src/share/classes/com/sun/tools/javac/comp/Lower.java

Tue, 15 Oct 2013 15:57:13 -0700

author
jjg
date
Tue, 15 Oct 2013 15:57:13 -0700
changeset 2134
b0c086cd4520
parent 2098
0be3f1820e8b
child 2183
75c8cde12ab6
permissions
-rw-r--r--

8026564: import changes from type-annotations forest
Reviewed-by: jjg
Contributed-by: wdietl@gmail.com, steve.sides@oracle.com

duke@1 1 /*
jjg@1521 2 * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29
duke@1 30 import com.sun.tools.javac.code.*;
jjg@1755 31 import com.sun.tools.javac.code.Type.AnnotatedType;
duke@1 32 import com.sun.tools.javac.jvm.*;
jjg@1157 33 import com.sun.tools.javac.main.Option.PkgInfo;
duke@1 34 import com.sun.tools.javac.tree.*;
duke@1 35 import com.sun.tools.javac.util.*;
duke@1 36 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 37 import com.sun.tools.javac.util.List;
duke@1 38
duke@1 39 import com.sun.tools.javac.code.Symbol.*;
duke@1 40 import com.sun.tools.javac.tree.JCTree.*;
duke@1 41 import com.sun.tools.javac.code.Type.*;
duke@1 42
duke@1 43 import com.sun.tools.javac.jvm.Target;
jjg@1280 44 import com.sun.tools.javac.tree.EndPosTable;
duke@1 45
duke@1 46 import static com.sun.tools.javac.code.Flags.*;
jjg@1127 47 import static com.sun.tools.javac.code.Flags.BLOCK;
duke@1 48 import static com.sun.tools.javac.code.Kinds.*;
jjg@1374 49 import static com.sun.tools.javac.code.TypeTag.*;
duke@1 50 import static com.sun.tools.javac.jvm.ByteCodes.*;
jjg@1127 51 import static com.sun.tools.javac.tree.JCTree.Tag.*;
duke@1 52
duke@1 53 /** This pass translates away some syntactic sugar: inner classes,
duke@1 54 * class literals, assertions, foreach loops, etc.
duke@1 55 *
jjg@581 56 * <p><b>This is NOT part of any supported API.
jjg@581 57 * If you write code that depends on this, you do so at your own risk.
duke@1 58 * This code and its internal interfaces are subject to change or
duke@1 59 * deletion without notice.</b>
duke@1 60 */
duke@1 61 public class Lower extends TreeTranslator {
duke@1 62 protected static final Context.Key<Lower> lowerKey =
duke@1 63 new Context.Key<Lower>();
duke@1 64
duke@1 65 public static Lower instance(Context context) {
duke@1 66 Lower instance = context.get(lowerKey);
duke@1 67 if (instance == null)
duke@1 68 instance = new Lower(context);
duke@1 69 return instance;
duke@1 70 }
duke@1 71
jjg@113 72 private Names names;
duke@1 73 private Log log;
duke@1 74 private Symtab syms;
duke@1 75 private Resolve rs;
duke@1 76 private Check chk;
duke@1 77 private Attr attr;
duke@1 78 private TreeMaker make;
duke@1 79 private DiagnosticPosition make_pos;
duke@1 80 private ClassWriter writer;
duke@1 81 private ClassReader reader;
duke@1 82 private ConstFold cfolder;
duke@1 83 private Target target;
duke@1 84 private Source source;
duke@1 85 private boolean allowEnums;
duke@1 86 private final Name dollarAssertionsDisabled;
duke@1 87 private final Name classDollar;
duke@1 88 private Types types;
duke@1 89 private boolean debugLower;
jjg@657 90 private PkgInfo pkginfoOpt;
duke@1 91
duke@1 92 protected Lower(Context context) {
duke@1 93 context.put(lowerKey, this);
jjg@113 94 names = Names.instance(context);
duke@1 95 log = Log.instance(context);
duke@1 96 syms = Symtab.instance(context);
duke@1 97 rs = Resolve.instance(context);
duke@1 98 chk = Check.instance(context);
duke@1 99 attr = Attr.instance(context);
duke@1 100 make = TreeMaker.instance(context);
duke@1 101 writer = ClassWriter.instance(context);
duke@1 102 reader = ClassReader.instance(context);
duke@1 103 cfolder = ConstFold.instance(context);
duke@1 104 target = Target.instance(context);
duke@1 105 source = Source.instance(context);
duke@1 106 allowEnums = source.allowEnums();
duke@1 107 dollarAssertionsDisabled = names.
duke@1 108 fromString(target.syntheticNameChar() + "assertionsDisabled");
duke@1 109 classDollar = names.
duke@1 110 fromString("class" + target.syntheticNameChar());
duke@1 111
duke@1 112 types = Types.instance(context);
duke@1 113 Options options = Options.instance(context);
jjg@700 114 debugLower = options.isSet("debuglower");
jjg@657 115 pkginfoOpt = PkgInfo.get(options);
duke@1 116 }
duke@1 117
duke@1 118 /** The currently enclosing class.
duke@1 119 */
duke@1 120 ClassSymbol currentClass;
duke@1 121
duke@1 122 /** A queue of all translated classes.
duke@1 123 */
duke@1 124 ListBuffer<JCTree> translated;
duke@1 125
duke@1 126 /** Environment for symbol lookup, set by translateTopLevelClass.
duke@1 127 */
duke@1 128 Env<AttrContext> attrEnv;
duke@1 129
duke@1 130 /** A hash table mapping syntax trees to their ending source positions.
duke@1 131 */
ksrini@1138 132 EndPosTable endPosTable;
duke@1 133
duke@1 134 /**************************************************************************
duke@1 135 * Global mappings
duke@1 136 *************************************************************************/
duke@1 137
duke@1 138 /** A hash table mapping local classes to their definitions.
duke@1 139 */
duke@1 140 Map<ClassSymbol, JCClassDecl> classdefs;
duke@1 141
vromero@1432 142 /** A hash table mapping local classes to a list of pruned trees.
vromero@1432 143 */
vromero@1432 144 public Map<ClassSymbol, List<JCTree>> prunedTree = new WeakHashMap<ClassSymbol, List<JCTree>>();
vromero@1432 145
duke@1 146 /** A hash table mapping virtual accessed symbols in outer subclasses
duke@1 147 * to the actually referred symbol in superclasses.
duke@1 148 */
duke@1 149 Map<Symbol,Symbol> actualSymbols;
duke@1 150
duke@1 151 /** The current method definition.
duke@1 152 */
duke@1 153 JCMethodDecl currentMethodDef;
duke@1 154
duke@1 155 /** The current method symbol.
duke@1 156 */
duke@1 157 MethodSymbol currentMethodSym;
duke@1 158
duke@1 159 /** The currently enclosing outermost class definition.
duke@1 160 */
duke@1 161 JCClassDecl outermostClassDef;
duke@1 162
duke@1 163 /** The currently enclosing outermost member definition.
duke@1 164 */
duke@1 165 JCTree outermostMemberDef;
duke@1 166
mcimadamore@1612 167 /** A map from local variable symbols to their translation (as per LambdaToMethod).
mcimadamore@1612 168 * This is required when a capturing local class is created from a lambda (in which
mcimadamore@1612 169 * case the captured symbols should be replaced with the translated lambda symbols).
mcimadamore@1612 170 */
mcimadamore@1612 171 Map<Symbol, Symbol> lambdaTranslationMap = null;
mcimadamore@1612 172
duke@1 173 /** A navigator class for assembling a mapping from local class symbols
duke@1 174 * to class definition trees.
duke@1 175 * There is only one case; all other cases simply traverse down the tree.
duke@1 176 */
duke@1 177 class ClassMap extends TreeScanner {
duke@1 178
duke@1 179 /** All encountered class defs are entered into classdefs table.
duke@1 180 */
duke@1 181 public void visitClassDef(JCClassDecl tree) {
duke@1 182 classdefs.put(tree.sym, tree);
duke@1 183 super.visitClassDef(tree);
duke@1 184 }
duke@1 185 }
duke@1 186 ClassMap classMap = new ClassMap();
duke@1 187
duke@1 188 /** Map a class symbol to its definition.
duke@1 189 * @param c The class symbol of which we want to determine the definition.
duke@1 190 */
duke@1 191 JCClassDecl classDef(ClassSymbol c) {
duke@1 192 // First lookup the class in the classdefs table.
duke@1 193 JCClassDecl def = classdefs.get(c);
duke@1 194 if (def == null && outermostMemberDef != null) {
duke@1 195 // If this fails, traverse outermost member definition, entering all
duke@1 196 // local classes into classdefs, and try again.
duke@1 197 classMap.scan(outermostMemberDef);
duke@1 198 def = classdefs.get(c);
duke@1 199 }
duke@1 200 if (def == null) {
duke@1 201 // If this fails, traverse outermost class definition, entering all
duke@1 202 // local classes into classdefs, and try again.
duke@1 203 classMap.scan(outermostClassDef);
duke@1 204 def = classdefs.get(c);
duke@1 205 }
duke@1 206 return def;
duke@1 207 }
duke@1 208
duke@1 209 /** A hash table mapping class symbols to lists of free variables.
duke@1 210 * accessed by them. Only free variables of the method immediately containing
duke@1 211 * a class are associated with that class.
duke@1 212 */
duke@1 213 Map<ClassSymbol,List<VarSymbol>> freevarCache;
duke@1 214
duke@1 215 /** A navigator class for collecting the free variables accessed
mcimadamore@1612 216 * from a local class. There is only one case; all other cases simply
mcimadamore@1612 217 * traverse down the tree. This class doesn't deal with the specific
mcimadamore@1612 218 * of Lower - it's an abstract visitor that is meant to be reused in
mcimadamore@1612 219 * order to share the local variable capture logic.
duke@1 220 */
mcimadamore@1612 221 abstract class BasicFreeVarCollector extends TreeScanner {
mcimadamore@1612 222
mcimadamore@1612 223 /** Add all free variables of class c to fvs list
mcimadamore@1612 224 * unless they are already there.
mcimadamore@1612 225 */
mcimadamore@1612 226 abstract void addFreeVars(ClassSymbol c);
mcimadamore@1612 227
mcimadamore@1612 228 /** If tree refers to a variable in owner of local class, add it to
mcimadamore@1612 229 * free variables list.
mcimadamore@1612 230 */
mcimadamore@1612 231 public void visitIdent(JCIdent tree) {
mcimadamore@1612 232 visitSymbol(tree.sym);
mcimadamore@1612 233 }
mcimadamore@1612 234 // where
mcimadamore@1612 235 abstract void visitSymbol(Symbol _sym);
mcimadamore@1612 236
mcimadamore@1612 237 /** If tree refers to a class instance creation expression
mcimadamore@1612 238 * add all free variables of the freshly created class.
mcimadamore@1612 239 */
mcimadamore@1612 240 public void visitNewClass(JCNewClass tree) {
mcimadamore@1612 241 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
mcimadamore@1612 242 addFreeVars(c);
mcimadamore@1612 243 super.visitNewClass(tree);
mcimadamore@1612 244 }
mcimadamore@1612 245
mcimadamore@1612 246 /** If tree refers to a superclass constructor call,
mcimadamore@1612 247 * add all free variables of the superclass.
mcimadamore@1612 248 */
mcimadamore@1612 249 public void visitApply(JCMethodInvocation tree) {
mcimadamore@1612 250 if (TreeInfo.name(tree.meth) == names._super) {
mcimadamore@1612 251 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
mcimadamore@1612 252 }
mcimadamore@1612 253 super.visitApply(tree);
mcimadamore@1612 254 }
mcimadamore@1612 255 }
mcimadamore@1612 256
mcimadamore@1612 257 /**
mcimadamore@1612 258 * Lower-specific subclass of {@code BasicFreeVarCollector}.
mcimadamore@1612 259 */
mcimadamore@1612 260 class FreeVarCollector extends BasicFreeVarCollector {
duke@1 261
duke@1 262 /** The owner of the local class.
duke@1 263 */
duke@1 264 Symbol owner;
duke@1 265
duke@1 266 /** The local class.
duke@1 267 */
duke@1 268 ClassSymbol clazz;
duke@1 269
duke@1 270 /** The list of owner's variables accessed from within the local class,
duke@1 271 * without any duplicates.
duke@1 272 */
duke@1 273 List<VarSymbol> fvs;
duke@1 274
duke@1 275 FreeVarCollector(ClassSymbol clazz) {
duke@1 276 this.clazz = clazz;
duke@1 277 this.owner = clazz.owner;
duke@1 278 this.fvs = List.nil();
duke@1 279 }
duke@1 280
duke@1 281 /** Add free variable to fvs list unless it is already there.
duke@1 282 */
duke@1 283 private void addFreeVar(VarSymbol v) {
duke@1 284 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
duke@1 285 if (l.head == v) return;
duke@1 286 fvs = fvs.prepend(v);
duke@1 287 }
duke@1 288
mcimadamore@1612 289 @Override
mcimadamore@1612 290 void addFreeVars(ClassSymbol c) {
duke@1 291 List<VarSymbol> fvs = freevarCache.get(c);
duke@1 292 if (fvs != null) {
duke@1 293 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
duke@1 294 addFreeVar(l.head);
duke@1 295 }
duke@1 296 }
duke@1 297 }
duke@1 298
mcimadamore@1612 299 @Override
mcimadamore@1612 300 void visitSymbol(Symbol _sym) {
duke@1 301 Symbol sym = _sym;
duke@1 302 if (sym.kind == VAR || sym.kind == MTH) {
duke@1 303 while (sym != null && sym.owner != owner)
duke@1 304 sym = proxies.lookup(proxyName(sym.name)).sym;
duke@1 305 if (sym != null && sym.owner == owner) {
duke@1 306 VarSymbol v = (VarSymbol)sym;
duke@1 307 if (v.getConstValue() == null) {
duke@1 308 addFreeVar(v);
duke@1 309 }
duke@1 310 } else {
duke@1 311 if (outerThisStack.head != null &&
duke@1 312 outerThisStack.head != _sym)
duke@1 313 visitSymbol(outerThisStack.head);
duke@1 314 }
duke@1 315 }
duke@1 316 }
duke@1 317
duke@1 318 /** If tree refers to a class instance creation expression
duke@1 319 * add all free variables of the freshly created class.
duke@1 320 */
duke@1 321 public void visitNewClass(JCNewClass tree) {
duke@1 322 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
duke@1 323 if (tree.encl == null &&
duke@1 324 c.hasOuterInstance() &&
duke@1 325 outerThisStack.head != null)
duke@1 326 visitSymbol(outerThisStack.head);
duke@1 327 super.visitNewClass(tree);
duke@1 328 }
duke@1 329
duke@1 330 /** If tree refers to a qualified this or super expression
duke@1 331 * for anything but the current class, add the outer this
duke@1 332 * stack as a free variable.
duke@1 333 */
duke@1 334 public void visitSelect(JCFieldAccess tree) {
duke@1 335 if ((tree.name == names._this || tree.name == names._super) &&
duke@1 336 tree.selected.type.tsym != clazz &&
duke@1 337 outerThisStack.head != null)
duke@1 338 visitSymbol(outerThisStack.head);
duke@1 339 super.visitSelect(tree);
duke@1 340 }
duke@1 341
duke@1 342 /** If tree refers to a superclass constructor call,
duke@1 343 * add all free variables of the superclass.
duke@1 344 */
duke@1 345 public void visitApply(JCMethodInvocation tree) {
duke@1 346 if (TreeInfo.name(tree.meth) == names._super) {
duke@1 347 Symbol constructor = TreeInfo.symbol(tree.meth);
duke@1 348 ClassSymbol c = (ClassSymbol)constructor.owner;
duke@1 349 if (c.hasOuterInstance() &&
jjg@1127 350 !tree.meth.hasTag(SELECT) &&
duke@1 351 outerThisStack.head != null)
duke@1 352 visitSymbol(outerThisStack.head);
duke@1 353 }
duke@1 354 super.visitApply(tree);
duke@1 355 }
duke@1 356 }
duke@1 357
vromero@1954 358 ClassSymbol ownerToCopyFreeVarsFrom(ClassSymbol c) {
vromero@1954 359 if (!c.isLocal()) {
vromero@1954 360 return null;
vromero@1954 361 }
vromero@1954 362 Symbol currentOwner = c.owner;
vromero@1954 363 while ((currentOwner.owner.kind & TYP) != 0 && currentOwner.isLocal()) {
vromero@1954 364 currentOwner = currentOwner.owner;
vromero@1954 365 }
vromero@1954 366 if ((currentOwner.owner.kind & (VAR | MTH)) != 0 && c.isSubClass(currentOwner, types)) {
vromero@1954 367 return (ClassSymbol)currentOwner;
vromero@1954 368 }
vromero@1954 369 return null;
vromero@1954 370 }
vromero@1954 371
duke@1 372 /** Return the variables accessed from within a local class, which
duke@1 373 * are declared in the local class' owner.
duke@1 374 * (in reverse order of first access).
duke@1 375 */
duke@1 376 List<VarSymbol> freevars(ClassSymbol c) {
vromero@1954 377 List<VarSymbol> fvs = freevarCache.get(c);
vromero@1954 378 if (fvs != null) {
vromero@1954 379 return fvs;
vromero@1954 380 }
duke@1 381 if ((c.owner.kind & (VAR | MTH)) != 0) {
vromero@1954 382 FreeVarCollector collector = new FreeVarCollector(c);
vromero@1954 383 collector.scan(classDef(c));
vromero@1954 384 fvs = collector.fvs;
vromero@1954 385 freevarCache.put(c, fvs);
duke@1 386 return fvs;
duke@1 387 } else {
vromero@1954 388 ClassSymbol owner = ownerToCopyFreeVarsFrom(c);
vromero@1954 389 if (owner != null) {
vromero@1954 390 fvs = freevarCache.get(owner);
vromero@1954 391 freevarCache.put(c, fvs);
vromero@1954 392 return fvs;
vromero@1954 393 } else {
vromero@1954 394 return List.nil();
vromero@1954 395 }
duke@1 396 }
duke@1 397 }
duke@1 398
duke@1 399 Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
duke@1 400
duke@1 401 EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
duke@1 402 EnumMapping map = enumSwitchMap.get(enumClass);
duke@1 403 if (map == null)
duke@1 404 enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
duke@1 405 return map;
duke@1 406 }
duke@1 407
duke@1 408 /** This map gives a translation table to be used for enum
duke@1 409 * switches.
duke@1 410 *
duke@1 411 * <p>For each enum that appears as the type of a switch
duke@1 412 * expression, we maintain an EnumMapping to assist in the
duke@1 413 * translation, as exemplified by the following example:
duke@1 414 *
duke@1 415 * <p>we translate
duke@1 416 * <pre>
duke@1 417 * switch(colorExpression) {
duke@1 418 * case red: stmt1;
duke@1 419 * case green: stmt2;
duke@1 420 * }
duke@1 421 * </pre>
duke@1 422 * into
duke@1 423 * <pre>
duke@1 424 * switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
duke@1 425 * case 1: stmt1;
duke@1 426 * case 2: stmt2
duke@1 427 * }
duke@1 428 * </pre>
darcy@430 429 * with the auxiliary table initialized as follows:
duke@1 430 * <pre>
duke@1 431 * class Outer$0 {
duke@1 432 * synthetic final int[] $EnumMap$Color = new int[Color.values().length];
duke@1 433 * static {
duke@1 434 * try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
duke@1 435 * try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
duke@1 436 * }
duke@1 437 * }
duke@1 438 * </pre>
duke@1 439 * class EnumMapping provides mapping data and support methods for this translation.
duke@1 440 */
duke@1 441 class EnumMapping {
duke@1 442 EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
duke@1 443 this.forEnum = forEnum;
duke@1 444 this.values = new LinkedHashMap<VarSymbol,Integer>();
duke@1 445 this.pos = pos;
duke@1 446 Name varName = names
duke@1 447 .fromString(target.syntheticNameChar() +
duke@1 448 "SwitchMap" +
duke@1 449 target.syntheticNameChar() +
duke@1 450 writer.xClassName(forEnum.type).toString()
duke@1 451 .replace('/', '.')
duke@1 452 .replace('.', target.syntheticNameChar()));
duke@1 453 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 454 this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
duke@1 455 varName,
duke@1 456 new ArrayType(syms.intType, syms.arrayClass),
duke@1 457 outerCacheClass);
duke@1 458 enterSynthetic(pos, mapVar, outerCacheClass.members());
duke@1 459 }
duke@1 460
duke@1 461 DiagnosticPosition pos = null;
duke@1 462
duke@1 463 // the next value to use
duke@1 464 int next = 1; // 0 (unused map elements) go to the default label
duke@1 465
duke@1 466 // the enum for which this is a map
duke@1 467 final TypeSymbol forEnum;
duke@1 468
duke@1 469 // the field containing the map
duke@1 470 final VarSymbol mapVar;
duke@1 471
duke@1 472 // the mapped values
duke@1 473 final Map<VarSymbol,Integer> values;
duke@1 474
duke@1 475 JCLiteral forConstant(VarSymbol v) {
duke@1 476 Integer result = values.get(v);
duke@1 477 if (result == null)
duke@1 478 values.put(v, result = next++);
duke@1 479 return make.Literal(result);
duke@1 480 }
duke@1 481
duke@1 482 // generate the field initializer for the map
duke@1 483 void translate() {
duke@1 484 make.at(pos.getStartPosition());
duke@1 485 JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
duke@1 486
duke@1 487 // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
duke@1 488 MethodSymbol valuesMethod = lookupMethod(pos,
duke@1 489 names.values,
duke@1 490 forEnum.type,
duke@1 491 List.<Type>nil());
duke@1 492 JCExpression size = make // Color.values().length
duke@1 493 .Select(make.App(make.QualIdent(valuesMethod)),
duke@1 494 syms.lengthVar);
duke@1 495 JCExpression mapVarInit = make
duke@1 496 .NewArray(make.Type(syms.intType), List.of(size), null)
duke@1 497 .setType(new ArrayType(syms.intType, syms.arrayClass));
duke@1 498
duke@1 499 // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
duke@1 500 ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
duke@1 501 Symbol ordinalMethod = lookupMethod(pos,
duke@1 502 names.ordinal,
duke@1 503 forEnum.type,
duke@1 504 List.<Type>nil());
duke@1 505 List<JCCatch> catcher = List.<JCCatch>nil()
duke@1 506 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
duke@1 507 syms.noSuchFieldErrorType,
duke@1 508 syms.noSymbol),
duke@1 509 null),
duke@1 510 make.Block(0, List.<JCStatement>nil())));
duke@1 511 for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
duke@1 512 VarSymbol enumerator = e.getKey();
duke@1 513 Integer mappedValue = e.getValue();
duke@1 514 JCExpression assign = make
duke@1 515 .Assign(make.Indexed(mapVar,
duke@1 516 make.App(make.Select(make.QualIdent(enumerator),
duke@1 517 ordinalMethod))),
duke@1 518 make.Literal(mappedValue))
duke@1 519 .setType(syms.intType);
duke@1 520 JCStatement exec = make.Exec(assign);
duke@1 521 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
duke@1 522 stmts.append(_try);
duke@1 523 }
duke@1 524
duke@1 525 owner.defs = owner.defs
duke@1 526 .prepend(make.Block(STATIC, stmts.toList()))
duke@1 527 .prepend(make.VarDef(mapVar, mapVarInit));
duke@1 528 }
duke@1 529 }
duke@1 530
duke@1 531
duke@1 532 /**************************************************************************
duke@1 533 * Tree building blocks
duke@1 534 *************************************************************************/
duke@1 535
duke@1 536 /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
duke@1 537 * pos as make_pos, for use in diagnostics.
duke@1 538 **/
duke@1 539 TreeMaker make_at(DiagnosticPosition pos) {
duke@1 540 make_pos = pos;
duke@1 541 return make.at(pos);
duke@1 542 }
duke@1 543
duke@1 544 /** Make an attributed tree representing a literal. This will be an
duke@1 545 * Ident node in the case of boolean literals, a Literal node in all
duke@1 546 * other cases.
duke@1 547 * @param type The literal's type.
duke@1 548 * @param value The literal's value.
duke@1 549 */
duke@1 550 JCExpression makeLit(Type type, Object value) {
jjg@1374 551 return make.Literal(type.getTag(), value).setType(type.constType(value));
duke@1 552 }
duke@1 553
duke@1 554 /** Make an attributed tree representing null.
duke@1 555 */
duke@1 556 JCExpression makeNull() {
duke@1 557 return makeLit(syms.botType, null);
duke@1 558 }
duke@1 559
duke@1 560 /** Make an attributed class instance creation expression.
duke@1 561 * @param ctype The class type.
duke@1 562 * @param args The constructor arguments.
duke@1 563 */
duke@1 564 JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
duke@1 565 JCNewClass tree = make.NewClass(null,
duke@1 566 null, make.QualIdent(ctype.tsym), args, null);
duke@1 567 tree.constructor = rs.resolveConstructor(
mcimadamore@1394 568 make_pos, attrEnv, ctype, TreeInfo.types(args), List.<Type>nil());
duke@1 569 tree.type = ctype;
duke@1 570 return tree;
duke@1 571 }
duke@1 572
duke@1 573 /** Make an attributed unary expression.
duke@1 574 * @param optag The operators tree tag.
duke@1 575 * @param arg The operator's argument.
duke@1 576 */
jjg@1127 577 JCUnary makeUnary(JCTree.Tag optag, JCExpression arg) {
duke@1 578 JCUnary tree = make.Unary(optag, arg);
duke@1 579 tree.operator = rs.resolveUnaryOperator(
duke@1 580 make_pos, optag, attrEnv, arg.type);
duke@1 581 tree.type = tree.operator.type.getReturnType();
duke@1 582 return tree;
duke@1 583 }
duke@1 584
duke@1 585 /** Make an attributed binary expression.
duke@1 586 * @param optag The operators tree tag.
duke@1 587 * @param lhs The operator's left argument.
duke@1 588 * @param rhs The operator's right argument.
duke@1 589 */
jjg@1127 590 JCBinary makeBinary(JCTree.Tag optag, JCExpression lhs, JCExpression rhs) {
duke@1 591 JCBinary tree = make.Binary(optag, lhs, rhs);
duke@1 592 tree.operator = rs.resolveBinaryOperator(
duke@1 593 make_pos, optag, attrEnv, lhs.type, rhs.type);
duke@1 594 tree.type = tree.operator.type.getReturnType();
duke@1 595 return tree;
duke@1 596 }
duke@1 597
duke@1 598 /** Make an attributed assignop expression.
duke@1 599 * @param optag The operators tree tag.
duke@1 600 * @param lhs The operator's left argument.
duke@1 601 * @param rhs The operator's right argument.
duke@1 602 */
jjg@1127 603 JCAssignOp makeAssignop(JCTree.Tag optag, JCTree lhs, JCTree rhs) {
duke@1 604 JCAssignOp tree = make.Assignop(optag, lhs, rhs);
duke@1 605 tree.operator = rs.resolveBinaryOperator(
jjg@1127 606 make_pos, tree.getTag().noAssignOp(), attrEnv, lhs.type, rhs.type);
duke@1 607 tree.type = lhs.type;
duke@1 608 return tree;
duke@1 609 }
duke@1 610
duke@1 611 /** Convert tree into string object, unless it has already a
duke@1 612 * reference type..
duke@1 613 */
duke@1 614 JCExpression makeString(JCExpression tree) {
jjg@1374 615 if (!tree.type.isPrimitiveOrVoid()) {
duke@1 616 return tree;
duke@1 617 } else {
duke@1 618 Symbol valueOfSym = lookupMethod(tree.pos(),
duke@1 619 names.valueOf,
duke@1 620 syms.stringType,
duke@1 621 List.of(tree.type));
duke@1 622 return make.App(make.QualIdent(valueOfSym), List.of(tree));
duke@1 623 }
duke@1 624 }
duke@1 625
duke@1 626 /** Create an empty anonymous class definition and enter and complete
duke@1 627 * its symbol. Return the class definition's symbol.
duke@1 628 * and create
duke@1 629 * @param flags The class symbol's flags
duke@1 630 * @param owner The class symbol's owner
duke@1 631 */
vromero@1542 632 JCClassDecl makeEmptyClass(long flags, ClassSymbol owner) {
vromero@1542 633 return makeEmptyClass(flags, owner, null, true);
vromero@1542 634 }
vromero@1542 635
vromero@1542 636 JCClassDecl makeEmptyClass(long flags, ClassSymbol owner, Name flatname,
vromero@1542 637 boolean addToDefs) {
duke@1 638 // Create class symbol.
duke@1 639 ClassSymbol c = reader.defineClass(names.empty, owner);
vromero@1542 640 if (flatname != null) {
vromero@1542 641 c.flatname = flatname;
vromero@1542 642 } else {
vromero@1542 643 c.flatname = chk.localClassName(c);
vromero@1542 644 }
duke@1 645 c.sourcefile = owner.sourcefile;
duke@1 646 c.completer = null;
mcimadamore@858 647 c.members_field = new Scope(c);
duke@1 648 c.flags_field = flags;
duke@1 649 ClassType ctype = (ClassType) c.type;
duke@1 650 ctype.supertype_field = syms.objectType;
duke@1 651 ctype.interfaces_field = List.nil();
duke@1 652
duke@1 653 JCClassDecl odef = classDef(owner);
duke@1 654
duke@1 655 // Enter class symbol in owner scope and compiled table.
duke@1 656 enterSynthetic(odef.pos(), c, owner.members());
duke@1 657 chk.compiled.put(c.flatname, c);
duke@1 658
duke@1 659 // Create class definition tree.
duke@1 660 JCClassDecl cdef = make.ClassDef(
duke@1 661 make.Modifiers(flags), names.empty,
duke@1 662 List.<JCTypeParameter>nil(),
duke@1 663 null, List.<JCExpression>nil(), List.<JCTree>nil());
duke@1 664 cdef.sym = c;
duke@1 665 cdef.type = c.type;
duke@1 666
duke@1 667 // Append class definition tree to owner's definitions.
vromero@1542 668 if (addToDefs) odef.defs = odef.defs.prepend(cdef);
vromero@1542 669 return cdef;
duke@1 670 }
duke@1 671
duke@1 672 /**************************************************************************
duke@1 673 * Symbol manipulation utilities
duke@1 674 *************************************************************************/
duke@1 675
duke@1 676 /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
duke@1 677 * @param pos Position for error reporting.
duke@1 678 * @param sym The symbol.
duke@1 679 * @param s The scope.
duke@1 680 */
duke@1 681 private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
mcimadamore@359 682 s.enter(sym);
mcimadamore@359 683 }
mcimadamore@359 684
darcy@609 685 /** Create a fresh synthetic name within a given scope - the unique name is
darcy@609 686 * obtained by appending '$' chars at the end of the name until no match
darcy@609 687 * is found.
darcy@609 688 *
darcy@609 689 * @param name base name
darcy@609 690 * @param s scope in which the name has to be unique
darcy@609 691 * @return fresh synthetic name
darcy@609 692 */
darcy@609 693 private Name makeSyntheticName(Name name, Scope s) {
darcy@609 694 do {
darcy@609 695 name = name.append(
darcy@609 696 target.syntheticNameChar(),
darcy@609 697 names.empty);
darcy@609 698 } while (lookupSynthetic(name, s) != null);
darcy@609 699 return name;
darcy@609 700 }
darcy@609 701
mcimadamore@359 702 /** Check whether synthetic symbols generated during lowering conflict
mcimadamore@359 703 * with user-defined symbols.
mcimadamore@359 704 *
mcimadamore@359 705 * @param translatedTrees lowered class trees
mcimadamore@359 706 */
mcimadamore@359 707 void checkConflicts(List<JCTree> translatedTrees) {
mcimadamore@359 708 for (JCTree t : translatedTrees) {
mcimadamore@359 709 t.accept(conflictsChecker);
mcimadamore@359 710 }
mcimadamore@359 711 }
mcimadamore@359 712
mcimadamore@359 713 JCTree.Visitor conflictsChecker = new TreeScanner() {
mcimadamore@359 714
mcimadamore@359 715 TypeSymbol currentClass;
mcimadamore@359 716
mcimadamore@359 717 @Override
mcimadamore@359 718 public void visitMethodDef(JCMethodDecl that) {
mcimadamore@359 719 chk.checkConflicts(that.pos(), that.sym, currentClass);
mcimadamore@359 720 super.visitMethodDef(that);
mcimadamore@359 721 }
mcimadamore@359 722
mcimadamore@359 723 @Override
mcimadamore@359 724 public void visitVarDef(JCVariableDecl that) {
mcimadamore@359 725 if (that.sym.owner.kind == TYP) {
mcimadamore@359 726 chk.checkConflicts(that.pos(), that.sym, currentClass);
mcimadamore@359 727 }
mcimadamore@359 728 super.visitVarDef(that);
mcimadamore@359 729 }
mcimadamore@359 730
mcimadamore@359 731 @Override
mcimadamore@359 732 public void visitClassDef(JCClassDecl that) {
mcimadamore@359 733 TypeSymbol prevCurrentClass = currentClass;
mcimadamore@359 734 currentClass = that.sym;
mcimadamore@359 735 try {
mcimadamore@359 736 super.visitClassDef(that);
mcimadamore@359 737 }
mcimadamore@359 738 finally {
mcimadamore@359 739 currentClass = prevCurrentClass;
duke@1 740 }
duke@1 741 }
mcimadamore@359 742 };
duke@1 743
duke@1 744 /** Look up a synthetic name in a given scope.
jjg@1358 745 * @param s The scope.
duke@1 746 * @param name The name.
duke@1 747 */
duke@1 748 private Symbol lookupSynthetic(Name name, Scope s) {
duke@1 749 Symbol sym = s.lookup(name).sym;
duke@1 750 return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
duke@1 751 }
duke@1 752
duke@1 753 /** Look up a method in a given scope.
duke@1 754 */
duke@1 755 private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
mcimadamore@1415 756 return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, List.<Type>nil());
duke@1 757 }
duke@1 758
duke@1 759 /** Look up a constructor.
duke@1 760 */
duke@1 761 private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
duke@1 762 return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
duke@1 763 }
duke@1 764
duke@1 765 /** Look up a field.
duke@1 766 */
duke@1 767 private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
duke@1 768 return rs.resolveInternalField(pos, attrEnv, qual, name);
duke@1 769 }
duke@1 770
jjg@595 771 /** Anon inner classes are used as access constructor tags.
jjg@595 772 * accessConstructorTag will use an existing anon class if one is available,
jjg@595 773 * and synthethise a class (with makeEmptyClass) if one is not available.
jjg@595 774 * However, there is a small possibility that an existing class will not
jjg@595 775 * be generated as expected if it is inside a conditional with a constant
vromero@1542 776 * expression. If that is found to be the case, create an empty class tree here.
jjg@595 777 */
jjg@595 778 private void checkAccessConstructorTags() {
jjg@595 779 for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
jjg@595 780 ClassSymbol c = l.head;
jjg@595 781 if (isTranslatedClassAvailable(c))
jjg@595 782 continue;
jjg@595 783 // Create class definition tree.
vromero@1542 784 JCClassDecl cdec = makeEmptyClass(STATIC | SYNTHETIC,
vromero@1542 785 c.outermostClass(), c.flatname, false);
vromero@1542 786 swapAccessConstructorTag(c, cdec.sym);
vromero@1542 787 translated.append(cdec);
jjg@595 788 }
jjg@595 789 }
jjg@595 790 // where
jjg@595 791 private boolean isTranslatedClassAvailable(ClassSymbol c) {
jjg@595 792 for (JCTree tree: translated) {
jjg@1127 793 if (tree.hasTag(CLASSDEF)
jjg@595 794 && ((JCClassDecl) tree).sym == c) {
jjg@595 795 return true;
jjg@595 796 }
jjg@595 797 }
jjg@595 798 return false;
jjg@595 799 }
jjg@595 800
vromero@1542 801 void swapAccessConstructorTag(ClassSymbol oldCTag, ClassSymbol newCTag) {
vromero@1542 802 for (MethodSymbol methodSymbol : accessConstrs.values()) {
vromero@1542 803 Assert.check(methodSymbol.type.hasTag(METHOD));
vromero@1542 804 MethodType oldMethodType =
vromero@1542 805 (MethodType)methodSymbol.type;
vromero@1542 806 if (oldMethodType.argtypes.head.tsym == oldCTag)
vromero@1542 807 methodSymbol.type =
vromero@1542 808 types.createMethodTypeWithParameters(oldMethodType,
vromero@1542 809 oldMethodType.getParameterTypes().tail
vromero@1542 810 .prepend(newCTag.erasure(types)));
vromero@1542 811 }
vromero@1542 812 }
vromero@1542 813
duke@1 814 /**************************************************************************
duke@1 815 * Access methods
duke@1 816 *************************************************************************/
duke@1 817
duke@1 818 /** Access codes for dereferencing, assignment,
duke@1 819 * and pre/post increment/decrement.
duke@1 820 * Access codes for assignment operations are determined by method accessCode
duke@1 821 * below.
duke@1 822 *
duke@1 823 * All access codes for accesses to the current class are even.
duke@1 824 * If a member of the superclass should be accessed instead (because
duke@1 825 * access was via a qualified super), add one to the corresponding code
duke@1 826 * for the current class, making the number odd.
duke@1 827 * This numbering scheme is used by the backend to decide whether
duke@1 828 * to issue an invokevirtual or invokespecial call.
duke@1 829 *
jjg@1358 830 * @see Gen#visitSelect(JCFieldAccess tree)
duke@1 831 */
duke@1 832 private static final int
duke@1 833 DEREFcode = 0,
duke@1 834 ASSIGNcode = 2,
duke@1 835 PREINCcode = 4,
duke@1 836 PREDECcode = 6,
duke@1 837 POSTINCcode = 8,
duke@1 838 POSTDECcode = 10,
duke@1 839 FIRSTASGOPcode = 12;
duke@1 840
duke@1 841 /** Number of access codes
duke@1 842 */
duke@1 843 private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
duke@1 844
duke@1 845 /** A mapping from symbols to their access numbers.
duke@1 846 */
duke@1 847 private Map<Symbol,Integer> accessNums;
duke@1 848
duke@1 849 /** A mapping from symbols to an array of access symbols, indexed by
duke@1 850 * access code.
duke@1 851 */
duke@1 852 private Map<Symbol,MethodSymbol[]> accessSyms;
duke@1 853
duke@1 854 /** A mapping from (constructor) symbols to access constructor symbols.
duke@1 855 */
duke@1 856 private Map<Symbol,MethodSymbol> accessConstrs;
duke@1 857
jjg@595 858 /** A list of all class symbols used for access constructor tags.
jjg@595 859 */
jjg@595 860 private List<ClassSymbol> accessConstrTags;
jjg@595 861
duke@1 862 /** A queue for all accessed symbols.
duke@1 863 */
duke@1 864 private ListBuffer<Symbol> accessed;
duke@1 865
duke@1 866 /** Map bytecode of binary operation to access code of corresponding
duke@1 867 * assignment operation. This is always an even number.
duke@1 868 */
duke@1 869 private static int accessCode(int bytecode) {
duke@1 870 if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
duke@1 871 return (bytecode - iadd) * 2 + FIRSTASGOPcode;
duke@1 872 else if (bytecode == ByteCodes.string_add)
duke@1 873 return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
duke@1 874 else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
duke@1 875 return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
duke@1 876 else
duke@1 877 return -1;
duke@1 878 }
duke@1 879
duke@1 880 /** return access code for identifier,
duke@1 881 * @param tree The tree representing the identifier use.
duke@1 882 * @param enclOp The closest enclosing operation node of tree,
duke@1 883 * null if tree is not a subtree of an operation.
duke@1 884 */
duke@1 885 private static int accessCode(JCTree tree, JCTree enclOp) {
duke@1 886 if (enclOp == null)
duke@1 887 return DEREFcode;
jjg@1127 888 else if (enclOp.hasTag(ASSIGN) &&
duke@1 889 tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
duke@1 890 return ASSIGNcode;
jjg@1127 891 else if (enclOp.getTag().isIncOrDecUnaryOp() &&
duke@1 892 tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
jjg@1127 893 return mapTagToUnaryOpCode(enclOp.getTag());
jjg@1127 894 else if (enclOp.getTag().isAssignop() &&
duke@1 895 tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
duke@1 896 return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
duke@1 897 else
duke@1 898 return DEREFcode;
duke@1 899 }
duke@1 900
duke@1 901 /** Return binary operator that corresponds to given access code.
duke@1 902 */
duke@1 903 private OperatorSymbol binaryAccessOperator(int acode) {
duke@1 904 for (Scope.Entry e = syms.predefClass.members().elems;
duke@1 905 e != null;
duke@1 906 e = e.sibling) {
duke@1 907 if (e.sym instanceof OperatorSymbol) {
duke@1 908 OperatorSymbol op = (OperatorSymbol)e.sym;
duke@1 909 if (accessCode(op.opcode) == acode) return op;
duke@1 910 }
duke@1 911 }
duke@1 912 return null;
duke@1 913 }
duke@1 914
duke@1 915 /** Return tree tag for assignment operation corresponding
duke@1 916 * to given binary operator.
duke@1 917 */
jjg@1127 918 private static JCTree.Tag treeTag(OperatorSymbol operator) {
duke@1 919 switch (operator.opcode) {
duke@1 920 case ByteCodes.ior: case ByteCodes.lor:
jjg@1127 921 return BITOR_ASG;
duke@1 922 case ByteCodes.ixor: case ByteCodes.lxor:
jjg@1127 923 return BITXOR_ASG;
duke@1 924 case ByteCodes.iand: case ByteCodes.land:
jjg@1127 925 return BITAND_ASG;
duke@1 926 case ByteCodes.ishl: case ByteCodes.lshl:
duke@1 927 case ByteCodes.ishll: case ByteCodes.lshll:
jjg@1127 928 return SL_ASG;
duke@1 929 case ByteCodes.ishr: case ByteCodes.lshr:
duke@1 930 case ByteCodes.ishrl: case ByteCodes.lshrl:
jjg@1127 931 return SR_ASG;
duke@1 932 case ByteCodes.iushr: case ByteCodes.lushr:
duke@1 933 case ByteCodes.iushrl: case ByteCodes.lushrl:
jjg@1127 934 return USR_ASG;
duke@1 935 case ByteCodes.iadd: case ByteCodes.ladd:
duke@1 936 case ByteCodes.fadd: case ByteCodes.dadd:
duke@1 937 case ByteCodes.string_add:
jjg@1127 938 return PLUS_ASG;
duke@1 939 case ByteCodes.isub: case ByteCodes.lsub:
duke@1 940 case ByteCodes.fsub: case ByteCodes.dsub:
jjg@1127 941 return MINUS_ASG;
duke@1 942 case ByteCodes.imul: case ByteCodes.lmul:
duke@1 943 case ByteCodes.fmul: case ByteCodes.dmul:
jjg@1127 944 return MUL_ASG;
duke@1 945 case ByteCodes.idiv: case ByteCodes.ldiv:
duke@1 946 case ByteCodes.fdiv: case ByteCodes.ddiv:
jjg@1127 947 return DIV_ASG;
duke@1 948 case ByteCodes.imod: case ByteCodes.lmod:
duke@1 949 case ByteCodes.fmod: case ByteCodes.dmod:
jjg@1127 950 return MOD_ASG;
duke@1 951 default:
duke@1 952 throw new AssertionError();
duke@1 953 }
duke@1 954 }
duke@1 955
duke@1 956 /** The name of the access method with number `anum' and access code `acode'.
duke@1 957 */
duke@1 958 Name accessName(int anum, int acode) {
duke@1 959 return names.fromString(
duke@1 960 "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
duke@1 961 }
duke@1 962
duke@1 963 /** Return access symbol for a private or protected symbol from an inner class.
duke@1 964 * @param sym The accessed private symbol.
duke@1 965 * @param tree The accessing tree.
duke@1 966 * @param enclOp The closest enclosing operation node of tree,
duke@1 967 * null if tree is not a subtree of an operation.
duke@1 968 * @param protAccess Is access to a protected symbol in another
duke@1 969 * package?
duke@1 970 * @param refSuper Is access via a (qualified) C.super?
duke@1 971 */
duke@1 972 MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
duke@1 973 boolean protAccess, boolean refSuper) {
duke@1 974 ClassSymbol accOwner = refSuper && protAccess
duke@1 975 // For access via qualified super (T.super.x), place the
duke@1 976 // access symbol on T.
duke@1 977 ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
duke@1 978 // Otherwise pretend that the owner of an accessed
duke@1 979 // protected symbol is the enclosing class of the current
duke@1 980 // class which is a subclass of the symbol's owner.
duke@1 981 : accessClass(sym, protAccess, tree);
duke@1 982
duke@1 983 Symbol vsym = sym;
duke@1 984 if (sym.owner != accOwner) {
duke@1 985 vsym = sym.clone(accOwner);
duke@1 986 actualSymbols.put(vsym, sym);
duke@1 987 }
duke@1 988
duke@1 989 Integer anum // The access number of the access method.
duke@1 990 = accessNums.get(vsym);
duke@1 991 if (anum == null) {
duke@1 992 anum = accessed.length();
duke@1 993 accessNums.put(vsym, anum);
duke@1 994 accessSyms.put(vsym, new MethodSymbol[NCODES]);
duke@1 995 accessed.append(vsym);
duke@1 996 // System.out.println("accessing " + vsym + " in " + vsym.location());
duke@1 997 }
duke@1 998
duke@1 999 int acode; // The access code of the access method.
duke@1 1000 List<Type> argtypes; // The argument types of the access method.
duke@1 1001 Type restype; // The result type of the access method.
darcy@430 1002 List<Type> thrown; // The thrown exceptions of the access method.
duke@1 1003 switch (vsym.kind) {
duke@1 1004 case VAR:
duke@1 1005 acode = accessCode(tree, enclOp);
duke@1 1006 if (acode >= FIRSTASGOPcode) {
duke@1 1007 OperatorSymbol operator = binaryAccessOperator(acode);
duke@1 1008 if (operator.opcode == string_add)
duke@1 1009 argtypes = List.of(syms.objectType);
duke@1 1010 else
duke@1 1011 argtypes = operator.type.getParameterTypes().tail;
duke@1 1012 } else if (acode == ASSIGNcode)
duke@1 1013 argtypes = List.of(vsym.erasure(types));
duke@1 1014 else
duke@1 1015 argtypes = List.nil();
duke@1 1016 restype = vsym.erasure(types);
duke@1 1017 thrown = List.nil();
duke@1 1018 break;
duke@1 1019 case MTH:
duke@1 1020 acode = DEREFcode;
duke@1 1021 argtypes = vsym.erasure(types).getParameterTypes();
duke@1 1022 restype = vsym.erasure(types).getReturnType();
duke@1 1023 thrown = vsym.type.getThrownTypes();
duke@1 1024 break;
duke@1 1025 default:
duke@1 1026 throw new AssertionError();
duke@1 1027 }
duke@1 1028
duke@1 1029 // For references via qualified super, increment acode by one,
duke@1 1030 // making it odd.
duke@1 1031 if (protAccess && refSuper) acode++;
duke@1 1032
duke@1 1033 // Instance access methods get instance as first parameter.
duke@1 1034 // For protected symbols this needs to be the instance as a member
duke@1 1035 // of the type containing the accessed symbol, not the class
duke@1 1036 // containing the access method.
duke@1 1037 if ((vsym.flags() & STATIC) == 0) {
duke@1 1038 argtypes = argtypes.prepend(vsym.owner.erasure(types));
duke@1 1039 }
duke@1 1040 MethodSymbol[] accessors = accessSyms.get(vsym);
duke@1 1041 MethodSymbol accessor = accessors[acode];
duke@1 1042 if (accessor == null) {
duke@1 1043 accessor = new MethodSymbol(
duke@1 1044 STATIC | SYNTHETIC,
duke@1 1045 accessName(anum.intValue(), acode),
duke@1 1046 new MethodType(argtypes, restype, thrown, syms.methodClass),
duke@1 1047 accOwner);
duke@1 1048 enterSynthetic(tree.pos(), accessor, accOwner.members());
duke@1 1049 accessors[acode] = accessor;
duke@1 1050 }
duke@1 1051 return accessor;
duke@1 1052 }
duke@1 1053
duke@1 1054 /** The qualifier to be used for accessing a symbol in an outer class.
duke@1 1055 * This is either C.sym or C.this.sym, depending on whether or not
duke@1 1056 * sym is static.
duke@1 1057 * @param sym The accessed symbol.
duke@1 1058 */
duke@1 1059 JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
duke@1 1060 return (sym.flags() & STATIC) != 0
duke@1 1061 ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
duke@1 1062 : makeOwnerThis(pos, sym, true);
duke@1 1063 }
duke@1 1064
duke@1 1065 /** Do we need an access method to reference private symbol?
duke@1 1066 */
duke@1 1067 boolean needsPrivateAccess(Symbol sym) {
duke@1 1068 if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
duke@1 1069 return false;
vromero@1954 1070 } else if (sym.name == names.init && sym.owner.isLocal()) {
duke@1 1071 // private constructor in local class: relax protection
duke@1 1072 sym.flags_field &= ~PRIVATE;
duke@1 1073 return false;
duke@1 1074 } else {
duke@1 1075 return true;
duke@1 1076 }
duke@1 1077 }
duke@1 1078
duke@1 1079 /** Do we need an access method to reference symbol in other package?
duke@1 1080 */
duke@1 1081 boolean needsProtectedAccess(Symbol sym, JCTree tree) {
duke@1 1082 if ((sym.flags() & PROTECTED) == 0 ||
duke@1 1083 sym.owner.owner == currentClass.owner || // fast special case
duke@1 1084 sym.packge() == currentClass.packge())
duke@1 1085 return false;
duke@1 1086 if (!currentClass.isSubClass(sym.owner, types))
duke@1 1087 return true;
duke@1 1088 if ((sym.flags() & STATIC) != 0 ||
jjg@1127 1089 !tree.hasTag(SELECT) ||
duke@1 1090 TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
duke@1 1091 return false;
duke@1 1092 return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
duke@1 1093 }
duke@1 1094
duke@1 1095 /** The class in which an access method for given symbol goes.
duke@1 1096 * @param sym The access symbol
duke@1 1097 * @param protAccess Is access to a protected symbol in another
duke@1 1098 * package?
duke@1 1099 */
duke@1 1100 ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
duke@1 1101 if (protAccess) {
duke@1 1102 Symbol qualifier = null;
duke@1 1103 ClassSymbol c = currentClass;
jjg@1127 1104 if (tree.hasTag(SELECT) && (sym.flags() & STATIC) == 0) {
duke@1 1105 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
duke@1 1106 while (!qualifier.isSubClass(c, types)) {
duke@1 1107 c = c.owner.enclClass();
duke@1 1108 }
duke@1 1109 return c;
duke@1 1110 } else {
duke@1 1111 while (!c.isSubClass(sym.owner, types)) {
duke@1 1112 c = c.owner.enclClass();
duke@1 1113 }
duke@1 1114 }
duke@1 1115 return c;
duke@1 1116 } else {
duke@1 1117 // the symbol is private
duke@1 1118 return sym.owner.enclClass();
duke@1 1119 }
duke@1 1120 }
duke@1 1121
vromero@1432 1122 private void addPrunedInfo(JCTree tree) {
vromero@1432 1123 List<JCTree> infoList = prunedTree.get(currentClass);
vromero@1432 1124 infoList = (infoList == null) ? List.of(tree) : infoList.prepend(tree);
vromero@1432 1125 prunedTree.put(currentClass, infoList);
vromero@1432 1126 }
vromero@1432 1127
duke@1 1128 /** Ensure that identifier is accessible, return tree accessing the identifier.
duke@1 1129 * @param sym The accessed symbol.
duke@1 1130 * @param tree The tree referring to the symbol.
duke@1 1131 * @param enclOp The closest enclosing operation node of tree,
duke@1 1132 * null if tree is not a subtree of an operation.
duke@1 1133 * @param refSuper Is access via a (qualified) C.super?
duke@1 1134 */
duke@1 1135 JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
duke@1 1136 // Access a free variable via its proxy, or its proxy's proxy
duke@1 1137 while (sym.kind == VAR && sym.owner.kind == MTH &&
duke@1 1138 sym.owner.enclClass() != currentClass) {
duke@1 1139 // A constant is replaced by its constant value.
duke@1 1140 Object cv = ((VarSymbol)sym).getConstValue();
duke@1 1141 if (cv != null) {
duke@1 1142 make.at(tree.pos);
duke@1 1143 return makeLit(sym.type, cv);
duke@1 1144 }
duke@1 1145 // Otherwise replace the variable by its proxy.
duke@1 1146 sym = proxies.lookup(proxyName(sym.name)).sym;
jjg@816 1147 Assert.check(sym != null && (sym.flags_field & FINAL) != 0);
duke@1 1148 tree = make.at(tree.pos).Ident(sym);
duke@1 1149 }
jjg@1127 1150 JCExpression base = (tree.hasTag(SELECT)) ? ((JCFieldAccess) tree).selected : null;
duke@1 1151 switch (sym.kind) {
duke@1 1152 case TYP:
duke@1 1153 if (sym.owner.kind != PCK) {
duke@1 1154 // Convert type idents to
duke@1 1155 // <flat name> or <package name> . <flat name>
duke@1 1156 Name flatname = Convert.shortName(sym.flatName());
duke@1 1157 while (base != null &&
duke@1 1158 TreeInfo.symbol(base) != null &&
duke@1 1159 TreeInfo.symbol(base).kind != PCK) {
jjg@1127 1160 base = (base.hasTag(SELECT))
duke@1 1161 ? ((JCFieldAccess) base).selected
duke@1 1162 : null;
duke@1 1163 }
jjg@1127 1164 if (tree.hasTag(IDENT)) {
duke@1 1165 ((JCIdent) tree).name = flatname;
duke@1 1166 } else if (base == null) {
duke@1 1167 tree = make.at(tree.pos).Ident(sym);
duke@1 1168 ((JCIdent) tree).name = flatname;
duke@1 1169 } else {
duke@1 1170 ((JCFieldAccess) tree).selected = base;
duke@1 1171 ((JCFieldAccess) tree).name = flatname;
duke@1 1172 }
duke@1 1173 }
duke@1 1174 break;
duke@1 1175 case MTH: case VAR:
duke@1 1176 if (sym.owner.kind == TYP) {
duke@1 1177
duke@1 1178 // Access methods are required for
duke@1 1179 // - private members,
duke@1 1180 // - protected members in a superclass of an
duke@1 1181 // enclosing class contained in another package.
duke@1 1182 // - all non-private members accessed via a qualified super.
duke@1 1183 boolean protAccess = refSuper && !needsPrivateAccess(sym)
duke@1 1184 || needsProtectedAccess(sym, tree);
duke@1 1185 boolean accReq = protAccess || needsPrivateAccess(sym);
duke@1 1186
duke@1 1187 // A base has to be supplied for
duke@1 1188 // - simple identifiers accessing variables in outer classes.
duke@1 1189 boolean baseReq =
duke@1 1190 base == null &&
duke@1 1191 sym.owner != syms.predefClass &&
duke@1 1192 !sym.isMemberOf(currentClass, types);
duke@1 1193
duke@1 1194 if (accReq || baseReq) {
duke@1 1195 make.at(tree.pos);
duke@1 1196
duke@1 1197 // Constants are replaced by their constant value.
duke@1 1198 if (sym.kind == VAR) {
duke@1 1199 Object cv = ((VarSymbol)sym).getConstValue();
vromero@1432 1200 if (cv != null) {
vromero@1432 1201 addPrunedInfo(tree);
vromero@1432 1202 return makeLit(sym.type, cv);
vromero@1432 1203 }
duke@1 1204 }
duke@1 1205
duke@1 1206 // Private variables and methods are replaced by calls
duke@1 1207 // to their access methods.
duke@1 1208 if (accReq) {
duke@1 1209 List<JCExpression> args = List.nil();
duke@1 1210 if ((sym.flags() & STATIC) == 0) {
duke@1 1211 // Instance access methods get instance
duke@1 1212 // as first parameter.
duke@1 1213 if (base == null)
duke@1 1214 base = makeOwnerThis(tree.pos(), sym, true);
duke@1 1215 args = args.prepend(base);
duke@1 1216 base = null; // so we don't duplicate code
duke@1 1217 }
duke@1 1218 Symbol access = accessSymbol(sym, tree,
duke@1 1219 enclOp, protAccess,
duke@1 1220 refSuper);
duke@1 1221 JCExpression receiver = make.Select(
duke@1 1222 base != null ? base : make.QualIdent(access.owner),
duke@1 1223 access);
duke@1 1224 return make.App(receiver, args);
duke@1 1225
duke@1 1226 // Other accesses to members of outer classes get a
duke@1 1227 // qualifier.
duke@1 1228 } else if (baseReq) {
duke@1 1229 return make.at(tree.pos).Select(
duke@1 1230 accessBase(tree.pos(), sym), sym).setType(tree.type);
duke@1 1231 }
duke@1 1232 }
mcimadamore@1612 1233 } else if (sym.owner.kind == MTH && lambdaTranslationMap != null) {
mcimadamore@1612 1234 //sym is a local variable - check the lambda translation map to
mcimadamore@1612 1235 //see if sym has been translated to something else in the current
mcimadamore@1612 1236 //scope (by LambdaToMethod)
mcimadamore@1612 1237 Symbol translatedSym = lambdaTranslationMap.get(sym);
mcimadamore@1612 1238 if (translatedSym != null) {
mcimadamore@1612 1239 tree = make.at(tree.pos).Ident(translatedSym);
mcimadamore@1612 1240 }
duke@1 1241 }
duke@1 1242 }
duke@1 1243 return tree;
duke@1 1244 }
duke@1 1245
duke@1 1246 /** Ensure that identifier is accessible, return tree accessing the identifier.
duke@1 1247 * @param tree The identifier tree.
duke@1 1248 */
duke@1 1249 JCExpression access(JCExpression tree) {
duke@1 1250 Symbol sym = TreeInfo.symbol(tree);
duke@1 1251 return sym == null ? tree : access(sym, tree, null, false);
duke@1 1252 }
duke@1 1253
duke@1 1254 /** Return access constructor for a private constructor,
duke@1 1255 * or the constructor itself, if no access constructor is needed.
duke@1 1256 * @param pos The position to report diagnostics, if any.
duke@1 1257 * @param constr The private constructor.
duke@1 1258 */
duke@1 1259 Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
duke@1 1260 if (needsPrivateAccess(constr)) {
duke@1 1261 ClassSymbol accOwner = constr.owner.enclClass();
duke@1 1262 MethodSymbol aconstr = accessConstrs.get(constr);
duke@1 1263 if (aconstr == null) {
duke@1 1264 List<Type> argtypes = constr.type.getParameterTypes();
duke@1 1265 if ((accOwner.flags_field & ENUM) != 0)
duke@1 1266 argtypes = argtypes
duke@1 1267 .prepend(syms.intType)
duke@1 1268 .prepend(syms.stringType);
duke@1 1269 aconstr = new MethodSymbol(
duke@1 1270 SYNTHETIC,
duke@1 1271 names.init,
duke@1 1272 new MethodType(
duke@1 1273 argtypes.append(
duke@1 1274 accessConstructorTag().erasure(types)),
duke@1 1275 constr.type.getReturnType(),
duke@1 1276 constr.type.getThrownTypes(),
duke@1 1277 syms.methodClass),
duke@1 1278 accOwner);
duke@1 1279 enterSynthetic(pos, aconstr, accOwner.members());
duke@1 1280 accessConstrs.put(constr, aconstr);
duke@1 1281 accessed.append(constr);
duke@1 1282 }
duke@1 1283 return aconstr;
duke@1 1284 } else {
duke@1 1285 return constr;
duke@1 1286 }
duke@1 1287 }
duke@1 1288
duke@1 1289 /** Return an anonymous class nested in this toplevel class.
duke@1 1290 */
duke@1 1291 ClassSymbol accessConstructorTag() {
duke@1 1292 ClassSymbol topClass = currentClass.outermostClass();
duke@1 1293 Name flatname = names.fromString("" + topClass.getQualifiedName() +
duke@1 1294 target.syntheticNameChar() +
duke@1 1295 "1");
duke@1 1296 ClassSymbol ctag = chk.compiled.get(flatname);
duke@1 1297 if (ctag == null)
vromero@1542 1298 ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass).sym;
jjg@595 1299 // keep a record of all tags, to verify that all are generated as required
jjg@595 1300 accessConstrTags = accessConstrTags.prepend(ctag);
duke@1 1301 return ctag;
duke@1 1302 }
duke@1 1303
duke@1 1304 /** Add all required access methods for a private symbol to enclosing class.
duke@1 1305 * @param sym The symbol.
duke@1 1306 */
duke@1 1307 void makeAccessible(Symbol sym) {
duke@1 1308 JCClassDecl cdef = classDef(sym.owner.enclClass());
jjg@816 1309 if (cdef == null) Assert.error("class def not found: " + sym + " in " + sym.owner);
duke@1 1310 if (sym.name == names.init) {
duke@1 1311 cdef.defs = cdef.defs.prepend(
duke@1 1312 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
duke@1 1313 } else {
duke@1 1314 MethodSymbol[] accessors = accessSyms.get(sym);
duke@1 1315 for (int i = 0; i < NCODES; i++) {
duke@1 1316 if (accessors[i] != null)
duke@1 1317 cdef.defs = cdef.defs.prepend(
duke@1 1318 accessDef(cdef.pos, sym, accessors[i], i));
duke@1 1319 }
duke@1 1320 }
duke@1 1321 }
duke@1 1322
jjg@1127 1323 /** Maps unary operator integer codes to JCTree.Tag objects
jjg@1127 1324 * @param unaryOpCode the unary operator code
jjg@1127 1325 */
jjg@1127 1326 private static Tag mapUnaryOpCodeToTag(int unaryOpCode){
jjg@1127 1327 switch (unaryOpCode){
jjg@1127 1328 case PREINCcode:
jjg@1127 1329 return PREINC;
jjg@1127 1330 case PREDECcode:
jjg@1127 1331 return PREDEC;
jjg@1127 1332 case POSTINCcode:
jjg@1127 1333 return POSTINC;
jjg@1127 1334 case POSTDECcode:
jjg@1127 1335 return POSTDEC;
jjg@1127 1336 default:
jjg@1127 1337 return NO_TAG;
jjg@1127 1338 }
jjg@1127 1339 }
jjg@1127 1340
jjg@1127 1341 /** Maps JCTree.Tag objects to unary operator integer codes
jjg@1127 1342 * @param tag the JCTree.Tag
jjg@1127 1343 */
jjg@1127 1344 private static int mapTagToUnaryOpCode(Tag tag){
jjg@1127 1345 switch (tag){
jjg@1127 1346 case PREINC:
jjg@1127 1347 return PREINCcode;
jjg@1127 1348 case PREDEC:
jjg@1127 1349 return PREDECcode;
jjg@1127 1350 case POSTINC:
jjg@1127 1351 return POSTINCcode;
jjg@1127 1352 case POSTDEC:
jjg@1127 1353 return POSTDECcode;
jjg@1127 1354 default:
jjg@1127 1355 return -1;
jjg@1127 1356 }
jjg@1127 1357 }
jjg@1127 1358
duke@1 1359 /** Construct definition of an access method.
duke@1 1360 * @param pos The source code position of the definition.
duke@1 1361 * @param vsym The private or protected symbol.
duke@1 1362 * @param accessor The access method for the symbol.
duke@1 1363 * @param acode The access code.
duke@1 1364 */
duke@1 1365 JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
duke@1 1366 // System.err.println("access " + vsym + " with " + accessor);//DEBUG
duke@1 1367 currentClass = vsym.owner.enclClass();
duke@1 1368 make.at(pos);
duke@1 1369 JCMethodDecl md = make.MethodDef(accessor, null);
duke@1 1370
duke@1 1371 // Find actual symbol
duke@1 1372 Symbol sym = actualSymbols.get(vsym);
duke@1 1373 if (sym == null) sym = vsym;
duke@1 1374
duke@1 1375 JCExpression ref; // The tree referencing the private symbol.
duke@1 1376 List<JCExpression> args; // Any additional arguments to be passed along.
duke@1 1377 if ((sym.flags() & STATIC) != 0) {
duke@1 1378 ref = make.Ident(sym);
duke@1 1379 args = make.Idents(md.params);
duke@1 1380 } else {
duke@1 1381 ref = make.Select(make.Ident(md.params.head), sym);
duke@1 1382 args = make.Idents(md.params.tail);
duke@1 1383 }
duke@1 1384 JCStatement stat; // The statement accessing the private symbol.
duke@1 1385 if (sym.kind == VAR) {
duke@1 1386 // Normalize out all odd access codes by taking floor modulo 2:
duke@1 1387 int acode1 = acode - (acode & 1);
duke@1 1388
duke@1 1389 JCExpression expr; // The access method's return value.
duke@1 1390 switch (acode1) {
duke@1 1391 case DEREFcode:
duke@1 1392 expr = ref;
duke@1 1393 break;
duke@1 1394 case ASSIGNcode:
duke@1 1395 expr = make.Assign(ref, args.head);
duke@1 1396 break;
duke@1 1397 case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
jjg@1127 1398 expr = makeUnary(mapUnaryOpCodeToTag(acode1), ref);
duke@1 1399 break;
duke@1 1400 default:
duke@1 1401 expr = make.Assignop(
duke@1 1402 treeTag(binaryAccessOperator(acode1)), ref, args.head);
duke@1 1403 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
duke@1 1404 }
duke@1 1405 stat = make.Return(expr.setType(sym.type));
duke@1 1406 } else {
duke@1 1407 stat = make.Call(make.App(ref, args));
duke@1 1408 }
duke@1 1409 md.body = make.Block(0, List.of(stat));
duke@1 1410
duke@1 1411 // Make sure all parameters, result types and thrown exceptions
duke@1 1412 // are accessible.
duke@1 1413 for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
duke@1 1414 l.head.vartype = access(l.head.vartype);
duke@1 1415 md.restype = access(md.restype);
duke@1 1416 for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
duke@1 1417 l.head = access(l.head);
duke@1 1418
duke@1 1419 return md;
duke@1 1420 }
duke@1 1421
duke@1 1422 /** Construct definition of an access constructor.
duke@1 1423 * @param pos The source code position of the definition.
duke@1 1424 * @param constr The private constructor.
duke@1 1425 * @param accessor The access method for the constructor.
duke@1 1426 */
duke@1 1427 JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
duke@1 1428 make.at(pos);
duke@1 1429 JCMethodDecl md = make.MethodDef(accessor,
duke@1 1430 accessor.externalType(types),
duke@1 1431 null);
duke@1 1432 JCIdent callee = make.Ident(names._this);
duke@1 1433 callee.sym = constr;
duke@1 1434 callee.type = constr.type;
duke@1 1435 md.body =
duke@1 1436 make.Block(0, List.<JCStatement>of(
duke@1 1437 make.Call(
duke@1 1438 make.App(
duke@1 1439 callee,
duke@1 1440 make.Idents(md.params.reverse().tail.reverse())))));
duke@1 1441 return md;
duke@1 1442 }
duke@1 1443
duke@1 1444 /**************************************************************************
duke@1 1445 * Free variables proxies and this$n
duke@1 1446 *************************************************************************/
duke@1 1447
duke@1 1448 /** A scope containing all free variable proxies for currently translated
duke@1 1449 * class, as well as its this$n symbol (if needed).
duke@1 1450 * Proxy scopes are nested in the same way classes are.
duke@1 1451 * Inside a constructor, proxies and any this$n symbol are duplicated
duke@1 1452 * in an additional innermost scope, where they represent the constructor
duke@1 1453 * parameters.
duke@1 1454 */
duke@1 1455 Scope proxies;
duke@1 1456
darcy@609 1457 /** A scope containing all unnamed resource variables/saved
darcy@609 1458 * exception variables for translated TWR blocks
darcy@609 1459 */
darcy@609 1460 Scope twrVars;
darcy@609 1461
duke@1 1462 /** A stack containing the this$n field of the currently translated
duke@1 1463 * classes (if needed) in innermost first order.
duke@1 1464 * Inside a constructor, proxies and any this$n symbol are duplicated
duke@1 1465 * in an additional innermost scope, where they represent the constructor
duke@1 1466 * parameters.
duke@1 1467 */
duke@1 1468 List<VarSymbol> outerThisStack;
duke@1 1469
duke@1 1470 /** The name of a free variable proxy.
duke@1 1471 */
duke@1 1472 Name proxyName(Name name) {
duke@1 1473 return names.fromString("val" + target.syntheticNameChar() + name);
duke@1 1474 }
duke@1 1475
duke@1 1476 /** Proxy definitions for all free variables in given list, in reverse order.
duke@1 1477 * @param pos The source code position of the definition.
duke@1 1478 * @param freevars The free variables.
duke@1 1479 * @param owner The class in which the definitions go.
duke@1 1480 */
duke@1 1481 List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
vromero@2027 1482 return freevarDefs(pos, freevars, owner, 0);
vromero@2027 1483 }
vromero@2027 1484
vromero@2027 1485 List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner,
vromero@2027 1486 long additionalFlags) {
vromero@2027 1487 long flags = FINAL | SYNTHETIC | additionalFlags;
duke@1 1488 if (owner.kind == TYP &&
duke@1 1489 target.usePrivateSyntheticFields())
duke@1 1490 flags |= PRIVATE;
duke@1 1491 List<JCVariableDecl> defs = List.nil();
duke@1 1492 for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
duke@1 1493 VarSymbol v = l.head;
duke@1 1494 VarSymbol proxy = new VarSymbol(
duke@1 1495 flags, proxyName(v.name), v.erasure(types), owner);
duke@1 1496 proxies.enter(proxy);
duke@1 1497 JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
duke@1 1498 vd.vartype = access(vd.vartype);
duke@1 1499 defs = defs.prepend(vd);
duke@1 1500 }
duke@1 1501 return defs;
duke@1 1502 }
duke@1 1503
duke@1 1504 /** The name of a this$n field
duke@1 1505 * @param type The class referenced by the this$n field
duke@1 1506 */
duke@1 1507 Name outerThisName(Type type, Symbol owner) {
duke@1 1508 Type t = type.getEnclosingType();
duke@1 1509 int nestingLevel = 0;
jjg@1374 1510 while (t.hasTag(CLASS)) {
duke@1 1511 t = t.getEnclosingType();
duke@1 1512 nestingLevel++;
duke@1 1513 }
duke@1 1514 Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
duke@1 1515 while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
duke@1 1516 result = names.fromString(result.toString() + target.syntheticNameChar());
duke@1 1517 return result;
duke@1 1518 }
duke@1 1519
mcimadamore@1565 1520 private VarSymbol makeOuterThisVarSymbol(Symbol owner, long flags) {
mcimadamore@1565 1521 if (owner.kind == TYP &&
mcimadamore@1565 1522 target.usePrivateSyntheticFields())
mcimadamore@1565 1523 flags |= PRIVATE;
mcimadamore@1565 1524 Type target = types.erasure(owner.enclClass().type.getEnclosingType());
mcimadamore@1565 1525 VarSymbol outerThis =
mcimadamore@1565 1526 new VarSymbol(flags, outerThisName(target, owner), target, owner);
mcimadamore@1565 1527 outerThisStack = outerThisStack.prepend(outerThis);
mcimadamore@1565 1528 return outerThis;
mcimadamore@1565 1529 }
mcimadamore@1565 1530
mcimadamore@1565 1531 private JCVariableDecl makeOuterThisVarDecl(int pos, VarSymbol sym) {
mcimadamore@1565 1532 JCVariableDecl vd = make.at(pos).VarDef(sym, null);
mcimadamore@1565 1533 vd.vartype = access(vd.vartype);
mcimadamore@1565 1534 return vd;
mcimadamore@1565 1535 }
mcimadamore@1565 1536
mcimadamore@1565 1537 /** Definition for this$n field.
mcimadamore@1565 1538 * @param pos The source code position of the definition.
mcimadamore@1565 1539 * @param owner The method in which the definition goes.
mcimadamore@1565 1540 */
mcimadamore@1565 1541 JCVariableDecl outerThisDef(int pos, MethodSymbol owner) {
mcimadamore@1565 1542 ClassSymbol c = owner.enclClass();
mcimadamore@1565 1543 boolean isMandated =
mcimadamore@1565 1544 // Anonymous constructors
mcimadamore@1565 1545 (owner.isConstructor() && owner.isAnonymous()) ||
mcimadamore@1565 1546 // Constructors of non-private inner member classes
mcimadamore@1565 1547 (owner.isConstructor() && c.isInner() &&
mcimadamore@1565 1548 !c.isPrivate() && !c.isStatic());
mcimadamore@1565 1549 long flags =
vromero@2027 1550 FINAL | (isMandated ? MANDATED : SYNTHETIC) | PARAMETER;
mcimadamore@1565 1551 VarSymbol outerThis = makeOuterThisVarSymbol(owner, flags);
mcimadamore@1565 1552 owner.extraParams = owner.extraParams.prepend(outerThis);
mcimadamore@1565 1553 return makeOuterThisVarDecl(pos, outerThis);
mcimadamore@1565 1554 }
mcimadamore@1565 1555
duke@1 1556 /** Definition for this$n field.
duke@1 1557 * @param pos The source code position of the definition.
duke@1 1558 * @param owner The class in which the definition goes.
duke@1 1559 */
mcimadamore@1565 1560 JCVariableDecl outerThisDef(int pos, ClassSymbol owner) {
mcimadamore@1565 1561 VarSymbol outerThis = makeOuterThisVarSymbol(owner, FINAL | SYNTHETIC);
mcimadamore@1565 1562 return makeOuterThisVarDecl(pos, outerThis);
duke@1 1563 }
duke@1 1564
duke@1 1565 /** Return a list of trees that load the free variables in given list,
duke@1 1566 * in reverse order.
duke@1 1567 * @param pos The source code position to be used for the trees.
duke@1 1568 * @param freevars The list of free variables.
duke@1 1569 */
duke@1 1570 List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
duke@1 1571 List<JCExpression> args = List.nil();
duke@1 1572 for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
duke@1 1573 args = args.prepend(loadFreevar(pos, l.head));
duke@1 1574 return args;
duke@1 1575 }
duke@1 1576 //where
duke@1 1577 JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
duke@1 1578 return access(v, make.at(pos).Ident(v), null, false);
duke@1 1579 }
duke@1 1580
jjg@1326 1581 /** Construct a tree simulating the expression {@code C.this}.
duke@1 1582 * @param pos The source code position to be used for the tree.
duke@1 1583 * @param c The qualifier class.
duke@1 1584 */
duke@1 1585 JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
duke@1 1586 if (currentClass == c) {
duke@1 1587 // in this case, `this' works fine
duke@1 1588 return make.at(pos).This(c.erasure(types));
duke@1 1589 } else {
duke@1 1590 // need to go via this$n
duke@1 1591 return makeOuterThis(pos, c);
duke@1 1592 }
duke@1 1593 }
duke@1 1594
darcy@884 1595 /**
darcy@884 1596 * Optionally replace a try statement with the desugaring of a
darcy@884 1597 * try-with-resources statement. The canonical desugaring of
darcy@884 1598 *
darcy@884 1599 * try ResourceSpecification
darcy@884 1600 * Block
darcy@884 1601 *
darcy@884 1602 * is
darcy@884 1603 *
darcy@884 1604 * {
darcy@884 1605 * final VariableModifiers_minus_final R #resource = Expression;
darcy@884 1606 * Throwable #primaryException = null;
darcy@884 1607 *
darcy@884 1608 * try ResourceSpecificationtail
darcy@884 1609 * Block
darcy@884 1610 * catch (Throwable #t) {
darcy@884 1611 * #primaryException = t;
darcy@884 1612 * throw #t;
darcy@884 1613 * } finally {
darcy@884 1614 * if (#resource != null) {
darcy@884 1615 * if (#primaryException != null) {
darcy@884 1616 * try {
darcy@884 1617 * #resource.close();
darcy@884 1618 * } catch(Throwable #suppressedException) {
darcy@884 1619 * #primaryException.addSuppressed(#suppressedException);
darcy@884 1620 * }
darcy@884 1621 * } else {
darcy@884 1622 * #resource.close();
darcy@884 1623 * }
darcy@884 1624 * }
darcy@884 1625 * }
darcy@884 1626 *
darcy@609 1627 * @param tree The try statement to inspect.
darcy@884 1628 * @return A a desugared try-with-resources tree, or the original
darcy@884 1629 * try block if there are no resources to manage.
darcy@609 1630 */
darcy@884 1631 JCTree makeTwrTry(JCTry tree) {
darcy@609 1632 make_at(tree.pos());
darcy@609 1633 twrVars = twrVars.dup();
vromero@2027 1634 JCBlock twrBlock = makeTwrBlock(tree.resources, tree.body,
vromero@2027 1635 tree.finallyCanCompleteNormally, 0);
darcy@609 1636 if (tree.catchers.isEmpty() && tree.finalizer == null)
darcy@884 1637 result = translate(twrBlock);
darcy@609 1638 else
darcy@884 1639 result = translate(make.Try(twrBlock, tree.catchers, tree.finalizer));
darcy@609 1640 twrVars = twrVars.leave();
darcy@609 1641 return result;
darcy@609 1642 }
darcy@609 1643
vromero@2027 1644 private JCBlock makeTwrBlock(List<JCTree> resources, JCBlock block,
vromero@2027 1645 boolean finallyCanCompleteNormally, int depth) {
darcy@609 1646 if (resources.isEmpty())
darcy@609 1647 return block;
darcy@609 1648
darcy@609 1649 // Add resource declaration or expression to block statements
darcy@609 1650 ListBuffer<JCStatement> stats = new ListBuffer<JCStatement>();
darcy@609 1651 JCTree resource = resources.head;
darcy@609 1652 JCExpression expr = null;
darcy@609 1653 if (resource instanceof JCVariableDecl) {
darcy@609 1654 JCVariableDecl var = (JCVariableDecl) resource;
darcy@609 1655 expr = make.Ident(var.sym).setType(resource.type);
darcy@609 1656 stats.add(var);
darcy@609 1657 } else {
jjg@816 1658 Assert.check(resource instanceof JCExpression);
darcy@609 1659 VarSymbol syntheticTwrVar =
darcy@609 1660 new VarSymbol(SYNTHETIC | FINAL,
darcy@609 1661 makeSyntheticName(names.fromString("twrVar" +
darcy@609 1662 depth), twrVars),
jjg@1374 1663 (resource.type.hasTag(BOT)) ?
darcy@609 1664 syms.autoCloseableType : resource.type,
darcy@609 1665 currentMethodSym);
darcy@609 1666 twrVars.enter(syntheticTwrVar);
darcy@609 1667 JCVariableDecl syntheticTwrVarDecl =
darcy@609 1668 make.VarDef(syntheticTwrVar, (JCExpression)resource);
darcy@609 1669 expr = (JCExpression)make.Ident(syntheticTwrVar);
darcy@609 1670 stats.add(syntheticTwrVarDecl);
darcy@609 1671 }
darcy@609 1672
darcy@609 1673 // Add primaryException declaration
darcy@609 1674 VarSymbol primaryException =
darcy@609 1675 new VarSymbol(SYNTHETIC,
darcy@609 1676 makeSyntheticName(names.fromString("primaryException" +
darcy@609 1677 depth), twrVars),
darcy@609 1678 syms.throwableType,
darcy@609 1679 currentMethodSym);
darcy@609 1680 twrVars.enter(primaryException);
darcy@609 1681 JCVariableDecl primaryExceptionTreeDecl = make.VarDef(primaryException, makeNull());
darcy@609 1682 stats.add(primaryExceptionTreeDecl);
darcy@609 1683
darcy@609 1684 // Create catch clause that saves exception and then rethrows it
darcy@609 1685 VarSymbol param =
darcy@609 1686 new VarSymbol(FINAL|SYNTHETIC,
darcy@609 1687 names.fromString("t" +
darcy@609 1688 target.syntheticNameChar()),
darcy@609 1689 syms.throwableType,
darcy@609 1690 currentMethodSym);
darcy@609 1691 JCVariableDecl paramTree = make.VarDef(param, null);
darcy@609 1692 JCStatement assign = make.Assignment(primaryException, make.Ident(param));
darcy@609 1693 JCStatement rethrowStat = make.Throw(make.Ident(param));
darcy@609 1694 JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(assign, rethrowStat));
darcy@609 1695 JCCatch catchClause = make.Catch(paramTree, catchBlock);
darcy@609 1696
darcy@609 1697 int oldPos = make.pos;
darcy@609 1698 make.at(TreeInfo.endPos(block));
darcy@884 1699 JCBlock finallyClause = makeTwrFinallyClause(primaryException, expr);
darcy@609 1700 make.at(oldPos);
vromero@2027 1701 JCTry outerTry = make.Try(makeTwrBlock(resources.tail, block,
vromero@2027 1702 finallyCanCompleteNormally, depth + 1),
darcy@609 1703 List.<JCCatch>of(catchClause),
darcy@609 1704 finallyClause);
vromero@2027 1705 outerTry.finallyCanCompleteNormally = finallyCanCompleteNormally;
darcy@609 1706 stats.add(outerTry);
vromero@2027 1707 JCBlock newBlock = make.Block(0L, stats.toList());
vromero@2027 1708 return newBlock;
darcy@609 1709 }
darcy@609 1710
darcy@884 1711 private JCBlock makeTwrFinallyClause(Symbol primaryException, JCExpression resource) {
darcy@745 1712 // primaryException.addSuppressed(catchException);
darcy@609 1713 VarSymbol catchException =
vromero@2027 1714 new VarSymbol(SYNTHETIC, make.paramName(2),
darcy@609 1715 syms.throwableType,
darcy@609 1716 currentMethodSym);
darcy@609 1717 JCStatement addSuppressionStatement =
darcy@609 1718 make.Exec(makeCall(make.Ident(primaryException),
darcy@745 1719 names.addSuppressed,
darcy@609 1720 List.<JCExpression>of(make.Ident(catchException))));
darcy@609 1721
darcy@745 1722 // try { resource.close(); } catch (e) { primaryException.addSuppressed(e); }
darcy@609 1723 JCBlock tryBlock =
darcy@609 1724 make.Block(0L, List.<JCStatement>of(makeResourceCloseInvocation(resource)));
darcy@609 1725 JCVariableDecl catchExceptionDecl = make.VarDef(catchException, null);
darcy@609 1726 JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(addSuppressionStatement));
darcy@609 1727 List<JCCatch> catchClauses = List.<JCCatch>of(make.Catch(catchExceptionDecl, catchBlock));
darcy@609 1728 JCTry tryTree = make.Try(tryBlock, catchClauses, null);
vromero@2027 1729 tryTree.finallyCanCompleteNormally = true;
darcy@609 1730
darcy@884 1731 // if (primaryException != null) {try...} else resourceClose;
darcy@884 1732 JCIf closeIfStatement = make.If(makeNonNullCheck(make.Ident(primaryException)),
darcy@609 1733 tryTree,
darcy@609 1734 makeResourceCloseInvocation(resource));
darcy@884 1735
darcy@884 1736 // if (#resource != null) { if (primaryException ... }
darcy@884 1737 return make.Block(0L,
darcy@884 1738 List.<JCStatement>of(make.If(makeNonNullCheck(resource),
darcy@884 1739 closeIfStatement,
darcy@884 1740 null)));
darcy@609 1741 }
darcy@609 1742
darcy@609 1743 private JCStatement makeResourceCloseInvocation(JCExpression resource) {
sundar@1260 1744 // convert to AutoCloseable if needed
sundar@1260 1745 if (types.asSuper(resource.type, syms.autoCloseableType.tsym) == null) {
sundar@1260 1746 resource = (JCExpression) convert(resource, syms.autoCloseableType);
sundar@1260 1747 }
sundar@1260 1748
darcy@609 1749 // create resource.close() method invocation
darcy@884 1750 JCExpression resourceClose = makeCall(resource,
darcy@884 1751 names.close,
darcy@884 1752 List.<JCExpression>nil());
darcy@609 1753 return make.Exec(resourceClose);
darcy@609 1754 }
darcy@609 1755
darcy@884 1756 private JCExpression makeNonNullCheck(JCExpression expression) {
jjg@1127 1757 return makeBinary(NE, expression, makeNull());
darcy@884 1758 }
darcy@884 1759
duke@1 1760 /** Construct a tree that represents the outer instance
jjg@1326 1761 * {@code C.this}. Never pick the current `this'.
duke@1 1762 * @param pos The source code position to be used for the tree.
duke@1 1763 * @param c The qualifier class.
duke@1 1764 */
duke@1 1765 JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
duke@1 1766 List<VarSymbol> ots = outerThisStack;
duke@1 1767 if (ots.isEmpty()) {
duke@1 1768 log.error(pos, "no.encl.instance.of.type.in.scope", c);
jjg@816 1769 Assert.error();
duke@1 1770 return makeNull();
duke@1 1771 }
duke@1 1772 VarSymbol ot = ots.head;
duke@1 1773 JCExpression tree = access(make.at(pos).Ident(ot));
duke@1 1774 TypeSymbol otc = ot.type.tsym;
duke@1 1775 while (otc != c) {
duke@1 1776 do {
duke@1 1777 ots = ots.tail;
duke@1 1778 if (ots.isEmpty()) {
duke@1 1779 log.error(pos,
duke@1 1780 "no.encl.instance.of.type.in.scope",
duke@1 1781 c);
jjg@816 1782 Assert.error(); // should have been caught in Attr
duke@1 1783 return tree;
duke@1 1784 }
duke@1 1785 ot = ots.head;
duke@1 1786 } while (ot.owner != otc);
duke@1 1787 if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
duke@1 1788 chk.earlyRefError(pos, c);
jjg@816 1789 Assert.error(); // should have been caught in Attr
duke@1 1790 return makeNull();
duke@1 1791 }
duke@1 1792 tree = access(make.at(pos).Select(tree, ot));
duke@1 1793 otc = ot.type.tsym;
duke@1 1794 }
duke@1 1795 return tree;
duke@1 1796 }
duke@1 1797
duke@1 1798 /** Construct a tree that represents the closest outer instance
jjg@1326 1799 * {@code C.this} such that the given symbol is a member of C.
duke@1 1800 * @param pos The source code position to be used for the tree.
duke@1 1801 * @param sym The accessed symbol.
duke@1 1802 * @param preciseMatch should we accept a type that is a subtype of
duke@1 1803 * sym's owner, even if it doesn't contain sym
duke@1 1804 * due to hiding, overriding, or non-inheritance
duke@1 1805 * due to protection?
duke@1 1806 */
duke@1 1807 JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
duke@1 1808 Symbol c = sym.owner;
duke@1 1809 if (preciseMatch ? sym.isMemberOf(currentClass, types)
duke@1 1810 : currentClass.isSubClass(sym.owner, types)) {
duke@1 1811 // in this case, `this' works fine
duke@1 1812 return make.at(pos).This(c.erasure(types));
duke@1 1813 } else {
duke@1 1814 // need to go via this$n
duke@1 1815 return makeOwnerThisN(pos, sym, preciseMatch);
duke@1 1816 }
duke@1 1817 }
duke@1 1818
duke@1 1819 /**
duke@1 1820 * Similar to makeOwnerThis but will never pick "this".
duke@1 1821 */
duke@1 1822 JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
duke@1 1823 Symbol c = sym.owner;
duke@1 1824 List<VarSymbol> ots = outerThisStack;
duke@1 1825 if (ots.isEmpty()) {
duke@1 1826 log.error(pos, "no.encl.instance.of.type.in.scope", c);
jjg@816 1827 Assert.error();
duke@1 1828 return makeNull();
duke@1 1829 }
duke@1 1830 VarSymbol ot = ots.head;
duke@1 1831 JCExpression tree = access(make.at(pos).Ident(ot));
duke@1 1832 TypeSymbol otc = ot.type.tsym;
duke@1 1833 while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
duke@1 1834 do {
duke@1 1835 ots = ots.tail;
duke@1 1836 if (ots.isEmpty()) {
duke@1 1837 log.error(pos,
duke@1 1838 "no.encl.instance.of.type.in.scope",
duke@1 1839 c);
jjg@816 1840 Assert.error();
duke@1 1841 return tree;
duke@1 1842 }
duke@1 1843 ot = ots.head;
duke@1 1844 } while (ot.owner != otc);
duke@1 1845 tree = access(make.at(pos).Select(tree, ot));
duke@1 1846 otc = ot.type.tsym;
duke@1 1847 }
duke@1 1848 return tree;
duke@1 1849 }
duke@1 1850
jjg@1326 1851 /** Return tree simulating the assignment {@code this.name = name}, where
duke@1 1852 * name is the name of a free variable.
duke@1 1853 */
duke@1 1854 JCStatement initField(int pos, Name name) {
duke@1 1855 Scope.Entry e = proxies.lookup(name);
duke@1 1856 Symbol rhs = e.sym;
jjg@816 1857 Assert.check(rhs.owner.kind == MTH);
duke@1 1858 Symbol lhs = e.next().sym;
jjg@816 1859 Assert.check(rhs.owner.owner == lhs.owner);
duke@1 1860 make.at(pos);
duke@1 1861 return
duke@1 1862 make.Exec(
duke@1 1863 make.Assign(
duke@1 1864 make.Select(make.This(lhs.owner.erasure(types)), lhs),
duke@1 1865 make.Ident(rhs)).setType(lhs.erasure(types)));
duke@1 1866 }
duke@1 1867
jjg@1326 1868 /** Return tree simulating the assignment {@code this.this$n = this$n}.
duke@1 1869 */
duke@1 1870 JCStatement initOuterThis(int pos) {
duke@1 1871 VarSymbol rhs = outerThisStack.head;
jjg@816 1872 Assert.check(rhs.owner.kind == MTH);
duke@1 1873 VarSymbol lhs = outerThisStack.tail.head;
jjg@816 1874 Assert.check(rhs.owner.owner == lhs.owner);
duke@1 1875 make.at(pos);
duke@1 1876 return
duke@1 1877 make.Exec(
duke@1 1878 make.Assign(
duke@1 1879 make.Select(make.This(lhs.owner.erasure(types)), lhs),
duke@1 1880 make.Ident(rhs)).setType(lhs.erasure(types)));
duke@1 1881 }
duke@1 1882
duke@1 1883 /**************************************************************************
duke@1 1884 * Code for .class
duke@1 1885 *************************************************************************/
duke@1 1886
duke@1 1887 /** Return the symbol of a class to contain a cache of
duke@1 1888 * compiler-generated statics such as class$ and the
duke@1 1889 * $assertionsDisabled flag. We create an anonymous nested class
duke@1 1890 * (unless one already exists) and return its symbol. However,
duke@1 1891 * for backward compatibility in 1.4 and earlier we use the
duke@1 1892 * top-level class itself.
duke@1 1893 */
duke@1 1894 private ClassSymbol outerCacheClass() {
duke@1 1895 ClassSymbol clazz = outermostClassDef.sym;
duke@1 1896 if ((clazz.flags() & INTERFACE) == 0 &&
duke@1 1897 !target.useInnerCacheClass()) return clazz;
duke@1 1898 Scope s = clazz.members();
duke@1 1899 for (Scope.Entry e = s.elems; e != null; e = e.sibling)
duke@1 1900 if (e.sym.kind == TYP &&
duke@1 1901 e.sym.name == names.empty &&
duke@1 1902 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
vromero@1542 1903 return makeEmptyClass(STATIC | SYNTHETIC, clazz).sym;
duke@1 1904 }
duke@1 1905
duke@1 1906 /** Return symbol for "class$" method. If there is no method definition
duke@1 1907 * for class$, construct one as follows:
duke@1 1908 *
duke@1 1909 * class class$(String x0) {
duke@1 1910 * try {
duke@1 1911 * return Class.forName(x0);
duke@1 1912 * } catch (ClassNotFoundException x1) {
duke@1 1913 * throw new NoClassDefFoundError(x1.getMessage());
duke@1 1914 * }
duke@1 1915 * }
duke@1 1916 */
duke@1 1917 private MethodSymbol classDollarSym(DiagnosticPosition pos) {
duke@1 1918 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 1919 MethodSymbol classDollarSym =
duke@1 1920 (MethodSymbol)lookupSynthetic(classDollar,
duke@1 1921 outerCacheClass.members());
duke@1 1922 if (classDollarSym == null) {
duke@1 1923 classDollarSym = new MethodSymbol(
duke@1 1924 STATIC | SYNTHETIC,
duke@1 1925 classDollar,
duke@1 1926 new MethodType(
duke@1 1927 List.of(syms.stringType),
duke@1 1928 types.erasure(syms.classType),
duke@1 1929 List.<Type>nil(),
duke@1 1930 syms.methodClass),
duke@1 1931 outerCacheClass);
duke@1 1932 enterSynthetic(pos, classDollarSym, outerCacheClass.members());
duke@1 1933
duke@1 1934 JCMethodDecl md = make.MethodDef(classDollarSym, null);
duke@1 1935 try {
duke@1 1936 md.body = classDollarSymBody(pos, md);
duke@1 1937 } catch (CompletionFailure ex) {
duke@1 1938 md.body = make.Block(0, List.<JCStatement>nil());
duke@1 1939 chk.completionError(pos, ex);
duke@1 1940 }
duke@1 1941 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1942 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
duke@1 1943 }
duke@1 1944 return classDollarSym;
duke@1 1945 }
duke@1 1946
duke@1 1947 /** Generate code for class$(String name). */
duke@1 1948 JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
duke@1 1949 MethodSymbol classDollarSym = md.sym;
duke@1 1950 ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
duke@1 1951
duke@1 1952 JCBlock returnResult;
duke@1 1953
duke@1 1954 // in 1.4.2 and above, we use
duke@1 1955 // Class.forName(String name, boolean init, ClassLoader loader);
duke@1 1956 // which requires we cache the current loader in cl$
duke@1 1957 if (target.classLiteralsNoInit()) {
duke@1 1958 // clsym = "private static ClassLoader cl$"
duke@1 1959 VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
duke@1 1960 names.fromString("cl" + target.syntheticNameChar()),
duke@1 1961 syms.classLoaderType,
duke@1 1962 outerCacheClass);
duke@1 1963 enterSynthetic(pos, clsym, outerCacheClass.members());
duke@1 1964
duke@1 1965 // emit "private static ClassLoader cl$;"
duke@1 1966 JCVariableDecl cldef = make.VarDef(clsym, null);
duke@1 1967 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1968 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
duke@1 1969
duke@1 1970 // newcache := "new cache$1[0]"
duke@1 1971 JCNewArray newcache = make.
duke@1 1972 NewArray(make.Type(outerCacheClass.type),
duke@1 1973 List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
duke@1 1974 null);
duke@1 1975 newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
duke@1 1976 syms.arrayClass);
duke@1 1977
duke@1 1978 // forNameSym := java.lang.Class.forName(
duke@1 1979 // String s,boolean init,ClassLoader loader)
duke@1 1980 Symbol forNameSym = lookupMethod(make_pos, names.forName,
duke@1 1981 types.erasure(syms.classType),
duke@1 1982 List.of(syms.stringType,
duke@1 1983 syms.booleanType,
duke@1 1984 syms.classLoaderType));
duke@1 1985 // clvalue := "(cl$ == null) ?
duke@1 1986 // $newcache.getClass().getComponentType().getClassLoader() : cl$"
duke@1 1987 JCExpression clvalue =
duke@1 1988 make.Conditional(
jjg@1127 1989 makeBinary(EQ, make.Ident(clsym), makeNull()),
duke@1 1990 make.Assign(
duke@1 1991 make.Ident(clsym),
duke@1 1992 makeCall(
duke@1 1993 makeCall(makeCall(newcache,
duke@1 1994 names.getClass,
duke@1 1995 List.<JCExpression>nil()),
duke@1 1996 names.getComponentType,
duke@1 1997 List.<JCExpression>nil()),
duke@1 1998 names.getClassLoader,
duke@1 1999 List.<JCExpression>nil())).setType(syms.classLoaderType),
duke@1 2000 make.Ident(clsym)).setType(syms.classLoaderType);
duke@1 2001
duke@1 2002 // returnResult := "{ return Class.forName(param1, false, cl$); }"
duke@1 2003 List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
duke@1 2004 makeLit(syms.booleanType, 0),
duke@1 2005 clvalue);
duke@1 2006 returnResult = make.
duke@1 2007 Block(0, List.<JCStatement>of(make.
duke@1 2008 Call(make. // return
duke@1 2009 App(make.
duke@1 2010 Ident(forNameSym), args))));
duke@1 2011 } else {
duke@1 2012 // forNameSym := java.lang.Class.forName(String s)
duke@1 2013 Symbol forNameSym = lookupMethod(make_pos,
duke@1 2014 names.forName,
duke@1 2015 types.erasure(syms.classType),
duke@1 2016 List.of(syms.stringType));
duke@1 2017 // returnResult := "{ return Class.forName(param1); }"
duke@1 2018 returnResult = make.
duke@1 2019 Block(0, List.of(make.
duke@1 2020 Call(make. // return
duke@1 2021 App(make.
duke@1 2022 QualIdent(forNameSym),
duke@1 2023 List.<JCExpression>of(make.
duke@1 2024 Ident(md.params.
duke@1 2025 head.sym))))));
duke@1 2026 }
duke@1 2027
duke@1 2028 // catchParam := ClassNotFoundException e1
duke@1 2029 VarSymbol catchParam =
vromero@2027 2030 new VarSymbol(SYNTHETIC, make.paramName(1),
duke@1 2031 syms.classNotFoundExceptionType,
duke@1 2032 classDollarSym);
duke@1 2033
duke@1 2034 JCStatement rethrow;
duke@1 2035 if (target.hasInitCause()) {
duke@1 2036 // rethrow = "throw new NoClassDefFoundError().initCause(e);
vromero@1782 2037 JCExpression throwExpr =
duke@1 2038 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
duke@1 2039 List.<JCExpression>nil()),
duke@1 2040 names.initCause,
duke@1 2041 List.<JCExpression>of(make.Ident(catchParam)));
duke@1 2042 rethrow = make.Throw(throwExpr);
duke@1 2043 } else {
duke@1 2044 // getMessageSym := ClassNotFoundException.getMessage()
duke@1 2045 Symbol getMessageSym = lookupMethod(make_pos,
duke@1 2046 names.getMessage,
duke@1 2047 syms.classNotFoundExceptionType,
duke@1 2048 List.<Type>nil());
duke@1 2049 // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
duke@1 2050 rethrow = make.
duke@1 2051 Throw(makeNewClass(syms.noClassDefFoundErrorType,
duke@1 2052 List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
duke@1 2053 getMessageSym),
duke@1 2054 List.<JCExpression>nil()))));
duke@1 2055 }
duke@1 2056
duke@1 2057 // rethrowStmt := "( $rethrow )"
duke@1 2058 JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
duke@1 2059
duke@1 2060 // catchBlock := "catch ($catchParam) $rethrowStmt"
duke@1 2061 JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
duke@1 2062 rethrowStmt);
duke@1 2063
duke@1 2064 // tryCatch := "try $returnResult $catchBlock"
duke@1 2065 JCStatement tryCatch = make.Try(returnResult,
duke@1 2066 List.of(catchBlock), null);
duke@1 2067
duke@1 2068 return make.Block(0, List.of(tryCatch));
duke@1 2069 }
duke@1 2070 // where
duke@1 2071 /** Create an attributed tree of the form left.name(). */
duke@1 2072 private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
jjg@816 2073 Assert.checkNonNull(left.type);
duke@1 2074 Symbol funcsym = lookupMethod(make_pos, name, left.type,
duke@1 2075 TreeInfo.types(args));
duke@1 2076 return make.App(make.Select(left, funcsym), args);
duke@1 2077 }
duke@1 2078
duke@1 2079 /** The Name Of The variable to cache T.class values.
duke@1 2080 * @param sig The signature of type T.
duke@1 2081 */
duke@1 2082 private Name cacheName(String sig) {
jjg@1362 2083 StringBuilder buf = new StringBuilder();
duke@1 2084 if (sig.startsWith("[")) {
duke@1 2085 buf = buf.append("array");
duke@1 2086 while (sig.startsWith("[")) {
duke@1 2087 buf = buf.append(target.syntheticNameChar());
duke@1 2088 sig = sig.substring(1);
duke@1 2089 }
duke@1 2090 if (sig.startsWith("L")) {
duke@1 2091 sig = sig.substring(0, sig.length() - 1);
duke@1 2092 }
duke@1 2093 } else {
duke@1 2094 buf = buf.append("class" + target.syntheticNameChar());
duke@1 2095 }
duke@1 2096 buf = buf.append(sig.replace('.', target.syntheticNameChar()));
duke@1 2097 return names.fromString(buf.toString());
duke@1 2098 }
duke@1 2099
duke@1 2100 /** The variable symbol that caches T.class values.
duke@1 2101 * If none exists yet, create a definition.
duke@1 2102 * @param sig The signature of type T.
duke@1 2103 * @param pos The position to report diagnostics, if any.
duke@1 2104 */
duke@1 2105 private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
duke@1 2106 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 2107 Name cname = cacheName(sig);
duke@1 2108 VarSymbol cacheSym =
duke@1 2109 (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
duke@1 2110 if (cacheSym == null) {
duke@1 2111 cacheSym = new VarSymbol(
duke@1 2112 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
duke@1 2113 enterSynthetic(pos, cacheSym, outerCacheClass.members());
duke@1 2114
duke@1 2115 JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
duke@1 2116 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 2117 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
duke@1 2118 }
duke@1 2119 return cacheSym;
duke@1 2120 }
duke@1 2121
duke@1 2122 /** The tree simulating a T.class expression.
duke@1 2123 * @param clazz The tree identifying type T.
duke@1 2124 */
duke@1 2125 private JCExpression classOf(JCTree clazz) {
duke@1 2126 return classOfType(clazz.type, clazz.pos());
duke@1 2127 }
duke@1 2128
duke@1 2129 private JCExpression classOfType(Type type, DiagnosticPosition pos) {
jjg@1374 2130 switch (type.getTag()) {
duke@1 2131 case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
duke@1 2132 case DOUBLE: case BOOLEAN: case VOID:
duke@1 2133 // replace with <BoxedClass>.TYPE
duke@1 2134 ClassSymbol c = types.boxedClass(type);
duke@1 2135 Symbol typeSym =
mcimadamore@1347 2136 rs.accessBase(
duke@1 2137 rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
duke@1 2138 pos, c.type, names.TYPE, true);
duke@1 2139 if (typeSym.kind == VAR)
duke@1 2140 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
duke@1 2141 return make.QualIdent(typeSym);
duke@1 2142 case CLASS: case ARRAY:
duke@1 2143 if (target.hasClassLiterals()) {
duke@1 2144 VarSymbol sym = new VarSymbol(
duke@1 2145 STATIC | PUBLIC | FINAL, names._class,
duke@1 2146 syms.classType, type.tsym);
duke@1 2147 return make_at(pos).Select(make.Type(type), sym);
duke@1 2148 }
duke@1 2149 // replace with <cache == null ? cache = class$(tsig) : cache>
duke@1 2150 // where
duke@1 2151 // - <tsig> is the type signature of T,
duke@1 2152 // - <cache> is the cache variable for tsig.
duke@1 2153 String sig =
duke@1 2154 writer.xClassName(type).toString().replace('/', '.');
duke@1 2155 Symbol cs = cacheSym(pos, sig);
duke@1 2156 return make_at(pos).Conditional(
jjg@1127 2157 makeBinary(EQ, make.Ident(cs), makeNull()),
duke@1 2158 make.Assign(
duke@1 2159 make.Ident(cs),
duke@1 2160 make.App(
duke@1 2161 make.Ident(classDollarSym(pos)),
duke@1 2162 List.<JCExpression>of(make.Literal(CLASS, sig)
duke@1 2163 .setType(syms.stringType))))
duke@1 2164 .setType(types.erasure(syms.classType)),
duke@1 2165 make.Ident(cs)).setType(types.erasure(syms.classType));
duke@1 2166 default:
duke@1 2167 throw new AssertionError();
duke@1 2168 }
duke@1 2169 }
duke@1 2170
duke@1 2171 /**************************************************************************
duke@1 2172 * Code for enabling/disabling assertions.
duke@1 2173 *************************************************************************/
duke@1 2174
jlahoda@2098 2175 private ClassSymbol assertionsDisabledClassCache;
jlahoda@2098 2176
jlahoda@2098 2177 /**Used to create an auxiliary class to hold $assertionsDisabled for interfaces.
jlahoda@2098 2178 */
jlahoda@2098 2179 private ClassSymbol assertionsDisabledClass() {
jlahoda@2098 2180 if (assertionsDisabledClassCache != null) return assertionsDisabledClassCache;
jlahoda@2098 2181
jlahoda@2098 2182 assertionsDisabledClassCache = makeEmptyClass(STATIC | SYNTHETIC, outermostClassDef.sym).sym;
jlahoda@2098 2183
jlahoda@2098 2184 return assertionsDisabledClassCache;
jlahoda@2098 2185 }
jlahoda@2098 2186
duke@1 2187 // This code is not particularly robust if the user has
duke@1 2188 // previously declared a member named '$assertionsDisabled'.
duke@1 2189 // The same faulty idiom also appears in the translation of
duke@1 2190 // class literals above. We should report an error if a
duke@1 2191 // previous declaration is not synthetic.
duke@1 2192
duke@1 2193 private JCExpression assertFlagTest(DiagnosticPosition pos) {
duke@1 2194 // Outermost class may be either true class or an interface.
duke@1 2195 ClassSymbol outermostClass = outermostClassDef.sym;
duke@1 2196
jlahoda@2098 2197 //only classes can hold a non-public field, look for a usable one:
jlahoda@2098 2198 ClassSymbol container = !currentClass.isInterface() ? currentClass :
jlahoda@2098 2199 assertionsDisabledClass();
duke@1 2200
duke@1 2201 VarSymbol assertDisabledSym =
duke@1 2202 (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
duke@1 2203 container.members());
duke@1 2204 if (assertDisabledSym == null) {
duke@1 2205 assertDisabledSym =
duke@1 2206 new VarSymbol(STATIC | FINAL | SYNTHETIC,
duke@1 2207 dollarAssertionsDisabled,
duke@1 2208 syms.booleanType,
duke@1 2209 container);
duke@1 2210 enterSynthetic(pos, assertDisabledSym, container.members());
duke@1 2211 Symbol desiredAssertionStatusSym = lookupMethod(pos,
duke@1 2212 names.desiredAssertionStatus,
duke@1 2213 types.erasure(syms.classType),
duke@1 2214 List.<Type>nil());
duke@1 2215 JCClassDecl containerDef = classDef(container);
duke@1 2216 make_at(containerDef.pos());
jjg@1127 2217 JCExpression notStatus = makeUnary(NOT, make.App(make.Select(
duke@1 2218 classOfType(types.erasure(outermostClass.type),
duke@1 2219 containerDef.pos()),
duke@1 2220 desiredAssertionStatusSym)));
duke@1 2221 JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
duke@1 2222 notStatus);
duke@1 2223 containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
jlahoda@2098 2224
jlahoda@2098 2225 if (currentClass.isInterface()) {
jlahoda@2098 2226 //need to load the assertions enabled/disabled state while
jlahoda@2098 2227 //initializing the interface:
jlahoda@2098 2228 JCClassDecl currentClassDef = classDef(currentClass);
jlahoda@2098 2229 make_at(currentClassDef.pos());
jlahoda@2098 2230 JCStatement dummy = make.If(make.QualIdent(assertDisabledSym), make.Skip(), null);
jlahoda@2098 2231 JCBlock clinit = make.Block(STATIC, List.<JCStatement>of(dummy));
jlahoda@2098 2232 currentClassDef.defs = currentClassDef.defs.prepend(clinit);
jlahoda@2098 2233 }
duke@1 2234 }
duke@1 2235 make_at(pos);
jjg@1127 2236 return makeUnary(NOT, make.Ident(assertDisabledSym));
duke@1 2237 }
duke@1 2238
duke@1 2239
duke@1 2240 /**************************************************************************
duke@1 2241 * Building blocks for let expressions
duke@1 2242 *************************************************************************/
duke@1 2243
duke@1 2244 interface TreeBuilder {
duke@1 2245 JCTree build(JCTree arg);
duke@1 2246 }
duke@1 2247
duke@1 2248 /** Construct an expression using the builder, with the given rval
duke@1 2249 * expression as an argument to the builder. However, the rval
duke@1 2250 * expression must be computed only once, even if used multiple
duke@1 2251 * times in the result of the builder. We do that by
duke@1 2252 * constructing a "let" expression that saves the rvalue into a
duke@1 2253 * temporary variable and then uses the temporary variable in
duke@1 2254 * place of the expression built by the builder. The complete
duke@1 2255 * resulting expression is of the form
duke@1 2256 * <pre>
duke@1 2257 * (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
duke@1 2258 * in (<b>BUILDER</b>(<b>TEMP</b>)))
duke@1 2259 * </pre>
duke@1 2260 * where <code><b>TEMP</b></code> is a newly declared variable
duke@1 2261 * in the let expression.
duke@1 2262 */
duke@1 2263 JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
duke@1 2264 rval = TreeInfo.skipParens(rval);
duke@1 2265 switch (rval.getTag()) {
jjg@1127 2266 case LITERAL:
duke@1 2267 return builder.build(rval);
jjg@1127 2268 case IDENT:
duke@1 2269 JCIdent id = (JCIdent) rval;
duke@1 2270 if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
duke@1 2271 return builder.build(rval);
duke@1 2272 }
duke@1 2273 VarSymbol var =
duke@1 2274 new VarSymbol(FINAL|SYNTHETIC,
jjg@113 2275 names.fromString(
duke@1 2276 target.syntheticNameChar()
duke@1 2277 + "" + rval.hashCode()),
duke@1 2278 type,
duke@1 2279 currentMethodSym);
mcimadamore@4 2280 rval = convert(rval,type);
duke@1 2281 JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
duke@1 2282 JCTree built = builder.build(make.Ident(var));
duke@1 2283 JCTree res = make.LetExpr(def, built);
duke@1 2284 res.type = built.type;
duke@1 2285 return res;
duke@1 2286 }
duke@1 2287
duke@1 2288 // same as above, with the type of the temporary variable computed
duke@1 2289 JCTree abstractRval(JCTree rval, TreeBuilder builder) {
duke@1 2290 return abstractRval(rval, rval.type, builder);
duke@1 2291 }
duke@1 2292
duke@1 2293 // same as above, but for an expression that may be used as either
duke@1 2294 // an rvalue or an lvalue. This requires special handling for
duke@1 2295 // Select expressions, where we place the left-hand-side of the
duke@1 2296 // select in a temporary, and for Indexed expressions, where we
duke@1 2297 // place both the indexed expression and the index value in temps.
duke@1 2298 JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
duke@1 2299 lval = TreeInfo.skipParens(lval);
duke@1 2300 switch (lval.getTag()) {
jjg@1127 2301 case IDENT:
duke@1 2302 return builder.build(lval);
jjg@1127 2303 case SELECT: {
duke@1 2304 final JCFieldAccess s = (JCFieldAccess)lval;
duke@1 2305 JCTree selected = TreeInfo.skipParens(s.selected);
duke@1 2306 Symbol lid = TreeInfo.symbol(s.selected);
duke@1 2307 if (lid != null && lid.kind == TYP) return builder.build(lval);
duke@1 2308 return abstractRval(s.selected, new TreeBuilder() {
duke@1 2309 public JCTree build(final JCTree selected) {
duke@1 2310 return builder.build(make.Select((JCExpression)selected, s.sym));
duke@1 2311 }
duke@1 2312 });
duke@1 2313 }
jjg@1127 2314 case INDEXED: {
duke@1 2315 final JCArrayAccess i = (JCArrayAccess)lval;
duke@1 2316 return abstractRval(i.indexed, new TreeBuilder() {
duke@1 2317 public JCTree build(final JCTree indexed) {
duke@1 2318 return abstractRval(i.index, syms.intType, new TreeBuilder() {
duke@1 2319 public JCTree build(final JCTree index) {
duke@1 2320 JCTree newLval = make.Indexed((JCExpression)indexed,
duke@1 2321 (JCExpression)index);
duke@1 2322 newLval.setType(i.type);
duke@1 2323 return builder.build(newLval);
duke@1 2324 }
duke@1 2325 });
duke@1 2326 }
duke@1 2327 });
duke@1 2328 }
jjg@1127 2329 case TYPECAST: {
mcimadamore@133 2330 return abstractLval(((JCTypeCast)lval).expr, builder);
mcimadamore@133 2331 }
duke@1 2332 }
duke@1 2333 throw new AssertionError(lval);
duke@1 2334 }
duke@1 2335
duke@1 2336 // evaluate and discard the first expression, then evaluate the second.
duke@1 2337 JCTree makeComma(final JCTree expr1, final JCTree expr2) {
duke@1 2338 return abstractRval(expr1, new TreeBuilder() {
duke@1 2339 public JCTree build(final JCTree discarded) {
duke@1 2340 return expr2;
duke@1 2341 }
duke@1 2342 });
duke@1 2343 }
duke@1 2344
duke@1 2345 /**************************************************************************
duke@1 2346 * Translation methods
duke@1 2347 *************************************************************************/
duke@1 2348
duke@1 2349 /** Visitor argument: enclosing operator node.
duke@1 2350 */
duke@1 2351 private JCExpression enclOp;
duke@1 2352
duke@1 2353 /** Visitor method: Translate a single node.
duke@1 2354 * Attach the source position from the old tree to its replacement tree.
duke@1 2355 */
duke@1 2356 public <T extends JCTree> T translate(T tree) {
duke@1 2357 if (tree == null) {
duke@1 2358 return null;
duke@1 2359 } else {
duke@1 2360 make_at(tree.pos());
duke@1 2361 T result = super.translate(tree);
ksrini@1138 2362 if (endPosTable != null && result != tree) {
ksrini@1138 2363 endPosTable.replaceTree(tree, result);
duke@1 2364 }
duke@1 2365 return result;
duke@1 2366 }
duke@1 2367 }
duke@1 2368
duke@1 2369 /** Visitor method: Translate a single node, boxing or unboxing if needed.
duke@1 2370 */
duke@1 2371 public <T extends JCTree> T translate(T tree, Type type) {
duke@1 2372 return (tree == null) ? null : boxIfNeeded(translate(tree), type);
duke@1 2373 }
duke@1 2374
duke@1 2375 /** Visitor method: Translate tree.
duke@1 2376 */
duke@1 2377 public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
duke@1 2378 JCExpression prevEnclOp = this.enclOp;
duke@1 2379 this.enclOp = enclOp;
duke@1 2380 T res = translate(tree);
duke@1 2381 this.enclOp = prevEnclOp;
duke@1 2382 return res;
duke@1 2383 }
duke@1 2384
duke@1 2385 /** Visitor method: Translate list of trees.
duke@1 2386 */
duke@1 2387 public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
duke@1 2388 JCExpression prevEnclOp = this.enclOp;
duke@1 2389 this.enclOp = enclOp;
duke@1 2390 List<T> res = translate(trees);
duke@1 2391 this.enclOp = prevEnclOp;
duke@1 2392 return res;
duke@1 2393 }
duke@1 2394
duke@1 2395 /** Visitor method: Translate list of trees.
duke@1 2396 */
duke@1 2397 public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
duke@1 2398 if (trees == null) return null;
duke@1 2399 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
duke@1 2400 l.head = translate(l.head, type);
duke@1 2401 return trees;
duke@1 2402 }
duke@1 2403
duke@1 2404 public void visitTopLevel(JCCompilationUnit tree) {
jjg@657 2405 if (needPackageInfoClass(tree)) {
duke@1 2406 Name name = names.package_info;
duke@1 2407 long flags = Flags.ABSTRACT | Flags.INTERFACE;
duke@1 2408 if (target.isPackageInfoSynthetic())
duke@1 2409 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
duke@1 2410 flags = flags | Flags.SYNTHETIC;
duke@1 2411 JCClassDecl packageAnnotationsClass
duke@1 2412 = make.ClassDef(make.Modifiers(flags,
duke@1 2413 tree.packageAnnotations),
duke@1 2414 name, List.<JCTypeParameter>nil(),
duke@1 2415 null, List.<JCExpression>nil(), List.<JCTree>nil());
jjg@483 2416 ClassSymbol c = tree.packge.package_info;
jjg@483 2417 c.flags_field |= flags;
jjg@1802 2418 c.setAttributes(tree.packge);
duke@1 2419 ClassType ctype = (ClassType) c.type;
duke@1 2420 ctype.supertype_field = syms.objectType;
duke@1 2421 ctype.interfaces_field = List.nil();
duke@1 2422 packageAnnotationsClass.sym = c;
duke@1 2423
duke@1 2424 translated.append(packageAnnotationsClass);
duke@1 2425 }
duke@1 2426 }
jjg@657 2427 // where
jjg@657 2428 private boolean needPackageInfoClass(JCCompilationUnit tree) {
jjg@657 2429 switch (pkginfoOpt) {
jjg@657 2430 case ALWAYS:
jjg@657 2431 return true;
jjg@657 2432 case LEGACY:
jjg@657 2433 return tree.packageAnnotations.nonEmpty();
jjg@657 2434 case NONEMPTY:
jfranck@1313 2435 for (Attribute.Compound a :
jjg@1802 2436 tree.packge.getDeclarationAttributes()) {
jjg@657 2437 Attribute.RetentionPolicy p = types.getRetention(a);
jjg@657 2438 if (p != Attribute.RetentionPolicy.SOURCE)
jjg@657 2439 return true;
jjg@657 2440 }
jjg@657 2441 return false;
jjg@657 2442 }
jjg@657 2443 throw new AssertionError();
jjg@657 2444 }
duke@1 2445
duke@1 2446 public void visitClassDef(JCClassDecl tree) {
duke@1 2447 ClassSymbol currentClassPrev = currentClass;
duke@1 2448 MethodSymbol currentMethodSymPrev = currentMethodSym;
duke@1 2449 currentClass = tree.sym;
duke@1 2450 currentMethodSym = null;
duke@1 2451 classdefs.put(currentClass, tree);
duke@1 2452
duke@1 2453 proxies = proxies.dup(currentClass);
duke@1 2454 List<VarSymbol> prevOuterThisStack = outerThisStack;
duke@1 2455
duke@1 2456 // If this is an enum definition
duke@1 2457 if ((tree.mods.flags & ENUM) != 0 &&
duke@1 2458 (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
duke@1 2459 visitEnumDef(tree);
duke@1 2460
duke@1 2461 // If this is a nested class, define a this$n field for
duke@1 2462 // it and add to proxies.
duke@1 2463 JCVariableDecl otdef = null;
duke@1 2464 if (currentClass.hasOuterInstance())
duke@1 2465 otdef = outerThisDef(tree.pos, currentClass);
duke@1 2466
duke@1 2467 // If this is a local class, define proxies for all its free variables.
duke@1 2468 List<JCVariableDecl> fvdefs = freevarDefs(
duke@1 2469 tree.pos, freevars(currentClass), currentClass);
duke@1 2470
duke@1 2471 // Recursively translate superclass, interfaces.
duke@1 2472 tree.extending = translate(tree.extending);
duke@1 2473 tree.implementing = translate(tree.implementing);
duke@1 2474
mcimadamore@1086 2475 if (currentClass.isLocal()) {
mcimadamore@1086 2476 ClassSymbol encl = currentClass.owner.enclClass();
mcimadamore@1086 2477 if (encl.trans_local == null) {
mcimadamore@1086 2478 encl.trans_local = List.nil();
mcimadamore@1086 2479 }
mcimadamore@1086 2480 encl.trans_local = encl.trans_local.prepend(currentClass);
mcimadamore@1086 2481 }
mcimadamore@1086 2482
duke@1 2483 // Recursively translate members, taking into account that new members
duke@1 2484 // might be created during the translation and prepended to the member
duke@1 2485 // list `tree.defs'.
duke@1 2486 List<JCTree> seen = List.nil();
duke@1 2487 while (tree.defs != seen) {
duke@1 2488 List<JCTree> unseen = tree.defs;
duke@1 2489 for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
duke@1 2490 JCTree outermostMemberDefPrev = outermostMemberDef;
duke@1 2491 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
duke@1 2492 l.head = translate(l.head);
duke@1 2493 outermostMemberDef = outermostMemberDefPrev;
duke@1 2494 }
duke@1 2495 seen = unseen;
duke@1 2496 }
duke@1 2497
duke@1 2498 // Convert a protected modifier to public, mask static modifier.
duke@1 2499 if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
duke@1 2500 tree.mods.flags &= ClassFlags;
duke@1 2501
duke@1 2502 // Convert name to flat representation, replacing '.' by '$'.
duke@1 2503 tree.name = Convert.shortName(currentClass.flatName());
duke@1 2504
duke@1 2505 // Add this$n and free variables proxy definitions to class.
vromero@1954 2506
duke@1 2507 for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
duke@1 2508 tree.defs = tree.defs.prepend(l.head);
duke@1 2509 enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
duke@1 2510 }
duke@1 2511 if (currentClass.hasOuterInstance()) {
duke@1 2512 tree.defs = tree.defs.prepend(otdef);
duke@1 2513 enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
duke@1 2514 }
duke@1 2515
duke@1 2516 proxies = proxies.leave();
duke@1 2517 outerThisStack = prevOuterThisStack;
duke@1 2518
duke@1 2519 // Append translated tree to `translated' queue.
duke@1 2520 translated.append(tree);
duke@1 2521
duke@1 2522 currentClass = currentClassPrev;
duke@1 2523 currentMethodSym = currentMethodSymPrev;
duke@1 2524
duke@1 2525 // Return empty block {} as a placeholder for an inner class.
duke@1 2526 result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
duke@1 2527 }
duke@1 2528
duke@1 2529 /** Translate an enum class. */
duke@1 2530 private void visitEnumDef(JCClassDecl tree) {
duke@1 2531 make_at(tree.pos());
duke@1 2532
duke@1 2533 // add the supertype, if needed
duke@1 2534 if (tree.extending == null)
duke@1 2535 tree.extending = make.Type(types.supertype(tree.type));
duke@1 2536
duke@1 2537 // classOfType adds a cache field to tree.defs unless
duke@1 2538 // target.hasClassLiterals().
duke@1 2539 JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
duke@1 2540 setType(types.erasure(syms.classType));
duke@1 2541
duke@1 2542 // process each enumeration constant, adding implicit constructor parameters
duke@1 2543 int nextOrdinal = 0;
duke@1 2544 ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
duke@1 2545 ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
duke@1 2546 ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
duke@1 2547 for (List<JCTree> defs = tree.defs;
duke@1 2548 defs.nonEmpty();
duke@1 2549 defs=defs.tail) {
jjg@1127 2550 if (defs.head.hasTag(VARDEF) && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
duke@1 2551 JCVariableDecl var = (JCVariableDecl)defs.head;
duke@1 2552 visitEnumConstantDef(var, nextOrdinal++);
duke@1 2553 values.append(make.QualIdent(var.sym));
duke@1 2554 enumDefs.append(var);
duke@1 2555 } else {
duke@1 2556 otherDefs.append(defs.head);
duke@1 2557 }
duke@1 2558 }
duke@1 2559
duke@1 2560 // private static final T[] #VALUES = { a, b, c };
duke@1 2561 Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
duke@1 2562 while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
duke@1 2563 valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
duke@1 2564 Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
duke@1 2565 VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
duke@1 2566 valuesName,
duke@1 2567 arrayType,
duke@1 2568 tree.type.tsym);
duke@1 2569 JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
duke@1 2570 List.<JCExpression>nil(),
duke@1 2571 values.toList());
duke@1 2572 newArray.type = arrayType;
duke@1 2573 enumDefs.append(make.VarDef(valuesVar, newArray));
duke@1 2574 tree.sym.members().enter(valuesVar);
duke@1 2575
duke@1 2576 Symbol valuesSym = lookupMethod(tree.pos(), names.values,
duke@1 2577 tree.type, List.<Type>nil());
jjg@86 2578 List<JCStatement> valuesBody;
jjg@86 2579 if (useClone()) {
jjg@86 2580 // return (T[]) $VALUES.clone();
jjg@86 2581 JCTypeCast valuesResult =
jjg@86 2582 make.TypeCast(valuesSym.type.getReturnType(),
jjg@86 2583 make.App(make.Select(make.Ident(valuesVar),
jjg@86 2584 syms.arrayCloneMethod)));
jjg@86 2585 valuesBody = List.<JCStatement>of(make.Return(valuesResult));
jjg@86 2586 } else {
jjg@86 2587 // template: T[] $result = new T[$values.length];
jjg@86 2588 Name resultName = names.fromString(target.syntheticNameChar() + "result");
jjg@86 2589 while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
jjg@86 2590 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
jjg@86 2591 VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
jjg@86 2592 resultName,
jjg@86 2593 arrayType,
jjg@86 2594 valuesSym);
jjg@86 2595 JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
jjg@86 2596 List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
jjg@86 2597 null);
jjg@86 2598 resultArray.type = arrayType;
jjg@86 2599 JCVariableDecl decl = make.VarDef(resultVar, resultArray);
jjg@86 2600
jjg@86 2601 // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
jjg@86 2602 if (systemArraycopyMethod == null) {
jjg@86 2603 systemArraycopyMethod =
jjg@86 2604 new MethodSymbol(PUBLIC | STATIC,
jjg@86 2605 names.fromString("arraycopy"),
jjg@86 2606 new MethodType(List.<Type>of(syms.objectType,
jjg@86 2607 syms.intType,
jjg@86 2608 syms.objectType,
jjg@86 2609 syms.intType,
jjg@86 2610 syms.intType),
jjg@86 2611 syms.voidType,
jjg@86 2612 List.<Type>nil(),
jjg@86 2613 syms.methodClass),
jjg@86 2614 syms.systemType.tsym);
jjg@86 2615 }
jjg@86 2616 JCStatement copy =
jjg@86 2617 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
jjg@86 2618 systemArraycopyMethod),
jjg@86 2619 List.of(make.Ident(valuesVar), make.Literal(0),
jjg@86 2620 make.Ident(resultVar), make.Literal(0),
jjg@86 2621 make.Select(make.Ident(valuesVar), syms.lengthVar))));
jjg@86 2622
jjg@86 2623 // template: return $result;
jjg@86 2624 JCStatement ret = make.Return(make.Ident(resultVar));
jjg@86 2625 valuesBody = List.<JCStatement>of(decl, copy, ret);
jjg@86 2626 }
jjg@86 2627
duke@1 2628 JCMethodDecl valuesDef =
jjg@86 2629 make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
jjg@86 2630
duke@1 2631 enumDefs.append(valuesDef);
duke@1 2632
jjg@86 2633 if (debugLower)
jjg@86 2634 System.err.println(tree.sym + ".valuesDef = " + valuesDef);
jjg@86 2635
duke@1 2636 /** The template for the following code is:
duke@1 2637 *
duke@1 2638 * public static E valueOf(String name) {
duke@1 2639 * return (E)Enum.valueOf(E.class, name);
duke@1 2640 * }
duke@1 2641 *
duke@1 2642 * where E is tree.sym
duke@1 2643 */
duke@1 2644 MethodSymbol valueOfSym = lookupMethod(tree.pos(),
duke@1 2645 names.valueOf,
duke@1 2646 tree.sym.type,
duke@1 2647 List.of(syms.stringType));
jjg@816 2648 Assert.check((valueOfSym.flags() & STATIC) != 0);
duke@1 2649 VarSymbol nameArgSym = valueOfSym.params.head;
duke@1 2650 JCIdent nameVal = make.Ident(nameArgSym);
duke@1 2651 JCStatement enum_ValueOf =
duke@1 2652 make.Return(make.TypeCast(tree.sym.type,
duke@1 2653 makeCall(make.Ident(syms.enumSym),
duke@1 2654 names.valueOf,
duke@1 2655 List.of(e_class, nameVal))));
duke@1 2656 JCMethodDecl valueOf = make.MethodDef(valueOfSym,
duke@1 2657 make.Block(0, List.of(enum_ValueOf)));
duke@1 2658 nameVal.sym = valueOf.params.head.sym;
duke@1 2659 if (debugLower)
duke@1 2660 System.err.println(tree.sym + ".valueOf = " + valueOf);
duke@1 2661 enumDefs.append(valueOf);
duke@1 2662
duke@1 2663 enumDefs.appendList(otherDefs.toList());
duke@1 2664 tree.defs = enumDefs.toList();
duke@1 2665 }
jjg@86 2666 // where
jjg@86 2667 private MethodSymbol systemArraycopyMethod;
jjg@86 2668 private boolean useClone() {
jjg@86 2669 try {
jjg@86 2670 Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
jjg@86 2671 return (e.sym != null);
jjg@86 2672 }
jjg@86 2673 catch (CompletionFailure e) {
jjg@86 2674 return false;
jjg@86 2675 }
jjg@86 2676 }
duke@1 2677
duke@1 2678 /** Translate an enumeration constant and its initializer. */
duke@1 2679 private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
duke@1 2680 JCNewClass varDef = (JCNewClass)var.init;
duke@1 2681 varDef.args = varDef.args.
duke@1 2682 prepend(makeLit(syms.intType, ordinal)).
duke@1 2683 prepend(makeLit(syms.stringType, var.name.toString()));
duke@1 2684 }
duke@1 2685
duke@1 2686 public void visitMethodDef(JCMethodDecl tree) {
duke@1 2687 if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
duke@1 2688 // Add "String $enum$name, int $enum$ordinal" to the beginning of the
duke@1 2689 // argument list for each constructor of an enum.
duke@1 2690 JCVariableDecl nameParam = make_at(tree.pos()).
duke@1 2691 Param(names.fromString(target.syntheticNameChar() +
duke@1 2692 "enum" + target.syntheticNameChar() + "name"),
duke@1 2693 syms.stringType, tree.sym);
duke@1 2694 nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
duke@1 2695 JCVariableDecl ordParam = make.
duke@1 2696 Param(names.fromString(target.syntheticNameChar() +
duke@1 2697 "enum" + target.syntheticNameChar() +
duke@1 2698 "ordinal"),
duke@1 2699 syms.intType, tree.sym);
duke@1 2700 ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
duke@1 2701
duke@1 2702 tree.params = tree.params.prepend(ordParam).prepend(nameParam);
duke@1 2703
duke@1 2704 MethodSymbol m = tree.sym;
mcimadamore@1565 2705 m.extraParams = m.extraParams.prepend(ordParam.sym);
mcimadamore@1565 2706 m.extraParams = m.extraParams.prepend(nameParam.sym);
duke@1 2707 Type olderasure = m.erasure(types);
duke@1 2708 m.erasure_field = new MethodType(
duke@1 2709 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
duke@1 2710 olderasure.getReturnType(),
duke@1 2711 olderasure.getThrownTypes(),
duke@1 2712 syms.methodClass);
duke@1 2713 }
duke@1 2714
duke@1 2715 JCMethodDecl prevMethodDef = currentMethodDef;
duke@1 2716 MethodSymbol prevMethodSym = currentMethodSym;
duke@1 2717 try {
duke@1 2718 currentMethodDef = tree;
duke@1 2719 currentMethodSym = tree.sym;
duke@1 2720 visitMethodDefInternal(tree);
duke@1 2721 } finally {
duke@1 2722 currentMethodDef = prevMethodDef;
duke@1 2723 currentMethodSym = prevMethodSym;
duke@1 2724 }
duke@1 2725 }
duke@1 2726 //where
duke@1 2727 private void visitMethodDefInternal(JCMethodDecl tree) {
duke@1 2728 if (tree.name == names.init &&
vromero@1954 2729 (currentClass.isInner() || currentClass.isLocal())) {
duke@1 2730 // We are seeing a constructor of an inner class.
duke@1 2731 MethodSymbol m = tree.sym;
duke@1 2732
duke@1 2733 // Push a new proxy scope for constructor parameters.
duke@1 2734 // and create definitions for any this$n and proxy parameters.
duke@1 2735 proxies = proxies.dup(m);
duke@1 2736 List<VarSymbol> prevOuterThisStack = outerThisStack;
duke@1 2737 List<VarSymbol> fvs = freevars(currentClass);
duke@1 2738 JCVariableDecl otdef = null;
duke@1 2739 if (currentClass.hasOuterInstance())
duke@1 2740 otdef = outerThisDef(tree.pos, m);
vromero@2027 2741 List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m, PARAMETER);
duke@1 2742
duke@1 2743 // Recursively translate result type, parameters and thrown list.
duke@1 2744 tree.restype = translate(tree.restype);
duke@1 2745 tree.params = translateVarDefs(tree.params);
duke@1 2746 tree.thrown = translate(tree.thrown);
duke@1 2747
duke@1 2748 // when compiling stubs, don't process body
duke@1 2749 if (tree.body == null) {
duke@1 2750 result = tree;
duke@1 2751 return;
duke@1 2752 }
duke@1 2753
duke@1 2754 // Add this$n (if needed) in front of and free variables behind
duke@1 2755 // constructor parameter list.
duke@1 2756 tree.params = tree.params.appendList(fvdefs);
duke@1 2757 if (currentClass.hasOuterInstance())
duke@1 2758 tree.params = tree.params.prepend(otdef);
duke@1 2759
duke@1 2760 // If this is an initial constructor, i.e., it does not start with
duke@1 2761 // this(...), insert initializers for this$n and proxies
duke@1 2762 // before (pre-1.4, after) the call to superclass constructor.
duke@1 2763 JCStatement selfCall = translate(tree.body.stats.head);
duke@1 2764
duke@1 2765 List<JCStatement> added = List.nil();
duke@1 2766 if (fvs.nonEmpty()) {
duke@1 2767 List<Type> addedargtypes = List.nil();
duke@1 2768 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
emc@1808 2769 if (TreeInfo.isInitialConstructor(tree)) {
emc@1808 2770 final Name pName = proxyName(l.head.name);
emc@1975 2771 m.capturedLocals =
emc@1975 2772 m.capturedLocals.append((VarSymbol)
emc@1975 2773 (proxies.lookup(pName).sym));
duke@1 2774 added = added.prepend(
emc@1808 2775 initField(tree.body.pos, pName));
emc@1808 2776 }
duke@1 2777 addedargtypes = addedargtypes.prepend(l.head.erasure(types));
duke@1 2778 }
duke@1 2779 Type olderasure = m.erasure(types);
duke@1 2780 m.erasure_field = new MethodType(
duke@1 2781 olderasure.getParameterTypes().appendList(addedargtypes),
duke@1 2782 olderasure.getReturnType(),
duke@1 2783 olderasure.getThrownTypes(),
duke@1 2784 syms.methodClass);
duke@1 2785 }
duke@1 2786 if (currentClass.hasOuterInstance() &&
duke@1 2787 TreeInfo.isInitialConstructor(tree))
duke@1 2788 {
duke@1 2789 added = added.prepend(initOuterThis(tree.body.pos));
duke@1 2790 }
duke@1 2791
duke@1 2792 // pop local variables from proxy stack
duke@1 2793 proxies = proxies.leave();
duke@1 2794
duke@1 2795 // recursively translate following local statements and
duke@1 2796 // combine with this- or super-call
duke@1 2797 List<JCStatement> stats = translate(tree.body.stats.tail);
duke@1 2798 if (target.initializeFieldsBeforeSuper())
duke@1 2799 tree.body.stats = stats.prepend(selfCall).prependList(added);
duke@1 2800 else
duke@1 2801 tree.body.stats = stats.prependList(added).prepend(selfCall);
duke@1 2802
duke@1 2803 outerThisStack = prevOuterThisStack;
duke@1 2804 } else {
mcimadamore@1612 2805 Map<Symbol, Symbol> prevLambdaTranslationMap =
mcimadamore@1612 2806 lambdaTranslationMap;
mcimadamore@1612 2807 try {
mcimadamore@1612 2808 lambdaTranslationMap = (tree.sym.flags() & SYNTHETIC) != 0 &&
mcimadamore@1612 2809 tree.sym.name.startsWith(names.lambda) ?
mcimadamore@1612 2810 makeTranslationMap(tree) : null;
mcimadamore@1612 2811 super.visitMethodDef(tree);
mcimadamore@1612 2812 } finally {
mcimadamore@1612 2813 lambdaTranslationMap = prevLambdaTranslationMap;
mcimadamore@1612 2814 }
duke@1 2815 }
duke@1 2816 result = tree;
duke@1 2817 }
mcimadamore@1612 2818 //where
mcimadamore@1612 2819 private Map<Symbol, Symbol> makeTranslationMap(JCMethodDecl tree) {
mcimadamore@1612 2820 Map<Symbol, Symbol> translationMap = new HashMap<Symbol,Symbol>();
mcimadamore@1612 2821 for (JCVariableDecl vd : tree.params) {
mcimadamore@1612 2822 Symbol p = vd.sym;
mcimadamore@1612 2823 if (p != p.baseSymbol()) {
mcimadamore@1612 2824 translationMap.put(p.baseSymbol(), p);
mcimadamore@1612 2825 }
mcimadamore@1612 2826 }
mcimadamore@1612 2827 return translationMap;
mcimadamore@1612 2828 }
duke@1 2829
jjg@1521 2830 public void visitAnnotatedType(JCAnnotatedType tree) {
jjg@1755 2831 // No need to retain type annotations in the tree
jjg@1521 2832 // tree.annotations = translate(tree.annotations);
jjg@1755 2833 tree.annotations = List.nil();
jjg@1521 2834 tree.underlyingType = translate(tree.underlyingType);
jjg@1755 2835 // but maintain type annotations in the type.
jjg@1755 2836 if (tree.type.isAnnotated()) {
jjg@2134 2837 tree.type = tree.underlyingType.type.unannotatedType().annotatedType(tree.type.getAnnotationMirrors());
jjg@2134 2838 } else if (tree.underlyingType.type.isAnnotated()) {
jjg@2134 2839 tree.type = tree.underlyingType.type;
jjg@1755 2840 }
jjg@1755 2841 result = tree;
jjg@1521 2842 }
jjg@1521 2843
duke@1 2844 public void visitTypeCast(JCTypeCast tree) {
duke@1 2845 tree.clazz = translate(tree.clazz);
duke@1 2846 if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
duke@1 2847 tree.expr = translate(tree.expr, tree.type);
duke@1 2848 else
duke@1 2849 tree.expr = translate(tree.expr);
duke@1 2850 result = tree;
duke@1 2851 }
duke@1 2852
duke@1 2853 public void visitNewClass(JCNewClass tree) {
duke@1 2854 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
duke@1 2855
duke@1 2856 // Box arguments, if necessary
duke@1 2857 boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
duke@1 2858 List<Type> argTypes = tree.constructor.type.getParameterTypes();
duke@1 2859 if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
duke@1 2860 tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
duke@1 2861 tree.varargsElement = null;
duke@1 2862
duke@1 2863 // If created class is local, add free variables after
duke@1 2864 // explicit constructor arguments.
vromero@1954 2865 if (c.isLocal()) {
duke@1 2866 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
duke@1 2867 }
duke@1 2868
duke@1 2869 // If an access constructor is used, append null as a last argument.
duke@1 2870 Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
duke@1 2871 if (constructor != tree.constructor) {
duke@1 2872 tree.args = tree.args.append(makeNull());
duke@1 2873 tree.constructor = constructor;
duke@1 2874 }
duke@1 2875
duke@1 2876 // If created class has an outer instance, and new is qualified, pass
duke@1 2877 // qualifier as first argument. If new is not qualified, pass the
duke@1 2878 // correct outer instance as first argument.
duke@1 2879 if (c.hasOuterInstance()) {
duke@1 2880 JCExpression thisArg;
duke@1 2881 if (tree.encl != null) {
duke@1 2882 thisArg = attr.makeNullCheck(translate(tree.encl));
duke@1 2883 thisArg.type = tree.encl.type;
vromero@1954 2884 } else if (c.isLocal()) {
duke@1 2885 // local class
duke@1 2886 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
duke@1 2887 } else {
duke@1 2888 // nested class
duke@1 2889 thisArg = makeOwnerThis(tree.pos(), c, false);
duke@1 2890 }
duke@1 2891 tree.args = tree.args.prepend(thisArg);
duke@1 2892 }
duke@1 2893 tree.encl = null;
duke@1 2894
duke@1 2895 // If we have an anonymous class, create its flat version, rather
duke@1 2896 // than the class or interface following new.
duke@1 2897 if (tree.def != null) {
duke@1 2898 translate(tree.def);
duke@1 2899 tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
duke@1 2900 tree.def = null;
duke@1 2901 } else {
duke@1 2902 tree.clazz = access(c, tree.clazz, enclOp, false);
duke@1 2903 }
duke@1 2904 result = tree;
duke@1 2905 }
duke@1 2906
duke@1 2907 // Simplify conditionals with known constant controlling expressions.
duke@1 2908 // This allows us to avoid generating supporting declarations for
duke@1 2909 // the dead code, which will not be eliminated during code generation.
duke@1 2910 // Note that Flow.isFalse and Flow.isTrue only return true
duke@1 2911 // for constant expressions in the sense of JLS 15.27, which
darcy@430 2912 // are guaranteed to have no side-effects. More aggressive
duke@1 2913 // constant propagation would require that we take care to
duke@1 2914 // preserve possible side-effects in the condition expression.
duke@1 2915
duke@1 2916 /** Visitor method for conditional expressions.
duke@1 2917 */
vromero@1432 2918 @Override
duke@1 2919 public void visitConditional(JCConditional tree) {
duke@1 2920 JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2921 if (cond.type.isTrue()) {
duke@1 2922 result = convert(translate(tree.truepart, tree.type), tree.type);
vromero@1432 2923 addPrunedInfo(cond);
duke@1 2924 } else if (cond.type.isFalse()) {
duke@1 2925 result = convert(translate(tree.falsepart, tree.type), tree.type);
vromero@1432 2926 addPrunedInfo(cond);
duke@1 2927 } else {
duke@1 2928 // Condition is not a compile-time constant.
duke@1 2929 tree.truepart = translate(tree.truepart, tree.type);
duke@1 2930 tree.falsepart = translate(tree.falsepart, tree.type);
duke@1 2931 result = tree;
duke@1 2932 }
duke@1 2933 }
duke@1 2934 //where
vromero@1432 2935 private JCTree convert(JCTree tree, Type pt) {
vromero@1432 2936 if (tree.type == pt || tree.type.hasTag(BOT))
vromero@1432 2937 return tree;
vromero@1432 2938 JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
vromero@1432 2939 result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
vromero@1432 2940 : pt;
vromero@1432 2941 return result;
vromero@1432 2942 }
duke@1 2943
duke@1 2944 /** Visitor method for if statements.
duke@1 2945 */
duke@1 2946 public void visitIf(JCIf tree) {
duke@1 2947 JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2948 if (cond.type.isTrue()) {
duke@1 2949 result = translate(tree.thenpart);
vromero@1432 2950 addPrunedInfo(cond);
duke@1 2951 } else if (cond.type.isFalse()) {
duke@1 2952 if (tree.elsepart != null) {
duke@1 2953 result = translate(tree.elsepart);
duke@1 2954 } else {
duke@1 2955 result = make.Skip();
duke@1 2956 }
vromero@1432 2957 addPrunedInfo(cond);
duke@1 2958 } else {
duke@1 2959 // Condition is not a compile-time constant.
duke@1 2960 tree.thenpart = translate(tree.thenpart);
duke@1 2961 tree.elsepart = translate(tree.elsepart);
duke@1 2962 result = tree;
duke@1 2963 }
duke@1 2964 }
duke@1 2965
duke@1 2966 /** Visitor method for assert statements. Translate them away.
duke@1 2967 */
duke@1 2968 public void visitAssert(JCAssert tree) {
duke@1 2969 DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
duke@1 2970 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2971 if (!tree.cond.type.isTrue()) {
duke@1 2972 JCExpression cond = assertFlagTest(tree.pos());
duke@1 2973 List<JCExpression> exnArgs = (tree.detail == null) ?
duke@1 2974 List.<JCExpression>nil() : List.of(translate(tree.detail));
duke@1 2975 if (!tree.cond.type.isFalse()) {
duke@1 2976 cond = makeBinary
jjg@1127 2977 (AND,
duke@1 2978 cond,
jjg@1127 2979 makeUnary(NOT, tree.cond));
duke@1 2980 }
duke@1 2981 result =
duke@1 2982 make.If(cond,
vromero@1783 2983 make_at(tree).
duke@1 2984 Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
duke@1 2985 null);
duke@1 2986 } else {
duke@1 2987 result = make.Skip();
duke@1 2988 }
duke@1 2989 }
duke@1 2990
duke@1 2991 public void visitApply(JCMethodInvocation tree) {
duke@1 2992 Symbol meth = TreeInfo.symbol(tree.meth);
duke@1 2993 List<Type> argtypes = meth.type.getParameterTypes();
duke@1 2994 if (allowEnums &&
duke@1 2995 meth.name==names.init &&
duke@1 2996 meth.owner == syms.enumSym)
duke@1 2997 argtypes = argtypes.tail.tail;
duke@1 2998 tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
duke@1 2999 tree.varargsElement = null;
duke@1 3000 Name methName = TreeInfo.name(tree.meth);
duke@1 3001 if (meth.name==names.init) {
duke@1 3002 // We are seeing a this(...) or super(...) constructor call.
duke@1 3003 // If an access constructor is used, append null as a last argument.
duke@1 3004 Symbol constructor = accessConstructor(tree.pos(), meth);
duke@1 3005 if (constructor != meth) {
duke@1 3006 tree.args = tree.args.append(makeNull());
duke@1 3007 TreeInfo.setSymbol(tree.meth, constructor);
duke@1 3008 }
duke@1 3009
duke@1 3010 // If we are calling a constructor of a local class, add
duke@1 3011 // free variables after explicit constructor arguments.
duke@1 3012 ClassSymbol c = (ClassSymbol)constructor.owner;
vromero@1954 3013 if (c.isLocal()) {
duke@1 3014 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
duke@1 3015 }
duke@1 3016
duke@1 3017 // If we are calling a constructor of an enum class, pass
duke@1 3018 // along the name and ordinal arguments
duke@1 3019 if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
duke@1 3020 List<JCVariableDecl> params = currentMethodDef.params;
duke@1 3021 if (currentMethodSym.owner.hasOuterInstance())
duke@1 3022 params = params.tail; // drop this$n
duke@1 3023 tree.args = tree.args
duke@1 3024 .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
duke@1 3025 .prepend(make.Ident(params.head.sym)); // name
duke@1 3026 }
duke@1 3027
duke@1 3028 // If we are calling a constructor of a class with an outer
duke@1 3029 // instance, and the call
duke@1 3030 // is qualified, pass qualifier as first argument in front of
duke@1 3031 // the explicit constructor arguments. If the call
duke@1 3032 // is not qualified, pass the correct outer instance as
duke@1 3033 // first argument.
duke@1 3034 if (c.hasOuterInstance()) {
duke@1 3035 JCExpression thisArg;
jjg@1127 3036 if (tree.meth.hasTag(SELECT)) {
duke@1 3037 thisArg = attr.
duke@1 3038 makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
duke@1 3039 tree.meth = make.Ident(constructor);
duke@1 3040 ((JCIdent) tree.meth).name = methName;
vromero@1954 3041 } else if (c.isLocal() || methName == names._this){
duke@1 3042 // local class or this() call
duke@1 3043 thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
duke@1 3044 } else {
mcimadamore@901 3045 // super() call of nested class - never pick 'this'
mcimadamore@901 3046 thisArg = makeOwnerThisN(tree.meth.pos(), c, false);
duke@1 3047 }
duke@1 3048 tree.args = tree.args.prepend(thisArg);
duke@1 3049 }
duke@1 3050 } else {
duke@1 3051 // We are seeing a normal method invocation; translate this as usual.
duke@1 3052 tree.meth = translate(tree.meth);
duke@1 3053
duke@1 3054 // If the translated method itself is an Apply tree, we are
duke@1 3055 // seeing an access method invocation. In this case, append
duke@1 3056 // the method arguments to the arguments of the access method.
jjg@1127 3057 if (tree.meth.hasTag(APPLY)) {
duke@1 3058 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
duke@1 3059 app.args = tree.args.prependList(app.args);
duke@1 3060 result = app;
duke@1 3061 return;
duke@1 3062 }
duke@1 3063 }
duke@1 3064 result = tree;
duke@1 3065 }
duke@1 3066
duke@1 3067 List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
duke@1 3068 List<JCExpression> args = _args;
duke@1 3069 if (parameters.isEmpty()) return args;
duke@1 3070 boolean anyChanges = false;
duke@1 3071 ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
duke@1 3072 while (parameters.tail.nonEmpty()) {
duke@1 3073 JCExpression arg = translate(args.head, parameters.head);
duke@1 3074 anyChanges |= (arg != args.head);
duke@1 3075 result.append(arg);
duke@1 3076 args = args.tail;
duke@1 3077 parameters = parameters.tail;
duke@1 3078 }
duke@1 3079 Type parameter = parameters.head;
duke@1 3080 if (varargsElement != null) {
duke@1 3081 anyChanges = true;
duke@1 3082 ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
duke@1 3083 while (args.nonEmpty()) {
duke@1 3084 JCExpression arg = translate(args.head, varargsElement);
duke@1 3085 elems.append(arg);
duke@1 3086 args = args.tail;
duke@1 3087 }
duke@1 3088 JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
duke@1 3089 List.<JCExpression>nil(),
duke@1 3090 elems.toList());
duke@1 3091 boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
duke@1 3092 result.append(boxedArgs);
duke@1 3093 } else {
duke@1 3094 if (args.length() != 1) throw new AssertionError(args);
duke@1 3095 JCExpression arg = translate(args.head, parameter);
duke@1 3096 anyChanges |= (arg != args.head);
duke@1 3097 result.append(arg);
duke@1 3098 if (!anyChanges) return _args;
duke@1 3099 }
duke@1 3100 return result.toList();
duke@1 3101 }
duke@1 3102
duke@1 3103 /** Expand a boxing or unboxing conversion if needed. */
duke@1 3104 @SuppressWarnings("unchecked") // XXX unchecked
duke@1 3105 <T extends JCTree> T boxIfNeeded(T tree, Type type) {
duke@1 3106 boolean havePrimitive = tree.type.isPrimitive();
duke@1 3107 if (havePrimitive == type.isPrimitive())
duke@1 3108 return tree;
duke@1 3109 if (havePrimitive) {
duke@1 3110 Type unboxedTarget = types.unboxedType(type);
jjg@1374 3111 if (!unboxedTarget.hasTag(NONE)) {
mcimadamore@253 3112 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
mcimadamore@253 3113 tree.type = unboxedTarget.constType(tree.type.constValue());
duke@1 3114 return (T)boxPrimitive((JCExpression)tree, type);
duke@1 3115 } else {
duke@1 3116 tree = (T)boxPrimitive((JCExpression)tree);
duke@1 3117 }
duke@1 3118 } else {
duke@1 3119 tree = (T)unbox((JCExpression)tree, type);
duke@1 3120 }
duke@1 3121 return tree;
duke@1 3122 }
duke@1 3123
duke@1 3124 /** Box up a single primitive expression. */
duke@1 3125 JCExpression boxPrimitive(JCExpression tree) {
duke@1 3126 return boxPrimitive(tree, types.boxedClass(tree.type).type);
duke@1 3127 }
duke@1 3128
duke@1 3129 /** Box up a single primitive expression. */
duke@1 3130 JCExpression boxPrimitive(JCExpression tree, Type box) {
duke@1 3131 make_at(tree.pos());
duke@1 3132 if (target.boxWithConstructors()) {
duke@1 3133 Symbol ctor = lookupConstructor(tree.pos(),
duke@1 3134 box,
duke@1 3135 List.<Type>nil()
duke@1 3136 .prepend(tree.type));
duke@1 3137 return make.Create(ctor, List.of(tree));
duke@1 3138 } else {
duke@1 3139 Symbol valueOfSym = lookupMethod(tree.pos(),
duke@1 3140 names.valueOf,
duke@1 3141 box,
duke@1 3142 List.<Type>nil()
duke@1 3143 .prepend(tree.type));
duke@1 3144 return make.App(make.QualIdent(valueOfSym), List.of(tree));
duke@1 3145 }
duke@1 3146 }
duke@1 3147
duke@1 3148 /** Unbox an object to a primitive value. */
duke@1 3149 JCExpression unbox(JCExpression tree, Type primitive) {
duke@1 3150 Type unboxedType = types.unboxedType(tree.type);
jjg@1374 3151 if (unboxedType.hasTag(NONE)) {
jrose@665 3152 unboxedType = primitive;
jrose@665 3153 if (!unboxedType.isPrimitive())
jrose@665 3154 throw new AssertionError(unboxedType);
jrose@665 3155 make_at(tree.pos());
jrose@665 3156 tree = make.TypeCast(types.boxedClass(unboxedType).type, tree);
jrose@665 3157 } else {
jrose@665 3158 // There must be a conversion from unboxedType to primitive.
jrose@665 3159 if (!types.isSubtype(unboxedType, primitive))
jrose@665 3160 throw new AssertionError(tree);
jrose@665 3161 }
duke@1 3162 make_at(tree.pos());
duke@1 3163 Symbol valueSym = lookupMethod(tree.pos(),
duke@1 3164 unboxedType.tsym.name.append(names.Value), // x.intValue()
duke@1 3165 tree.type,
duke@1 3166 List.<Type>nil());
duke@1 3167 return make.App(make.Select(tree, valueSym));
duke@1 3168 }
duke@1 3169
duke@1 3170 /** Visitor method for parenthesized expressions.
duke@1 3171 * If the subexpression has changed, omit the parens.
duke@1 3172 */
duke@1 3173 public void visitParens(JCParens tree) {
duke@1 3174 JCTree expr = translate(tree.expr);
duke@1 3175 result = ((expr == tree.expr) ? tree : expr);
duke@1 3176 }
duke@1 3177
duke@1 3178 public void visitIndexed(JCArrayAccess tree) {
duke@1 3179 tree.indexed = translate(tree.indexed);
duke@1 3180 tree.index = translate(tree.index, syms.intType);
duke@1 3181 result = tree;
duke@1 3182 }
duke@1 3183
duke@1 3184 public void visitAssign(JCAssign tree) {
duke@1 3185 tree.lhs = translate(tree.lhs, tree);
duke@1 3186 tree.rhs = translate(tree.rhs, tree.lhs.type);
duke@1 3187
duke@1 3188 // If translated left hand side is an Apply, we are
duke@1 3189 // seeing an access method invocation. In this case, append
duke@1 3190 // right hand side as last argument of the access method.
jjg@1127 3191 if (tree.lhs.hasTag(APPLY)) {
duke@1 3192 JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
duke@1 3193 app.args = List.of(tree.rhs).prependList(app.args);
duke@1 3194 result = app;
duke@1 3195 } else {
duke@1 3196 result = tree;
duke@1 3197 }
duke@1 3198 }
duke@1 3199
duke@1 3200 public void visitAssignop(final JCAssignOp tree) {
vromero@1621 3201 JCTree lhsAccess = access(TreeInfo.skipParens(tree.lhs));
vromero@1557 3202 final boolean boxingReq = !tree.lhs.type.isPrimitive() &&
vromero@1557 3203 tree.operator.type.getReturnType().isPrimitive();
vromero@1557 3204
vromero@1621 3205 if (boxingReq || lhsAccess.hasTag(APPLY)) {
vromero@1621 3206 // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
vromero@1621 3207 // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
vromero@1621 3208 // (but without recomputing x)
vromero@1621 3209 JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
vromero@1621 3210 public JCTree build(final JCTree lhs) {
vromero@1621 3211 JCTree.Tag newTag = tree.getTag().noAssignOp();
vromero@1621 3212 // Erasure (TransTypes) can change the type of
vromero@1621 3213 // tree.lhs. However, we can still get the
vromero@1621 3214 // unerased type of tree.lhs as it is stored
vromero@1621 3215 // in tree.type in Attr.
vromero@1621 3216 Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
vromero@1621 3217 newTag,
vromero@1621 3218 attrEnv,
vromero@1621 3219 tree.type,
vromero@1621 3220 tree.rhs.type);
vromero@1621 3221 JCExpression expr = (JCExpression)lhs;
vromero@1621 3222 if (expr.type != tree.type)
vromero@1621 3223 expr = make.TypeCast(tree.type, expr);
vromero@1621 3224 JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
vromero@1621 3225 opResult.operator = newOperator;
vromero@1621 3226 opResult.type = newOperator.type.getReturnType();
vromero@1621 3227 JCExpression newRhs = boxingReq ?
vromero@1621 3228 make.TypeCast(types.unboxedType(tree.type), opResult) :
vromero@1557 3229 opResult;
vromero@1621 3230 return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
vromero@1621 3231 }
vromero@1621 3232 });
vromero@1621 3233 result = translate(newTree);
vromero@1621 3234 return;
vromero@1621 3235 }
vromero@1621 3236 tree.lhs = translate(tree.lhs, tree);
vromero@1621 3237 tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
vromero@1621 3238
vromero@1621 3239 // If translated left hand side is an Apply, we are
vromero@1621 3240 // seeing an access method invocation. In this case, append
vromero@1621 3241 // right hand side as last argument of the access method.
vromero@1621 3242 if (tree.lhs.hasTag(APPLY)) {
vromero@1621 3243 JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
vromero@1621 3244 // if operation is a += on strings,
vromero@1621 3245 // make sure to convert argument to string
vromero@1621 3246 JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
vromero@1621 3247 ? makeString(tree.rhs)
vromero@1621 3248 : tree.rhs;
vromero@1621 3249 app.args = List.of(rhs).prependList(app.args);
vromero@1621 3250 result = app;
vromero@1621 3251 } else {
vromero@1621 3252 result = tree;
vromero@1621 3253 }
duke@1 3254 }
duke@1 3255
duke@1 3256 /** Lower a tree of the form e++ or e-- where e is an object type */
duke@1 3257 JCTree lowerBoxedPostop(final JCUnary tree) {
duke@1 3258 // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
duke@1 3259 // or
duke@1 3260 // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
duke@1 3261 // where OP is += or -=
jjg@1127 3262 final boolean cast = TreeInfo.skipParens(tree.arg).hasTag(TYPECAST);
mcimadamore@133 3263 return abstractLval(tree.arg, new TreeBuilder() {
duke@1 3264 public JCTree build(final JCTree tmp1) {
duke@1 3265 return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
duke@1 3266 public JCTree build(final JCTree tmp2) {
jjg@1127 3267 JCTree.Tag opcode = (tree.hasTag(POSTINC))
jjg@1127 3268 ? PLUS_ASG : MINUS_ASG;
duke@1 3269 JCTree lhs = cast
duke@1 3270 ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
duke@1 3271 : tmp1;
duke@1 3272 JCTree update = makeAssignop(opcode,
duke@1 3273 lhs,
duke@1 3274 make.Literal(1));
duke@1 3275 return makeComma(update, tmp2);
duke@1 3276 }
duke@1 3277 });
duke@1 3278 }
duke@1 3279 });
duke@1 3280 }
duke@1 3281
duke@1 3282 public void visitUnary(JCUnary tree) {
jjg@1127 3283 boolean isUpdateOperator = tree.getTag().isIncOrDecUnaryOp();
duke@1 3284 if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
duke@1 3285 switch(tree.getTag()) {
jjg@1127 3286 case PREINC: // ++ e
duke@1 3287 // translate to e += 1
jjg@1127 3288 case PREDEC: // -- e
duke@1 3289 // translate to e -= 1
duke@1 3290 {
jjg@1127 3291 JCTree.Tag opcode = (tree.hasTag(PREINC))
jjg@1127 3292 ? PLUS_ASG : MINUS_ASG;
duke@1 3293 JCAssignOp newTree = makeAssignop(opcode,
duke@1 3294 tree.arg,
duke@1 3295 make.Literal(1));
duke@1 3296 result = translate(newTree, tree.type);
duke@1 3297 return;
duke@1 3298 }
jjg@1127 3299 case POSTINC: // e ++
jjg@1127 3300 case POSTDEC: // e --
duke@1 3301 {
duke@1 3302 result = translate(lowerBoxedPostop(tree), tree.type);
duke@1 3303 return;
duke@1 3304 }
duke@1 3305 }
duke@1 3306 throw new AssertionError(tree);
duke@1 3307 }
duke@1 3308
duke@1 3309 tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
duke@1 3310
jjg@1127 3311 if (tree.hasTag(NOT) && tree.arg.type.constValue() != null) {
duke@1 3312 tree.type = cfolder.fold1(bool_not, tree.arg.type);
duke@1 3313 }
duke@1 3314
duke@1 3315 // If translated left hand side is an Apply, we are
duke@1 3316 // seeing an access method invocation. In this case, return
darcy@430 3317 // that access method invocation as result.
jjg@1127 3318 if (isUpdateOperator && tree.arg.hasTag(APPLY)) {
duke@1 3319 result = tree.arg;
duke@1 3320 } else {
duke@1 3321 result = tree;
duke@1 3322 }
duke@1 3323 }
duke@1 3324
duke@1 3325 public void visitBinary(JCBinary tree) {
duke@1 3326 List<Type> formals = tree.operator.type.getParameterTypes();
duke@1 3327 JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
duke@1 3328 switch (tree.getTag()) {
jjg@1127 3329 case OR:
duke@1 3330 if (lhs.type.isTrue()) {
duke@1 3331 result = lhs;
duke@1 3332 return;
duke@1 3333 }
duke@1 3334 if (lhs.type.isFalse()) {
duke@1 3335 result = translate(tree.rhs, formals.tail.head);
duke@1 3336 return;
duke@1 3337 }
duke@1 3338 break;
jjg@1127 3339 case AND:
duke@1 3340 if (lhs.type.isFalse()) {
duke@1 3341 result = lhs;
duke@1 3342 return;
duke@1 3343 }
duke@1 3344 if (lhs.type.isTrue()) {
duke@1 3345 result = translate(tree.rhs, formals.tail.head);
duke@1 3346 return;
duke@1 3347 }
duke@1 3348 break;
duke@1 3349 }
duke@1 3350 tree.rhs = translate(tree.rhs, formals.tail.head);
duke@1 3351 result = tree;
duke@1 3352 }
duke@1 3353
duke@1 3354 public void visitIdent(JCIdent tree) {
duke@1 3355 result = access(tree.sym, tree, enclOp, false);
duke@1 3356 }
duke@1 3357
duke@1 3358 /** Translate away the foreach loop. */
duke@1 3359 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 3360 if (types.elemtype(tree.expr.type) == null)
duke@1 3361 visitIterableForeachLoop(tree);
duke@1 3362 else
duke@1 3363 visitArrayForeachLoop(tree);
duke@1 3364 }
duke@1 3365 // where
duke@1 3366 /**
darcy@430 3367 * A statement of the form
duke@1 3368 *
duke@1 3369 * <pre>
duke@1 3370 * for ( T v : arrayexpr ) stmt;
duke@1 3371 * </pre>
duke@1 3372 *
duke@1 3373 * (where arrayexpr is of an array type) gets translated to
duke@1 3374 *
jjg@1326 3375 * <pre>{@code
duke@1 3376 * for ( { arraytype #arr = arrayexpr;
duke@1 3377 * int #len = array.length;
duke@1 3378 * int #i = 0; };
duke@1 3379 * #i < #len; i$++ ) {
duke@1 3380 * T v = arr$[#i];
duke@1 3381 * stmt;
duke@1 3382 * }
jjg@1326 3383 * }</pre>
duke@1 3384 *
duke@1 3385 * where #arr, #len, and #i are freshly named synthetic local variables.
duke@1 3386 */
duke@1 3387 private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
duke@1 3388 make_at(tree.expr.pos());
vromero@2027 3389 VarSymbol arraycache = new VarSymbol(SYNTHETIC,
duke@1 3390 names.fromString("arr" + target.syntheticNameChar()),
duke@1 3391 tree.expr.type,
duke@1 3392 currentMethodSym);
duke@1 3393 JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
vromero@2027 3394 VarSymbol lencache = new VarSymbol(SYNTHETIC,
duke@1 3395 names.fromString("len" + target.syntheticNameChar()),
duke@1 3396 syms.intType,
duke@1 3397 currentMethodSym);
duke@1 3398 JCStatement lencachedef = make.
duke@1 3399 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
vromero@2027 3400 VarSymbol index = new VarSymbol(SYNTHETIC,
duke@1 3401 names.fromString("i" + target.syntheticNameChar()),
duke@1 3402 syms.intType,
duke@1 3403 currentMethodSym);
duke@1 3404
duke@1 3405 JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
duke@1 3406 indexdef.init.type = indexdef.type = syms.intType.constType(0);
duke@1 3407
duke@1 3408 List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
jjg@1127 3409 JCBinary cond = makeBinary(LT, make.Ident(index), make.Ident(lencache));
jjg@1127 3410
jjg@1127 3411 JCExpressionStatement step = make.Exec(makeUnary(PREINC, make.Ident(index)));
duke@1 3412
duke@1 3413 Type elemtype = types.elemtype(tree.expr.type);
mcimadamore@33 3414 JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
mcimadamore@33 3415 make.Ident(index)).setType(elemtype);
mcimadamore@33 3416 JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
mcimadamore@33 3417 tree.var.name,
mcimadamore@33 3418 tree.var.vartype,
mcimadamore@33 3419 loopvarinit).setType(tree.var.type);
mcimadamore@33 3420 loopvardef.sym = tree.var.sym;
duke@1 3421 JCBlock body = make.
mcimadamore@33 3422 Block(0, List.of(loopvardef, tree.body));
duke@1 3423
duke@1 3424 result = translate(make.
duke@1 3425 ForLoop(loopinit,
duke@1 3426 cond,
duke@1 3427 List.of(step),
duke@1 3428 body));
duke@1 3429 patchTargets(body, tree, result);
duke@1 3430 }
duke@1 3431 /** Patch up break and continue targets. */
duke@1 3432 private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
duke@1 3433 class Patcher extends TreeScanner {
duke@1 3434 public void visitBreak(JCBreak tree) {
duke@1 3435 if (tree.target == src)
duke@1 3436 tree.target = dest;
duke@1 3437 }
duke@1 3438 public void visitContinue(JCContinue tree) {
duke@1 3439 if (tree.target == src)
duke@1 3440 tree.target = dest;
duke@1 3441 }
duke@1 3442 public void visitClassDef(JCClassDecl tree) {}
duke@1 3443 }
duke@1 3444 new Patcher().scan(body);
duke@1 3445 }
duke@1 3446 /**
duke@1 3447 * A statement of the form
duke@1 3448 *
duke@1 3449 * <pre>
duke@1 3450 * for ( T v : coll ) stmt ;
duke@1 3451 * </pre>
duke@1 3452 *
jjg@1326 3453 * (where coll implements {@code Iterable<? extends T>}) gets translated to
duke@1 3454 *
jjg@1326 3455 * <pre>{@code
duke@1 3456 * for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
duke@1 3457 * T v = (T) #i.next();
duke@1 3458 * stmt;
duke@1 3459 * }
jjg@1326 3460 * }</pre>
duke@1 3461 *
duke@1 3462 * where #i is a freshly named synthetic local variable.
duke@1 3463 */
duke@1 3464 private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
duke@1 3465 make_at(tree.expr.pos());
duke@1 3466 Type iteratorTarget = syms.objectType;
duke@1 3467 Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
duke@1 3468 syms.iterableType.tsym);
duke@1 3469 if (iterableType.getTypeArguments().nonEmpty())
duke@1 3470 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
duke@1 3471 Type eType = tree.expr.type;
vromero@1687 3472 while (eType.hasTag(TYPEVAR)) {
vromero@1687 3473 eType = eType.getUpperBound();
vromero@1687 3474 }
duke@1 3475 tree.expr.type = types.erasure(eType);
vromero@1687 3476 if (eType.isCompound())
duke@1 3477 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
duke@1 3478 Symbol iterator = lookupMethod(tree.expr.pos(),
duke@1 3479 names.iterator,
vromero@1640 3480 eType,
duke@1 3481 List.<Type>nil());
vromero@2027 3482 VarSymbol itvar = new VarSymbol(SYNTHETIC, names.fromString("i" + target.syntheticNameChar()),
vromero@1948 3483 types.erasure(types.asSuper(iterator.type.getReturnType(), syms.iteratorType.tsym)),
duke@1 3484 currentMethodSym);
vromero@1640 3485
vromero@1640 3486 JCStatement init = make.
vromero@1640 3487 VarDef(itvar, make.App(make.Select(tree.expr, iterator)
vromero@1640 3488 .setType(types.erasure(iterator.type))));
vromero@1640 3489
duke@1 3490 Symbol hasNext = lookupMethod(tree.expr.pos(),
duke@1 3491 names.hasNext,
duke@1 3492 itvar.type,
duke@1 3493 List.<Type>nil());
duke@1 3494 JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
duke@1 3495 Symbol next = lookupMethod(tree.expr.pos(),
duke@1 3496 names.next,
duke@1 3497 itvar.type,
duke@1 3498 List.<Type>nil());
duke@1 3499 JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
mcimadamore@81 3500 if (tree.var.type.isPrimitive())
mcimadamore@81 3501 vardefinit = make.TypeCast(types.upperBound(iteratorTarget), vardefinit);
mcimadamore@81 3502 else
mcimadamore@81 3503 vardefinit = make.TypeCast(tree.var.type, vardefinit);
mcimadamore@33 3504 JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
mcimadamore@33 3505 tree.var.name,
mcimadamore@33 3506 tree.var.vartype,
mcimadamore@33 3507 vardefinit).setType(tree.var.type);
mcimadamore@33 3508 indexDef.sym = tree.var.sym;
duke@1 3509 JCBlock body = make.Block(0, List.of(indexDef, tree.body));
mcimadamore@237 3510 body.endpos = TreeInfo.endPos(tree.body);
duke@1 3511 result = translate(make.
duke@1 3512 ForLoop(List.of(init),
duke@1 3513 cond,
duke@1 3514 List.<JCExpressionStatement>nil(),
duke@1 3515 body));
duke@1 3516 patchTargets(body, tree, result);
duke@1 3517 }
duke@1 3518
duke@1 3519 public void visitVarDef(JCVariableDecl tree) {
duke@1 3520 MethodSymbol oldMethodSym = currentMethodSym;
duke@1 3521 tree.mods = translate(tree.mods);
duke@1 3522 tree.vartype = translate(tree.vartype);
duke@1 3523 if (currentMethodSym == null) {
duke@1 3524 // A class or instance field initializer.
duke@1 3525 currentMethodSym =
duke@1 3526 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
duke@1 3527 names.empty, null,
duke@1 3528 currentClass);
duke@1 3529 }
duke@1 3530 if (tree.init != null) tree.init = translate(tree.init, tree.type);
duke@1 3531 result = tree;
duke@1 3532 currentMethodSym = oldMethodSym;
duke@1 3533 }
duke@1 3534
duke@1 3535 public void visitBlock(JCBlock tree) {
duke@1 3536 MethodSymbol oldMethodSym = currentMethodSym;
duke@1 3537 if (currentMethodSym == null) {
duke@1 3538 // Block is a static or instance initializer.
duke@1 3539 currentMethodSym =
duke@1 3540 new MethodSymbol(tree.flags | BLOCK,
duke@1 3541 names.empty, null,
duke@1 3542 currentClass);
duke@1 3543 }
duke@1 3544 super.visitBlock(tree);
duke@1 3545 currentMethodSym = oldMethodSym;
duke@1 3546 }
duke@1 3547
duke@1 3548 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 3549 tree.body = translate(tree.body);
duke@1 3550 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3551 result = tree;
duke@1 3552 }
duke@1 3553
duke@1 3554 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 3555 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3556 tree.body = translate(tree.body);
duke@1 3557 result = tree;
duke@1 3558 }
duke@1 3559
duke@1 3560 public void visitForLoop(JCForLoop tree) {
duke@1 3561 tree.init = translate(tree.init);
duke@1 3562 if (tree.cond != null)
duke@1 3563 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3564 tree.step = translate(tree.step);
duke@1 3565 tree.body = translate(tree.body);
duke@1 3566 result = tree;
duke@1 3567 }
duke@1 3568
duke@1 3569 public void visitReturn(JCReturn tree) {
duke@1 3570 if (tree.expr != null)
duke@1 3571 tree.expr = translate(tree.expr,
duke@1 3572 types.erasure(currentMethodDef
duke@1 3573 .restype.type));
duke@1 3574 result = tree;
duke@1 3575 }
duke@1 3576
duke@1 3577 public void visitSwitch(JCSwitch tree) {
duke@1 3578 Type selsuper = types.supertype(tree.selector.type);
duke@1 3579 boolean enumSwitch = selsuper != null &&
duke@1 3580 (tree.selector.type.tsym.flags() & ENUM) != 0;
darcy@430 3581 boolean stringSwitch = selsuper != null &&
darcy@430 3582 types.isSameType(tree.selector.type, syms.stringType);
darcy@430 3583 Type target = enumSwitch ? tree.selector.type :
darcy@430 3584 (stringSwitch? syms.stringType : syms.intType);
duke@1 3585 tree.selector = translate(tree.selector, target);
duke@1 3586 tree.cases = translateCases(tree.cases);
duke@1 3587 if (enumSwitch) {
duke@1 3588 result = visitEnumSwitch(tree);
darcy@430 3589 } else if (stringSwitch) {
darcy@430 3590 result = visitStringSwitch(tree);
duke@1 3591 } else {
duke@1 3592 result = tree;
duke@1 3593 }
duke@1 3594 }
duke@1 3595
duke@1 3596 public JCTree visitEnumSwitch(JCSwitch tree) {
duke@1 3597 TypeSymbol enumSym = tree.selector.type.tsym;
duke@1 3598 EnumMapping map = mapForEnum(tree.pos(), enumSym);
duke@1 3599 make_at(tree.pos());
duke@1 3600 Symbol ordinalMethod = lookupMethod(tree.pos(),
duke@1 3601 names.ordinal,
duke@1 3602 tree.selector.type,
duke@1 3603 List.<Type>nil());
duke@1 3604 JCArrayAccess selector = make.Indexed(map.mapVar,
duke@1 3605 make.App(make.Select(tree.selector,
duke@1 3606 ordinalMethod)));
duke@1 3607 ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
duke@1 3608 for (JCCase c : tree.cases) {
duke@1 3609 if (c.pat != null) {
duke@1 3610 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
duke@1 3611 JCLiteral pat = map.forConstant(label);
duke@1 3612 cases.append(make.Case(pat, c.stats));
duke@1 3613 } else {
duke@1 3614 cases.append(c);
duke@1 3615 }
duke@1 3616 }
darcy@443 3617 JCSwitch enumSwitch = make.Switch(selector, cases.toList());
darcy@443 3618 patchTargets(enumSwitch, tree, enumSwitch);
darcy@443 3619 return enumSwitch;
duke@1 3620 }
duke@1 3621
darcy@430 3622 public JCTree visitStringSwitch(JCSwitch tree) {
darcy@430 3623 List<JCCase> caseList = tree.getCases();
darcy@430 3624 int alternatives = caseList.size();
darcy@430 3625
darcy@430 3626 if (alternatives == 0) { // Strange but legal possibility
darcy@430 3627 return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
darcy@430 3628 } else {
darcy@430 3629 /*
darcy@430 3630 * The general approach used is to translate a single
darcy@430 3631 * string switch statement into a series of two chained
darcy@430 3632 * switch statements: the first a synthesized statement
darcy@430 3633 * switching on the argument string's hash value and
darcy@430 3634 * computing a string's position in the list of original
darcy@430 3635 * case labels, if any, followed by a second switch on the
darcy@430 3636 * computed integer value. The second switch has the same
darcy@430 3637 * code structure as the original string switch statement
darcy@430 3638 * except that the string case labels are replaced with
darcy@430 3639 * positional integer constants starting at 0.
darcy@430 3640 *
darcy@430 3641 * The first switch statement can be thought of as an
darcy@430 3642 * inlined map from strings to their position in the case
darcy@430 3643 * label list. An alternate implementation would use an
darcy@430 3644 * actual Map for this purpose, as done for enum switches.
darcy@430 3645 *
darcy@430 3646 * With some additional effort, it would be possible to
darcy@430 3647 * use a single switch statement on the hash code of the
darcy@430 3648 * argument, but care would need to be taken to preserve
darcy@430 3649 * the proper control flow in the presence of hash
darcy@430 3650 * collisions and other complications, such as
darcy@430 3651 * fallthroughs. Switch statements with one or two
darcy@430 3652 * alternatives could also be specially translated into
darcy@430 3653 * if-then statements to omit the computation of the hash
darcy@430 3654 * code.
darcy@430 3655 *
darcy@430 3656 * The generated code assumes that the hashing algorithm
darcy@430 3657 * of String is the same in the compilation environment as
darcy@430 3658 * in the environment the code will run in. The string
darcy@430 3659 * hashing algorithm in the SE JDK has been unchanged
darcy@443 3660 * since at least JDK 1.2. Since the algorithm has been
darcy@443 3661 * specified since that release as well, it is very
darcy@443 3662 * unlikely to be changed in the future.
darcy@443 3663 *
darcy@443 3664 * Different hashing algorithms, such as the length of the
darcy@443 3665 * strings or a perfect hashing algorithm over the
darcy@443 3666 * particular set of case labels, could potentially be
darcy@443 3667 * used instead of String.hashCode.
darcy@430 3668 */
darcy@430 3669
darcy@430 3670 ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
darcy@430 3671
darcy@430 3672 // Map from String case labels to their original position in
darcy@430 3673 // the list of case labels.
darcy@430 3674 Map<String, Integer> caseLabelToPosition =
darcy@430 3675 new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
darcy@430 3676
darcy@430 3677 // Map of hash codes to the string case labels having that hashCode.
darcy@430 3678 Map<Integer, Set<String>> hashToString =
darcy@430 3679 new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
darcy@430 3680
darcy@430 3681 int casePosition = 0;
darcy@430 3682 for(JCCase oneCase : caseList) {
darcy@430 3683 JCExpression expression = oneCase.getExpression();
darcy@430 3684
darcy@430 3685 if (expression != null) { // expression for a "default" case is null
darcy@430 3686 String labelExpr = (String) expression.type.constValue();
darcy@430 3687 Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
jjg@816 3688 Assert.checkNull(mapping);
darcy@430 3689 int hashCode = labelExpr.hashCode();
darcy@430 3690
darcy@430 3691 Set<String> stringSet = hashToString.get(hashCode);
darcy@430 3692 if (stringSet == null) {
darcy@430 3693 stringSet = new LinkedHashSet<String>(1, 1.0f);
darcy@430 3694 stringSet.add(labelExpr);
darcy@430 3695 hashToString.put(hashCode, stringSet);
darcy@430 3696 } else {
darcy@430 3697 boolean added = stringSet.add(labelExpr);
jjg@816 3698 Assert.check(added);
darcy@430 3699 }
darcy@430 3700 }
darcy@430 3701 casePosition++;
darcy@430 3702 }
darcy@430 3703
darcy@430 3704 // Synthesize a switch statement that has the effect of
darcy@430 3705 // mapping from a string to the integer position of that
darcy@430 3706 // string in the list of case labels. This is done by
darcy@430 3707 // switching on the hashCode of the string followed by an
darcy@430 3708 // if-then-else chain comparing the input for equality
darcy@430 3709 // with all the case labels having that hash value.
darcy@430 3710
darcy@430 3711 /*
darcy@430 3712 * s$ = top of stack;
darcy@430 3713 * tmp$ = -1;
darcy@430 3714 * switch($s.hashCode()) {
darcy@430 3715 * case caseLabel.hashCode:
darcy@430 3716 * if (s$.equals("caseLabel_1")
darcy@430 3717 * tmp$ = caseLabelToPosition("caseLabel_1");
darcy@430 3718 * else if (s$.equals("caseLabel_2"))
darcy@430 3719 * tmp$ = caseLabelToPosition("caseLabel_2");
darcy@430 3720 * ...
darcy@430 3721 * break;
darcy@430 3722 * ...
darcy@430 3723 * }
darcy@430 3724 */
darcy@430 3725
darcy@430 3726 VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
darcy@430 3727 names.fromString("s" + tree.pos + target.syntheticNameChar()),
darcy@430 3728 syms.stringType,
darcy@430 3729 currentMethodSym);
darcy@430 3730 stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
darcy@430 3731
darcy@430 3732 VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
darcy@430 3733 names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
darcy@430 3734 syms.intType,
darcy@430 3735 currentMethodSym);
darcy@430 3736 JCVariableDecl dollar_tmp_def =
darcy@430 3737 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
darcy@430 3738 dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
darcy@430 3739 stmtList.append(dollar_tmp_def);
alundblad@2047 3740 ListBuffer<JCCase> caseBuffer = new ListBuffer<>();
darcy@430 3741 // hashCode will trigger nullcheck on original switch expression
darcy@430 3742 JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
darcy@430 3743 names.hashCode,
darcy@430 3744 List.<JCExpression>nil()).setType(syms.intType);
darcy@430 3745 JCSwitch switch1 = make.Switch(hashCodeCall,
darcy@430 3746 caseBuffer.toList());
darcy@430 3747 for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
darcy@430 3748 int hashCode = entry.getKey();
darcy@430 3749 Set<String> stringsWithHashCode = entry.getValue();
jjg@816 3750 Assert.check(stringsWithHashCode.size() >= 1);
darcy@430 3751
darcy@430 3752 JCStatement elsepart = null;
darcy@430 3753 for(String caseLabel : stringsWithHashCode ) {
darcy@430 3754 JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
darcy@430 3755 names.equals,
darcy@430 3756 List.<JCExpression>of(make.Literal(caseLabel)));
darcy@430 3757 elsepart = make.If(stringEqualsCall,
darcy@430 3758 make.Exec(make.Assign(make.Ident(dollar_tmp),
darcy@430 3759 make.Literal(caseLabelToPosition.get(caseLabel))).
darcy@430 3760 setType(dollar_tmp.type)),
darcy@430 3761 elsepart);
darcy@430 3762 }
darcy@430 3763
alundblad@2047 3764 ListBuffer<JCStatement> lb = new ListBuffer<>();
darcy@430 3765 JCBreak breakStmt = make.Break(null);
darcy@430 3766 breakStmt.target = switch1;
darcy@430 3767 lb.append(elsepart).append(breakStmt);
darcy@430 3768
darcy@430 3769 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
darcy@430 3770 }
darcy@430 3771
darcy@430 3772 switch1.cases = caseBuffer.toList();
darcy@430 3773 stmtList.append(switch1);
darcy@430 3774
darcy@430 3775 // Make isomorphic switch tree replacing string labels
darcy@430 3776 // with corresponding integer ones from the label to
darcy@430 3777 // position map.
darcy@430 3778
alundblad@2047 3779 ListBuffer<JCCase> lb = new ListBuffer<>();
darcy@430 3780 JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
darcy@430 3781 for(JCCase oneCase : caseList ) {
darcy@430 3782 // Rewire up old unlabeled break statements to the
darcy@430 3783 // replacement switch being created.
darcy@430 3784 patchTargets(oneCase, tree, switch2);
darcy@430 3785
darcy@430 3786 boolean isDefault = (oneCase.getExpression() == null);
darcy@430 3787 JCExpression caseExpr;
darcy@430 3788 if (isDefault)
darcy@430 3789 caseExpr = null;
darcy@430 3790 else {
darcy@1063 3791 caseExpr = make.Literal(caseLabelToPosition.get((String)TreeInfo.skipParens(oneCase.
darcy@1063 3792 getExpression()).
darcy@430 3793 type.constValue()));
darcy@430 3794 }
darcy@430 3795
darcy@430 3796 lb.append(make.Case(caseExpr,
darcy@430 3797 oneCase.getStatements()));
darcy@430 3798 }
darcy@430 3799
darcy@430 3800 switch2.cases = lb.toList();
darcy@430 3801 stmtList.append(switch2);
darcy@430 3802
darcy@430 3803 return make.Block(0L, stmtList.toList());
darcy@430 3804 }
darcy@430 3805 }
darcy@430 3806
duke@1 3807 public void visitNewArray(JCNewArray tree) {
duke@1 3808 tree.elemtype = translate(tree.elemtype);
duke@1 3809 for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
duke@1 3810 if (t.head != null) t.head = translate(t.head, syms.intType);
duke@1 3811 tree.elems = translate(tree.elems, types.elemtype(tree.type));
duke@1 3812 result = tree;
duke@1 3813 }
duke@1 3814
duke@1 3815 public void visitSelect(JCFieldAccess tree) {
duke@1 3816 // need to special case-access of the form C.super.x
mcimadamore@1393 3817 // these will always need an access method, unless C
mcimadamore@1393 3818 // is a default interface subclassed by the current class.
duke@1 3819 boolean qualifiedSuperAccess =
jjg@1127 3820 tree.selected.hasTag(SELECT) &&
mcimadamore@1393 3821 TreeInfo.name(tree.selected) == names._super &&
mcimadamore@1415 3822 !types.isDirectSuperInterface(((JCFieldAccess)tree.selected).selected.type.tsym, currentClass);
duke@1 3823 tree.selected = translate(tree.selected);
mcimadamore@1393 3824 if (tree.name == names._class) {
duke@1 3825 result = classOf(tree.selected);
mcimadamore@1393 3826 }
mcimadamore@1393 3827 else if (tree.name == names._super &&
mcimadamore@1415 3828 types.isDirectSuperInterface(tree.selected.type.tsym, currentClass)) {
mcimadamore@1393 3829 //default super call!! Not a classic qualified super call
mcimadamore@1393 3830 TypeSymbol supSym = tree.selected.type.tsym;
mcimadamore@1393 3831 Assert.checkNonNull(types.asSuper(currentClass.type, supSym));
mcimadamore@1393 3832 result = tree;
mcimadamore@1393 3833 }
mcimadamore@1393 3834 else if (tree.name == names._this || tree.name == names._super) {
duke@1 3835 result = makeThis(tree.pos(), tree.selected.type.tsym);
mcimadamore@1393 3836 }
duke@1 3837 else
duke@1 3838 result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
duke@1 3839 }
duke@1 3840
duke@1 3841 public void visitLetExpr(LetExpr tree) {
duke@1 3842 tree.defs = translateVarDefs(tree.defs);
duke@1 3843 tree.expr = translate(tree.expr, tree.type);
duke@1 3844 result = tree;
duke@1 3845 }
duke@1 3846
duke@1 3847 // There ought to be nothing to rewrite here;
duke@1 3848 // we don't generate code.
duke@1 3849 public void visitAnnotation(JCAnnotation tree) {
duke@1 3850 result = tree;
duke@1 3851 }
duke@1 3852
darcy@609 3853 @Override
darcy@609 3854 public void visitTry(JCTry tree) {
vromero@2013 3855 if (tree.resources.nonEmpty()) {
vromero@2013 3856 result = makeTwrTry(tree);
vromero@2013 3857 return;
vromero@2013 3858 }
vromero@2013 3859
vromero@2013 3860 boolean hasBody = tree.body.getStatements().nonEmpty();
vromero@2013 3861 boolean hasCatchers = tree.catchers.nonEmpty();
vromero@2013 3862 boolean hasFinally = tree.finalizer != null &&
vromero@2013 3863 tree.finalizer.getStatements().nonEmpty();
vromero@2013 3864
vromero@2013 3865 if (!hasCatchers && !hasFinally) {
vromero@2013 3866 result = translate(tree.body);
vromero@2013 3867 return;
vromero@2013 3868 }
vromero@2013 3869
vromero@2013 3870 if (!hasBody) {
vromero@2013 3871 if (hasFinally) {
vromero@2013 3872 result = translate(tree.finalizer);
vromero@2013 3873 } else {
vromero@1623 3874 result = translate(tree.body);
vromero@1623 3875 }
vromero@2013 3876 return;
darcy@609 3877 }
vromero@2013 3878
vromero@2013 3879 // no optimizations possible
vromero@2013 3880 super.visitTry(tree);
darcy@609 3881 }
darcy@609 3882
duke@1 3883 /**************************************************************************
duke@1 3884 * main method
duke@1 3885 *************************************************************************/
duke@1 3886
duke@1 3887 /** Translate a toplevel class and return a list consisting of
duke@1 3888 * the translated class and translated versions of all inner classes.
duke@1 3889 * @param env The attribution environment current at the class definition.
duke@1 3890 * We need this for resolving some additional symbols.
duke@1 3891 * @param cdef The tree representing the class definition.
duke@1 3892 */
duke@1 3893 public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
duke@1 3894 ListBuffer<JCTree> translated = null;
duke@1 3895 try {
duke@1 3896 attrEnv = env;
duke@1 3897 this.make = make;
ksrini@1138 3898 endPosTable = env.toplevel.endPositions;
duke@1 3899 currentClass = null;
duke@1 3900 currentMethodDef = null;
jjg@1127 3901 outermostClassDef = (cdef.hasTag(CLASSDEF)) ? (JCClassDecl)cdef : null;
duke@1 3902 outermostMemberDef = null;
duke@1 3903 this.translated = new ListBuffer<JCTree>();
duke@1 3904 classdefs = new HashMap<ClassSymbol,JCClassDecl>();
duke@1 3905 actualSymbols = new HashMap<Symbol,Symbol>();
duke@1 3906 freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
duke@1 3907 proxies = new Scope(syms.noSymbol);
darcy@609 3908 twrVars = new Scope(syms.noSymbol);
duke@1 3909 outerThisStack = List.nil();
duke@1 3910 accessNums = new HashMap<Symbol,Integer>();
duke@1 3911 accessSyms = new HashMap<Symbol,MethodSymbol[]>();
duke@1 3912 accessConstrs = new HashMap<Symbol,MethodSymbol>();
jjg@595 3913 accessConstrTags = List.nil();
duke@1 3914 accessed = new ListBuffer<Symbol>();
duke@1 3915 translate(cdef, (JCExpression)null);
duke@1 3916 for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
duke@1 3917 makeAccessible(l.head);
duke@1 3918 for (EnumMapping map : enumSwitchMap.values())
duke@1 3919 map.translate();
mcimadamore@359 3920 checkConflicts(this.translated.toList());
jjg@595 3921 checkAccessConstructorTags();
duke@1 3922 translated = this.translated;
duke@1 3923 } finally {
duke@1 3924 // note that recursive invocations of this method fail hard
duke@1 3925 attrEnv = null;
duke@1 3926 this.make = null;
ksrini@1138 3927 endPosTable = null;
duke@1 3928 currentClass = null;
duke@1 3929 currentMethodDef = null;
duke@1 3930 outermostClassDef = null;
duke@1 3931 outermostMemberDef = null;
duke@1 3932 this.translated = null;
duke@1 3933 classdefs = null;
duke@1 3934 actualSymbols = null;
duke@1 3935 freevarCache = null;
duke@1 3936 proxies = null;
duke@1 3937 outerThisStack = null;
duke@1 3938 accessNums = null;
duke@1 3939 accessSyms = null;
duke@1 3940 accessConstrs = null;
jjg@595 3941 accessConstrTags = null;
duke@1 3942 accessed = null;
duke@1 3943 enumSwitchMap.clear();
jlahoda@2098 3944 assertionsDisabledClassCache = null;
duke@1 3945 }
duke@1 3946 return translated.toList();
duke@1 3947 }
duke@1 3948 }

mercurial