src/share/classes/com/sun/tools/javac/comp/Lower.java

Tue, 09 Sep 2014 10:43:06 -0700

author
vromero
date
Tue, 09 Sep 2014 10:43:06 -0700
changeset 2566
58e7e71b302e
parent 2425
76b61848c9a4
child 2525
2eb010b6cb22
child 2612
cb7e7928902f
permissions
-rw-r--r--

8042347: javac, Gen.LVTAssignAnalyzer should be refactored, it shouldn't be a static class
Reviewed-by: mcimadamore, jjg, jlahoda

duke@1 1 /*
vromero@2370 2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29
duke@1 30 import com.sun.tools.javac.code.*;
jjg@1755 31 import com.sun.tools.javac.code.Type.AnnotatedType;
duke@1 32 import com.sun.tools.javac.jvm.*;
jjg@1157 33 import com.sun.tools.javac.main.Option.PkgInfo;
duke@1 34 import com.sun.tools.javac.tree.*;
duke@1 35 import com.sun.tools.javac.util.*;
duke@1 36 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 37 import com.sun.tools.javac.util.List;
duke@1 38
duke@1 39 import com.sun.tools.javac.code.Symbol.*;
duke@1 40 import com.sun.tools.javac.tree.JCTree.*;
duke@1 41 import com.sun.tools.javac.code.Type.*;
duke@1 42
duke@1 43 import com.sun.tools.javac.jvm.Target;
jjg@1280 44 import com.sun.tools.javac.tree.EndPosTable;
duke@1 45
duke@1 46 import static com.sun.tools.javac.code.Flags.*;
jjg@1127 47 import static com.sun.tools.javac.code.Flags.BLOCK;
duke@1 48 import static com.sun.tools.javac.code.Kinds.*;
jjg@1374 49 import static com.sun.tools.javac.code.TypeTag.*;
duke@1 50 import static com.sun.tools.javac.jvm.ByteCodes.*;
jjg@1127 51 import static com.sun.tools.javac.tree.JCTree.Tag.*;
duke@1 52
duke@1 53 /** This pass translates away some syntactic sugar: inner classes,
duke@1 54 * class literals, assertions, foreach loops, etc.
duke@1 55 *
jjg@581 56 * <p><b>This is NOT part of any supported API.
jjg@581 57 * If you write code that depends on this, you do so at your own risk.
duke@1 58 * This code and its internal interfaces are subject to change or
duke@1 59 * deletion without notice.</b>
duke@1 60 */
duke@1 61 public class Lower extends TreeTranslator {
duke@1 62 protected static final Context.Key<Lower> lowerKey =
duke@1 63 new Context.Key<Lower>();
duke@1 64
duke@1 65 public static Lower instance(Context context) {
duke@1 66 Lower instance = context.get(lowerKey);
duke@1 67 if (instance == null)
duke@1 68 instance = new Lower(context);
duke@1 69 return instance;
duke@1 70 }
duke@1 71
jjg@113 72 private Names names;
duke@1 73 private Log log;
duke@1 74 private Symtab syms;
duke@1 75 private Resolve rs;
duke@1 76 private Check chk;
duke@1 77 private Attr attr;
duke@1 78 private TreeMaker make;
duke@1 79 private DiagnosticPosition make_pos;
duke@1 80 private ClassWriter writer;
duke@1 81 private ClassReader reader;
duke@1 82 private ConstFold cfolder;
duke@1 83 private Target target;
duke@1 84 private Source source;
pgovereau@2425 85 private final TypeEnvs typeEnvs;
duke@1 86 private boolean allowEnums;
duke@1 87 private final Name dollarAssertionsDisabled;
duke@1 88 private final Name classDollar;
duke@1 89 private Types types;
duke@1 90 private boolean debugLower;
jjg@657 91 private PkgInfo pkginfoOpt;
duke@1 92
duke@1 93 protected Lower(Context context) {
duke@1 94 context.put(lowerKey, this);
jjg@113 95 names = Names.instance(context);
duke@1 96 log = Log.instance(context);
duke@1 97 syms = Symtab.instance(context);
duke@1 98 rs = Resolve.instance(context);
duke@1 99 chk = Check.instance(context);
duke@1 100 attr = Attr.instance(context);
duke@1 101 make = TreeMaker.instance(context);
duke@1 102 writer = ClassWriter.instance(context);
duke@1 103 reader = ClassReader.instance(context);
duke@1 104 cfolder = ConstFold.instance(context);
duke@1 105 target = Target.instance(context);
duke@1 106 source = Source.instance(context);
pgovereau@2425 107 typeEnvs = TypeEnvs.instance(context);
duke@1 108 allowEnums = source.allowEnums();
duke@1 109 dollarAssertionsDisabled = names.
duke@1 110 fromString(target.syntheticNameChar() + "assertionsDisabled");
duke@1 111 classDollar = names.
duke@1 112 fromString("class" + target.syntheticNameChar());
duke@1 113
duke@1 114 types = Types.instance(context);
duke@1 115 Options options = Options.instance(context);
jjg@700 116 debugLower = options.isSet("debuglower");
jjg@657 117 pkginfoOpt = PkgInfo.get(options);
duke@1 118 }
duke@1 119
duke@1 120 /** The currently enclosing class.
duke@1 121 */
duke@1 122 ClassSymbol currentClass;
duke@1 123
duke@1 124 /** A queue of all translated classes.
duke@1 125 */
duke@1 126 ListBuffer<JCTree> translated;
duke@1 127
duke@1 128 /** Environment for symbol lookup, set by translateTopLevelClass.
duke@1 129 */
duke@1 130 Env<AttrContext> attrEnv;
duke@1 131
duke@1 132 /** A hash table mapping syntax trees to their ending source positions.
duke@1 133 */
ksrini@1138 134 EndPosTable endPosTable;
duke@1 135
duke@1 136 /**************************************************************************
duke@1 137 * Global mappings
duke@1 138 *************************************************************************/
duke@1 139
duke@1 140 /** A hash table mapping local classes to their definitions.
duke@1 141 */
duke@1 142 Map<ClassSymbol, JCClassDecl> classdefs;
duke@1 143
vromero@1432 144 /** A hash table mapping local classes to a list of pruned trees.
vromero@1432 145 */
vromero@1432 146 public Map<ClassSymbol, List<JCTree>> prunedTree = new WeakHashMap<ClassSymbol, List<JCTree>>();
vromero@1432 147
duke@1 148 /** A hash table mapping virtual accessed symbols in outer subclasses
duke@1 149 * to the actually referred symbol in superclasses.
duke@1 150 */
duke@1 151 Map<Symbol,Symbol> actualSymbols;
duke@1 152
duke@1 153 /** The current method definition.
duke@1 154 */
duke@1 155 JCMethodDecl currentMethodDef;
duke@1 156
duke@1 157 /** The current method symbol.
duke@1 158 */
duke@1 159 MethodSymbol currentMethodSym;
duke@1 160
duke@1 161 /** The currently enclosing outermost class definition.
duke@1 162 */
duke@1 163 JCClassDecl outermostClassDef;
duke@1 164
duke@1 165 /** The currently enclosing outermost member definition.
duke@1 166 */
duke@1 167 JCTree outermostMemberDef;
duke@1 168
mcimadamore@1612 169 /** A map from local variable symbols to their translation (as per LambdaToMethod).
mcimadamore@1612 170 * This is required when a capturing local class is created from a lambda (in which
mcimadamore@1612 171 * case the captured symbols should be replaced with the translated lambda symbols).
mcimadamore@1612 172 */
mcimadamore@1612 173 Map<Symbol, Symbol> lambdaTranslationMap = null;
mcimadamore@1612 174
duke@1 175 /** A navigator class for assembling a mapping from local class symbols
duke@1 176 * to class definition trees.
duke@1 177 * There is only one case; all other cases simply traverse down the tree.
duke@1 178 */
duke@1 179 class ClassMap extends TreeScanner {
duke@1 180
duke@1 181 /** All encountered class defs are entered into classdefs table.
duke@1 182 */
duke@1 183 public void visitClassDef(JCClassDecl tree) {
duke@1 184 classdefs.put(tree.sym, tree);
duke@1 185 super.visitClassDef(tree);
duke@1 186 }
duke@1 187 }
duke@1 188 ClassMap classMap = new ClassMap();
duke@1 189
duke@1 190 /** Map a class symbol to its definition.
duke@1 191 * @param c The class symbol of which we want to determine the definition.
duke@1 192 */
duke@1 193 JCClassDecl classDef(ClassSymbol c) {
duke@1 194 // First lookup the class in the classdefs table.
duke@1 195 JCClassDecl def = classdefs.get(c);
duke@1 196 if (def == null && outermostMemberDef != null) {
duke@1 197 // If this fails, traverse outermost member definition, entering all
duke@1 198 // local classes into classdefs, and try again.
duke@1 199 classMap.scan(outermostMemberDef);
duke@1 200 def = classdefs.get(c);
duke@1 201 }
duke@1 202 if (def == null) {
duke@1 203 // If this fails, traverse outermost class definition, entering all
duke@1 204 // local classes into classdefs, and try again.
duke@1 205 classMap.scan(outermostClassDef);
duke@1 206 def = classdefs.get(c);
duke@1 207 }
duke@1 208 return def;
duke@1 209 }
duke@1 210
duke@1 211 /** A hash table mapping class symbols to lists of free variables.
duke@1 212 * accessed by them. Only free variables of the method immediately containing
duke@1 213 * a class are associated with that class.
duke@1 214 */
duke@1 215 Map<ClassSymbol,List<VarSymbol>> freevarCache;
duke@1 216
duke@1 217 /** A navigator class for collecting the free variables accessed
mcimadamore@1612 218 * from a local class. There is only one case; all other cases simply
mcimadamore@1612 219 * traverse down the tree. This class doesn't deal with the specific
mcimadamore@1612 220 * of Lower - it's an abstract visitor that is meant to be reused in
mcimadamore@1612 221 * order to share the local variable capture logic.
duke@1 222 */
mcimadamore@1612 223 abstract class BasicFreeVarCollector extends TreeScanner {
mcimadamore@1612 224
mcimadamore@1612 225 /** Add all free variables of class c to fvs list
mcimadamore@1612 226 * unless they are already there.
mcimadamore@1612 227 */
mcimadamore@1612 228 abstract void addFreeVars(ClassSymbol c);
mcimadamore@1612 229
mcimadamore@1612 230 /** If tree refers to a variable in owner of local class, add it to
mcimadamore@1612 231 * free variables list.
mcimadamore@1612 232 */
mcimadamore@1612 233 public void visitIdent(JCIdent tree) {
mcimadamore@1612 234 visitSymbol(tree.sym);
mcimadamore@1612 235 }
mcimadamore@1612 236 // where
mcimadamore@1612 237 abstract void visitSymbol(Symbol _sym);
mcimadamore@1612 238
mcimadamore@1612 239 /** If tree refers to a class instance creation expression
mcimadamore@1612 240 * add all free variables of the freshly created class.
mcimadamore@1612 241 */
mcimadamore@1612 242 public void visitNewClass(JCNewClass tree) {
mcimadamore@1612 243 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
mcimadamore@1612 244 addFreeVars(c);
mcimadamore@1612 245 super.visitNewClass(tree);
mcimadamore@1612 246 }
mcimadamore@1612 247
mcimadamore@1612 248 /** If tree refers to a superclass constructor call,
mcimadamore@1612 249 * add all free variables of the superclass.
mcimadamore@1612 250 */
mcimadamore@1612 251 public void visitApply(JCMethodInvocation tree) {
mcimadamore@1612 252 if (TreeInfo.name(tree.meth) == names._super) {
mcimadamore@1612 253 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
mcimadamore@1612 254 }
mcimadamore@1612 255 super.visitApply(tree);
mcimadamore@1612 256 }
mcimadamore@1612 257 }
mcimadamore@1612 258
mcimadamore@1612 259 /**
mcimadamore@1612 260 * Lower-specific subclass of {@code BasicFreeVarCollector}.
mcimadamore@1612 261 */
mcimadamore@1612 262 class FreeVarCollector extends BasicFreeVarCollector {
duke@1 263
duke@1 264 /** The owner of the local class.
duke@1 265 */
duke@1 266 Symbol owner;
duke@1 267
duke@1 268 /** The local class.
duke@1 269 */
duke@1 270 ClassSymbol clazz;
duke@1 271
duke@1 272 /** The list of owner's variables accessed from within the local class,
duke@1 273 * without any duplicates.
duke@1 274 */
duke@1 275 List<VarSymbol> fvs;
duke@1 276
duke@1 277 FreeVarCollector(ClassSymbol clazz) {
duke@1 278 this.clazz = clazz;
duke@1 279 this.owner = clazz.owner;
duke@1 280 this.fvs = List.nil();
duke@1 281 }
duke@1 282
duke@1 283 /** Add free variable to fvs list unless it is already there.
duke@1 284 */
duke@1 285 private void addFreeVar(VarSymbol v) {
duke@1 286 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
duke@1 287 if (l.head == v) return;
duke@1 288 fvs = fvs.prepend(v);
duke@1 289 }
duke@1 290
mcimadamore@1612 291 @Override
mcimadamore@1612 292 void addFreeVars(ClassSymbol c) {
duke@1 293 List<VarSymbol> fvs = freevarCache.get(c);
duke@1 294 if (fvs != null) {
duke@1 295 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
duke@1 296 addFreeVar(l.head);
duke@1 297 }
duke@1 298 }
duke@1 299 }
duke@1 300
mcimadamore@1612 301 @Override
mcimadamore@1612 302 void visitSymbol(Symbol _sym) {
duke@1 303 Symbol sym = _sym;
duke@1 304 if (sym.kind == VAR || sym.kind == MTH) {
duke@1 305 while (sym != null && sym.owner != owner)
duke@1 306 sym = proxies.lookup(proxyName(sym.name)).sym;
duke@1 307 if (sym != null && sym.owner == owner) {
duke@1 308 VarSymbol v = (VarSymbol)sym;
duke@1 309 if (v.getConstValue() == null) {
duke@1 310 addFreeVar(v);
duke@1 311 }
duke@1 312 } else {
duke@1 313 if (outerThisStack.head != null &&
duke@1 314 outerThisStack.head != _sym)
duke@1 315 visitSymbol(outerThisStack.head);
duke@1 316 }
duke@1 317 }
duke@1 318 }
duke@1 319
duke@1 320 /** If tree refers to a class instance creation expression
duke@1 321 * add all free variables of the freshly created class.
duke@1 322 */
duke@1 323 public void visitNewClass(JCNewClass tree) {
duke@1 324 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
duke@1 325 if (tree.encl == null &&
duke@1 326 c.hasOuterInstance() &&
duke@1 327 outerThisStack.head != null)
duke@1 328 visitSymbol(outerThisStack.head);
duke@1 329 super.visitNewClass(tree);
duke@1 330 }
duke@1 331
duke@1 332 /** If tree refers to a qualified this or super expression
duke@1 333 * for anything but the current class, add the outer this
duke@1 334 * stack as a free variable.
duke@1 335 */
duke@1 336 public void visitSelect(JCFieldAccess tree) {
duke@1 337 if ((tree.name == names._this || tree.name == names._super) &&
duke@1 338 tree.selected.type.tsym != clazz &&
duke@1 339 outerThisStack.head != null)
duke@1 340 visitSymbol(outerThisStack.head);
duke@1 341 super.visitSelect(tree);
duke@1 342 }
duke@1 343
duke@1 344 /** If tree refers to a superclass constructor call,
duke@1 345 * add all free variables of the superclass.
duke@1 346 */
duke@1 347 public void visitApply(JCMethodInvocation tree) {
duke@1 348 if (TreeInfo.name(tree.meth) == names._super) {
duke@1 349 Symbol constructor = TreeInfo.symbol(tree.meth);
duke@1 350 ClassSymbol c = (ClassSymbol)constructor.owner;
duke@1 351 if (c.hasOuterInstance() &&
jjg@1127 352 !tree.meth.hasTag(SELECT) &&
duke@1 353 outerThisStack.head != null)
duke@1 354 visitSymbol(outerThisStack.head);
duke@1 355 }
duke@1 356 super.visitApply(tree);
duke@1 357 }
duke@1 358 }
duke@1 359
vromero@1954 360 ClassSymbol ownerToCopyFreeVarsFrom(ClassSymbol c) {
vromero@1954 361 if (!c.isLocal()) {
vromero@1954 362 return null;
vromero@1954 363 }
vromero@1954 364 Symbol currentOwner = c.owner;
vromero@1954 365 while ((currentOwner.owner.kind & TYP) != 0 && currentOwner.isLocal()) {
vromero@1954 366 currentOwner = currentOwner.owner;
vromero@1954 367 }
vromero@1954 368 if ((currentOwner.owner.kind & (VAR | MTH)) != 0 && c.isSubClass(currentOwner, types)) {
vromero@1954 369 return (ClassSymbol)currentOwner;
vromero@1954 370 }
vromero@1954 371 return null;
vromero@1954 372 }
vromero@1954 373
duke@1 374 /** Return the variables accessed from within a local class, which
duke@1 375 * are declared in the local class' owner.
duke@1 376 * (in reverse order of first access).
duke@1 377 */
duke@1 378 List<VarSymbol> freevars(ClassSymbol c) {
vromero@1954 379 List<VarSymbol> fvs = freevarCache.get(c);
vromero@1954 380 if (fvs != null) {
vromero@1954 381 return fvs;
vromero@1954 382 }
duke@1 383 if ((c.owner.kind & (VAR | MTH)) != 0) {
vromero@1954 384 FreeVarCollector collector = new FreeVarCollector(c);
vromero@1954 385 collector.scan(classDef(c));
vromero@1954 386 fvs = collector.fvs;
vromero@1954 387 freevarCache.put(c, fvs);
duke@1 388 return fvs;
duke@1 389 } else {
vromero@1954 390 ClassSymbol owner = ownerToCopyFreeVarsFrom(c);
vromero@1954 391 if (owner != null) {
vromero@1954 392 fvs = freevarCache.get(owner);
vromero@1954 393 freevarCache.put(c, fvs);
vromero@1954 394 return fvs;
vromero@1954 395 } else {
vromero@1954 396 return List.nil();
vromero@1954 397 }
duke@1 398 }
duke@1 399 }
duke@1 400
duke@1 401 Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
duke@1 402
duke@1 403 EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
duke@1 404 EnumMapping map = enumSwitchMap.get(enumClass);
duke@1 405 if (map == null)
duke@1 406 enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
duke@1 407 return map;
duke@1 408 }
duke@1 409
duke@1 410 /** This map gives a translation table to be used for enum
duke@1 411 * switches.
duke@1 412 *
duke@1 413 * <p>For each enum that appears as the type of a switch
duke@1 414 * expression, we maintain an EnumMapping to assist in the
duke@1 415 * translation, as exemplified by the following example:
duke@1 416 *
duke@1 417 * <p>we translate
duke@1 418 * <pre>
duke@1 419 * switch(colorExpression) {
duke@1 420 * case red: stmt1;
duke@1 421 * case green: stmt2;
duke@1 422 * }
duke@1 423 * </pre>
duke@1 424 * into
duke@1 425 * <pre>
duke@1 426 * switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
duke@1 427 * case 1: stmt1;
duke@1 428 * case 2: stmt2
duke@1 429 * }
duke@1 430 * </pre>
darcy@430 431 * with the auxiliary table initialized as follows:
duke@1 432 * <pre>
duke@1 433 * class Outer$0 {
duke@1 434 * synthetic final int[] $EnumMap$Color = new int[Color.values().length];
duke@1 435 * static {
duke@1 436 * try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
duke@1 437 * try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
duke@1 438 * }
duke@1 439 * }
duke@1 440 * </pre>
duke@1 441 * class EnumMapping provides mapping data and support methods for this translation.
duke@1 442 */
duke@1 443 class EnumMapping {
duke@1 444 EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
duke@1 445 this.forEnum = forEnum;
duke@1 446 this.values = new LinkedHashMap<VarSymbol,Integer>();
duke@1 447 this.pos = pos;
duke@1 448 Name varName = names
duke@1 449 .fromString(target.syntheticNameChar() +
duke@1 450 "SwitchMap" +
duke@1 451 target.syntheticNameChar() +
duke@1 452 writer.xClassName(forEnum.type).toString()
duke@1 453 .replace('/', '.')
duke@1 454 .replace('.', target.syntheticNameChar()));
duke@1 455 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 456 this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
duke@1 457 varName,
duke@1 458 new ArrayType(syms.intType, syms.arrayClass),
duke@1 459 outerCacheClass);
duke@1 460 enterSynthetic(pos, mapVar, outerCacheClass.members());
duke@1 461 }
duke@1 462
duke@1 463 DiagnosticPosition pos = null;
duke@1 464
duke@1 465 // the next value to use
duke@1 466 int next = 1; // 0 (unused map elements) go to the default label
duke@1 467
duke@1 468 // the enum for which this is a map
duke@1 469 final TypeSymbol forEnum;
duke@1 470
duke@1 471 // the field containing the map
duke@1 472 final VarSymbol mapVar;
duke@1 473
duke@1 474 // the mapped values
duke@1 475 final Map<VarSymbol,Integer> values;
duke@1 476
duke@1 477 JCLiteral forConstant(VarSymbol v) {
duke@1 478 Integer result = values.get(v);
duke@1 479 if (result == null)
duke@1 480 values.put(v, result = next++);
duke@1 481 return make.Literal(result);
duke@1 482 }
duke@1 483
duke@1 484 // generate the field initializer for the map
duke@1 485 void translate() {
duke@1 486 make.at(pos.getStartPosition());
duke@1 487 JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
duke@1 488
duke@1 489 // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
duke@1 490 MethodSymbol valuesMethod = lookupMethod(pos,
duke@1 491 names.values,
duke@1 492 forEnum.type,
duke@1 493 List.<Type>nil());
duke@1 494 JCExpression size = make // Color.values().length
duke@1 495 .Select(make.App(make.QualIdent(valuesMethod)),
duke@1 496 syms.lengthVar);
duke@1 497 JCExpression mapVarInit = make
duke@1 498 .NewArray(make.Type(syms.intType), List.of(size), null)
duke@1 499 .setType(new ArrayType(syms.intType, syms.arrayClass));
duke@1 500
duke@1 501 // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
duke@1 502 ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
duke@1 503 Symbol ordinalMethod = lookupMethod(pos,
duke@1 504 names.ordinal,
duke@1 505 forEnum.type,
duke@1 506 List.<Type>nil());
duke@1 507 List<JCCatch> catcher = List.<JCCatch>nil()
duke@1 508 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
duke@1 509 syms.noSuchFieldErrorType,
duke@1 510 syms.noSymbol),
duke@1 511 null),
duke@1 512 make.Block(0, List.<JCStatement>nil())));
duke@1 513 for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
duke@1 514 VarSymbol enumerator = e.getKey();
duke@1 515 Integer mappedValue = e.getValue();
duke@1 516 JCExpression assign = make
duke@1 517 .Assign(make.Indexed(mapVar,
duke@1 518 make.App(make.Select(make.QualIdent(enumerator),
duke@1 519 ordinalMethod))),
duke@1 520 make.Literal(mappedValue))
duke@1 521 .setType(syms.intType);
duke@1 522 JCStatement exec = make.Exec(assign);
duke@1 523 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
duke@1 524 stmts.append(_try);
duke@1 525 }
duke@1 526
duke@1 527 owner.defs = owner.defs
duke@1 528 .prepend(make.Block(STATIC, stmts.toList()))
duke@1 529 .prepend(make.VarDef(mapVar, mapVarInit));
duke@1 530 }
duke@1 531 }
duke@1 532
duke@1 533
duke@1 534 /**************************************************************************
duke@1 535 * Tree building blocks
duke@1 536 *************************************************************************/
duke@1 537
duke@1 538 /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
duke@1 539 * pos as make_pos, for use in diagnostics.
duke@1 540 **/
duke@1 541 TreeMaker make_at(DiagnosticPosition pos) {
duke@1 542 make_pos = pos;
duke@1 543 return make.at(pos);
duke@1 544 }
duke@1 545
duke@1 546 /** Make an attributed tree representing a literal. This will be an
duke@1 547 * Ident node in the case of boolean literals, a Literal node in all
duke@1 548 * other cases.
duke@1 549 * @param type The literal's type.
duke@1 550 * @param value The literal's value.
duke@1 551 */
duke@1 552 JCExpression makeLit(Type type, Object value) {
jjg@1374 553 return make.Literal(type.getTag(), value).setType(type.constType(value));
duke@1 554 }
duke@1 555
duke@1 556 /** Make an attributed tree representing null.
duke@1 557 */
duke@1 558 JCExpression makeNull() {
duke@1 559 return makeLit(syms.botType, null);
duke@1 560 }
duke@1 561
duke@1 562 /** Make an attributed class instance creation expression.
duke@1 563 * @param ctype The class type.
duke@1 564 * @param args The constructor arguments.
duke@1 565 */
duke@1 566 JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
duke@1 567 JCNewClass tree = make.NewClass(null,
duke@1 568 null, make.QualIdent(ctype.tsym), args, null);
duke@1 569 tree.constructor = rs.resolveConstructor(
mcimadamore@1394 570 make_pos, attrEnv, ctype, TreeInfo.types(args), List.<Type>nil());
duke@1 571 tree.type = ctype;
duke@1 572 return tree;
duke@1 573 }
duke@1 574
duke@1 575 /** Make an attributed unary expression.
duke@1 576 * @param optag The operators tree tag.
duke@1 577 * @param arg The operator's argument.
duke@1 578 */
jjg@1127 579 JCUnary makeUnary(JCTree.Tag optag, JCExpression arg) {
duke@1 580 JCUnary tree = make.Unary(optag, arg);
duke@1 581 tree.operator = rs.resolveUnaryOperator(
duke@1 582 make_pos, optag, attrEnv, arg.type);
duke@1 583 tree.type = tree.operator.type.getReturnType();
duke@1 584 return tree;
duke@1 585 }
duke@1 586
duke@1 587 /** Make an attributed binary expression.
duke@1 588 * @param optag The operators tree tag.
duke@1 589 * @param lhs The operator's left argument.
duke@1 590 * @param rhs The operator's right argument.
duke@1 591 */
jjg@1127 592 JCBinary makeBinary(JCTree.Tag optag, JCExpression lhs, JCExpression rhs) {
duke@1 593 JCBinary tree = make.Binary(optag, lhs, rhs);
duke@1 594 tree.operator = rs.resolveBinaryOperator(
duke@1 595 make_pos, optag, attrEnv, lhs.type, rhs.type);
duke@1 596 tree.type = tree.operator.type.getReturnType();
duke@1 597 return tree;
duke@1 598 }
duke@1 599
duke@1 600 /** Make an attributed assignop expression.
duke@1 601 * @param optag The operators tree tag.
duke@1 602 * @param lhs The operator's left argument.
duke@1 603 * @param rhs The operator's right argument.
duke@1 604 */
jjg@1127 605 JCAssignOp makeAssignop(JCTree.Tag optag, JCTree lhs, JCTree rhs) {
duke@1 606 JCAssignOp tree = make.Assignop(optag, lhs, rhs);
duke@1 607 tree.operator = rs.resolveBinaryOperator(
jjg@1127 608 make_pos, tree.getTag().noAssignOp(), attrEnv, lhs.type, rhs.type);
duke@1 609 tree.type = lhs.type;
duke@1 610 return tree;
duke@1 611 }
duke@1 612
duke@1 613 /** Convert tree into string object, unless it has already a
duke@1 614 * reference type..
duke@1 615 */
duke@1 616 JCExpression makeString(JCExpression tree) {
jjg@1374 617 if (!tree.type.isPrimitiveOrVoid()) {
duke@1 618 return tree;
duke@1 619 } else {
duke@1 620 Symbol valueOfSym = lookupMethod(tree.pos(),
duke@1 621 names.valueOf,
duke@1 622 syms.stringType,
duke@1 623 List.of(tree.type));
duke@1 624 return make.App(make.QualIdent(valueOfSym), List.of(tree));
duke@1 625 }
duke@1 626 }
duke@1 627
duke@1 628 /** Create an empty anonymous class definition and enter and complete
duke@1 629 * its symbol. Return the class definition's symbol.
duke@1 630 * and create
duke@1 631 * @param flags The class symbol's flags
duke@1 632 * @param owner The class symbol's owner
duke@1 633 */
vromero@1542 634 JCClassDecl makeEmptyClass(long flags, ClassSymbol owner) {
vromero@1542 635 return makeEmptyClass(flags, owner, null, true);
vromero@1542 636 }
vromero@1542 637
vromero@1542 638 JCClassDecl makeEmptyClass(long flags, ClassSymbol owner, Name flatname,
vromero@1542 639 boolean addToDefs) {
duke@1 640 // Create class symbol.
duke@1 641 ClassSymbol c = reader.defineClass(names.empty, owner);
vromero@1542 642 if (flatname != null) {
vromero@1542 643 c.flatname = flatname;
vromero@1542 644 } else {
vromero@1542 645 c.flatname = chk.localClassName(c);
vromero@1542 646 }
duke@1 647 c.sourcefile = owner.sourcefile;
duke@1 648 c.completer = null;
mcimadamore@858 649 c.members_field = new Scope(c);
duke@1 650 c.flags_field = flags;
duke@1 651 ClassType ctype = (ClassType) c.type;
duke@1 652 ctype.supertype_field = syms.objectType;
duke@1 653 ctype.interfaces_field = List.nil();
duke@1 654
duke@1 655 JCClassDecl odef = classDef(owner);
duke@1 656
duke@1 657 // Enter class symbol in owner scope and compiled table.
duke@1 658 enterSynthetic(odef.pos(), c, owner.members());
duke@1 659 chk.compiled.put(c.flatname, c);
duke@1 660
duke@1 661 // Create class definition tree.
duke@1 662 JCClassDecl cdef = make.ClassDef(
duke@1 663 make.Modifiers(flags), names.empty,
duke@1 664 List.<JCTypeParameter>nil(),
duke@1 665 null, List.<JCExpression>nil(), List.<JCTree>nil());
duke@1 666 cdef.sym = c;
duke@1 667 cdef.type = c.type;
duke@1 668
duke@1 669 // Append class definition tree to owner's definitions.
vromero@1542 670 if (addToDefs) odef.defs = odef.defs.prepend(cdef);
vromero@1542 671 return cdef;
duke@1 672 }
duke@1 673
duke@1 674 /**************************************************************************
duke@1 675 * Symbol manipulation utilities
duke@1 676 *************************************************************************/
duke@1 677
duke@1 678 /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
duke@1 679 * @param pos Position for error reporting.
duke@1 680 * @param sym The symbol.
duke@1 681 * @param s The scope.
duke@1 682 */
duke@1 683 private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
mcimadamore@359 684 s.enter(sym);
mcimadamore@359 685 }
mcimadamore@359 686
darcy@609 687 /** Create a fresh synthetic name within a given scope - the unique name is
darcy@609 688 * obtained by appending '$' chars at the end of the name until no match
darcy@609 689 * is found.
darcy@609 690 *
darcy@609 691 * @param name base name
darcy@609 692 * @param s scope in which the name has to be unique
darcy@609 693 * @return fresh synthetic name
darcy@609 694 */
darcy@609 695 private Name makeSyntheticName(Name name, Scope s) {
darcy@609 696 do {
darcy@609 697 name = name.append(
darcy@609 698 target.syntheticNameChar(),
darcy@609 699 names.empty);
darcy@609 700 } while (lookupSynthetic(name, s) != null);
darcy@609 701 return name;
darcy@609 702 }
darcy@609 703
mcimadamore@359 704 /** Check whether synthetic symbols generated during lowering conflict
mcimadamore@359 705 * with user-defined symbols.
mcimadamore@359 706 *
mcimadamore@359 707 * @param translatedTrees lowered class trees
mcimadamore@359 708 */
mcimadamore@359 709 void checkConflicts(List<JCTree> translatedTrees) {
mcimadamore@359 710 for (JCTree t : translatedTrees) {
mcimadamore@359 711 t.accept(conflictsChecker);
mcimadamore@359 712 }
mcimadamore@359 713 }
mcimadamore@359 714
mcimadamore@359 715 JCTree.Visitor conflictsChecker = new TreeScanner() {
mcimadamore@359 716
mcimadamore@359 717 TypeSymbol currentClass;
mcimadamore@359 718
mcimadamore@359 719 @Override
mcimadamore@359 720 public void visitMethodDef(JCMethodDecl that) {
mcimadamore@359 721 chk.checkConflicts(that.pos(), that.sym, currentClass);
mcimadamore@359 722 super.visitMethodDef(that);
mcimadamore@359 723 }
mcimadamore@359 724
mcimadamore@359 725 @Override
mcimadamore@359 726 public void visitVarDef(JCVariableDecl that) {
mcimadamore@359 727 if (that.sym.owner.kind == TYP) {
mcimadamore@359 728 chk.checkConflicts(that.pos(), that.sym, currentClass);
mcimadamore@359 729 }
mcimadamore@359 730 super.visitVarDef(that);
mcimadamore@359 731 }
mcimadamore@359 732
mcimadamore@359 733 @Override
mcimadamore@359 734 public void visitClassDef(JCClassDecl that) {
mcimadamore@359 735 TypeSymbol prevCurrentClass = currentClass;
mcimadamore@359 736 currentClass = that.sym;
mcimadamore@359 737 try {
mcimadamore@359 738 super.visitClassDef(that);
mcimadamore@359 739 }
mcimadamore@359 740 finally {
mcimadamore@359 741 currentClass = prevCurrentClass;
duke@1 742 }
duke@1 743 }
mcimadamore@359 744 };
duke@1 745
duke@1 746 /** Look up a synthetic name in a given scope.
jjg@1358 747 * @param s The scope.
duke@1 748 * @param name The name.
duke@1 749 */
duke@1 750 private Symbol lookupSynthetic(Name name, Scope s) {
duke@1 751 Symbol sym = s.lookup(name).sym;
duke@1 752 return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
duke@1 753 }
duke@1 754
duke@1 755 /** Look up a method in a given scope.
duke@1 756 */
duke@1 757 private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
mcimadamore@1415 758 return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, List.<Type>nil());
duke@1 759 }
duke@1 760
duke@1 761 /** Look up a constructor.
duke@1 762 */
duke@1 763 private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
duke@1 764 return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
duke@1 765 }
duke@1 766
duke@1 767 /** Look up a field.
duke@1 768 */
duke@1 769 private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
duke@1 770 return rs.resolveInternalField(pos, attrEnv, qual, name);
duke@1 771 }
duke@1 772
jjg@595 773 /** Anon inner classes are used as access constructor tags.
jjg@595 774 * accessConstructorTag will use an existing anon class if one is available,
jjg@595 775 * and synthethise a class (with makeEmptyClass) if one is not available.
jjg@595 776 * However, there is a small possibility that an existing class will not
jjg@595 777 * be generated as expected if it is inside a conditional with a constant
vromero@1542 778 * expression. If that is found to be the case, create an empty class tree here.
jjg@595 779 */
jjg@595 780 private void checkAccessConstructorTags() {
jjg@595 781 for (List<ClassSymbol> l = accessConstrTags; l.nonEmpty(); l = l.tail) {
jjg@595 782 ClassSymbol c = l.head;
jjg@595 783 if (isTranslatedClassAvailable(c))
jjg@595 784 continue;
jjg@595 785 // Create class definition tree.
vromero@1542 786 JCClassDecl cdec = makeEmptyClass(STATIC | SYNTHETIC,
vromero@1542 787 c.outermostClass(), c.flatname, false);
vromero@1542 788 swapAccessConstructorTag(c, cdec.sym);
vromero@1542 789 translated.append(cdec);
jjg@595 790 }
jjg@595 791 }
jjg@595 792 // where
jjg@595 793 private boolean isTranslatedClassAvailable(ClassSymbol c) {
jjg@595 794 for (JCTree tree: translated) {
jjg@1127 795 if (tree.hasTag(CLASSDEF)
jjg@595 796 && ((JCClassDecl) tree).sym == c) {
jjg@595 797 return true;
jjg@595 798 }
jjg@595 799 }
jjg@595 800 return false;
jjg@595 801 }
jjg@595 802
vromero@1542 803 void swapAccessConstructorTag(ClassSymbol oldCTag, ClassSymbol newCTag) {
vromero@1542 804 for (MethodSymbol methodSymbol : accessConstrs.values()) {
vromero@1542 805 Assert.check(methodSymbol.type.hasTag(METHOD));
vromero@1542 806 MethodType oldMethodType =
vromero@1542 807 (MethodType)methodSymbol.type;
vromero@1542 808 if (oldMethodType.argtypes.head.tsym == oldCTag)
vromero@1542 809 methodSymbol.type =
vromero@1542 810 types.createMethodTypeWithParameters(oldMethodType,
vromero@1542 811 oldMethodType.getParameterTypes().tail
vromero@1542 812 .prepend(newCTag.erasure(types)));
vromero@1542 813 }
vromero@1542 814 }
vromero@1542 815
duke@1 816 /**************************************************************************
duke@1 817 * Access methods
duke@1 818 *************************************************************************/
duke@1 819
duke@1 820 /** Access codes for dereferencing, assignment,
duke@1 821 * and pre/post increment/decrement.
duke@1 822 * Access codes for assignment operations are determined by method accessCode
duke@1 823 * below.
duke@1 824 *
duke@1 825 * All access codes for accesses to the current class are even.
duke@1 826 * If a member of the superclass should be accessed instead (because
duke@1 827 * access was via a qualified super), add one to the corresponding code
duke@1 828 * for the current class, making the number odd.
duke@1 829 * This numbering scheme is used by the backend to decide whether
duke@1 830 * to issue an invokevirtual or invokespecial call.
duke@1 831 *
jjg@1358 832 * @see Gen#visitSelect(JCFieldAccess tree)
duke@1 833 */
duke@1 834 private static final int
duke@1 835 DEREFcode = 0,
duke@1 836 ASSIGNcode = 2,
duke@1 837 PREINCcode = 4,
duke@1 838 PREDECcode = 6,
duke@1 839 POSTINCcode = 8,
duke@1 840 POSTDECcode = 10,
duke@1 841 FIRSTASGOPcode = 12;
duke@1 842
duke@1 843 /** Number of access codes
duke@1 844 */
duke@1 845 private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
duke@1 846
duke@1 847 /** A mapping from symbols to their access numbers.
duke@1 848 */
duke@1 849 private Map<Symbol,Integer> accessNums;
duke@1 850
duke@1 851 /** A mapping from symbols to an array of access symbols, indexed by
duke@1 852 * access code.
duke@1 853 */
duke@1 854 private Map<Symbol,MethodSymbol[]> accessSyms;
duke@1 855
duke@1 856 /** A mapping from (constructor) symbols to access constructor symbols.
duke@1 857 */
duke@1 858 private Map<Symbol,MethodSymbol> accessConstrs;
duke@1 859
jjg@595 860 /** A list of all class symbols used for access constructor tags.
jjg@595 861 */
jjg@595 862 private List<ClassSymbol> accessConstrTags;
jjg@595 863
duke@1 864 /** A queue for all accessed symbols.
duke@1 865 */
duke@1 866 private ListBuffer<Symbol> accessed;
duke@1 867
duke@1 868 /** Map bytecode of binary operation to access code of corresponding
duke@1 869 * assignment operation. This is always an even number.
duke@1 870 */
duke@1 871 private static int accessCode(int bytecode) {
duke@1 872 if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
duke@1 873 return (bytecode - iadd) * 2 + FIRSTASGOPcode;
duke@1 874 else if (bytecode == ByteCodes.string_add)
duke@1 875 return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
duke@1 876 else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
duke@1 877 return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
duke@1 878 else
duke@1 879 return -1;
duke@1 880 }
duke@1 881
duke@1 882 /** return access code for identifier,
duke@1 883 * @param tree The tree representing the identifier use.
duke@1 884 * @param enclOp The closest enclosing operation node of tree,
duke@1 885 * null if tree is not a subtree of an operation.
duke@1 886 */
duke@1 887 private static int accessCode(JCTree tree, JCTree enclOp) {
duke@1 888 if (enclOp == null)
duke@1 889 return DEREFcode;
jjg@1127 890 else if (enclOp.hasTag(ASSIGN) &&
duke@1 891 tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
duke@1 892 return ASSIGNcode;
jjg@1127 893 else if (enclOp.getTag().isIncOrDecUnaryOp() &&
duke@1 894 tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
jjg@1127 895 return mapTagToUnaryOpCode(enclOp.getTag());
jjg@1127 896 else if (enclOp.getTag().isAssignop() &&
duke@1 897 tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
duke@1 898 return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
duke@1 899 else
duke@1 900 return DEREFcode;
duke@1 901 }
duke@1 902
duke@1 903 /** Return binary operator that corresponds to given access code.
duke@1 904 */
duke@1 905 private OperatorSymbol binaryAccessOperator(int acode) {
duke@1 906 for (Scope.Entry e = syms.predefClass.members().elems;
duke@1 907 e != null;
duke@1 908 e = e.sibling) {
duke@1 909 if (e.sym instanceof OperatorSymbol) {
duke@1 910 OperatorSymbol op = (OperatorSymbol)e.sym;
duke@1 911 if (accessCode(op.opcode) == acode) return op;
duke@1 912 }
duke@1 913 }
duke@1 914 return null;
duke@1 915 }
duke@1 916
duke@1 917 /** Return tree tag for assignment operation corresponding
duke@1 918 * to given binary operator.
duke@1 919 */
jjg@1127 920 private static JCTree.Tag treeTag(OperatorSymbol operator) {
duke@1 921 switch (operator.opcode) {
duke@1 922 case ByteCodes.ior: case ByteCodes.lor:
jjg@1127 923 return BITOR_ASG;
duke@1 924 case ByteCodes.ixor: case ByteCodes.lxor:
jjg@1127 925 return BITXOR_ASG;
duke@1 926 case ByteCodes.iand: case ByteCodes.land:
jjg@1127 927 return BITAND_ASG;
duke@1 928 case ByteCodes.ishl: case ByteCodes.lshl:
duke@1 929 case ByteCodes.ishll: case ByteCodes.lshll:
jjg@1127 930 return SL_ASG;
duke@1 931 case ByteCodes.ishr: case ByteCodes.lshr:
duke@1 932 case ByteCodes.ishrl: case ByteCodes.lshrl:
jjg@1127 933 return SR_ASG;
duke@1 934 case ByteCodes.iushr: case ByteCodes.lushr:
duke@1 935 case ByteCodes.iushrl: case ByteCodes.lushrl:
jjg@1127 936 return USR_ASG;
duke@1 937 case ByteCodes.iadd: case ByteCodes.ladd:
duke@1 938 case ByteCodes.fadd: case ByteCodes.dadd:
duke@1 939 case ByteCodes.string_add:
jjg@1127 940 return PLUS_ASG;
duke@1 941 case ByteCodes.isub: case ByteCodes.lsub:
duke@1 942 case ByteCodes.fsub: case ByteCodes.dsub:
jjg@1127 943 return MINUS_ASG;
duke@1 944 case ByteCodes.imul: case ByteCodes.lmul:
duke@1 945 case ByteCodes.fmul: case ByteCodes.dmul:
jjg@1127 946 return MUL_ASG;
duke@1 947 case ByteCodes.idiv: case ByteCodes.ldiv:
duke@1 948 case ByteCodes.fdiv: case ByteCodes.ddiv:
jjg@1127 949 return DIV_ASG;
duke@1 950 case ByteCodes.imod: case ByteCodes.lmod:
duke@1 951 case ByteCodes.fmod: case ByteCodes.dmod:
jjg@1127 952 return MOD_ASG;
duke@1 953 default:
duke@1 954 throw new AssertionError();
duke@1 955 }
duke@1 956 }
duke@1 957
duke@1 958 /** The name of the access method with number `anum' and access code `acode'.
duke@1 959 */
duke@1 960 Name accessName(int anum, int acode) {
duke@1 961 return names.fromString(
duke@1 962 "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
duke@1 963 }
duke@1 964
duke@1 965 /** Return access symbol for a private or protected symbol from an inner class.
duke@1 966 * @param sym The accessed private symbol.
duke@1 967 * @param tree The accessing tree.
duke@1 968 * @param enclOp The closest enclosing operation node of tree,
duke@1 969 * null if tree is not a subtree of an operation.
duke@1 970 * @param protAccess Is access to a protected symbol in another
duke@1 971 * package?
duke@1 972 * @param refSuper Is access via a (qualified) C.super?
duke@1 973 */
duke@1 974 MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
duke@1 975 boolean protAccess, boolean refSuper) {
duke@1 976 ClassSymbol accOwner = refSuper && protAccess
duke@1 977 // For access via qualified super (T.super.x), place the
duke@1 978 // access symbol on T.
duke@1 979 ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
duke@1 980 // Otherwise pretend that the owner of an accessed
duke@1 981 // protected symbol is the enclosing class of the current
duke@1 982 // class which is a subclass of the symbol's owner.
duke@1 983 : accessClass(sym, protAccess, tree);
duke@1 984
duke@1 985 Symbol vsym = sym;
duke@1 986 if (sym.owner != accOwner) {
duke@1 987 vsym = sym.clone(accOwner);
duke@1 988 actualSymbols.put(vsym, sym);
duke@1 989 }
duke@1 990
duke@1 991 Integer anum // The access number of the access method.
duke@1 992 = accessNums.get(vsym);
duke@1 993 if (anum == null) {
duke@1 994 anum = accessed.length();
duke@1 995 accessNums.put(vsym, anum);
duke@1 996 accessSyms.put(vsym, new MethodSymbol[NCODES]);
duke@1 997 accessed.append(vsym);
duke@1 998 // System.out.println("accessing " + vsym + " in " + vsym.location());
duke@1 999 }
duke@1 1000
duke@1 1001 int acode; // The access code of the access method.
duke@1 1002 List<Type> argtypes; // The argument types of the access method.
duke@1 1003 Type restype; // The result type of the access method.
darcy@430 1004 List<Type> thrown; // The thrown exceptions of the access method.
duke@1 1005 switch (vsym.kind) {
duke@1 1006 case VAR:
duke@1 1007 acode = accessCode(tree, enclOp);
duke@1 1008 if (acode >= FIRSTASGOPcode) {
duke@1 1009 OperatorSymbol operator = binaryAccessOperator(acode);
duke@1 1010 if (operator.opcode == string_add)
duke@1 1011 argtypes = List.of(syms.objectType);
duke@1 1012 else
duke@1 1013 argtypes = operator.type.getParameterTypes().tail;
duke@1 1014 } else if (acode == ASSIGNcode)
duke@1 1015 argtypes = List.of(vsym.erasure(types));
duke@1 1016 else
duke@1 1017 argtypes = List.nil();
duke@1 1018 restype = vsym.erasure(types);
duke@1 1019 thrown = List.nil();
duke@1 1020 break;
duke@1 1021 case MTH:
duke@1 1022 acode = DEREFcode;
duke@1 1023 argtypes = vsym.erasure(types).getParameterTypes();
duke@1 1024 restype = vsym.erasure(types).getReturnType();
duke@1 1025 thrown = vsym.type.getThrownTypes();
duke@1 1026 break;
duke@1 1027 default:
duke@1 1028 throw new AssertionError();
duke@1 1029 }
duke@1 1030
duke@1 1031 // For references via qualified super, increment acode by one,
duke@1 1032 // making it odd.
duke@1 1033 if (protAccess && refSuper) acode++;
duke@1 1034
duke@1 1035 // Instance access methods get instance as first parameter.
duke@1 1036 // For protected symbols this needs to be the instance as a member
duke@1 1037 // of the type containing the accessed symbol, not the class
duke@1 1038 // containing the access method.
duke@1 1039 if ((vsym.flags() & STATIC) == 0) {
duke@1 1040 argtypes = argtypes.prepend(vsym.owner.erasure(types));
duke@1 1041 }
duke@1 1042 MethodSymbol[] accessors = accessSyms.get(vsym);
duke@1 1043 MethodSymbol accessor = accessors[acode];
duke@1 1044 if (accessor == null) {
duke@1 1045 accessor = new MethodSymbol(
duke@1 1046 STATIC | SYNTHETIC,
duke@1 1047 accessName(anum.intValue(), acode),
duke@1 1048 new MethodType(argtypes, restype, thrown, syms.methodClass),
duke@1 1049 accOwner);
duke@1 1050 enterSynthetic(tree.pos(), accessor, accOwner.members());
duke@1 1051 accessors[acode] = accessor;
duke@1 1052 }
duke@1 1053 return accessor;
duke@1 1054 }
duke@1 1055
duke@1 1056 /** The qualifier to be used for accessing a symbol in an outer class.
duke@1 1057 * This is either C.sym or C.this.sym, depending on whether or not
duke@1 1058 * sym is static.
duke@1 1059 * @param sym The accessed symbol.
duke@1 1060 */
duke@1 1061 JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
duke@1 1062 return (sym.flags() & STATIC) != 0
duke@1 1063 ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
duke@1 1064 : makeOwnerThis(pos, sym, true);
duke@1 1065 }
duke@1 1066
duke@1 1067 /** Do we need an access method to reference private symbol?
duke@1 1068 */
duke@1 1069 boolean needsPrivateAccess(Symbol sym) {
duke@1 1070 if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
duke@1 1071 return false;
vromero@1954 1072 } else if (sym.name == names.init && sym.owner.isLocal()) {
duke@1 1073 // private constructor in local class: relax protection
duke@1 1074 sym.flags_field &= ~PRIVATE;
duke@1 1075 return false;
duke@1 1076 } else {
duke@1 1077 return true;
duke@1 1078 }
duke@1 1079 }
duke@1 1080
duke@1 1081 /** Do we need an access method to reference symbol in other package?
duke@1 1082 */
duke@1 1083 boolean needsProtectedAccess(Symbol sym, JCTree tree) {
duke@1 1084 if ((sym.flags() & PROTECTED) == 0 ||
duke@1 1085 sym.owner.owner == currentClass.owner || // fast special case
duke@1 1086 sym.packge() == currentClass.packge())
duke@1 1087 return false;
duke@1 1088 if (!currentClass.isSubClass(sym.owner, types))
duke@1 1089 return true;
duke@1 1090 if ((sym.flags() & STATIC) != 0 ||
jjg@1127 1091 !tree.hasTag(SELECT) ||
duke@1 1092 TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
duke@1 1093 return false;
duke@1 1094 return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
duke@1 1095 }
duke@1 1096
duke@1 1097 /** The class in which an access method for given symbol goes.
duke@1 1098 * @param sym The access symbol
duke@1 1099 * @param protAccess Is access to a protected symbol in another
duke@1 1100 * package?
duke@1 1101 */
duke@1 1102 ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
duke@1 1103 if (protAccess) {
duke@1 1104 Symbol qualifier = null;
duke@1 1105 ClassSymbol c = currentClass;
jjg@1127 1106 if (tree.hasTag(SELECT) && (sym.flags() & STATIC) == 0) {
duke@1 1107 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
duke@1 1108 while (!qualifier.isSubClass(c, types)) {
duke@1 1109 c = c.owner.enclClass();
duke@1 1110 }
duke@1 1111 return c;
duke@1 1112 } else {
duke@1 1113 while (!c.isSubClass(sym.owner, types)) {
duke@1 1114 c = c.owner.enclClass();
duke@1 1115 }
duke@1 1116 }
duke@1 1117 return c;
duke@1 1118 } else {
duke@1 1119 // the symbol is private
duke@1 1120 return sym.owner.enclClass();
duke@1 1121 }
duke@1 1122 }
duke@1 1123
vromero@1432 1124 private void addPrunedInfo(JCTree tree) {
vromero@1432 1125 List<JCTree> infoList = prunedTree.get(currentClass);
vromero@1432 1126 infoList = (infoList == null) ? List.of(tree) : infoList.prepend(tree);
vromero@1432 1127 prunedTree.put(currentClass, infoList);
vromero@1432 1128 }
vromero@1432 1129
duke@1 1130 /** Ensure that identifier is accessible, return tree accessing the identifier.
duke@1 1131 * @param sym The accessed symbol.
duke@1 1132 * @param tree The tree referring to the symbol.
duke@1 1133 * @param enclOp The closest enclosing operation node of tree,
duke@1 1134 * null if tree is not a subtree of an operation.
duke@1 1135 * @param refSuper Is access via a (qualified) C.super?
duke@1 1136 */
duke@1 1137 JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
duke@1 1138 // Access a free variable via its proxy, or its proxy's proxy
duke@1 1139 while (sym.kind == VAR && sym.owner.kind == MTH &&
duke@1 1140 sym.owner.enclClass() != currentClass) {
duke@1 1141 // A constant is replaced by its constant value.
duke@1 1142 Object cv = ((VarSymbol)sym).getConstValue();
duke@1 1143 if (cv != null) {
duke@1 1144 make.at(tree.pos);
duke@1 1145 return makeLit(sym.type, cv);
duke@1 1146 }
duke@1 1147 // Otherwise replace the variable by its proxy.
duke@1 1148 sym = proxies.lookup(proxyName(sym.name)).sym;
jjg@816 1149 Assert.check(sym != null && (sym.flags_field & FINAL) != 0);
duke@1 1150 tree = make.at(tree.pos).Ident(sym);
duke@1 1151 }
jjg@1127 1152 JCExpression base = (tree.hasTag(SELECT)) ? ((JCFieldAccess) tree).selected : null;
duke@1 1153 switch (sym.kind) {
duke@1 1154 case TYP:
duke@1 1155 if (sym.owner.kind != PCK) {
duke@1 1156 // Convert type idents to
duke@1 1157 // <flat name> or <package name> . <flat name>
duke@1 1158 Name flatname = Convert.shortName(sym.flatName());
duke@1 1159 while (base != null &&
duke@1 1160 TreeInfo.symbol(base) != null &&
duke@1 1161 TreeInfo.symbol(base).kind != PCK) {
jjg@1127 1162 base = (base.hasTag(SELECT))
duke@1 1163 ? ((JCFieldAccess) base).selected
duke@1 1164 : null;
duke@1 1165 }
jjg@1127 1166 if (tree.hasTag(IDENT)) {
duke@1 1167 ((JCIdent) tree).name = flatname;
duke@1 1168 } else if (base == null) {
duke@1 1169 tree = make.at(tree.pos).Ident(sym);
duke@1 1170 ((JCIdent) tree).name = flatname;
duke@1 1171 } else {
duke@1 1172 ((JCFieldAccess) tree).selected = base;
duke@1 1173 ((JCFieldAccess) tree).name = flatname;
duke@1 1174 }
duke@1 1175 }
duke@1 1176 break;
duke@1 1177 case MTH: case VAR:
duke@1 1178 if (sym.owner.kind == TYP) {
duke@1 1179
duke@1 1180 // Access methods are required for
duke@1 1181 // - private members,
duke@1 1182 // - protected members in a superclass of an
duke@1 1183 // enclosing class contained in another package.
duke@1 1184 // - all non-private members accessed via a qualified super.
duke@1 1185 boolean protAccess = refSuper && !needsPrivateAccess(sym)
duke@1 1186 || needsProtectedAccess(sym, tree);
duke@1 1187 boolean accReq = protAccess || needsPrivateAccess(sym);
duke@1 1188
duke@1 1189 // A base has to be supplied for
duke@1 1190 // - simple identifiers accessing variables in outer classes.
duke@1 1191 boolean baseReq =
duke@1 1192 base == null &&
duke@1 1193 sym.owner != syms.predefClass &&
duke@1 1194 !sym.isMemberOf(currentClass, types);
duke@1 1195
duke@1 1196 if (accReq || baseReq) {
duke@1 1197 make.at(tree.pos);
duke@1 1198
duke@1 1199 // Constants are replaced by their constant value.
duke@1 1200 if (sym.kind == VAR) {
duke@1 1201 Object cv = ((VarSymbol)sym).getConstValue();
vromero@1432 1202 if (cv != null) {
vromero@1432 1203 addPrunedInfo(tree);
vromero@1432 1204 return makeLit(sym.type, cv);
vromero@1432 1205 }
duke@1 1206 }
duke@1 1207
duke@1 1208 // Private variables and methods are replaced by calls
duke@1 1209 // to their access methods.
duke@1 1210 if (accReq) {
duke@1 1211 List<JCExpression> args = List.nil();
duke@1 1212 if ((sym.flags() & STATIC) == 0) {
duke@1 1213 // Instance access methods get instance
duke@1 1214 // as first parameter.
duke@1 1215 if (base == null)
duke@1 1216 base = makeOwnerThis(tree.pos(), sym, true);
duke@1 1217 args = args.prepend(base);
duke@1 1218 base = null; // so we don't duplicate code
duke@1 1219 }
duke@1 1220 Symbol access = accessSymbol(sym, tree,
duke@1 1221 enclOp, protAccess,
duke@1 1222 refSuper);
duke@1 1223 JCExpression receiver = make.Select(
duke@1 1224 base != null ? base : make.QualIdent(access.owner),
duke@1 1225 access);
duke@1 1226 return make.App(receiver, args);
duke@1 1227
duke@1 1228 // Other accesses to members of outer classes get a
duke@1 1229 // qualifier.
duke@1 1230 } else if (baseReq) {
duke@1 1231 return make.at(tree.pos).Select(
duke@1 1232 accessBase(tree.pos(), sym), sym).setType(tree.type);
duke@1 1233 }
duke@1 1234 }
mcimadamore@1612 1235 } else if (sym.owner.kind == MTH && lambdaTranslationMap != null) {
mcimadamore@1612 1236 //sym is a local variable - check the lambda translation map to
mcimadamore@1612 1237 //see if sym has been translated to something else in the current
mcimadamore@1612 1238 //scope (by LambdaToMethod)
mcimadamore@1612 1239 Symbol translatedSym = lambdaTranslationMap.get(sym);
mcimadamore@1612 1240 if (translatedSym != null) {
mcimadamore@1612 1241 tree = make.at(tree.pos).Ident(translatedSym);
mcimadamore@1612 1242 }
duke@1 1243 }
duke@1 1244 }
duke@1 1245 return tree;
duke@1 1246 }
duke@1 1247
duke@1 1248 /** Ensure that identifier is accessible, return tree accessing the identifier.
duke@1 1249 * @param tree The identifier tree.
duke@1 1250 */
duke@1 1251 JCExpression access(JCExpression tree) {
duke@1 1252 Symbol sym = TreeInfo.symbol(tree);
duke@1 1253 return sym == null ? tree : access(sym, tree, null, false);
duke@1 1254 }
duke@1 1255
duke@1 1256 /** Return access constructor for a private constructor,
duke@1 1257 * or the constructor itself, if no access constructor is needed.
duke@1 1258 * @param pos The position to report diagnostics, if any.
duke@1 1259 * @param constr The private constructor.
duke@1 1260 */
duke@1 1261 Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
duke@1 1262 if (needsPrivateAccess(constr)) {
duke@1 1263 ClassSymbol accOwner = constr.owner.enclClass();
duke@1 1264 MethodSymbol aconstr = accessConstrs.get(constr);
duke@1 1265 if (aconstr == null) {
duke@1 1266 List<Type> argtypes = constr.type.getParameterTypes();
duke@1 1267 if ((accOwner.flags_field & ENUM) != 0)
duke@1 1268 argtypes = argtypes
duke@1 1269 .prepend(syms.intType)
duke@1 1270 .prepend(syms.stringType);
duke@1 1271 aconstr = new MethodSymbol(
duke@1 1272 SYNTHETIC,
duke@1 1273 names.init,
duke@1 1274 new MethodType(
duke@1 1275 argtypes.append(
duke@1 1276 accessConstructorTag().erasure(types)),
duke@1 1277 constr.type.getReturnType(),
duke@1 1278 constr.type.getThrownTypes(),
duke@1 1279 syms.methodClass),
duke@1 1280 accOwner);
duke@1 1281 enterSynthetic(pos, aconstr, accOwner.members());
duke@1 1282 accessConstrs.put(constr, aconstr);
duke@1 1283 accessed.append(constr);
duke@1 1284 }
duke@1 1285 return aconstr;
duke@1 1286 } else {
duke@1 1287 return constr;
duke@1 1288 }
duke@1 1289 }
duke@1 1290
duke@1 1291 /** Return an anonymous class nested in this toplevel class.
duke@1 1292 */
duke@1 1293 ClassSymbol accessConstructorTag() {
duke@1 1294 ClassSymbol topClass = currentClass.outermostClass();
duke@1 1295 Name flatname = names.fromString("" + topClass.getQualifiedName() +
duke@1 1296 target.syntheticNameChar() +
duke@1 1297 "1");
duke@1 1298 ClassSymbol ctag = chk.compiled.get(flatname);
duke@1 1299 if (ctag == null)
vromero@1542 1300 ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass).sym;
jjg@595 1301 // keep a record of all tags, to verify that all are generated as required
jjg@595 1302 accessConstrTags = accessConstrTags.prepend(ctag);
duke@1 1303 return ctag;
duke@1 1304 }
duke@1 1305
duke@1 1306 /** Add all required access methods for a private symbol to enclosing class.
duke@1 1307 * @param sym The symbol.
duke@1 1308 */
duke@1 1309 void makeAccessible(Symbol sym) {
duke@1 1310 JCClassDecl cdef = classDef(sym.owner.enclClass());
jjg@816 1311 if (cdef == null) Assert.error("class def not found: " + sym + " in " + sym.owner);
duke@1 1312 if (sym.name == names.init) {
duke@1 1313 cdef.defs = cdef.defs.prepend(
duke@1 1314 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
duke@1 1315 } else {
duke@1 1316 MethodSymbol[] accessors = accessSyms.get(sym);
duke@1 1317 for (int i = 0; i < NCODES; i++) {
duke@1 1318 if (accessors[i] != null)
duke@1 1319 cdef.defs = cdef.defs.prepend(
duke@1 1320 accessDef(cdef.pos, sym, accessors[i], i));
duke@1 1321 }
duke@1 1322 }
duke@1 1323 }
duke@1 1324
jjg@1127 1325 /** Maps unary operator integer codes to JCTree.Tag objects
jjg@1127 1326 * @param unaryOpCode the unary operator code
jjg@1127 1327 */
jjg@1127 1328 private static Tag mapUnaryOpCodeToTag(int unaryOpCode){
jjg@1127 1329 switch (unaryOpCode){
jjg@1127 1330 case PREINCcode:
jjg@1127 1331 return PREINC;
jjg@1127 1332 case PREDECcode:
jjg@1127 1333 return PREDEC;
jjg@1127 1334 case POSTINCcode:
jjg@1127 1335 return POSTINC;
jjg@1127 1336 case POSTDECcode:
jjg@1127 1337 return POSTDEC;
jjg@1127 1338 default:
jjg@1127 1339 return NO_TAG;
jjg@1127 1340 }
jjg@1127 1341 }
jjg@1127 1342
jjg@1127 1343 /** Maps JCTree.Tag objects to unary operator integer codes
jjg@1127 1344 * @param tag the JCTree.Tag
jjg@1127 1345 */
jjg@1127 1346 private static int mapTagToUnaryOpCode(Tag tag){
jjg@1127 1347 switch (tag){
jjg@1127 1348 case PREINC:
jjg@1127 1349 return PREINCcode;
jjg@1127 1350 case PREDEC:
jjg@1127 1351 return PREDECcode;
jjg@1127 1352 case POSTINC:
jjg@1127 1353 return POSTINCcode;
jjg@1127 1354 case POSTDEC:
jjg@1127 1355 return POSTDECcode;
jjg@1127 1356 default:
jjg@1127 1357 return -1;
jjg@1127 1358 }
jjg@1127 1359 }
jjg@1127 1360
duke@1 1361 /** Construct definition of an access method.
duke@1 1362 * @param pos The source code position of the definition.
duke@1 1363 * @param vsym The private or protected symbol.
duke@1 1364 * @param accessor The access method for the symbol.
duke@1 1365 * @param acode The access code.
duke@1 1366 */
duke@1 1367 JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
duke@1 1368 // System.err.println("access " + vsym + " with " + accessor);//DEBUG
duke@1 1369 currentClass = vsym.owner.enclClass();
duke@1 1370 make.at(pos);
duke@1 1371 JCMethodDecl md = make.MethodDef(accessor, null);
duke@1 1372
duke@1 1373 // Find actual symbol
duke@1 1374 Symbol sym = actualSymbols.get(vsym);
duke@1 1375 if (sym == null) sym = vsym;
duke@1 1376
duke@1 1377 JCExpression ref; // The tree referencing the private symbol.
duke@1 1378 List<JCExpression> args; // Any additional arguments to be passed along.
duke@1 1379 if ((sym.flags() & STATIC) != 0) {
duke@1 1380 ref = make.Ident(sym);
duke@1 1381 args = make.Idents(md.params);
duke@1 1382 } else {
jlahoda@2207 1383 JCExpression site = make.Ident(md.params.head);
jlahoda@2207 1384 if (acode % 2 != 0) {
jlahoda@2207 1385 //odd access codes represent qualified super accesses - need to
jlahoda@2207 1386 //emit reference to the direct superclass, even if the refered
jlahoda@2207 1387 //member is from an indirect superclass (JLS 13.1)
jlahoda@2207 1388 site.setType(types.erasure(types.supertype(vsym.owner.enclClass().type)));
jlahoda@2183 1389 }
jlahoda@2207 1390 ref = make.Select(site, sym);
duke@1 1391 args = make.Idents(md.params.tail);
duke@1 1392 }
duke@1 1393 JCStatement stat; // The statement accessing the private symbol.
duke@1 1394 if (sym.kind == VAR) {
duke@1 1395 // Normalize out all odd access codes by taking floor modulo 2:
duke@1 1396 int acode1 = acode - (acode & 1);
duke@1 1397
duke@1 1398 JCExpression expr; // The access method's return value.
duke@1 1399 switch (acode1) {
duke@1 1400 case DEREFcode:
duke@1 1401 expr = ref;
duke@1 1402 break;
duke@1 1403 case ASSIGNcode:
duke@1 1404 expr = make.Assign(ref, args.head);
duke@1 1405 break;
duke@1 1406 case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
jjg@1127 1407 expr = makeUnary(mapUnaryOpCodeToTag(acode1), ref);
duke@1 1408 break;
duke@1 1409 default:
duke@1 1410 expr = make.Assignop(
duke@1 1411 treeTag(binaryAccessOperator(acode1)), ref, args.head);
duke@1 1412 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
duke@1 1413 }
duke@1 1414 stat = make.Return(expr.setType(sym.type));
duke@1 1415 } else {
duke@1 1416 stat = make.Call(make.App(ref, args));
duke@1 1417 }
duke@1 1418 md.body = make.Block(0, List.of(stat));
duke@1 1419
duke@1 1420 // Make sure all parameters, result types and thrown exceptions
duke@1 1421 // are accessible.
duke@1 1422 for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
duke@1 1423 l.head.vartype = access(l.head.vartype);
duke@1 1424 md.restype = access(md.restype);
duke@1 1425 for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
duke@1 1426 l.head = access(l.head);
duke@1 1427
duke@1 1428 return md;
duke@1 1429 }
duke@1 1430
duke@1 1431 /** Construct definition of an access constructor.
duke@1 1432 * @param pos The source code position of the definition.
duke@1 1433 * @param constr The private constructor.
duke@1 1434 * @param accessor The access method for the constructor.
duke@1 1435 */
duke@1 1436 JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
duke@1 1437 make.at(pos);
duke@1 1438 JCMethodDecl md = make.MethodDef(accessor,
duke@1 1439 accessor.externalType(types),
duke@1 1440 null);
duke@1 1441 JCIdent callee = make.Ident(names._this);
duke@1 1442 callee.sym = constr;
duke@1 1443 callee.type = constr.type;
duke@1 1444 md.body =
duke@1 1445 make.Block(0, List.<JCStatement>of(
duke@1 1446 make.Call(
duke@1 1447 make.App(
duke@1 1448 callee,
duke@1 1449 make.Idents(md.params.reverse().tail.reverse())))));
duke@1 1450 return md;
duke@1 1451 }
duke@1 1452
duke@1 1453 /**************************************************************************
duke@1 1454 * Free variables proxies and this$n
duke@1 1455 *************************************************************************/
duke@1 1456
duke@1 1457 /** A scope containing all free variable proxies for currently translated
duke@1 1458 * class, as well as its this$n symbol (if needed).
duke@1 1459 * Proxy scopes are nested in the same way classes are.
duke@1 1460 * Inside a constructor, proxies and any this$n symbol are duplicated
duke@1 1461 * in an additional innermost scope, where they represent the constructor
duke@1 1462 * parameters.
duke@1 1463 */
duke@1 1464 Scope proxies;
duke@1 1465
darcy@609 1466 /** A scope containing all unnamed resource variables/saved
darcy@609 1467 * exception variables for translated TWR blocks
darcy@609 1468 */
darcy@609 1469 Scope twrVars;
darcy@609 1470
duke@1 1471 /** A stack containing the this$n field of the currently translated
duke@1 1472 * classes (if needed) in innermost first order.
duke@1 1473 * Inside a constructor, proxies and any this$n symbol are duplicated
duke@1 1474 * in an additional innermost scope, where they represent the constructor
duke@1 1475 * parameters.
duke@1 1476 */
duke@1 1477 List<VarSymbol> outerThisStack;
duke@1 1478
duke@1 1479 /** The name of a free variable proxy.
duke@1 1480 */
duke@1 1481 Name proxyName(Name name) {
duke@1 1482 return names.fromString("val" + target.syntheticNameChar() + name);
duke@1 1483 }
duke@1 1484
duke@1 1485 /** Proxy definitions for all free variables in given list, in reverse order.
duke@1 1486 * @param pos The source code position of the definition.
duke@1 1487 * @param freevars The free variables.
duke@1 1488 * @param owner The class in which the definitions go.
duke@1 1489 */
duke@1 1490 List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
vromero@2027 1491 return freevarDefs(pos, freevars, owner, 0);
vromero@2027 1492 }
vromero@2027 1493
vromero@2027 1494 List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner,
vromero@2027 1495 long additionalFlags) {
vromero@2027 1496 long flags = FINAL | SYNTHETIC | additionalFlags;
duke@1 1497 if (owner.kind == TYP &&
duke@1 1498 target.usePrivateSyntheticFields())
duke@1 1499 flags |= PRIVATE;
duke@1 1500 List<JCVariableDecl> defs = List.nil();
duke@1 1501 for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
duke@1 1502 VarSymbol v = l.head;
duke@1 1503 VarSymbol proxy = new VarSymbol(
duke@1 1504 flags, proxyName(v.name), v.erasure(types), owner);
duke@1 1505 proxies.enter(proxy);
duke@1 1506 JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
duke@1 1507 vd.vartype = access(vd.vartype);
duke@1 1508 defs = defs.prepend(vd);
duke@1 1509 }
duke@1 1510 return defs;
duke@1 1511 }
duke@1 1512
duke@1 1513 /** The name of a this$n field
duke@1 1514 * @param type The class referenced by the this$n field
duke@1 1515 */
duke@1 1516 Name outerThisName(Type type, Symbol owner) {
duke@1 1517 Type t = type.getEnclosingType();
duke@1 1518 int nestingLevel = 0;
jjg@1374 1519 while (t.hasTag(CLASS)) {
duke@1 1520 t = t.getEnclosingType();
duke@1 1521 nestingLevel++;
duke@1 1522 }
duke@1 1523 Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
duke@1 1524 while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
duke@1 1525 result = names.fromString(result.toString() + target.syntheticNameChar());
duke@1 1526 return result;
duke@1 1527 }
duke@1 1528
mcimadamore@1565 1529 private VarSymbol makeOuterThisVarSymbol(Symbol owner, long flags) {
mcimadamore@1565 1530 if (owner.kind == TYP &&
mcimadamore@1565 1531 target.usePrivateSyntheticFields())
mcimadamore@1565 1532 flags |= PRIVATE;
mcimadamore@1565 1533 Type target = types.erasure(owner.enclClass().type.getEnclosingType());
mcimadamore@1565 1534 VarSymbol outerThis =
mcimadamore@1565 1535 new VarSymbol(flags, outerThisName(target, owner), target, owner);
mcimadamore@1565 1536 outerThisStack = outerThisStack.prepend(outerThis);
mcimadamore@1565 1537 return outerThis;
mcimadamore@1565 1538 }
mcimadamore@1565 1539
mcimadamore@1565 1540 private JCVariableDecl makeOuterThisVarDecl(int pos, VarSymbol sym) {
mcimadamore@1565 1541 JCVariableDecl vd = make.at(pos).VarDef(sym, null);
mcimadamore@1565 1542 vd.vartype = access(vd.vartype);
mcimadamore@1565 1543 return vd;
mcimadamore@1565 1544 }
mcimadamore@1565 1545
mcimadamore@1565 1546 /** Definition for this$n field.
mcimadamore@1565 1547 * @param pos The source code position of the definition.
mcimadamore@1565 1548 * @param owner The method in which the definition goes.
mcimadamore@1565 1549 */
mcimadamore@1565 1550 JCVariableDecl outerThisDef(int pos, MethodSymbol owner) {
mcimadamore@1565 1551 ClassSymbol c = owner.enclClass();
mcimadamore@1565 1552 boolean isMandated =
mcimadamore@1565 1553 // Anonymous constructors
mcimadamore@1565 1554 (owner.isConstructor() && owner.isAnonymous()) ||
mcimadamore@1565 1555 // Constructors of non-private inner member classes
mcimadamore@1565 1556 (owner.isConstructor() && c.isInner() &&
mcimadamore@1565 1557 !c.isPrivate() && !c.isStatic());
mcimadamore@1565 1558 long flags =
vromero@2027 1559 FINAL | (isMandated ? MANDATED : SYNTHETIC) | PARAMETER;
mcimadamore@1565 1560 VarSymbol outerThis = makeOuterThisVarSymbol(owner, flags);
mcimadamore@1565 1561 owner.extraParams = owner.extraParams.prepend(outerThis);
mcimadamore@1565 1562 return makeOuterThisVarDecl(pos, outerThis);
mcimadamore@1565 1563 }
mcimadamore@1565 1564
duke@1 1565 /** Definition for this$n field.
duke@1 1566 * @param pos The source code position of the definition.
duke@1 1567 * @param owner The class in which the definition goes.
duke@1 1568 */
mcimadamore@1565 1569 JCVariableDecl outerThisDef(int pos, ClassSymbol owner) {
mcimadamore@1565 1570 VarSymbol outerThis = makeOuterThisVarSymbol(owner, FINAL | SYNTHETIC);
mcimadamore@1565 1571 return makeOuterThisVarDecl(pos, outerThis);
duke@1 1572 }
duke@1 1573
duke@1 1574 /** Return a list of trees that load the free variables in given list,
duke@1 1575 * in reverse order.
duke@1 1576 * @param pos The source code position to be used for the trees.
duke@1 1577 * @param freevars The list of free variables.
duke@1 1578 */
duke@1 1579 List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
duke@1 1580 List<JCExpression> args = List.nil();
duke@1 1581 for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
duke@1 1582 args = args.prepend(loadFreevar(pos, l.head));
duke@1 1583 return args;
duke@1 1584 }
duke@1 1585 //where
duke@1 1586 JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
duke@1 1587 return access(v, make.at(pos).Ident(v), null, false);
duke@1 1588 }
duke@1 1589
jjg@1326 1590 /** Construct a tree simulating the expression {@code C.this}.
duke@1 1591 * @param pos The source code position to be used for the tree.
duke@1 1592 * @param c The qualifier class.
duke@1 1593 */
duke@1 1594 JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
duke@1 1595 if (currentClass == c) {
duke@1 1596 // in this case, `this' works fine
duke@1 1597 return make.at(pos).This(c.erasure(types));
duke@1 1598 } else {
duke@1 1599 // need to go via this$n
duke@1 1600 return makeOuterThis(pos, c);
duke@1 1601 }
duke@1 1602 }
duke@1 1603
darcy@884 1604 /**
darcy@884 1605 * Optionally replace a try statement with the desugaring of a
darcy@884 1606 * try-with-resources statement. The canonical desugaring of
darcy@884 1607 *
darcy@884 1608 * try ResourceSpecification
darcy@884 1609 * Block
darcy@884 1610 *
darcy@884 1611 * is
darcy@884 1612 *
darcy@884 1613 * {
darcy@884 1614 * final VariableModifiers_minus_final R #resource = Expression;
darcy@884 1615 * Throwable #primaryException = null;
darcy@884 1616 *
darcy@884 1617 * try ResourceSpecificationtail
darcy@884 1618 * Block
darcy@884 1619 * catch (Throwable #t) {
darcy@884 1620 * #primaryException = t;
darcy@884 1621 * throw #t;
darcy@884 1622 * } finally {
darcy@884 1623 * if (#resource != null) {
darcy@884 1624 * if (#primaryException != null) {
darcy@884 1625 * try {
darcy@884 1626 * #resource.close();
darcy@884 1627 * } catch(Throwable #suppressedException) {
darcy@884 1628 * #primaryException.addSuppressed(#suppressedException);
darcy@884 1629 * }
darcy@884 1630 * } else {
darcy@884 1631 * #resource.close();
darcy@884 1632 * }
darcy@884 1633 * }
darcy@884 1634 * }
darcy@884 1635 *
darcy@609 1636 * @param tree The try statement to inspect.
darcy@884 1637 * @return A a desugared try-with-resources tree, or the original
darcy@884 1638 * try block if there are no resources to manage.
darcy@609 1639 */
darcy@884 1640 JCTree makeTwrTry(JCTry tree) {
darcy@609 1641 make_at(tree.pos());
darcy@609 1642 twrVars = twrVars.dup();
vromero@2027 1643 JCBlock twrBlock = makeTwrBlock(tree.resources, tree.body,
vromero@2027 1644 tree.finallyCanCompleteNormally, 0);
darcy@609 1645 if (tree.catchers.isEmpty() && tree.finalizer == null)
darcy@884 1646 result = translate(twrBlock);
darcy@609 1647 else
darcy@884 1648 result = translate(make.Try(twrBlock, tree.catchers, tree.finalizer));
darcy@609 1649 twrVars = twrVars.leave();
darcy@609 1650 return result;
darcy@609 1651 }
darcy@609 1652
vromero@2027 1653 private JCBlock makeTwrBlock(List<JCTree> resources, JCBlock block,
vromero@2027 1654 boolean finallyCanCompleteNormally, int depth) {
darcy@609 1655 if (resources.isEmpty())
darcy@609 1656 return block;
darcy@609 1657
darcy@609 1658 // Add resource declaration or expression to block statements
darcy@609 1659 ListBuffer<JCStatement> stats = new ListBuffer<JCStatement>();
darcy@609 1660 JCTree resource = resources.head;
darcy@609 1661 JCExpression expr = null;
darcy@609 1662 if (resource instanceof JCVariableDecl) {
darcy@609 1663 JCVariableDecl var = (JCVariableDecl) resource;
darcy@609 1664 expr = make.Ident(var.sym).setType(resource.type);
darcy@609 1665 stats.add(var);
darcy@609 1666 } else {
jjg@816 1667 Assert.check(resource instanceof JCExpression);
darcy@609 1668 VarSymbol syntheticTwrVar =
darcy@609 1669 new VarSymbol(SYNTHETIC | FINAL,
darcy@609 1670 makeSyntheticName(names.fromString("twrVar" +
darcy@609 1671 depth), twrVars),
jjg@1374 1672 (resource.type.hasTag(BOT)) ?
darcy@609 1673 syms.autoCloseableType : resource.type,
darcy@609 1674 currentMethodSym);
darcy@609 1675 twrVars.enter(syntheticTwrVar);
darcy@609 1676 JCVariableDecl syntheticTwrVarDecl =
darcy@609 1677 make.VarDef(syntheticTwrVar, (JCExpression)resource);
darcy@609 1678 expr = (JCExpression)make.Ident(syntheticTwrVar);
darcy@609 1679 stats.add(syntheticTwrVarDecl);
darcy@609 1680 }
darcy@609 1681
darcy@609 1682 // Add primaryException declaration
darcy@609 1683 VarSymbol primaryException =
darcy@609 1684 new VarSymbol(SYNTHETIC,
darcy@609 1685 makeSyntheticName(names.fromString("primaryException" +
darcy@609 1686 depth), twrVars),
darcy@609 1687 syms.throwableType,
darcy@609 1688 currentMethodSym);
darcy@609 1689 twrVars.enter(primaryException);
darcy@609 1690 JCVariableDecl primaryExceptionTreeDecl = make.VarDef(primaryException, makeNull());
darcy@609 1691 stats.add(primaryExceptionTreeDecl);
darcy@609 1692
darcy@609 1693 // Create catch clause that saves exception and then rethrows it
darcy@609 1694 VarSymbol param =
darcy@609 1695 new VarSymbol(FINAL|SYNTHETIC,
darcy@609 1696 names.fromString("t" +
darcy@609 1697 target.syntheticNameChar()),
darcy@609 1698 syms.throwableType,
darcy@609 1699 currentMethodSym);
darcy@609 1700 JCVariableDecl paramTree = make.VarDef(param, null);
darcy@609 1701 JCStatement assign = make.Assignment(primaryException, make.Ident(param));
darcy@609 1702 JCStatement rethrowStat = make.Throw(make.Ident(param));
darcy@609 1703 JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(assign, rethrowStat));
darcy@609 1704 JCCatch catchClause = make.Catch(paramTree, catchBlock);
darcy@609 1705
darcy@609 1706 int oldPos = make.pos;
darcy@609 1707 make.at(TreeInfo.endPos(block));
darcy@884 1708 JCBlock finallyClause = makeTwrFinallyClause(primaryException, expr);
darcy@609 1709 make.at(oldPos);
vromero@2027 1710 JCTry outerTry = make.Try(makeTwrBlock(resources.tail, block,
vromero@2027 1711 finallyCanCompleteNormally, depth + 1),
darcy@609 1712 List.<JCCatch>of(catchClause),
darcy@609 1713 finallyClause);
vromero@2027 1714 outerTry.finallyCanCompleteNormally = finallyCanCompleteNormally;
darcy@609 1715 stats.add(outerTry);
vromero@2027 1716 JCBlock newBlock = make.Block(0L, stats.toList());
vromero@2027 1717 return newBlock;
darcy@609 1718 }
darcy@609 1719
darcy@884 1720 private JCBlock makeTwrFinallyClause(Symbol primaryException, JCExpression resource) {
darcy@745 1721 // primaryException.addSuppressed(catchException);
darcy@609 1722 VarSymbol catchException =
vromero@2027 1723 new VarSymbol(SYNTHETIC, make.paramName(2),
darcy@609 1724 syms.throwableType,
darcy@609 1725 currentMethodSym);
darcy@609 1726 JCStatement addSuppressionStatement =
darcy@609 1727 make.Exec(makeCall(make.Ident(primaryException),
darcy@745 1728 names.addSuppressed,
darcy@609 1729 List.<JCExpression>of(make.Ident(catchException))));
darcy@609 1730
darcy@745 1731 // try { resource.close(); } catch (e) { primaryException.addSuppressed(e); }
darcy@609 1732 JCBlock tryBlock =
darcy@609 1733 make.Block(0L, List.<JCStatement>of(makeResourceCloseInvocation(resource)));
darcy@609 1734 JCVariableDecl catchExceptionDecl = make.VarDef(catchException, null);
darcy@609 1735 JCBlock catchBlock = make.Block(0L, List.<JCStatement>of(addSuppressionStatement));
darcy@609 1736 List<JCCatch> catchClauses = List.<JCCatch>of(make.Catch(catchExceptionDecl, catchBlock));
darcy@609 1737 JCTry tryTree = make.Try(tryBlock, catchClauses, null);
vromero@2027 1738 tryTree.finallyCanCompleteNormally = true;
darcy@609 1739
darcy@884 1740 // if (primaryException != null) {try...} else resourceClose;
darcy@884 1741 JCIf closeIfStatement = make.If(makeNonNullCheck(make.Ident(primaryException)),
darcy@609 1742 tryTree,
darcy@609 1743 makeResourceCloseInvocation(resource));
darcy@884 1744
darcy@884 1745 // if (#resource != null) { if (primaryException ... }
darcy@884 1746 return make.Block(0L,
darcy@884 1747 List.<JCStatement>of(make.If(makeNonNullCheck(resource),
darcy@884 1748 closeIfStatement,
darcy@884 1749 null)));
darcy@609 1750 }
darcy@609 1751
darcy@609 1752 private JCStatement makeResourceCloseInvocation(JCExpression resource) {
sundar@1260 1753 // convert to AutoCloseable if needed
sundar@1260 1754 if (types.asSuper(resource.type, syms.autoCloseableType.tsym) == null) {
sundar@1260 1755 resource = (JCExpression) convert(resource, syms.autoCloseableType);
sundar@1260 1756 }
sundar@1260 1757
darcy@609 1758 // create resource.close() method invocation
darcy@884 1759 JCExpression resourceClose = makeCall(resource,
darcy@884 1760 names.close,
darcy@884 1761 List.<JCExpression>nil());
darcy@609 1762 return make.Exec(resourceClose);
darcy@609 1763 }
darcy@609 1764
darcy@884 1765 private JCExpression makeNonNullCheck(JCExpression expression) {
jjg@1127 1766 return makeBinary(NE, expression, makeNull());
darcy@884 1767 }
darcy@884 1768
duke@1 1769 /** Construct a tree that represents the outer instance
jjg@1326 1770 * {@code C.this}. Never pick the current `this'.
duke@1 1771 * @param pos The source code position to be used for the tree.
duke@1 1772 * @param c The qualifier class.
duke@1 1773 */
duke@1 1774 JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
duke@1 1775 List<VarSymbol> ots = outerThisStack;
duke@1 1776 if (ots.isEmpty()) {
duke@1 1777 log.error(pos, "no.encl.instance.of.type.in.scope", c);
jjg@816 1778 Assert.error();
duke@1 1779 return makeNull();
duke@1 1780 }
duke@1 1781 VarSymbol ot = ots.head;
duke@1 1782 JCExpression tree = access(make.at(pos).Ident(ot));
duke@1 1783 TypeSymbol otc = ot.type.tsym;
duke@1 1784 while (otc != c) {
duke@1 1785 do {
duke@1 1786 ots = ots.tail;
duke@1 1787 if (ots.isEmpty()) {
duke@1 1788 log.error(pos,
duke@1 1789 "no.encl.instance.of.type.in.scope",
duke@1 1790 c);
jjg@816 1791 Assert.error(); // should have been caught in Attr
duke@1 1792 return tree;
duke@1 1793 }
duke@1 1794 ot = ots.head;
duke@1 1795 } while (ot.owner != otc);
duke@1 1796 if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
duke@1 1797 chk.earlyRefError(pos, c);
jjg@816 1798 Assert.error(); // should have been caught in Attr
duke@1 1799 return makeNull();
duke@1 1800 }
duke@1 1801 tree = access(make.at(pos).Select(tree, ot));
duke@1 1802 otc = ot.type.tsym;
duke@1 1803 }
duke@1 1804 return tree;
duke@1 1805 }
duke@1 1806
duke@1 1807 /** Construct a tree that represents the closest outer instance
jjg@1326 1808 * {@code C.this} such that the given symbol is a member of C.
duke@1 1809 * @param pos The source code position to be used for the tree.
duke@1 1810 * @param sym The accessed symbol.
duke@1 1811 * @param preciseMatch should we accept a type that is a subtype of
duke@1 1812 * sym's owner, even if it doesn't contain sym
duke@1 1813 * due to hiding, overriding, or non-inheritance
duke@1 1814 * due to protection?
duke@1 1815 */
duke@1 1816 JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
duke@1 1817 Symbol c = sym.owner;
duke@1 1818 if (preciseMatch ? sym.isMemberOf(currentClass, types)
duke@1 1819 : currentClass.isSubClass(sym.owner, types)) {
duke@1 1820 // in this case, `this' works fine
duke@1 1821 return make.at(pos).This(c.erasure(types));
duke@1 1822 } else {
duke@1 1823 // need to go via this$n
duke@1 1824 return makeOwnerThisN(pos, sym, preciseMatch);
duke@1 1825 }
duke@1 1826 }
duke@1 1827
duke@1 1828 /**
duke@1 1829 * Similar to makeOwnerThis but will never pick "this".
duke@1 1830 */
duke@1 1831 JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
duke@1 1832 Symbol c = sym.owner;
duke@1 1833 List<VarSymbol> ots = outerThisStack;
duke@1 1834 if (ots.isEmpty()) {
duke@1 1835 log.error(pos, "no.encl.instance.of.type.in.scope", c);
jjg@816 1836 Assert.error();
duke@1 1837 return makeNull();
duke@1 1838 }
duke@1 1839 VarSymbol ot = ots.head;
duke@1 1840 JCExpression tree = access(make.at(pos).Ident(ot));
duke@1 1841 TypeSymbol otc = ot.type.tsym;
duke@1 1842 while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
duke@1 1843 do {
duke@1 1844 ots = ots.tail;
duke@1 1845 if (ots.isEmpty()) {
duke@1 1846 log.error(pos,
duke@1 1847 "no.encl.instance.of.type.in.scope",
duke@1 1848 c);
jjg@816 1849 Assert.error();
duke@1 1850 return tree;
duke@1 1851 }
duke@1 1852 ot = ots.head;
duke@1 1853 } while (ot.owner != otc);
duke@1 1854 tree = access(make.at(pos).Select(tree, ot));
duke@1 1855 otc = ot.type.tsym;
duke@1 1856 }
duke@1 1857 return tree;
duke@1 1858 }
duke@1 1859
jjg@1326 1860 /** Return tree simulating the assignment {@code this.name = name}, where
duke@1 1861 * name is the name of a free variable.
duke@1 1862 */
duke@1 1863 JCStatement initField(int pos, Name name) {
duke@1 1864 Scope.Entry e = proxies.lookup(name);
duke@1 1865 Symbol rhs = e.sym;
jjg@816 1866 Assert.check(rhs.owner.kind == MTH);
duke@1 1867 Symbol lhs = e.next().sym;
jjg@816 1868 Assert.check(rhs.owner.owner == lhs.owner);
duke@1 1869 make.at(pos);
duke@1 1870 return
duke@1 1871 make.Exec(
duke@1 1872 make.Assign(
duke@1 1873 make.Select(make.This(lhs.owner.erasure(types)), lhs),
duke@1 1874 make.Ident(rhs)).setType(lhs.erasure(types)));
duke@1 1875 }
duke@1 1876
jjg@1326 1877 /** Return tree simulating the assignment {@code this.this$n = this$n}.
duke@1 1878 */
duke@1 1879 JCStatement initOuterThis(int pos) {
duke@1 1880 VarSymbol rhs = outerThisStack.head;
jjg@816 1881 Assert.check(rhs.owner.kind == MTH);
duke@1 1882 VarSymbol lhs = outerThisStack.tail.head;
jjg@816 1883 Assert.check(rhs.owner.owner == lhs.owner);
duke@1 1884 make.at(pos);
duke@1 1885 return
duke@1 1886 make.Exec(
duke@1 1887 make.Assign(
duke@1 1888 make.Select(make.This(lhs.owner.erasure(types)), lhs),
duke@1 1889 make.Ident(rhs)).setType(lhs.erasure(types)));
duke@1 1890 }
duke@1 1891
duke@1 1892 /**************************************************************************
duke@1 1893 * Code for .class
duke@1 1894 *************************************************************************/
duke@1 1895
duke@1 1896 /** Return the symbol of a class to contain a cache of
duke@1 1897 * compiler-generated statics such as class$ and the
duke@1 1898 * $assertionsDisabled flag. We create an anonymous nested class
duke@1 1899 * (unless one already exists) and return its symbol. However,
duke@1 1900 * for backward compatibility in 1.4 and earlier we use the
duke@1 1901 * top-level class itself.
duke@1 1902 */
duke@1 1903 private ClassSymbol outerCacheClass() {
duke@1 1904 ClassSymbol clazz = outermostClassDef.sym;
duke@1 1905 if ((clazz.flags() & INTERFACE) == 0 &&
duke@1 1906 !target.useInnerCacheClass()) return clazz;
duke@1 1907 Scope s = clazz.members();
duke@1 1908 for (Scope.Entry e = s.elems; e != null; e = e.sibling)
duke@1 1909 if (e.sym.kind == TYP &&
duke@1 1910 e.sym.name == names.empty &&
duke@1 1911 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
vromero@1542 1912 return makeEmptyClass(STATIC | SYNTHETIC, clazz).sym;
duke@1 1913 }
duke@1 1914
duke@1 1915 /** Return symbol for "class$" method. If there is no method definition
duke@1 1916 * for class$, construct one as follows:
duke@1 1917 *
duke@1 1918 * class class$(String x0) {
duke@1 1919 * try {
duke@1 1920 * return Class.forName(x0);
duke@1 1921 * } catch (ClassNotFoundException x1) {
duke@1 1922 * throw new NoClassDefFoundError(x1.getMessage());
duke@1 1923 * }
duke@1 1924 * }
duke@1 1925 */
duke@1 1926 private MethodSymbol classDollarSym(DiagnosticPosition pos) {
duke@1 1927 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 1928 MethodSymbol classDollarSym =
duke@1 1929 (MethodSymbol)lookupSynthetic(classDollar,
duke@1 1930 outerCacheClass.members());
duke@1 1931 if (classDollarSym == null) {
duke@1 1932 classDollarSym = new MethodSymbol(
duke@1 1933 STATIC | SYNTHETIC,
duke@1 1934 classDollar,
duke@1 1935 new MethodType(
duke@1 1936 List.of(syms.stringType),
duke@1 1937 types.erasure(syms.classType),
duke@1 1938 List.<Type>nil(),
duke@1 1939 syms.methodClass),
duke@1 1940 outerCacheClass);
duke@1 1941 enterSynthetic(pos, classDollarSym, outerCacheClass.members());
duke@1 1942
duke@1 1943 JCMethodDecl md = make.MethodDef(classDollarSym, null);
duke@1 1944 try {
duke@1 1945 md.body = classDollarSymBody(pos, md);
duke@1 1946 } catch (CompletionFailure ex) {
duke@1 1947 md.body = make.Block(0, List.<JCStatement>nil());
duke@1 1948 chk.completionError(pos, ex);
duke@1 1949 }
duke@1 1950 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1951 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
duke@1 1952 }
duke@1 1953 return classDollarSym;
duke@1 1954 }
duke@1 1955
duke@1 1956 /** Generate code for class$(String name). */
duke@1 1957 JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
duke@1 1958 MethodSymbol classDollarSym = md.sym;
duke@1 1959 ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
duke@1 1960
duke@1 1961 JCBlock returnResult;
duke@1 1962
duke@1 1963 // in 1.4.2 and above, we use
duke@1 1964 // Class.forName(String name, boolean init, ClassLoader loader);
duke@1 1965 // which requires we cache the current loader in cl$
duke@1 1966 if (target.classLiteralsNoInit()) {
duke@1 1967 // clsym = "private static ClassLoader cl$"
duke@1 1968 VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
duke@1 1969 names.fromString("cl" + target.syntheticNameChar()),
duke@1 1970 syms.classLoaderType,
duke@1 1971 outerCacheClass);
duke@1 1972 enterSynthetic(pos, clsym, outerCacheClass.members());
duke@1 1973
duke@1 1974 // emit "private static ClassLoader cl$;"
duke@1 1975 JCVariableDecl cldef = make.VarDef(clsym, null);
duke@1 1976 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 1977 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
duke@1 1978
duke@1 1979 // newcache := "new cache$1[0]"
duke@1 1980 JCNewArray newcache = make.
duke@1 1981 NewArray(make.Type(outerCacheClass.type),
duke@1 1982 List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
duke@1 1983 null);
duke@1 1984 newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
duke@1 1985 syms.arrayClass);
duke@1 1986
duke@1 1987 // forNameSym := java.lang.Class.forName(
duke@1 1988 // String s,boolean init,ClassLoader loader)
duke@1 1989 Symbol forNameSym = lookupMethod(make_pos, names.forName,
duke@1 1990 types.erasure(syms.classType),
duke@1 1991 List.of(syms.stringType,
duke@1 1992 syms.booleanType,
duke@1 1993 syms.classLoaderType));
duke@1 1994 // clvalue := "(cl$ == null) ?
duke@1 1995 // $newcache.getClass().getComponentType().getClassLoader() : cl$"
duke@1 1996 JCExpression clvalue =
duke@1 1997 make.Conditional(
jjg@1127 1998 makeBinary(EQ, make.Ident(clsym), makeNull()),
duke@1 1999 make.Assign(
duke@1 2000 make.Ident(clsym),
duke@1 2001 makeCall(
duke@1 2002 makeCall(makeCall(newcache,
duke@1 2003 names.getClass,
duke@1 2004 List.<JCExpression>nil()),
duke@1 2005 names.getComponentType,
duke@1 2006 List.<JCExpression>nil()),
duke@1 2007 names.getClassLoader,
duke@1 2008 List.<JCExpression>nil())).setType(syms.classLoaderType),
duke@1 2009 make.Ident(clsym)).setType(syms.classLoaderType);
duke@1 2010
duke@1 2011 // returnResult := "{ return Class.forName(param1, false, cl$); }"
duke@1 2012 List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
duke@1 2013 makeLit(syms.booleanType, 0),
duke@1 2014 clvalue);
duke@1 2015 returnResult = make.
duke@1 2016 Block(0, List.<JCStatement>of(make.
duke@1 2017 Call(make. // return
duke@1 2018 App(make.
duke@1 2019 Ident(forNameSym), args))));
duke@1 2020 } else {
duke@1 2021 // forNameSym := java.lang.Class.forName(String s)
duke@1 2022 Symbol forNameSym = lookupMethod(make_pos,
duke@1 2023 names.forName,
duke@1 2024 types.erasure(syms.classType),
duke@1 2025 List.of(syms.stringType));
duke@1 2026 // returnResult := "{ return Class.forName(param1); }"
duke@1 2027 returnResult = make.
duke@1 2028 Block(0, List.of(make.
duke@1 2029 Call(make. // return
duke@1 2030 App(make.
duke@1 2031 QualIdent(forNameSym),
duke@1 2032 List.<JCExpression>of(make.
duke@1 2033 Ident(md.params.
duke@1 2034 head.sym))))));
duke@1 2035 }
duke@1 2036
duke@1 2037 // catchParam := ClassNotFoundException e1
duke@1 2038 VarSymbol catchParam =
vromero@2027 2039 new VarSymbol(SYNTHETIC, make.paramName(1),
duke@1 2040 syms.classNotFoundExceptionType,
duke@1 2041 classDollarSym);
duke@1 2042
duke@1 2043 JCStatement rethrow;
duke@1 2044 if (target.hasInitCause()) {
duke@1 2045 // rethrow = "throw new NoClassDefFoundError().initCause(e);
vromero@1782 2046 JCExpression throwExpr =
duke@1 2047 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
duke@1 2048 List.<JCExpression>nil()),
duke@1 2049 names.initCause,
duke@1 2050 List.<JCExpression>of(make.Ident(catchParam)));
duke@1 2051 rethrow = make.Throw(throwExpr);
duke@1 2052 } else {
duke@1 2053 // getMessageSym := ClassNotFoundException.getMessage()
duke@1 2054 Symbol getMessageSym = lookupMethod(make_pos,
duke@1 2055 names.getMessage,
duke@1 2056 syms.classNotFoundExceptionType,
duke@1 2057 List.<Type>nil());
duke@1 2058 // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
duke@1 2059 rethrow = make.
duke@1 2060 Throw(makeNewClass(syms.noClassDefFoundErrorType,
duke@1 2061 List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
duke@1 2062 getMessageSym),
duke@1 2063 List.<JCExpression>nil()))));
duke@1 2064 }
duke@1 2065
duke@1 2066 // rethrowStmt := "( $rethrow )"
duke@1 2067 JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
duke@1 2068
duke@1 2069 // catchBlock := "catch ($catchParam) $rethrowStmt"
duke@1 2070 JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
duke@1 2071 rethrowStmt);
duke@1 2072
duke@1 2073 // tryCatch := "try $returnResult $catchBlock"
duke@1 2074 JCStatement tryCatch = make.Try(returnResult,
duke@1 2075 List.of(catchBlock), null);
duke@1 2076
duke@1 2077 return make.Block(0, List.of(tryCatch));
duke@1 2078 }
duke@1 2079 // where
duke@1 2080 /** Create an attributed tree of the form left.name(). */
duke@1 2081 private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
jjg@816 2082 Assert.checkNonNull(left.type);
duke@1 2083 Symbol funcsym = lookupMethod(make_pos, name, left.type,
duke@1 2084 TreeInfo.types(args));
duke@1 2085 return make.App(make.Select(left, funcsym), args);
duke@1 2086 }
duke@1 2087
duke@1 2088 /** The Name Of The variable to cache T.class values.
duke@1 2089 * @param sig The signature of type T.
duke@1 2090 */
duke@1 2091 private Name cacheName(String sig) {
jjg@1362 2092 StringBuilder buf = new StringBuilder();
duke@1 2093 if (sig.startsWith("[")) {
duke@1 2094 buf = buf.append("array");
duke@1 2095 while (sig.startsWith("[")) {
duke@1 2096 buf = buf.append(target.syntheticNameChar());
duke@1 2097 sig = sig.substring(1);
duke@1 2098 }
duke@1 2099 if (sig.startsWith("L")) {
duke@1 2100 sig = sig.substring(0, sig.length() - 1);
duke@1 2101 }
duke@1 2102 } else {
duke@1 2103 buf = buf.append("class" + target.syntheticNameChar());
duke@1 2104 }
duke@1 2105 buf = buf.append(sig.replace('.', target.syntheticNameChar()));
duke@1 2106 return names.fromString(buf.toString());
duke@1 2107 }
duke@1 2108
duke@1 2109 /** The variable symbol that caches T.class values.
duke@1 2110 * If none exists yet, create a definition.
duke@1 2111 * @param sig The signature of type T.
duke@1 2112 * @param pos The position to report diagnostics, if any.
duke@1 2113 */
duke@1 2114 private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
duke@1 2115 ClassSymbol outerCacheClass = outerCacheClass();
duke@1 2116 Name cname = cacheName(sig);
duke@1 2117 VarSymbol cacheSym =
duke@1 2118 (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
duke@1 2119 if (cacheSym == null) {
duke@1 2120 cacheSym = new VarSymbol(
duke@1 2121 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
duke@1 2122 enterSynthetic(pos, cacheSym, outerCacheClass.members());
duke@1 2123
duke@1 2124 JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
duke@1 2125 JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
duke@1 2126 outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
duke@1 2127 }
duke@1 2128 return cacheSym;
duke@1 2129 }
duke@1 2130
duke@1 2131 /** The tree simulating a T.class expression.
duke@1 2132 * @param clazz The tree identifying type T.
duke@1 2133 */
duke@1 2134 private JCExpression classOf(JCTree clazz) {
duke@1 2135 return classOfType(clazz.type, clazz.pos());
duke@1 2136 }
duke@1 2137
duke@1 2138 private JCExpression classOfType(Type type, DiagnosticPosition pos) {
jjg@1374 2139 switch (type.getTag()) {
duke@1 2140 case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
duke@1 2141 case DOUBLE: case BOOLEAN: case VOID:
duke@1 2142 // replace with <BoxedClass>.TYPE
duke@1 2143 ClassSymbol c = types.boxedClass(type);
duke@1 2144 Symbol typeSym =
mcimadamore@1347 2145 rs.accessBase(
duke@1 2146 rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
duke@1 2147 pos, c.type, names.TYPE, true);
duke@1 2148 if (typeSym.kind == VAR)
duke@1 2149 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
duke@1 2150 return make.QualIdent(typeSym);
duke@1 2151 case CLASS: case ARRAY:
duke@1 2152 if (target.hasClassLiterals()) {
duke@1 2153 VarSymbol sym = new VarSymbol(
duke@1 2154 STATIC | PUBLIC | FINAL, names._class,
duke@1 2155 syms.classType, type.tsym);
duke@1 2156 return make_at(pos).Select(make.Type(type), sym);
duke@1 2157 }
duke@1 2158 // replace with <cache == null ? cache = class$(tsig) : cache>
duke@1 2159 // where
duke@1 2160 // - <tsig> is the type signature of T,
duke@1 2161 // - <cache> is the cache variable for tsig.
duke@1 2162 String sig =
duke@1 2163 writer.xClassName(type).toString().replace('/', '.');
duke@1 2164 Symbol cs = cacheSym(pos, sig);
duke@1 2165 return make_at(pos).Conditional(
jjg@1127 2166 makeBinary(EQ, make.Ident(cs), makeNull()),
duke@1 2167 make.Assign(
duke@1 2168 make.Ident(cs),
duke@1 2169 make.App(
duke@1 2170 make.Ident(classDollarSym(pos)),
duke@1 2171 List.<JCExpression>of(make.Literal(CLASS, sig)
duke@1 2172 .setType(syms.stringType))))
duke@1 2173 .setType(types.erasure(syms.classType)),
duke@1 2174 make.Ident(cs)).setType(types.erasure(syms.classType));
duke@1 2175 default:
duke@1 2176 throw new AssertionError();
duke@1 2177 }
duke@1 2178 }
duke@1 2179
duke@1 2180 /**************************************************************************
duke@1 2181 * Code for enabling/disabling assertions.
duke@1 2182 *************************************************************************/
duke@1 2183
jlahoda@2098 2184 private ClassSymbol assertionsDisabledClassCache;
jlahoda@2098 2185
jlahoda@2098 2186 /**Used to create an auxiliary class to hold $assertionsDisabled for interfaces.
jlahoda@2098 2187 */
jlahoda@2098 2188 private ClassSymbol assertionsDisabledClass() {
jlahoda@2098 2189 if (assertionsDisabledClassCache != null) return assertionsDisabledClassCache;
jlahoda@2098 2190
jlahoda@2098 2191 assertionsDisabledClassCache = makeEmptyClass(STATIC | SYNTHETIC, outermostClassDef.sym).sym;
jlahoda@2098 2192
jlahoda@2098 2193 return assertionsDisabledClassCache;
jlahoda@2098 2194 }
jlahoda@2098 2195
duke@1 2196 // This code is not particularly robust if the user has
duke@1 2197 // previously declared a member named '$assertionsDisabled'.
duke@1 2198 // The same faulty idiom also appears in the translation of
duke@1 2199 // class literals above. We should report an error if a
duke@1 2200 // previous declaration is not synthetic.
duke@1 2201
duke@1 2202 private JCExpression assertFlagTest(DiagnosticPosition pos) {
duke@1 2203 // Outermost class may be either true class or an interface.
duke@1 2204 ClassSymbol outermostClass = outermostClassDef.sym;
duke@1 2205
jlahoda@2098 2206 //only classes can hold a non-public field, look for a usable one:
jlahoda@2098 2207 ClassSymbol container = !currentClass.isInterface() ? currentClass :
jlahoda@2098 2208 assertionsDisabledClass();
duke@1 2209
duke@1 2210 VarSymbol assertDisabledSym =
duke@1 2211 (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
duke@1 2212 container.members());
duke@1 2213 if (assertDisabledSym == null) {
duke@1 2214 assertDisabledSym =
duke@1 2215 new VarSymbol(STATIC | FINAL | SYNTHETIC,
duke@1 2216 dollarAssertionsDisabled,
duke@1 2217 syms.booleanType,
duke@1 2218 container);
duke@1 2219 enterSynthetic(pos, assertDisabledSym, container.members());
duke@1 2220 Symbol desiredAssertionStatusSym = lookupMethod(pos,
duke@1 2221 names.desiredAssertionStatus,
duke@1 2222 types.erasure(syms.classType),
duke@1 2223 List.<Type>nil());
duke@1 2224 JCClassDecl containerDef = classDef(container);
duke@1 2225 make_at(containerDef.pos());
jjg@1127 2226 JCExpression notStatus = makeUnary(NOT, make.App(make.Select(
duke@1 2227 classOfType(types.erasure(outermostClass.type),
duke@1 2228 containerDef.pos()),
duke@1 2229 desiredAssertionStatusSym)));
duke@1 2230 JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
duke@1 2231 notStatus);
duke@1 2232 containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
jlahoda@2098 2233
jlahoda@2098 2234 if (currentClass.isInterface()) {
jlahoda@2098 2235 //need to load the assertions enabled/disabled state while
jlahoda@2098 2236 //initializing the interface:
jlahoda@2098 2237 JCClassDecl currentClassDef = classDef(currentClass);
jlahoda@2098 2238 make_at(currentClassDef.pos());
jlahoda@2098 2239 JCStatement dummy = make.If(make.QualIdent(assertDisabledSym), make.Skip(), null);
jlahoda@2098 2240 JCBlock clinit = make.Block(STATIC, List.<JCStatement>of(dummy));
jlahoda@2098 2241 currentClassDef.defs = currentClassDef.defs.prepend(clinit);
jlahoda@2098 2242 }
duke@1 2243 }
duke@1 2244 make_at(pos);
jjg@1127 2245 return makeUnary(NOT, make.Ident(assertDisabledSym));
duke@1 2246 }
duke@1 2247
duke@1 2248
duke@1 2249 /**************************************************************************
duke@1 2250 * Building blocks for let expressions
duke@1 2251 *************************************************************************/
duke@1 2252
duke@1 2253 interface TreeBuilder {
duke@1 2254 JCTree build(JCTree arg);
duke@1 2255 }
duke@1 2256
duke@1 2257 /** Construct an expression using the builder, with the given rval
duke@1 2258 * expression as an argument to the builder. However, the rval
duke@1 2259 * expression must be computed only once, even if used multiple
duke@1 2260 * times in the result of the builder. We do that by
duke@1 2261 * constructing a "let" expression that saves the rvalue into a
duke@1 2262 * temporary variable and then uses the temporary variable in
duke@1 2263 * place of the expression built by the builder. The complete
duke@1 2264 * resulting expression is of the form
duke@1 2265 * <pre>
duke@1 2266 * (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
duke@1 2267 * in (<b>BUILDER</b>(<b>TEMP</b>)))
duke@1 2268 * </pre>
duke@1 2269 * where <code><b>TEMP</b></code> is a newly declared variable
duke@1 2270 * in the let expression.
duke@1 2271 */
duke@1 2272 JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
duke@1 2273 rval = TreeInfo.skipParens(rval);
duke@1 2274 switch (rval.getTag()) {
jjg@1127 2275 case LITERAL:
duke@1 2276 return builder.build(rval);
jjg@1127 2277 case IDENT:
duke@1 2278 JCIdent id = (JCIdent) rval;
duke@1 2279 if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
duke@1 2280 return builder.build(rval);
duke@1 2281 }
duke@1 2282 VarSymbol var =
duke@1 2283 new VarSymbol(FINAL|SYNTHETIC,
jjg@113 2284 names.fromString(
duke@1 2285 target.syntheticNameChar()
duke@1 2286 + "" + rval.hashCode()),
duke@1 2287 type,
duke@1 2288 currentMethodSym);
mcimadamore@4 2289 rval = convert(rval,type);
duke@1 2290 JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
duke@1 2291 JCTree built = builder.build(make.Ident(var));
duke@1 2292 JCTree res = make.LetExpr(def, built);
duke@1 2293 res.type = built.type;
duke@1 2294 return res;
duke@1 2295 }
duke@1 2296
duke@1 2297 // same as above, with the type of the temporary variable computed
duke@1 2298 JCTree abstractRval(JCTree rval, TreeBuilder builder) {
duke@1 2299 return abstractRval(rval, rval.type, builder);
duke@1 2300 }
duke@1 2301
duke@1 2302 // same as above, but for an expression that may be used as either
duke@1 2303 // an rvalue or an lvalue. This requires special handling for
duke@1 2304 // Select expressions, where we place the left-hand-side of the
duke@1 2305 // select in a temporary, and for Indexed expressions, where we
duke@1 2306 // place both the indexed expression and the index value in temps.
duke@1 2307 JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
duke@1 2308 lval = TreeInfo.skipParens(lval);
duke@1 2309 switch (lval.getTag()) {
jjg@1127 2310 case IDENT:
duke@1 2311 return builder.build(lval);
jjg@1127 2312 case SELECT: {
duke@1 2313 final JCFieldAccess s = (JCFieldAccess)lval;
duke@1 2314 JCTree selected = TreeInfo.skipParens(s.selected);
duke@1 2315 Symbol lid = TreeInfo.symbol(s.selected);
duke@1 2316 if (lid != null && lid.kind == TYP) return builder.build(lval);
duke@1 2317 return abstractRval(s.selected, new TreeBuilder() {
duke@1 2318 public JCTree build(final JCTree selected) {
duke@1 2319 return builder.build(make.Select((JCExpression)selected, s.sym));
duke@1 2320 }
duke@1 2321 });
duke@1 2322 }
jjg@1127 2323 case INDEXED: {
duke@1 2324 final JCArrayAccess i = (JCArrayAccess)lval;
duke@1 2325 return abstractRval(i.indexed, new TreeBuilder() {
duke@1 2326 public JCTree build(final JCTree indexed) {
duke@1 2327 return abstractRval(i.index, syms.intType, new TreeBuilder() {
duke@1 2328 public JCTree build(final JCTree index) {
duke@1 2329 JCTree newLval = make.Indexed((JCExpression)indexed,
duke@1 2330 (JCExpression)index);
duke@1 2331 newLval.setType(i.type);
duke@1 2332 return builder.build(newLval);
duke@1 2333 }
duke@1 2334 });
duke@1 2335 }
duke@1 2336 });
duke@1 2337 }
jjg@1127 2338 case TYPECAST: {
mcimadamore@133 2339 return abstractLval(((JCTypeCast)lval).expr, builder);
mcimadamore@133 2340 }
duke@1 2341 }
duke@1 2342 throw new AssertionError(lval);
duke@1 2343 }
duke@1 2344
duke@1 2345 // evaluate and discard the first expression, then evaluate the second.
duke@1 2346 JCTree makeComma(final JCTree expr1, final JCTree expr2) {
duke@1 2347 return abstractRval(expr1, new TreeBuilder() {
duke@1 2348 public JCTree build(final JCTree discarded) {
duke@1 2349 return expr2;
duke@1 2350 }
duke@1 2351 });
duke@1 2352 }
duke@1 2353
duke@1 2354 /**************************************************************************
duke@1 2355 * Translation methods
duke@1 2356 *************************************************************************/
duke@1 2357
duke@1 2358 /** Visitor argument: enclosing operator node.
duke@1 2359 */
duke@1 2360 private JCExpression enclOp;
duke@1 2361
duke@1 2362 /** Visitor method: Translate a single node.
duke@1 2363 * Attach the source position from the old tree to its replacement tree.
duke@1 2364 */
vromero@2370 2365 @Override
duke@1 2366 public <T extends JCTree> T translate(T tree) {
duke@1 2367 if (tree == null) {
duke@1 2368 return null;
duke@1 2369 } else {
duke@1 2370 make_at(tree.pos());
duke@1 2371 T result = super.translate(tree);
ksrini@1138 2372 if (endPosTable != null && result != tree) {
ksrini@1138 2373 endPosTable.replaceTree(tree, result);
duke@1 2374 }
duke@1 2375 return result;
duke@1 2376 }
duke@1 2377 }
duke@1 2378
duke@1 2379 /** Visitor method: Translate a single node, boxing or unboxing if needed.
duke@1 2380 */
duke@1 2381 public <T extends JCTree> T translate(T tree, Type type) {
duke@1 2382 return (tree == null) ? null : boxIfNeeded(translate(tree), type);
duke@1 2383 }
duke@1 2384
duke@1 2385 /** Visitor method: Translate tree.
duke@1 2386 */
duke@1 2387 public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
duke@1 2388 JCExpression prevEnclOp = this.enclOp;
duke@1 2389 this.enclOp = enclOp;
duke@1 2390 T res = translate(tree);
duke@1 2391 this.enclOp = prevEnclOp;
duke@1 2392 return res;
duke@1 2393 }
duke@1 2394
duke@1 2395 /** Visitor method: Translate list of trees.
duke@1 2396 */
duke@1 2397 public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
duke@1 2398 JCExpression prevEnclOp = this.enclOp;
duke@1 2399 this.enclOp = enclOp;
duke@1 2400 List<T> res = translate(trees);
duke@1 2401 this.enclOp = prevEnclOp;
duke@1 2402 return res;
duke@1 2403 }
duke@1 2404
duke@1 2405 /** Visitor method: Translate list of trees.
duke@1 2406 */
duke@1 2407 public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
duke@1 2408 if (trees == null) return null;
duke@1 2409 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
duke@1 2410 l.head = translate(l.head, type);
duke@1 2411 return trees;
duke@1 2412 }
duke@1 2413
duke@1 2414 public void visitTopLevel(JCCompilationUnit tree) {
jjg@657 2415 if (needPackageInfoClass(tree)) {
duke@1 2416 Name name = names.package_info;
duke@1 2417 long flags = Flags.ABSTRACT | Flags.INTERFACE;
duke@1 2418 if (target.isPackageInfoSynthetic())
duke@1 2419 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
duke@1 2420 flags = flags | Flags.SYNTHETIC;
duke@1 2421 JCClassDecl packageAnnotationsClass
duke@1 2422 = make.ClassDef(make.Modifiers(flags,
duke@1 2423 tree.packageAnnotations),
duke@1 2424 name, List.<JCTypeParameter>nil(),
duke@1 2425 null, List.<JCExpression>nil(), List.<JCTree>nil());
jjg@483 2426 ClassSymbol c = tree.packge.package_info;
jjg@483 2427 c.flags_field |= flags;
jjg@1802 2428 c.setAttributes(tree.packge);
duke@1 2429 ClassType ctype = (ClassType) c.type;
duke@1 2430 ctype.supertype_field = syms.objectType;
duke@1 2431 ctype.interfaces_field = List.nil();
duke@1 2432 packageAnnotationsClass.sym = c;
duke@1 2433
duke@1 2434 translated.append(packageAnnotationsClass);
duke@1 2435 }
duke@1 2436 }
jjg@657 2437 // where
jjg@657 2438 private boolean needPackageInfoClass(JCCompilationUnit tree) {
jjg@657 2439 switch (pkginfoOpt) {
jjg@657 2440 case ALWAYS:
jjg@657 2441 return true;
jjg@657 2442 case LEGACY:
jjg@657 2443 return tree.packageAnnotations.nonEmpty();
jjg@657 2444 case NONEMPTY:
jfranck@1313 2445 for (Attribute.Compound a :
jjg@1802 2446 tree.packge.getDeclarationAttributes()) {
jjg@657 2447 Attribute.RetentionPolicy p = types.getRetention(a);
jjg@657 2448 if (p != Attribute.RetentionPolicy.SOURCE)
jjg@657 2449 return true;
jjg@657 2450 }
jjg@657 2451 return false;
jjg@657 2452 }
jjg@657 2453 throw new AssertionError();
jjg@657 2454 }
duke@1 2455
duke@1 2456 public void visitClassDef(JCClassDecl tree) {
pgovereau@2425 2457 Env<AttrContext> prevEnv = attrEnv;
duke@1 2458 ClassSymbol currentClassPrev = currentClass;
duke@1 2459 MethodSymbol currentMethodSymPrev = currentMethodSym;
pgovereau@2425 2460
duke@1 2461 currentClass = tree.sym;
duke@1 2462 currentMethodSym = null;
pgovereau@2425 2463 attrEnv = typeEnvs.remove(currentClass);
pgovereau@2425 2464 if (attrEnv == null)
pgovereau@2425 2465 attrEnv = prevEnv;
pgovereau@2425 2466
duke@1 2467 classdefs.put(currentClass, tree);
duke@1 2468
duke@1 2469 proxies = proxies.dup(currentClass);
duke@1 2470 List<VarSymbol> prevOuterThisStack = outerThisStack;
duke@1 2471
duke@1 2472 // If this is an enum definition
duke@1 2473 if ((tree.mods.flags & ENUM) != 0 &&
duke@1 2474 (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
duke@1 2475 visitEnumDef(tree);
duke@1 2476
duke@1 2477 // If this is a nested class, define a this$n field for
duke@1 2478 // it and add to proxies.
duke@1 2479 JCVariableDecl otdef = null;
duke@1 2480 if (currentClass.hasOuterInstance())
duke@1 2481 otdef = outerThisDef(tree.pos, currentClass);
duke@1 2482
duke@1 2483 // If this is a local class, define proxies for all its free variables.
duke@1 2484 List<JCVariableDecl> fvdefs = freevarDefs(
duke@1 2485 tree.pos, freevars(currentClass), currentClass);
duke@1 2486
duke@1 2487 // Recursively translate superclass, interfaces.
duke@1 2488 tree.extending = translate(tree.extending);
duke@1 2489 tree.implementing = translate(tree.implementing);
duke@1 2490
mcimadamore@1086 2491 if (currentClass.isLocal()) {
mcimadamore@1086 2492 ClassSymbol encl = currentClass.owner.enclClass();
mcimadamore@1086 2493 if (encl.trans_local == null) {
mcimadamore@1086 2494 encl.trans_local = List.nil();
mcimadamore@1086 2495 }
mcimadamore@1086 2496 encl.trans_local = encl.trans_local.prepend(currentClass);
mcimadamore@1086 2497 }
mcimadamore@1086 2498
duke@1 2499 // Recursively translate members, taking into account that new members
duke@1 2500 // might be created during the translation and prepended to the member
duke@1 2501 // list `tree.defs'.
duke@1 2502 List<JCTree> seen = List.nil();
duke@1 2503 while (tree.defs != seen) {
duke@1 2504 List<JCTree> unseen = tree.defs;
duke@1 2505 for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
duke@1 2506 JCTree outermostMemberDefPrev = outermostMemberDef;
duke@1 2507 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
duke@1 2508 l.head = translate(l.head);
duke@1 2509 outermostMemberDef = outermostMemberDefPrev;
duke@1 2510 }
duke@1 2511 seen = unseen;
duke@1 2512 }
duke@1 2513
duke@1 2514 // Convert a protected modifier to public, mask static modifier.
duke@1 2515 if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
duke@1 2516 tree.mods.flags &= ClassFlags;
duke@1 2517
duke@1 2518 // Convert name to flat representation, replacing '.' by '$'.
duke@1 2519 tree.name = Convert.shortName(currentClass.flatName());
duke@1 2520
duke@1 2521 // Add this$n and free variables proxy definitions to class.
vromero@1954 2522
duke@1 2523 for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
duke@1 2524 tree.defs = tree.defs.prepend(l.head);
duke@1 2525 enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
duke@1 2526 }
duke@1 2527 if (currentClass.hasOuterInstance()) {
duke@1 2528 tree.defs = tree.defs.prepend(otdef);
duke@1 2529 enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
duke@1 2530 }
duke@1 2531
duke@1 2532 proxies = proxies.leave();
duke@1 2533 outerThisStack = prevOuterThisStack;
duke@1 2534
duke@1 2535 // Append translated tree to `translated' queue.
duke@1 2536 translated.append(tree);
duke@1 2537
pgovereau@2425 2538 attrEnv = prevEnv;
duke@1 2539 currentClass = currentClassPrev;
duke@1 2540 currentMethodSym = currentMethodSymPrev;
duke@1 2541
duke@1 2542 // Return empty block {} as a placeholder for an inner class.
duke@1 2543 result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
duke@1 2544 }
duke@1 2545
duke@1 2546 /** Translate an enum class. */
duke@1 2547 private void visitEnumDef(JCClassDecl tree) {
duke@1 2548 make_at(tree.pos());
duke@1 2549
duke@1 2550 // add the supertype, if needed
duke@1 2551 if (tree.extending == null)
duke@1 2552 tree.extending = make.Type(types.supertype(tree.type));
duke@1 2553
duke@1 2554 // classOfType adds a cache field to tree.defs unless
duke@1 2555 // target.hasClassLiterals().
duke@1 2556 JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
duke@1 2557 setType(types.erasure(syms.classType));
duke@1 2558
duke@1 2559 // process each enumeration constant, adding implicit constructor parameters
duke@1 2560 int nextOrdinal = 0;
duke@1 2561 ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
duke@1 2562 ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
duke@1 2563 ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
duke@1 2564 for (List<JCTree> defs = tree.defs;
duke@1 2565 defs.nonEmpty();
duke@1 2566 defs=defs.tail) {
jjg@1127 2567 if (defs.head.hasTag(VARDEF) && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
duke@1 2568 JCVariableDecl var = (JCVariableDecl)defs.head;
duke@1 2569 visitEnumConstantDef(var, nextOrdinal++);
duke@1 2570 values.append(make.QualIdent(var.sym));
duke@1 2571 enumDefs.append(var);
duke@1 2572 } else {
duke@1 2573 otherDefs.append(defs.head);
duke@1 2574 }
duke@1 2575 }
duke@1 2576
duke@1 2577 // private static final T[] #VALUES = { a, b, c };
duke@1 2578 Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
duke@1 2579 while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
duke@1 2580 valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
duke@1 2581 Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
duke@1 2582 VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
duke@1 2583 valuesName,
duke@1 2584 arrayType,
duke@1 2585 tree.type.tsym);
duke@1 2586 JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
duke@1 2587 List.<JCExpression>nil(),
duke@1 2588 values.toList());
duke@1 2589 newArray.type = arrayType;
duke@1 2590 enumDefs.append(make.VarDef(valuesVar, newArray));
duke@1 2591 tree.sym.members().enter(valuesVar);
duke@1 2592
duke@1 2593 Symbol valuesSym = lookupMethod(tree.pos(), names.values,
duke@1 2594 tree.type, List.<Type>nil());
jjg@86 2595 List<JCStatement> valuesBody;
jjg@86 2596 if (useClone()) {
jjg@86 2597 // return (T[]) $VALUES.clone();
jjg@86 2598 JCTypeCast valuesResult =
jjg@86 2599 make.TypeCast(valuesSym.type.getReturnType(),
jjg@86 2600 make.App(make.Select(make.Ident(valuesVar),
jjg@86 2601 syms.arrayCloneMethod)));
jjg@86 2602 valuesBody = List.<JCStatement>of(make.Return(valuesResult));
jjg@86 2603 } else {
jjg@86 2604 // template: T[] $result = new T[$values.length];
jjg@86 2605 Name resultName = names.fromString(target.syntheticNameChar() + "result");
jjg@86 2606 while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
jjg@86 2607 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
jjg@86 2608 VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
jjg@86 2609 resultName,
jjg@86 2610 arrayType,
jjg@86 2611 valuesSym);
jjg@86 2612 JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
jjg@86 2613 List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
jjg@86 2614 null);
jjg@86 2615 resultArray.type = arrayType;
jjg@86 2616 JCVariableDecl decl = make.VarDef(resultVar, resultArray);
jjg@86 2617
jjg@86 2618 // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
jjg@86 2619 if (systemArraycopyMethod == null) {
jjg@86 2620 systemArraycopyMethod =
jjg@86 2621 new MethodSymbol(PUBLIC | STATIC,
jjg@86 2622 names.fromString("arraycopy"),
jjg@86 2623 new MethodType(List.<Type>of(syms.objectType,
jjg@86 2624 syms.intType,
jjg@86 2625 syms.objectType,
jjg@86 2626 syms.intType,
jjg@86 2627 syms.intType),
jjg@86 2628 syms.voidType,
jjg@86 2629 List.<Type>nil(),
jjg@86 2630 syms.methodClass),
jjg@86 2631 syms.systemType.tsym);
jjg@86 2632 }
jjg@86 2633 JCStatement copy =
jjg@86 2634 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
jjg@86 2635 systemArraycopyMethod),
jjg@86 2636 List.of(make.Ident(valuesVar), make.Literal(0),
jjg@86 2637 make.Ident(resultVar), make.Literal(0),
jjg@86 2638 make.Select(make.Ident(valuesVar), syms.lengthVar))));
jjg@86 2639
jjg@86 2640 // template: return $result;
jjg@86 2641 JCStatement ret = make.Return(make.Ident(resultVar));
jjg@86 2642 valuesBody = List.<JCStatement>of(decl, copy, ret);
jjg@86 2643 }
jjg@86 2644
duke@1 2645 JCMethodDecl valuesDef =
jjg@86 2646 make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
jjg@86 2647
duke@1 2648 enumDefs.append(valuesDef);
duke@1 2649
jjg@86 2650 if (debugLower)
jjg@86 2651 System.err.println(tree.sym + ".valuesDef = " + valuesDef);
jjg@86 2652
duke@1 2653 /** The template for the following code is:
duke@1 2654 *
duke@1 2655 * public static E valueOf(String name) {
duke@1 2656 * return (E)Enum.valueOf(E.class, name);
duke@1 2657 * }
duke@1 2658 *
duke@1 2659 * where E is tree.sym
duke@1 2660 */
duke@1 2661 MethodSymbol valueOfSym = lookupMethod(tree.pos(),
duke@1 2662 names.valueOf,
duke@1 2663 tree.sym.type,
duke@1 2664 List.of(syms.stringType));
jjg@816 2665 Assert.check((valueOfSym.flags() & STATIC) != 0);
duke@1 2666 VarSymbol nameArgSym = valueOfSym.params.head;
duke@1 2667 JCIdent nameVal = make.Ident(nameArgSym);
duke@1 2668 JCStatement enum_ValueOf =
duke@1 2669 make.Return(make.TypeCast(tree.sym.type,
duke@1 2670 makeCall(make.Ident(syms.enumSym),
duke@1 2671 names.valueOf,
duke@1 2672 List.of(e_class, nameVal))));
duke@1 2673 JCMethodDecl valueOf = make.MethodDef(valueOfSym,
duke@1 2674 make.Block(0, List.of(enum_ValueOf)));
duke@1 2675 nameVal.sym = valueOf.params.head.sym;
duke@1 2676 if (debugLower)
duke@1 2677 System.err.println(tree.sym + ".valueOf = " + valueOf);
duke@1 2678 enumDefs.append(valueOf);
duke@1 2679
duke@1 2680 enumDefs.appendList(otherDefs.toList());
duke@1 2681 tree.defs = enumDefs.toList();
duke@1 2682 }
jjg@86 2683 // where
jjg@86 2684 private MethodSymbol systemArraycopyMethod;
jjg@86 2685 private boolean useClone() {
jjg@86 2686 try {
jjg@86 2687 Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
jjg@86 2688 return (e.sym != null);
jjg@86 2689 }
jjg@86 2690 catch (CompletionFailure e) {
jjg@86 2691 return false;
jjg@86 2692 }
jjg@86 2693 }
duke@1 2694
duke@1 2695 /** Translate an enumeration constant and its initializer. */
duke@1 2696 private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
duke@1 2697 JCNewClass varDef = (JCNewClass)var.init;
duke@1 2698 varDef.args = varDef.args.
duke@1 2699 prepend(makeLit(syms.intType, ordinal)).
duke@1 2700 prepend(makeLit(syms.stringType, var.name.toString()));
duke@1 2701 }
duke@1 2702
duke@1 2703 public void visitMethodDef(JCMethodDecl tree) {
duke@1 2704 if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
duke@1 2705 // Add "String $enum$name, int $enum$ordinal" to the beginning of the
duke@1 2706 // argument list for each constructor of an enum.
duke@1 2707 JCVariableDecl nameParam = make_at(tree.pos()).
duke@1 2708 Param(names.fromString(target.syntheticNameChar() +
duke@1 2709 "enum" + target.syntheticNameChar() + "name"),
duke@1 2710 syms.stringType, tree.sym);
duke@1 2711 nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
duke@1 2712 JCVariableDecl ordParam = make.
duke@1 2713 Param(names.fromString(target.syntheticNameChar() +
duke@1 2714 "enum" + target.syntheticNameChar() +
duke@1 2715 "ordinal"),
duke@1 2716 syms.intType, tree.sym);
duke@1 2717 ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
duke@1 2718
duke@1 2719 tree.params = tree.params.prepend(ordParam).prepend(nameParam);
duke@1 2720
duke@1 2721 MethodSymbol m = tree.sym;
mcimadamore@1565 2722 m.extraParams = m.extraParams.prepend(ordParam.sym);
mcimadamore@1565 2723 m.extraParams = m.extraParams.prepend(nameParam.sym);
duke@1 2724 Type olderasure = m.erasure(types);
duke@1 2725 m.erasure_field = new MethodType(
duke@1 2726 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
duke@1 2727 olderasure.getReturnType(),
duke@1 2728 olderasure.getThrownTypes(),
duke@1 2729 syms.methodClass);
duke@1 2730 }
duke@1 2731
duke@1 2732 JCMethodDecl prevMethodDef = currentMethodDef;
duke@1 2733 MethodSymbol prevMethodSym = currentMethodSym;
duke@1 2734 try {
duke@1 2735 currentMethodDef = tree;
duke@1 2736 currentMethodSym = tree.sym;
duke@1 2737 visitMethodDefInternal(tree);
duke@1 2738 } finally {
duke@1 2739 currentMethodDef = prevMethodDef;
duke@1 2740 currentMethodSym = prevMethodSym;
duke@1 2741 }
duke@1 2742 }
duke@1 2743 //where
duke@1 2744 private void visitMethodDefInternal(JCMethodDecl tree) {
duke@1 2745 if (tree.name == names.init &&
vromero@1954 2746 (currentClass.isInner() || currentClass.isLocal())) {
duke@1 2747 // We are seeing a constructor of an inner class.
duke@1 2748 MethodSymbol m = tree.sym;
duke@1 2749
duke@1 2750 // Push a new proxy scope for constructor parameters.
duke@1 2751 // and create definitions for any this$n and proxy parameters.
duke@1 2752 proxies = proxies.dup(m);
duke@1 2753 List<VarSymbol> prevOuterThisStack = outerThisStack;
duke@1 2754 List<VarSymbol> fvs = freevars(currentClass);
duke@1 2755 JCVariableDecl otdef = null;
duke@1 2756 if (currentClass.hasOuterInstance())
duke@1 2757 otdef = outerThisDef(tree.pos, m);
vromero@2027 2758 List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m, PARAMETER);
duke@1 2759
duke@1 2760 // Recursively translate result type, parameters and thrown list.
duke@1 2761 tree.restype = translate(tree.restype);
duke@1 2762 tree.params = translateVarDefs(tree.params);
duke@1 2763 tree.thrown = translate(tree.thrown);
duke@1 2764
duke@1 2765 // when compiling stubs, don't process body
duke@1 2766 if (tree.body == null) {
duke@1 2767 result = tree;
duke@1 2768 return;
duke@1 2769 }
duke@1 2770
duke@1 2771 // Add this$n (if needed) in front of and free variables behind
duke@1 2772 // constructor parameter list.
duke@1 2773 tree.params = tree.params.appendList(fvdefs);
duke@1 2774 if (currentClass.hasOuterInstance())
duke@1 2775 tree.params = tree.params.prepend(otdef);
duke@1 2776
duke@1 2777 // If this is an initial constructor, i.e., it does not start with
duke@1 2778 // this(...), insert initializers for this$n and proxies
duke@1 2779 // before (pre-1.4, after) the call to superclass constructor.
duke@1 2780 JCStatement selfCall = translate(tree.body.stats.head);
duke@1 2781
duke@1 2782 List<JCStatement> added = List.nil();
duke@1 2783 if (fvs.nonEmpty()) {
duke@1 2784 List<Type> addedargtypes = List.nil();
duke@1 2785 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
emc@1808 2786 if (TreeInfo.isInitialConstructor(tree)) {
emc@1808 2787 final Name pName = proxyName(l.head.name);
emc@1975 2788 m.capturedLocals =
emc@1975 2789 m.capturedLocals.append((VarSymbol)
emc@1975 2790 (proxies.lookup(pName).sym));
duke@1 2791 added = added.prepend(
emc@1808 2792 initField(tree.body.pos, pName));
emc@1808 2793 }
duke@1 2794 addedargtypes = addedargtypes.prepend(l.head.erasure(types));
duke@1 2795 }
duke@1 2796 Type olderasure = m.erasure(types);
duke@1 2797 m.erasure_field = new MethodType(
duke@1 2798 olderasure.getParameterTypes().appendList(addedargtypes),
duke@1 2799 olderasure.getReturnType(),
duke@1 2800 olderasure.getThrownTypes(),
duke@1 2801 syms.methodClass);
duke@1 2802 }
duke@1 2803 if (currentClass.hasOuterInstance() &&
duke@1 2804 TreeInfo.isInitialConstructor(tree))
duke@1 2805 {
duke@1 2806 added = added.prepend(initOuterThis(tree.body.pos));
duke@1 2807 }
duke@1 2808
duke@1 2809 // pop local variables from proxy stack
duke@1 2810 proxies = proxies.leave();
duke@1 2811
duke@1 2812 // recursively translate following local statements and
duke@1 2813 // combine with this- or super-call
duke@1 2814 List<JCStatement> stats = translate(tree.body.stats.tail);
duke@1 2815 if (target.initializeFieldsBeforeSuper())
duke@1 2816 tree.body.stats = stats.prepend(selfCall).prependList(added);
duke@1 2817 else
duke@1 2818 tree.body.stats = stats.prependList(added).prepend(selfCall);
duke@1 2819
duke@1 2820 outerThisStack = prevOuterThisStack;
duke@1 2821 } else {
mcimadamore@1612 2822 Map<Symbol, Symbol> prevLambdaTranslationMap =
mcimadamore@1612 2823 lambdaTranslationMap;
mcimadamore@1612 2824 try {
mcimadamore@1612 2825 lambdaTranslationMap = (tree.sym.flags() & SYNTHETIC) != 0 &&
mcimadamore@1612 2826 tree.sym.name.startsWith(names.lambda) ?
mcimadamore@1612 2827 makeTranslationMap(tree) : null;
mcimadamore@1612 2828 super.visitMethodDef(tree);
mcimadamore@1612 2829 } finally {
mcimadamore@1612 2830 lambdaTranslationMap = prevLambdaTranslationMap;
mcimadamore@1612 2831 }
duke@1 2832 }
duke@1 2833 result = tree;
duke@1 2834 }
mcimadamore@1612 2835 //where
mcimadamore@1612 2836 private Map<Symbol, Symbol> makeTranslationMap(JCMethodDecl tree) {
mcimadamore@1612 2837 Map<Symbol, Symbol> translationMap = new HashMap<Symbol,Symbol>();
mcimadamore@1612 2838 for (JCVariableDecl vd : tree.params) {
mcimadamore@1612 2839 Symbol p = vd.sym;
mcimadamore@1612 2840 if (p != p.baseSymbol()) {
mcimadamore@1612 2841 translationMap.put(p.baseSymbol(), p);
mcimadamore@1612 2842 }
mcimadamore@1612 2843 }
mcimadamore@1612 2844 return translationMap;
mcimadamore@1612 2845 }
duke@1 2846
jjg@1521 2847 public void visitAnnotatedType(JCAnnotatedType tree) {
jjg@1755 2848 // No need to retain type annotations in the tree
jjg@1521 2849 // tree.annotations = translate(tree.annotations);
jjg@1755 2850 tree.annotations = List.nil();
jjg@1521 2851 tree.underlyingType = translate(tree.underlyingType);
jjg@1755 2852 // but maintain type annotations in the type.
jjg@1755 2853 if (tree.type.isAnnotated()) {
jjg@2134 2854 tree.type = tree.underlyingType.type.unannotatedType().annotatedType(tree.type.getAnnotationMirrors());
jjg@2134 2855 } else if (tree.underlyingType.type.isAnnotated()) {
jjg@2134 2856 tree.type = tree.underlyingType.type;
jjg@1755 2857 }
jjg@1755 2858 result = tree;
jjg@1521 2859 }
jjg@1521 2860
duke@1 2861 public void visitTypeCast(JCTypeCast tree) {
duke@1 2862 tree.clazz = translate(tree.clazz);
duke@1 2863 if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
duke@1 2864 tree.expr = translate(tree.expr, tree.type);
duke@1 2865 else
duke@1 2866 tree.expr = translate(tree.expr);
duke@1 2867 result = tree;
duke@1 2868 }
duke@1 2869
duke@1 2870 public void visitNewClass(JCNewClass tree) {
duke@1 2871 ClassSymbol c = (ClassSymbol)tree.constructor.owner;
duke@1 2872
duke@1 2873 // Box arguments, if necessary
duke@1 2874 boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
duke@1 2875 List<Type> argTypes = tree.constructor.type.getParameterTypes();
duke@1 2876 if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
duke@1 2877 tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
duke@1 2878 tree.varargsElement = null;
duke@1 2879
duke@1 2880 // If created class is local, add free variables after
duke@1 2881 // explicit constructor arguments.
vromero@1954 2882 if (c.isLocal()) {
duke@1 2883 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
duke@1 2884 }
duke@1 2885
duke@1 2886 // If an access constructor is used, append null as a last argument.
duke@1 2887 Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
duke@1 2888 if (constructor != tree.constructor) {
duke@1 2889 tree.args = tree.args.append(makeNull());
duke@1 2890 tree.constructor = constructor;
duke@1 2891 }
duke@1 2892
duke@1 2893 // If created class has an outer instance, and new is qualified, pass
duke@1 2894 // qualifier as first argument. If new is not qualified, pass the
duke@1 2895 // correct outer instance as first argument.
duke@1 2896 if (c.hasOuterInstance()) {
duke@1 2897 JCExpression thisArg;
duke@1 2898 if (tree.encl != null) {
duke@1 2899 thisArg = attr.makeNullCheck(translate(tree.encl));
duke@1 2900 thisArg.type = tree.encl.type;
vromero@1954 2901 } else if (c.isLocal()) {
duke@1 2902 // local class
duke@1 2903 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
duke@1 2904 } else {
duke@1 2905 // nested class
duke@1 2906 thisArg = makeOwnerThis(tree.pos(), c, false);
duke@1 2907 }
duke@1 2908 tree.args = tree.args.prepend(thisArg);
duke@1 2909 }
duke@1 2910 tree.encl = null;
duke@1 2911
duke@1 2912 // If we have an anonymous class, create its flat version, rather
duke@1 2913 // than the class or interface following new.
duke@1 2914 if (tree.def != null) {
duke@1 2915 translate(tree.def);
duke@1 2916 tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
duke@1 2917 tree.def = null;
duke@1 2918 } else {
duke@1 2919 tree.clazz = access(c, tree.clazz, enclOp, false);
duke@1 2920 }
duke@1 2921 result = tree;
duke@1 2922 }
duke@1 2923
duke@1 2924 // Simplify conditionals with known constant controlling expressions.
duke@1 2925 // This allows us to avoid generating supporting declarations for
duke@1 2926 // the dead code, which will not be eliminated during code generation.
duke@1 2927 // Note that Flow.isFalse and Flow.isTrue only return true
duke@1 2928 // for constant expressions in the sense of JLS 15.27, which
darcy@430 2929 // are guaranteed to have no side-effects. More aggressive
duke@1 2930 // constant propagation would require that we take care to
duke@1 2931 // preserve possible side-effects in the condition expression.
duke@1 2932
duke@1 2933 /** Visitor method for conditional expressions.
duke@1 2934 */
vromero@1432 2935 @Override
duke@1 2936 public void visitConditional(JCConditional tree) {
duke@1 2937 JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2938 if (cond.type.isTrue()) {
duke@1 2939 result = convert(translate(tree.truepart, tree.type), tree.type);
vromero@1432 2940 addPrunedInfo(cond);
duke@1 2941 } else if (cond.type.isFalse()) {
duke@1 2942 result = convert(translate(tree.falsepart, tree.type), tree.type);
vromero@1432 2943 addPrunedInfo(cond);
duke@1 2944 } else {
duke@1 2945 // Condition is not a compile-time constant.
duke@1 2946 tree.truepart = translate(tree.truepart, tree.type);
duke@1 2947 tree.falsepart = translate(tree.falsepart, tree.type);
duke@1 2948 result = tree;
duke@1 2949 }
duke@1 2950 }
duke@1 2951 //where
vromero@1432 2952 private JCTree convert(JCTree tree, Type pt) {
vromero@1432 2953 if (tree.type == pt || tree.type.hasTag(BOT))
vromero@1432 2954 return tree;
vromero@1432 2955 JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
vromero@1432 2956 result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
vromero@1432 2957 : pt;
vromero@1432 2958 return result;
vromero@1432 2959 }
duke@1 2960
duke@1 2961 /** Visitor method for if statements.
duke@1 2962 */
duke@1 2963 public void visitIf(JCIf tree) {
duke@1 2964 JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2965 if (cond.type.isTrue()) {
duke@1 2966 result = translate(tree.thenpart);
vromero@1432 2967 addPrunedInfo(cond);
duke@1 2968 } else if (cond.type.isFalse()) {
duke@1 2969 if (tree.elsepart != null) {
duke@1 2970 result = translate(tree.elsepart);
duke@1 2971 } else {
duke@1 2972 result = make.Skip();
duke@1 2973 }
vromero@1432 2974 addPrunedInfo(cond);
duke@1 2975 } else {
duke@1 2976 // Condition is not a compile-time constant.
duke@1 2977 tree.thenpart = translate(tree.thenpart);
duke@1 2978 tree.elsepart = translate(tree.elsepart);
duke@1 2979 result = tree;
duke@1 2980 }
duke@1 2981 }
duke@1 2982
duke@1 2983 /** Visitor method for assert statements. Translate them away.
duke@1 2984 */
duke@1 2985 public void visitAssert(JCAssert tree) {
duke@1 2986 DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
duke@1 2987 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 2988 if (!tree.cond.type.isTrue()) {
duke@1 2989 JCExpression cond = assertFlagTest(tree.pos());
duke@1 2990 List<JCExpression> exnArgs = (tree.detail == null) ?
duke@1 2991 List.<JCExpression>nil() : List.of(translate(tree.detail));
duke@1 2992 if (!tree.cond.type.isFalse()) {
duke@1 2993 cond = makeBinary
jjg@1127 2994 (AND,
duke@1 2995 cond,
jjg@1127 2996 makeUnary(NOT, tree.cond));
duke@1 2997 }
duke@1 2998 result =
duke@1 2999 make.If(cond,
vromero@1783 3000 make_at(tree).
duke@1 3001 Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
duke@1 3002 null);
duke@1 3003 } else {
duke@1 3004 result = make.Skip();
duke@1 3005 }
duke@1 3006 }
duke@1 3007
duke@1 3008 public void visitApply(JCMethodInvocation tree) {
duke@1 3009 Symbol meth = TreeInfo.symbol(tree.meth);
duke@1 3010 List<Type> argtypes = meth.type.getParameterTypes();
duke@1 3011 if (allowEnums &&
duke@1 3012 meth.name==names.init &&
duke@1 3013 meth.owner == syms.enumSym)
duke@1 3014 argtypes = argtypes.tail.tail;
duke@1 3015 tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
duke@1 3016 tree.varargsElement = null;
duke@1 3017 Name methName = TreeInfo.name(tree.meth);
duke@1 3018 if (meth.name==names.init) {
duke@1 3019 // We are seeing a this(...) or super(...) constructor call.
duke@1 3020 // If an access constructor is used, append null as a last argument.
duke@1 3021 Symbol constructor = accessConstructor(tree.pos(), meth);
duke@1 3022 if (constructor != meth) {
duke@1 3023 tree.args = tree.args.append(makeNull());
duke@1 3024 TreeInfo.setSymbol(tree.meth, constructor);
duke@1 3025 }
duke@1 3026
duke@1 3027 // If we are calling a constructor of a local class, add
duke@1 3028 // free variables after explicit constructor arguments.
duke@1 3029 ClassSymbol c = (ClassSymbol)constructor.owner;
vromero@1954 3030 if (c.isLocal()) {
duke@1 3031 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
duke@1 3032 }
duke@1 3033
duke@1 3034 // If we are calling a constructor of an enum class, pass
duke@1 3035 // along the name and ordinal arguments
duke@1 3036 if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
duke@1 3037 List<JCVariableDecl> params = currentMethodDef.params;
duke@1 3038 if (currentMethodSym.owner.hasOuterInstance())
duke@1 3039 params = params.tail; // drop this$n
duke@1 3040 tree.args = tree.args
duke@1 3041 .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
duke@1 3042 .prepend(make.Ident(params.head.sym)); // name
duke@1 3043 }
duke@1 3044
duke@1 3045 // If we are calling a constructor of a class with an outer
duke@1 3046 // instance, and the call
duke@1 3047 // is qualified, pass qualifier as first argument in front of
duke@1 3048 // the explicit constructor arguments. If the call
duke@1 3049 // is not qualified, pass the correct outer instance as
duke@1 3050 // first argument.
duke@1 3051 if (c.hasOuterInstance()) {
duke@1 3052 JCExpression thisArg;
jjg@1127 3053 if (tree.meth.hasTag(SELECT)) {
duke@1 3054 thisArg = attr.
duke@1 3055 makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
duke@1 3056 tree.meth = make.Ident(constructor);
duke@1 3057 ((JCIdent) tree.meth).name = methName;
vromero@1954 3058 } else if (c.isLocal() || methName == names._this){
duke@1 3059 // local class or this() call
duke@1 3060 thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
duke@1 3061 } else {
mcimadamore@901 3062 // super() call of nested class - never pick 'this'
mcimadamore@901 3063 thisArg = makeOwnerThisN(tree.meth.pos(), c, false);
duke@1 3064 }
duke@1 3065 tree.args = tree.args.prepend(thisArg);
duke@1 3066 }
duke@1 3067 } else {
duke@1 3068 // We are seeing a normal method invocation; translate this as usual.
duke@1 3069 tree.meth = translate(tree.meth);
duke@1 3070
duke@1 3071 // If the translated method itself is an Apply tree, we are
duke@1 3072 // seeing an access method invocation. In this case, append
duke@1 3073 // the method arguments to the arguments of the access method.
jjg@1127 3074 if (tree.meth.hasTag(APPLY)) {
duke@1 3075 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
duke@1 3076 app.args = tree.args.prependList(app.args);
duke@1 3077 result = app;
duke@1 3078 return;
duke@1 3079 }
duke@1 3080 }
duke@1 3081 result = tree;
duke@1 3082 }
duke@1 3083
duke@1 3084 List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
duke@1 3085 List<JCExpression> args = _args;
duke@1 3086 if (parameters.isEmpty()) return args;
duke@1 3087 boolean anyChanges = false;
duke@1 3088 ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
duke@1 3089 while (parameters.tail.nonEmpty()) {
duke@1 3090 JCExpression arg = translate(args.head, parameters.head);
duke@1 3091 anyChanges |= (arg != args.head);
duke@1 3092 result.append(arg);
duke@1 3093 args = args.tail;
duke@1 3094 parameters = parameters.tail;
duke@1 3095 }
duke@1 3096 Type parameter = parameters.head;
duke@1 3097 if (varargsElement != null) {
duke@1 3098 anyChanges = true;
duke@1 3099 ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
duke@1 3100 while (args.nonEmpty()) {
duke@1 3101 JCExpression arg = translate(args.head, varargsElement);
duke@1 3102 elems.append(arg);
duke@1 3103 args = args.tail;
duke@1 3104 }
duke@1 3105 JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
duke@1 3106 List.<JCExpression>nil(),
duke@1 3107 elems.toList());
duke@1 3108 boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
duke@1 3109 result.append(boxedArgs);
duke@1 3110 } else {
duke@1 3111 if (args.length() != 1) throw new AssertionError(args);
duke@1 3112 JCExpression arg = translate(args.head, parameter);
duke@1 3113 anyChanges |= (arg != args.head);
duke@1 3114 result.append(arg);
duke@1 3115 if (!anyChanges) return _args;
duke@1 3116 }
duke@1 3117 return result.toList();
duke@1 3118 }
duke@1 3119
duke@1 3120 /** Expand a boxing or unboxing conversion if needed. */
duke@1 3121 @SuppressWarnings("unchecked") // XXX unchecked
duke@1 3122 <T extends JCTree> T boxIfNeeded(T tree, Type type) {
duke@1 3123 boolean havePrimitive = tree.type.isPrimitive();
duke@1 3124 if (havePrimitive == type.isPrimitive())
duke@1 3125 return tree;
duke@1 3126 if (havePrimitive) {
duke@1 3127 Type unboxedTarget = types.unboxedType(type);
jjg@1374 3128 if (!unboxedTarget.hasTag(NONE)) {
mcimadamore@253 3129 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
mcimadamore@253 3130 tree.type = unboxedTarget.constType(tree.type.constValue());
duke@1 3131 return (T)boxPrimitive((JCExpression)tree, type);
duke@1 3132 } else {
duke@1 3133 tree = (T)boxPrimitive((JCExpression)tree);
duke@1 3134 }
duke@1 3135 } else {
duke@1 3136 tree = (T)unbox((JCExpression)tree, type);
duke@1 3137 }
duke@1 3138 return tree;
duke@1 3139 }
duke@1 3140
duke@1 3141 /** Box up a single primitive expression. */
duke@1 3142 JCExpression boxPrimitive(JCExpression tree) {
duke@1 3143 return boxPrimitive(tree, types.boxedClass(tree.type).type);
duke@1 3144 }
duke@1 3145
duke@1 3146 /** Box up a single primitive expression. */
duke@1 3147 JCExpression boxPrimitive(JCExpression tree, Type box) {
duke@1 3148 make_at(tree.pos());
duke@1 3149 if (target.boxWithConstructors()) {
duke@1 3150 Symbol ctor = lookupConstructor(tree.pos(),
duke@1 3151 box,
duke@1 3152 List.<Type>nil()
duke@1 3153 .prepend(tree.type));
duke@1 3154 return make.Create(ctor, List.of(tree));
duke@1 3155 } else {
duke@1 3156 Symbol valueOfSym = lookupMethod(tree.pos(),
duke@1 3157 names.valueOf,
duke@1 3158 box,
duke@1 3159 List.<Type>nil()
duke@1 3160 .prepend(tree.type));
duke@1 3161 return make.App(make.QualIdent(valueOfSym), List.of(tree));
duke@1 3162 }
duke@1 3163 }
duke@1 3164
duke@1 3165 /** Unbox an object to a primitive value. */
duke@1 3166 JCExpression unbox(JCExpression tree, Type primitive) {
duke@1 3167 Type unboxedType = types.unboxedType(tree.type);
jjg@1374 3168 if (unboxedType.hasTag(NONE)) {
jrose@665 3169 unboxedType = primitive;
jrose@665 3170 if (!unboxedType.isPrimitive())
jrose@665 3171 throw new AssertionError(unboxedType);
jrose@665 3172 make_at(tree.pos());
jrose@665 3173 tree = make.TypeCast(types.boxedClass(unboxedType).type, tree);
jrose@665 3174 } else {
jrose@665 3175 // There must be a conversion from unboxedType to primitive.
jrose@665 3176 if (!types.isSubtype(unboxedType, primitive))
jrose@665 3177 throw new AssertionError(tree);
jrose@665 3178 }
duke@1 3179 make_at(tree.pos());
duke@1 3180 Symbol valueSym = lookupMethod(tree.pos(),
duke@1 3181 unboxedType.tsym.name.append(names.Value), // x.intValue()
duke@1 3182 tree.type,
duke@1 3183 List.<Type>nil());
duke@1 3184 return make.App(make.Select(tree, valueSym));
duke@1 3185 }
duke@1 3186
duke@1 3187 /** Visitor method for parenthesized expressions.
duke@1 3188 * If the subexpression has changed, omit the parens.
duke@1 3189 */
duke@1 3190 public void visitParens(JCParens tree) {
duke@1 3191 JCTree expr = translate(tree.expr);
duke@1 3192 result = ((expr == tree.expr) ? tree : expr);
duke@1 3193 }
duke@1 3194
duke@1 3195 public void visitIndexed(JCArrayAccess tree) {
duke@1 3196 tree.indexed = translate(tree.indexed);
duke@1 3197 tree.index = translate(tree.index, syms.intType);
duke@1 3198 result = tree;
duke@1 3199 }
duke@1 3200
duke@1 3201 public void visitAssign(JCAssign tree) {
duke@1 3202 tree.lhs = translate(tree.lhs, tree);
duke@1 3203 tree.rhs = translate(tree.rhs, tree.lhs.type);
duke@1 3204
duke@1 3205 // If translated left hand side is an Apply, we are
duke@1 3206 // seeing an access method invocation. In this case, append
duke@1 3207 // right hand side as last argument of the access method.
jjg@1127 3208 if (tree.lhs.hasTag(APPLY)) {
duke@1 3209 JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
duke@1 3210 app.args = List.of(tree.rhs).prependList(app.args);
duke@1 3211 result = app;
duke@1 3212 } else {
duke@1 3213 result = tree;
duke@1 3214 }
duke@1 3215 }
duke@1 3216
duke@1 3217 public void visitAssignop(final JCAssignOp tree) {
vromero@1621 3218 JCTree lhsAccess = access(TreeInfo.skipParens(tree.lhs));
vromero@1557 3219 final boolean boxingReq = !tree.lhs.type.isPrimitive() &&
vromero@1557 3220 tree.operator.type.getReturnType().isPrimitive();
vromero@1557 3221
vromero@1621 3222 if (boxingReq || lhsAccess.hasTag(APPLY)) {
vromero@1621 3223 // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
vromero@1621 3224 // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
vromero@1621 3225 // (but without recomputing x)
vromero@1621 3226 JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
vromero@1621 3227 public JCTree build(final JCTree lhs) {
vromero@1621 3228 JCTree.Tag newTag = tree.getTag().noAssignOp();
vromero@1621 3229 // Erasure (TransTypes) can change the type of
vromero@1621 3230 // tree.lhs. However, we can still get the
vromero@1621 3231 // unerased type of tree.lhs as it is stored
vromero@1621 3232 // in tree.type in Attr.
vromero@1621 3233 Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
vromero@1621 3234 newTag,
vromero@1621 3235 attrEnv,
vromero@1621 3236 tree.type,
vromero@1621 3237 tree.rhs.type);
vromero@1621 3238 JCExpression expr = (JCExpression)lhs;
vromero@1621 3239 if (expr.type != tree.type)
vromero@1621 3240 expr = make.TypeCast(tree.type, expr);
vromero@1621 3241 JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
vromero@1621 3242 opResult.operator = newOperator;
vromero@1621 3243 opResult.type = newOperator.type.getReturnType();
vromero@1621 3244 JCExpression newRhs = boxingReq ?
vromero@1621 3245 make.TypeCast(types.unboxedType(tree.type), opResult) :
vromero@1557 3246 opResult;
vromero@1621 3247 return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
vromero@1621 3248 }
vromero@1621 3249 });
vromero@1621 3250 result = translate(newTree);
vromero@1621 3251 return;
vromero@1621 3252 }
vromero@1621 3253 tree.lhs = translate(tree.lhs, tree);
vromero@1621 3254 tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
vromero@1621 3255
vromero@1621 3256 // If translated left hand side is an Apply, we are
vromero@1621 3257 // seeing an access method invocation. In this case, append
vromero@1621 3258 // right hand side as last argument of the access method.
vromero@1621 3259 if (tree.lhs.hasTag(APPLY)) {
vromero@1621 3260 JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
vromero@1621 3261 // if operation is a += on strings,
vromero@1621 3262 // make sure to convert argument to string
vromero@1621 3263 JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
vromero@1621 3264 ? makeString(tree.rhs)
vromero@1621 3265 : tree.rhs;
vromero@1621 3266 app.args = List.of(rhs).prependList(app.args);
vromero@1621 3267 result = app;
vromero@1621 3268 } else {
vromero@1621 3269 result = tree;
vromero@1621 3270 }
duke@1 3271 }
duke@1 3272
duke@1 3273 /** Lower a tree of the form e++ or e-- where e is an object type */
duke@1 3274 JCTree lowerBoxedPostop(final JCUnary tree) {
duke@1 3275 // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
duke@1 3276 // or
duke@1 3277 // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
duke@1 3278 // where OP is += or -=
jjg@1127 3279 final boolean cast = TreeInfo.skipParens(tree.arg).hasTag(TYPECAST);
mcimadamore@133 3280 return abstractLval(tree.arg, new TreeBuilder() {
duke@1 3281 public JCTree build(final JCTree tmp1) {
duke@1 3282 return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
duke@1 3283 public JCTree build(final JCTree tmp2) {
jjg@1127 3284 JCTree.Tag opcode = (tree.hasTag(POSTINC))
jjg@1127 3285 ? PLUS_ASG : MINUS_ASG;
duke@1 3286 JCTree lhs = cast
duke@1 3287 ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
duke@1 3288 : tmp1;
duke@1 3289 JCTree update = makeAssignop(opcode,
duke@1 3290 lhs,
duke@1 3291 make.Literal(1));
duke@1 3292 return makeComma(update, tmp2);
duke@1 3293 }
duke@1 3294 });
duke@1 3295 }
duke@1 3296 });
duke@1 3297 }
duke@1 3298
duke@1 3299 public void visitUnary(JCUnary tree) {
jjg@1127 3300 boolean isUpdateOperator = tree.getTag().isIncOrDecUnaryOp();
duke@1 3301 if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
duke@1 3302 switch(tree.getTag()) {
jjg@1127 3303 case PREINC: // ++ e
duke@1 3304 // translate to e += 1
jjg@1127 3305 case PREDEC: // -- e
duke@1 3306 // translate to e -= 1
duke@1 3307 {
jjg@1127 3308 JCTree.Tag opcode = (tree.hasTag(PREINC))
jjg@1127 3309 ? PLUS_ASG : MINUS_ASG;
duke@1 3310 JCAssignOp newTree = makeAssignop(opcode,
duke@1 3311 tree.arg,
duke@1 3312 make.Literal(1));
duke@1 3313 result = translate(newTree, tree.type);
duke@1 3314 return;
duke@1 3315 }
jjg@1127 3316 case POSTINC: // e ++
jjg@1127 3317 case POSTDEC: // e --
duke@1 3318 {
duke@1 3319 result = translate(lowerBoxedPostop(tree), tree.type);
duke@1 3320 return;
duke@1 3321 }
duke@1 3322 }
duke@1 3323 throw new AssertionError(tree);
duke@1 3324 }
duke@1 3325
duke@1 3326 tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
duke@1 3327
jjg@1127 3328 if (tree.hasTag(NOT) && tree.arg.type.constValue() != null) {
duke@1 3329 tree.type = cfolder.fold1(bool_not, tree.arg.type);
duke@1 3330 }
duke@1 3331
duke@1 3332 // If translated left hand side is an Apply, we are
duke@1 3333 // seeing an access method invocation. In this case, return
darcy@430 3334 // that access method invocation as result.
jjg@1127 3335 if (isUpdateOperator && tree.arg.hasTag(APPLY)) {
duke@1 3336 result = tree.arg;
duke@1 3337 } else {
duke@1 3338 result = tree;
duke@1 3339 }
duke@1 3340 }
duke@1 3341
duke@1 3342 public void visitBinary(JCBinary tree) {
duke@1 3343 List<Type> formals = tree.operator.type.getParameterTypes();
duke@1 3344 JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
duke@1 3345 switch (tree.getTag()) {
jjg@1127 3346 case OR:
duke@1 3347 if (lhs.type.isTrue()) {
duke@1 3348 result = lhs;
duke@1 3349 return;
duke@1 3350 }
duke@1 3351 if (lhs.type.isFalse()) {
duke@1 3352 result = translate(tree.rhs, formals.tail.head);
duke@1 3353 return;
duke@1 3354 }
duke@1 3355 break;
jjg@1127 3356 case AND:
duke@1 3357 if (lhs.type.isFalse()) {
duke@1 3358 result = lhs;
duke@1 3359 return;
duke@1 3360 }
duke@1 3361 if (lhs.type.isTrue()) {
duke@1 3362 result = translate(tree.rhs, formals.tail.head);
duke@1 3363 return;
duke@1 3364 }
duke@1 3365 break;
duke@1 3366 }
duke@1 3367 tree.rhs = translate(tree.rhs, formals.tail.head);
duke@1 3368 result = tree;
duke@1 3369 }
duke@1 3370
duke@1 3371 public void visitIdent(JCIdent tree) {
duke@1 3372 result = access(tree.sym, tree, enclOp, false);
duke@1 3373 }
duke@1 3374
duke@1 3375 /** Translate away the foreach loop. */
duke@1 3376 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 3377 if (types.elemtype(tree.expr.type) == null)
duke@1 3378 visitIterableForeachLoop(tree);
duke@1 3379 else
duke@1 3380 visitArrayForeachLoop(tree);
duke@1 3381 }
duke@1 3382 // where
duke@1 3383 /**
darcy@430 3384 * A statement of the form
duke@1 3385 *
duke@1 3386 * <pre>
duke@1 3387 * for ( T v : arrayexpr ) stmt;
duke@1 3388 * </pre>
duke@1 3389 *
duke@1 3390 * (where arrayexpr is of an array type) gets translated to
duke@1 3391 *
jjg@1326 3392 * <pre>{@code
duke@1 3393 * for ( { arraytype #arr = arrayexpr;
duke@1 3394 * int #len = array.length;
duke@1 3395 * int #i = 0; };
duke@1 3396 * #i < #len; i$++ ) {
duke@1 3397 * T v = arr$[#i];
duke@1 3398 * stmt;
duke@1 3399 * }
jjg@1326 3400 * }</pre>
duke@1 3401 *
duke@1 3402 * where #arr, #len, and #i are freshly named synthetic local variables.
duke@1 3403 */
duke@1 3404 private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
duke@1 3405 make_at(tree.expr.pos());
vromero@2027 3406 VarSymbol arraycache = new VarSymbol(SYNTHETIC,
duke@1 3407 names.fromString("arr" + target.syntheticNameChar()),
duke@1 3408 tree.expr.type,
duke@1 3409 currentMethodSym);
duke@1 3410 JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
vromero@2027 3411 VarSymbol lencache = new VarSymbol(SYNTHETIC,
duke@1 3412 names.fromString("len" + target.syntheticNameChar()),
duke@1 3413 syms.intType,
duke@1 3414 currentMethodSym);
duke@1 3415 JCStatement lencachedef = make.
duke@1 3416 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
vromero@2027 3417 VarSymbol index = new VarSymbol(SYNTHETIC,
duke@1 3418 names.fromString("i" + target.syntheticNameChar()),
duke@1 3419 syms.intType,
duke@1 3420 currentMethodSym);
duke@1 3421
duke@1 3422 JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
duke@1 3423 indexdef.init.type = indexdef.type = syms.intType.constType(0);
duke@1 3424
duke@1 3425 List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
jjg@1127 3426 JCBinary cond = makeBinary(LT, make.Ident(index), make.Ident(lencache));
jjg@1127 3427
jjg@1127 3428 JCExpressionStatement step = make.Exec(makeUnary(PREINC, make.Ident(index)));
duke@1 3429
duke@1 3430 Type elemtype = types.elemtype(tree.expr.type);
mcimadamore@33 3431 JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
mcimadamore@33 3432 make.Ident(index)).setType(elemtype);
mcimadamore@33 3433 JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
mcimadamore@33 3434 tree.var.name,
mcimadamore@33 3435 tree.var.vartype,
mcimadamore@33 3436 loopvarinit).setType(tree.var.type);
mcimadamore@33 3437 loopvardef.sym = tree.var.sym;
duke@1 3438 JCBlock body = make.
mcimadamore@33 3439 Block(0, List.of(loopvardef, tree.body));
duke@1 3440
duke@1 3441 result = translate(make.
duke@1 3442 ForLoop(loopinit,
duke@1 3443 cond,
duke@1 3444 List.of(step),
duke@1 3445 body));
duke@1 3446 patchTargets(body, tree, result);
duke@1 3447 }
duke@1 3448 /** Patch up break and continue targets. */
duke@1 3449 private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
duke@1 3450 class Patcher extends TreeScanner {
duke@1 3451 public void visitBreak(JCBreak tree) {
duke@1 3452 if (tree.target == src)
duke@1 3453 tree.target = dest;
duke@1 3454 }
duke@1 3455 public void visitContinue(JCContinue tree) {
duke@1 3456 if (tree.target == src)
duke@1 3457 tree.target = dest;
duke@1 3458 }
duke@1 3459 public void visitClassDef(JCClassDecl tree) {}
duke@1 3460 }
duke@1 3461 new Patcher().scan(body);
duke@1 3462 }
duke@1 3463 /**
duke@1 3464 * A statement of the form
duke@1 3465 *
duke@1 3466 * <pre>
duke@1 3467 * for ( T v : coll ) stmt ;
duke@1 3468 * </pre>
duke@1 3469 *
jjg@1326 3470 * (where coll implements {@code Iterable<? extends T>}) gets translated to
duke@1 3471 *
jjg@1326 3472 * <pre>{@code
duke@1 3473 * for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
duke@1 3474 * T v = (T) #i.next();
duke@1 3475 * stmt;
duke@1 3476 * }
jjg@1326 3477 * }</pre>
duke@1 3478 *
duke@1 3479 * where #i is a freshly named synthetic local variable.
duke@1 3480 */
duke@1 3481 private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
duke@1 3482 make_at(tree.expr.pos());
duke@1 3483 Type iteratorTarget = syms.objectType;
dlsmith@2400 3484 Type iterableType = types.asSuper(types.cvarUpperBound(tree.expr.type),
duke@1 3485 syms.iterableType.tsym);
duke@1 3486 if (iterableType.getTypeArguments().nonEmpty())
duke@1 3487 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
duke@1 3488 Type eType = tree.expr.type;
vromero@1687 3489 while (eType.hasTag(TYPEVAR)) {
vromero@1687 3490 eType = eType.getUpperBound();
vromero@1687 3491 }
duke@1 3492 tree.expr.type = types.erasure(eType);
vromero@1687 3493 if (eType.isCompound())
duke@1 3494 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
duke@1 3495 Symbol iterator = lookupMethod(tree.expr.pos(),
duke@1 3496 names.iterator,
vromero@1640 3497 eType,
duke@1 3498 List.<Type>nil());
vromero@2027 3499 VarSymbol itvar = new VarSymbol(SYNTHETIC, names.fromString("i" + target.syntheticNameChar()),
vromero@1948 3500 types.erasure(types.asSuper(iterator.type.getReturnType(), syms.iteratorType.tsym)),
duke@1 3501 currentMethodSym);
vromero@1640 3502
vromero@1640 3503 JCStatement init = make.
vromero@1640 3504 VarDef(itvar, make.App(make.Select(tree.expr, iterator)
vromero@1640 3505 .setType(types.erasure(iterator.type))));
vromero@1640 3506
duke@1 3507 Symbol hasNext = lookupMethod(tree.expr.pos(),
duke@1 3508 names.hasNext,
duke@1 3509 itvar.type,
duke@1 3510 List.<Type>nil());
duke@1 3511 JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
duke@1 3512 Symbol next = lookupMethod(tree.expr.pos(),
duke@1 3513 names.next,
duke@1 3514 itvar.type,
duke@1 3515 List.<Type>nil());
duke@1 3516 JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
mcimadamore@81 3517 if (tree.var.type.isPrimitive())
dlsmith@2400 3518 vardefinit = make.TypeCast(types.cvarUpperBound(iteratorTarget), vardefinit);
mcimadamore@81 3519 else
mcimadamore@81 3520 vardefinit = make.TypeCast(tree.var.type, vardefinit);
mcimadamore@33 3521 JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
mcimadamore@33 3522 tree.var.name,
mcimadamore@33 3523 tree.var.vartype,
mcimadamore@33 3524 vardefinit).setType(tree.var.type);
mcimadamore@33 3525 indexDef.sym = tree.var.sym;
duke@1 3526 JCBlock body = make.Block(0, List.of(indexDef, tree.body));
mcimadamore@237 3527 body.endpos = TreeInfo.endPos(tree.body);
duke@1 3528 result = translate(make.
duke@1 3529 ForLoop(List.of(init),
duke@1 3530 cond,
duke@1 3531 List.<JCExpressionStatement>nil(),
duke@1 3532 body));
duke@1 3533 patchTargets(body, tree, result);
duke@1 3534 }
duke@1 3535
duke@1 3536 public void visitVarDef(JCVariableDecl tree) {
duke@1 3537 MethodSymbol oldMethodSym = currentMethodSym;
duke@1 3538 tree.mods = translate(tree.mods);
duke@1 3539 tree.vartype = translate(tree.vartype);
duke@1 3540 if (currentMethodSym == null) {
duke@1 3541 // A class or instance field initializer.
duke@1 3542 currentMethodSym =
duke@1 3543 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
duke@1 3544 names.empty, null,
duke@1 3545 currentClass);
duke@1 3546 }
duke@1 3547 if (tree.init != null) tree.init = translate(tree.init, tree.type);
duke@1 3548 result = tree;
duke@1 3549 currentMethodSym = oldMethodSym;
duke@1 3550 }
duke@1 3551
duke@1 3552 public void visitBlock(JCBlock tree) {
duke@1 3553 MethodSymbol oldMethodSym = currentMethodSym;
duke@1 3554 if (currentMethodSym == null) {
duke@1 3555 // Block is a static or instance initializer.
duke@1 3556 currentMethodSym =
duke@1 3557 new MethodSymbol(tree.flags | BLOCK,
duke@1 3558 names.empty, null,
duke@1 3559 currentClass);
duke@1 3560 }
duke@1 3561 super.visitBlock(tree);
duke@1 3562 currentMethodSym = oldMethodSym;
duke@1 3563 }
duke@1 3564
duke@1 3565 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 3566 tree.body = translate(tree.body);
duke@1 3567 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3568 result = tree;
duke@1 3569 }
duke@1 3570
duke@1 3571 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 3572 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3573 tree.body = translate(tree.body);
duke@1 3574 result = tree;
duke@1 3575 }
duke@1 3576
duke@1 3577 public void visitForLoop(JCForLoop tree) {
duke@1 3578 tree.init = translate(tree.init);
duke@1 3579 if (tree.cond != null)
duke@1 3580 tree.cond = translate(tree.cond, syms.booleanType);
duke@1 3581 tree.step = translate(tree.step);
duke@1 3582 tree.body = translate(tree.body);
duke@1 3583 result = tree;
duke@1 3584 }
duke@1 3585
duke@1 3586 public void visitReturn(JCReturn tree) {
duke@1 3587 if (tree.expr != null)
duke@1 3588 tree.expr = translate(tree.expr,
duke@1 3589 types.erasure(currentMethodDef
duke@1 3590 .restype.type));
duke@1 3591 result = tree;
duke@1 3592 }
duke@1 3593
duke@1 3594 public void visitSwitch(JCSwitch tree) {
duke@1 3595 Type selsuper = types.supertype(tree.selector.type);
duke@1 3596 boolean enumSwitch = selsuper != null &&
duke@1 3597 (tree.selector.type.tsym.flags() & ENUM) != 0;
darcy@430 3598 boolean stringSwitch = selsuper != null &&
darcy@430 3599 types.isSameType(tree.selector.type, syms.stringType);
darcy@430 3600 Type target = enumSwitch ? tree.selector.type :
darcy@430 3601 (stringSwitch? syms.stringType : syms.intType);
duke@1 3602 tree.selector = translate(tree.selector, target);
duke@1 3603 tree.cases = translateCases(tree.cases);
duke@1 3604 if (enumSwitch) {
duke@1 3605 result = visitEnumSwitch(tree);
darcy@430 3606 } else if (stringSwitch) {
darcy@430 3607 result = visitStringSwitch(tree);
duke@1 3608 } else {
duke@1 3609 result = tree;
duke@1 3610 }
duke@1 3611 }
duke@1 3612
duke@1 3613 public JCTree visitEnumSwitch(JCSwitch tree) {
duke@1 3614 TypeSymbol enumSym = tree.selector.type.tsym;
duke@1 3615 EnumMapping map = mapForEnum(tree.pos(), enumSym);
duke@1 3616 make_at(tree.pos());
duke@1 3617 Symbol ordinalMethod = lookupMethod(tree.pos(),
duke@1 3618 names.ordinal,
duke@1 3619 tree.selector.type,
duke@1 3620 List.<Type>nil());
duke@1 3621 JCArrayAccess selector = make.Indexed(map.mapVar,
duke@1 3622 make.App(make.Select(tree.selector,
duke@1 3623 ordinalMethod)));
duke@1 3624 ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
duke@1 3625 for (JCCase c : tree.cases) {
duke@1 3626 if (c.pat != null) {
duke@1 3627 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
duke@1 3628 JCLiteral pat = map.forConstant(label);
duke@1 3629 cases.append(make.Case(pat, c.stats));
duke@1 3630 } else {
duke@1 3631 cases.append(c);
duke@1 3632 }
duke@1 3633 }
darcy@443 3634 JCSwitch enumSwitch = make.Switch(selector, cases.toList());
darcy@443 3635 patchTargets(enumSwitch, tree, enumSwitch);
darcy@443 3636 return enumSwitch;
duke@1 3637 }
duke@1 3638
darcy@430 3639 public JCTree visitStringSwitch(JCSwitch tree) {
darcy@430 3640 List<JCCase> caseList = tree.getCases();
darcy@430 3641 int alternatives = caseList.size();
darcy@430 3642
darcy@430 3643 if (alternatives == 0) { // Strange but legal possibility
darcy@430 3644 return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
darcy@430 3645 } else {
darcy@430 3646 /*
darcy@430 3647 * The general approach used is to translate a single
darcy@430 3648 * string switch statement into a series of two chained
darcy@430 3649 * switch statements: the first a synthesized statement
darcy@430 3650 * switching on the argument string's hash value and
darcy@430 3651 * computing a string's position in the list of original
darcy@430 3652 * case labels, if any, followed by a second switch on the
darcy@430 3653 * computed integer value. The second switch has the same
darcy@430 3654 * code structure as the original string switch statement
darcy@430 3655 * except that the string case labels are replaced with
darcy@430 3656 * positional integer constants starting at 0.
darcy@430 3657 *
darcy@430 3658 * The first switch statement can be thought of as an
darcy@430 3659 * inlined map from strings to their position in the case
darcy@430 3660 * label list. An alternate implementation would use an
darcy@430 3661 * actual Map for this purpose, as done for enum switches.
darcy@430 3662 *
darcy@430 3663 * With some additional effort, it would be possible to
darcy@430 3664 * use a single switch statement on the hash code of the
darcy@430 3665 * argument, but care would need to be taken to preserve
darcy@430 3666 * the proper control flow in the presence of hash
darcy@430 3667 * collisions and other complications, such as
darcy@430 3668 * fallthroughs. Switch statements with one or two
darcy@430 3669 * alternatives could also be specially translated into
darcy@430 3670 * if-then statements to omit the computation of the hash
darcy@430 3671 * code.
darcy@430 3672 *
darcy@430 3673 * The generated code assumes that the hashing algorithm
darcy@430 3674 * of String is the same in the compilation environment as
darcy@430 3675 * in the environment the code will run in. The string
darcy@430 3676 * hashing algorithm in the SE JDK has been unchanged
darcy@443 3677 * since at least JDK 1.2. Since the algorithm has been
darcy@443 3678 * specified since that release as well, it is very
darcy@443 3679 * unlikely to be changed in the future.
darcy@443 3680 *
darcy@443 3681 * Different hashing algorithms, such as the length of the
darcy@443 3682 * strings or a perfect hashing algorithm over the
darcy@443 3683 * particular set of case labels, could potentially be
darcy@443 3684 * used instead of String.hashCode.
darcy@430 3685 */
darcy@430 3686
darcy@430 3687 ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
darcy@430 3688
darcy@430 3689 // Map from String case labels to their original position in
darcy@430 3690 // the list of case labels.
darcy@430 3691 Map<String, Integer> caseLabelToPosition =
darcy@430 3692 new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
darcy@430 3693
darcy@430 3694 // Map of hash codes to the string case labels having that hashCode.
darcy@430 3695 Map<Integer, Set<String>> hashToString =
darcy@430 3696 new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
darcy@430 3697
darcy@430 3698 int casePosition = 0;
darcy@430 3699 for(JCCase oneCase : caseList) {
darcy@430 3700 JCExpression expression = oneCase.getExpression();
darcy@430 3701
darcy@430 3702 if (expression != null) { // expression for a "default" case is null
darcy@430 3703 String labelExpr = (String) expression.type.constValue();
darcy@430 3704 Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
jjg@816 3705 Assert.checkNull(mapping);
darcy@430 3706 int hashCode = labelExpr.hashCode();
darcy@430 3707
darcy@430 3708 Set<String> stringSet = hashToString.get(hashCode);
darcy@430 3709 if (stringSet == null) {
darcy@430 3710 stringSet = new LinkedHashSet<String>(1, 1.0f);
darcy@430 3711 stringSet.add(labelExpr);
darcy@430 3712 hashToString.put(hashCode, stringSet);
darcy@430 3713 } else {
darcy@430 3714 boolean added = stringSet.add(labelExpr);
jjg@816 3715 Assert.check(added);
darcy@430 3716 }
darcy@430 3717 }
darcy@430 3718 casePosition++;
darcy@430 3719 }
darcy@430 3720
darcy@430 3721 // Synthesize a switch statement that has the effect of
darcy@430 3722 // mapping from a string to the integer position of that
darcy@430 3723 // string in the list of case labels. This is done by
darcy@430 3724 // switching on the hashCode of the string followed by an
darcy@430 3725 // if-then-else chain comparing the input for equality
darcy@430 3726 // with all the case labels having that hash value.
darcy@430 3727
darcy@430 3728 /*
darcy@430 3729 * s$ = top of stack;
darcy@430 3730 * tmp$ = -1;
darcy@430 3731 * switch($s.hashCode()) {
darcy@430 3732 * case caseLabel.hashCode:
darcy@430 3733 * if (s$.equals("caseLabel_1")
darcy@430 3734 * tmp$ = caseLabelToPosition("caseLabel_1");
darcy@430 3735 * else if (s$.equals("caseLabel_2"))
darcy@430 3736 * tmp$ = caseLabelToPosition("caseLabel_2");
darcy@430 3737 * ...
darcy@430 3738 * break;
darcy@430 3739 * ...
darcy@430 3740 * }
darcy@430 3741 */
darcy@430 3742
darcy@430 3743 VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
darcy@430 3744 names.fromString("s" + tree.pos + target.syntheticNameChar()),
darcy@430 3745 syms.stringType,
darcy@430 3746 currentMethodSym);
darcy@430 3747 stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
darcy@430 3748
darcy@430 3749 VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
darcy@430 3750 names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
darcy@430 3751 syms.intType,
darcy@430 3752 currentMethodSym);
darcy@430 3753 JCVariableDecl dollar_tmp_def =
darcy@430 3754 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
darcy@430 3755 dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
darcy@430 3756 stmtList.append(dollar_tmp_def);
alundblad@2047 3757 ListBuffer<JCCase> caseBuffer = new ListBuffer<>();
darcy@430 3758 // hashCode will trigger nullcheck on original switch expression
darcy@430 3759 JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
darcy@430 3760 names.hashCode,
darcy@430 3761 List.<JCExpression>nil()).setType(syms.intType);
darcy@430 3762 JCSwitch switch1 = make.Switch(hashCodeCall,
darcy@430 3763 caseBuffer.toList());
darcy@430 3764 for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
darcy@430 3765 int hashCode = entry.getKey();
darcy@430 3766 Set<String> stringsWithHashCode = entry.getValue();
jjg@816 3767 Assert.check(stringsWithHashCode.size() >= 1);
darcy@430 3768
darcy@430 3769 JCStatement elsepart = null;
darcy@430 3770 for(String caseLabel : stringsWithHashCode ) {
darcy@430 3771 JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
darcy@430 3772 names.equals,
darcy@430 3773 List.<JCExpression>of(make.Literal(caseLabel)));
darcy@430 3774 elsepart = make.If(stringEqualsCall,
darcy@430 3775 make.Exec(make.Assign(make.Ident(dollar_tmp),
darcy@430 3776 make.Literal(caseLabelToPosition.get(caseLabel))).
darcy@430 3777 setType(dollar_tmp.type)),
darcy@430 3778 elsepart);
darcy@430 3779 }
darcy@430 3780
alundblad@2047 3781 ListBuffer<JCStatement> lb = new ListBuffer<>();
darcy@430 3782 JCBreak breakStmt = make.Break(null);
darcy@430 3783 breakStmt.target = switch1;
darcy@430 3784 lb.append(elsepart).append(breakStmt);
darcy@430 3785
darcy@430 3786 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
darcy@430 3787 }
darcy@430 3788
darcy@430 3789 switch1.cases = caseBuffer.toList();
darcy@430 3790 stmtList.append(switch1);
darcy@430 3791
darcy@430 3792 // Make isomorphic switch tree replacing string labels
darcy@430 3793 // with corresponding integer ones from the label to
darcy@430 3794 // position map.
darcy@430 3795
alundblad@2047 3796 ListBuffer<JCCase> lb = new ListBuffer<>();
darcy@430 3797 JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
darcy@430 3798 for(JCCase oneCase : caseList ) {
darcy@430 3799 // Rewire up old unlabeled break statements to the
darcy@430 3800 // replacement switch being created.
darcy@430 3801 patchTargets(oneCase, tree, switch2);
darcy@430 3802
darcy@430 3803 boolean isDefault = (oneCase.getExpression() == null);
darcy@430 3804 JCExpression caseExpr;
darcy@430 3805 if (isDefault)
darcy@430 3806 caseExpr = null;
darcy@430 3807 else {
darcy@1063 3808 caseExpr = make.Literal(caseLabelToPosition.get((String)TreeInfo.skipParens(oneCase.
darcy@1063 3809 getExpression()).
darcy@430 3810 type.constValue()));
darcy@430 3811 }
darcy@430 3812
darcy@430 3813 lb.append(make.Case(caseExpr,
darcy@430 3814 oneCase.getStatements()));
darcy@430 3815 }
darcy@430 3816
darcy@430 3817 switch2.cases = lb.toList();
darcy@430 3818 stmtList.append(switch2);
darcy@430 3819
darcy@430 3820 return make.Block(0L, stmtList.toList());
darcy@430 3821 }
darcy@430 3822 }
darcy@430 3823
duke@1 3824 public void visitNewArray(JCNewArray tree) {
duke@1 3825 tree.elemtype = translate(tree.elemtype);
duke@1 3826 for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
duke@1 3827 if (t.head != null) t.head = translate(t.head, syms.intType);
duke@1 3828 tree.elems = translate(tree.elems, types.elemtype(tree.type));
duke@1 3829 result = tree;
duke@1 3830 }
duke@1 3831
duke@1 3832 public void visitSelect(JCFieldAccess tree) {
duke@1 3833 // need to special case-access of the form C.super.x
mcimadamore@1393 3834 // these will always need an access method, unless C
mcimadamore@1393 3835 // is a default interface subclassed by the current class.
duke@1 3836 boolean qualifiedSuperAccess =
jjg@1127 3837 tree.selected.hasTag(SELECT) &&
mcimadamore@1393 3838 TreeInfo.name(tree.selected) == names._super &&
mcimadamore@1415 3839 !types.isDirectSuperInterface(((JCFieldAccess)tree.selected).selected.type.tsym, currentClass);
duke@1 3840 tree.selected = translate(tree.selected);
mcimadamore@1393 3841 if (tree.name == names._class) {
duke@1 3842 result = classOf(tree.selected);
mcimadamore@1393 3843 }
mcimadamore@1393 3844 else if (tree.name == names._super &&
mcimadamore@1415 3845 types.isDirectSuperInterface(tree.selected.type.tsym, currentClass)) {
mcimadamore@1393 3846 //default super call!! Not a classic qualified super call
mcimadamore@1393 3847 TypeSymbol supSym = tree.selected.type.tsym;
mcimadamore@1393 3848 Assert.checkNonNull(types.asSuper(currentClass.type, supSym));
mcimadamore@1393 3849 result = tree;
mcimadamore@1393 3850 }
mcimadamore@1393 3851 else if (tree.name == names._this || tree.name == names._super) {
duke@1 3852 result = makeThis(tree.pos(), tree.selected.type.tsym);
mcimadamore@1393 3853 }
duke@1 3854 else
duke@1 3855 result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
duke@1 3856 }
duke@1 3857
duke@1 3858 public void visitLetExpr(LetExpr tree) {
duke@1 3859 tree.defs = translateVarDefs(tree.defs);
duke@1 3860 tree.expr = translate(tree.expr, tree.type);
duke@1 3861 result = tree;
duke@1 3862 }
duke@1 3863
duke@1 3864 // There ought to be nothing to rewrite here;
duke@1 3865 // we don't generate code.
duke@1 3866 public void visitAnnotation(JCAnnotation tree) {
duke@1 3867 result = tree;
duke@1 3868 }
duke@1 3869
darcy@609 3870 @Override
darcy@609 3871 public void visitTry(JCTry tree) {
vromero@2013 3872 if (tree.resources.nonEmpty()) {
vromero@2013 3873 result = makeTwrTry(tree);
vromero@2013 3874 return;
vromero@2013 3875 }
vromero@2013 3876
vromero@2013 3877 boolean hasBody = tree.body.getStatements().nonEmpty();
vromero@2013 3878 boolean hasCatchers = tree.catchers.nonEmpty();
vromero@2013 3879 boolean hasFinally = tree.finalizer != null &&
vromero@2013 3880 tree.finalizer.getStatements().nonEmpty();
vromero@2013 3881
vromero@2013 3882 if (!hasCatchers && !hasFinally) {
vromero@2013 3883 result = translate(tree.body);
vromero@2013 3884 return;
vromero@2013 3885 }
vromero@2013 3886
vromero@2013 3887 if (!hasBody) {
vromero@2013 3888 if (hasFinally) {
vromero@2013 3889 result = translate(tree.finalizer);
vromero@2013 3890 } else {
vromero@1623 3891 result = translate(tree.body);
vromero@1623 3892 }
vromero@2013 3893 return;
darcy@609 3894 }
vromero@2013 3895
vromero@2013 3896 // no optimizations possible
vromero@2013 3897 super.visitTry(tree);
darcy@609 3898 }
darcy@609 3899
duke@1 3900 /**************************************************************************
duke@1 3901 * main method
duke@1 3902 *************************************************************************/
duke@1 3903
duke@1 3904 /** Translate a toplevel class and return a list consisting of
duke@1 3905 * the translated class and translated versions of all inner classes.
duke@1 3906 * @param env The attribution environment current at the class definition.
duke@1 3907 * We need this for resolving some additional symbols.
duke@1 3908 * @param cdef The tree representing the class definition.
duke@1 3909 */
duke@1 3910 public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
duke@1 3911 ListBuffer<JCTree> translated = null;
duke@1 3912 try {
duke@1 3913 attrEnv = env;
duke@1 3914 this.make = make;
ksrini@1138 3915 endPosTable = env.toplevel.endPositions;
duke@1 3916 currentClass = null;
duke@1 3917 currentMethodDef = null;
jjg@1127 3918 outermostClassDef = (cdef.hasTag(CLASSDEF)) ? (JCClassDecl)cdef : null;
duke@1 3919 outermostMemberDef = null;
duke@1 3920 this.translated = new ListBuffer<JCTree>();
duke@1 3921 classdefs = new HashMap<ClassSymbol,JCClassDecl>();
duke@1 3922 actualSymbols = new HashMap<Symbol,Symbol>();
duke@1 3923 freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
duke@1 3924 proxies = new Scope(syms.noSymbol);
darcy@609 3925 twrVars = new Scope(syms.noSymbol);
duke@1 3926 outerThisStack = List.nil();
duke@1 3927 accessNums = new HashMap<Symbol,Integer>();
duke@1 3928 accessSyms = new HashMap<Symbol,MethodSymbol[]>();
duke@1 3929 accessConstrs = new HashMap<Symbol,MethodSymbol>();
jjg@595 3930 accessConstrTags = List.nil();
duke@1 3931 accessed = new ListBuffer<Symbol>();
duke@1 3932 translate(cdef, (JCExpression)null);
duke@1 3933 for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
duke@1 3934 makeAccessible(l.head);
duke@1 3935 for (EnumMapping map : enumSwitchMap.values())
duke@1 3936 map.translate();
mcimadamore@359 3937 checkConflicts(this.translated.toList());
jjg@595 3938 checkAccessConstructorTags();
duke@1 3939 translated = this.translated;
duke@1 3940 } finally {
duke@1 3941 // note that recursive invocations of this method fail hard
duke@1 3942 attrEnv = null;
duke@1 3943 this.make = null;
ksrini@1138 3944 endPosTable = null;
duke@1 3945 currentClass = null;
duke@1 3946 currentMethodDef = null;
duke@1 3947 outermostClassDef = null;
duke@1 3948 outermostMemberDef = null;
duke@1 3949 this.translated = null;
duke@1 3950 classdefs = null;
duke@1 3951 actualSymbols = null;
duke@1 3952 freevarCache = null;
duke@1 3953 proxies = null;
duke@1 3954 outerThisStack = null;
duke@1 3955 accessNums = null;
duke@1 3956 accessSyms = null;
duke@1 3957 accessConstrs = null;
jjg@595 3958 accessConstrTags = null;
duke@1 3959 accessed = null;
duke@1 3960 enumSwitchMap.clear();
jlahoda@2098 3961 assertionsDisabledClassCache = null;
duke@1 3962 }
duke@1 3963 return translated.toList();
duke@1 3964 }
duke@1 3965 }

mercurial