke@1 431 .setType(new ArrayType(syms.intType, syms.arrayClass));
duke@1 432
duke@1 433 // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
duke@1 434 ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
duke@1 435 Symbol ordinalMethod = lookupMethod(pos,
duke@1 436 names.ordinal,
duke@1 437 forEnum.type,
duke@1 438 List.<Type>nil());
duke@1 439 List<JCCatch> catcher = List.<JCCatch>nil()
duke@1 440 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
duke@1 441 syms.noSuchFieldErrorType,
duke@1 442 syms.noSymbol),
duke@1 443 null),
duke@1 444 make.Block(0, List.<JCStatement>nil())));
duke@1 445 for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
duke@1 446 VarSymbol enumerator = e.getKey();
duke@1 447 Integer mappedValue = e.getValue();
duke@1 448 JCExpression assign = make
duke@1 449 .Assign(make.Indexed(mapVar,
duke@1 450 make.App(make.Select(make.QualIdent(enumerator),
duke@1 451 ordinalMethod))),
duke@1 452 make.Literal(mappedValue))
duke@1 453 .setType(syms.intType);
duke@1 454 JCStatement exec = make.Exec(assign);
duke@1 455 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
duke@1 456 stmts.append(_try);
duke@1 457 }
duke@1 458
duke@1 459 owner.defs = owner.defs
duke@1 460 .prepend(make.Block(STATIC, stmts.toList()))
duke@1 461 .prepend(make.VarDef(mapVar, mapVarInit));
duke@1 462 }
duke@1 463 }
duke@1 464
duke@1 465
duke@1 466 /**************************************************************************
duke@1 467 * Tree building blocks
duke@1 468 *************************************************************************/
duke@1 469
duke@1 470 /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
duke@1 471 * pos as make_pos, for use in diagnostics.
duke@1 472 **/
duke@1 473 TreeMaker make_at(DiagnosticPosition pos) {
duke@1 474 make_pos = pos;
duke@1 475 return make.at(pos);
duke@1 476 }
duke@1 477
duke@1 478 /** Make an attributed tree representing a literal. This will be an
duke@1 479 * Ident node in the case of boolean literals, a Literal node in all
duke@1 480 * other cases.
duke@1 481 * @param type The literal's type.
duke@1 482 * @param value The literal's value.
duke@1 483 */
duke@1 484 JCExpression makeLit(Type type, Object value) {
duke@1 485 return make.Literal(type.tag, value).setType(type.constType(value));
duke@1 486 }
duke@1 487
duke@1 488 /** Make an attributed tree representing null.
duke@1 489 */
duke@1 490 JCExpression makeNull() {
duke@1 491 return makeLit(syms.botType, null);
duke@1 492 }
duke@1 493
duke@1 494 /** Make an attributed class instance creation expression.
duke@1 495 * @param ctype The class type.
duke@1 496 * @param args The constructor arguments.
duke@1 497 */
duke@1 498 JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
duke@1 499 JCNewClass tree = make.NewClass(null,
duke@1 500 null, make.QualIdent(ctype.tsym), args, null);
duke@1 501 tree.constructor = rs.resolveConstructor(
duke@1 502 make_pos, attrEnv, ctype, TreeInfo.types(args), null, false, false);
duke@1 503 tree.type = ctype;
duke@1 504 return tree;
duke@1 505 }
duke@1 506
duke@1 507 /** Make an attributed unary expression.
duke@1 508 * @param optag The operators tree tag.
duke@1 509 * @param arg The operator's argument.
duke@1 510 */
duke@1 511 JCUnary makeUnary(int optag, JCExpression arg) {
duke@1 512 JCUnary tree = make.Unary(optag, arg);
duke@1 513 tree.operator = rs.resolveUnaryOperator(
duke@1 514 make_pos, optag, attrEnv, arg.type);
duke@1 515 tree.type = tree.operator.type.getReturnType();
duke@1 516 return tree;
duke@1 517 }
duke@1 518
duke@1 519 /** Make an attributed binary expression.
duke@1 520 * @param optag The operators tree tag.
duke@1 521 * @param lhs The operator's left argument.
duke@1 522 * @param rhs The operator's right argument.
duke@1 523 */
duke@1 524 JCBinary makeBinary(int optag, JCExpression lhs, JCExpression rhs) {
duke@1 525 JCBinary tree = make.Binary(optag, lhs, rhs);
duke@1 526 tree.operator = rs.resolveBinaryOperator(
duke@1 527 make_pos, optag, attrEnv, lhs.type, rhs.type);
duke@1 528 tree.type = tree.operator.type.getReturnType();
duke@1 529 return tree;
duke@1 530 }
duke@1 531
duke@1 532 /** Make an attributed assignop expression.
duke@1 533 * @param optag The operators tree tag.
duke@1 534 * @param lhs The operator's left argument.
duke@1 535 * @param rhs The operator's right argument.
duke@1 536 */
duke@1 537 JCAssignOp makeAssignop(int optag, JCTree lhs, JCTree rhs) {
duke@1 538 JCAssignOp tree = make.Assignop(optag, lhs, rhs);
duke@1 539 tree.operator = rs.resolveBinaryOperator(
duke@1 540 make_pos, tree.getTag() - JCTree.ASGOffset, attrEnv, lhs.type, rhs.type);
duke@1 541 tree.type = lhs.type;
duke@1 542 return tree;
duke@1 543 }
duke@1 544
duke@1 545 /** Convert tree into string object, unless it has already a
duke@1 546 * reference type..
duke@1 547 */
duke@1 548 JCExpression makeString(JCExpression tree) {
duke@1 549 if (tree.type.tag >= CLASS) {
duke@1 550 return tree;
duke@1 551 } else {
duke@1 552 Symbol valueOfSym = lookupMethod(tree.pos(),
duke@1 553 names.valueOf,
duke@1 554 syms.stringType,
duke@1 555 List.of(tree.type));
duke@1 556 return make.App(make.QualIdent(valueOfSym), List.of(tree));
duke@1 557 }
duke@1 558 }
duke@1 559
duke@1 560 /** Create an empty anonymous class definition and enter and complete
duke@1 561 * its symbol. Return the class definition's symbol.
duke@1 562 * and create
duke@1 563 * @param flags The class symbol's flags
duke@1 564 * @param owner The class symbol's owner
duke@1 565 */
duke@1 566 ClassSymbol makeEmptyClass(long flags, ClassSymbol owner) {
duke@1 567 // Create class symbol.
duke@1 568 ClassSymbol c = reader.defineClass(names.empty, owner);
duke@1 569 c.flatname = chk.localClassName(c);
duke@1 570 c.sourcefile = owner.sourcefile;
duke@1 571 c.completer = null;
mcimadamore@858 572 c.members_field = new Scope(c);
duke@1 573 c.flags_field = flags;
duke@1 574 ClassType ctype = (ClassType) c.type;
duke@1 575 ctype.supertype_field = syms.objectType;
duke@1 576 ctype.interfaces_field = List.nil();
duke@1 577
duke@1 578 JCClassDecl odef = classDef(owner);
duke@1 579
duke@1 580 // Enter class symbol in owner scope and compiled table.
duke@1 581 enterSynthetic(odef.pos(), c, owner.members());
duke@1 582 chk.compiled.put(c.flatname, c);
duke@1 583
duke@1 584 // Create class definition tree.
duke@1 585 JCClassDecl cdef = make.ClassDef(
duke@1 586 make.Modifiers(flags), names.empty,
duke@1 587 List.<JCTypeParameter>nil(),
duke@1 588 null, List.<JCExpression>nil(), List.<JCTree>nil());
duke@1 589 cdef.sym = c;
duke@1 590 cdef.type = c.type;
duke@1 591
duke@1 592 // Append class definition tree to owner's definitions.
duke@1 593 odef.defs = odef.defs.prepend(cdef);
duke@1 594
duke@1 595 return c;
duke@1 596 }
duke@1 597
duke@1 598 /**************************************************************************
duke@1 599 * Symbol manipulation utilities
duke@1 600 *************************************************************************/
duke@1 601
duke@1 602 /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
duke@1 603 * @param pos Position for error reporting.
duke@1 604 * @param sym The symbol.
duke@1 605 * @param s The scope.
duke@1 606 */
duke@1 607 private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
mcimadamore@359 608 s.enter(sym);
mcimadamore@359 609 }
mcimadamore@359 610
darcy@609 611 /** Create a fresh synthetic name within a given scope - the unique name is
darcy@609 612 * obtained by appending '$' chars at the end of the name until no match
darcy@609 613 * is found.
darcy@609 614 *
darcy@609 615 * @param name base name
darcy@609 616 * @param s scope in which the name has to be unique
darcy@609 617 * @return fresh synthetic name
darcy@609 618 */
darcy@609 619 private Name makeSyntheticName(Name name, Scope s) {
darcy@609 620 do {
darcy@609 621 name = name.append(
darcy@609 622 target.syntheticNameChar(),
darcy@609 623 names.empty);
darcy@609 624 } while (lookupSynthetic(name, s) != null);
darcy@609 625 return name;
darcy@609 626 }
darcy@609 627
mcimadamore@359 628 /** Check whether synthetic symbols generated during lowering conflict
mcimadamore@359 629 * with user-defined symbols.
mcimadamore@359 630 *
mcimadamore@359 631 * @param translatedTrees lowered class trees
mcimadamore@359 632 */
mcimadamore@359 633 void checkConflicts(List<JCTree> translatedTrees) {
mcimadamore@359 634 for (JCTree t : translatedTrees) {
mcimadamore@359 635 t.accept(conflictsChecker);
mcimadamore@359 636 }
mcimadamore@359 637 }
mcimadamore@359 638
mcimadamore@359 639 JCTree.Visitor conflictsChecker = new TreeScanner() {
mcimadamore@359 640
mcimadamore@359 641 TypeSymbol currentClass;
mcimadamore@359 642
mcimadamore@359 643 @Override
mcimadamore@359 644 public void visitMethodDef(JCMethodDecl that) {
mcimadamore@359 645 chk.checkConflicts(that.pos(), that.sym, currentClass);
mcimadamore@359 646 super.visitMethodDef(that);
mcimadamore@359 647 }
mcimadamore@359 648
mcimadamore@359 649 @Override
mcimadamore@359 650 public void visitVarDef(JCVariableDecl that) {
mcimadamore@359 651 if (that.sym.owner.kind == TYP) {
mcimadamore@359 652 chk.checkConflicts(that.pos(), that.sym, currentClass);
mcimadamore@359 653 }
mcimadamore@359 654 super.visitVarDef(that);
mcimadamore@359 655 }
mcimadamore@359 656
mcimadamore@359 657 @Override
mcimadamore@359 658 public void visitClassDef(JCClassDecl that) {
mcimadamore@359 659 TypeSymbol prevCurrentClass = currentClass;
mcimadamore@359 660 currentClass = that.sym;
mcimadamore@359 661 try {
mcimadamore@359 662 super.visitClassDef(that);
mcimadamore@359 663 }
mcimadamore@359 664 finally {
mcimadamore@359 665 currentClass = prevCurrentClass;
duke@1 666 }
duke@1 667 }
mcimadamore@359 668 };
duke@1 669
duke@1 670 /** Look up a synthetic name in a given scope.
duke@1 671 * @param scope The scope.
duke@1 672 * @param name The name.
duke@1 673 */
duke@1 674 private Symbol lookupSynthetic(Name name, Scope s) {
duke@1 675 Symbol sym = s.lookup(name).sym;
duke@1 676 return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
duke@1 677 }
duke@1 678
duke@1 679 /** Look up a method in a given scope.
duke@1 680 */
duke@1 681 private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
duke@1 682 return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, null);
duke@1 683 }
duke@1 684
duke@1 685 /** Look up a constructor.
duke@1 686 */
duke@1 687 private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
duke@1 688 return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
duke@1 689 }
duke@1 690
duke@1 691 /** Look up a field.
duke@1 692 */
duke@1 693 private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
duke@1 694 return rs.resolveInternalField(pos, attrEnv, qual, name);
duke@1 695 }
duke@1 696
jjg@595 697 /** Anon inner classes are used as access constructor tags.
jjg@595 698 * accessConstructorTag will use an existing anon class if one is available,
jjg@595 699 * and synthethise a class (with makeEmptyClass) if one is not available.
jjg@595 700 * However, there is a small possibility that an existing class will not
jjg@595 701 * be generated as expected if it is inside a conditional with a constant
jjg@595 702 * expression. If that is found to be the case, create an empty class here.
jjg@595 703 */
jjg@595 704 private void checkAccessConstructorTags() {
jjg@595 705 for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
jjg@595 706 ClassSymbol c = l.head;
jjg@595 707 if (isTranslatedClassAvailable(c))
jjg@595 708 continue;
jjg@595 709 // Create class definition tree.
jjg@595 710 JCClassDecl cdef = make.ClassDef(
jjg@595 711 make.Modifiers(STATIC | SYNTHETIC), names.empty,
jjg@595 712 List.<JCTypeParameter>nil(),
jjg@595 713 null, List.<JCExpression>nil(), List.<JCTree>nil());
jjg@595 714 cdef.sym = c;
jjg@595 715 cdef.type = c.type;
jjg@595 716 // add it to the list of classes to be generated
jjg@595 717 translated.append(cdef);
jjg@595 718 }
jjg@595 719 }
jjg@595 720 // where
jjg@595 721 private boolean isTranslatedClassAvailable(ClassSymbol c) {
jjg@595 722 for (JCTree tree: translated) {
jjg@595 723 if (tree.getTag() == JCTree.CLASSDEF
jjg@595 724 && ((JCClassDecl) tree).sym == c) {
jjg@595 725 return true;
jjg@595 726 }
jjg@595 727 }
jjg@595 728 return false;
jjg@595 729 }
jjg@595 730
duke@1 731 /**************************************************************************
duke@1 732 * Access methods
duke@1 733 *************************************************************************/
duke@1 734
duke@1 735 /** Access codes for dereferencing, assignment,
duke@1 736 * and pre/post increment/decrement.
duke@1 737 * Access codes for assignment operations are determined by method accessCode
duke@1 738 * below.
duke@1 739 *
duke@1 740 * All access codes for accesses to the current class are even.
duke@1 741 * If a member of the superclass should be accessed instead (because
duke@1 742 * access was via a qualified super), add one to the corresponding code
duke@1 743 * for the current class, making the number odd.
duke@1 744 * This numbering scheme is used by the backend to decide whether
duke@1 745 * to issue an invokevirtual or invokespecial call.
duke@1 746 *
duke@1 747 * @see Gen.visitSelect(Select tree)
duke@1 748 */
duke@1 749 private static final int
duke@1 750 DEREFcode = 0,
duke@1 751 ASSIGNcode = 2,
duke@1 752 PREINCcode = 4,
duke@1 753 PREDECcode = 6,
duke@1 754 POSTINCcode = 8,
duke@1 755 POSTDECcode = 10,
duke@1 756 FIRSTASGOPcode = 12;
duke@1 757
duke@1 758 /** Number of access codes
duke@1 759 */
duke@1 760 private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
duke@1 761
duke@1 762 /** A mapping from symbols to their access numbers.
duke@1 763 */
duke@1 764 private Map<Symbol,Integer> accessNums;
duke@1 765
duke@1 766 /** A mapping from symbols to an array of access symbols, indexed by
duke@1 767 * access code.
duke@1 768 */
duke@1 769 private Map<Symbol,MethodSymbol[]> accessSyms;
duke@1 770
duke@1 771 /** A mapping from (constructor) symbols to access constructor symbols.
duke@1 772 */
duke@1 773 private Map<Symbol,MethodSymbol> accessConstrs;
duke@1 774
jjg@595 775 /** A list of all class symbols used for access constructor tags.
jjg@595 776 */
jjg@595 777 private List<ClassSymbol> accessConstrTags;
jjg@595 778
duke@1 779 /** A queue for all accessed symbols.
duke@1 780 */
duke@1 781 private ListBuffer<Symbol> accessed;
duke@1 782
duke@1 783 /** Map bytecode of binary operation to access code of corresponding
duke@1 784 * assignment operation. This is always an even number.
duke@1 785 */
duke@1 786 private static int accessCode(int bytecode) {
duke@1 787 if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
duke@1 788 return (bytecode - iadd) * 2 + FIRSTASGOPcode;
duke@1 789 else if (bytecode == ByteCodes.string_add)
duke@1 790 return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
duke@1 791 else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
duke@1 792 return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
duke@1 793 else
duke@1 794 return -1;
duke@1 795 }
duke@1 796
duke@1 797 /** return access code for identifier,
duke@1 798 * @param tree The tree representing the identifier use.
duke@1 799 * @param enclOp The closest enclosing operation node of tree,
duke@1 800 * null if tree is not a subtree of an operation.
duke@1 801 */
duke@1 802 private static int accessCode(JCTree tree, JCTree enclOp) {
duke@1 803 if (enclOp == null)
duke@1 804 return DEREFcode;
duke@1 805 else if (enclOp.getTag() == JCTree.ASSIGN &&
duke@1 806 tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
duke@1 807 return ASSIGNcode;
duke@1 808 else if (JCTree.PREINC <= enclOp.getTag() && enclOp.getTag() <= JCTree.POSTDEC &&
duke@1 809 tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
duke@1 810 return (enclOp.getTag() - JCTree.PREINC) * 2 + PREINCcode;
duke@1 811 else if (JCTree.BITOR_ASG <= enclOp.getTag() && enclOp.getTag() <= JCTree.MOD_ASG &&
duke@1 812 tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
duke@1 813 return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
duke@1 814 else
duke@1 815 return DEREFcode;
duke@1 816 }
duke@1 817
duke@1 818 /** Return binary operator that corresponds to given access code.
duke@1 819 */
duke@1 820 private OperatorSymbol binaryAccessOperator(int acode) {
duke@1 821 for (Scope.Entry e = syms.predefClass.members().elems;
duke@1 822 e != null;
duke@1 823 e = e.sibling) {
duke@1 824 if (e.sym instanceof OperatorSymbol) {
duke@1 825 OperatorSymbol op = (OperatorSymbol)e.sym;
duke@1 826 if (accessCode(op.opcode) == acode) return op;
duke@1 827 }
duke@1 828 }
duke@1 829 return null;
duke@1 830 }
duke@1 831
duke@1 832 /** Return tree tag for assignment operation corresponding
duke@1 833 * to given binary operator.
duke@1 834 */
duke@1 835 private static int treeTag(OperatorSymbol operator) {
duke@1 836 switch (operator.opcode) {
duke@1 837 case ByteCodes.ior: case ByteCodes.lor:
duke@1 838 return JCTree.BITOR_ASG;
duke@1 839 case ByteCodes.ixor: case ByteCodes.lxor:
duke@1 840 return JCTree.BITXOR_ASG;
duke@1 841 case ByteCodes.iand: case ByteCodes.land:
duke@1 842 return JCTree.BITAND_ASG;
duke@1 843 case ByteCodes.ishl: case ByteCodes.lshl:
duke@1 844 case ByteCodes.ishll: case ByteCodes.lshll:
duke@1 845 return JCTree.SL_ASG;
duke@1 846 case ByteCodes.ishr: case ByteCodes.lshr:
duke@1 847 case ByteCodes.ishrl: case ByteCodes.lshrl:
duke@1 848 return JCTree.SR_ASG;
duke@1 849 case ByteCodes.iushr: case ByteCodes.lushr:
duke@1 850 case ByteCodes.iushrl: case ByteCodes.lushrl:
duke@1 851 return JCTree.USR_ASG;
duke@1 852 case ByteCodes.iadd: case ByteCodes.ladd:
duke@1 853 case ByteCodes.fadd: case ByteCodes.dadd:
duke@1 854 case ByteCodes.string_add:
duke@1 855 return JCTree.PLUS_ASG;
duke@1 856 case ByteCodes.isub: case ByteCodes.lsub:
duke@1 857 case ByteCodes.fsub: case ByteCodes.dsub:
duke@1 858 return JCTree.MINUS_ASG;
duke@1 859 case ByteCodes.imul: case ByteCodes.lmul:
duke@1 860 case ByteCodes.fmul: case ByteCodes.dmul:
duke@1 861 return JCTree.MUL_ASG;
duke@1 862 case ByteCodes.idiv: case ByteCodes.ldiv:
duke@1 863 case ByteCodes.fdiv: case ByteCodes.ddiv:
duke@1 864 return JCTree.DIV_ASG;
duke@1 865 case ByteCodes.imod: case ByteCodes.lmod:
duke@1 866 case ByteCodes.fmod: case ByteCodes.dmod:
duke@1 867 return JCTree.MOD_ASG;
duke@1 868 default:
duke@1 869 throw new AssertionError();
duke@1 870 }
duke@1 871 }
duke@1 872
duke@1 873 /** The name of the access method with number `anum' and access code `acode'.
duke@1 874 */
duke@1 875 Name accessName(int anum, int acode) {
duke@1 876 return names.fromString(
duke@1 877 "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
duke@1 878 }
duke@1 879
duke@1 880 /** Return access symbol for a private or protected symbol from an inner class.
duke@1 881 * @param sym The accessed private symbol.
duke@1 882 * @param tree The accessing tree.
duke@1 883 * @param enclOp The closest enclosing operation node of tree,
duke@1 884 * null if tree is not a subtree of an operation.
duke@1 885 * @param protAccess Is access to a protected symbol in another
duke@1 886 * package?
duke@1 887 * @param refSuper Is access via a (qualified) C.super?
duke@1 888 */
duke@1 889 MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
duke@1 890 boolean protAccess, boolean refSuper) {
duke@1 891 ClassSymbol accOwner = refSuper && protAccess
duke@1 892 // For access via qualified super (T.super.x), place the
duke@1 893 // access symbol on T.
duke@1 894 ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
duke@1 895 // Otherwise pretend that the owner of an accessed
duke@1 896 // protected symbol is the enclosing class of the current
duke@1 897 // class which is a subclass of the symbol's owner.
duke@1 898 : accessClass(sym, protAccess, tree);
duke@1 899
duke@1 900 Symbol vsym = sym;
duke@1 901 if (sym.owner != accOwner) {
duke@1 902 vsym = sym.clone(accOwner);
duke@1 903 actualSymbols.put(vsym, sym);
duke@1 904 }
duke@1 905
duke@1 906 Integer anum // The access number of the access method.
duke@1 907 = accessNums.get(vsym);
duke@1 908 if (anum == null) {
duke@1 909 anum = accessed.length();
duke@1 910 accessNums.put(vsym, anum);
duke@1 911 accessSyms.put(vsym, new MethodSymbol[NCODES]);
duke@1 912 accessed.append(vsym);
duke@1 913 // System.out.println("accessing " + vsym + " in " + vsym.location());
duke@1 914 }
duke@1 915
duke@1 916 int acode; // The access code of the access method.
duke@1 917 List<Type> argtypes; // The argument types of the access method.
duke@1 918 Type restype; // The result type of the access method.
darcy@430 919 List<Type> thrown; // The thrown exceptions of the access method.
duke@1 920 switch (vsym.kind) {
duke@1 921 case VAR:
duke@1 922 acode = accessCode(tree, enclOp);
duke@1 923 if (acode >= FIRSTASGOPcode) {
duke@1 924 OperatorSymbol operator = binaryAccessOperator(acode);
duke@1 925 if (operator.opcode == string_add)
duke@1 926 argtypes = List.of(syms.objectType);
duke@1 927 else
duke@1 928 argtypes = operator.type.getParameterTypes().tail;
duke@1 929 } else if (acode == ASSIGNcode)
duke@1 930 argtypes = List.of(vsym.erasure(types));
duke@1 931 else
duke@1 932 argtypes = List.nil();
duke@1 933 restype = vsym.erasure(types);
duke@1 934 thrown = List.nil();
duke@1 935 break;
duke@1 936 case MTH:
duke@1 937 acode = DEREFcode;
duke@1 938 argtypes = vsym.erasure(types).getParameterTypes();
duke@1 939 restype = vsym.erasure(types).getReturnType();
duke@1 940 thrown = vsym.type.getThrownTypes();
duke@1 941 break;
duke@1 942 default:
duke@1 943 throw new AssertionError();
duke@1 944 }
duke@1 945
duke@1 946 // For references via qualified super, increment acode by one,
duke@1 947 // making it odd.
duke@1 948 if (protAccess && refSuper) acode++;
duke@1 949
duke@1 950 // Instance access methods get instance as first parameter.
duke@1 951 // For protected symbols this needs to be the instance as a member
duke@1 952 // of the type containing the accessed symbol, not the class
duke@1 953 // containing the access method.
duke@1 954 if ((vsym.flags() & STATIC) == 0) {
duke@1 955 argtypes = argtypes.prepend(vsym.owner.erasure(types));
duke@1 956 }
duke@1 957 MethodSymbol[] accessors = accessSyms.get(vsym);
duke@1 958 MethodSymbol accessor = accessors[acode];
duke@1 959 if (accessor == null) {
duke@1 960 accessor = new MethodSymbol(
duke@1 961 STATIC | SYNTHETIC,
duke@1 962 accessName(anum.intValue(), acode),
duke@1 963 new MethodType(argtypes, restype, thrown, syms.methodClass),
duke@1 964 accOwner);
duke@1 965 enterSynthetic(tree.pos(), accessor, accOwner.members());
duke@1 966 accessors[acode] = accessor;
duke@1 967 }
duke@1 968 return accessor;
duke@1 969 }
duke@1 970
duke@1 971 /** The qualifier to be used for accessing a symbol in an outer class.
duke@1 972 * This is either C.sym or C.this.sym, depending on whether or not
duke@1 973 * sym is static.
duke@1 974 * @param sym The accessed symbol.
duke@1 975 */
duke@1 976 JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
duke@1 977 return (sym.flags() & STATIC) != 0
duke@1 978 ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
duke@1 979 : makeOwnerThis(pos, sym, true);
duke@1 980 }
duke@1 981
duke@1 982 /** Do we need an access method to reference private symbol?
duke@1 983 */
duke@1 984 boolean needsPrivateAccess(Symbol sym) {
duke@1 985 if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
duke@1 986 return false;
duke@1 987 } else if (sym.name == names.init && (sym.owner.owner.kind & (VAR | MTH)) != 0) {
duke@1 988 // private constructor in local class: relax protection
duke@1 989 sym.flags_field &= ~PRIVATE;
duke@1 990 return false;
duke@1 991 } else {
duke@1 992 return true;
duke@1 993 }
duke@1 994 }
duke@1 995
duke@1 996 /** Do we need an access method to reference symbol in other package?
duke@1 997 */
duke@1 998 boolean needsProtectedAccess(Symbol sym, JCTree tree) {
duke@1 999 if ((sym.flags() & PROTECTED) == 0 ||
duke@1 1000 sym.owner.owner == currentClass.owner || // fast special case
duke@1 1001 sym.packge() == currentClass.packge())
duke@1 1002 return false;
duke@1 1003 if (!currentClass.isSubClass(sym.owner, types))
duke@1 1004 return true;
duke@1 1005 if ((sym.flags() & STATIC) != 0 ||
duke@1 1006 tree.getTag() != JCTree.SELECT ||
duke@1 1007 TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
duke@1 1008 return false;
duke@1 1009 return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
duke@1 1010 }
duke@1 1011
duke@1 1012 /** The class in which an access method for given symbol goes.
duke@1 1013 * @param sym The access symbol
duke@1 1014 * @param protAccess Is access to a protected symbol in another
duke@1 1015 * package?
duke@1 1016 */
duke@1 1017 ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
duke@1 1018 if (protAccess) {
duke@1 1019 Symbol qualifier = null;
duke@1 1020 ClassSymbol c = currentClass;
duke@1 1021 if (tree.getTag() == JCTree.SELECT && (sym.flags() & STATIC) == 0) {
duke@1 1022 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
duke@1 1023 while (!qualifier.isSubClass(c, types)) {
duke@1 1024 c = c.owner.enclClass();
duke@1 1025 }
duke@1 1026 return c;
duke@1 1027 } else {
duke@1 1028 while (!c.isSubClass(sym.owner, types)) {
duke@1 1029 c = c.owner.enclClass();
duke@1 1030 }
duke@1 1031 }
duke@1 1032 return c;
duke@1 1033 } else {
duke@1 1034 // the symbol is private
duke@1 1035 return sym.owner.enclClass();
duke@1 1036 }
duke@1 1037 }
duke@1 1038
duke@1 1039 /** Ensure that identifier is accessible, return tree accessing the identifier.
duke@1 1040 * @param sym The accessed symbol.
duke@1 1041 * @param tree The tree referring to the symbol.
duke@1 1042 * @param enclOp The closest enclosing operation node of tree,
duke@1 1043 * null if tree is not a subtree of an operation.
duke@1 1044 * @param refSuper Is access via a (qualified) C.super?
duke@1 1045 */
duke@1 1046 JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
duke@1 1047 // Access a free variable via its proxy, or its proxy's proxy
duke@1 1048 while (sym.kind == VAR && sym.owner.kind == MTH &&
duke@1 1049 sym.owner.enclClass() != currentClass) {
duke@1 1050 // A constant is replaced by its constant value.
duke@1 1051 Object cv = ((VarSymbol)sym).getConstValue();
duke@1 1052 if (cv != null) {
duke@1 1053 make.at(tree.pos);
duke@1 1054 return makeLit(sym.type, cv);
duke@1 1055 }
duke@1 1056 // Otherwise replace the variable by its proxy.
duke@1 1057 sym = proxies.lookup(proxyName(sym.name)).sym;
jjg@816 1058 Assert.check(sym != null && (sym.flags_field & FINAL) != 0);
duke@1 1059 tree = make.at(tree.pos).Ident(sym);
duke@1 1060 }
duke@1 1061 JCExpression base = (tree.getTag() == JCTree.SELECT) ? ((JCFieldAccess) tree).selected : null;
duke@1 1062 switch (sym.kind) {
duke@1 1063 case TYP:
duke@1 1064 if (sym.owner.kind != PCK) {
duke@1 1065 // Convert type idents to
duke@1 1066 // <flat name> or <package name> . <flat name>
duke@1 1067 Name flatname = Convert.shortName(sym.flatName());
duke@1 1068 while (base != null &&
duke@1 1069 TreeInfo.symbol(base) != null &&
duke@1 1070 TreeInfo.symbol(base).kind != PCK) {
duke@1 1071 base = (base.getTag() == JCTree.SELECT)
duke@1 1072 ? ((JCFieldAccess) base).selected
duke@1 1073 : null;
duke@1 1074 }
duke@1 1075 if (tree.getTag() == JCTree.IDENT) {
duke@1 1076 ((JCIdent) tree).name = flatname;
duke@1 1077 } else if (base == null) {
duke@1 1078 tree = make.at(tree.pos).Ident(sym);
duke@1 1079 ((JCIdent) tree).name = flatname;
duke@1 1080 } else {
duke@1 1081 ((JCFieldAccess) tree).selected = base;
duke@1 1082 ((JCFieldAccess) tree).name = flatname;
duke@1 1083 }
duke@1 1084 }
duke@1 1085 break;
duke@1 1086 case MTH: case VAR:
duke@1 1087 if (sym.owner.kind == TYP) {
duke@1 1088
duke@1 1089 // Access methods are required for
duke@1 1090 // - private members,
duke@1 1091 // - protected members in a superclass of an
duke@1 1092 // enclosing class contained in another package.
duke@1 1093 // - all non-private members accessed via a qualified super.
duke@1 1094 boolean protAccess = refSuper && !needsPrivateAccess(sym)
duke@1 1095 || needsProtectedAccess(sym, tree);
duke@1 1096 boolean accReq = protAccess || needsPrivateAccess(sym);
duke@1 1097
duke@1 1098 // A base has to be supplied for
duke@1 1099 // - simple identifiers accessing variables in outer classes.
duke@1 1100 boolean baseReq =
duke@1 1101 base == null &&
duke@1 1102 sym.owner != syms.predefClass &&
duke@1 1103 !sym.isMemberOf(currentClass, types);
duke@1 1104
duke@1 1105 if (accReq || baseReq) {
duke@1 1106 make.at(tree.pos);
duke@1 1107
duke@1 1108 // Constants are replaced by their constant value.
duke@1 1109 if (sym.kind == VAR) {
duke@1 1110 Object cv = ((VarSymbol)sym).getConstValue();
duke@1 1111 if (cv != null) return makeLit(sym.type, cv);
duke@1 1112 }
duke@1 1113
duke@1 1114 // Private variables and methods are replaced by calls
duke@1 1115 // to their access methods.
duke@1 1116 if (accReq) {
duke@1 1117 List<JCExpression> args = List.nil();
duke@1 1118 if ((sym.flags() & STATIC) == 0) {
duke@1 1119 // Instance access methods get instance
duke@1 1120 // as first parameter.
duke@1 1121 if (base == null)
duke@1 1122 base = makeOwnerThis(tree.pos(), sym, true);
duke@1 1123 args = args.prepend(base);
duke@1 1124 base = null; // so we don't duplicate code
duke@1 1125 }
duke@1 1126 Symbol access = accessSymbol(sym, tree,
duke@1 1127 enclOp, protAccess,
duke@1 1128 refSuper);
duke@1 1129 JCExpression receiver = make.Select(
duke@1 1130 base != null ? base : make.QualIdent(access.owner),
duke@1 1131 access);
duke@1 1132 return make.App(receiver, args);
duke@1 1133
duke@1 1134 // Other accesses to members of outer classes get a
duke@1 1135 // qualifier.
duke@1 1136 } else if (baseReq) {
duke@1 1137 return make.at(tree.pos).Select(
duke@1 1138 accessBase(tree.pos(), sym), sym).setType(tree.type);
duke@1 1139 }
duke@1 1140 }
duke@1 1141 }
duke@1 1142 }
duke@1 1143 return tree;
duke@1 1144 }
duke@1 1145
duke@1 1146 /** Ensure that identifier is accessible, return tree accessing the identifier.
duke@1 1147 * @param tree The identifier tree.
duke@1 1148 */
duke@1 1149 JCExpression access(JCExpression tree) {
duke@1 1150 Symbol sym = TreeInfo.symbol(tree);
duke@1 1151 return sym == null ? tree : access(sym, tree, null, false);
duke@1 1152 }
duke@1 1153
duke@1 1154 /** Return access constructor for a private constructor,
duke@1 1155 * or the constructor itself, if no access constructor is needed.
duke@1 1156 * @param pos The position to report diagnostics, if any.
duke@1 1157 * @param constr The private constructor.
duke@1 1158 */
duke@1 1159 Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
duke@1 1160 if (needsPrivateAccess(constr)) {
duke@1 1161 ClassSymbol accOwner = constr.owner.enclClass();
duke@1 1162 MethodSymbol aconstr = accessConstrs.get(constr);
duke@1 1163 if (aconstr == null) {
duke@1 1164 List<Type> argtypes = constr.type.getParameterTypes();
duke@1 1165 if ((accOwner.flags_field & ENUM) != 0)
duke@1 1166 argtypes = argtypes
duke@1 1167 .prepend(syms.intType)
duke@1 1168 .prepend(syms.stringType);
duke@1 1169 aconstr = new MethodSymbol(
duke@1 1170 SYNTHETIC,
duke@1 1171 names.init,
duke@1 1172 new MethodType(
duke@1 1173 argtypes.append(
duke@1 1174 accessConstructorTag().erasure(types)),
duke@1 1175 constr.type.getReturnType(),
duke@1 1176 constr.type.getThrownTypes(),
duke@1 1177 syms.methodClass),
duke@1 1178 accOwner);
duke@1 1179 enterSynthetic(pos, aconstr, accOwner.members());
duke@1 1180 accessConstrs.put(constr, aconstr);
duke@1 1181 accessed.append(constr);
duke@1 1182 }
duke@1 1183 return aconstr;
duke@1 1184 } else {
duke@1 1185 return constr;
duke@1 1186 }
duke@1 1187 }
duke@1 1188
duke@1 1189 /** Return an anonymous class nested in this toplevel class.
duke@1 1190 */
duke@1 1191 ClassSymbol accessConstructorTag() {
duke@1 1192 ClassSymbol topClass = currentClass.outermostClass();
duke@1 1193 Name flatname = names.fromString("" + topClass.getQualifiedName() +
duke@1 1194 target.syntheticNameChar() +
duke@1 1195 "1");
duke@1 1196 ClassSymbol ctag = chk.compiled.get(flatname);
duke@1 1197 if (ctag == null)
duke@1 1198 ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass);
jjg@595 1199 // keep a record of all tags, to verify that all are generated as required
jjg@595 1200 accessConstrTags = accessConstrTags.prepend(ctag);
duke@1 1201 return ctag;
duke@1 1202 }
duke@1 1203
duke@1 1204 /** Add all required access methods for a private symbol to enclosing class.
duke@1 1205 * @param sym The symbol.
duke@1 1206 */
duke@1 1207 void makeAccessible(Symbol sym) {
duke@1 1208 JCClassDecl cdef = classDef(sym.owner.enclClass());
jjg@816 1209 if (cdef == null) Assert.error("class def not found: " + sym + " in " + sym.owner);
duke@1 1210 if (sym.name == names.init) {
duke@1 1211 cdef.defs = cdef.defs.prepend(
duke@1 1212 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
duke@1 1213 } else {
duke@1 1214 MethodSymbol[] accessors = accessSyms.get(sym);
duke@1 1215 for (int i = 0; i < NCODES; i++) {
duke@1 1216 if (accessors[i] != null)
duke@1 1217 cdef.defs = cdef.defs.prepend(
duke@1 1218 accessDef(cdef.pos, sym, accessors[i], i));
duke@1 1219 }
duke@1 1220 }
duke@1 1221 }
duke@1 1222
duke@1 1223 /** Construct definition of an access method.
duke@1 1224 * @param pos The source code position of the definition.
duke@1 1225 * @param vsym The private or protected symbol.
duke@1 1226 * @param accessor The access method for the symbol.
duke@1 1227 * @param acode The access code.
duke@1 1228 */
duke@1 1229 JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
duke@1 1230 // System.err.println("access " + vsym + " with " + accessor);//DEBUG
duke@1 1231 currentClass = vsym.owner.enclClass();
duke@1 1232 make.at(pos);
duke@1 1233 JCMethodDecl md = make.MethodDef(accessor, null);
duke@1 1234
duke@1 1235 // Find actual symbol
duke@1 1236 Symbol sym = actualSymbols.get(vsym);
duke@1 1237 if (sym == null) sym = vsym;
duke@1 1238
duke@1 1239 JCExpression ref; // The tree referencing the private symbol.
duke@1 1240 List<JCExpression> args; // Any additional arguments to be passed along.
duke@1 1241 if ((sym.flags() & STATIC) != 0) {
duke@1 1242 ref = make.Ident(sym);
duke@1 1243 args = make.Idents(md.params);
duke@1 1244 } else {
duke@1 1245 ref = make.Select(make.Ident(md.params.head), sym);
duke@1 1246 args = make.Idents(md.params.tail);
duke@1 1247 }
duke@1 1248 JCStatement stat; // The statement accessing the private symbol.
duke@1 1249 if (sym.kind == VAR) {
duke@1 1250 // Normalize out all odd access codes by taking floor modulo 2:
duke@1 1251 int acode1 = acode - (acode & 1);
duke@1 1252
duke@1 1253 JCExpression expr; // The access method's return value.
duke@1 1254 switch (acode1) {
duke@1 1255 case DEREFcode:
duke@1 1256 expr = ref;
duke@1 1257 break;
duke@1 1258 case ASSIGNcode:
duke@1 1259 expr = make.Assign(ref, args.head);
duke@1 1260 break;
duke@1 1261 case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
duke@1 1262 expr = makeUnary(
duke@1 1263 ((acode1 - PREINCcode) >> 1) + JCTree.PREINC, ref);
duke@1 1264 break;
duke@1 1265 default:
duke@1 1266 expr = make.Assignop(
duke@1 1267 treeTag(binaryAccessOperator(acode1)), ref, args.head);
duke@1 1268 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
duke@1 1269 }
duke@1 1270 stat = make.Return(expr.setType(sym.type));
duke@1 1271 } else {
duke@1 1272 stat = make.Call(make.App(ref, args));
duke@1 1273 }
duke@1 1274 md.body = make.Block(0, List.of(stat));
duke@1 1275
duke@1 1276 // Make sure all parameters, result types and thrown exceptions
duke@1 1277 // are accessible.
duke@1 1278 for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
duke@1 1279 l.head.vartype = access(l.head.vartype);
duke@1 1280 md.restype = access(md.restype);
duke@1 1281 for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
duke@1 1282 l.head = access(l.head);
duke@1 1283
duke@1 1284 return md;
duke@1 1285 }
duke@1 1286
duke@1 1287 /** Construct definition of an access constructor.
duke@1 1288 * @param pos The source code position of the definition.
duke@1 1289 * @param constr The private constructor.
duke@1 1290 * @param accessor The access method for the constructor.
duke@1 1291 */
duke@1 1292 JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
duke@1 1293 make.at(pos);
duke@1 1294 JCMethodDecl md = make.MethodDef(accessor,
duke@1 1295 accessor.externalType(types),
duke@1 1296 null);
duke@1 1297 JCIdent callee = make.Ident(names._this);
duke@1 1298 callee.sym = constr;
duke@1 1299 callee.type = constr.type;
duke@1 1300 md.body =
duke@1 1301 make.Block(0, List.<JCStatement>of(
duke@1 1302 make.Call(
duke@1 1303 make.App(
duke@1 1304 callee,
duke@1 1305 make.Idents(md.params.reverse().tail.reverse())))));
duke@1 1306 return md;
duke@1 1307 }
duke@1 1308
duke@1 1309 /**************************************************************************
duke@1 1310 * Free variables proxies and this$n
duke@1 1311 *************************************************************************/
duke@1 1312
duke@1 1313 /** A scope containing all free variable proxies for currently translated
duke@1 1314 * class, as well as its this$n symbol (if needed).
duke@1 1315 * Proxy scopes are nested in the same way classes are.
duke@1 1316 * Inside a constructor, proxies and any this$n symbol are duplicated
duke@1 1317 * in an additional innermost scope, where they represent the constructor
duke@1 1318 * parameters.
duke@1 1319 */
duke@1 1320 Scope proxies;
duke@1 1321
darcy@609 1322 /** A scope containing all unnamed resource variables/saved
darcy@609 1323 * exception variables for translated TWR blocks
darcy@609 1324 */
darcy@609 1325 Scope twrVars;
darcy@609 1326
duke@1 1327 /** A stack containing the this$n field of the currently translated
duke@1 1328 * classes (if needed) in innermost first order.
duke@1 1329 * Inside a constructor, proxies and any this$n symbol are duplicated
duke@1 1330 * in an additional innermost scope, where they represent the constructor
duke@1 1331 * parameters.
duke@1 1332 */
duke@1 1333 List<VarSymbol> outerThisStack;
duke@1 1334
duke@1 1335 /** The name of a free variable proxy.
duke@1 1336 */
duke@1 1337 Name proxyName(Name name) {
duke@1 1338 return names.fromString("val" + target.syntheticNameChar() + name);
duke@1 1339 }
duke@1 1340
duke@1 1341 /** Proxy definitions for all free variables in given list, in reverse order.
duke@1 1342 * @param pos The source code position of the definition.
duke@1 1343 * @param freevars The free variables.
duke@1 1344 * @param owner The class in which the definitions go.
duke@1 1345 */
duke@1 1346 List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
duke@1 1347 long flags = FINAL | SYNTHETIC;
duke@1 1348 if (owner.kind == TYP &&
duke@1 1349 target.usePrivateSyntheticFields())
duke@1 1350 flags |= PRIVATE;
duke@1 1351 List<JCVariableDecl> defs = List.nil();
duke@1 1352 for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
duke@1 1353 VarSymbol v = l.head;
duke@1 1354 VarSymbol proxy = new VarSymbol(
duke@1 1355 flags, proxyName(v.name), v.erasure(types), owner);
duke@1 1356 proxies.enter(proxy);
duke@1 1357 JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
duke@1 1358 vd.vartype = access(vd.vartype);
duke@1 1359 defs = defs.prepend(vd);
duke@1 1360 }
duke@1 1361 return defs;
duke@1 1362 }
duke@1 1363
duke@1 1364 /** The name of a this$n field
duke@1 1365 * @param type The class referenced by the this$n field
duke@1 1366 */
duke@1 1367 Name outerThisName(Type type, Symbol owner) {
duke@1 1368 Type t = type.getEnclosingType();
duke@1 1369 int nestingLevel = 0;
duke@1 1370 while (t.tag == CLASS) {
duke@1 1371 t = t.getEnclosingType();
duke@1 1372 nestingLevel++;
duke@1 1373 }
duke@1 1374 Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
duke@1 1375 while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
duke@1 1376 result = names.fromString(result.toString() + target.syntheticNameChar());
duke@1 1377 return result;
duke@1 1378 }
duke@1 1379
duke@1 1380 /** Definition for this$n field.
duke@1 1381 * @param pos The source code position of the definition.
duke@1 1382 * @param owner The class in which the definition goes.
duke@1 1383 */
duke@1 1384 JCVariableDecl outerThisDef(int pos, Symbol owner) {
duke@1 1385 long flags = FINAL | SYNTHETIC;
duke@1 1386 if (owner.kind == TYP &&
duke@1 1387 target.usePrivateSyntheticFields())
duke@1 1388 flags |= PRIVATE;
duke@1 1389 Type target = types.erasure(owner.enclClass().type.getEnclosingType());
duke@1 1390 VarSymbol outerThis = new VarSymbol(
duke@1 1391 flags, outerThisName(target, owner), target, owner);
duke@1 1392 outerThisStack = outerThisStack.prepend(outerThis);
duke@1 1393 JCVariableDecl vd = make.at(pos).VarDef(outerThis, null);
duke@1 1394 vd.vartype = access(vd.vartype);
duke@1 1395 return vd;
duke@1 1396 }
duke@1 1397
duke@1 1398 /** Return a list of trees that load the free variables in given list,
duke@1 1399 * in reverse order.
duke@1 1400 * @param pos The source code position to be used for the trees.
duke@1 1401 * @param freevars The list of free variables.
duke@1 1402 */
duke@1 1403 List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
duke@1 1404 List<JCExpression> args = List.nil();
duke@1 1405 for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
duke@1 1406 args = args.prepend(loadFreevar(pos, l.head));
duke@1 1407 return args;
duke@1 1408 }
duke@1 1409 //where
duke@1 1410 JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
duke@1 1411 return access(v, make.at(pos).Ident(v), null, false);
duke@1 1412 }
duke@1 1413
duke@1 1414 /** Construct a tree simulating the expression <C.this>.
duke@1 1415 * @param pos The source code position to be used for the tree.
duke@1 1416 * @param c The qualifier class.
duke@1 1417 */
duke@1 1418 JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
duke@1 1419 if (currentClass == c) {
duke@1 1420 // in this case, `this' works fine
duke@1 1421 return make.at(pos).This(c.erasure(types));
duke@1 1422 } else {
duke@1 1423 // need to go via this$n
duke@1 1424 return makeOuterThis(pos, c);
duke@1 1425 }
duke@1 1426 }
duke@1 1427
darcy@884 1428 /**
darcy@884 1429 * Optionally replace a try statement with the desugaring of a
darcy@884 1430 * try-with-resources statement. The canonical desugaring of
darcy@884 1431 *
darcy@884 1432 * try ResourceSpecification
darcy@884 1433 * Block
darcy@884 1434 *
darcy@884 1435 * is
darcy@884 1436 *
darcy@884 1437 * {
darcy@884 1438 * final VariableModifiers_minus_final R #resource = Expression;
darcy@884 1439 * Throwable #primaryException = null;
darcy@884 1440 *
darcy@884 1441 * try ResourceSpecificationtail
darcy@884 1442 * Block
darcy@884 1443 * catch (Throwable #t) {
darcy@884 1444 * #primaryException = t;
darcy@884 1445 * throw #t;
darcy@884 1446 * } finally {
darcy@884 1447 * if (#resource != null) {
darcy@884 1448 * if (#primaryException != null) {
darcy@884 1449 * try {
darcy@884 1450 * #resource.close();
darcy@884 1451 * } catch(Throwable #suppressedException) {
darcy@884 1452 * #primaryException.addSuppressed(#suppressedException);
darcy@884 1453 * }
darcy@884 1454 * } else {
darcy@884 1455 * #resource.close();
darcy@884 1456 * }
darcy@884 1457 * }
darcy@884 1458 * }
darcy@884 1459 *
darcy@609 1460 * @param tree The try statement to inspect.
darcy@884 1461 * @return A a desugared try-with-resources tree, or the original
darcy@884 1462 * try block if there are no resources to manage.
darcy@609 1463 */
darcy@884 1464 JCTree makeTwrTry(JCTry tree) {
darcy@609 1465 make_at(tree.pos());
darcy@609 1466 twrVars = twrVars.dup();
darcy@884 1467 JCBlock twrBlock = makeTwrBlock(tree.resources, tree.body, 0);
darcy@609 1468 if (tree.catchers.isEmpty() && tree.finalizer == null)
darcy@884 1469 result = translate(twrBlock);
darcy@609 1470 else
darcy@884 1471 result = translate(make.Try(twrBlock, tree.catchers, tree.finalizer));
darcy@609 1472 twrVars = twrVars.leave();
darcy@609 1473 return result;
darcy@609 1474 }
darcy@609 1475
darcy@884 1476 private JCBlock makeTwrBlock(List<JCTree> resources, JCBlock block, int depth) {
darcy@609 1477 if (resources.isEmpty())
darcy@609 1478 return block;
darcy@609 1479
darcy@609 1480 // Add resource declaration or expression to block statements
darcy@609 1481 ListBuffer<JCStatement> stats = new ListBuffer<JCStatement>();
darcy@609 1482 JCTree resource = resources.head;
darcy@609 1483 JCExpression expr = null;
darcy@609 1484 if (resource instanceof JCVariableDecl) {
darcy@609 1485 JCVariableDecl var = (JCVariableDecl) resource;
darcy@609 1486 expr = make.Ident(var.sym).setType(resource.type);
darcy@609 1487 stats.add(var);
darcy@609 1488 } else {
jjg@816 1489 Assert.check(resource instanceof JCExpression);
darcy@609 1490 VarSymbol syntheticTwrVar =
darcy@609 1491 new VarSymbol(SYNTHETIC | FINAL,
darcy@609 1492 makeSyntheticName(names.fromString("twrVar" +
darcy@609 1493 depth), twrVars),
darcy@609 1494 (resource.type.tag == TypeTags.BOT) ?
darcy@609 1495 syms.autoCloseableType : resource.type,
darcy@609 1496 currentMethodSym);
darcy@609 1497 twrVars.enter(syntheticTwrVar);
darcy@609 1498 JCVariableDecl syntheticTwrVarDecl =
darcy@609 1499 make.VarDef(syntheticTwrVar, (JCExpression)resource);
darcy@609 1500 expr = (JCExpression)make.Ident(syntheticTwrVar);
darcy@609 1501 stats.add(syntheticTwrVarDecl);
darcy@609 1502 }
darcy@609 1503
darcy@609 1504 // Add primaryException declaration
darcy@609 1505 VarSymbol primaryException =
darcy@609 1506 new VarSymbol(SYNTHETIC,
darcy@609 1507 makeSyntheticName(names.fromString("primaryException" +
darcy@609 1508 depth), twrVars),
darcy@609 1509 syms.throwableType,
darcy@609 1510 currentMethodSym);
darcy@609 1511 twrVars.enter(primaryException);
darcy@609 1512 JCVariableDecl primaryExceptionTreeDecl = make.VarDef(primaryException, makeNull());
darcy@609 1513 stats.add(primaryExceptionTreeDecl);
darcy@609 1514
darcy@609 1515 // Create catch clause that saves exception and then rethrows it
darcy@609 1516 VarSymbol param =
darcy@609 1517 new VarSymbol(FINAL|SYNTHETIC,
darcy@609 1518 names.fromString("t" +
darcy@609 1519 target.syntheticNameChar()),
darcy@609 1520 syms.throwableType,
darcy@609 1521 currentMethodSym);
darcy@609 1522 JCVariableDecl paramTree = make.VarDef(param, null);
darcy@609 1523 JCStatement assign = make.Assignment(primaryException, make.Ident(param));
darcy@609 1524 JCStatement rethrowStat = make.Throw(make.Ident(param));
darcy@609 1525 JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(assign, rethrowStat));
darcy@609 1526 JCCatch catchClause = make.Catch(paramTree, catchBlock);
darcy@609 1527
darcy@609 1528 int oldPos = make.pos;
darcy@609 1529 make.at(TreeInfo.endPos(block));
darcy@884 1530 JCBlock finallyClause = makeTwrFinallyClause(primaryException, expr);
darcy@609 1531 make.at(oldPos);
darcy@884 1532 JCTry outerTry = make.Try(makeTwrBlock(resources.tail, block, depth + 1),
darcy@609 1533 List.<JCCatch>of(catchClause),
darcy@609 1534 finallyClause);
darcy@609 1535 stats.add(outerTry);
darcy@609 1536 return make.Block(0L, stats.toList());
darcy@609 1537 }
darcy@609 1538
darcy@884 1539 private JCBlock makeTwrFinallyClause(Symbol primaryException, JCExpression resource) {
darcy@745 1540 // primaryException.addSuppressed(catchException);
darcy@609 1541 VarSymbol catchException =
darcy@609 1542 new VarSymbol(0, make.paramName(2),
darcy@609 1543 syms.throwableType,
darcy@609 1544 currentMethodSym);
darcy@609 1545 JCStatement addSuppressionStatement =
darcy@609 1546 make.Exec(makeCall(make.Ident(primaryException),
darcy@745 1547 names.addSuppressed,
darcy@609 1548 List.<JCExpression>of(make.Ident(catchException))));
darcy@609 1549
darcy@745 1550 // try { resource.close(); } catch (e) { primaryException.addSuppressed(e); }
darcy@609 1551 JCBlock tryBlock =
darcy@609 1552 make.Block(0L, List.<JCStatement>of(makeResourceCloseInvocation(resource)));
darcy@609 1553 JCVariableDecl catchExceptionDecl = make.VarDef(catchException, null);
darcy@609 1554 JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(addSuppressionStatement));
darcy@609 1555 List<JCCatch> catchClauses = List.<JCCatch>of(make.Catch(catchExceptionDecl, catchBlock));
darcy@609 1556 JCTry tryTree = make.Try(tryBlock, catchClauses, null);
darcy@609 1557
darcy@884 1558 // if (primaryException != null) {try...} else resourceClose;
darcy@884 1559 JCIf closeIfStatement = make.If(makeNonNullCheck(make.Ident(primaryException)),
darcy@609 1560 tryTree,
darcy@609 1561 makeResourceCloseInvocation(resource));
darcy@884 1562
darcy@884 1563 // if (#resource != null) { if (primaryException ... }
darcy@884 1564 return make.Block(0L,
darcy@884 1565 List.<JCStatement>of(make.If(makeNonNullCheck(resource),
darcy@884 1566 closeIfStatement,
darcy@884 1567 null)));
darcy@609 1568 }
darcy@609 1569
darcy@609 1570 private JCStatement makeResourceCloseInvocation(JCExpression resource) {
darcy@609 1571 // create resource.close() method invocation
darcy@884 1572 JCExpression resourceClose = makeCall(resource,
darcy@884 1573 names.close,
darcy@884 1574 List.<JCExpression>nil());
darcy@609 1575 return make.Exec(resourceClose);
darcy@609 1576 }
darcy@609 1577
darcy@884 1578 private JCExpression makeNonNullCheck(JCExpression expression) {
darcy@884 1579 return makeBinary(JCTree.NE, expression, makeNull());
darcy@884 1580 }
darcy@884 1581
duke@1 1582 /** Construct a tree that represents the outer instance
duke@1 1583 * <C.this>. Never pick the current `this'.
duke@1 1584 * @param pos The source code position to be used for the tree.
duke@1 1585 * @param c The qualifier class.
duke@1 1586 */
duke@1 1587 JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
duke@1 1588 List<VarSymbol> ots = outerThisStack;
duke@1 1589 if (ots.isEmpty()) {
duke@1 1590 log.error(pos, "no.encl.instance.of.type.in.scope", c);
jjg@816 1591 Assert.error();
duke@1 1592 return makeNull();
duke@1 1593 }
duke@1 1594 VarSymbol ot = ots.head;
duke@1 1595 JCExpression tree = access(make.at(pos).Ident(ot));
duke@1 1596 TypeSymbol otc = ot.type.tsym;
duke@1 1597 while (otc != c) {
duke@1 1598 do {
duke@1 1599 ots = ots.tail;
duke@1 1600 if (ots.isEmpty()) {
duke@1 1601 log.error(pos,
duke@1 1602 "no.encl.instance.of.type.in.scope",
duke@1 1603 c);
jjg@816 1604 Assert.error(); // should have been caught in Attr
duke@1 1605 return tree;
duke@1 1606 }
duke@1 1607 ot = ots.head;
duke@1 1608 } while (ot.owner != otc);
duke@1 1609 if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
duke@1 1610 chk.earlyRefError(pos, c);
jjg@816 1611 Assert.error(); // should have been caught in Attr
duke@1 1612 return makeNull();
duke@1 1613 }
duke@1 1614 tree = access(make.at(pos).Select(tree, ot));
duke@1 1615 otc = ot.type.tsym;
duke@1 1616 }
duke@1 1617 return tree;
duke@1 1618 }
duke@1 1619
duke@1 1620 /** Construct a tree that represents the closest outer instance
duke@1 1621 * <C.this> such that the given symbol is a member of C.
duke@1 1622 * @param pos The source code position to be used for the tree.
duke@1 1623 * @param sym The accessed symbol.
duke@1 1624 * @param preciseMatch should we accept a type that is a subtype of
duke@1 1625 * sym's owner, even if it doesn't contain sym
duke@1 1626 * due to hiding, overriding, or non-inheritance
duke@1 1627 * due to protection?
duke@1 1628 */
duke@1 1629 JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
duke@1 1630 Symbol c = sym.owner;
duke@1 1631 if (preciseMatch ? sym.isMemberOf(currentClass, types)
duke@1 1632 : currentClass.isSubClass(sym.owner, types)) {
duke@1 1633 // in this case, `this' works fine
duke@1 1634 return make.at(pos).This(c.erasure(types));
duke@1 1635 } else {
duke@1 1636 // need to go via this$n
duke@1 1637 return makeOwnerThisN(pos, sym, preciseMatch);
duke@1 1638 }
duke@1 1639 }
duke@1 1640
duke@1 1641 /**
duke@1 1642 * Similar to makeOwnerThis but will never pick "this".
duke@1 1643 */
duke@1 1644 JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
duke@1 1645 Symbol c = sym.owner;
duke@1 1646 List<VarSymbol> ots = outerThisStack;
duke@1 1647 if (ots.isEmpty()) {
duke@1 1648 log.error(pos, "no.encl.instance.of.type.in.scope", c);
jjg@816 1649 Assert.error();
duke@1 1650 return makeNull();
duke@1 1651 }
duke@1 1652 VarSymbol ot = ots.head;
duke@1 1653 JCExpression tree = access(make.at(pos).Ident(ot));
duke@1 1654 TypeSymbol otc = ot.type.tsym;
duke@1 1655 while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
duke@1 1656 do {
duke@1 1657 ots = ots.tail;
duke@1 1658 if (ots.isEmpty()) {
duke@1 1659 log.error(pos,
duke@1 1660 "no.encl.instance.of.type.in.scope",
duke@1 1661 c);
jjg@816 1662 Assert.error();
duke@1 1663 return tree;
duke@1 1664 }
duke@1 1665 ot = ots.head;
duke@1 1666 } while (ot.owner != otc);
duke@1 1667 tree = access(make.at(pos).Select(tree, ot));
duke@1 1668 otc = ot.type.tsym;
duke@1 1669 }
duke@1 1670 return tree;
duke@1 1671 }
duke@1 1672
duke@1 1673 /** Return tree simulating the assignment <this.name = name>, where
duke@1 1674 * name is the name of a free variable.
duke@1 1675 */
duke@1 1676 JCStatement initField(int pos, Name name) {
duke@1 1677 Scope.Entry e = proxies.lookup(name);
duke@1 1678 Symbol rhs = e.sym;
jjg@816 1679 Assert.check(rhs.owner.kind == MTH);
duke@1 1680 Symbol lhs = e.next().sym;
jjg@816 1681 Assert.check(rhs.owner.owner == lhs.owner);
duke@1 1682 make.at(pos);
duke@1 1683 return
duke@1 1684 make.Exec(
duke@1 1685 make.Assign(
duke@1 1686 make.Select(make.This(lhs.owner.erasure(types)), lhs),
duke@1 1687 make.Ident(rhs)).setType(lhs.erasure(types)));
duke@1 1688 }
duke@1 1689
duke@1 1690 /** Return tree simulating the assignment <this.this$n = this$n>.
duke@1 1691 */
duke@1 1692 JCStatement initOuterThis(int pos) {
duke@1 1693 VarSymbol rhs = outerThisStack.head;
jjg@816 1694 Assert.check(rhs.owner.kind == MTH);
duke@1 1695 VarSymbol lhs = outerThisStack.tail.head;
jjg@816 1696 Assert.check(rhs.owner.owner == lhs.owner);
duke@1 1697 make.at(pos);
duke@1 1698 return
duke@1 1699 make.Exec(
duke@1 1700 make.Assign(
duke@1 1701 make.Select(make.This(lhs.owner.erasure(types)), lhs),
duke@1 1702 make.Ident(rhs)).setType(lhs.erasure(types)));
duke@1 1703 }
duke@1 1704
duke@1 1705 /**************************************************************************
duke@1 1706 * Code for .class
duke@1 1707 *************************************************************************/
duke@1 1708
duke@1 1709 /** Return the symbol of a class to contain a cache of
duke@1 1710 * compiler-generated statics such as class$ and the
duke@1 1711 * $assertionsDisabled flag. We create an anonymous nested class
duke@1 1712 * (unless one already exists) and return its symbol. However,
duke@1 1713 * for backward compatibility in 1.4 and earlier we use the
duke@1 1714 * top-level class itself.
duke@1 1715 */
duke@1 1716 private ClassSymbol outerCacheClass() {
duke@1 1717 ClassSymbol clazz = outermostClassDef.sym;
duke@1 1718 if ((clazz.flags() & INTERFACE) == 0 &&
duke@1 1719 !target.useInnerCacheClass()) return clazz;
duke@1 1720 Scope s = clazz.members();
duke@1 1721 for (Scope.Entry e = s.elems; e != null; e = e.sibling)
duke@1 1722 if (e.sym.kind == TYP &&
duke@1 1723 e.sym.name == names.empty &&
duke@1 1724 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
duke@1 1725 return makeEmptyClass(STATIC | SYNTHETIC, clazz);
duke@1 1726 }
duke@1 1727
duke@1 1728 /** Return symbol for "class$" method. If there is no method definition
duke@1 1729 * for class$, construct one as follows:
duke@1 1730 *
duke@1 1731 * class class$(String x0) {
duke@1 1732 * try {
duke@1 1733 * return Class.forName(x0);
duke@1 1734 * } catch (ClassNotFoundException x1) {
duke@1 1735 * throw new NoClassDefFoundError(x1.getMessage());
duke@1 1736 * }
duke@1 1737 * }
duke@1 1738 */
duke@1 1739 private MethodSymbol classDollarSym(DiagnosticPosition pos) {
duke@1 1740 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 1741 MethodSymbol classDollarSym =
duke@1 1742 (MethodSymbol)lookupSynthetic(classDollar,
duke@1 1743 outerCacheClass.members());
duke@1 1744 if (classDollarSym == null) {
duke@1 1745 classDollarSym = new MethodSymbol(
duke@1 1746 STATIC | SYNTHETIC,
duke@1 1747 classDollar,
duke@1 1748 new MethodType(
duke@1 1749 List.of(syms.stringType),
duke@1 1750 types.erasure(syms.classType),
duke@1 1751 List.<Type>nil(),
duke@1 1752 syms.methodClass),
duke@1 1753 outerCacheClass);
duke@1 1754 enterSynthetic(pos, classDollarSym, outerCacheClass.members());
duke@1 1755
duke@1 1756 JCMethodDecl md = make.MethodDef(classDollarSym, null);
duke@1 1757 try {
duke@1 1758 md.body = classDollarSymBody(pos, md);
duke@1 1759 } catch (CompletionFailure ex) {
duke@1 1760 md.body = make.Block(0, List.<JCStatement>nil());
duke@1 1761 chk.completionError(pos, ex);
duke@1 1762 }
duke@1 1763 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1764 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
duke@1 1765 }
duke@1 1766 return classDollarSym;
duke@1 1767 }
duke@1 1768
duke@1 1769 /** Generate code for class$(String name). */
duke@1 1770 JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
duke@1 1771 MethodSymbol classDollarSym = md.sym;
duke@1 1772 ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
duke@1 1773
duke@1 1774 JCBlock returnResult;
duke@1 1775
duke@1 1776 // in 1.4.2 and above, we use
duke@1 1777 // Class.forName(String name, boolean init, ClassLoader loader);
duke@1 1778 // which requires we cache the current loader in cl$
duke@1 1779 if (target.classLiteralsNoInit()) {
duke@1 1780 // clsym = "private static ClassLoader cl$"
duke@1 1781 VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
duke@1 1782 names.fromString("cl" + target.syntheticNameChar()),
duke@1 1783 syms.classLoaderType,
duke@1 1784 outerCacheClass);
duke@1 1785 enterSynthetic(pos, clsym, outerCacheClass.members());
duke@1 1786
duke@1 1787 // emit "private static ClassLoader cl$;"
duke@1 1788 JCVariableDecl cldef = make.VarDef(clsym, null);
duke@1 1789 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1790 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
duke@1 1791
duke@1 1792 // newcache := "new cache$1[0]"
duke@1 1793 JCNewArray newcache = make.
duke@1 1794 NewArray(make.Type(outerCacheClass.type),
duke@1 1795 List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
duke@1 1796 null);
duke@1 1797 newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
duke@1 1798 syms.arrayClass);
duke@1 1799
duke@1 1800 // forNameSym := java.lang.Class.forName(
duke@1 1801 // String s,boolean init,ClassLoader loader)
duke@1 1802 Symbol forNameSym = lookupMethod(make_pos, names.forName,
duke@1 1803 types.erasure(syms.classType),
duke@1 1804 List.of(syms.stringType,
duke@1 1805 syms.booleanType,
duke@1 1806 syms.classLoaderType));
duke@1 1807 // clvalue := "(cl$ == null) ?
duke@1 1808 // $newcache.getClass().getComponentType().getClassLoader() : cl$"
duke@1 1809 JCExpression clvalue =
duke@1 1810 make.Conditional(
duke@1 1811 makeBinary(JCTree.EQ, make.Ident(clsym), makeNull()),
duke@1 1812 make.Assign(
duke@1 1813 make.Ident(clsym),
duke@1 1814 makeCall(
duke@1 1815 makeCall(makeCall(newcache,
duke@1 1816 names.getClass,
duke@1 1817 List.<JCExpression>nil()),
duke@1 1818 names.getComponentType,
duke@1 1819 List.<JCExpression>nil()),
duke@1 1820 names.getClassLoader,
duke@1 1821 List.<JCExpression>nil())).setType(syms.classLoaderType),
duke@1 1822 make.Ident(clsym)).setType(syms.classLoaderType);
duke@1 1823
duke@1 1824 // returnResult := "{ return Class.forName(param1, false, cl$); }"
duke@1 1825 List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
duke@1 1826 makeLit(syms.booleanType, 0),
duke@1 1827 clvalue);
duke@1 1828 returnResult = make.
duke@1 1829 Block(0, List.<JCStatement>of(make.
duke@1 1830 Call(make. // return
duke@1 1831 App(make.
duke@1 1832 Ident(forNameSym), args))));
duke@1 1833 } else {
duke@1 1834 // forNameSym := java.lang.Class.forName(String s)
duke@1 1835 Symbol forNameSym = lookupMethod(make_pos,
duke@1 1836 names.forName,
duke@1 1837 types.erasure(syms.classType),
duke@1 1838 List.of(syms.stringType));
duke@1 1839 // returnResult := "{ return Class.forName(param1); }"
duke@1 1840 returnResult = make.
duke@1 1841 Block(0, List.of(make.
duke@1 1842 Call(make. // return
duke@1 1843 App(make.
duke@1 1844 QualIdent(forNameSym),
duke@1 1845 List.<JCExpression>of(make.
duke@1 1846 Ident(md.params.
duke@1 1847 head.sym))))));
duke@1 1848 }
duke@1 1849
duke@1 1850 // catchParam := ClassNotFoundException e1
duke@1 1851 VarSymbol catchParam =
duke@1 1852 new VarSymbol(0, make.paramName(1),
duke@1 1853 syms.classNotFoundExceptionType,
duke@1 1854 classDollarSym);
duke@1 1855
duke@1 1856 JCStatement rethrow;
duke@1 1857 if (target.hasInitCause()) {
duke@1 1858 // rethrow = "throw new NoClassDefFoundError().initCause(e);
duke@1 1859 JCTree throwExpr =
duke@1 1860 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
duke@1 1861 List.<JCExpression>nil()),
duke@1 1862 names.initCause,
duke@1 1863 List.<JCExpression>of(make.Ident(catchParam)));
duke@1 1864 rethrow = make.Throw(throwExpr);
duke@1 1865 } else {
duke@1 1866 // getMessageSym := ClassNotFoundException.getMessage()
duke@1 1867 Symbol getMessageSym = lookupMethod(make_pos,
duke@1 1868 names.getMessage,
duke@1 1869 syms.classNotFoundExceptionType,
duke@1 1870 List.<Type>nil());
duke@1 1871 // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
duke@1 1872 rethrow = make.
duke@1 1873 Throw(makeNewClass(syms.noClassDefFoundErrorType,
duke@1 1874 List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
duke@1 1875 getMessageSym),
duke@1 1876 List.<JCExpression>nil()))));
duke@1 1877 }
duke@1 1878
duke@1 1879 // rethrowStmt := "( $rethrow )"
duke@1 1880 JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
duke@1 1881
duke@1 1882 // catchBlock := "catch ($catchParam) $rethrowStmt"
duke@1 1883 JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
duke@1 1884 rethrowStmt);
duke@1 1885
duke@1 1886 // tryCatch := "try $returnResult $catchBlock"
duke@1 1887 JCStatement tryCatch = make.Try(returnResult,
duke@1 1888 List.of(catchBlock), null);
duke@1 1889
duke@1 1890 return make.Block(0, List.of(tryCatch));
duke@1 1891 }
duke@1 1892 // where
duke@1 1893 /** Create an attributed tree of the form left.name(). */
duke@1 1894 private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
jjg@816 1895 Assert.checkNonNull(left.type);
duke@1 1896 Symbol funcsym = lookupMethod(make_pos, name, left.type,
duke@1 1897 TreeInfo.types(args));
duke@1 1898 return make.App(make.Select(left, funcsym), args);
duke@1 1899 }
duke@1 1900
duke@1 1901 /** The Name Of The variable to cache T.class values.
duke@1 1902 * @param sig The signature of type T.
duke@1 1903 */
duke@1 1904 private Name cacheName(String sig) {
duke@1 1905 StringBuffer buf = new StringBuffer();
duke@1 1906 if (sig.startsWith("[")) {
duke@1 1907 buf = buf.append("array");
duke@1 1908 while (sig.startsWith("[")) {
duke@1 1909 buf = buf.append(target.syntheticNameChar());
duke@1 1910 sig = sig.substring(1);
duke@1 1911 }
duke@1 1912 if (sig.startsWith("L")) {
duke@1 1913 sig = sig.substring(0, sig.length() - 1);
duke@1 1914 }
duke@1 1915 } else {
duke@1 1916 buf = buf.append("class" + target.syntheticNameChar());
duke@1 1917 }
duke@1 1918 buf = buf.append(sig.replace('.', target.syntheticNameChar()));
duke@1 1919 return names.fromString(buf.toString());
duke@1 1920 }
duke@1 1921
duke@1 1922 /** The variable symbol that caches T.class values.
duke@1 1923 * If none exists yet, create a definition.
duke@1 1924 * @param sig The signature of type T.
duke@1 1925 * @param pos The position to report diagnostics, if any.
duke@1 1926 */
duke@1 1927 private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
duke@1 1928 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 1929 Name cname = cacheName(sig);
duke@1 1930 VarSymbol cacheSym =
duke@1 1931 (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
duke@1 1932 if (cacheSym == null) {
duke@1 1933 cacheSym = new VarSymbol(
duke@1 1934 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
duke@1 1935 enterSynthetic(pos, cacheSym, outerCacheClass.members());
duke@1 1936
duke@1 1937 JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
duke@1 1938 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1939 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
duke@1 1940 }
duke@1 1941 return cacheSym;
duke@1 1942 }
duke@1 1943
duke@1 1944 /** The tree simulating a T.class expression.
duke@1 1945 * @param clazz The tree identifying type T.
duke@1 1946 */
duke@1 1947 private JCExpression classOf(JCTree clazz) {
duke@1 1948 return classOfType(clazz.type, clazz.pos());
duke@1 1949 }
duke@1 1950
duke@1 1951 private JCExpression classOfType(Type type, DiagnosticPosition pos) {
duke@1 1952 switch (type.tag) {
duke@1 1953 case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
duke@1 1954 case DOUBLE: case BOOLEAN: case VOID:
duke@1 1955 // replace with <BoxedClass>.TYPE
duke@1 1956 ClassSymbol c = types.boxedClass(type);
duke@1 1957 Symbol typeSym =
duke@1 1958 rs.access(
duke@1 1959 rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
duke@1 1960 pos, c.type, names.TYPE, true);
duke@1 1961 if (typeSym.kind == VAR)
duke@1 1962 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
duke@1 1963 return make.QualIdent(typeSym);
duke@1 1964 case CLASS: case ARRAY:
duke@1 1965 if (target.hasClassLiterals()) {
duke@1 1966 VarSymbol sym = new VarSymbol(
duke@1 1967 STATIC | PUBLIC | FINAL, names._class,
duke@1 1968 syms.classType, type.tsym);
duke@1 1969 return make_at(pos).Select(make.Type(type), sym);
duke@1 1970 }
duke@1 1971 // replace with <cache == null ? cache = class$(tsig) : cache>
duke@1 1972 // where
duke@1 1973 // - <tsig> is the type signature of T,
duke@1 1974 // - <cache> is the cache variable for tsig.
duke@1 1975 String sig =
duke@1 1976 writer.xClassName(type).toString().replace('/', '.');
duke@1 1977 Symbol cs = cacheSym(pos, sig);
duke@1 1978 return make_at(pos).Conditional(
duke@1 1979 makeBinary(JCTree.EQ, make.Ident(cs), makeNull()),
duke@1 1980 make.Assign(
duke@1 1981 make.Ident(cs),
duke@1 1982 make.App(
duke@1 1983 make.Ident(classDollarSym(pos)),
duke@1 1984 List.<JCExpression>of(make.Literal(CLASS, sig)
duke@1 1985 .setType(syms.stringType))))
duke@1 1986 .setType(types.erasure(syms.classType)),
duke@1 1987 make.Ident(cs)).setType(types.erasure(syms.classType));
duke@1 1988 default:
duke@1 1989 throw new AssertionError();
duke@1 1990 }
duke@1 1991 }
duke@1 1992
duke@1 1993 /**************************************************************************
duke@1 1994 * Code for enabling/disabling assertions.
duke@1 1995 *************************************************************************/
duke@1 1996
duke@1 1997 // This code is not particularly robust if the user has
duke@1 1998 // previously declared a member named '$assertionsDisabled'.
duke@1 1999 // The same faulty idiom also appears in the translation of
duke@1 2000 // class literals above. We should report an error if a
duke@1 2001 // previous declaration is not synthetic.
duke@1 2002
duke@1 2003 private JCExpression assertFlagTest(DiagnosticPosition pos) {
duke@1 2004 // Outermost class may be either true class or an interface.
duke@1 2005 ClassSymbol outermostClass = outermostClassDef.sym;
duke@1 2006
duke@1 2007 // note that this is a class, as an interface can't contain a statement.
duke@1 2008 ClassSymbol container = currentClass;
duke@1 2009
duke@1 2010 VarSymbol assertDisabledSym =
duke@1 2011 (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
duke@1 2012 container.members());
duke@1 2013 if (assertDisabledSym == null) {
duke@1 2014 assertDisabledSym =
duke@1 2015 new VarSymbol(STATIC | FINAL | SYNTHETIC,
duke@1 2016 dollarAssertionsDisabled,
duke@1 2017 syms.booleanType,
duke@1 2018 container);
duke@1 2019 enterSynthetic(pos, assertDisabledSym, container.members());
duke@1 2020 Symbol desiredAssertionStatusSym = lookupMethod(pos,
duke@1 2021 names.desiredAssertionStatus,
duke@1 2022 types.erasure(syms.classType),
duke@1 2023 List.<Type>nil());
duke@1 2024 JCClassDecl containerDef = classDef(container);
duke@1 2025 make_at(containerDef.pos());
duke@1 2026 JCExpression notStatus = makeUnary(JCTree.NOT, make.App(make.Select(
duke@1 2027 classOfType(types.erasure(outermostClass.type),
duke@1 2028 containerDef.pos()),
duke@1 2029 desiredAssertionStatusSym)));
duke@1 2030 JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
duke@1 2031 notStatus);
duke@1 2032 containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
duke@1 2033 }
duke@1 2034 make_at(pos);
duke@1 2035 return makeUnary(JCTree.NOT, make.Ident(assertDisabledSym));
duke@1 2036 }
duke@1 2037
duke@1 2038
duke@1 2039 /**************************************************************************
duke@1 2040 * Building blocks for let expressions
duke@1 2041 *************************************************************************/
duke@1 2042
duke@1 2043 interface TreeBuilder {
duke@1 2044 JCTree build(JCTree arg);
duke@1 2045 }
duke@1 2046
duke@1 2047 /** Construct an expression using the builder, with the given rval
duke@1 2048 * expression as an argument to the builder. However, the rval
duke@1 2049 * expression must be computed only once, even if used multiple
duke@1 2050 * times in the result of the builder. We do that by
duke@1 2051 * constructing a "let" expression that saves the rvalue into a
duke@1 2052 * temporary variable and then uses the temporary variable in
duke@1 2053 * place of the expression built by the builder. The complete
duke@1 2054 * resulting expression is of the form
duke@1 2055 * <pre>
duke@1 2056 * (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
duke@1 2057 * in (<b>BUILDER</b>(<b>TEMP</b>)))
duke@1 2058 * </pre>
duke@1 2059 * where <code><b>TEMP</b></code> is a newly declared variable
duke@1 2060 * in the let expression.
duke@1 2061 */
duke@1 2062 JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
duke@1 2063 rval = TreeInfo.skipParens(rval);
duke@1 2064 switch (rval.getTag()) {
duke@1 2065 case JCTree.LITERAL:
duke@1 2066 return builder.build(rval);
duke@1 2067 case JCTree.IDENT:
duke@1 2068 JCIdent id = (JCIdent) rval;
duke@1 2069 if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
duke@1 2070 return builder.build(rval);
duke@1 2071 }
duke@1 2072 VarSymbol var =
duke@1 2073 new VarSymbol(FINAL|SYNTHETIC,
jjg@113 2074 names.fromString(
duke@1 2075 target.syntheticNameChar()
duke@1 2076 + "" + rval.hashCode()),
duke@1 2077 type,
duke@1 2078 currentMethodSym);
mcimadamore@4 2079 rval = convert(rval,type);
duke@1 2080 JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
duke@1 2081 JCTree built = builder.build(make.Ident(var));
duke@1 2082 JCTree res = make.LetExpr(def, built);
duke@1 2083 res.type = built.type;
duke@1 2084 return res;
duke@1 2085 }
duke@1 2086
duke@1 2087 // same as above, with the type of the temporary variable computed
duke@1 2088 JCTree abstractRval(JCTree rval, TreeBuilder builder) {
duke@1 2089 return abstractRval(rval, rval.type, builder);
duke@1 2090 }
duke@1 2091
duke@1 2092 // same as above, but for an expression that may be used as either
duke@1 2093 // an rvalue or an lvalue. This requires special handling for
duke@1 2094 // Select expressions, where we place the left-hand-side of the
duke@1 2095 // select in a temporary, and for Indexed expressions, where we
duke@1 2096 // place both the indexed expression and the index value in temps.
duke@1 2097 JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
duke@1 2098 lval = TreeInfo.skipParens(lval);
duke@1 2099 switch (lval.getTag()) {
duke@1 2100 case JCTree.IDENT:
duke@1 2101 return builder.build(lval);
duke@1 2102 case JCTree.SELECT: {
duke@1 2103 final JCFieldAccess s = (JCFieldAccess)lval;
duke@1 2104 JCTree selected = TreeInfo.skipParens(s.selected);
duke@1 2105 Symbol lid = TreeInfo.symbol(s.selected);
duke@1 2106 if (lid != null && lid.kind == TYP) return builder.build(lval);
duke@1 2107 return abstractRval(s.selected, new TreeBuilder() {
duke@1 2108 public JCTree build(final JCTree selected) {
duke@1 2109 return builder.build(make.Select((JCExpression)selected, s.sym));
duke@1 2110 }
duke@1 2111 });
duke@1 2112 }
duke@1 2113 case JCTree.INDEXED: {
duke@1 2114 final JCArrayAccess i = (JCArrayAccess)lval;
duke@1 2115 return abstractRval(i.indexed, new TreeBuilder() {
duke@1 2116 public JCTree build(final JCTree indexed) {
duke@1 2117 return abstractRval(i.index, syms.intType, new TreeBuilder() {
duke@1 2118 public JCTree build(final JCTree index) {
duke@1 2119 JCTree newLval = make.Indexed((JCExpression)indexed,
duke@1 2120 (JCExpression)index);
duke@1 2121 newLval.setType(i.type);
duke@1 2122 return builder.build(newLval);
duke@1 2123 }
duke@1 2124 });
duke@1 2125 }
duke@1 2126 });
duke@1 2127 }
mcimadamore@133 2128 case JCTree.TYPECAST: {
mcimadamore@133 2129 return abstractLval(((JCTypeCast)lval).expr, builder);
mcimadamore@133 2130 }
duke@1 2131 }
duke@1 2132 throw new AssertionError(lval);
duke@1 2133 }
duke@1 2134
duke@1 2135 // evaluate and discard the first expression, then evaluate the second.
duke@1 2136 JCTree makeComma(final JCTree expr1, final JCTree expr2) {
duke@1 2137 return abstractRval(expr1, new TreeBuilder() {
duke@1 2138 public JCTree build(final JCTree discarded) {
duke@1 2139 return expr2;
duke@1 2140 }
duke@1 2141 });
duke@1 2142 }
duke@1 2143
duke@1 2144 /**************************************************************************
duke@1 2145 * Translation methods
duke@1 2146 *************************************************************************/
duke@1 2147
duke@1 2148 /** Visitor argument: enclosing operator node.
duke@1 2149 */
duke@1 2150 private JCExpression enclOp;
duke@1 2151
duke@1 2152 /** Visitor method: Translate a single node.
duke@1 2153 * Attach the source position from the old tree to its replacement tree.
duke@1 2154 */
duke@1 2155 public <T extends JCTree> T translate(T tree) {
duke@1 2156 if (tree == null) {
duke@1 2157 return null;
duke@1 2158 } else {
duke@1 2159 make_at(tree.pos());
duke@1 2160 T result = super.translate(tree);
duke@1 2161 if (endPositions != null && result != tree) {
duke@1 2162 Integer endPos = endPositions.remove(tree);
duke@1 2163 if (endPos != null) endPositions.put(result, endPos);
duke@1 2164 }
duke@1 2165 return result;
duke@1 2166 }
duke@1 2167 }
duke@1 2168
duke@1 2169 /** Visitor method: Translate a single node, boxing or unboxing if needed.
duke@1 2170 */
duke@1 2171 public <T extends JCTree> T translate(T tree, Type type) {
duke@1 2172 return (tree == null) ? null : boxIfNeeded(translate(tree), type);
duke@1 2173 }
duke@1 2174
duke@1 2175 /** Visitor method: Translate tree.
duke@1 2176 */
duke@1 2177 public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
duke@1 2178 JCExpression prevEnclOp = this.enclOp;
duke@1 2179 this.enclOp = enclOp;
duke@1 2180 T res = translate(tree);
duke@1 2181 this.enclOp = prevEnclOp;
duke@1 2182 return res;
duke@1 2183 }
duke@1 2184
duke@1 2185 /** Visitor method: Translate list of trees.
duke@1 2186 */
duke@1 2187 public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
duke@1 2188 JCExpression prevEnclOp = this.enclOp;
duke@1 2189 this.enclOp = enclOp;
duke@1 2190 List<T> res = translate(trees);
duke@1 2191 this.enclOp = prevEnclOp;
duke@1 2192 return res;
duke@1 2193 }
duke@1 2194
duke@1 2195 /** Visitor method: Translate list of trees.
duke@1 2196 */
duke@1 2197 public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
duke@1 2198 if (trees == null) return null;
duke@1 2199 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
duke@1 2200 l.head = translate(l.head, type);
duke@1 2201 return trees;
duke@1 2202 }
duke@1 2203
duke@1 2204 public void visitTopLevel(JCCompilationUnit tree) {
jjg@657 2205 if (needPackageInfoClass(tree)) {
duke@1 2206 Name name = names.package_info;
duke@1 2207 long flags = Flags.ABSTRACT | Flags.INTERFACE;
duke@1 2208 if (target.isPackageInfoSynthetic())
duke@1 2209 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
duke@1 2210 flags = flags | Flags.SYNTHETIC;
duke@1 2211 JCClassDecl packageAnnotationsClass
duke@1 2212 = make.ClassDef(make.Modifiers(flags,
duke@1 2213 tree.packageAnnotations),
duke@1 2214 name, List.<JCTypeParameter>nil(),
duke@1 2215 null, List.<JCExpression>nil(), List.<JCTree>nil());
jjg@483 2216 ClassSymbol c = tree.packge.package_info;
jjg@483 2217 c.flags_field |= flags;
duke@1 2218 c.attributes_field = tree.packge.attributes_field;
duke@1 2219 ClassType ctype = (ClassType) c.type;
duke@1 2220 ctype.supertype_field = syms.objectType;
duke@1 2221 ctype.interfaces_field = List.nil();
duke@1 2222 packageAnnotationsClass.sym = c;
duke@1 2223
duke@1 2224 translated.append(packageAnnotationsClass);
duke@1 2225 }
duke@1 2226 }
jjg@657 2227 // where
jjg@657 2228 private boolean needPackageInfoClass(JCCompilationUnit tree) {
jjg@657 2229 switch (pkginfoOpt) {
jjg@657 2230 case ALWAYS:
jjg@657 2231 return true;
jjg@657 2232 case LEGACY:
jjg@657 2233 return tree.packageAnnotations.nonEmpty();
jjg@657 2234 case NONEMPTY:
jjg@657 2235 for (Attribute.Compound a: tree.packge.attributes_field) {
jjg@657 2236 Attribute.RetentionPolicy p = types.getRetention(a);
jjg@657 2237 if (p != Attribute.RetentionPolicy.SOURCE)
jjg@657 2238 return true;
jjg@657 2239 }
jjg@657 2240 return false;
jjg@657 2241 }
jjg@657 2242 throw new AssertionError();
jjg@657 2243 }
duke@1 2244
duke@1 2245 public void visitClassDef(JCClassDecl tree) {
duke@1 2246 ClassSymbol currentClassPrev = currentClass;
duke@1 2247 MethodSymbol currentMethodSymPrev = currentMethodSym;
duke@1 2248 currentClass = tree.sym;
duke@1 2249 currentMethodSym = null;
duke@1 2250 classdefs.put(currentClass, tree);
duke@1 2251
duke@1 2252 proxies = proxies.dup(currentClass);
duke@1 2253 List<VarSymbol> prevOuterThisStack = outerThisStack;
duke@1 2254
duke@1 2255 // If this is an enum definition
duke@1 2256 if ((tree.mods.flags & ENUM) != 0 &&
duke@1 2257 (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
duke@1 2258 visitEnumDef(tree);
duke@1 2259
duke@1 2260 // If this is a nested class, define a this$n field for
duke@1 2261 // it and add to proxies.
duke@1 2262 JCVariableDecl otdef = null;
duke@1 2263 if (currentClass.hasOuterInstance())
duke@1 2264 otdef = outerThisDef(tree.pos, currentClass);
duke@1 2265
duke@1 2266 // If this is a local class, define proxies for all its free variables.
duke@1 2267 List<JCVariableDecl> fvdefs = freevarDefs(
duke@1 2268 tree.pos, freevars(currentClass), currentClass);
duke@1 2269
duke@1 2270 // Recursively translate superclass, interfaces.
duke@1 2271 tree.extending = translate(tree.extending);
duke@1 2272 tree.implementing = translate(tree.implementing);
duke@1 2273
duke@1 2274 // Recursively translate members, taking into account that new members
duke@1 2275 // might be created during the translation and prepended to the member
duke@1 2276 // list `tree.defs'.
duke@1 2277 List<JCTree> seen = List.nil();
duke@1 2278 while (tree.defs != seen) {
duke@1 2279 List<JCTree> unseen = tree.defs;
duke@1 2280 for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
duke@1 2281 JCTree outermostMemberDefPrev = outermostMemberDef;
duke@1 2282 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
duke@1 2283 l.head = translate(l.head);
duke@1 2284 outermostMemberDef = outermostMemberDefPrev;
duke@1 2285 }
duke@1 2286 seen = unseen;
duke@1 2287 }
duke@1 2288
duke@1 2289 // Convert a protected modifier to public, mask static modifier.
duke@1 2290 if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
duke@1 2291 tree.mods.flags &= ClassFlags;
duke@1 2292
duke@1 2293 // Convert name to flat representation, replacing '.' by '$'.
duke@1 2294 tree.name = Convert.shortName(currentClass.flatName());
duke@1 2295
duke@1 2296 // Add this$n and free variables proxy definitions to class.
duke@1 2297 for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
duke@1 2298 tree.defs = tree.defs.prepend(l.head);
duke@1 2299 enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
duke@1 2300 }
duke@1 2301 if (currentClass.hasOuterInstance()) {
duke@1 2302 tree.defs = tree.defs.prepend(otdef);
duke@1 2303 enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
duke@1 2304 }
duke@1 2305
duke@1 2306 proxies = proxies.leave();
duke@1 2307 outerThisStack = prevOuterThisStack;
duke@1 2308
duke@1 2309 // Append translated tree to `translated' queue.
duke@1 2310 translated.append(tree);
duke@1 2311
duke@1 2312 currentClass = currentClassPrev;
duke@1 2313 currentMethodSym = currentMethodSymPrev;
duke@1 2314
duke@1 2315 // Return empty block {} as a placeholder for an inner class.
duke@1 2316 result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
duke@1 2317 }
duke@1 2318
duke@1 2319 /** Translate an enum class. */
duke@1 2320 private void visitEnumDef(JCClassDecl tree) {
duke@1 2321 make_at(tree.pos());
duke@1 2322
duke@1 2323 // add the supertype, if needed
duke@1 2324 if (tree.extending == null)
duke@1 2325 tree.extending = make.Type(types.supertype(tree.type));
duke@1 2326
duke@1 2327 // classOfType adds a cache field to tree.defs unless
duke@1 2328 // target.hasClassLiterals().
duke@1 2329 JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
duke@1 2330 setType(types.erasure(syms.classType));
duke@1 2331
duke@1 2332 // process each enumeration constant, adding implicit constructor parameters
duke@1 2333 int nextOrdinal = 0;
duke@1 2334 ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
duke@1 2335 ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
duke@1 2336 ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
duke@1 2337 for (List<JCTree> defs = tree.defs;
duke@1 2338 defs.nonEmpty();
duke@1 2339 defs=defs.tail) {
duke@1 2340 if (defs.head.getTag() == JCTree.VARDEF && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
duke@1 2341 JCVariableDecl var = (JCVariableDecl)defs.head;
duke@1 2342 visitEnumConstantDef(var, nextOrdinal++);
duke@1 2343 values.append(make.QualIdent(var.sym));
duke@1 2344 enumDefs.append(var);
duke@1 2345 } else {
duke@1 2346 otherDefs.append(defs.head);
duke@1 2347 }
duke@1 2348 }
duke@1 2349
duke@1 2350 // private static final T[] #VALUES = { a, b, c };
duke@1 2351 Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
duke@1 2352 while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
duke@1 2353 valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
duke@1 2354 Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
duke@1 2355 VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
duke@1 2356 valuesName,
duke@1 2357 arrayType,
duke@1 2358 tree.type.tsym);
duke@1 2359 JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
duke@1 2360 List.<JCExpression>nil(),
duke@1 2361 values.toList());
duke@1 2362 newArray.type = arrayType;
duke@1 2363 enumDefs.append(make.VarDef(valuesVar, newArray));
duke@1 2364 tree.sym.members().enter(valuesVar);
duke@1 2365
duke@1 2366 Symbol valuesSym = lookupMethod(tree.pos(), names.values,
duke@1 2367 tree.type, List.<Type>nil());
jjg@86 2368 List<JCStatement> valuesBody;
jjg@86 2369 if (useClone()) {
jjg@86 2370 // return (T[]) $VALUES.clone();
jjg@86 2371 JCTypeCast valuesResult =
jjg@86 2372 make.TypeCast(valuesSym.type.getReturnType(),
jjg@86 2373 make.App(make.Select(make.Ident(valuesVar),
jjg@86 2374 syms.arrayCloneMethod)));
jjg@86 2375 valuesBody = List.<JCStatement>of(make.Return(valuesResult));
jjg@86 2376 } else {
jjg@86 2377 // template: T[] $result = new T[$values.length];
jjg@86 2378 Name resultName = names.fromString(target.syntheticNameChar() + "result");
jjg@86 2379 while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
jjg@86 2380 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
jjg@86 2381 VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
jjg@86 2382 resultName,
jjg@86 2383 arrayType,
jjg@86 2384 valuesSym);
jjg@86 2385 JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
jjg@86 2386 List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
jjg@86 2387 null);
jjg@86 2388 resultArray.type = arrayType;
jjg@86 2389 JCVariableDecl decl = make.VarDef(resultVar, resultArray);
jjg@86 2390
jjg@86 2391 // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
jjg@86 2392 if (systemArraycopyMethod == null) {
jjg@86 2393 systemArraycopyMethod =
jjg@86 2394 new MethodSymbol(PUBLIC | STATIC,
jjg@86 2395 names.fromString("arraycopy"),
jjg@86 2396 new MethodType(List.<Type>of(syms.objectType,
jjg@86 2397 syms.intType,
jjg@86 2398 syms.objectType,
jjg@86 2399 syms.intType,
jjg@86 2400 syms.intType),
jjg@86 2401 syms.voidType,
jjg@86 2402 List.<Type>nil(),
jjg@86 2403 syms.methodClass),
jjg@86 2404 syms.systemType.tsym);
jjg@86 2405 }
jjg@86 2406 JCStatement copy =
jjg@86 2407 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
jjg@86 2408 systemArraycopyMethod),
jjg@86 2409 List.of(make.Ident(valuesVar), make.Literal(0),
jjg@86 2410 make.Ident(resultVar), make.Literal(0),
jjg@86 2411 make.Select(make.Ident(valuesVar), syms.lengthVar))));
jjg@86 2412
jjg@86 2413 // template: return $result;
jjg@86 2414 JCStatement ret = make.Return(make.Ident(resultVar));
jjg@86 2415 valuesBody = List.<JCStatement>of(decl, copy, ret);
jjg@86 2416 }
jjg@86 2417
duke@1 2418 JCMethodDecl valuesDef =
jjg@86 2419 make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
jjg@86 2420
duke@1 2421 enumDefs.append(valuesDef);
duke@1 2422
jjg@86 2423 if (debugLower)
jjg@86 2424 System.err.println(tree.sym + ".valuesDef = " + valuesDef);
jjg@86 2425
duke@1 2426 /** The template for the following code is:
duke@1 2427 *
duke@1 2428 * public static E valueOf(String name) {
duke@1 2429 * return (E)Enum.valueOf(E.class, name);
duke@1 2430 * }
duke@1 2431 *
duke@1 2432 * where E is tree.sym
duke@1 2433 */
duke@1 2434 MethodSymbol valueOfSym = lookupMethod(tree.pos(),
duke@1 2435 names.valueOf,
duke@1 2436 tree.sym.type,
duke@1 2437 List.of(syms.stringType));
jjg@816 2438 Assert.check((valueOfSym.flags() & STATIC) != 0);
duke@1 2439 VarSymbol nameArgSym = valueOfSym.params.head;
duke@1 2440 JCIdent nameVal = make.Ident(nameArgSym);
duke@1 2441 JCStatement enum_ValueOf =
duke@1 2442 make.Return(make.TypeCast(tree.sym.type,
duke@1 2443 makeCall(make.Ident(syms.enumSym),
duke@1 2444 names.valueOf,
duke@1 2445 List.of(e_class, nameVal))));
duke@1 2446 JCMethodDecl valueOf = make.MethodDef(valueOfSym,
duke@1 2447 make.Block(0, List.of(enum_ValueOf)));
duke@1 2448 nameVal.sym = valueOf.params.head.sym;
duke@1 2449 if (debugLower)
duke@1 2450 System.err.println(tree.sym + ".valueOf = " + valueOf);
duke@1 2451 enumDefs.append(valueOf);
duke@1 2452
duke@1 2453 enumDefs.appendList(otherDefs.toList());
duke@1 2454 tree.defs = enumDefs.toList();
duke@1 2455
duke@1 2456 // Add the necessary members for the EnumCompatibleMode
duke@1 2457 if (target.compilerBootstrap(tree.sym)) {
duke@1 2458 addEnumCompatibleMembers(tree);
duke@1 2459 }
duke@1 2460 }
jjg@86 2461 // where
jjg@86 2462 private MethodSymbol systemArraycopyMethod;
jjg@86 2463 private boolean useClone() {
jjg@86 2464 try {
jjg@86 2465 Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
jjg@86 2466 return (e.sym != null);
jjg@86 2467 }
jjg@86 2468 catch (CompletionFailure e) {
jjg@86 2469 return false;
jjg@86 2470 }
jjg@86 2471 }
duke@1 2472
duke@1 2473 /** Translate an enumeration constant and its initializer. */
duke@1 2474 private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
duke@1 2475 JCNewClass varDef = (JCNewClass)var.init;
duke@1 2476 varDef.args = varDef.args.
duke@1 2477 prepend(makeLit(syms.intType, ordinal)).
duke@1 2478 prepend(makeLit(syms.stringType, var.name.toString()));
duke@1 2479 }
duke@1 2480
duke@1 2481 public void visitMethodDef(JCMethodDecl tree) {
duke@1 2482 if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
duke@1 2483 // Add "String $enum$name, int $enum$ordinal" to the beginning of the
duke@1 2484 // argument list for each constructor of an enum.
duke@1 2485 JCVariableDecl nameParam = make_at(tree.pos()).
duke@1 2486 Param(names.fromString(target.syntheticNameChar() +
duke@1 2487 "enum" + target.syntheticNameChar() + "name"),
duke@1 2488 syms.stringType, tree.sym);
duke@1 2489 nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
duke@1 2490
duke@1 2491 JCVariableDecl ordParam = make.
duke@1 2492 Param(names.fromString(target.syntheticNameChar() +
duke@1 2493 "enum" + target.syntheticNameChar() +
duke@1 2494 "ordinal"),
duke@1 2495 syms.intType, tree.sym);
duke@1 2496 ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
duke@1 2497
duke@1 2498 tree.params = tree.params.prepend(ordParam).prepend(nameParam);
duke@1 2499
duke@1 2500 MethodSymbol m = tree.sym;
duke@1 2501 Type olderasure = m.erasure(types);
duke@1 2502 m.erasure_field = new MethodType(
duke@1 2503 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
duke@1 2504 olderasure.getReturnType(),
duke@1 2505 olderasure.getThrownTypes(),
duke@1 2506 syms.methodClass);
duke@1 2507
duke@1 2508 if (target.compilerBootstrap(m.owner)) {
duke@1 2509 // Initialize synthetic name field
duke@1 2510 Symbol nameVarSym = lookupSynthetic(names.fromString("$name"),
duke@1 2511 tree.sym.owner.members());
duke@1 2512 JCIdent nameIdent = make.Ident(nameParam.sym);
duke@1 2513 JCIdent id1 = make.Ident(nameVarSym);
duke@1 2514 JCAssign newAssign = make.Assign(id1, nameIdent);
duke@1 2515 newAssign.type = id1.type;
duke@1 2516 JCExpressionStatement nameAssign = make.Exec(newAssign);
duke@1 2517 nameAssign.type = id1.type;
duke@1 2518 tree.body.stats = tree.body.stats.prepend(nameAssign);
duke@1 2519
duke@1 2520 // Initialize synthetic ordinal field
duke@1 2521 Symbol ordinalVarSym = lookupSynthetic(names.fromString("$ordinal"),
duke@1 2522 tree.sym.owner.members());
duke@1 2523 JCIdent ordIdent = make.Ident(ordParam.sym);
duke@1 2524 id1 = make.Ident(ordinalVarSym);
duke@1 2525 newAssign = make.Assign(id1, ordIdent);
duke@1 2526 newAssign.type = id1.type;
duke@1 2527 JCExpressionStatement ordinalAssign = make.Exec(newAssign);
duke@1 2528 ordinalAssign.type = id1.type;
duke@1 2529 tree.body.stats = tree.body.stats.prepend(ordinalAssign);
duke@1 2530 }
duke@1 2531 }
duke@1 2532
duke@1 2533 JCMethodDecl prevMethodDef = currentMethodDef;
duke@1 2534 MethodSymbol prevMethodSym = currentMethodSym;
duke@1 2535 try {
duke@1 2536 currentMethodDef = tree;
duke@1 2537 currentMethodSym = tree.sym;
duke@1 2538 visitMethodDefInternal(tree);
duke@1 2539 } finally {
duke@1 2540 currentMethodDef = prevMethodDef;
duke@1 2541 currentMethodSym = prevMethodSym;
duke@1 2542 }
duke@1 2543 }
duke@1 2544 //where
duke@1 2545 private void visitMethodDefInternal(JCMethodDecl tree) {
duke@1 2546 if (tree.name == names.init &&
duke@1 2547 (currentClass.isInner() ||
duke@1 2548 (currentClass.owner.kind & (VAR | MTH)) != 0)) {
duke@1 2549 // We are seeing a constructor of an inner class.
duke@1 2550 MethodSymbol m = tree.sym;
duke@1 2551
duke@1 2552 // Push a new proxy scope for constructor parameters.
duke@1 2553 // and create definitions for any this$n and proxy parameters.
duke@1 2554 proxies = proxies.dup(m);
duke@1 2555 List<VarSymbol> prevOuterThisStack = outerThisStack;
duke@1 2556 List<VarSymbol> fvs = freevars(currentClass);
duke@1 2557 JCVariableDecl otdef = null;
duke@1 2558 if (currentClass.hasOuterInstance())
duke@1 2559 otdef = outerThisDef(tree.pos, m);
duke@1 2560 List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m);
duke@1 2561
duke@1 2562 // Recursively translate result type, parameters and thrown list.
duke@1 2563 tree.restype = translate(tree.restype);
duke@1 2564 tree.params = translateVarDefs(tree.params);
duke@1 2565 tree.thrown = translate(tree.thrown);
duke@1 2566
duke@1 2567 // when compiling stubs, don't process body
duke@1 2568 if (tree.body == null) {
duke@1 2569 result = tree;
duke@1 2570 return;
duke@1 2571 }
duke@1 2572
duke@1 2573 // Add this$n (if needed) in front of and free variables behind
duke@1 2574 // constructor parameter list.
duke@1 2575 tree.params = tree.params.appendList(fvdefs);
duke@1 2576 if (currentClass.hasOuterInstance())
duke@1 2577 tree.params = tree.params.prepend(otdef);
duke@1 2578
duke@1 2579 // If this is an initial constructor, i.e., it does not start with
duke@1 2580 // this(...), insert initializers for this$n and proxies
duke@1 2581 // before (pre-1.4, after) the call to superclass constructor.
duke@1 2582 JCStatement selfCall = translate(tree.body.stats.head);
duke@1 2583
duke@1 2584 List<JCStatement> added = List.nil();
duke@1 2585 if (fvs.nonEmpty()) {
duke@1 2586 List<Type> addedargtypes = List.nil();
duke@1 2587 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
duke@1 2588 if (TreeInfo.isInitialConstructor(tree))
duke@1 2589 added = added.prepend(
duke@1 2590 initField(tree.body.pos, proxyName(l.head.name)));
duke@1 2591 addedargtypes = addedargtypes.prepend(l.head.erasure(types));
duke@1 2592 }
duke@1 2593 Type olderasure = m.erasure(types);
duke@1 2594 m.erasure_field = new MethodType(
duke@1 2595 olderasure.getParameterTypes().appendList(addedargtypes),
duke@1 2596 olderasure.getReturnType(),
duke@1 2597 olderasure.getThrownTypes(),
duke@1 2598 syms.methodClass);
duke@1 2599 }
duke@1 2600 if (currentClass.hasOuterInstance() &&
duke@1 2601 TreeInfo.isInitialConstructor(tree))
duke@1 2602 {
duke@1 2603 added = added.prepend(initOuterThis(tree.body.pos));
duke@1 2604 }
duke@1 2605
duke@1 2606 // pop local variables from proxy stack
duke@1 2607 proxies = proxies.leave();
duke@1 2608
duke@1 2609 // recursively translate following local statements and
duke@1 2610 // combine with this- or super-call
duke@1 2611 List<JCStatement> stats = translate(tree.body.stats.tail);
duke@1 2612 if (target.initializeFieldsBeforeSuper())
duke@1 2613 tree.body.stats = stats.prepend(selfCall).prependList(added);
duke@1 2614 else
duke@1 2615 tree.body.stats = stats.prependList(added).prepend(selfCall);
duke@1 2616
duke@1 2617 outerThisStack = prevOuterThisStack;
duke@1 2618 } else {
duke@1 2619 super.visitMethodDef(tree);
duke@1 2620 }
duke@1 2621 result = tree;
duke@1 2622 }
duke@1 2623
duke@1 2624 public void visitTypeCast(JCTypeCast tree) {
duke@1 2625 tree.clazz = translate(tree.clazz);
duke@1 2626 if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
duke@1 2627 tree.expr = translate(tree.expr, tree.type);
duke@1 2628 else
duke@1 2629 tree.expr = translate(tree.expr);
duke@1 2630 result = tree;
duke@1 2631 }
duke@1 2632
duke@1 2633 public void visitNewClass(JCNewClass tree) {
duke@1 2634 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
duke@1 2635
duke@1 2636 // Box arguments, if necessary
duke@1 2637 boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
duke@1 2638 List<Type> argTypes = tree.constructor.type.getParameterTypes();
duke@1 2639 if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
duke@1 2640 tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
duke@1 2641 tree.varargsElement = null;
duke@1 2642
duke@1 2643 // If created class is local, add free variables after
duke@1 2644 // explicit constructor arguments.
duke@1 2645 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 2646 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
duke@1 2647 }
duke@1 2648
duke@1 2649 // If an access constructor is used, append null as a last argument.
duke@1 2650 Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
duke@1 2651 if (constructor != tree.constructor) {
duke@1 2652 tree.args = tree.args.append(makeNull());
duke@1 2653 tree.constructor = constructor;
duke@1 2654 }
duke@1 2655
duke@1 2656 // If created class has an outer instance, and new is qualified, pass
duke@1 2657 // qualifier as first argument. If new is not qualified, pass the
duke@1 2658 // correct outer instance as first argument.
duke@1 2659 if (c.hasOuterInstance()) {
duke@1 2660 JCExpression thisArg;
duke@1 2661 if (tree.encl != null) {
duke@1 2662 thisArg = attr.makeNullCheck(translate(tree.encl));
duke@1 2663 thisArg.type = tree.encl.type;
duke@1 2664 } else if ((c.owner.kind & (MTH | VAR)) != 0) {
duke@1 2665 // local class
duke@1 2666 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
duke@1 2667 } else {
duke@1 2668 // nested class
duke@1 2669 thisArg = makeOwnerThis(tree.pos(), c, false);
duke@1 2670 }
duke@1 2671 tree.args = tree.args.prepend(thisArg);
duke@1 2672 }
duke@1 2673 tree.encl = null;
duke@1 2674
duke@1 2675 // If we have an anonymous class, create its flat version, rather
duke@1 2676 // than the class or interface following new.
duke@1 2677 if (tree.def != null) {
duke@1 2678 translate(tree.def);
duke@1 2679 tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
duke@1 2680 tree.def = null;
duke@1 2681 } else {
duke@1 2682 tree.clazz = access(c, tree.clazz, enclOp, false);
duke@1 2683 }
duke@1 2684 result = tree;
duke@1 2685 }
duke@1 2686
duke@1 2687 // Simplify conditionals with known constant controlling expressions.
duke@1 2688 // This allows us to avoid generating supporting declarations for
duke@1 2689 // the dead code, which will not be eliminated during code generation.
duke@1 2690 // Note that Flow.isFalse and Flow.isTrue only return true
duke@1 2691 // for constant expressions in the sense of JLS 15.27, which
darcy@430 2692 // are guaranteed to have no side-effects. More aggressive
duke@1 2693 // constant propagation would require that we take care to
duke@1 2694 // preserve possible side-effects in the condition expression.
duke@1 2695
duke@1 2696 /** Visitor method for conditional expressions.
duke@1 2697 */
duke@1 2698 public void visitConditional(JCConditional tree) {
duke@1 2699 JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2700 if (cond.type.isTrue()) {
duke@1 2701 result = convert(translate(tree.truepart, tree.type), tree.type);
duke@1 2702 } else if (cond.type.isFalse()) {
duke@1 2703 result = convert(translate(tree.falsepart, tree.type), tree.type);
duke@1 2704 } else {
duke@1 2705 // Condition is not a compile-time constant.
duke@1 2706 tree.truepart = translate(tree.truepart, tree.type);
duke@1 2707 tree.falsepart = translate(tree.falsepart, tree.type);
duke@1 2708 result = tree;
duke@1 2709 }
duke@1 2710 }
duke@1 2711 //where
duke@1 2712 private JCTree convert(JCTree tree, Type pt) {
sundar@691 2713 if (tree.type == pt || tree.type.tag == TypeTags.BOT)
sundar@691 2714 return tree;
duke@1 2715 JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
duke@1 2716 result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
duke@1 2717 : pt;
duke@1 2718 return result;
duke@1 2719 }
duke@1 2720
duke@1 2721 /** Visitor method for if statements.
duke@1 2722 */
duke@1 2723 public void visitIf(JCIf tree) {
duke@1 2724 JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2725 if (cond.type.isTrue()) {
duke@1 2726 result = translate(tree.thenpart);
duke@1 2727 } else if (cond.type.isFalse()) {
duke@1 2728 if (tree.elsepart != null) {
duke@1 2729 result = translate(tree.elsepart);
duke@1 2730 } else {
duke@1 2731 result = make.Skip();
duke@1 2732 }
duke@1 2733 } else {
duke@1 2734 // Condition is not a compile-time constant.
duke@1 2735 tree.thenpart = translate(tree.thenpart);
duke@1 2736 tree.elsepart = translate(tree.elsepart);
duke@1 2737 result = tree;
duke@1 2738 }
duke@1 2739 }
duke@1 2740
duke@1 2741 /** Visitor method for assert statements. Translate them away.
duke@1 2742 */
duke@1 2743 public void visitAssert(JCAssert tree) {
duke@1 2744 DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
duke@1 2745 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2746 if (!tree.cond.type.isTrue()) {
duke@1 2747 JCExpression cond = assertFlagTest(tree.pos());
duke@1 2748 List<JCExpression> exnArgs = (tree.detail == null) ?
duke@1 2749 List.<JCExpression>nil() : List.of(translate(tree.detail));
duke@1 2750 if (!tree.cond.type.isFalse()) {
duke@1 2751 cond = makeBinary
duke@1 2752 (JCTree.AND,
duke@1 2753 cond,
duke@1 2754 makeUnary(JCTree.NOT, tree.cond));
duke@1 2755 }
duke@1 2756 result =
duke@1 2757 make.If(cond,
duke@1 2758 make_at(detailPos).
duke@1 2759 Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
duke@1 2760 null);
duke@1 2761 } else {
duke@1 2762 result = make.Skip();
duke@1 2763 }
duke@1 2764 }
duke@1 2765
duke@1 2766 public void visitApply(JCMethodInvocation tree) {
duke@1 2767 Symbol meth = TreeInfo.symbol(tree.meth);
duke@1 2768 List<Type> argtypes = meth.type.getParameterTypes();
duke@1 2769 if (allowEnums &&
duke@1 2770 meth.name==names.init &&
duke@1 2771 meth.owner == syms.enumSym)
duke@1 2772 argtypes = argtypes.tail.tail;
duke@1 2773 tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
duke@1 2774 tree.varargsElement = null;
duke@1 2775 Name methName = TreeInfo.name(tree.meth);
duke@1 2776 if (meth.name==names.init) {
duke@1 2777 // We are seeing a this(...) or super(...) constructor call.
duke@1 2778 // If an access constructor is used, append null as a last argument.
duke@1 2779 Symbol constructor = accessConstructor(tree.pos(), meth);
duke@1 2780 if (constructor != meth) {
duke@1 2781 tree.args = tree.args.append(makeNull());
duke@1 2782 TreeInfo.setSymbol(tree.meth, constructor);
duke@1 2783 }
duke@1 2784
duke@1 2785 // If we are calling a constructor of a local class, add
duke@1 2786 // free variables after explicit constructor arguments.
duke@1 2787 ClassSymbol c = (ClassSymbol)constructor.owner;
duke@1 2788 if ((c.owner.kind & (VAR | MTH)) != 0) {
duke@1 2789 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
duke@1 2790 }
duke@1 2791
duke@1 2792 // If we are calling a constructor of an enum class, pass
duke@1 2793 // along the name and ordinal arguments
duke@1 2794 if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
duke@1 2795 List<JCVariableDecl> params = currentMethodDef.params;
duke@1 2796 if (currentMethodSym.owner.hasOuterInstance())
duke@1 2797 params = params.tail; // drop this$n
duke@1 2798 tree.args = tree.args
duke@1 2799 .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
duke@1 2800 .prepend(make.Ident(params.head.sym)); // name
duke@1 2801 }
duke@1 2802
duke@1 2803 // If we are calling a constructor of a class with an outer
duke@1 2804 // instance, and the call
duke@1 2805 // is qualified, pass qualifier as first argument in front of
duke@1 2806 // the explicit constructor arguments. If the call
duke@1 2807 // is not qualified, pass the correct outer instance as
duke@1 2808 // first argument.
duke@1 2809 if (c.hasOuterInstance()) {
duke@1 2810 JCExpression thisArg;
duke@1 2811 if (tree.meth.getTag() == JCTree.SELECT) {
duke@1 2812 thisArg = attr.
duke@1 2813 makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
duke@1 2814 tree.meth = make.Ident(constructor);
duke@1 2815 ((JCIdent) tree.meth).name = methName;
duke@1 2816 } else if ((c.owner.kind & (MTH | VAR)) != 0 || methName == names._this){
duke@1 2817 // local class or this() call
duke@1 2818 thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
duke@1 2819 } else {
duke@1 2820 // super() call of nested class
duke@1 2821 thisArg = makeOwnerThis(tree.meth.pos(), c, false);
duke@1 2822 }
duke@1 2823 tree.args = tree.args.prepend(thisArg);
duke@1 2824 }
duke@1 2825 } else {
duke@1 2826 // We are seeing a normal method invocation; translate this as usual.
duke@1 2827 tree.meth = translate(tree.meth);
duke@1 2828
duke@1 2829 // If the translated method itself is an Apply tree, we are
duke@1 2830 // seeing an access method invocation. In this case, append
duke@1 2831 // the method arguments to the arguments of the access method.
duke@1 2832 if (tree.meth.getTag() == JCTree.APPLY) {
duke@1 2833 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
duke@1 2834 app.args = tree.args.prependList(app.args);
duke@1 2835 result = app;
duke@1 2836 return;
duke@1 2837 }
duke@1 2838 }
duke@1 2839 result = tree;
duke@1 2840 }
duke@1 2841
duke@1 2842 List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
duke@1 2843 List<JCExpression> args = _args;
duke@1 2844 if (parameters.isEmpty()) return args;
duke@1 2845 boolean anyChanges = false;
duke@1 2846 ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
duke@1 2847 while (parameters.tail.nonEmpty()) {
duke@1 2848 JCExpression arg = translate(args.head, parameters.head);
duke@1 2849 anyChanges |= (arg != args.head);
duke@1 2850 result.append(arg);
duke@1 2851 args = args.tail;
duke@1 2852 parameters = parameters.tail;
duke@1 2853 }
duke@1 2854 Type parameter = parameters.head;
duke@1 2855 if (varargsElement != null) {
duke@1 2856 anyChanges = true;
duke@1 2857 ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
duke@1 2858 while (args.nonEmpty()) {
duke@1 2859 JCExpression arg = translate(args.head, varargsElement);
duke@1 2860 elems.append(arg);
duke@1 2861 args = args.tail;
duke@1 2862 }
duke@1 2863 JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
duke@1 2864 List.<JCExpression>nil(),
duke@1 2865 elems.toList());
duke@1 2866 boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
duke@1 2867 result.append(boxedArgs);
duke@1 2868 } else {
duke@1 2869 if (args.length() != 1) throw new AssertionError(args);
duke@1 2870 JCExpression arg = translate(args.head, parameter);
duke@1 2871 anyChanges |= (arg != args.head);
duke@1 2872 result.append(arg);
duke@1 2873 if (!anyChanges) return _args;
duke@1 2874 }
duke@1 2875 return result.toList();
duke@1 2876 }
duke@1 2877
duke@1 2878 /** Expand a boxing or unboxing conversion if needed. */
duke@1 2879 @SuppressWarnings("unchecked") // XXX unchecked
duke@1 2880 <T extends JCTree> T boxIfNeeded(T tree, Type type) {
duke@1 2881 boolean havePrimitive = tree.type.isPrimitive();
duke@1 2882 if (havePrimitive == type.isPrimitive())
duke@1 2883 return tree;
duke@1 2884 if (havePrimitive) {
duke@1 2885 Type unboxedTarget = types.unboxedType(type);
duke@1 2886 if (unboxedTarget.tag != NONE) {
mcimadamore@253 2887 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
mcimadamore@253 2888 tree.type = unboxedTarget.constType(tree.type.constValue());
duke@1 2889 return (T)boxPrimitive((JCExpression)tree, type);
duke@1 2890 } else {
duke@1 2891 tree = (T)boxPrimitive((JCExpression)tree);
duke@1 2892 }
duke@1 2893 } else {
duke@1 2894 tree = (T)unbox((JCExpression)tree, type);
duke@1 2895 }
duke@1 2896 return tree;
duke@1 2897 }
duke@1 2898
duke@1 2899 /** Box up a single primitive expression. */
duke@1 2900 JCExpression boxPrimitive(JCExpression tree) {
duke@1 2901 return boxPrimitive(tree, types.boxedClass(tree.type).type);
duke@1 2902 }
duke@1 2903
duke@1 2904 /** Box up a single primitive expression. */
duke@1 2905 JCExpression boxPrimitive(JCExpression tree, Type box) {
duke@1 2906 make_at(tree.pos());
duke@1 2907 if (target.boxWithConstructors()) {
duke@1 2908 Symbol ctor = lookupConstructor(tree.pos(),
duke@1 2909 box,
duke@1 2910 List.<Type>nil()
duke@1 2911 .prepend(tree.type));
duke@1 2912 return make.Create(ctor, List.of(tree));
duke@1 2913 } else {
duke@1 2914 Symbol valueOfSym = lookupMethod(tree.pos(),
duke@1 2915 names.valueOf,
duke@1 2916 box,
duke@1 2917 List.<Type>nil()
duke@1 2918 .prepend(tree.type));
duke@1 2919 return make.App(make.QualIdent(valueOfSym), List.of(tree));
duke@1 2920 }
duke@1 2921 }
duke@1 2922
duke@1 2923 /** Unbox an object to a primitive value. */
duke@1 2924 JCExpression unbox(JCExpression tree, Type primitive) {
duke@1 2925 Type unboxedType = types.unboxedType(tree.type);
jrose@665 2926 if (unboxedType.tag == NONE) {
jrose@665 2927 unboxedType = primitive;
jrose@665 2928 if (!unboxedType.isPrimitive())
jrose@665 2929 throw new AssertionError(unboxedType);
jrose@665 2930 make_at(tree.pos());
jrose@665 2931 tree = make.TypeCast(types.boxedClass(unboxedType).type, tree);
jrose@665 2932 } else {
jrose@665 2933 // There must be a conversion from unboxedType to primitive.
jrose@665 2934 if (!types.isSubtype(unboxedType, primitive))
jrose@665 2935 throw new AssertionError(tree);
jrose@665 2936 }
duke@1 2937 make_at(tree.pos());
duke@1 2938 Symbol valueSym = lookupMethod(tree.pos(),
duke@1 2939 unboxedType.tsym.name.append(names.Value), // x.intValue()
duke@1 2940 tree.type,
duke@1 2941 List.<Type>nil());
duke@1 2942 return make.App(make.Select(tree, valueSym));
duke@1 2943 }
duke@1 2944
duke@1 2945 /** Visitor method for parenthesized expressions.
duke@1 2946 * If the subexpression has changed, omit the parens.
duke@1 2947 */
duke@1 2948 public void visitParens(JCParens tree) {
duke@1 2949 JCTree expr = translate(tree.expr);
duke@1 2950 result = ((expr == tree.expr) ? tree : expr);
duke@1 2951 }
duke@1 2952
duke@1 2953 public void visitIndexed(JCArrayAccess tree) {
duke@1 2954 tree.indexed = translate(tree.indexed);
duke@1 2955 tree.index = translate(tree.index, syms.intType);
duke@1 2956 result = tree;
duke@1 2957 }
duke@1 2958
duke@1 2959 public void visitAssign(JCAssign tree) {
duke@1 2960 tree.lhs = translate(tree.lhs, tree);
duke@1 2961 tree.rhs = translate(tree.rhs, tree.lhs.type);
duke@1 2962
duke@1 2963 // If translated left hand side is an Apply, we are
duke@1 2964 // seeing an access method invocation. In this case, append
duke@1 2965 // right hand side as last argument of the access method.
duke@1 2966 if (tree.lhs.getTag() == JCTree.APPLY) {
duke@1 2967 JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
duke@1 2968 app.args = List.of(tree.rhs).prependList(app.args);
duke@1 2969 result = app;
duke@1 2970 } else {
duke@1 2971 result = tree;
duke@1 2972 }
duke@1 2973 }
duke@1 2974
duke@1 2975 public void visitAssignop(final JCAssignOp tree) {
duke@1 2976 if (!tree.lhs.type.isPrimitive() &&
duke@1 2977 tree.operator.type.getReturnType().isPrimitive()) {
duke@1 2978 // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
duke@1 2979 // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
duke@1 2980 // (but without recomputing x)
mcimadamore@133 2981 JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
duke@1 2982 public JCTree build(final JCTree lhs) {
duke@1 2983 int newTag = tree.getTag() - JCTree.ASGOffset;
duke@1 2984 // Erasure (TransTypes) can change the type of
duke@1 2985 // tree.lhs. However, we can still get the
duke@1 2986 // unerased type of tree.lhs as it is stored
duke@1 2987 // in tree.type in Attr.
duke@1 2988 Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
duke@1 2989 newTag,
duke@1 2990 attrEnv,
duke@1 2991 tree.type,
duke@1 2992 tree.rhs.type);
duke@1 2993 JCExpression expr = (JCExpression)lhs;
duke@1 2994 if (expr.type != tree.type)
duke@1 2995 expr = make.TypeCast(tree.type, expr);
duke@1 2996 JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
duke@1 2997 opResult.operator = newOperator;
duke@1 2998 opResult.type = newOperator.type.getReturnType();
duke@1 2999 JCTypeCast newRhs = make.TypeCast(types.unboxedType(tree.type),
duke@1 3000 opResult);
duke@1 3001 return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
duke@1 3002 }
duke@1 3003 });
duke@1 3004 result = translate(newTree);
duke@1 3005 return;
duke@1 3006 }
duke@1 3007 tree.lhs = translate(tree.lhs, tree);
duke@1 3008 tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
duke@1 3009
duke@1 3010 // If translated left hand side is an Apply, we are
duke@1 3011 // seeing an access method invocation. In this case, append
duke@1 3012 // right hand side as last argument of the access method.
duke@1 3013 if (tree.lhs.getTag() == JCTree.APPLY) {
duke@1 3014 JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
duke@1 3015 // if operation is a += on strings,
duke@1 3016 // make sure to convert argument to string
duke@1 3017 JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
duke@1 3018 ? makeString(tree.rhs)
duke@1 3019 : tree.rhs;
duke@1 3020 app.args = List.of(rhs).prependList(app.args);
duke@1 3021 result = app;
duke@1 3022 } else {
duke@1 3023 result = tree;
duke@1 3024 }
duke@1 3025 }
duke@1 3026
duke@1 3027 /** Lower a tree of the form e++ or e-- where e is an object type */
duke@1 3028 JCTree lowerBoxedPostop(final JCUnary tree) {
duke@1 3029 // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
duke@1 3030 // or
duke@1 3031 // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
duke@1 3032 // where OP is += or -=
mcimadamore@133 3033 final boolean cast = TreeInfo.skipParens(tree.arg).getTag() == JCTree.TYPECAST;
mcimadamore@133 3034 return abstractLval(tree.arg, new TreeBuilder() {
duke@1 3035 public JCTree build(final JCTree tmp1) {
duke@1 3036 return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
duke@1 3037 public JCTree build(final JCTree tmp2) {
duke@1 3038 int opcode = (tree.getTag() == JCTree.POSTINC)
duke@1 3039 ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
duke@1 3040 JCTree lhs = cast
duke@1 3041 ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
duke@1 3042 : tmp1;
duke@1 3043 JCTree update = makeAssignop(opcode,
duke@1 3044 lhs,
duke@1 3045 make.Literal(1));
duke@1 3046 return makeComma(update, tmp2);
duke@1 3047 }
duke@1 3048 });
duke@1 3049 }
duke@1 3050 });
duke@1 3051 }
duke@1 3052
duke@1 3053 public void visitUnary(JCUnary tree) {
duke@1 3054 boolean isUpdateOperator =
duke@1 3055 JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC;
duke@1 3056 if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
duke@1 3057 switch(tree.getTag()) {
duke@1 3058 case JCTree.PREINC: // ++ e
duke@1 3059 // translate to e += 1
duke@1 3060 case JCTree.PREDEC: // -- e
duke@1 3061 // translate to e -= 1
duke@1 3062 {
duke@1 3063 int opcode = (tree.getTag() == JCTree.PREINC)
duke@1 3064 ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
duke@1 3065 JCAssignOp newTree = makeAssignop(opcode,
duke@1 3066 tree.arg,
duke@1 3067 make.Literal(1));
duke@1 3068 result = translate(newTree, tree.type);
duke@1 3069 return;
duke@1 3070 }
duke@1 3071 case JCTree.POSTINC: // e ++
duke@1 3072 case JCTree.POSTDEC: // e --
duke@1 3073 {
duke@1 3074 result = translate(lowerBoxedPostop(tree), tree.type);
duke@1 3075 return;
duke@1 3076 }
duke@1 3077 }
duke@1 3078 throw new AssertionError(tree);
duke@1 3079 }
duke@1 3080
duke@1 3081 tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
duke@1 3082
duke@1 3083 if (tree.getTag() == JCTree.NOT && tree.arg.type.constValue() != null) {
duke@1 3084 tree.type = cfolder.fold1(bool_not, tree.arg.type);
duke@1 3085 }
duke@1 3086
duke@1 3087 // If translated left hand side is an Apply, we are
duke@1 3088 // seeing an access method invocation. In this case, return
darcy@430 3089 // that access method invocation as result.
duke@1 3090 if (isUpdateOperator && tree.arg.getTag() == JCTree.APPLY) {
duke@1 3091 result = tree.arg;
duke@1 3092 } else {
duke@1 3093 result = tree;
duke@1 3094 }
duke@1 3095 }
duke@1 3096
duke@1 3097 public void visitBinary(JCBinary tree) {
duke@1 3098 List<Type> formals = tree.operator.type.getParameterTypes();
duke@1 3099 JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
duke@1 3100 switch (tree.getTag()) {
duke@1 3101 case JCTree.OR:
duke@1 3102 if (lhs.type.isTrue()) {
duke@1 3103 result = lhs;
duke@1 3104 return;
duke@1 3105 }
duke@1 3106 if (lhs.type.isFalse()) {
duke@1 3107 result = translate(tree.rhs, formals.tail.head);
duke@1 3108 return;
duke@1 3109 }
duke@1 3110 break;
duke@1 3111 case JCTree.AND:
duke@1 3112 if (lhs.type.isFalse()) {
duke@1 3113 result = lhs;
duke@1 3114 return;
duke@1 3115 }
duke@1 3116 if (lhs.type.isTrue()) {
duke@1 3117 result = translate(tree.rhs, formals.tail.head);
duke@1 3118 return;
duke@1 3119 }
duke@1 3120 break;
duke@1 3121 }
duke@1 3122 tree.rhs = translate(tree.rhs, formals.tail.head);
duke@1 3123 result = tree;
duke@1 3124 }
duke@1 3125
duke@1 3126 public void visitIdent(JCIdent tree) {
duke@1 3127 result = access(tree.sym, tree, enclOp, false);
duke@1 3128 }
duke@1 3129
duke@1 3130 /** Translate away the foreach loop. */
duke@1 3131 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 3132 if (types.elemtype(tree.expr.type) == null)
duke@1 3133 visitIterableForeachLoop(tree);
duke@1 3134 else
duke@1 3135 visitArrayForeachLoop(tree);
duke@1 3136 }
duke@1 3137 // where
duke@1 3138 /**
darcy@430 3139 * A statement of the form
duke@1 3140 *
duke@1 3141 * <pre>
duke@1 3142 * for ( T v : arrayexpr ) stmt;
duke@1 3143 * </pre>
duke@1 3144 *
duke@1 3145 * (where arrayexpr is of an array type) gets translated to
duke@1 3146 *
duke@1 3147 * <pre>
duke@1 3148 * for ( { arraytype #arr = arrayexpr;
duke@1 3149 * int #len = array.length;
duke@1 3150 * int #i = 0; };
duke@1 3151 * #i < #len; i$++ ) {
duke@1 3152 * T v = arr$[#i];
duke@1 3153 * stmt;
duke@1 3154 * }
duke@1 3155 * </pre>
duke@1 3156 *
duke@1 3157 * where #arr, #len, and #i are freshly named synthetic local variables.
duke@1 3158 */
duke@1 3159 private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
duke@1 3160 make_at(tree.expr.pos());
duke@1 3161 VarSymbol arraycache = new VarSymbol(0,
duke@1 3162 names.fromString("arr" + target.syntheticNameChar()),
duke@1 3163 tree.expr.type,
duke@1 3164 currentMethodSym);
duke@1 3165 JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
duke@1 3166 VarSymbol lencache = new VarSymbol(0,
duke@1 3167 names.fromString("len" + target.syntheticNameChar()),
duke@1 3168 syms.intType,
duke@1 3169 currentMethodSym);
duke@1 3170 JCStatement lencachedef = make.
duke@1 3171 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
duke@1 3172 VarSymbol index = new VarSymbol(0,
duke@1 3173 names.fromString("i" + target.syntheticNameChar()),
duke@1 3174 syms.intType,
duke@1 3175 currentMethodSym);
duke@1 3176
duke@1 3177 JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
duke@1 3178 indexdef.init.type = indexdef.type = syms.intType.constType(0);
duke@1 3179
duke@1 3180 List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
duke@1 3181 JCBinary cond = makeBinary(JCTree.LT, make.Ident(index), make.Ident(lencache));
duke@1 3182
duke@1 3183 JCExpressionStatement step = make.Exec(makeUnary(JCTree.PREINC, make.Ident(index)));
duke@1 3184
duke@1 3185 Type elemtype = types.elemtype(tree.expr.type);
mcimadamore@33 3186 JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
mcimadamore@33 3187 make.Ident(index)).setType(elemtype);
mcimadamore@33 3188 JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
mcimadamore@33 3189 tree.var.name,
mcimadamore@33 3190 tree.var.vartype,
mcimadamore@33 3191 loopvarinit).setType(tree.var.type);
mcimadamore@33 3192 loopvardef.sym = tree.var.sym;
duke@1 3193 JCBlock body = make.
mcimadamore@33 3194 Block(0, List.of(loopvardef, tree.body));
duke@1 3195
duke@1 3196 result = translate(make.
duke@1 3197 ForLoop(loopinit,
duke@1 3198 cond,
duke@1 3199 List.of(step),
duke@1 3200 body));
duke@1 3201 patchTargets(body, tree, result);
duke@1 3202 }
duke@1 3203 /** Patch up break and continue targets. */
duke@1 3204 private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
duke@1 3205 class Patcher extends TreeScanner {
duke@1 3206 public void visitBreak(JCBreak tree) {
duke@1 3207 if (tree.target == src)
duke@1 3208 tree.target = dest;
duke@1 3209 }
duke@1 3210 public void visitContinue(JCContinue tree) {
duke@1 3211 if (tree.target == src)
duke@1 3212 tree.target = dest;
duke@1 3213 }
duke@1 3214 public void visitClassDef(JCClassDecl tree) {}
duke@1 3215 }
duke@1 3216 new Patcher().scan(body);
duke@1 3217 }
duke@1 3218 /**
duke@1 3219 * A statement of the form
duke@1 3220 *
duke@1 3221 * <pre>
duke@1 3222 * for ( T v : coll ) stmt ;
duke@1 3223 * </pre>
duke@1 3224 *
duke@1 3225 * (where coll implements Iterable<? extends T>) gets translated to
duke@1 3226 *
duke@1 3227 * <pre>
duke@1 3228 * for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
duke@1 3229 * T v = (T) #i.next();
duke@1 3230 * stmt;
duke@1 3231 * }
duke@1 3232 * </pre>
duke@1 3233 *
duke@1 3234 * where #i is a freshly named synthetic local variable.
duke@1 3235 */
duke@1 3236 private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
duke@1 3237 make_at(tree.expr.pos());
duke@1 3238 Type iteratorTarget = syms.objectType;
duke@1 3239 Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
duke@1 3240 syms.iterableType.tsym);
duke@1 3241 if (iterableType.getTypeArguments().nonEmpty())
duke@1 3242 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
duke@1 3243 Type eType = tree.expr.type;
duke@1 3244 tree.expr.type = types.erasure(eType);
duke@1 3245 if (eType.tag == TYPEVAR && eType.getUpperBound().isCompound())
duke@1 3246 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
duke@1 3247 Symbol iterator = lookupMethod(tree.expr.pos(),
duke@1 3248 names.iterator,
duke@1 3249 types.erasure(syms.iterableType),
duke@1 3250 List.<Type>nil());
duke@1 3251 VarSymbol itvar = new VarSymbol(0, names.fromString("i" + target.syntheticNameChar()),
duke@1 3252 types.erasure(iterator.type.getReturnType()),
duke@1 3253 currentMethodSym);
duke@1 3254 JCStatement init = make.
duke@1 3255 VarDef(itvar,
duke@1 3256 make.App(make.Select(tree.expr, iterator)));
duke@1 3257 Symbol hasNext = lookupMethod(tree.expr.pos(),
duke@1 3258 names.hasNext,
duke@1 3259 itvar.type,
duke@1 3260 List.<Type>nil());
duke@1 3261 JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
duke@1 3262 Symbol next = lookupMethod(tree.expr.pos(),
duke@1 3263 names.next,
duke@1 3264 itvar.type,
duke@1 3265 List.<Type>nil());
duke@1 3266 JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
mcimadamore@81 3267 if (tree.var.type.isPrimitive())
mcimadamore@81 3268 vardefinit = make.TypeCast(types.upperBound(iteratorTarget), vardefinit);
mcimadamore@81 3269 else
mcimadamore@81 3270 vardefinit = make.TypeCast(tree.var.type, vardefinit);
mcimadamore@33 3271 JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
mcimadamore@33 3272 tree.var.name,
mcimadamore@33 3273 tree.var.vartype,
mcimadamore@33 3274 vardefinit).setType(tree.var.type);
mcimadamore@33 3275 indexDef.sym = tree.var.sym;
duke@1 3276 JCBlock body = make.Block(0, List.of(indexDef, tree.body));
mcimadamore@237 3277 body.endpos = TreeInfo.endPos(tree.body);
duke@1 3278 result = translate(make.
duke@1 3279 ForLoop(List.of(init),
duke@1 3280 cond,
duke@1 3281 List.<JCExpressionStatement>nil(),
duke@1 3282 body));
duke@1 3283 patchTargets(body, tree, result);
duke@1 3284 }
duke@1 3285
duke@1 3286 public void visitVarDef(JCVariableDecl tree) {
duke@1 3287 MethodSymbol oldMethodSym = currentMethodSym;
duke@1 3288 tree.mods = translate(tree.mods);
duke@1 3289 tree.vartype = translate(tree.vartype);
duke@1 3290 if (currentMethodSym == null) {
duke@1 3291 // A class or instance field initializer.
duke@1 3292 currentMethodSym =
duke@1 3293 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
duke@1 3294 names.empty, null,
duke@1 3295 currentClass);
duke@1 3296 }
duke@1 3297 if (tree.init != null) tree.init = translate(tree.init, tree.type);
duke@1 3298 result = tree;
duke@1 3299 currentMethodSym = oldMethodSym;
duke@1 3300 }
duke@1 3301
duke@1 3302 public void visitBlock(JCBlock tree) {
duke@1 3303 MethodSymbol oldMethodSym = currentMethodSym;
duke@1 3304 if (currentMethodSym == null) {
duke@1 3305 // Block is a static or instance initializer.
duke@1 3306 currentMethodSym =
duke@1 3307 new MethodSymbol(tree.flags | BLOCK,
duke@1 3308 names.empty, null,
duke@1 3309 currentClass);
duke@1 3310 }
duke@1 3311 super.visitBlock(tree);
duke@1 3312 currentMethodSym = oldMethodSym;
duke@1 3313 }
duke@1 3314
duke@1 3315 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 3316 tree.body = translate(tree.body);
duke@1 3317 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3318 result = tree;
duke@1 3319 }
duke@1 3320
duke@1 3321 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 3322 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3323 tree.body = translate(tree.body);
duke@1 3324 result = tree;
duke@1 3325 }
duke@1 3326
duke@1 3327 public void visitForLoop(JCForLoop tree) {
duke@1 3328 tree.init = translate(tree.init);
duke@1 3329 if (tree.cond != null)
duke@1 3330 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3331 tree.step = translate(tree.step);
duke@1 3332 tree.body = translate(tree.body);
duke@1 3333 result = tree;
duke@1 3334 }
duke@1 3335
duke@1 3336 public void visitReturn(JCReturn tree) {
duke@1 3337 if (tree.expr != null)
duke@1 3338 tree.expr = translate(tree.expr,
duke@1 3339 types.erasure(currentMethodDef
duke@1 3340 .restype.type));
duke@1 3341 result = tree;
duke@1 3342 }
duke@1 3343
duke@1 3344 public void visitSwitch(JCSwitch tree) {
duke@1 3345 Type selsuper = types.supertype(tree.selector.type);
duke@1 3346 boolean enumSwitch = selsuper != null &&
duke@1 3347 (tree.selector.type.tsym.flags() & ENUM) != 0;
darcy@430 3348 boolean stringSwitch = selsuper != null &&
darcy@430 3349 types.isSameType(tree.selector.type, syms.stringType);
darcy@430 3350 Type target = enumSwitch ? tree.selector.type :
darcy@430 3351 (stringSwitch? syms.stringType : syms.intType);
duke@1 3352 tree.selector = translate(tree.selector, target);
duke@1 3353 tree.cases = translateCases(tree.cases);
duke@1 3354 if (enumSwitch) {
duke@1 3355 result = visitEnumSwitch(tree);
darcy@430 3356 } else if (stringSwitch) {
darcy@430 3357 result = visitStringSwitch(tree);
duke@1 3358 } else {
duke@1 3359 result = tree;
duke@1 3360 }
duke@1 3361 }
duke@1 3362
duke@1 3363 public JCTree visitEnumSwitch(JCSwitch tree) {
duke@1 3364 TypeSymbol enumSym = tree.selector.type.tsym;
duke@1 3365 EnumMapping map = mapForEnum(tree.pos(), enumSym);
duke@1 3366 make_at(tree.pos());
duke@1 3367 Symbol ordinalMethod = lookupMethod(tree.pos(),
duke@1 3368 names.ordinal,
duke@1 3369 tree.selector.type,
duke@1 3370 List.<Type>nil());
duke@1 3371 JCArrayAccess selector = make.Indexed(map.mapVar,
duke@1 3372 make.App(make.Select(tree.selector,
duke@1 3373 ordinalMethod)));
duke@1 3374 ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
duke@1 3375 for (JCCase c : tree.cases) {
duke@1 3376 if (c.pat != null) {
duke@1 3377 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
duke@1 3378 JCLiteral pat = map.forConstant(label);
duke@1 3379 cases.append(make.Case(pat, c.stats));
duke@1 3380 } else {
duke@1 3381 cases.append(c);
duke@1 3382 }
duke@1 3383 }
darcy@443 3384 JCSwitch enumSwitch = make.Switch(selector, cases.toList());
darcy@443 3385 patchTargets(enumSwitch, tree, enumSwitch);
darcy@443 3386 return enumSwitch;
duke@1 3387 }
duke@1 3388
darcy@430 3389 public JCTree visitStringSwitch(JCSwitch tree) {
darcy@430 3390 List<JCCase> caseList = tree.getCases();
darcy@430 3391 int alternatives = caseList.size();
darcy@430 3392
darcy@430 3393 if (alternatives == 0) { // Strange but legal possibility
darcy@430 3394 return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
darcy@430 3395 } else {
darcy@430 3396 /*
darcy@430 3397 * The general approach used is to translate a single
darcy@430 3398 * string switch statement into a series of two chained
darcy@430 3399 * switch statements: the first a synthesized statement
darcy@430 3400 * switching on the argument string's hash value and
darcy@430 3401 * computing a string's position in the list of original
darcy@430 3402 * case labels, if any, followed by a second switch on the
darcy@430 3403 * computed integer value. The second switch has the same
darcy@430 3404 * code structure as the original string switch statement
darcy@430 3405 * except that the string case labels are replaced with
darcy@430 3406 * positional integer constants starting at 0.
darcy@430 3407 *
darcy@430 3408 * The first switch statement can be thought of as an
darcy@430 3409 * inlined map from strings to their position in the case
darcy@430 3410 * label list. An alternate implementation would use an
darcy@430 3411 * actual Map for this purpose, as done for enum switches.
darcy@430 3412 *
darcy@430 3413 * With some additional effort, it would be possible to
darcy@430 3414 * use a single switch statement on the hash code of the
darcy@430 3415 * argument, but care would need to be taken to preserve
darcy@430 3416 * the proper control flow in the presence of hash
darcy@430 3417 * collisions and other complications, such as
darcy@430 3418 * fallthroughs. Switch statements with one or two
darcy@430 3419 * alternatives could also be specially translated into
darcy@430 3420 * if-then statements to omit the computation of the hash
darcy@430 3421 * code.
darcy@430 3422 *
darcy@430 3423 * The generated code assumes that the hashing algorithm
darcy@430 3424 * of String is the same in the compilation environment as
darcy@430 3425 * in the environment the code will run in. The string
darcy@430 3426 * hashing algorithm in the SE JDK has been unchanged
darcy@443 3427 * since at least JDK 1.2. Since the algorithm has been
darcy@443 3428 * specified since that release as well, it is very
darcy@443 3429 * unlikely to be changed in the future.
darcy@443 3430 *
darcy@443 3431 * Different hashing algorithms, such as the length of the
darcy@443 3432 * strings or a perfect hashing algorithm over the
darcy@443 3433 * particular set of case labels, could potentially be
darcy@443 3434 * used instead of String.hashCode.
darcy@430 3435 */
darcy@430 3436
darcy@430 3437 ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
darcy@430 3438
darcy@430 3439 // Map from String case labels to their original position in
darcy@430 3440 // the list of case labels.
darcy@430 3441 Map<String, Integer> caseLabelToPosition =
darcy@430 3442 new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
darcy@430 3443
darcy@430 3444 // Map of hash codes to the string case labels having that hashCode.
darcy@430 3445 Map<Integer, Set<String>> hashToString =
darcy@430 3446 new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
darcy@430 3447
darcy@430 3448 int casePosition = 0;
darcy@430 3449 for(JCCase oneCase : caseList) {
darcy@430 3450 JCExpression expression = oneCase.getExpression();
darcy@430 3451
darcy@430 3452 if (expression != null) { // expression for a "default" case is null
darcy@430 3453 String labelExpr = (String) expression.type.constValue();
darcy@430 3454 Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
jjg@816 3455 Assert.checkNull(mapping);
darcy@430 3456 int hashCode = labelExpr.hashCode();
darcy@430 3457
darcy@430 3458 Set<String> stringSet = hashToString.get(hashCode);
darcy@430 3459 if (stringSet == null) {
darcy@430 3460 stringSet = new LinkedHashSet<String>(1, 1.0f);
darcy@430 3461 stringSet.add(labelExpr);
darcy@430 3462 hashToString.put(hashCode, stringSet);
darcy@430 3463 } else {
darcy@430 3464 boolean added = stringSet.add(labelExpr);
jjg@816 3465 Assert.check(added);
darcy@430 3466 }
darcy@430 3467 }
darcy@430 3468 casePosition++;
darcy@430 3469 }
darcy@430 3470
darcy@430 3471 // Synthesize a switch statement that has the effect of
darcy@430 3472 // mapping from a string to the integer position of that
darcy@430 3473 // string in the list of case labels. This is done by
darcy@430 3474 // switching on the hashCode of the string followed by an
darcy@430 3475 // if-then-else chain comparing the input for equality
darcy@430 3476 // with all the case labels having that hash value.
darcy@430 3477
darcy@430 3478 /*
darcy@430 3479 * s$ = top of stack;
darcy@430 3480 * tmp$ = -1;
darcy@430 3481 * switch($s.hashCode()) {
darcy@430 3482 * case caseLabel.hashCode:
darcy@430 3483 * if (s$.equals("caseLabel_1")
darcy@430 3484 * tmp$ = caseLabelToPosition("caseLabel_1");
darcy@430 3485 * else if (s$.equals("caseLabel_2"))
darcy@430 3486 * tmp$ = caseLabelToPosition("caseLabel_2");
darcy@430 3487 * ...
darcy@430 3488 * break;
darcy@430 3489 * ...
darcy@430 3490 * }
darcy@430 3491 */
darcy@430 3492
darcy@430 3493 VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
darcy@430 3494 names.fromString("s" + tree.pos + target.syntheticNameChar()),
darcy@430 3495 syms.stringType,
darcy@430 3496 currentMethodSym);
darcy@430 3497 stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
darcy@430 3498
darcy@430 3499 VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
darcy@430 3500 names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
darcy@430 3501 syms.intType,
darcy@430 3502 currentMethodSym);
darcy@430 3503 JCVariableDecl dollar_tmp_def =
darcy@430 3504 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
darcy@430 3505 dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
darcy@430 3506 stmtList.append(dollar_tmp_def);
darcy@430 3507 ListBuffer<JCCase> caseBuffer = ListBuffer.lb();
darcy@430 3508 // hashCode will trigger nullcheck on original switch expression
darcy@430 3509 JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
darcy@430 3510 names.hashCode,
darcy@430 3511 List.<JCExpression>nil()).setType(syms.intType);
darcy@430 3512 JCSwitch switch1 = make.Switch(hashCodeCall,
darcy@430 3513 caseBuffer.toList());
darcy@430 3514 for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
darcy@430 3515 int hashCode = entry.getKey();
darcy@430 3516 Set<String> stringsWithHashCode = entry.getValue();
jjg@816 3517 Assert.check(stringsWithHashCode.size() >= 1);
darcy@430 3518
darcy@430 3519 JCStatement elsepart = null;
darcy@430 3520 for(String caseLabel : stringsWithHashCode ) {
darcy@430 3521 JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
darcy@430 3522 names.equals,
darcy@430 3523 List.<JCExpression>of(make.Literal(caseLabel)));
darcy@430 3524 elsepart = make.If(stringEqualsCall,
darcy@430 3525 make.Exec(make.Assign(make.Ident(dollar_tmp),
darcy@430 3526 make.Literal(caseLabelToPosition.get(caseLabel))).
darcy@430 3527 setType(dollar_tmp.type)),
darcy@430 3528 elsepart);
darcy@430 3529 }
darcy@430 3530
darcy@430 3531 ListBuffer<JCStatement> lb = ListBuffer.lb();
darcy@430 3532 JCBreak breakStmt = make.Break(null);
darcy@430 3533 breakStmt.target = switch1;
darcy@430 3534 lb.append(elsepart).append(breakStmt);
darcy@430 3535
darcy@430 3536 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
darcy@430 3537 }
darcy@430 3538
darcy@430 3539 switch1.cases = caseBuffer.toList();
darcy@430 3540 stmtList.append(switch1);
darcy@430 3541
darcy@430 3542 // Make isomorphic switch tree replacing string labels
darcy@430 3543 // with corresponding integer ones from the label to
darcy@430 3544 // position map.
darcy@430 3545
darcy@430 3546 ListBuffer<JCCase> lb = ListBuffer.lb();
darcy@430 3547 JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
darcy@430 3548 for(JCCase oneCase : caseList ) {
darcy@430 3549 // Rewire up old unlabeled break statements to the
darcy@430 3550 // replacement switch being created.
darcy@430 3551 patchTargets(oneCase, tree, switch2);
darcy@430 3552
darcy@430 3553 boolean isDefault = (oneCase.getExpression() == null);
darcy@430 3554 JCExpression caseExpr;
darcy@430 3555 if (isDefault)
darcy@430 3556 caseExpr = null;
darcy@430 3557 else {
darcy@430 3558 caseExpr = make.Literal(caseLabelToPosition.get((String)oneCase.
darcy@430 3559 getExpression().
darcy@430 3560 type.constValue()));
darcy@430 3561 }
darcy@430 3562
darcy@430 3563 lb.append(make.Case(caseExpr,
darcy@430 3564 oneCase.getStatements()));
darcy@430 3565 }
darcy@430 3566
darcy@430 3567 switch2.cases = lb.toList();
darcy@430 3568 stmtList.append(switch2);
darcy@430 3569
darcy@430 3570 return make.Block(0L, stmtList.toList());
darcy@430 3571 }
darcy@430 3572 }
darcy@430 3573
duke@1 3574 public void visitNewArray(JCNewArray tree) {
duke@1 3575 tree.elemtype = translate(tree.elemtype);
duke@1 3576 for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
duke@1 3577 if (t.head != null) t.head = translate(t.head, syms.intType);
duke@1 3578 tree.elems = translate(tree.elems, types.elemtype(tree.type));
duke@1 3579 result = tree;
duke@1 3580 }
duke@1 3581
duke@1 3582 public void visitSelect(JCFieldAccess tree) {
duke@1 3583 // need to special case-access of the form C.super.x
duke@1 3584 // these will always need an access method.
duke@1 3585 boolean qualifiedSuperAccess =
duke@1 3586 tree.selected.getTag() == JCTree.SELECT &&
duke@1 3587 TreeInfo.name(tree.selected) == names._super;
duke@1 3588 tree.selected = translate(tree.selected);
duke@1 3589 if (tree.name == names._class)
duke@1 3590 result = classOf(tree.selected);
duke@1 3591 else if (tree.name == names._this || tree.name == names._super)
duke@1 3592 result = makeThis(tree.pos(), tree.selected.type.tsym);
duke@1 3593 else
duke@1 3594 result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
duke@1 3595 }
duke@1 3596
duke@1 3597 public void visitLetExpr(LetExpr tree) {
duke@1 3598 tree.defs = translateVarDefs(tree.defs);
duke@1 3599 tree.expr = translate(tree.expr, tree.type);
duke@1 3600 result = tree;
duke@1 3601 }
duke@1 3602
duke@1 3603 // There ought to be nothing to rewrite here;
duke@1 3604 // we don't generate code.
duke@1 3605 public void visitAnnotation(JCAnnotation tree) {
duke@1 3606 result = tree;
duke@1 3607 }
duke@1 3608
darcy@609 3609 @Override
darcy@609 3610 public void visitTry(JCTry tree) {
darcy@609 3611 if (tree.resources.isEmpty()) {
darcy@609 3612 super.visitTry(tree);
darcy@609 3613 } else {
darcy@884 3614 result = makeTwrTry(tree);
darcy@609 3615 }
darcy@609 3616 }
darcy@609 3617
duke@1 3618 /**************************************************************************
duke@1 3619 * main method
duke@1 3620 *************************************************************************/
duke@1 3621
duke@1 3622 /** Translate a toplevel class and return a list consisting of
duke@1 3623 * the translated class and translated versions of all inner classes.
duke@1 3624 * @param env The attribution environment current at the class definition.
duke@1 3625 * We need this for resolving some additional symbols.
duke@1 3626 * @param cdef The tree representing the class definition.
duke@1 3627 */
duke@1 3628 public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
duke@1 3629 ListBuffer<JCTree> translated = null;
duke@1 3630 try {
duke@1 3631 attrEnv = env;
duke@1 3632 this.make = make;
duke@1 3633 endPositions = env.toplevel.endPositions;
duke@1 3634 currentClass = null;
duke@1 3635 currentMethodDef = null;
duke@1 3636 outermostClassDef = (cdef.getTag() == JCTree.CLASSDEF) ? (JCClassDecl)cdef : null;
duke@1 3637 outermostMemberDef = null;
duke@1 3638 this.translated = new ListBuffer<JCTree>();
duke@1 3639 classdefs = new HashMap<ClassSymbol,JCClassDecl>();
duke@1 3640 actualSymbols = new HashMap<Symbol,Symbol>();
duke@1 3641 freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
duke@1 3642 proxies = new Scope(syms.noSymbol);
darcy@609 3643 twrVars = new Scope(syms.noSymbol);
duke@1 3644 outerThisStack = List.nil();
duke@1 3645 accessNums = new HashMap<Symbol,Integer>();
duke@1 3646 accessSyms = new HashMap<Symbol,MethodSymbol[]>();
duke@1 3647 accessConstrs = new HashMap<Symbol,MethodSymbol>();
jjg@595 3648 accessConstrTags = List.nil();
duke@1 3649 accessed = new ListBuffer<Symbol>();
duke@1 3650 translate(cdef, (JCExpression)null);
duke@1 3651 for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
duke@1 3652 makeAccessible(l.head);
duke@1 3653 for (EnumMapping map : enumSwitchMap.values())
duke@1 3654 map.translate();
mcimadamore@359 3655 checkConflicts(this.translated.toList());
jjg@595 3656 checkAccessConstructorTags();
duke@1 3657 translated = this.translated;
duke@1 3658 } finally {
duke@1 3659 // note that recursive invocations of this method fail hard
duke@1 3660 attrEnv = null;
duke@1 3661 this.make = null;
duke@1 3662 endPositions = null;
duke@1 3663 currentClass = null;
duke@1 3664 currentMethodDef = null;
duke@1 3665 outermostClassDef = null;
duke@1 3666 outermostMemberDef = null;
duke@1 3667 this.translated = null;
duke@1 3668 classdefs = null;
duke@1 3669 actualSymbols = null;
duke@1 3670 freevarCache = null;
duke@1 3671 proxies = null;
duke@1 3672 outerThisStack = null;
duke@1 3673 accessNums = null;
duke@1 3674 accessSyms = null;
duke@1 3675 accessConstrs = null;
jjg@595 3676 accessConstrTags = null;
duke@1 3677 accessed = null;
duke@1 3678 enumSwitchMap.clear();
duke@1 3679 }
duke@1 3680 return translated.toList();
duke@1 3681 }
duke@1 3682
duke@1 3683 //////////////////////////////////////////////////////////////
duke@1 3684 // The following contributed by Borland for bootstrapping purposes
duke@1 3685 //////////////////////////////////////////////////////////////
duke@1 3686 private void addEnumCompatibleMembers(JCClassDecl cdef) {
duke@1 3687 make_at(null);
duke@1 3688
duke@1 3689 // Add the special enum fields
duke@1 3690 VarSymbol ordinalFieldSym = addEnumOrdinalField(cdef);
duke@1 3691 VarSymbol nameFieldSym = addEnumNameField(cdef);
duke@1 3692
duke@1 3693 // Add the accessor methods for name and ordinal
duke@1 3694 MethodSymbol ordinalMethodSym = addEnumFieldOrdinalMethod(cdef, ordinalFieldSym);
duke@1 3695 MethodSymbol nameMethodSym = addEnumFieldNameMethod(cdef, nameFieldSym);
duke@1 3696
duke@1 3697 // Add the toString method
duke@1 3698 addEnumToString(cdef, nameFieldSym);
duke@1 3699
duke@1 3700 // Add the compareTo method
duke@1 3701 addEnumCompareTo(cdef, ordinalFieldSym);
duke@1 3702 }
duke@1 3703
duke@1 3704 private VarSymbol addEnumOrdinalField(JCClassDecl cdef) {
duke@1 3705 VarSymbol ordinal = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
duke@1 3706 names.fromString("$ordinal"),
duke@1 3707 syms.intType,
duke@1 3708 cdef.sym);
duke@1 3709 cdef.sym.members().enter(ordinal);
duke@1 3710 cdef.defs = cdef.defs.prepend(make.VarDef(ordinal, null));
duke@1 3711 return ordinal;
duke@1 3712 }
duke@1 3713
duke@1 3714 private VarSymbol addEnumNameField(JCClassDecl cdef) {
duke@1 3715 VarSymbol name = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
duke@1 3716 names.fromString("$name"),
duke@1 3717 syms.stringType,
duke@1 3718 cdef.sym);
duke@1 3719 cdef.sym.members().enter(name);
duke@1 3720 cdef.defs = cdef.defs.prepend(make.VarDef(name, null));
duke@1 3721 return name;
duke@1 3722 }
duke@1 3723
duke@1 3724 private MethodSymbol addEnumFieldOrdinalMethod(JCClassDecl cdef, VarSymbol ordinalSymbol) {
duke@1 3725 // Add the accessor methods for ordinal
duke@1 3726 Symbol ordinalSym = lookupMethod(cdef.pos(),
duke@1 3727 names.ordinal,
duke@1 3728 cdef.type,
duke@1 3729 List.<Type>nil());
duke@1 3730
jjg@816 3731 Assert.check(ordinalSym instanceof MethodSymbol);
duke@1 3732
duke@1 3733 JCStatement ret = make.Return(make.Ident(ordinalSymbol));
duke@1 3734 cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)ordinalSym,
duke@1 3735 make.Block(0L, List.of(ret))));
duke@1 3736
duke@1 3737 return (MethodSymbol)ordinalSym;
duke@1 3738 }
duke@1 3739
duke@1 3740 private MethodSymbol addEnumFieldNameMethod(JCClassDecl cdef, VarSymbol nameSymbol) {
duke@1 3741 // Add the accessor methods for name
duke@1 3742 Symbol nameSym = lookupMethod(cdef.pos(),
duke@1 3743 names._name,
duke@1 3744 cdef.type,
duke@1 3745 List.<Type>nil());
duke@1 3746
jjg@816 3747 Assert.check(nameSym instanceof MethodSymbol);
duke@1 3748
duke@1 3749 JCStatement ret = make.Return(make.Ident(nameSymbol));
duke@1 3750
duke@1 3751 cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)nameSym,
duke@1 3752 make.Block(0L, List.of(ret))));
duke@1 3753
duke@1 3754 return (MethodSymbol)nameSym;
duke@1 3755 }
duke@1 3756
duke@1 3757 private MethodSymbol addEnumToString(JCClassDecl cdef,
duke@1 3758 VarSymbol nameSymbol) {
duke@1 3759 Symbol toStringSym = lookupMethod(cdef.pos(),
duke@1 3760 names.toString,
duke@1 3761 cdef.type,
duke@1 3762 List.<Type>nil());
duke@1 3763
duke@1 3764 JCTree toStringDecl = null;
duke@1 3765 if (toStringSym != null)
duke@1 3766 toStringDecl = TreeInfo.declarationFor(toStringSym, cdef);
duke@1 3767
duke@1 3768 if (toStringDecl != null)
duke@1 3769 return (MethodSymbol)toStringSym;
duke@1 3770
duke@1 3771 JCStatement ret = make.Return(make.Ident(nameSymbol));
duke@1 3772
duke@1 3773 JCTree resTypeTree = make.Type(syms.stringType);
duke@1 3774
duke@1 3775 MethodType toStringType = new MethodType(List.<Type>nil(),
duke@1 3776 syms.stringType,
duke@1 3777 List.<Type>nil(),
duke@1 3778 cdef.sym);
duke@1 3779 toStringSym = new MethodSymbol(PUBLIC,
duke@1 3780 names.toString,
duke@1 3781 toStringType,
duke@1 3782 cdef.type.tsym);
duke@1 3783 toStringDecl = make.MethodDef((MethodSymbol)toStringSym,
duke@1 3784 make.Block(0L, List.of(ret)));
duke@1 3785
duke@1 3786 cdef.defs = cdef.defs.prepend(toStringDecl);
duke@1 3787 cdef.sym.members().enter(toStringSym);
duke@1 3788
duke@1 3789 return (MethodSymbol)toStringSym;
duke@1 3790 }
duke@1 3791
duke@1 3792 private MethodSymbol addEnumCompareTo(JCClassDecl cdef, VarSymbol ordinalSymbol) {
duke@1 3793 Symbol compareToSym = lookupMethod(cdef.pos(),
duke@1 3794 names.compareTo,
duke@1 3795 cdef.type,
duke@1 3796 List.of(cdef.sym.type));
duke@1 3797
jjg@816 3798 Assert.check(compareToSym instanceof MethodSymbol);
duke@1 3799
duke@1 3800 JCMethodDecl compareToDecl = (JCMethodDecl) TreeInfo.declarationFor(compareToSym, cdef);
duke@1 3801
duke@1 3802 ListBuffer<JCStatement> blockStatements = new ListBuffer<JCStatement>();
duke@1 3803
duke@1 3804 JCModifiers mod1 = make.Modifiers(0L);
jjg@113 3805 Name oName = names.fromString("o");
duke@1 3806 JCVariableDecl par1 = make.Param(oName, cdef.type, compareToSym);
duke@1 3807
duke@1 3808 JCIdent paramId1 = make.Ident(names.java_lang_Object);
duke@1 3809 paramId1.type = cdef.type;
duke@1 3810 paramId1.sym = par1.sym;
duke@1 3811
duke@1 3812 ((MethodSymbol)compareToSym).params = List.of(par1.sym);
duke@1 3813
duke@1 3814 JCIdent par1UsageId = make.Ident(par1.sym);
duke@1 3815 JCIdent castTargetIdent = make.Ident(cdef.sym);
duke@1 3816 JCTypeCast cast = make.TypeCast(castTargetIdent, par1UsageId);
duke@1 3817 cast.setType(castTargetIdent.type);
duke@1 3818
jjg@113 3819 Name otherName = names.fromString("other");
duke@1 3820
duke@1 3821 VarSymbol otherVarSym = new VarSymbol(mod1.flags,
duke@1 3822 otherName,
duke@1 3823 cdef.type,
duke@1 3824 compareToSym);
duke@1 3825 JCVariableDecl otherVar = make.VarDef(otherVarSym, cast);
duke@1 3826 blockStatements.append(otherVar);
duke@1 3827
duke@1 3828 JCIdent id1 = make.Ident(ordinalSymbol);
duke@1 3829
duke@1 3830 JCIdent fLocUsageId = make.Ident(otherVarSym);
duke@1 3831 JCExpression sel = make.Select(fLocUsageId, ordinalSymbol);
duke@1 3832 JCBinary bin = makeBinary(JCTree.MINUS, id1, sel);
duke@1 3833 JCReturn ret = make.Return(bin);
duke@1 3834 blockStatements.append(ret);
duke@1 3835 JCMethodDecl compareToMethod = make.MethodDef((MethodSymbol)compareToSym,
duke@1 3836 make.Block(0L,
duke@1 3837 blockStatements.toList()));
duke@1 3838 compareToMethod.params = List.of(par1);
duke@1 3839 cdef.defs = cdef.defs.append(compareToMethod);
duke@1 3840
duke@1 3841 return (MethodSymbol)compareToSym;
duke@1 3842 }
duke@1 3843 //////////////////////////////////////////////////////////////
duke@1 3844 // The above contributed by Borland for bootstrapping purposes
duke@1 3845 //////////////////////////////////////////////////////////////
duke@1 3846 }

mercurial