src/share/classes/com/sun/tools/javac/comp/Attr.java

Thu, 23 Feb 2012 09:53:09 -0800

author
darcy
date
Thu, 23 Feb 2012 09:53:09 -0800
changeset 1207
3ad851a7e884
parent 1145
3343b22e2761
child 1217
d2508136751c
permissions
-rw-r--r--

7148025: javac should not warn about InterrupttedException on the declaration of AutoCloseable itself
Reviewed-by: mcimadamore

duke@1 1 /*
jjg@815 2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29 import java.util.Set;
duke@1 30 import javax.lang.model.element.ElementKind;
duke@1 31 import javax.tools.JavaFileObject;
duke@1 32
duke@1 33 import com.sun.tools.javac.code.*;
duke@1 34 import com.sun.tools.javac.jvm.*;
duke@1 35 import com.sun.tools.javac.tree.*;
duke@1 36 import com.sun.tools.javac.util.*;
duke@1 37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 38 import com.sun.tools.javac.util.List;
duke@1 39
duke@1 40 import com.sun.tools.javac.jvm.Target;
mcimadamore@795 41 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 42 import com.sun.tools.javac.code.Symbol.*;
duke@1 43 import com.sun.tools.javac.tree.JCTree.*;
duke@1 44 import com.sun.tools.javac.code.Type.*;
duke@1 45
duke@1 46 import com.sun.source.tree.IdentifierTree;
duke@1 47 import com.sun.source.tree.MemberSelectTree;
duke@1 48 import com.sun.source.tree.TreeVisitor;
duke@1 49 import com.sun.source.util.SimpleTreeVisitor;
duke@1 50
duke@1 51 import static com.sun.tools.javac.code.Flags.*;
jjg@1127 52 import static com.sun.tools.javac.code.Flags.ANNOTATION;
jjg@1127 53 import static com.sun.tools.javac.code.Flags.BLOCK;
duke@1 54 import static com.sun.tools.javac.code.Kinds.*;
jjg@1127 55 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
duke@1 56 import static com.sun.tools.javac.code.TypeTags.*;
jjg@1127 57 import static com.sun.tools.javac.code.TypeTags.WILDCARD;
jjg@1127 58 import static com.sun.tools.javac.tree.JCTree.Tag.*;
duke@1 59
duke@1 60 /** This is the main context-dependent analysis phase in GJC. It
duke@1 61 * encompasses name resolution, type checking and constant folding as
duke@1 62 * subtasks. Some subtasks involve auxiliary classes.
duke@1 63 * @see Check
duke@1 64 * @see Resolve
duke@1 65 * @see ConstFold
duke@1 66 * @see Infer
duke@1 67 *
jjg@581 68 * <p><b>This is NOT part of any supported API.
jjg@581 69 * If you write code that depends on this, you do so at your own risk.
duke@1 70 * This code and its internal interfaces are subject to change or
duke@1 71 * deletion without notice.</b>
duke@1 72 */
duke@1 73 public class Attr extends JCTree.Visitor {
duke@1 74 protected static final Context.Key<Attr> attrKey =
duke@1 75 new Context.Key<Attr>();
duke@1 76
jjg@113 77 final Names names;
duke@1 78 final Log log;
duke@1 79 final Symtab syms;
duke@1 80 final Resolve rs;
mcimadamore@537 81 final Infer infer;
duke@1 82 final Check chk;
duke@1 83 final MemberEnter memberEnter;
duke@1 84 final TreeMaker make;
duke@1 85 final ConstFold cfolder;
duke@1 86 final Enter enter;
duke@1 87 final Target target;
duke@1 88 final Types types;
mcimadamore@89 89 final JCDiagnostic.Factory diags;
duke@1 90 final Annotate annotate;
mcimadamore@852 91 final DeferredLintHandler deferredLintHandler;
duke@1 92
duke@1 93 public static Attr instance(Context context) {
duke@1 94 Attr instance = context.get(attrKey);
duke@1 95 if (instance == null)
duke@1 96 instance = new Attr(context);
duke@1 97 return instance;
duke@1 98 }
duke@1 99
duke@1 100 protected Attr(Context context) {
duke@1 101 context.put(attrKey, this);
duke@1 102
jjg@113 103 names = Names.instance(context);
duke@1 104 log = Log.instance(context);
duke@1 105 syms = Symtab.instance(context);
duke@1 106 rs = Resolve.instance(context);
duke@1 107 chk = Check.instance(context);
duke@1 108 memberEnter = MemberEnter.instance(context);
duke@1 109 make = TreeMaker.instance(context);
duke@1 110 enter = Enter.instance(context);
mcimadamore@537 111 infer = Infer.instance(context);
duke@1 112 cfolder = ConstFold.instance(context);
duke@1 113 target = Target.instance(context);
duke@1 114 types = Types.instance(context);
mcimadamore@89 115 diags = JCDiagnostic.Factory.instance(context);
duke@1 116 annotate = Annotate.instance(context);
mcimadamore@852 117 deferredLintHandler = DeferredLintHandler.instance(context);
duke@1 118
duke@1 119 Options options = Options.instance(context);
duke@1 120
duke@1 121 Source source = Source.instance(context);
duke@1 122 allowGenerics = source.allowGenerics();
duke@1 123 allowVarargs = source.allowVarargs();
duke@1 124 allowEnums = source.allowEnums();
duke@1 125 allowBoxing = source.allowBoxing();
duke@1 126 allowCovariantReturns = source.allowCovariantReturns();
duke@1 127 allowAnonOuterThis = source.allowAnonOuterThis();
darcy@430 128 allowStringsInSwitch = source.allowStringsInSwitch();
darcy@430 129 sourceName = source.name;
jjg@700 130 relax = (options.isSet("-retrofit") ||
jjg@700 131 options.isSet("-relax"));
mcimadamore@731 132 findDiamonds = options.get("findDiamond") != null &&
mcimadamore@731 133 source.allowDiamond();
jjg@700 134 useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
duke@1 135 }
duke@1 136
duke@1 137 /** Switch: relax some constraints for retrofit mode.
duke@1 138 */
duke@1 139 boolean relax;
duke@1 140
duke@1 141 /** Switch: support generics?
duke@1 142 */
duke@1 143 boolean allowGenerics;
duke@1 144
duke@1 145 /** Switch: allow variable-arity methods.
duke@1 146 */
duke@1 147 boolean allowVarargs;
duke@1 148
duke@1 149 /** Switch: support enums?
duke@1 150 */
duke@1 151 boolean allowEnums;
duke@1 152
duke@1 153 /** Switch: support boxing and unboxing?
duke@1 154 */
duke@1 155 boolean allowBoxing;
duke@1 156
duke@1 157 /** Switch: support covariant result types?
duke@1 158 */
duke@1 159 boolean allowCovariantReturns;
duke@1 160
duke@1 161 /** Switch: allow references to surrounding object from anonymous
duke@1 162 * objects during constructor call?
duke@1 163 */
duke@1 164 boolean allowAnonOuterThis;
duke@1 165
mcimadamore@731 166 /** Switch: generates a warning if diamond can be safely applied
mcimadamore@731 167 * to a given new expression
mcimadamore@731 168 */
mcimadamore@731 169 boolean findDiamonds;
mcimadamore@731 170
mcimadamore@731 171 /**
mcimadamore@731 172 * Internally enables/disables diamond finder feature
mcimadamore@731 173 */
mcimadamore@731 174 static final boolean allowDiamondFinder = true;
mcimadamore@731 175
duke@1 176 /**
duke@1 177 * Switch: warn about use of variable before declaration?
duke@1 178 * RFE: 6425594
duke@1 179 */
duke@1 180 boolean useBeforeDeclarationWarning;
duke@1 181
jjg@377 182 /**
darcy@430 183 * Switch: allow strings in switch?
darcy@430 184 */
darcy@430 185 boolean allowStringsInSwitch;
darcy@430 186
darcy@430 187 /**
darcy@430 188 * Switch: name of source level; used for error reporting.
darcy@430 189 */
darcy@430 190 String sourceName;
darcy@430 191
duke@1 192 /** Check kind and type of given tree against protokind and prototype.
duke@1 193 * If check succeeds, store type in tree and return it.
duke@1 194 * If check fails, store errType in tree and return it.
duke@1 195 * No checks are performed if the prototype is a method type.
jjg@110 196 * It is not necessary in this case since we know that kind and type
duke@1 197 * are correct.
duke@1 198 *
duke@1 199 * @param tree The tree whose kind and type is checked
duke@1 200 * @param owntype The computed type of the tree
duke@1 201 * @param ownkind The computed kind of the tree
duke@1 202 * @param pkind The expected kind (or: protokind) of the tree
duke@1 203 * @param pt The expected type (or: prototype) of the tree
duke@1 204 */
duke@1 205 Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
duke@1 206 if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
duke@1 207 if ((ownkind & ~pkind) == 0) {
darcy@609 208 owntype = chk.checkType(tree.pos(), owntype, pt, errKey);
duke@1 209 } else {
duke@1 210 log.error(tree.pos(), "unexpected.type",
mcimadamore@80 211 kindNames(pkind),
mcimadamore@80 212 kindName(ownkind));
jjg@110 213 owntype = types.createErrorType(owntype);
duke@1 214 }
duke@1 215 }
duke@1 216 tree.type = owntype;
duke@1 217 return owntype;
duke@1 218 }
duke@1 219
duke@1 220 /** Is given blank final variable assignable, i.e. in a scope where it
duke@1 221 * may be assigned to even though it is final?
duke@1 222 * @param v The blank final variable.
duke@1 223 * @param env The current environment.
duke@1 224 */
duke@1 225 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
duke@1 226 Symbol owner = env.info.scope.owner;
duke@1 227 // owner refers to the innermost variable, method or
duke@1 228 // initializer block declaration at this point.
duke@1 229 return
duke@1 230 v.owner == owner
duke@1 231 ||
duke@1 232 ((owner.name == names.init || // i.e. we are in a constructor
duke@1 233 owner.kind == VAR || // i.e. we are in a variable initializer
duke@1 234 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block
duke@1 235 &&
duke@1 236 v.owner == owner.owner
duke@1 237 &&
duke@1 238 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
duke@1 239 }
duke@1 240
duke@1 241 /** Check that variable can be assigned to.
duke@1 242 * @param pos The current source code position.
duke@1 243 * @param v The assigned varaible
duke@1 244 * @param base If the variable is referred to in a Select, the part
duke@1 245 * to the left of the `.', null otherwise.
duke@1 246 * @param env The current environment.
duke@1 247 */
duke@1 248 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
duke@1 249 if ((v.flags() & FINAL) != 0 &&
duke@1 250 ((v.flags() & HASINIT) != 0
duke@1 251 ||
duke@1 252 !((base == null ||
jjg@1127 253 (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
duke@1 254 isAssignableAsBlankFinal(v, env)))) {
darcy@609 255 if (v.isResourceVariable()) { //TWR resource
mcimadamore@743 256 log.error(pos, "try.resource.may.not.be.assigned", v);
darcy@609 257 } else {
darcy@609 258 log.error(pos, "cant.assign.val.to.final.var", v);
darcy@609 259 }
mcimadamore@735 260 } else if ((v.flags() & EFFECTIVELY_FINAL) != 0) {
mcimadamore@735 261 v.flags_field &= ~EFFECTIVELY_FINAL;
duke@1 262 }
duke@1 263 }
duke@1 264
duke@1 265 /** Does tree represent a static reference to an identifier?
duke@1 266 * It is assumed that tree is either a SELECT or an IDENT.
duke@1 267 * We have to weed out selects from non-type names here.
duke@1 268 * @param tree The candidate tree.
duke@1 269 */
duke@1 270 boolean isStaticReference(JCTree tree) {
jjg@1127 271 if (tree.hasTag(SELECT)) {
duke@1 272 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
duke@1 273 if (lsym == null || lsym.kind != TYP) {
duke@1 274 return false;
duke@1 275 }
duke@1 276 }
duke@1 277 return true;
duke@1 278 }
duke@1 279
duke@1 280 /** Is this symbol a type?
duke@1 281 */
duke@1 282 static boolean isType(Symbol sym) {
duke@1 283 return sym != null && sym.kind == TYP;
duke@1 284 }
duke@1 285
duke@1 286 /** The current `this' symbol.
duke@1 287 * @param env The current environment.
duke@1 288 */
duke@1 289 Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
duke@1 290 return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
duke@1 291 }
duke@1 292
duke@1 293 /** Attribute a parsed identifier.
duke@1 294 * @param tree Parsed identifier name
duke@1 295 * @param topLevel The toplevel to use
duke@1 296 */
duke@1 297 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
duke@1 298 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
duke@1 299 localEnv.enclClass = make.ClassDef(make.Modifiers(0),
duke@1 300 syms.errSymbol.name,
duke@1 301 null, null, null, null);
duke@1 302 localEnv.enclClass.sym = syms.errSymbol;
duke@1 303 return tree.accept(identAttributer, localEnv);
duke@1 304 }
duke@1 305 // where
duke@1 306 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
duke@1 307 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
duke@1 308 @Override
duke@1 309 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
duke@1 310 Symbol site = visit(node.getExpression(), env);
duke@1 311 if (site.kind == ERR)
duke@1 312 return site;
duke@1 313 Name name = (Name)node.getIdentifier();
duke@1 314 if (site.kind == PCK) {
duke@1 315 env.toplevel.packge = (PackageSymbol)site;
duke@1 316 return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
duke@1 317 } else {
duke@1 318 env.enclClass.sym = (ClassSymbol)site;
duke@1 319 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
duke@1 320 }
duke@1 321 }
duke@1 322
duke@1 323 @Override
duke@1 324 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
duke@1 325 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
duke@1 326 }
duke@1 327 }
duke@1 328
duke@1 329 public Type coerce(Type etype, Type ttype) {
duke@1 330 return cfolder.coerce(etype, ttype);
duke@1 331 }
duke@1 332
duke@1 333 public Type attribType(JCTree node, TypeSymbol sym) {
duke@1 334 Env<AttrContext> env = enter.typeEnvs.get(sym);
duke@1 335 Env<AttrContext> localEnv = env.dup(node, env.info.dup());
duke@1 336 return attribTree(node, localEnv, Kinds.TYP, Type.noType);
duke@1 337 }
duke@1 338
duke@1 339 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
duke@1 340 breakTree = tree;
mcimadamore@303 341 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
duke@1 342 try {
duke@1 343 attribExpr(expr, env);
duke@1 344 } catch (BreakAttr b) {
duke@1 345 return b.env;
sundar@669 346 } catch (AssertionError ae) {
sundar@669 347 if (ae.getCause() instanceof BreakAttr) {
sundar@669 348 return ((BreakAttr)(ae.getCause())).env;
sundar@669 349 } else {
sundar@669 350 throw ae;
sundar@669 351 }
duke@1 352 } finally {
duke@1 353 breakTree = null;
duke@1 354 log.useSource(prev);
duke@1 355 }
duke@1 356 return env;
duke@1 357 }
duke@1 358
duke@1 359 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
duke@1 360 breakTree = tree;
mcimadamore@303 361 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
duke@1 362 try {
duke@1 363 attribStat(stmt, env);
duke@1 364 } catch (BreakAttr b) {
duke@1 365 return b.env;
sundar@669 366 } catch (AssertionError ae) {
sundar@669 367 if (ae.getCause() instanceof BreakAttr) {
sundar@669 368 return ((BreakAttr)(ae.getCause())).env;
sundar@669 369 } else {
sundar@669 370 throw ae;
sundar@669 371 }
duke@1 372 } finally {
duke@1 373 breakTree = null;
duke@1 374 log.useSource(prev);
duke@1 375 }
duke@1 376 return env;
duke@1 377 }
duke@1 378
duke@1 379 private JCTree breakTree = null;
duke@1 380
duke@1 381 private static class BreakAttr extends RuntimeException {
duke@1 382 static final long serialVersionUID = -6924771130405446405L;
duke@1 383 private Env<AttrContext> env;
duke@1 384 private BreakAttr(Env<AttrContext> env) {
duke@1 385 this.env = env;
duke@1 386 }
duke@1 387 }
duke@1 388
duke@1 389
duke@1 390 /* ************************************************************************
duke@1 391 * Visitor methods
duke@1 392 *************************************************************************/
duke@1 393
duke@1 394 /** Visitor argument: the current environment.
duke@1 395 */
duke@1 396 Env<AttrContext> env;
duke@1 397
duke@1 398 /** Visitor argument: the currently expected proto-kind.
duke@1 399 */
duke@1 400 int pkind;
duke@1 401
duke@1 402 /** Visitor argument: the currently expected proto-type.
duke@1 403 */
duke@1 404 Type pt;
duke@1 405
darcy@609 406 /** Visitor argument: the error key to be generated when a type error occurs
darcy@609 407 */
darcy@609 408 String errKey;
darcy@609 409
duke@1 410 /** Visitor result: the computed type.
duke@1 411 */
duke@1 412 Type result;
duke@1 413
duke@1 414 /** Visitor method: attribute a tree, catching any completion failure
duke@1 415 * exceptions. Return the tree's type.
duke@1 416 *
duke@1 417 * @param tree The tree to be visited.
duke@1 418 * @param env The environment visitor argument.
duke@1 419 * @param pkind The protokind visitor argument.
duke@1 420 * @param pt The prototype visitor argument.
duke@1 421 */
duke@1 422 Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt) {
darcy@609 423 return attribTree(tree, env, pkind, pt, "incompatible.types");
darcy@609 424 }
darcy@609 425
darcy@609 426 Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt, String errKey) {
duke@1 427 Env<AttrContext> prevEnv = this.env;
duke@1 428 int prevPkind = this.pkind;
duke@1 429 Type prevPt = this.pt;
darcy@609 430 String prevErrKey = this.errKey;
duke@1 431 try {
duke@1 432 this.env = env;
duke@1 433 this.pkind = pkind;
duke@1 434 this.pt = pt;
darcy@609 435 this.errKey = errKey;
duke@1 436 tree.accept(this);
duke@1 437 if (tree == breakTree)
duke@1 438 throw new BreakAttr(env);
duke@1 439 return result;
duke@1 440 } catch (CompletionFailure ex) {
duke@1 441 tree.type = syms.errType;
duke@1 442 return chk.completionError(tree.pos(), ex);
duke@1 443 } finally {
duke@1 444 this.env = prevEnv;
duke@1 445 this.pkind = prevPkind;
duke@1 446 this.pt = prevPt;
darcy@609 447 this.errKey = prevErrKey;
duke@1 448 }
duke@1 449 }
duke@1 450
duke@1 451 /** Derived visitor method: attribute an expression tree.
duke@1 452 */
duke@1 453 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
duke@1 454 return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType);
duke@1 455 }
duke@1 456
darcy@609 457 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt, String key) {
darcy@609 458 return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType, key);
darcy@609 459 }
darcy@609 460
duke@1 461 /** Derived visitor method: attribute an expression tree with
duke@1 462 * no constraints on the computed type.
duke@1 463 */
duke@1 464 Type attribExpr(JCTree tree, Env<AttrContext> env) {
duke@1 465 return attribTree(tree, env, VAL, Type.noType);
duke@1 466 }
duke@1 467
duke@1 468 /** Derived visitor method: attribute a type tree.
duke@1 469 */
duke@1 470 Type attribType(JCTree tree, Env<AttrContext> env) {
mcimadamore@537 471 Type result = attribType(tree, env, Type.noType);
mcimadamore@537 472 return result;
mcimadamore@537 473 }
mcimadamore@537 474
mcimadamore@537 475 /** Derived visitor method: attribute a type tree.
mcimadamore@537 476 */
mcimadamore@537 477 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
mcimadamore@537 478 Type result = attribTree(tree, env, TYP, pt);
duke@1 479 return result;
duke@1 480 }
duke@1 481
duke@1 482 /** Derived visitor method: attribute a statement or definition tree.
duke@1 483 */
duke@1 484 public Type attribStat(JCTree tree, Env<AttrContext> env) {
duke@1 485 return attribTree(tree, env, NIL, Type.noType);
duke@1 486 }
duke@1 487
duke@1 488 /** Attribute a list of expressions, returning a list of types.
duke@1 489 */
duke@1 490 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
duke@1 491 ListBuffer<Type> ts = new ListBuffer<Type>();
duke@1 492 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 493 ts.append(attribExpr(l.head, env, pt));
duke@1 494 return ts.toList();
duke@1 495 }
duke@1 496
duke@1 497 /** Attribute a list of statements, returning nothing.
duke@1 498 */
duke@1 499 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
duke@1 500 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
duke@1 501 attribStat(l.head, env);
duke@1 502 }
duke@1 503
duke@1 504 /** Attribute the arguments in a method call, returning a list of types.
duke@1 505 */
duke@1 506 List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
duke@1 507 ListBuffer<Type> argtypes = new ListBuffer<Type>();
duke@1 508 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 509 argtypes.append(chk.checkNonVoid(
duke@1 510 l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly))));
duke@1 511 return argtypes.toList();
duke@1 512 }
duke@1 513
duke@1 514 /** Attribute a type argument list, returning a list of types.
jrose@267 515 * Caller is responsible for calling checkRefTypes.
duke@1 516 */
jrose@267 517 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
duke@1 518 ListBuffer<Type> argtypes = new ListBuffer<Type>();
duke@1 519 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
jrose@267 520 argtypes.append(attribType(l.head, env));
duke@1 521 return argtypes.toList();
duke@1 522 }
duke@1 523
jrose@267 524 /** Attribute a type argument list, returning a list of types.
jrose@267 525 * Check that all the types are references.
jrose@267 526 */
jrose@267 527 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
jrose@267 528 List<Type> types = attribAnyTypes(trees, env);
jrose@267 529 return chk.checkRefTypes(trees, types);
jrose@267 530 }
duke@1 531
duke@1 532 /**
duke@1 533 * Attribute type variables (of generic classes or methods).
duke@1 534 * Compound types are attributed later in attribBounds.
duke@1 535 * @param typarams the type variables to enter
duke@1 536 * @param env the current environment
duke@1 537 */
duke@1 538 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
duke@1 539 for (JCTypeParameter tvar : typarams) {
duke@1 540 TypeVar a = (TypeVar)tvar.type;
mcimadamore@42 541 a.tsym.flags_field |= UNATTRIBUTED;
mcimadamore@42 542 a.bound = Type.noType;
duke@1 543 if (!tvar.bounds.isEmpty()) {
duke@1 544 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
duke@1 545 for (JCExpression bound : tvar.bounds.tail)
duke@1 546 bounds = bounds.prepend(attribType(bound, env));
duke@1 547 types.setBounds(a, bounds.reverse());
duke@1 548 } else {
duke@1 549 // if no bounds are given, assume a single bound of
duke@1 550 // java.lang.Object.
duke@1 551 types.setBounds(a, List.of(syms.objectType));
duke@1 552 }
mcimadamore@42 553 a.tsym.flags_field &= ~UNATTRIBUTED;
duke@1 554 }
duke@1 555 for (JCTypeParameter tvar : typarams)
duke@1 556 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
duke@1 557 attribStats(typarams, env);
mcimadamore@42 558 }
mcimadamore@42 559
mcimadamore@42 560 void attribBounds(List<JCTypeParameter> typarams) {
duke@1 561 for (JCTypeParameter typaram : typarams) {
duke@1 562 Type bound = typaram.type.getUpperBound();
duke@1 563 if (bound != null && bound.tsym instanceof ClassSymbol) {
duke@1 564 ClassSymbol c = (ClassSymbol)bound.tsym;
duke@1 565 if ((c.flags_field & COMPOUND) != 0) {
jjg@816 566 Assert.check((c.flags_field & UNATTRIBUTED) != 0, c);
duke@1 567 attribClass(typaram.pos(), c);
duke@1 568 }
duke@1 569 }
duke@1 570 }
duke@1 571 }
duke@1 572
duke@1 573 /**
duke@1 574 * Attribute the type references in a list of annotations.
duke@1 575 */
duke@1 576 void attribAnnotationTypes(List<JCAnnotation> annotations,
duke@1 577 Env<AttrContext> env) {
duke@1 578 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
duke@1 579 JCAnnotation a = al.head;
duke@1 580 attribType(a.annotationType, env);
duke@1 581 }
duke@1 582 }
duke@1 583
jjg@841 584 /**
jjg@841 585 * Attribute a "lazy constant value".
jjg@841 586 * @param env The env for the const value
jjg@841 587 * @param initializer The initializer for the const value
jjg@841 588 * @param type The expected type, or null
jjg@841 589 * @see VarSymbol#setlazyConstValue
jjg@841 590 */
jjg@841 591 public Object attribLazyConstantValue(Env<AttrContext> env,
jjg@841 592 JCTree.JCExpression initializer,
jjg@841 593 Type type) {
jjg@841 594
jjg@841 595 // in case no lint value has been set up for this env, scan up
jjg@841 596 // env stack looking for smallest enclosing env for which it is set.
jjg@841 597 Env<AttrContext> lintEnv = env;
jjg@841 598 while (lintEnv.info.lint == null)
jjg@841 599 lintEnv = lintEnv.next;
jjg@841 600
jjg@841 601 // Having found the enclosing lint value, we can initialize the lint value for this class
jjg@1078 602 // ... but ...
jjg@1078 603 // There's a problem with evaluating annotations in the right order, such that
jjg@1078 604 // env.info.enclVar.attributes_field might not yet have been evaluated, and so might be
jjg@1078 605 // null. In that case, calling augment will throw an NPE. To avoid this, for now we
jjg@1078 606 // revert to the jdk 6 behavior and ignore the (unevaluated) attributes.
jjg@1078 607 if (env.info.enclVar.attributes_field == null)
jjg@1078 608 env.info.lint = lintEnv.info.lint;
jjg@1078 609 else
jjg@1078 610 env.info.lint = lintEnv.info.lint.augment(env.info.enclVar.attributes_field, env.info.enclVar.flags());
jjg@841 611
jjg@841 612 Lint prevLint = chk.setLint(env.info.lint);
jjg@841 613 JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
jjg@841 614
jjg@841 615 try {
jjg@841 616 Type itype = attribExpr(initializer, env, type);
jjg@841 617 if (itype.constValue() != null)
jjg@841 618 return coerce(itype, type).constValue();
jjg@841 619 else
jjg@841 620 return null;
jjg@841 621 } finally {
jjg@841 622 env.info.lint = prevLint;
jjg@841 623 log.useSource(prevSource);
jjg@841 624 }
jjg@841 625 }
jjg@841 626
duke@1 627 /** Attribute type reference in an `extends' or `implements' clause.
mcimadamore@537 628 * Supertypes of anonymous inner classes are usually already attributed.
duke@1 629 *
duke@1 630 * @param tree The tree making up the type reference.
duke@1 631 * @param env The environment current at the reference.
duke@1 632 * @param classExpected true if only a class is expected here.
duke@1 633 * @param interfaceExpected true if only an interface is expected here.
duke@1 634 */
duke@1 635 Type attribBase(JCTree tree,
duke@1 636 Env<AttrContext> env,
duke@1 637 boolean classExpected,
duke@1 638 boolean interfaceExpected,
duke@1 639 boolean checkExtensible) {
mcimadamore@537 640 Type t = tree.type != null ?
mcimadamore@537 641 tree.type :
mcimadamore@537 642 attribType(tree, env);
duke@1 643 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
duke@1 644 }
duke@1 645 Type checkBase(Type t,
duke@1 646 JCTree tree,
duke@1 647 Env<AttrContext> env,
duke@1 648 boolean classExpected,
duke@1 649 boolean interfaceExpected,
duke@1 650 boolean checkExtensible) {
jjg@664 651 if (t.isErroneous())
jjg@664 652 return t;
duke@1 653 if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
duke@1 654 // check that type variable is already visible
duke@1 655 if (t.getUpperBound() == null) {
duke@1 656 log.error(tree.pos(), "illegal.forward.ref");
jjg@110 657 return types.createErrorType(t);
duke@1 658 }
duke@1 659 } else {
duke@1 660 t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
duke@1 661 }
duke@1 662 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
duke@1 663 log.error(tree.pos(), "intf.expected.here");
duke@1 664 // return errType is necessary since otherwise there might
duke@1 665 // be undetected cycles which cause attribution to loop
jjg@110 666 return types.createErrorType(t);
duke@1 667 } else if (checkExtensible &&
duke@1 668 classExpected &&
duke@1 669 (t.tsym.flags() & INTERFACE) != 0) {
jjg@664 670 log.error(tree.pos(), "no.intf.expected.here");
jjg@110 671 return types.createErrorType(t);
duke@1 672 }
duke@1 673 if (checkExtensible &&
duke@1 674 ((t.tsym.flags() & FINAL) != 0)) {
duke@1 675 log.error(tree.pos(),
duke@1 676 "cant.inherit.from.final", t.tsym);
duke@1 677 }
duke@1 678 chk.checkNonCyclic(tree.pos(), t);
duke@1 679 return t;
duke@1 680 }
duke@1 681
duke@1 682 public void visitClassDef(JCClassDecl tree) {
duke@1 683 // Local classes have not been entered yet, so we need to do it now:
duke@1 684 if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
duke@1 685 enter.classEnter(tree, env);
duke@1 686
duke@1 687 ClassSymbol c = tree.sym;
duke@1 688 if (c == null) {
duke@1 689 // exit in case something drastic went wrong during enter.
duke@1 690 result = null;
duke@1 691 } else {
duke@1 692 // make sure class has been completed:
duke@1 693 c.complete();
duke@1 694
duke@1 695 // If this class appears as an anonymous class
duke@1 696 // in a superclass constructor call where
duke@1 697 // no explicit outer instance is given,
duke@1 698 // disable implicit outer instance from being passed.
duke@1 699 // (This would be an illegal access to "this before super").
duke@1 700 if (env.info.isSelfCall &&
jjg@1127 701 env.tree.hasTag(NEWCLASS) &&
duke@1 702 ((JCNewClass) env.tree).encl == null)
duke@1 703 {
duke@1 704 c.flags_field |= NOOUTERTHIS;
duke@1 705 }
duke@1 706 attribClass(tree.pos(), c);
duke@1 707 result = tree.type = c.type;
duke@1 708 }
duke@1 709 }
duke@1 710
duke@1 711 public void visitMethodDef(JCMethodDecl tree) {
duke@1 712 MethodSymbol m = tree.sym;
duke@1 713
duke@1 714 Lint lint = env.info.lint.augment(m.attributes_field, m.flags());
duke@1 715 Lint prevLint = chk.setLint(lint);
mcimadamore@795 716 MethodSymbol prevMethod = chk.setMethod(m);
duke@1 717 try {
mcimadamore@852 718 deferredLintHandler.flush(tree.pos());
duke@1 719 chk.checkDeprecatedAnnotation(tree.pos(), m);
duke@1 720
mcimadamore@42 721 attribBounds(tree.typarams);
duke@1 722
duke@1 723 // If we override any other methods, check that we do so properly.
duke@1 724 // JLS ???
mcimadamore@858 725 if (m.isStatic()) {
mcimadamore@858 726 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
mcimadamore@858 727 } else {
mcimadamore@858 728 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
mcimadamore@858 729 }
duke@1 730 chk.checkOverride(tree, m);
duke@1 731
duke@1 732 // Create a new environment with local scope
duke@1 733 // for attributing the method.
duke@1 734 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
duke@1 735
duke@1 736 localEnv.info.lint = lint;
duke@1 737
duke@1 738 // Enter all type parameters into the local method scope.
duke@1 739 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
duke@1 740 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
duke@1 741
duke@1 742 ClassSymbol owner = env.enclClass.sym;
duke@1 743 if ((owner.flags() & ANNOTATION) != 0 &&
duke@1 744 tree.params.nonEmpty())
duke@1 745 log.error(tree.params.head.pos(),
duke@1 746 "intf.annotation.members.cant.have.params");
duke@1 747
duke@1 748 // Attribute all value parameters.
duke@1 749 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
duke@1 750 attribStat(l.head, localEnv);
duke@1 751 }
duke@1 752
mcimadamore@795 753 chk.checkVarargsMethodDecl(localEnv, tree);
mcimadamore@580 754
duke@1 755 // Check that type parameters are well-formed.
mcimadamore@122 756 chk.validate(tree.typarams, localEnv);
duke@1 757
duke@1 758 // Check that result type is well-formed.
mcimadamore@122 759 chk.validate(tree.restype, localEnv);
mcimadamore@629 760
mcimadamore@629 761 // annotation method checks
mcimadamore@629 762 if ((owner.flags() & ANNOTATION) != 0) {
mcimadamore@629 763 // annotation method cannot have throws clause
mcimadamore@629 764 if (tree.thrown.nonEmpty()) {
mcimadamore@629 765 log.error(tree.thrown.head.pos(),
mcimadamore@629 766 "throws.not.allowed.in.intf.annotation");
mcimadamore@629 767 }
mcimadamore@629 768 // annotation method cannot declare type-parameters
mcimadamore@629 769 if (tree.typarams.nonEmpty()) {
mcimadamore@629 770 log.error(tree.typarams.head.pos(),
mcimadamore@629 771 "intf.annotation.members.cant.have.type.params");
mcimadamore@629 772 }
mcimadamore@629 773 // validate annotation method's return type (could be an annotation type)
duke@1 774 chk.validateAnnotationType(tree.restype);
mcimadamore@629 775 // ensure that annotation method does not clash with members of Object/Annotation
duke@1 776 chk.validateAnnotationMethod(tree.pos(), m);
duke@1 777
mcimadamore@634 778 if (tree.defaultValue != null) {
mcimadamore@634 779 // if default value is an annotation, check it is a well-formed
mcimadamore@634 780 // annotation value (e.g. no duplicate values, no missing values, etc.)
mcimadamore@634 781 chk.validateAnnotationTree(tree.defaultValue);
mcimadamore@634 782 }
mcimadamore@629 783 }
mcimadamore@629 784
duke@1 785 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
duke@1 786 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
duke@1 787
duke@1 788 if (tree.body == null) {
duke@1 789 // Empty bodies are only allowed for
duke@1 790 // abstract, native, or interface methods, or for methods
duke@1 791 // in a retrofit signature class.
duke@1 792 if ((owner.flags() & INTERFACE) == 0 &&
duke@1 793 (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
duke@1 794 !relax)
duke@1 795 log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
duke@1 796 if (tree.defaultValue != null) {
duke@1 797 if ((owner.flags() & ANNOTATION) == 0)
duke@1 798 log.error(tree.pos(),
duke@1 799 "default.allowed.in.intf.annotation.member");
duke@1 800 }
duke@1 801 } else if ((owner.flags() & INTERFACE) != 0) {
duke@1 802 log.error(tree.body.pos(), "intf.meth.cant.have.body");
duke@1 803 } else if ((tree.mods.flags & ABSTRACT) != 0) {
duke@1 804 log.error(tree.pos(), "abstract.meth.cant.have.body");
duke@1 805 } else if ((tree.mods.flags & NATIVE) != 0) {
duke@1 806 log.error(tree.pos(), "native.meth.cant.have.body");
duke@1 807 } else {
duke@1 808 // Add an implicit super() call unless an explicit call to
duke@1 809 // super(...) or this(...) is given
duke@1 810 // or we are compiling class java.lang.Object.
duke@1 811 if (tree.name == names.init && owner.type != syms.objectType) {
duke@1 812 JCBlock body = tree.body;
duke@1 813 if (body.stats.isEmpty() ||
duke@1 814 !TreeInfo.isSelfCall(body.stats.head)) {
duke@1 815 body.stats = body.stats.
duke@1 816 prepend(memberEnter.SuperCall(make.at(body.pos),
duke@1 817 List.<Type>nil(),
duke@1 818 List.<JCVariableDecl>nil(),
duke@1 819 false));
duke@1 820 } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
duke@1 821 (tree.mods.flags & GENERATEDCONSTR) == 0 &&
duke@1 822 TreeInfo.isSuperCall(body.stats.head)) {
duke@1 823 // enum constructors are not allowed to call super
duke@1 824 // directly, so make sure there aren't any super calls
duke@1 825 // in enum constructors, except in the compiler
duke@1 826 // generated one.
duke@1 827 log.error(tree.body.stats.head.pos(),
duke@1 828 "call.to.super.not.allowed.in.enum.ctor",
duke@1 829 env.enclClass.sym);
duke@1 830 }
duke@1 831 }
duke@1 832
duke@1 833 // Attribute method body.
duke@1 834 attribStat(tree.body, localEnv);
duke@1 835 }
duke@1 836 localEnv.info.scope.leave();
duke@1 837 result = tree.type = m.type;
duke@1 838 chk.validateAnnotations(tree.mods.annotations, m);
duke@1 839 }
duke@1 840 finally {
duke@1 841 chk.setLint(prevLint);
mcimadamore@795 842 chk.setMethod(prevMethod);
duke@1 843 }
duke@1 844 }
duke@1 845
duke@1 846 public void visitVarDef(JCVariableDecl tree) {
duke@1 847 // Local variables have not been entered yet, so we need to do it now:
duke@1 848 if (env.info.scope.owner.kind == MTH) {
duke@1 849 if (tree.sym != null) {
duke@1 850 // parameters have already been entered
duke@1 851 env.info.scope.enter(tree.sym);
duke@1 852 } else {
duke@1 853 memberEnter.memberEnter(tree, env);
duke@1 854 annotate.flush();
duke@1 855 }
mcimadamore@735 856 tree.sym.flags_field |= EFFECTIVELY_FINAL;
duke@1 857 }
duke@1 858
duke@1 859 VarSymbol v = tree.sym;
duke@1 860 Lint lint = env.info.lint.augment(v.attributes_field, v.flags());
duke@1 861 Lint prevLint = chk.setLint(lint);
duke@1 862
mcimadamore@165 863 // Check that the variable's declared type is well-formed.
mcimadamore@165 864 chk.validate(tree.vartype, env);
mcimadamore@852 865 deferredLintHandler.flush(tree.pos());
mcimadamore@165 866
duke@1 867 try {
duke@1 868 chk.checkDeprecatedAnnotation(tree.pos(), v);
duke@1 869
duke@1 870 if (tree.init != null) {
jjg@1127 871 if ((v.flags_field & FINAL) != 0 && !tree.init.hasTag(NEWCLASS)) {
duke@1 872 // In this case, `v' is final. Ensure that it's initializer is
duke@1 873 // evaluated.
duke@1 874 v.getConstValue(); // ensure initializer is evaluated
duke@1 875 } else {
duke@1 876 // Attribute initializer in a new environment
duke@1 877 // with the declared variable as owner.
duke@1 878 // Check that initializer conforms to variable's declared type.
duke@1 879 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
duke@1 880 initEnv.info.lint = lint;
duke@1 881 // In order to catch self-references, we set the variable's
duke@1 882 // declaration position to maximal possible value, effectively
duke@1 883 // marking the variable as undefined.
mcimadamore@94 884 initEnv.info.enclVar = v;
duke@1 885 attribExpr(tree.init, initEnv, v.type);
duke@1 886 }
duke@1 887 }
duke@1 888 result = tree.type = v.type;
duke@1 889 chk.validateAnnotations(tree.mods.annotations, v);
duke@1 890 }
duke@1 891 finally {
duke@1 892 chk.setLint(prevLint);
duke@1 893 }
duke@1 894 }
duke@1 895
duke@1 896 public void visitSkip(JCSkip tree) {
duke@1 897 result = null;
duke@1 898 }
duke@1 899
duke@1 900 public void visitBlock(JCBlock tree) {
duke@1 901 if (env.info.scope.owner.kind == TYP) {
duke@1 902 // Block is a static or instance initializer;
duke@1 903 // let the owner of the environment be a freshly
duke@1 904 // created BLOCK-method.
duke@1 905 Env<AttrContext> localEnv =
duke@1 906 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
duke@1 907 localEnv.info.scope.owner =
duke@1 908 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
duke@1 909 env.info.scope.owner);
duke@1 910 if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
duke@1 911 attribStats(tree.stats, localEnv);
duke@1 912 } else {
duke@1 913 // Create a new local environment with a local scope.
duke@1 914 Env<AttrContext> localEnv =
duke@1 915 env.dup(tree, env.info.dup(env.info.scope.dup()));
duke@1 916 attribStats(tree.stats, localEnv);
duke@1 917 localEnv.info.scope.leave();
duke@1 918 }
duke@1 919 result = null;
duke@1 920 }
duke@1 921
duke@1 922 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 923 attribStat(tree.body, env.dup(tree));
duke@1 924 attribExpr(tree.cond, env, syms.booleanType);
duke@1 925 result = null;
duke@1 926 }
duke@1 927
duke@1 928 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 929 attribExpr(tree.cond, env, syms.booleanType);
duke@1 930 attribStat(tree.body, env.dup(tree));
duke@1 931 result = null;
duke@1 932 }
duke@1 933
duke@1 934 public void visitForLoop(JCForLoop tree) {
duke@1 935 Env<AttrContext> loopEnv =
duke@1 936 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
duke@1 937 attribStats(tree.init, loopEnv);
duke@1 938 if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
duke@1 939 loopEnv.tree = tree; // before, we were not in loop!
duke@1 940 attribStats(tree.step, loopEnv);
duke@1 941 attribStat(tree.body, loopEnv);
duke@1 942 loopEnv.info.scope.leave();
duke@1 943 result = null;
duke@1 944 }
duke@1 945
duke@1 946 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 947 Env<AttrContext> loopEnv =
duke@1 948 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
duke@1 949 attribStat(tree.var, loopEnv);
duke@1 950 Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
duke@1 951 chk.checkNonVoid(tree.pos(), exprType);
duke@1 952 Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
duke@1 953 if (elemtype == null) {
duke@1 954 // or perhaps expr implements Iterable<T>?
duke@1 955 Type base = types.asSuper(exprType, syms.iterableType.tsym);
duke@1 956 if (base == null) {
mcimadamore@829 957 log.error(tree.expr.pos(),
mcimadamore@829 958 "foreach.not.applicable.to.type",
mcimadamore@829 959 exprType,
mcimadamore@829 960 diags.fragment("type.req.array.or.iterable"));
jjg@110 961 elemtype = types.createErrorType(exprType);
duke@1 962 } else {
duke@1 963 List<Type> iterableParams = base.allparams();
duke@1 964 elemtype = iterableParams.isEmpty()
duke@1 965 ? syms.objectType
duke@1 966 : types.upperBound(iterableParams.head);
duke@1 967 }
duke@1 968 }
duke@1 969 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
duke@1 970 loopEnv.tree = tree; // before, we were not in loop!
duke@1 971 attribStat(tree.body, loopEnv);
duke@1 972 loopEnv.info.scope.leave();
duke@1 973 result = null;
duke@1 974 }
duke@1 975
duke@1 976 public void visitLabelled(JCLabeledStatement tree) {
duke@1 977 // Check that label is not used in an enclosing statement
duke@1 978 Env<AttrContext> env1 = env;
jjg@1127 979 while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
jjg@1127 980 if (env1.tree.hasTag(LABELLED) &&
duke@1 981 ((JCLabeledStatement) env1.tree).label == tree.label) {
duke@1 982 log.error(tree.pos(), "label.already.in.use",
duke@1 983 tree.label);
duke@1 984 break;
duke@1 985 }
duke@1 986 env1 = env1.next;
duke@1 987 }
duke@1 988
duke@1 989 attribStat(tree.body, env.dup(tree));
duke@1 990 result = null;
duke@1 991 }
duke@1 992
duke@1 993 public void visitSwitch(JCSwitch tree) {
duke@1 994 Type seltype = attribExpr(tree.selector, env);
duke@1 995
duke@1 996 Env<AttrContext> switchEnv =
duke@1 997 env.dup(tree, env.info.dup(env.info.scope.dup()));
duke@1 998
duke@1 999 boolean enumSwitch =
duke@1 1000 allowEnums &&
duke@1 1001 (seltype.tsym.flags() & Flags.ENUM) != 0;
darcy@430 1002 boolean stringSwitch = false;
darcy@430 1003 if (types.isSameType(seltype, syms.stringType)) {
darcy@430 1004 if (allowStringsInSwitch) {
darcy@430 1005 stringSwitch = true;
darcy@430 1006 } else {
darcy@430 1007 log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
darcy@430 1008 }
darcy@430 1009 }
darcy@430 1010 if (!enumSwitch && !stringSwitch)
duke@1 1011 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
duke@1 1012
duke@1 1013 // Attribute all cases and
duke@1 1014 // check that there are no duplicate case labels or default clauses.
duke@1 1015 Set<Object> labels = new HashSet<Object>(); // The set of case labels.
duke@1 1016 boolean hasDefault = false; // Is there a default label?
duke@1 1017 for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
duke@1 1018 JCCase c = l.head;
duke@1 1019 Env<AttrContext> caseEnv =
duke@1 1020 switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
duke@1 1021 if (c.pat != null) {
duke@1 1022 if (enumSwitch) {
duke@1 1023 Symbol sym = enumConstant(c.pat, seltype);
duke@1 1024 if (sym == null) {
mcimadamore@829 1025 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
duke@1 1026 } else if (!labels.add(sym)) {
duke@1 1027 log.error(c.pos(), "duplicate.case.label");
duke@1 1028 }
duke@1 1029 } else {
duke@1 1030 Type pattype = attribExpr(c.pat, switchEnv, seltype);
duke@1 1031 if (pattype.tag != ERROR) {
duke@1 1032 if (pattype.constValue() == null) {
darcy@430 1033 log.error(c.pat.pos(),
darcy@430 1034 (stringSwitch ? "string.const.req" : "const.expr.req"));
duke@1 1035 } else if (labels.contains(pattype.constValue())) {
duke@1 1036 log.error(c.pos(), "duplicate.case.label");
duke@1 1037 } else {
duke@1 1038 labels.add(pattype.constValue());
duke@1 1039 }
duke@1 1040 }
duke@1 1041 }
duke@1 1042 } else if (hasDefault) {
duke@1 1043 log.error(c.pos(), "duplicate.default.label");
duke@1 1044 } else {
duke@1 1045 hasDefault = true;
duke@1 1046 }
duke@1 1047 attribStats(c.stats, caseEnv);
duke@1 1048 caseEnv.info.scope.leave();
duke@1 1049 addVars(c.stats, switchEnv.info.scope);
duke@1 1050 }
duke@1 1051
duke@1 1052 switchEnv.info.scope.leave();
duke@1 1053 result = null;
duke@1 1054 }
duke@1 1055 // where
duke@1 1056 /** Add any variables defined in stats to the switch scope. */
duke@1 1057 private static void addVars(List<JCStatement> stats, Scope switchScope) {
duke@1 1058 for (;stats.nonEmpty(); stats = stats.tail) {
duke@1 1059 JCTree stat = stats.head;
jjg@1127 1060 if (stat.hasTag(VARDEF))
duke@1 1061 switchScope.enter(((JCVariableDecl) stat).sym);
duke@1 1062 }
duke@1 1063 }
duke@1 1064 // where
duke@1 1065 /** Return the selected enumeration constant symbol, or null. */
duke@1 1066 private Symbol enumConstant(JCTree tree, Type enumType) {
jjg@1127 1067 if (!tree.hasTag(IDENT)) {
duke@1 1068 log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
duke@1 1069 return syms.errSymbol;
duke@1 1070 }
duke@1 1071 JCIdent ident = (JCIdent)tree;
duke@1 1072 Name name = ident.name;
duke@1 1073 for (Scope.Entry e = enumType.tsym.members().lookup(name);
duke@1 1074 e.scope != null; e = e.next()) {
duke@1 1075 if (e.sym.kind == VAR) {
duke@1 1076 Symbol s = ident.sym = e.sym;
duke@1 1077 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
duke@1 1078 ident.type = s.type;
duke@1 1079 return ((s.flags_field & Flags.ENUM) == 0)
duke@1 1080 ? null : s;
duke@1 1081 }
duke@1 1082 }
duke@1 1083 return null;
duke@1 1084 }
duke@1 1085
duke@1 1086 public void visitSynchronized(JCSynchronized tree) {
duke@1 1087 chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
duke@1 1088 attribStat(tree.body, env);
duke@1 1089 result = null;
duke@1 1090 }
duke@1 1091
duke@1 1092 public void visitTry(JCTry tree) {
darcy@609 1093 // Create a new local environment with a local
darcy@609 1094 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
darcy@609 1095 boolean isTryWithResource = tree.resources.nonEmpty();
darcy@609 1096 // Create a nested environment for attributing the try block if needed
darcy@609 1097 Env<AttrContext> tryEnv = isTryWithResource ?
darcy@609 1098 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
darcy@609 1099 localEnv;
darcy@609 1100 // Attribute resource declarations
darcy@609 1101 for (JCTree resource : tree.resources) {
jjg@1127 1102 if (resource.hasTag(VARDEF)) {
darcy@609 1103 attribStat(resource, tryEnv);
mcimadamore@743 1104 chk.checkType(resource, resource.type, syms.autoCloseableType, "try.not.applicable.to.type");
mcimadamore@951 1105
mcimadamore@951 1106 //check that resource type cannot throw InterruptedException
mcimadamore@951 1107 checkAutoCloseable(resource.pos(), localEnv, resource.type);
mcimadamore@951 1108
darcy@609 1109 VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource);
darcy@609 1110 var.setData(ElementKind.RESOURCE_VARIABLE);
darcy@609 1111 } else {
mcimadamore@743 1112 attribExpr(resource, tryEnv, syms.autoCloseableType, "try.not.applicable.to.type");
darcy@609 1113 }
darcy@609 1114 }
duke@1 1115 // Attribute body
darcy@609 1116 attribStat(tree.body, tryEnv);
darcy@609 1117 if (isTryWithResource)
darcy@609 1118 tryEnv.info.scope.leave();
duke@1 1119
duke@1 1120 // Attribute catch clauses
duke@1 1121 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
duke@1 1122 JCCatch c = l.head;
duke@1 1123 Env<AttrContext> catchEnv =
darcy@609 1124 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
duke@1 1125 Type ctype = attribStat(c.param, catchEnv);
mcimadamore@550 1126 if (TreeInfo.isMultiCatch(c)) {
mcimadamore@735 1127 //multi-catch parameter is implicitly marked as final
darcy@969 1128 c.param.sym.flags_field |= FINAL | UNION;
mcimadamore@550 1129 }
jjg@723 1130 if (c.param.sym.kind == Kinds.VAR) {
duke@1 1131 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
duke@1 1132 }
duke@1 1133 chk.checkType(c.param.vartype.pos(),
duke@1 1134 chk.checkClassType(c.param.vartype.pos(), ctype),
duke@1 1135 syms.throwableType);
duke@1 1136 attribStat(c.body, catchEnv);
duke@1 1137 catchEnv.info.scope.leave();
duke@1 1138 }
duke@1 1139
duke@1 1140 // Attribute finalizer
darcy@609 1141 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
darcy@609 1142
darcy@609 1143 localEnv.info.scope.leave();
duke@1 1144 result = null;
duke@1 1145 }
duke@1 1146
mcimadamore@951 1147 void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
mcimadamore@951 1148 if (!resource.isErroneous() &&
darcy@1207 1149 types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
darcy@1207 1150 !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
mcimadamore@951 1151 Symbol close = syms.noSymbol;
mcimadamore@951 1152 boolean prevDeferDiags = log.deferDiagnostics;
mcimadamore@951 1153 Queue<JCDiagnostic> prevDeferredDiags = log.deferredDiagnostics;
mcimadamore@951 1154 try {
mcimadamore@951 1155 log.deferDiagnostics = true;
mcimadamore@951 1156 log.deferredDiagnostics = ListBuffer.lb();
mcimadamore@951 1157 close = rs.resolveQualifiedMethod(pos,
mcimadamore@951 1158 env,
mcimadamore@951 1159 resource,
mcimadamore@951 1160 names.close,
mcimadamore@951 1161 List.<Type>nil(),
mcimadamore@951 1162 List.<Type>nil());
mcimadamore@951 1163 }
mcimadamore@951 1164 finally {
mcimadamore@951 1165 log.deferDiagnostics = prevDeferDiags;
mcimadamore@951 1166 log.deferredDiagnostics = prevDeferredDiags;
mcimadamore@951 1167 }
mcimadamore@951 1168 if (close.kind == MTH &&
mcimadamore@951 1169 close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
mcimadamore@951 1170 chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
mcimadamore@951 1171 env.info.lint.isEnabled(LintCategory.TRY)) {
mcimadamore@951 1172 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
mcimadamore@951 1173 }
mcimadamore@951 1174 }
mcimadamore@951 1175 }
mcimadamore@951 1176
duke@1 1177 public void visitConditional(JCConditional tree) {
duke@1 1178 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1179 attribExpr(tree.truepart, env);
duke@1 1180 attribExpr(tree.falsepart, env);
duke@1 1181 result = check(tree,
duke@1 1182 capture(condType(tree.pos(), tree.cond.type,
duke@1 1183 tree.truepart.type, tree.falsepart.type)),
duke@1 1184 VAL, pkind, pt);
duke@1 1185 }
duke@1 1186 //where
duke@1 1187 /** Compute the type of a conditional expression, after
duke@1 1188 * checking that it exists. See Spec 15.25.
duke@1 1189 *
duke@1 1190 * @param pos The source position to be used for
duke@1 1191 * error diagnostics.
duke@1 1192 * @param condtype The type of the expression's condition.
duke@1 1193 * @param thentype The type of the expression's then-part.
duke@1 1194 * @param elsetype The type of the expression's else-part.
duke@1 1195 */
duke@1 1196 private Type condType(DiagnosticPosition pos,
duke@1 1197 Type condtype,
duke@1 1198 Type thentype,
duke@1 1199 Type elsetype) {
duke@1 1200 Type ctype = condType1(pos, condtype, thentype, elsetype);
duke@1 1201
duke@1 1202 // If condition and both arms are numeric constants,
duke@1 1203 // evaluate at compile-time.
duke@1 1204 return ((condtype.constValue() != null) &&
duke@1 1205 (thentype.constValue() != null) &&
duke@1 1206 (elsetype.constValue() != null))
duke@1 1207 ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype)
duke@1 1208 : ctype;
duke@1 1209 }
duke@1 1210 /** Compute the type of a conditional expression, after
duke@1 1211 * checking that it exists. Does not take into
duke@1 1212 * account the special case where condition and both arms
duke@1 1213 * are constants.
duke@1 1214 *
duke@1 1215 * @param pos The source position to be used for error
duke@1 1216 * diagnostics.
duke@1 1217 * @param condtype The type of the expression's condition.
duke@1 1218 * @param thentype The type of the expression's then-part.
duke@1 1219 * @param elsetype The type of the expression's else-part.
duke@1 1220 */
duke@1 1221 private Type condType1(DiagnosticPosition pos, Type condtype,
duke@1 1222 Type thentype, Type elsetype) {
duke@1 1223 // If same type, that is the result
duke@1 1224 if (types.isSameType(thentype, elsetype))
duke@1 1225 return thentype.baseType();
duke@1 1226
duke@1 1227 Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
duke@1 1228 ? thentype : types.unboxedType(thentype);
duke@1 1229 Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
duke@1 1230 ? elsetype : types.unboxedType(elsetype);
duke@1 1231
duke@1 1232 // Otherwise, if both arms can be converted to a numeric
duke@1 1233 // type, return the least numeric type that fits both arms
duke@1 1234 // (i.e. return larger of the two, or return int if one
duke@1 1235 // arm is short, the other is char).
duke@1 1236 if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
duke@1 1237 // If one arm has an integer subrange type (i.e., byte,
duke@1 1238 // short, or char), and the other is an integer constant
duke@1 1239 // that fits into the subrange, return the subrange type.
duke@1 1240 if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
duke@1 1241 types.isAssignable(elseUnboxed, thenUnboxed))
duke@1 1242 return thenUnboxed.baseType();
duke@1 1243 if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
duke@1 1244 types.isAssignable(thenUnboxed, elseUnboxed))
duke@1 1245 return elseUnboxed.baseType();
duke@1 1246
duke@1 1247 for (int i = BYTE; i < VOID; i++) {
duke@1 1248 Type candidate = syms.typeOfTag[i];
duke@1 1249 if (types.isSubtype(thenUnboxed, candidate) &&
duke@1 1250 types.isSubtype(elseUnboxed, candidate))
duke@1 1251 return candidate;
duke@1 1252 }
duke@1 1253 }
duke@1 1254
duke@1 1255 // Those were all the cases that could result in a primitive
duke@1 1256 if (allowBoxing) {
duke@1 1257 if (thentype.isPrimitive())
duke@1 1258 thentype = types.boxedClass(thentype).type;
duke@1 1259 if (elsetype.isPrimitive())
duke@1 1260 elsetype = types.boxedClass(elsetype).type;
duke@1 1261 }
duke@1 1262
duke@1 1263 if (types.isSubtype(thentype, elsetype))
duke@1 1264 return elsetype.baseType();
duke@1 1265 if (types.isSubtype(elsetype, thentype))
duke@1 1266 return thentype.baseType();
duke@1 1267
duke@1 1268 if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
duke@1 1269 log.error(pos, "neither.conditional.subtype",
duke@1 1270 thentype, elsetype);
duke@1 1271 return thentype.baseType();
duke@1 1272 }
duke@1 1273
duke@1 1274 // both are known to be reference types. The result is
duke@1 1275 // lub(thentype,elsetype). This cannot fail, as it will
duke@1 1276 // always be possible to infer "Object" if nothing better.
duke@1 1277 return types.lub(thentype.baseType(), elsetype.baseType());
duke@1 1278 }
duke@1 1279
duke@1 1280 public void visitIf(JCIf tree) {
duke@1 1281 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1282 attribStat(tree.thenpart, env);
duke@1 1283 if (tree.elsepart != null)
duke@1 1284 attribStat(tree.elsepart, env);
duke@1 1285 chk.checkEmptyIf(tree);
duke@1 1286 result = null;
duke@1 1287 }
duke@1 1288
duke@1 1289 public void visitExec(JCExpressionStatement tree) {
mcimadamore@674 1290 //a fresh environment is required for 292 inference to work properly ---
mcimadamore@674 1291 //see Infer.instantiatePolymorphicSignatureInstance()
mcimadamore@674 1292 Env<AttrContext> localEnv = env.dup(tree);
mcimadamore@674 1293 attribExpr(tree.expr, localEnv);
duke@1 1294 result = null;
duke@1 1295 }
duke@1 1296
duke@1 1297 public void visitBreak(JCBreak tree) {
duke@1 1298 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
duke@1 1299 result = null;
duke@1 1300 }
duke@1 1301
duke@1 1302 public void visitContinue(JCContinue tree) {
duke@1 1303 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
duke@1 1304 result = null;
duke@1 1305 }
duke@1 1306 //where
duke@1 1307 /** Return the target of a break or continue statement, if it exists,
duke@1 1308 * report an error if not.
duke@1 1309 * Note: The target of a labelled break or continue is the
duke@1 1310 * (non-labelled) statement tree referred to by the label,
duke@1 1311 * not the tree representing the labelled statement itself.
duke@1 1312 *
duke@1 1313 * @param pos The position to be used for error diagnostics
duke@1 1314 * @param tag The tag of the jump statement. This is either
duke@1 1315 * Tree.BREAK or Tree.CONTINUE.
duke@1 1316 * @param label The label of the jump statement, or null if no
duke@1 1317 * label is given.
duke@1 1318 * @param env The environment current at the jump statement.
duke@1 1319 */
duke@1 1320 private JCTree findJumpTarget(DiagnosticPosition pos,
jjg@1127 1321 JCTree.Tag tag,
duke@1 1322 Name label,
duke@1 1323 Env<AttrContext> env) {
duke@1 1324 // Search environments outwards from the point of jump.
duke@1 1325 Env<AttrContext> env1 = env;
duke@1 1326 LOOP:
duke@1 1327 while (env1 != null) {
duke@1 1328 switch (env1.tree.getTag()) {
jjg@1127 1329 case LABELLED:
duke@1 1330 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
duke@1 1331 if (label == labelled.label) {
duke@1 1332 // If jump is a continue, check that target is a loop.
jjg@1127 1333 if (tag == CONTINUE) {
jjg@1127 1334 if (!labelled.body.hasTag(DOLOOP) &&
jjg@1127 1335 !labelled.body.hasTag(WHILELOOP) &&
jjg@1127 1336 !labelled.body.hasTag(FORLOOP) &&
jjg@1127 1337 !labelled.body.hasTag(FOREACHLOOP))
duke@1 1338 log.error(pos, "not.loop.label", label);
duke@1 1339 // Found labelled statement target, now go inwards
duke@1 1340 // to next non-labelled tree.
duke@1 1341 return TreeInfo.referencedStatement(labelled);
duke@1 1342 } else {
duke@1 1343 return labelled;
duke@1 1344 }
duke@1 1345 }
duke@1 1346 break;
jjg@1127 1347 case DOLOOP:
jjg@1127 1348 case WHILELOOP:
jjg@1127 1349 case FORLOOP:
jjg@1127 1350 case FOREACHLOOP:
duke@1 1351 if (label == null) return env1.tree;
duke@1 1352 break;
jjg@1127 1353 case SWITCH:
jjg@1127 1354 if (label == null && tag == BREAK) return env1.tree;
duke@1 1355 break;
jjg@1127 1356 case METHODDEF:
jjg@1127 1357 case CLASSDEF:
duke@1 1358 break LOOP;
duke@1 1359 default:
duke@1 1360 }
duke@1 1361 env1 = env1.next;
duke@1 1362 }
duke@1 1363 if (label != null)
duke@1 1364 log.error(pos, "undef.label", label);
jjg@1127 1365 else if (tag == CONTINUE)
duke@1 1366 log.error(pos, "cont.outside.loop");
duke@1 1367 else
duke@1 1368 log.error(pos, "break.outside.switch.loop");
duke@1 1369 return null;
duke@1 1370 }
duke@1 1371
duke@1 1372 public void visitReturn(JCReturn tree) {
duke@1 1373 // Check that there is an enclosing method which is
duke@1 1374 // nested within than the enclosing class.
duke@1 1375 if (env.enclMethod == null ||
duke@1 1376 env.enclMethod.sym.owner != env.enclClass.sym) {
duke@1 1377 log.error(tree.pos(), "ret.outside.meth");
duke@1 1378
duke@1 1379 } else {
duke@1 1380 // Attribute return expression, if it exists, and check that
duke@1 1381 // it conforms to result type of enclosing method.
duke@1 1382 Symbol m = env.enclMethod.sym;
duke@1 1383 if (m.type.getReturnType().tag == VOID) {
duke@1 1384 if (tree.expr != null)
duke@1 1385 log.error(tree.expr.pos(),
duke@1 1386 "cant.ret.val.from.meth.decl.void");
duke@1 1387 } else if (tree.expr == null) {
duke@1 1388 log.error(tree.pos(), "missing.ret.val");
duke@1 1389 } else {
duke@1 1390 attribExpr(tree.expr, env, m.type.getReturnType());
duke@1 1391 }
duke@1 1392 }
duke@1 1393 result = null;
duke@1 1394 }
duke@1 1395
duke@1 1396 public void visitThrow(JCThrow tree) {
duke@1 1397 attribExpr(tree.expr, env, syms.throwableType);
duke@1 1398 result = null;
duke@1 1399 }
duke@1 1400
duke@1 1401 public void visitAssert(JCAssert tree) {
duke@1 1402 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1403 if (tree.detail != null) {
duke@1 1404 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
duke@1 1405 }
duke@1 1406 result = null;
duke@1 1407 }
duke@1 1408
duke@1 1409 /** Visitor method for method invocations.
duke@1 1410 * NOTE: The method part of an application will have in its type field
duke@1 1411 * the return type of the method, not the method's type itself!
duke@1 1412 */
duke@1 1413 public void visitApply(JCMethodInvocation tree) {
duke@1 1414 // The local environment of a method application is
duke@1 1415 // a new environment nested in the current one.
duke@1 1416 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
duke@1 1417
duke@1 1418 // The types of the actual method arguments.
duke@1 1419 List<Type> argtypes;
duke@1 1420
duke@1 1421 // The types of the actual method type arguments.
duke@1 1422 List<Type> typeargtypes = null;
duke@1 1423
duke@1 1424 Name methName = TreeInfo.name(tree.meth);
duke@1 1425
duke@1 1426 boolean isConstructorCall =
duke@1 1427 methName == names._this || methName == names._super;
duke@1 1428
duke@1 1429 if (isConstructorCall) {
duke@1 1430 // We are seeing a ...this(...) or ...super(...) call.
duke@1 1431 // Check that this is the first statement in a constructor.
duke@1 1432 if (checkFirstConstructorStat(tree, env)) {
duke@1 1433
duke@1 1434 // Record the fact
duke@1 1435 // that this is a constructor call (using isSelfCall).
duke@1 1436 localEnv.info.isSelfCall = true;
duke@1 1437
duke@1 1438 // Attribute arguments, yielding list of argument types.
duke@1 1439 argtypes = attribArgs(tree.args, localEnv);
duke@1 1440 typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1441
duke@1 1442 // Variable `site' points to the class in which the called
duke@1 1443 // constructor is defined.
duke@1 1444 Type site = env.enclClass.sym.type;
duke@1 1445 if (methName == names._super) {
duke@1 1446 if (site == syms.objectType) {
duke@1 1447 log.error(tree.meth.pos(), "no.superclass", site);
jjg@110 1448 site = types.createErrorType(syms.objectType);
duke@1 1449 } else {
duke@1 1450 site = types.supertype(site);
duke@1 1451 }
duke@1 1452 }
duke@1 1453
duke@1 1454 if (site.tag == CLASS) {
mcimadamore@361 1455 Type encl = site.getEnclosingType();
mcimadamore@361 1456 while (encl != null && encl.tag == TYPEVAR)
mcimadamore@361 1457 encl = encl.getUpperBound();
mcimadamore@361 1458 if (encl.tag == CLASS) {
duke@1 1459 // we are calling a nested class
duke@1 1460
jjg@1127 1461 if (tree.meth.hasTag(SELECT)) {
duke@1 1462 JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
duke@1 1463
duke@1 1464 // We are seeing a prefixed call, of the form
duke@1 1465 // <expr>.super(...).
duke@1 1466 // Check that the prefix expression conforms
duke@1 1467 // to the outer instance type of the class.
duke@1 1468 chk.checkRefType(qualifier.pos(),
duke@1 1469 attribExpr(qualifier, localEnv,
mcimadamore@361 1470 encl));
duke@1 1471 } else if (methName == names._super) {
duke@1 1472 // qualifier omitted; check for existence
duke@1 1473 // of an appropriate implicit qualifier.
duke@1 1474 rs.resolveImplicitThis(tree.meth.pos(),
mcimadamore@901 1475 localEnv, site, true);
duke@1 1476 }
jjg@1127 1477 } else if (tree.meth.hasTag(SELECT)) {
duke@1 1478 log.error(tree.meth.pos(), "illegal.qual.not.icls",
duke@1 1479 site.tsym);
duke@1 1480 }
duke@1 1481
duke@1 1482 // if we're calling a java.lang.Enum constructor,
duke@1 1483 // prefix the implicit String and int parameters
duke@1 1484 if (site.tsym == syms.enumSym && allowEnums)
duke@1 1485 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
duke@1 1486
duke@1 1487 // Resolve the called constructor under the assumption
duke@1 1488 // that we are referring to a superclass instance of the
duke@1 1489 // current instance (JLS ???).
duke@1 1490 boolean selectSuperPrev = localEnv.info.selectSuper;
duke@1 1491 localEnv.info.selectSuper = true;
duke@1 1492 localEnv.info.varArgs = false;
duke@1 1493 Symbol sym = rs.resolveConstructor(
duke@1 1494 tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
duke@1 1495 localEnv.info.selectSuper = selectSuperPrev;
duke@1 1496
duke@1 1497 // Set method symbol to resolved constructor...
duke@1 1498 TreeInfo.setSymbol(tree.meth, sym);
duke@1 1499
duke@1 1500 // ...and check that it is legal in the current context.
duke@1 1501 // (this will also set the tree's type)
duke@1 1502 Type mpt = newMethTemplate(argtypes, typeargtypes);
duke@1 1503 checkId(tree.meth, site, sym, localEnv, MTH,
duke@1 1504 mpt, tree.varargsElement != null);
duke@1 1505 }
duke@1 1506 // Otherwise, `site' is an error type and we do nothing
duke@1 1507 }
duke@1 1508 result = tree.type = syms.voidType;
duke@1 1509 } else {
duke@1 1510 // Otherwise, we are seeing a regular method call.
duke@1 1511 // Attribute the arguments, yielding list of argument types, ...
duke@1 1512 argtypes = attribArgs(tree.args, localEnv);
jrose@267 1513 typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
duke@1 1514
duke@1 1515 // ... and attribute the method using as a prototype a methodtype
duke@1 1516 // whose formal argument types is exactly the list of actual
duke@1 1517 // arguments (this will also set the method symbol).
duke@1 1518 Type mpt = newMethTemplate(argtypes, typeargtypes);
duke@1 1519 localEnv.info.varArgs = false;
duke@1 1520 Type mtype = attribExpr(tree.meth, localEnv, mpt);
duke@1 1521 if (localEnv.info.varArgs)
jjg@816 1522 Assert.check(mtype.isErroneous() || tree.varargsElement != null);
duke@1 1523
duke@1 1524 // Compute the result type.
duke@1 1525 Type restype = mtype.getReturnType();
mcimadamore@689 1526 if (restype.tag == WILDCARD)
mcimadamore@689 1527 throw new AssertionError(mtype);
duke@1 1528
duke@1 1529 // as a special case, array.clone() has a result that is
duke@1 1530 // the same as static type of the array being cloned
jjg@1127 1531 if (tree.meth.hasTag(SELECT) &&
duke@1 1532 allowCovariantReturns &&
duke@1 1533 methName == names.clone &&
duke@1 1534 types.isArray(((JCFieldAccess) tree.meth).selected.type))
duke@1 1535 restype = ((JCFieldAccess) tree.meth).selected.type;
duke@1 1536
duke@1 1537 // as a special case, x.getClass() has type Class<? extends |X|>
duke@1 1538 if (allowGenerics &&
duke@1 1539 methName == names.getClass && tree.args.isEmpty()) {
jjg@1127 1540 Type qualifier = (tree.meth.hasTag(SELECT))
duke@1 1541 ? ((JCFieldAccess) tree.meth).selected.type
duke@1 1542 : env.enclClass.sym.type;
duke@1 1543 restype = new
duke@1 1544 ClassType(restype.getEnclosingType(),
duke@1 1545 List.<Type>of(new WildcardType(types.erasure(qualifier),
duke@1 1546 BoundKind.EXTENDS,
duke@1 1547 syms.boundClass)),
duke@1 1548 restype.tsym);
duke@1 1549 }
duke@1 1550
mcimadamore@820 1551 chk.checkRefTypes(tree.typeargs, typeargtypes);
jrose@267 1552
duke@1 1553 // Check that value of resulting type is admissible in the
duke@1 1554 // current context. Also, capture the return type
mcimadamore@536 1555 result = check(tree, capture(restype), VAL, pkind, pt);
duke@1 1556 }
mcimadamore@122 1557 chk.validate(tree.typeargs, localEnv);
duke@1 1558 }
duke@1 1559 //where
duke@1 1560 /** Check that given application node appears as first statement
duke@1 1561 * in a constructor call.
duke@1 1562 * @param tree The application node
duke@1 1563 * @param env The environment current at the application.
duke@1 1564 */
duke@1 1565 boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
duke@1 1566 JCMethodDecl enclMethod = env.enclMethod;
duke@1 1567 if (enclMethod != null && enclMethod.name == names.init) {
duke@1 1568 JCBlock body = enclMethod.body;
jjg@1127 1569 if (body.stats.head.hasTag(EXEC) &&
duke@1 1570 ((JCExpressionStatement) body.stats.head).expr == tree)
duke@1 1571 return true;
duke@1 1572 }
duke@1 1573 log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
duke@1 1574 TreeInfo.name(tree.meth));
duke@1 1575 return false;
duke@1 1576 }
duke@1 1577
duke@1 1578 /** Obtain a method type with given argument types.
duke@1 1579 */
duke@1 1580 Type newMethTemplate(List<Type> argtypes, List<Type> typeargtypes) {
duke@1 1581 MethodType mt = new MethodType(argtypes, null, null, syms.methodClass);
duke@1 1582 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
duke@1 1583 }
duke@1 1584
duke@1 1585 public void visitNewClass(JCNewClass tree) {
jjg@110 1586 Type owntype = types.createErrorType(tree.type);
duke@1 1587
duke@1 1588 // The local environment of a class creation is
duke@1 1589 // a new environment nested in the current one.
duke@1 1590 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
duke@1 1591
duke@1 1592 // The anonymous inner class definition of the new expression,
duke@1 1593 // if one is defined by it.
duke@1 1594 JCClassDecl cdef = tree.def;
duke@1 1595
duke@1 1596 // If enclosing class is given, attribute it, and
duke@1 1597 // complete class name to be fully qualified
duke@1 1598 JCExpression clazz = tree.clazz; // Class field following new
duke@1 1599 JCExpression clazzid = // Identifier in class field
jjg@1127 1600 (clazz.hasTag(TYPEAPPLY))
duke@1 1601 ? ((JCTypeApply) clazz).clazz
duke@1 1602 : clazz;
duke@1 1603
duke@1 1604 JCExpression clazzid1 = clazzid; // The same in fully qualified form
duke@1 1605
duke@1 1606 if (tree.encl != null) {
duke@1 1607 // We are seeing a qualified new, of the form
duke@1 1608 // <expr>.new C <...> (...) ...
duke@1 1609 // In this case, we let clazz stand for the name of the
duke@1 1610 // allocated class C prefixed with the type of the qualifier
duke@1 1611 // expression, so that we can
duke@1 1612 // resolve it with standard techniques later. I.e., if
duke@1 1613 // <expr> has type T, then <expr>.new C <...> (...)
duke@1 1614 // yields a clazz T.C.
duke@1 1615 Type encltype = chk.checkRefType(tree.encl.pos(),
duke@1 1616 attribExpr(tree.encl, env));
duke@1 1617 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
duke@1 1618 ((JCIdent) clazzid).name);
jjg@1127 1619 if (clazz.hasTag(TYPEAPPLY))
duke@1 1620 clazz = make.at(tree.pos).
duke@1 1621 TypeApply(clazzid1,
duke@1 1622 ((JCTypeApply) clazz).arguments);
duke@1 1623 else
duke@1 1624 clazz = clazzid1;
duke@1 1625 }
duke@1 1626
duke@1 1627 // Attribute clazz expression and store
duke@1 1628 // symbol + type back into the attributed tree.
mcimadamore@537 1629 Type clazztype = attribType(clazz, env);
mcimadamore@950 1630 Pair<Scope,Scope> mapping = getSyntheticScopeMapping(clazztype);
mcimadamore@914 1631 clazztype = chk.checkDiamond(tree, clazztype);
mcimadamore@122 1632 chk.validate(clazz, localEnv);
duke@1 1633 if (tree.encl != null) {
duke@1 1634 // We have to work in this case to store
duke@1 1635 // symbol + type back into the attributed tree.
duke@1 1636 tree.clazz.type = clazztype;
duke@1 1637 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
duke@1 1638 clazzid.type = ((JCIdent) clazzid).sym.type;
duke@1 1639 if (!clazztype.isErroneous()) {
duke@1 1640 if (cdef != null && clazztype.tsym.isInterface()) {
duke@1 1641 log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
duke@1 1642 } else if (clazztype.tsym.isStatic()) {
duke@1 1643 log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
duke@1 1644 }
duke@1 1645 }
duke@1 1646 } else if (!clazztype.tsym.isInterface() &&
duke@1 1647 clazztype.getEnclosingType().tag == CLASS) {
duke@1 1648 // Check for the existence of an apropos outer instance
duke@1 1649 rs.resolveImplicitThis(tree.pos(), env, clazztype);
duke@1 1650 }
duke@1 1651
duke@1 1652 // Attribute constructor arguments.
duke@1 1653 List<Type> argtypes = attribArgs(tree.args, localEnv);
duke@1 1654 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1655
mcimadamore@914 1656 if (TreeInfo.isDiamond(tree) && !clazztype.isErroneous()) {
mcimadamore@631 1657 clazztype = attribDiamond(localEnv, tree, clazztype, mapping, argtypes, typeargtypes);
mcimadamore@537 1658 clazz.type = clazztype;
mcimadamore@731 1659 } else if (allowDiamondFinder &&
mcimadamore@914 1660 tree.def == null &&
mcimadamore@914 1661 !clazztype.isErroneous() &&
mcimadamore@731 1662 clazztype.getTypeArguments().nonEmpty() &&
mcimadamore@731 1663 findDiamonds) {
mcimadamore@770 1664 boolean prevDeferDiags = log.deferDiagnostics;
mcimadamore@770 1665 Queue<JCDiagnostic> prevDeferredDiags = log.deferredDiagnostics;
mcimadamore@770 1666 Type inferred = null;
mcimadamore@770 1667 try {
mcimadamore@770 1668 //disable diamond-related diagnostics
mcimadamore@770 1669 log.deferDiagnostics = true;
mcimadamore@770 1670 log.deferredDiagnostics = ListBuffer.lb();
mcimadamore@770 1671 inferred = attribDiamond(localEnv,
mcimadamore@770 1672 tree,
mcimadamore@770 1673 clazztype,
mcimadamore@770 1674 mapping,
mcimadamore@770 1675 argtypes,
mcimadamore@770 1676 typeargtypes);
mcimadamore@770 1677 }
mcimadamore@770 1678 finally {
mcimadamore@770 1679 log.deferDiagnostics = prevDeferDiags;
mcimadamore@770 1680 log.deferredDiagnostics = prevDeferredDiags;
mcimadamore@770 1681 }
mcimadamore@770 1682 if (inferred != null &&
mcimadamore@770 1683 !inferred.isErroneous() &&
mcimadamore@731 1684 inferred.tag == CLASS &&
mcimadamore@914 1685 types.isAssignable(inferred, pt.tag == NONE ? clazztype : pt, Warner.noWarnings)) {
mcimadamore@731 1686 String key = types.isSameType(clazztype, inferred) ?
mcimadamore@731 1687 "diamond.redundant.args" :
mcimadamore@731 1688 "diamond.redundant.args.1";
mcimadamore@731 1689 log.warning(tree.clazz.pos(), key, clazztype, inferred);
mcimadamore@731 1690 }
mcimadamore@537 1691 }
mcimadamore@537 1692
duke@1 1693 // If we have made no mistakes in the class type...
duke@1 1694 if (clazztype.tag == CLASS) {
duke@1 1695 // Enums may not be instantiated except implicitly
duke@1 1696 if (allowEnums &&
duke@1 1697 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
jjg@1127 1698 (!env.tree.hasTag(VARDEF) ||
duke@1 1699 (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
duke@1 1700 ((JCVariableDecl) env.tree).init != tree))
duke@1 1701 log.error(tree.pos(), "enum.cant.be.instantiated");
duke@1 1702 // Check that class is not abstract
duke@1 1703 if (cdef == null &&
duke@1 1704 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
duke@1 1705 log.error(tree.pos(), "abstract.cant.be.instantiated",
duke@1 1706 clazztype.tsym);
duke@1 1707 } else if (cdef != null && clazztype.tsym.isInterface()) {
duke@1 1708 // Check that no constructor arguments are given to
duke@1 1709 // anonymous classes implementing an interface
duke@1 1710 if (!argtypes.isEmpty())
duke@1 1711 log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
duke@1 1712
duke@1 1713 if (!typeargtypes.isEmpty())
duke@1 1714 log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
duke@1 1715
duke@1 1716 // Error recovery: pretend no arguments were supplied.
duke@1 1717 argtypes = List.nil();
duke@1 1718 typeargtypes = List.nil();
duke@1 1719 }
duke@1 1720
duke@1 1721 // Resolve the called constructor under the assumption
duke@1 1722 // that we are referring to a superclass instance of the
duke@1 1723 // current instance (JLS ???).
duke@1 1724 else {
mcimadamore@1010 1725 //the following code alters some of the fields in the current
mcimadamore@1010 1726 //AttrContext - hence, the current context must be dup'ed in
mcimadamore@1010 1727 //order to avoid downstream failures
mcimadamore@1010 1728 Env<AttrContext> rsEnv = localEnv.dup(tree);
mcimadamore@1010 1729 rsEnv.info.selectSuper = cdef != null;
mcimadamore@1010 1730 rsEnv.info.varArgs = false;
duke@1 1731 tree.constructor = rs.resolveConstructor(
mcimadamore@1010 1732 tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
mcimadamore@630 1733 tree.constructorType = tree.constructor.type.isErroneous() ?
mcimadamore@630 1734 syms.errType :
mcimadamore@630 1735 checkMethod(clazztype,
mcimadamore@630 1736 tree.constructor,
mcimadamore@1010 1737 rsEnv,
mcimadamore@630 1738 tree.args,
mcimadamore@630 1739 argtypes,
mcimadamore@630 1740 typeargtypes,
mcimadamore@1010 1741 rsEnv.info.varArgs);
mcimadamore@1010 1742 if (rsEnv.info.varArgs)
jjg@816 1743 Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
duke@1 1744 }
duke@1 1745
duke@1 1746 if (cdef != null) {
duke@1 1747 // We are seeing an anonymous class instance creation.
duke@1 1748 // In this case, the class instance creation
duke@1 1749 // expression
duke@1 1750 //
duke@1 1751 // E.new <typeargs1>C<typargs2>(args) { ... }
duke@1 1752 //
duke@1 1753 // is represented internally as
duke@1 1754 //
duke@1 1755 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) .
duke@1 1756 //
duke@1 1757 // This expression is then *transformed* as follows:
duke@1 1758 //
duke@1 1759 // (1) add a STATIC flag to the class definition
duke@1 1760 // if the current environment is static
duke@1 1761 // (2) add an extends or implements clause
duke@1 1762 // (3) add a constructor.
duke@1 1763 //
duke@1 1764 // For instance, if C is a class, and ET is the type of E,
duke@1 1765 // the expression
duke@1 1766 //
duke@1 1767 // E.new <typeargs1>C<typargs2>(args) { ... }
duke@1 1768 //
duke@1 1769 // is translated to (where X is a fresh name and typarams is the
duke@1 1770 // parameter list of the super constructor):
duke@1 1771 //
duke@1 1772 // new <typeargs1>X(<*nullchk*>E, args) where
duke@1 1773 // X extends C<typargs2> {
duke@1 1774 // <typarams> X(ET e, args) {
duke@1 1775 // e.<typeargs1>super(args)
duke@1 1776 // }
duke@1 1777 // ...
duke@1 1778 // }
duke@1 1779 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
mcimadamore@536 1780
duke@1 1781 if (clazztype.tsym.isInterface()) {
duke@1 1782 cdef.implementing = List.of(clazz);
duke@1 1783 } else {
duke@1 1784 cdef.extending = clazz;
duke@1 1785 }
duke@1 1786
duke@1 1787 attribStat(cdef, localEnv);
duke@1 1788
duke@1 1789 // If an outer instance is given,
duke@1 1790 // prefix it to the constructor arguments
duke@1 1791 // and delete it from the new expression
duke@1 1792 if (tree.encl != null && !clazztype.tsym.isInterface()) {
duke@1 1793 tree.args = tree.args.prepend(makeNullCheck(tree.encl));
duke@1 1794 argtypes = argtypes.prepend(tree.encl.type);
duke@1 1795 tree.encl = null;
duke@1 1796 }
duke@1 1797
duke@1 1798 // Reassign clazztype and recompute constructor.
duke@1 1799 clazztype = cdef.sym.type;
mcimadamore@1010 1800 boolean useVarargs = tree.varargsElement != null;
duke@1 1801 Symbol sym = rs.resolveConstructor(
duke@1 1802 tree.pos(), localEnv, clazztype, argtypes,
mcimadamore@1010 1803 typeargtypes, true, useVarargs);
jjg@816 1804 Assert.check(sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous());
duke@1 1805 tree.constructor = sym;
mcimadamore@358 1806 if (tree.constructor.kind > ERRONEOUS) {
mcimadamore@358 1807 tree.constructorType = syms.errType;
mcimadamore@358 1808 }
mcimadamore@358 1809 else {
mcimadamore@358 1810 tree.constructorType = checkMethod(clazztype,
mcimadamore@358 1811 tree.constructor,
mcimadamore@358 1812 localEnv,
mcimadamore@358 1813 tree.args,
mcimadamore@358 1814 argtypes,
mcimadamore@358 1815 typeargtypes,
mcimadamore@1010 1816 useVarargs);
mcimadamore@358 1817 }
duke@1 1818 }
duke@1 1819
duke@1 1820 if (tree.constructor != null && tree.constructor.kind == MTH)
duke@1 1821 owntype = clazztype;
duke@1 1822 }
duke@1 1823 result = check(tree, owntype, VAL, pkind, pt);
mcimadamore@122 1824 chk.validate(tree.typeargs, localEnv);
duke@1 1825 }
duke@1 1826
mcimadamore@537 1827 Type attribDiamond(Env<AttrContext> env,
mcimadamore@537 1828 JCNewClass tree,
mcimadamore@537 1829 Type clazztype,
mcimadamore@537 1830 Pair<Scope, Scope> mapping,
mcimadamore@537 1831 List<Type> argtypes,
mcimadamore@631 1832 List<Type> typeargtypes) {
mcimadamore@950 1833 if (clazztype.isErroneous() ||
mcimadamore@950 1834 clazztype.isInterface() ||
mcimadamore@950 1835 mapping == erroneousMapping) {
mcimadamore@562 1836 //if the type of the instance creation expression is erroneous,
mcimadamore@950 1837 //or if it's an interface, or if something prevented us to form a valid
mcimadamore@950 1838 //mapping, return the (possibly erroneous) type unchanged
mcimadamore@537 1839 return clazztype;
mcimadamore@537 1840 }
mcimadamore@950 1841
mcimadamore@950 1842 //dup attribution environment and augment the set of inference variables
mcimadamore@950 1843 Env<AttrContext> localEnv = env.dup(tree);
mcimadamore@950 1844 localEnv.info.tvars = clazztype.tsym.type.getTypeArguments();
mcimadamore@950 1845
mcimadamore@950 1846 //if the type of the instance creation expression is a class type
mcimadamore@950 1847 //apply method resolution inference (JLS 15.12.2.7). The return type
mcimadamore@950 1848 //of the resolved constructor will be a partially instantiated type
mcimadamore@950 1849 ((ClassSymbol) clazztype.tsym).members_field = mapping.snd;
mcimadamore@950 1850 Symbol constructor;
mcimadamore@950 1851 try {
mcimadamore@950 1852 constructor = rs.resolveDiamond(tree.pos(),
mcimadamore@950 1853 localEnv,
mcimadamore@1060 1854 clazztype,
mcimadamore@950 1855 argtypes,
mcimadamore@950 1856 typeargtypes);
mcimadamore@950 1857 } finally {
mcimadamore@950 1858 ((ClassSymbol) clazztype.tsym).members_field = mapping.fst;
mcimadamore@950 1859 }
mcimadamore@950 1860 if (constructor.kind == MTH) {
mcimadamore@950 1861 ClassType ct = new ClassType(clazztype.getEnclosingType(),
mcimadamore@950 1862 clazztype.tsym.type.getTypeArguments(),
mcimadamore@950 1863 clazztype.tsym);
mcimadamore@950 1864 clazztype = checkMethod(ct,
mcimadamore@950 1865 constructor,
mcimadamore@950 1866 localEnv,
mcimadamore@950 1867 tree.args,
mcimadamore@950 1868 argtypes,
mcimadamore@950 1869 typeargtypes,
mcimadamore@950 1870 localEnv.info.varArgs).getReturnType();
mcimadamore@537 1871 } else {
mcimadamore@950 1872 clazztype = syms.errType;
mcimadamore@537 1873 }
mcimadamore@950 1874
mcimadamore@537 1875 if (clazztype.tag == FORALL && !pt.isErroneous()) {
mcimadamore@537 1876 //if the resolved constructor's return type has some uninferred
mcimadamore@537 1877 //type-variables, infer them using the expected type and declared
mcimadamore@537 1878 //bounds (JLS 15.12.2.8).
mcimadamore@537 1879 try {
mcimadamore@537 1880 clazztype = infer.instantiateExpr((ForAll) clazztype,
mcimadamore@537 1881 pt.tag == NONE ? syms.objectType : pt,
mcimadamore@537 1882 Warner.noWarnings);
mcimadamore@537 1883 } catch (Infer.InferenceException ex) {
mcimadamore@537 1884 //an error occurred while inferring uninstantiated type-variables
mcimadamore@631 1885 log.error(tree.clazz.pos(),
mcimadamore@631 1886 "cant.apply.diamond.1",
mcimadamore@631 1887 diags.fragment("diamond", clazztype.tsym),
mcimadamore@631 1888 ex.diagnostic);
mcimadamore@631 1889 }
mcimadamore@631 1890 }
mcimadamore@914 1891 return chk.checkClassType(tree.clazz.pos(),
mcimadamore@631 1892 clazztype,
mcimadamore@631 1893 true);
mcimadamore@537 1894 }
mcimadamore@537 1895
mcimadamore@537 1896 /** Creates a synthetic scope containing fake generic constructors.
mcimadamore@537 1897 * Assuming that the original scope contains a constructor of the kind:
mcimadamore@537 1898 * Foo(X x, Y y), where X,Y are class type-variables declared in Foo,
mcimadamore@537 1899 * the synthetic scope is added a generic constructor of the kind:
mcimadamore@537 1900 * <X,Y>Foo<X,Y>(X x, Y y). This is crucial in order to enable diamond
mcimadamore@537 1901 * inference. The inferred return type of the synthetic constructor IS
mcimadamore@537 1902 * the inferred type for the diamond operator.
mcimadamore@537 1903 */
mcimadamore@950 1904 private Pair<Scope, Scope> getSyntheticScopeMapping(Type ctype) {
mcimadamore@562 1905 if (ctype.tag != CLASS) {
mcimadamore@562 1906 return erroneousMapping;
mcimadamore@562 1907 }
mcimadamore@950 1908
mcimadamore@537 1909 Pair<Scope, Scope> mapping =
mcimadamore@537 1910 new Pair<Scope, Scope>(ctype.tsym.members(), new Scope(ctype.tsym));
mcimadamore@950 1911
mcimadamore@950 1912 //for each constructor in the original scope, create a synthetic constructor
mcimadamore@950 1913 //whose return type is the type of the class in which the constructor is
mcimadamore@950 1914 //declared, and insert it into the new scope.
mcimadamore@537 1915 for (Scope.Entry e = mapping.fst.lookup(names.init);
mcimadamore@537 1916 e.scope != null;
mcimadamore@537 1917 e = e.next()) {
mcimadamore@950 1918 Type synthRestype = new ClassType(ctype.getEnclosingType(),
mcimadamore@950 1919 ctype.tsym.type.getTypeArguments(),
mcimadamore@950 1920 ctype.tsym);
mcimadamore@950 1921 MethodSymbol synhConstr = new MethodSymbol(e.sym.flags(),
mcimadamore@950 1922 names.init,
mcimadamore@950 1923 types.createMethodTypeWithReturn(e.sym.type, synthRestype),
mcimadamore@950 1924 e.sym.owner);
mcimadamore@950 1925 mapping.snd.enter(synhConstr);
mcimadamore@537 1926 }
mcimadamore@537 1927 return mapping;
mcimadamore@537 1928 }
mcimadamore@537 1929
mcimadamore@562 1930 private final Pair<Scope,Scope> erroneousMapping = new Pair<Scope,Scope>(null, null);
mcimadamore@562 1931
duke@1 1932 /** Make an attributed null check tree.
duke@1 1933 */
duke@1 1934 public JCExpression makeNullCheck(JCExpression arg) {
duke@1 1935 // optimization: X.this is never null; skip null check
duke@1 1936 Name name = TreeInfo.name(arg);
duke@1 1937 if (name == names._this || name == names._super) return arg;
duke@1 1938
jjg@1127 1939 JCTree.Tag optag = NULLCHK;
duke@1 1940 JCUnary tree = make.at(arg.pos).Unary(optag, arg);
duke@1 1941 tree.operator = syms.nullcheck;
duke@1 1942 tree.type = arg.type;
duke@1 1943 return tree;
duke@1 1944 }
duke@1 1945
duke@1 1946 public void visitNewArray(JCNewArray tree) {
jjg@110 1947 Type owntype = types.createErrorType(tree.type);
duke@1 1948 Type elemtype;
duke@1 1949 if (tree.elemtype != null) {
duke@1 1950 elemtype = attribType(tree.elemtype, env);
mcimadamore@122 1951 chk.validate(tree.elemtype, env);
duke@1 1952 owntype = elemtype;
duke@1 1953 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
duke@1 1954 attribExpr(l.head, env, syms.intType);
duke@1 1955 owntype = new ArrayType(owntype, syms.arrayClass);
duke@1 1956 }
duke@1 1957 } else {
duke@1 1958 // we are seeing an untyped aggregate { ... }
duke@1 1959 // this is allowed only if the prototype is an array
duke@1 1960 if (pt.tag == ARRAY) {
duke@1 1961 elemtype = types.elemtype(pt);
duke@1 1962 } else {
duke@1 1963 if (pt.tag != ERROR) {
duke@1 1964 log.error(tree.pos(), "illegal.initializer.for.type",
duke@1 1965 pt);
duke@1 1966 }
jjg@110 1967 elemtype = types.createErrorType(pt);
duke@1 1968 }
duke@1 1969 }
duke@1 1970 if (tree.elems != null) {
duke@1 1971 attribExprs(tree.elems, env, elemtype);
duke@1 1972 owntype = new ArrayType(elemtype, syms.arrayClass);
duke@1 1973 }
duke@1 1974 if (!types.isReifiable(elemtype))
duke@1 1975 log.error(tree.pos(), "generic.array.creation");
duke@1 1976 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1977 }
duke@1 1978
mcimadamore@1144 1979 @Override
mcimadamore@1144 1980 public void visitLambda(JCLambda that) {
mcimadamore@1144 1981 throw new UnsupportedOperationException("Lambda expression not supported yet");
mcimadamore@1144 1982 }
mcimadamore@1144 1983
mcimadamore@1145 1984 @Override
mcimadamore@1145 1985 public void visitReference(JCMemberReference that) {
mcimadamore@1145 1986 throw new UnsupportedOperationException("Member references not supported yet");
mcimadamore@1145 1987 }
mcimadamore@1145 1988
duke@1 1989 public void visitParens(JCParens tree) {
duke@1 1990 Type owntype = attribTree(tree.expr, env, pkind, pt);
duke@1 1991 result = check(tree, owntype, pkind, pkind, pt);
duke@1 1992 Symbol sym = TreeInfo.symbol(tree);
duke@1 1993 if (sym != null && (sym.kind&(TYP|PCK)) != 0)
duke@1 1994 log.error(tree.pos(), "illegal.start.of.type");
duke@1 1995 }
duke@1 1996
duke@1 1997 public void visitAssign(JCAssign tree) {
duke@1 1998 Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType);
duke@1 1999 Type capturedType = capture(owntype);
duke@1 2000 attribExpr(tree.rhs, env, owntype);
duke@1 2001 result = check(tree, capturedType, VAL, pkind, pt);
duke@1 2002 }
duke@1 2003
duke@1 2004 public void visitAssignop(JCAssignOp tree) {
duke@1 2005 // Attribute arguments.
duke@1 2006 Type owntype = attribTree(tree.lhs, env, VAR, Type.noType);
duke@1 2007 Type operand = attribExpr(tree.rhs, env);
duke@1 2008 // Find operator.
duke@1 2009 Symbol operator = tree.operator = rs.resolveBinaryOperator(
jjg@1127 2010 tree.pos(), tree.getTag().noAssignOp(), env,
duke@1 2011 owntype, operand);
duke@1 2012
mcimadamore@853 2013 if (operator.kind == MTH &&
mcimadamore@853 2014 !owntype.isErroneous() &&
mcimadamore@853 2015 !operand.isErroneous()) {
duke@1 2016 chk.checkOperator(tree.pos(),
duke@1 2017 (OperatorSymbol)operator,
jjg@1127 2018 tree.getTag().noAssignOp(),
duke@1 2019 owntype,
duke@1 2020 operand);
jjg@9 2021 chk.checkDivZero(tree.rhs.pos(), operator, operand);
jjg@9 2022 chk.checkCastable(tree.rhs.pos(),
jjg@9 2023 operator.type.getReturnType(),
jjg@9 2024 owntype);
duke@1 2025 }
duke@1 2026 result = check(tree, owntype, VAL, pkind, pt);
duke@1 2027 }
duke@1 2028
duke@1 2029 public void visitUnary(JCUnary tree) {
duke@1 2030 // Attribute arguments.
jjg@1127 2031 Type argtype = (tree.getTag().isIncOrDecUnaryOp())
duke@1 2032 ? attribTree(tree.arg, env, VAR, Type.noType)
duke@1 2033 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
duke@1 2034
duke@1 2035 // Find operator.
duke@1 2036 Symbol operator = tree.operator =
duke@1 2037 rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
duke@1 2038
jjg@110 2039 Type owntype = types.createErrorType(tree.type);
mcimadamore@853 2040 if (operator.kind == MTH &&
mcimadamore@853 2041 !argtype.isErroneous()) {
jjg@1127 2042 owntype = (tree.getTag().isIncOrDecUnaryOp())
duke@1 2043 ? tree.arg.type
duke@1 2044 : operator.type.getReturnType();
duke@1 2045 int opc = ((OperatorSymbol)operator).opcode;
duke@1 2046
duke@1 2047 // If the argument is constant, fold it.
duke@1 2048 if (argtype.constValue() != null) {
duke@1 2049 Type ctype = cfolder.fold1(opc, argtype);
duke@1 2050 if (ctype != null) {
duke@1 2051 owntype = cfolder.coerce(ctype, owntype);
duke@1 2052
duke@1 2053 // Remove constant types from arguments to
duke@1 2054 // conserve space. The parser will fold concatenations
duke@1 2055 // of string literals; the code here also
duke@1 2056 // gets rid of intermediate results when some of the
duke@1 2057 // operands are constant identifiers.
duke@1 2058 if (tree.arg.type.tsym == syms.stringType.tsym) {
duke@1 2059 tree.arg.type = syms.stringType;
duke@1 2060 }
duke@1 2061 }
duke@1 2062 }
duke@1 2063 }
duke@1 2064 result = check(tree, owntype, VAL, pkind, pt);
duke@1 2065 }
duke@1 2066
duke@1 2067 public void visitBinary(JCBinary tree) {
duke@1 2068 // Attribute arguments.
duke@1 2069 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
duke@1 2070 Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
duke@1 2071
duke@1 2072 // Find operator.
duke@1 2073 Symbol operator = tree.operator =
duke@1 2074 rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
duke@1 2075
jjg@110 2076 Type owntype = types.createErrorType(tree.type);
mcimadamore@853 2077 if (operator.kind == MTH &&
mcimadamore@853 2078 !left.isErroneous() &&
mcimadamore@853 2079 !right.isErroneous()) {
duke@1 2080 owntype = operator.type.getReturnType();
duke@1 2081 int opc = chk.checkOperator(tree.lhs.pos(),
duke@1 2082 (OperatorSymbol)operator,
duke@1 2083 tree.getTag(),
duke@1 2084 left,
duke@1 2085 right);
duke@1 2086
duke@1 2087 // If both arguments are constants, fold them.
duke@1 2088 if (left.constValue() != null && right.constValue() != null) {
duke@1 2089 Type ctype = cfolder.fold2(opc, left, right);
duke@1 2090 if (ctype != null) {
duke@1 2091 owntype = cfolder.coerce(ctype, owntype);
duke@1 2092
duke@1 2093 // Remove constant types from arguments to
duke@1 2094 // conserve space. The parser will fold concatenations
duke@1 2095 // of string literals; the code here also
duke@1 2096 // gets rid of intermediate results when some of the
duke@1 2097 // operands are constant identifiers.
duke@1 2098 if (tree.lhs.type.tsym == syms.stringType.tsym) {
duke@1 2099 tree.lhs.type = syms.stringType;
duke@1 2100 }
duke@1 2101 if (tree.rhs.type.tsym == syms.stringType.tsym) {
duke@1 2102 tree.rhs.type = syms.stringType;
duke@1 2103 }
duke@1 2104 }
duke@1 2105 }
duke@1 2106
duke@1 2107 // Check that argument types of a reference ==, != are
duke@1 2108 // castable to each other, (JLS???).
duke@1 2109 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
duke@1 2110 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
duke@1 2111 log.error(tree.pos(), "incomparable.types", left, right);
duke@1 2112 }
duke@1 2113 }
duke@1 2114
duke@1 2115 chk.checkDivZero(tree.rhs.pos(), operator, right);
duke@1 2116 }
duke@1 2117 result = check(tree, owntype, VAL, pkind, pt);
duke@1 2118 }
duke@1 2119
duke@1 2120 public void visitTypeCast(JCTypeCast tree) {
duke@1 2121 Type clazztype = attribType(tree.clazz, env);
mcimadamore@638 2122 chk.validate(tree.clazz, env, false);
mcimadamore@674 2123 //a fresh environment is required for 292 inference to work properly ---
mcimadamore@674 2124 //see Infer.instantiatePolymorphicSignatureInstance()
mcimadamore@674 2125 Env<AttrContext> localEnv = env.dup(tree);
mcimadamore@674 2126 Type exprtype = attribExpr(tree.expr, localEnv, Infer.anyPoly);
duke@1 2127 Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
duke@1 2128 if (exprtype.constValue() != null)
duke@1 2129 owntype = cfolder.coerce(exprtype, owntype);
duke@1 2130 result = check(tree, capture(owntype), VAL, pkind, pt);
duke@1 2131 }
duke@1 2132
duke@1 2133 public void visitTypeTest(JCInstanceOf tree) {
duke@1 2134 Type exprtype = chk.checkNullOrRefType(
duke@1 2135 tree.expr.pos(), attribExpr(tree.expr, env));
duke@1 2136 Type clazztype = chk.checkReifiableReferenceType(
duke@1 2137 tree.clazz.pos(), attribType(tree.clazz, env));
mcimadamore@638 2138 chk.validate(tree.clazz, env, false);
duke@1 2139 chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
duke@1 2140 result = check(tree, syms.booleanType, VAL, pkind, pt);
duke@1 2141 }
duke@1 2142
duke@1 2143 public void visitIndexed(JCArrayAccess tree) {
jjg@110 2144 Type owntype = types.createErrorType(tree.type);
duke@1 2145 Type atype = attribExpr(tree.indexed, env);
duke@1 2146 attribExpr(tree.index, env, syms.intType);
duke@1 2147 if (types.isArray(atype))
duke@1 2148 owntype = types.elemtype(atype);
duke@1 2149 else if (atype.tag != ERROR)
duke@1 2150 log.error(tree.pos(), "array.req.but.found", atype);
duke@1 2151 if ((pkind & VAR) == 0) owntype = capture(owntype);
duke@1 2152 result = check(tree, owntype, VAR, pkind, pt);
duke@1 2153 }
duke@1 2154
duke@1 2155 public void visitIdent(JCIdent tree) {
duke@1 2156 Symbol sym;
duke@1 2157 boolean varArgs = false;
duke@1 2158
duke@1 2159 // Find symbol
duke@1 2160 if (pt.tag == METHOD || pt.tag == FORALL) {
duke@1 2161 // If we are looking for a method, the prototype `pt' will be a
duke@1 2162 // method type with the type of the call's arguments as parameters.
duke@1 2163 env.info.varArgs = false;
duke@1 2164 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments());
duke@1 2165 varArgs = env.info.varArgs;
duke@1 2166 } else if (tree.sym != null && tree.sym.kind != VAR) {
duke@1 2167 sym = tree.sym;
duke@1 2168 } else {
duke@1 2169 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind);
duke@1 2170 }
duke@1 2171 tree.sym = sym;
duke@1 2172
duke@1 2173 // (1) Also find the environment current for the class where
duke@1 2174 // sym is defined (`symEnv').
duke@1 2175 // Only for pre-tiger versions (1.4 and earlier):
duke@1 2176 // (2) Also determine whether we access symbol out of an anonymous
duke@1 2177 // class in a this or super call. This is illegal for instance
duke@1 2178 // members since such classes don't carry a this$n link.
duke@1 2179 // (`noOuterThisPath').
duke@1 2180 Env<AttrContext> symEnv = env;
duke@1 2181 boolean noOuterThisPath = false;
duke@1 2182 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
duke@1 2183 (sym.kind & (VAR | MTH | TYP)) != 0 &&
duke@1 2184 sym.owner.kind == TYP &&
duke@1 2185 tree.name != names._this && tree.name != names._super) {
duke@1 2186
duke@1 2187 // Find environment in which identifier is defined.
duke@1 2188 while (symEnv.outer != null &&
duke@1 2189 !sym.isMemberOf(symEnv.enclClass.sym, types)) {
duke@1 2190 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
duke@1 2191 noOuterThisPath = !allowAnonOuterThis;
duke@1 2192 symEnv = symEnv.outer;
duke@1 2193 }
duke@1 2194 }
duke@1 2195
duke@1 2196 // If symbol is a variable, ...
duke@1 2197 if (sym.kind == VAR) {
duke@1 2198 VarSymbol v = (VarSymbol)sym;
duke@1 2199
duke@1 2200 // ..., evaluate its initializer, if it has one, and check for
duke@1 2201 // illegal forward reference.
duke@1 2202 checkInit(tree, env, v, false);
duke@1 2203
duke@1 2204 // If symbol is a local variable accessed from an embedded
duke@1 2205 // inner class check that it is final.
duke@1 2206 if (v.owner.kind == MTH &&
duke@1 2207 v.owner != env.info.scope.owner &&
duke@1 2208 (v.flags_field & FINAL) == 0) {
duke@1 2209 log.error(tree.pos(),
duke@1 2210 "local.var.accessed.from.icls.needs.final",
duke@1 2211 v);
duke@1 2212 }
duke@1 2213
duke@1 2214 // If we are expecting a variable (as opposed to a value), check
duke@1 2215 // that the variable is assignable in the current environment.
duke@1 2216 if (pkind == VAR)
duke@1 2217 checkAssignable(tree.pos(), v, null, env);
duke@1 2218 }
duke@1 2219
duke@1 2220 // In a constructor body,
duke@1 2221 // if symbol is a field or instance method, check that it is
duke@1 2222 // not accessed before the supertype constructor is called.
duke@1 2223 if ((symEnv.info.isSelfCall || noOuterThisPath) &&
duke@1 2224 (sym.kind & (VAR | MTH)) != 0 &&
duke@1 2225 sym.owner.kind == TYP &&
duke@1 2226 (sym.flags() & STATIC) == 0) {
duke@1 2227 chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
duke@1 2228 }
duke@1 2229 Env<AttrContext> env1 = env;
mcimadamore@28 2230 if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
duke@1 2231 // If the found symbol is inaccessible, then it is
duke@1 2232 // accessed through an enclosing instance. Locate this
duke@1 2233 // enclosing instance:
duke@1 2234 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
duke@1 2235 env1 = env1.outer;
duke@1 2236 }
duke@1 2237 result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs);
duke@1 2238 }
duke@1 2239
duke@1 2240 public void visitSelect(JCFieldAccess tree) {
duke@1 2241 // Determine the expected kind of the qualifier expression.
duke@1 2242 int skind = 0;
duke@1 2243 if (tree.name == names._this || tree.name == names._super ||
duke@1 2244 tree.name == names._class)
duke@1 2245 {
duke@1 2246 skind = TYP;
duke@1 2247 } else {
duke@1 2248 if ((pkind & PCK) != 0) skind = skind | PCK;
duke@1 2249 if ((pkind & TYP) != 0) skind = skind | TYP | PCK;
duke@1 2250 if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
duke@1 2251 }
duke@1 2252
duke@1 2253 // Attribute the qualifier expression, and determine its symbol (if any).
duke@1 2254 Type site = attribTree(tree.selected, env, skind, Infer.anyPoly);
duke@1 2255 if ((pkind & (PCK | TYP)) == 0)
duke@1 2256 site = capture(site); // Capture field access
duke@1 2257
duke@1 2258 // don't allow T.class T[].class, etc
duke@1 2259 if (skind == TYP) {
duke@1 2260 Type elt = site;
duke@1 2261 while (elt.tag == ARRAY)
duke@1 2262 elt = ((ArrayType)elt).elemtype;
duke@1 2263 if (elt.tag == TYPEVAR) {
duke@1 2264 log.error(tree.pos(), "type.var.cant.be.deref");
jjg@110 2265 result = types.createErrorType(tree.type);
duke@1 2266 return;
duke@1 2267 }
duke@1 2268 }
duke@1 2269
duke@1 2270 // If qualifier symbol is a type or `super', assert `selectSuper'
duke@1 2271 // for the selection. This is relevant for determining whether
duke@1 2272 // protected symbols are accessible.
duke@1 2273 Symbol sitesym = TreeInfo.symbol(tree.selected);
duke@1 2274 boolean selectSuperPrev = env.info.selectSuper;
duke@1 2275 env.info.selectSuper =
duke@1 2276 sitesym != null &&
duke@1 2277 sitesym.name == names._super;
duke@1 2278
duke@1 2279 // If selected expression is polymorphic, strip
duke@1 2280 // type parameters and remember in env.info.tvars, so that
duke@1 2281 // they can be added later (in Attr.checkId and Infer.instantiateMethod).
duke@1 2282 if (tree.selected.type.tag == FORALL) {
duke@1 2283 ForAll pstype = (ForAll)tree.selected.type;
duke@1 2284 env.info.tvars = pstype.tvars;
duke@1 2285 site = tree.selected.type = pstype.qtype;
duke@1 2286 }
duke@1 2287
duke@1 2288 // Determine the symbol represented by the selection.
duke@1 2289 env.info.varArgs = false;
mcimadamore@829 2290 Symbol sym = selectSym(tree, sitesym, site, env, pt, pkind);
duke@1 2291 if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) {
duke@1 2292 site = capture(site);
mcimadamore@829 2293 sym = selectSym(tree, sitesym, site, env, pt, pkind);
duke@1 2294 }
duke@1 2295 boolean varArgs = env.info.varArgs;
duke@1 2296 tree.sym = sym;
duke@1 2297
mcimadamore@27 2298 if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR) {
mcimadamore@27 2299 while (site.tag == TYPEVAR) site = site.getUpperBound();
mcimadamore@27 2300 site = capture(site);
mcimadamore@27 2301 }
duke@1 2302
duke@1 2303 // If that symbol is a variable, ...
duke@1 2304 if (sym.kind == VAR) {
duke@1 2305 VarSymbol v = (VarSymbol)sym;
duke@1 2306
duke@1 2307 // ..., evaluate its initializer, if it has one, and check for
duke@1 2308 // illegal forward reference.
duke@1 2309 checkInit(tree, env, v, true);
duke@1 2310
duke@1 2311 // If we are expecting a variable (as opposed to a value), check
duke@1 2312 // that the variable is assignable in the current environment.
duke@1 2313 if (pkind == VAR)
duke@1 2314 checkAssignable(tree.pos(), v, tree.selected, env);
duke@1 2315 }
duke@1 2316
darcy@609 2317 if (sitesym != null &&
darcy@609 2318 sitesym.kind == VAR &&
darcy@609 2319 ((VarSymbol)sitesym).isResourceVariable() &&
darcy@609 2320 sym.kind == MTH &&
mcimadamore@954 2321 sym.name.equals(names.close) &&
darcy@609 2322 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
mcimadamore@795 2323 env.info.lint.isEnabled(LintCategory.TRY)) {
mcimadamore@795 2324 log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
darcy@609 2325 }
darcy@609 2326
duke@1 2327 // Disallow selecting a type from an expression
duke@1 2328 if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
duke@1 2329 tree.type = check(tree.selected, pt,
duke@1 2330 sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt);
duke@1 2331 }
duke@1 2332
duke@1 2333 if (isType(sitesym)) {
duke@1 2334 if (sym.name == names._this) {
duke@1 2335 // If `C' is the currently compiled class, check that
duke@1 2336 // C.this' does not appear in a call to a super(...)
duke@1 2337 if (env.info.isSelfCall &&
duke@1 2338 site.tsym == env.enclClass.sym) {
duke@1 2339 chk.earlyRefError(tree.pos(), sym);
duke@1 2340 }
duke@1 2341 } else {
duke@1 2342 // Check if type-qualified fields or methods are static (JLS)
duke@1 2343 if ((sym.flags() & STATIC) == 0 &&
duke@1 2344 sym.name != names._super &&
duke@1 2345 (sym.kind == VAR || sym.kind == MTH)) {
duke@1 2346 rs.access(rs.new StaticError(sym),
duke@1 2347 tree.pos(), site, sym.name, true);
duke@1 2348 }
duke@1 2349 }
jjg@505 2350 } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
jjg@505 2351 // If the qualified item is not a type and the selected item is static, report
jjg@505 2352 // a warning. Make allowance for the class of an array type e.g. Object[].class)
jjg@505 2353 chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
duke@1 2354 }
duke@1 2355
duke@1 2356 // If we are selecting an instance member via a `super', ...
duke@1 2357 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
duke@1 2358
duke@1 2359 // Check that super-qualified symbols are not abstract (JLS)
duke@1 2360 rs.checkNonAbstract(tree.pos(), sym);
duke@1 2361
duke@1 2362 if (site.isRaw()) {
duke@1 2363 // Determine argument types for site.
duke@1 2364 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
duke@1 2365 if (site1 != null) site = site1;
duke@1 2366 }
duke@1 2367 }
duke@1 2368
duke@1 2369 env.info.selectSuper = selectSuperPrev;
duke@1 2370 result = checkId(tree, site, sym, env, pkind, pt, varArgs);
duke@1 2371 env.info.tvars = List.nil();
duke@1 2372 }
duke@1 2373 //where
duke@1 2374 /** Determine symbol referenced by a Select expression,
duke@1 2375 *
duke@1 2376 * @param tree The select tree.
duke@1 2377 * @param site The type of the selected expression,
duke@1 2378 * @param env The current environment.
duke@1 2379 * @param pt The current prototype.
duke@1 2380 * @param pkind The expected kind(s) of the Select expression.
duke@1 2381 */
duke@1 2382 private Symbol selectSym(JCFieldAccess tree,
mcimadamore@829 2383 Type site,
mcimadamore@829 2384 Env<AttrContext> env,
mcimadamore@829 2385 Type pt,
mcimadamore@829 2386 int pkind) {
mcimadamore@829 2387 return selectSym(tree, site.tsym, site, env, pt, pkind);
mcimadamore@829 2388 }
mcimadamore@829 2389 private Symbol selectSym(JCFieldAccess tree,
mcimadamore@829 2390 Symbol location,
duke@1 2391 Type site,
duke@1 2392 Env<AttrContext> env,
duke@1 2393 Type pt,
duke@1 2394 int pkind) {
duke@1 2395 DiagnosticPosition pos = tree.pos();
duke@1 2396 Name name = tree.name;
duke@1 2397 switch (site.tag) {
duke@1 2398 case PACKAGE:
duke@1 2399 return rs.access(
duke@1 2400 rs.findIdentInPackage(env, site.tsym, name, pkind),
mcimadamore@829 2401 pos, location, site, name, true);
duke@1 2402 case ARRAY:
duke@1 2403 case CLASS:
duke@1 2404 if (pt.tag == METHOD || pt.tag == FORALL) {
duke@1 2405 return rs.resolveQualifiedMethod(
mcimadamore@829 2406 pos, env, location, site, name, pt.getParameterTypes(), pt.getTypeArguments());
duke@1 2407 } else if (name == names._this || name == names._super) {
duke@1 2408 return rs.resolveSelf(pos, env, site.tsym, name);
duke@1 2409 } else if (name == names._class) {
duke@1 2410 // In this case, we have already made sure in
duke@1 2411 // visitSelect that qualifier expression is a type.
duke@1 2412 Type t = syms.classType;
duke@1 2413 List<Type> typeargs = allowGenerics
duke@1 2414 ? List.of(types.erasure(site))
duke@1 2415 : List.<Type>nil();
duke@1 2416 t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
duke@1 2417 return new VarSymbol(
duke@1 2418 STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
duke@1 2419 } else {
duke@1 2420 // We are seeing a plain identifier as selector.
duke@1 2421 Symbol sym = rs.findIdentInType(env, site, name, pkind);
duke@1 2422 if ((pkind & ERRONEOUS) == 0)
mcimadamore@829 2423 sym = rs.access(sym, pos, location, site, name, true);
duke@1 2424 return sym;
duke@1 2425 }
duke@1 2426 case WILDCARD:
duke@1 2427 throw new AssertionError(tree);
duke@1 2428 case TYPEVAR:
duke@1 2429 // Normally, site.getUpperBound() shouldn't be null.
duke@1 2430 // It should only happen during memberEnter/attribBase
mcimadamore@829 2431 // when determining the super type which *must* beac
duke@1 2432 // done before attributing the type variables. In
duke@1 2433 // other words, we are seeing this illegal program:
duke@1 2434 // class B<T> extends A<T.foo> {}
duke@1 2435 Symbol sym = (site.getUpperBound() != null)
mcimadamore@829 2436 ? selectSym(tree, location, capture(site.getUpperBound()), env, pt, pkind)
duke@1 2437 : null;
mcimadamore@361 2438 if (sym == null) {
duke@1 2439 log.error(pos, "type.var.cant.be.deref");
duke@1 2440 return syms.errSymbol;
duke@1 2441 } else {
mcimadamore@155 2442 Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
mcimadamore@155 2443 rs.new AccessError(env, site, sym) :
mcimadamore@155 2444 sym;
mcimadamore@829 2445 rs.access(sym2, pos, location, site, name, true);
duke@1 2446 return sym;
duke@1 2447 }
duke@1 2448 case ERROR:
duke@1 2449 // preserve identifier names through errors
jjg@110 2450 return types.createErrorType(name, site.tsym, site).tsym;
duke@1 2451 default:
duke@1 2452 // The qualifier expression is of a primitive type -- only
duke@1 2453 // .class is allowed for these.
duke@1 2454 if (name == names._class) {
duke@1 2455 // In this case, we have already made sure in Select that
duke@1 2456 // qualifier expression is a type.
duke@1 2457 Type t = syms.classType;
duke@1 2458 Type arg = types.boxedClass(site).type;
duke@1 2459 t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
duke@1 2460 return new VarSymbol(
duke@1 2461 STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
duke@1 2462 } else {
duke@1 2463 log.error(pos, "cant.deref", site);
duke@1 2464 return syms.errSymbol;
duke@1 2465 }
duke@1 2466 }
duke@1 2467 }
duke@1 2468
duke@1 2469 /** Determine type of identifier or select expression and check that
duke@1 2470 * (1) the referenced symbol is not deprecated
duke@1 2471 * (2) the symbol's type is safe (@see checkSafe)
duke@1 2472 * (3) if symbol is a variable, check that its type and kind are
duke@1 2473 * compatible with the prototype and protokind.
duke@1 2474 * (4) if symbol is an instance field of a raw type,
duke@1 2475 * which is being assigned to, issue an unchecked warning if its
duke@1 2476 * type changes under erasure.
duke@1 2477 * (5) if symbol is an instance method of a raw type, issue an
duke@1 2478 * unchecked warning if its argument types change under erasure.
duke@1 2479 * If checks succeed:
duke@1 2480 * If symbol is a constant, return its constant type
duke@1 2481 * else if symbol is a method, return its result type
duke@1 2482 * otherwise return its type.
duke@1 2483 * Otherwise return errType.
duke@1 2484 *
duke@1 2485 * @param tree The syntax tree representing the identifier
duke@1 2486 * @param site If this is a select, the type of the selected
duke@1 2487 * expression, otherwise the type of the current class.
duke@1 2488 * @param sym The symbol representing the identifier.
duke@1 2489 * @param env The current environment.
duke@1 2490 * @param pkind The set of expected kinds.
duke@1 2491 * @param pt The expected type.
duke@1 2492 */
duke@1 2493 Type checkId(JCTree tree,
duke@1 2494 Type site,
duke@1 2495 Symbol sym,
duke@1 2496 Env<AttrContext> env,
duke@1 2497 int pkind,
duke@1 2498 Type pt,
duke@1 2499 boolean useVarargs) {
jjg@110 2500 if (pt.isErroneous()) return types.createErrorType(site);
duke@1 2501 Type owntype; // The computed type of this identifier occurrence.
duke@1 2502 switch (sym.kind) {
duke@1 2503 case TYP:
duke@1 2504 // For types, the computed type equals the symbol's type,
duke@1 2505 // except for two situations:
duke@1 2506 owntype = sym.type;
duke@1 2507 if (owntype.tag == CLASS) {
duke@1 2508 Type ownOuter = owntype.getEnclosingType();
duke@1 2509
duke@1 2510 // (a) If the symbol's type is parameterized, erase it
duke@1 2511 // because no type parameters were given.
duke@1 2512 // We recover generic outer type later in visitTypeApply.
duke@1 2513 if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
duke@1 2514 owntype = types.erasure(owntype);
duke@1 2515 }
duke@1 2516
duke@1 2517 // (b) If the symbol's type is an inner class, then
duke@1 2518 // we have to interpret its outer type as a superclass
duke@1 2519 // of the site type. Example:
duke@1 2520 //
duke@1 2521 // class Tree<A> { class Visitor { ... } }
duke@1 2522 // class PointTree extends Tree<Point> { ... }
duke@1 2523 // ...PointTree.Visitor...
duke@1 2524 //
duke@1 2525 // Then the type of the last expression above is
duke@1 2526 // Tree<Point>.Visitor.
duke@1 2527 else if (ownOuter.tag == CLASS && site != ownOuter) {
duke@1 2528 Type normOuter = site;
duke@1 2529 if (normOuter.tag == CLASS)
duke@1 2530 normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
duke@1 2531 if (normOuter == null) // perhaps from an import
duke@1 2532 normOuter = types.erasure(ownOuter);
duke@1 2533 if (normOuter != ownOuter)
duke@1 2534 owntype = new ClassType(
duke@1 2535 normOuter, List.<Type>nil(), owntype.tsym);
duke@1 2536 }
duke@1 2537 }
duke@1 2538 break;
duke@1 2539 case VAR:
duke@1 2540 VarSymbol v = (VarSymbol)sym;
duke@1 2541 // Test (4): if symbol is an instance field of a raw type,
duke@1 2542 // which is being assigned to, issue an unchecked warning if
duke@1 2543 // its type changes under erasure.
duke@1 2544 if (allowGenerics &&
duke@1 2545 pkind == VAR &&
duke@1 2546 v.owner.kind == TYP &&
duke@1 2547 (v.flags() & STATIC) == 0 &&
duke@1 2548 (site.tag == CLASS || site.tag == TYPEVAR)) {
duke@1 2549 Type s = types.asOuterSuper(site, v.owner);
duke@1 2550 if (s != null &&
duke@1 2551 s.isRaw() &&
duke@1 2552 !types.isSameType(v.type, v.erasure(types))) {
duke@1 2553 chk.warnUnchecked(tree.pos(),
duke@1 2554 "unchecked.assign.to.var",
duke@1 2555 v, s);
duke@1 2556 }
duke@1 2557 }
duke@1 2558 // The computed type of a variable is the type of the
duke@1 2559 // variable symbol, taken as a member of the site type.
duke@1 2560 owntype = (sym.owner.kind == TYP &&
duke@1 2561 sym.name != names._this && sym.name != names._super)
duke@1 2562 ? types.memberType(site, sym)
duke@1 2563 : sym.type;
duke@1 2564
duke@1 2565 if (env.info.tvars.nonEmpty()) {
duke@1 2566 Type owntype1 = new ForAll(env.info.tvars, owntype);
duke@1 2567 for (List<Type> l = env.info.tvars; l.nonEmpty(); l = l.tail)
duke@1 2568 if (!owntype.contains(l.head)) {
duke@1 2569 log.error(tree.pos(), "undetermined.type", owntype1);
jjg@110 2570 owntype1 = types.createErrorType(owntype1);
duke@1 2571 }
duke@1 2572 owntype = owntype1;
duke@1 2573 }
duke@1 2574
duke@1 2575 // If the variable is a constant, record constant value in
duke@1 2576 // computed type.
duke@1 2577 if (v.getConstValue() != null && isStaticReference(tree))
duke@1 2578 owntype = owntype.constType(v.getConstValue());
duke@1 2579
duke@1 2580 if (pkind == VAL) {
duke@1 2581 owntype = capture(owntype); // capture "names as expressions"
duke@1 2582 }
duke@1 2583 break;
duke@1 2584 case MTH: {
duke@1 2585 JCMethodInvocation app = (JCMethodInvocation)env.tree;
duke@1 2586 owntype = checkMethod(site, sym, env, app.args,
duke@1 2587 pt.getParameterTypes(), pt.getTypeArguments(),
duke@1 2588 env.info.varArgs);
duke@1 2589 break;
duke@1 2590 }
duke@1 2591 case PCK: case ERR:
duke@1 2592 owntype = sym.type;
duke@1 2593 break;
duke@1 2594 default:
duke@1 2595 throw new AssertionError("unexpected kind: " + sym.kind +
duke@1 2596 " in tree " + tree);
duke@1 2597 }
duke@1 2598
duke@1 2599 // Test (1): emit a `deprecation' warning if symbol is deprecated.
duke@1 2600 // (for constructors, the error was given when the constructor was
duke@1 2601 // resolved)
mcimadamore@852 2602
mcimadamore@852 2603 if (sym.name != names.init) {
mcimadamore@852 2604 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
mcimadamore@852 2605 chk.checkSunAPI(tree.pos(), sym);
jjg@377 2606 }
duke@1 2607
duke@1 2608 // Test (3): if symbol is a variable, check that its type and
duke@1 2609 // kind are compatible with the prototype and protokind.
duke@1 2610 return check(tree, owntype, sym.kind, pkind, pt);
duke@1 2611 }
duke@1 2612
duke@1 2613 /** Check that variable is initialized and evaluate the variable's
duke@1 2614 * initializer, if not yet done. Also check that variable is not
duke@1 2615 * referenced before it is defined.
duke@1 2616 * @param tree The tree making up the variable reference.
duke@1 2617 * @param env The current environment.
duke@1 2618 * @param v The variable's symbol.
duke@1 2619 */
duke@1 2620 private void checkInit(JCTree tree,
duke@1 2621 Env<AttrContext> env,
duke@1 2622 VarSymbol v,
duke@1 2623 boolean onlyWarning) {
duke@1 2624 // System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
duke@1 2625 // tree.pos + " " + v.pos + " " +
duke@1 2626 // Resolve.isStatic(env));//DEBUG
duke@1 2627
duke@1 2628 // A forward reference is diagnosed if the declaration position
duke@1 2629 // of the variable is greater than the current tree position
duke@1 2630 // and the tree and variable definition occur in the same class
duke@1 2631 // definition. Note that writes don't count as references.
duke@1 2632 // This check applies only to class and instance
duke@1 2633 // variables. Local variables follow different scope rules,
duke@1 2634 // and are subject to definite assignment checking.
mcimadamore@94 2635 if ((env.info.enclVar == v || v.pos > tree.pos) &&
duke@1 2636 v.owner.kind == TYP &&
duke@1 2637 canOwnInitializer(env.info.scope.owner) &&
duke@1 2638 v.owner == env.info.scope.owner.enclClass() &&
duke@1 2639 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
jjg@1127 2640 (!env.tree.hasTag(ASSIGN) ||
duke@1 2641 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
mcimadamore@94 2642 String suffix = (env.info.enclVar == v) ?
mcimadamore@94 2643 "self.ref" : "forward.ref";
mcimadamore@18 2644 if (!onlyWarning || isStaticEnumField(v)) {
mcimadamore@94 2645 log.error(tree.pos(), "illegal." + suffix);
duke@1 2646 } else if (useBeforeDeclarationWarning) {
mcimadamore@94 2647 log.warning(tree.pos(), suffix, v);
duke@1 2648 }
duke@1 2649 }
duke@1 2650
duke@1 2651 v.getConstValue(); // ensure initializer is evaluated
duke@1 2652
duke@1 2653 checkEnumInitializer(tree, env, v);
duke@1 2654 }
duke@1 2655
duke@1 2656 /**
duke@1 2657 * Check for illegal references to static members of enum. In
duke@1 2658 * an enum type, constructors and initializers may not
duke@1 2659 * reference its static members unless they are constant.
duke@1 2660 *
duke@1 2661 * @param tree The tree making up the variable reference.
duke@1 2662 * @param env The current environment.
duke@1 2663 * @param v The variable's symbol.
jjh@972 2664 * @jls section 8.9 Enums
duke@1 2665 */
duke@1 2666 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
jjh@972 2667 // JLS:
duke@1 2668 //
duke@1 2669 // "It is a compile-time error to reference a static field
duke@1 2670 // of an enum type that is not a compile-time constant
duke@1 2671 // (15.28) from constructors, instance initializer blocks,
duke@1 2672 // or instance variable initializer expressions of that
duke@1 2673 // type. It is a compile-time error for the constructors,
duke@1 2674 // instance initializer blocks, or instance variable
duke@1 2675 // initializer expressions of an enum constant e to refer
duke@1 2676 // to itself or to an enum constant of the same type that
duke@1 2677 // is declared to the right of e."
mcimadamore@18 2678 if (isStaticEnumField(v)) {
duke@1 2679 ClassSymbol enclClass = env.info.scope.owner.enclClass();
duke@1 2680
duke@1 2681 if (enclClass == null || enclClass.owner == null)
duke@1 2682 return;
duke@1 2683
duke@1 2684 // See if the enclosing class is the enum (or a
duke@1 2685 // subclass thereof) declaring v. If not, this
duke@1 2686 // reference is OK.
duke@1 2687 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
duke@1 2688 return;
duke@1 2689
duke@1 2690 // If the reference isn't from an initializer, then
duke@1 2691 // the reference is OK.
duke@1 2692 if (!Resolve.isInitializer(env))
duke@1 2693 return;
duke@1 2694
duke@1 2695 log.error(tree.pos(), "illegal.enum.static.ref");
duke@1 2696 }
duke@1 2697 }
duke@1 2698
mcimadamore@18 2699 /** Is the given symbol a static, non-constant field of an Enum?
mcimadamore@18 2700 * Note: enum literals should not be regarded as such
mcimadamore@18 2701 */
mcimadamore@18 2702 private boolean isStaticEnumField(VarSymbol v) {
mcimadamore@18 2703 return Flags.isEnum(v.owner) &&
mcimadamore@18 2704 Flags.isStatic(v) &&
mcimadamore@18 2705 !Flags.isConstant(v) &&
mcimadamore@18 2706 v.name != names._class;
duke@1 2707 }
duke@1 2708
duke@1 2709 /** Can the given symbol be the owner of code which forms part
duke@1 2710 * if class initialization? This is the case if the symbol is
duke@1 2711 * a type or field, or if the symbol is the synthetic method.
duke@1 2712 * owning a block.
duke@1 2713 */
duke@1 2714 private boolean canOwnInitializer(Symbol sym) {
duke@1 2715 return
duke@1 2716 (sym.kind & (VAR | TYP)) != 0 ||
duke@1 2717 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
duke@1 2718 }
duke@1 2719
duke@1 2720 Warner noteWarner = new Warner();
duke@1 2721
duke@1 2722 /**
duke@1 2723 * Check that method arguments conform to its instantation.
duke@1 2724 **/
duke@1 2725 public Type checkMethod(Type site,
duke@1 2726 Symbol sym,
duke@1 2727 Env<AttrContext> env,
duke@1 2728 final List<JCExpression> argtrees,
duke@1 2729 List<Type> argtypes,
duke@1 2730 List<Type> typeargtypes,
duke@1 2731 boolean useVarargs) {
duke@1 2732 // Test (5): if symbol is an instance method of a raw type, issue
duke@1 2733 // an unchecked warning if its argument types change under erasure.
duke@1 2734 if (allowGenerics &&
duke@1 2735 (sym.flags() & STATIC) == 0 &&
duke@1 2736 (site.tag == CLASS || site.tag == TYPEVAR)) {
duke@1 2737 Type s = types.asOuterSuper(site, sym.owner);
duke@1 2738 if (s != null && s.isRaw() &&
duke@1 2739 !types.isSameTypes(sym.type.getParameterTypes(),
duke@1 2740 sym.erasure(types).getParameterTypes())) {
duke@1 2741 chk.warnUnchecked(env.tree.pos(),
duke@1 2742 "unchecked.call.mbr.of.raw.type",
duke@1 2743 sym, s);
duke@1 2744 }
duke@1 2745 }
duke@1 2746
duke@1 2747 // Compute the identifier's instantiated type.
duke@1 2748 // For methods, we need to compute the instance type by
duke@1 2749 // Resolve.instantiate from the symbol's type as well as
duke@1 2750 // any type arguments and value arguments.
mcimadamore@795 2751 noteWarner.clear();
duke@1 2752 Type owntype = rs.instantiate(env,
duke@1 2753 site,
duke@1 2754 sym,
duke@1 2755 argtypes,
duke@1 2756 typeargtypes,
duke@1 2757 true,
duke@1 2758 useVarargs,
duke@1 2759 noteWarner);
mcimadamore@795 2760 boolean warned = noteWarner.hasNonSilentLint(LintCategory.UNCHECKED);
duke@1 2761
duke@1 2762 // If this fails, something went wrong; we should not have
duke@1 2763 // found the identifier in the first place.
duke@1 2764 if (owntype == null) {
duke@1 2765 if (!pt.isErroneous())
duke@1 2766 log.error(env.tree.pos(),
duke@1 2767 "internal.error.cant.instantiate",
duke@1 2768 sym, site,
duke@1 2769 Type.toString(pt.getParameterTypes()));
jjg@110 2770 owntype = types.createErrorType(site);
duke@1 2771 } else {
duke@1 2772 // System.out.println("call : " + env.tree);
duke@1 2773 // System.out.println("method : " + owntype);
duke@1 2774 // System.out.println("actuals: " + argtypes);
duke@1 2775 List<Type> formals = owntype.getParameterTypes();
duke@1 2776 Type last = useVarargs ? formals.last() : null;
duke@1 2777 if (sym.name==names.init &&
duke@1 2778 sym.owner == syms.enumSym)
duke@1 2779 formals = formals.tail.tail;
duke@1 2780 List<JCExpression> args = argtrees;
duke@1 2781 while (formals.head != last) {
duke@1 2782 JCTree arg = args.head;
duke@1 2783 Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head);
duke@1 2784 assertConvertible(arg, arg.type, formals.head, warn);
mcimadamore@795 2785 warned |= warn.hasNonSilentLint(LintCategory.UNCHECKED);
duke@1 2786 args = args.tail;
duke@1 2787 formals = formals.tail;
duke@1 2788 }
duke@1 2789 if (useVarargs) {
duke@1 2790 Type varArg = types.elemtype(last);
duke@1 2791 while (args.tail != null) {
duke@1 2792 JCTree arg = args.head;
duke@1 2793 Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg);
duke@1 2794 assertConvertible(arg, arg.type, varArg, warn);
mcimadamore@795 2795 warned |= warn.hasNonSilentLint(LintCategory.UNCHECKED);
duke@1 2796 args = args.tail;
duke@1 2797 }
duke@1 2798 } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
duke@1 2799 // non-varargs call to varargs method
duke@1 2800 Type varParam = owntype.getParameterTypes().last();
duke@1 2801 Type lastArg = argtypes.last();
duke@1 2802 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
duke@1 2803 !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
duke@1 2804 log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
duke@1 2805 types.elemtype(varParam),
duke@1 2806 varParam);
duke@1 2807 }
duke@1 2808
duke@1 2809 if (warned && sym.type.tag == FORALL) {
duke@1 2810 chk.warnUnchecked(env.tree.pos(),
duke@1 2811 "unchecked.meth.invocation.applied",
mcimadamore@161 2812 kindName(sym),
mcimadamore@161 2813 sym.name,
mcimadamore@161 2814 rs.methodArguments(sym.type.getParameterTypes()),
mcimadamore@161 2815 rs.methodArguments(argtypes),
mcimadamore@161 2816 kindName(sym.location()),
mcimadamore@161 2817 sym.location());
duke@1 2818 owntype = new MethodType(owntype.getParameterTypes(),
duke@1 2819 types.erasure(owntype.getReturnType()),
mcimadamore@895 2820 types.erasure(owntype.getThrownTypes()),
duke@1 2821 syms.methodClass);
duke@1 2822 }
duke@1 2823 if (useVarargs) {
duke@1 2824 JCTree tree = env.tree;
mcimadamore@580 2825 Type argtype = owntype.getParameterTypes().last();
mcimadamore@547 2826 if (owntype.getReturnType().tag != FORALL || warned) {
mcimadamore@795 2827 chk.checkVararg(env.tree.pos(), owntype.getParameterTypes(), sym);
mcimadamore@547 2828 }
mcimadamore@580 2829 Type elemtype = types.elemtype(argtype);
duke@1 2830 switch (tree.getTag()) {
jjg@1127 2831 case APPLY:
duke@1 2832 ((JCMethodInvocation) tree).varargsElement = elemtype;
duke@1 2833 break;
jjg@1127 2834 case NEWCLASS:
duke@1 2835 ((JCNewClass) tree).varargsElement = elemtype;
duke@1 2836 break;
duke@1 2837 default:
duke@1 2838 throw new AssertionError(""+tree);
duke@1 2839 }
duke@1 2840 }
duke@1 2841 }
duke@1 2842 return owntype;
duke@1 2843 }
duke@1 2844
duke@1 2845 private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
duke@1 2846 if (types.isConvertible(actual, formal, warn))
duke@1 2847 return;
duke@1 2848
duke@1 2849 if (formal.isCompound()
duke@1 2850 && types.isSubtype(actual, types.supertype(formal))
duke@1 2851 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
duke@1 2852 return;
duke@1 2853
duke@1 2854 if (false) {
duke@1 2855 // TODO: make assertConvertible work
mcimadamore@89 2856 chk.typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal);
duke@1 2857 throw new AssertionError("Tree: " + tree
duke@1 2858 + " actual:" + actual
duke@1 2859 + " formal: " + formal);
duke@1 2860 }
duke@1 2861 }
duke@1 2862
duke@1 2863 public void visitLiteral(JCLiteral tree) {
duke@1 2864 result = check(
duke@1 2865 tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt);
duke@1 2866 }
duke@1 2867 //where
duke@1 2868 /** Return the type of a literal with given type tag.
duke@1 2869 */
duke@1 2870 Type litType(int tag) {
duke@1 2871 return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
duke@1 2872 }
duke@1 2873
duke@1 2874 public void visitTypeIdent(JCPrimitiveTypeTree tree) {
duke@1 2875 result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt);
duke@1 2876 }
duke@1 2877
duke@1 2878 public void visitTypeArray(JCArrayTypeTree tree) {
duke@1 2879 Type etype = attribType(tree.elemtype, env);
duke@1 2880 Type type = new ArrayType(etype, syms.arrayClass);
duke@1 2881 result = check(tree, type, TYP, pkind, pt);
duke@1 2882 }
duke@1 2883
duke@1 2884 /** Visitor method for parameterized types.
duke@1 2885 * Bound checking is left until later, since types are attributed
duke@1 2886 * before supertype structure is completely known
duke@1 2887 */
duke@1 2888 public void visitTypeApply(JCTypeApply tree) {
jjg@110 2889 Type owntype = types.createErrorType(tree.type);
duke@1 2890
duke@1 2891 // Attribute functor part of application and make sure it's a class.
duke@1 2892 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
duke@1 2893
duke@1 2894 // Attribute type parameters
duke@1 2895 List<Type> actuals = attribTypes(tree.arguments, env);
duke@1 2896
duke@1 2897 if (clazztype.tag == CLASS) {
duke@1 2898 List<Type> formals = clazztype.tsym.type.getTypeArguments();
mcimadamore@1060 2899 if (actuals.isEmpty()) //diamond
mcimadamore@1060 2900 actuals = formals;
mcimadamore@1060 2901
mcimadamore@1060 2902 if (actuals.length() == formals.length()) {
duke@1 2903 List<Type> a = actuals;
duke@1 2904 List<Type> f = formals;
duke@1 2905 while (a.nonEmpty()) {
duke@1 2906 a.head = a.head.withTypeVar(f.head);
duke@1 2907 a = a.tail;
duke@1 2908 f = f.tail;
duke@1 2909 }
duke@1 2910 // Compute the proper generic outer
duke@1 2911 Type clazzOuter = clazztype.getEnclosingType();
duke@1 2912 if (clazzOuter.tag == CLASS) {
duke@1 2913 Type site;
jjg@308 2914 JCExpression clazz = TreeInfo.typeIn(tree.clazz);
jjg@1127 2915 if (clazz.hasTag(IDENT)) {
duke@1 2916 site = env.enclClass.sym.type;
jjg@1127 2917 } else if (clazz.hasTag(SELECT)) {
jjg@308 2918 site = ((JCFieldAccess) clazz).selected.type;
duke@1 2919 } else throw new AssertionError(""+tree);
duke@1 2920 if (clazzOuter.tag == CLASS && site != clazzOuter) {
duke@1 2921 if (site.tag == CLASS)
duke@1 2922 site = types.asOuterSuper(site, clazzOuter.tsym);
duke@1 2923 if (site == null)
duke@1 2924 site = types.erasure(clazzOuter);
duke@1 2925 clazzOuter = site;
duke@1 2926 }
duke@1 2927 }
mcimadamore@536 2928 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
duke@1 2929 } else {
duke@1 2930 if (formals.length() != 0) {
duke@1 2931 log.error(tree.pos(), "wrong.number.type.args",
duke@1 2932 Integer.toString(formals.length()));
duke@1 2933 } else {
duke@1 2934 log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
duke@1 2935 }
jjg@110 2936 owntype = types.createErrorType(tree.type);
duke@1 2937 }
duke@1 2938 }
duke@1 2939 result = check(tree, owntype, TYP, pkind, pt);
duke@1 2940 }
duke@1 2941
darcy@969 2942 public void visitTypeUnion(JCTypeUnion tree) {
mcimadamore@774 2943 ListBuffer<Type> multicatchTypes = ListBuffer.lb();
jjg@988 2944 ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
mcimadamore@774 2945 for (JCExpression typeTree : tree.alternatives) {
mcimadamore@774 2946 Type ctype = attribType(typeTree, env);
mcimadamore@774 2947 ctype = chk.checkType(typeTree.pos(),
mcimadamore@774 2948 chk.checkClassType(typeTree.pos(), ctype),
mcimadamore@774 2949 syms.throwableType);
mcimadamore@949 2950 if (!ctype.isErroneous()) {
darcy@969 2951 //check that alternatives of a union type are pairwise
mcimadamore@949 2952 //unrelated w.r.t. subtyping
mcimadamore@949 2953 if (chk.intersects(ctype, multicatchTypes.toList())) {
mcimadamore@949 2954 for (Type t : multicatchTypes) {
mcimadamore@949 2955 boolean sub = types.isSubtype(ctype, t);
mcimadamore@949 2956 boolean sup = types.isSubtype(t, ctype);
mcimadamore@949 2957 if (sub || sup) {
mcimadamore@949 2958 //assume 'a' <: 'b'
mcimadamore@949 2959 Type a = sub ? ctype : t;
mcimadamore@949 2960 Type b = sub ? t : ctype;
mcimadamore@949 2961 log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
mcimadamore@949 2962 }
mcimadamore@949 2963 }
mcimadamore@949 2964 }
mcimadamore@949 2965 multicatchTypes.append(ctype);
jjg@988 2966 if (all_multicatchTypes != null)
jjg@988 2967 all_multicatchTypes.append(ctype);
jjg@988 2968 } else {
jjg@988 2969 if (all_multicatchTypes == null) {
jjg@988 2970 all_multicatchTypes = ListBuffer.lb();
jjg@988 2971 all_multicatchTypes.appendList(multicatchTypes);
jjg@988 2972 }
jjg@988 2973 all_multicatchTypes.append(ctype);
mcimadamore@949 2974 }
mcimadamore@774 2975 }
jjg@988 2976 Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, pkind, pt);
jjg@988 2977 if (t.tag == CLASS) {
jjg@988 2978 List<Type> alternatives =
jjg@988 2979 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
jjg@988 2980 t = new UnionClassType((ClassType) t, alternatives);
jjg@988 2981 }
jjg@988 2982 tree.type = result = t;
mcimadamore@550 2983 }
mcimadamore@550 2984
duke@1 2985 public void visitTypeParameter(JCTypeParameter tree) {
duke@1 2986 TypeVar a = (TypeVar)tree.type;
duke@1 2987 Set<Type> boundSet = new HashSet<Type>();
duke@1 2988 if (a.bound.isErroneous())
duke@1 2989 return;
duke@1 2990 List<Type> bs = types.getBounds(a);
duke@1 2991 if (tree.bounds.nonEmpty()) {
duke@1 2992 // accept class or interface or typevar as first bound.
duke@1 2993 Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
duke@1 2994 boundSet.add(types.erasure(b));
mcimadamore@159 2995 if (b.isErroneous()) {
mcimadamore@159 2996 a.bound = b;
mcimadamore@159 2997 }
mcimadamore@159 2998 else if (b.tag == TYPEVAR) {
duke@1 2999 // if first bound was a typevar, do not accept further bounds.
duke@1 3000 if (tree.bounds.tail.nonEmpty()) {
duke@1 3001 log.error(tree.bounds.tail.head.pos(),
duke@1 3002 "type.var.may.not.be.followed.by.other.bounds");
duke@1 3003 tree.bounds = List.of(tree.bounds.head);
mcimadamore@7 3004 a.bound = bs.head;
duke@1 3005 }
duke@1 3006 } else {
duke@1 3007 // if first bound was a class or interface, accept only interfaces
duke@1 3008 // as further bounds.
duke@1 3009 for (JCExpression bound : tree.bounds.tail) {
duke@1 3010 bs = bs.tail;
duke@1 3011 Type i = checkBase(bs.head, bound, env, false, true, false);
mcimadamore@159 3012 if (i.isErroneous())
mcimadamore@159 3013 a.bound = i;
mcimadamore@159 3014 else if (i.tag == CLASS)
duke@1 3015 chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
duke@1 3016 }
duke@1 3017 }
duke@1 3018 }
duke@1 3019 bs = types.getBounds(a);
duke@1 3020
duke@1 3021 // in case of multiple bounds ...
duke@1 3022 if (bs.length() > 1) {
duke@1 3023 // ... the variable's bound is a class type flagged COMPOUND
duke@1 3024 // (see comment for TypeVar.bound).
duke@1 3025 // In this case, generate a class tree that represents the
duke@1 3026 // bound class, ...
jjg@904 3027 JCExpression extending;
duke@1 3028 List<JCExpression> implementing;
duke@1 3029 if ((bs.head.tsym.flags() & INTERFACE) == 0) {
duke@1 3030 extending = tree.bounds.head;
duke@1 3031 implementing = tree.bounds.tail;
duke@1 3032 } else {
duke@1 3033 extending = null;
duke@1 3034 implementing = tree.bounds;
duke@1 3035 }
duke@1 3036 JCClassDecl cd = make.at(tree.pos).ClassDef(
duke@1 3037 make.Modifiers(PUBLIC | ABSTRACT),
duke@1 3038 tree.name, List.<JCTypeParameter>nil(),
duke@1 3039 extending, implementing, List.<JCTree>nil());
duke@1 3040
duke@1 3041 ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
jjg@816 3042 Assert.check((c.flags() & COMPOUND) != 0);
duke@1 3043 cd.sym = c;
duke@1 3044 c.sourcefile = env.toplevel.sourcefile;
duke@1 3045
duke@1 3046 // ... and attribute the bound class
duke@1 3047 c.flags_field |= UNATTRIBUTED;
duke@1 3048 Env<AttrContext> cenv = enter.classEnv(cd, env);
duke@1 3049 enter.typeEnvs.put(c, cenv);
duke@1 3050 }
duke@1 3051 }
duke@1 3052
duke@1 3053
duke@1 3054 public void visitWildcard(JCWildcard tree) {
duke@1 3055 //- System.err.println("visitWildcard("+tree+");");//DEBUG
duke@1 3056 Type type = (tree.kind.kind == BoundKind.UNBOUND)
duke@1 3057 ? syms.objectType
duke@1 3058 : attribType(tree.inner, env);
duke@1 3059 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
duke@1 3060 tree.kind.kind,
duke@1 3061 syms.boundClass),
duke@1 3062 TYP, pkind, pt);
duke@1 3063 }
duke@1 3064
duke@1 3065 public void visitAnnotation(JCAnnotation tree) {
duke@1 3066 log.error(tree.pos(), "annotation.not.valid.for.type", pt);
duke@1 3067 result = tree.type = syms.errType;
duke@1 3068 }
duke@1 3069
duke@1 3070 public void visitErroneous(JCErroneous tree) {
duke@1 3071 if (tree.errs != null)
duke@1 3072 for (JCTree err : tree.errs)
duke@1 3073 attribTree(err, env, ERR, pt);
duke@1 3074 result = tree.type = syms.errType;
duke@1 3075 }
duke@1 3076
duke@1 3077 /** Default visitor method for all other trees.
duke@1 3078 */
duke@1 3079 public void visitTree(JCTree tree) {
duke@1 3080 throw new AssertionError();
duke@1 3081 }
duke@1 3082
jjg@931 3083 /**
jjg@931 3084 * Attribute an env for either a top level tree or class declaration.
jjg@931 3085 */
jjg@931 3086 public void attrib(Env<AttrContext> env) {
jjg@1127 3087 if (env.tree.hasTag(TOPLEVEL))
jjg@931 3088 attribTopLevel(env);
jjg@931 3089 else
jjg@931 3090 attribClass(env.tree.pos(), env.enclClass.sym);
jjg@931 3091 }
jjg@931 3092
jjg@931 3093 /**
jjg@931 3094 * Attribute a top level tree. These trees are encountered when the
jjg@931 3095 * package declaration has annotations.
jjg@931 3096 */
jjg@931 3097 public void attribTopLevel(Env<AttrContext> env) {
jjg@931 3098 JCCompilationUnit toplevel = env.toplevel;
jjg@931 3099 try {
jjg@931 3100 annotate.flush();
jjg@931 3101 chk.validateAnnotations(toplevel.packageAnnotations, toplevel.packge);
jjg@931 3102 } catch (CompletionFailure ex) {
jjg@931 3103 chk.completionError(toplevel.pos(), ex);
jjg@931 3104 }
jjg@931 3105 }
jjg@931 3106
duke@1 3107 /** Main method: attribute class definition associated with given class symbol.
duke@1 3108 * reporting completion failures at the given position.
duke@1 3109 * @param pos The source position at which completion errors are to be
duke@1 3110 * reported.
duke@1 3111 * @param c The class symbol whose definition will be attributed.
duke@1 3112 */
duke@1 3113 public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
duke@1 3114 try {
duke@1 3115 annotate.flush();
duke@1 3116 attribClass(c);
duke@1 3117 } catch (CompletionFailure ex) {
duke@1 3118 chk.completionError(pos, ex);
duke@1 3119 }
duke@1 3120 }
duke@1 3121
duke@1 3122 /** Attribute class definition associated with given class symbol.
duke@1 3123 * @param c The class symbol whose definition will be attributed.
duke@1 3124 */
duke@1 3125 void attribClass(ClassSymbol c) throws CompletionFailure {
duke@1 3126 if (c.type.tag == ERROR) return;
duke@1 3127
duke@1 3128 // Check for cycles in the inheritance graph, which can arise from
duke@1 3129 // ill-formed class files.
duke@1 3130 chk.checkNonCyclic(null, c.type);
duke@1 3131
duke@1 3132 Type st = types.supertype(c.type);
duke@1 3133 if ((c.flags_field & Flags.COMPOUND) == 0) {
duke@1 3134 // First, attribute superclass.
duke@1 3135 if (st.tag == CLASS)
duke@1 3136 attribClass((ClassSymbol)st.tsym);
duke@1 3137
duke@1 3138 // Next attribute owner, if it is a class.
duke@1 3139 if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
duke@1 3140 attribClass((ClassSymbol)c.owner);
duke@1 3141 }
duke@1 3142
duke@1 3143 // The previous operations might have attributed the current class
duke@1 3144 // if there was a cycle. So we test first whether the class is still
duke@1 3145 // UNATTRIBUTED.
duke@1 3146 if ((c.flags_field & UNATTRIBUTED) != 0) {
duke@1 3147 c.flags_field &= ~UNATTRIBUTED;
duke@1 3148
duke@1 3149 // Get environment current at the point of class definition.
duke@1 3150 Env<AttrContext> env = enter.typeEnvs.get(c);
duke@1 3151
duke@1 3152 // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
duke@1 3153 // because the annotations were not available at the time the env was created. Therefore,
duke@1 3154 // we look up the environment chain for the first enclosing environment for which the
duke@1 3155 // lint value is set. Typically, this is the parent env, but might be further if there
duke@1 3156 // are any envs created as a result of TypeParameter nodes.
duke@1 3157 Env<AttrContext> lintEnv = env;
duke@1 3158 while (lintEnv.info.lint == null)
duke@1 3159 lintEnv = lintEnv.next;
duke@1 3160
duke@1 3161 // Having found the enclosing lint value, we can initialize the lint value for this class
duke@1 3162 env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags());
duke@1 3163
duke@1 3164 Lint prevLint = chk.setLint(env.info.lint);
duke@1 3165 JavaFileObject prev = log.useSource(c.sourcefile);
duke@1 3166
duke@1 3167 try {
duke@1 3168 // java.lang.Enum may not be subclassed by a non-enum
duke@1 3169 if (st.tsym == syms.enumSym &&
duke@1 3170 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
duke@1 3171 log.error(env.tree.pos(), "enum.no.subclassing");
duke@1 3172
duke@1 3173 // Enums may not be extended by source-level classes
duke@1 3174 if (st.tsym != null &&
duke@1 3175 ((st.tsym.flags_field & Flags.ENUM) != 0) &&
mcimadamore@82 3176 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
duke@1 3177 !target.compilerBootstrap(c)) {
duke@1 3178 log.error(env.tree.pos(), "enum.types.not.extensible");
duke@1 3179 }
duke@1 3180 attribClassBody(env, c);
duke@1 3181
duke@1 3182 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
duke@1 3183 } finally {
duke@1 3184 log.useSource(prev);
duke@1 3185 chk.setLint(prevLint);
duke@1 3186 }
duke@1 3187
duke@1 3188 }
duke@1 3189 }
duke@1 3190
duke@1 3191 public void visitImport(JCImport tree) {
duke@1 3192 // nothing to do
duke@1 3193 }
duke@1 3194
duke@1 3195 /** Finish the attribution of a class. */
duke@1 3196 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
duke@1 3197 JCClassDecl tree = (JCClassDecl)env.tree;
jjg@816 3198 Assert.check(c == tree.sym);
duke@1 3199
duke@1 3200 // Validate annotations
duke@1 3201 chk.validateAnnotations(tree.mods.annotations, c);
duke@1 3202
duke@1 3203 // Validate type parameters, supertype and interfaces.
mcimadamore@42 3204 attribBounds(tree.typarams);
mcimadamore@537 3205 if (!c.isAnonymous()) {
mcimadamore@537 3206 //already checked if anonymous
mcimadamore@537 3207 chk.validate(tree.typarams, env);
mcimadamore@537 3208 chk.validate(tree.extending, env);
mcimadamore@537 3209 chk.validate(tree.implementing, env);
mcimadamore@537 3210 }
duke@1 3211
duke@1 3212 // If this is a non-abstract class, check that it has no abstract
duke@1 3213 // methods or unimplemented methods of an implemented interface.
duke@1 3214 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
duke@1 3215 if (!relax)
duke@1 3216 chk.checkAllDefined(tree.pos(), c);
duke@1 3217 }
duke@1 3218
duke@1 3219 if ((c.flags() & ANNOTATION) != 0) {
duke@1 3220 if (tree.implementing.nonEmpty())
duke@1 3221 log.error(tree.implementing.head.pos(),
duke@1 3222 "cant.extend.intf.annotation");
duke@1 3223 if (tree.typarams.nonEmpty())
duke@1 3224 log.error(tree.typarams.head.pos(),
duke@1 3225 "intf.annotation.cant.have.type.params");
duke@1 3226 } else {
duke@1 3227 // Check that all extended classes and interfaces
duke@1 3228 // are compatible (i.e. no two define methods with same arguments
duke@1 3229 // yet different return types). (JLS 8.4.6.3)
duke@1 3230 chk.checkCompatibleSupertypes(tree.pos(), c.type);
duke@1 3231 }
duke@1 3232
duke@1 3233 // Check that class does not import the same parameterized interface
duke@1 3234 // with two different argument lists.
duke@1 3235 chk.checkClassBounds(tree.pos(), c.type);
duke@1 3236
duke@1 3237 tree.type = c.type;
duke@1 3238
jjg@816 3239 for (List<JCTypeParameter> l = tree.typarams;
jjg@816 3240 l.nonEmpty(); l = l.tail) {
jjg@816 3241 Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
duke@1 3242 }
duke@1 3243
duke@1 3244 // Check that a generic class doesn't extend Throwable
duke@1 3245 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
duke@1 3246 log.error(tree.extending.pos(), "generic.throwable");
duke@1 3247
duke@1 3248 // Check that all methods which implement some
duke@1 3249 // method conform to the method they implement.
duke@1 3250 chk.checkImplementations(tree);
duke@1 3251
mcimadamore@951 3252 //check that a resource implementing AutoCloseable cannot throw InterruptedException
mcimadamore@951 3253 checkAutoCloseable(tree.pos(), env, c.type);
mcimadamore@951 3254
duke@1 3255 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 3256 // Attribute declaration
duke@1 3257 attribStat(l.head, env);
duke@1 3258 // Check that declarations in inner classes are not static (JLS 8.1.2)
duke@1 3259 // Make an exception for static constants.
duke@1 3260 if (c.owner.kind != PCK &&
duke@1 3261 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
duke@1 3262 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
duke@1 3263 Symbol sym = null;
jjg@1127 3264 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
duke@1 3265 if (sym == null ||
duke@1 3266 sym.kind != VAR ||
duke@1 3267 ((VarSymbol) sym).getConstValue() == null)
mcimadamore@855 3268 log.error(l.head.pos(), "icls.cant.have.static.decl", c);
duke@1 3269 }
duke@1 3270 }
duke@1 3271
duke@1 3272 // Check for cycles among non-initial constructors.
duke@1 3273 chk.checkCyclicConstructors(tree);
duke@1 3274
duke@1 3275 // Check for cycles among annotation elements.
duke@1 3276 chk.checkNonCyclicElements(tree);
duke@1 3277
duke@1 3278 // Check for proper use of serialVersionUID
mcimadamore@795 3279 if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
duke@1 3280 isSerializable(c) &&
duke@1 3281 (c.flags() & Flags.ENUM) == 0 &&
duke@1 3282 (c.flags() & ABSTRACT) == 0) {
duke@1 3283 checkSerialVersionUID(tree, c);
duke@1 3284 }
duke@1 3285 }
duke@1 3286 // where
duke@1 3287 /** check if a class is a subtype of Serializable, if that is available. */
duke@1 3288 private boolean isSerializable(ClassSymbol c) {
duke@1 3289 try {
duke@1 3290 syms.serializableType.complete();
duke@1 3291 }
duke@1 3292 catch (CompletionFailure e) {
duke@1 3293 return false;
duke@1 3294 }
duke@1 3295 return types.isSubtype(c.type, syms.serializableType);
duke@1 3296 }
duke@1 3297
duke@1 3298 /** Check that an appropriate serialVersionUID member is defined. */
duke@1 3299 private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
duke@1 3300
duke@1 3301 // check for presence of serialVersionUID
duke@1 3302 Scope.Entry e = c.members().lookup(names.serialVersionUID);
duke@1 3303 while (e.scope != null && e.sym.kind != VAR) e = e.next();
duke@1 3304 if (e.scope == null) {
mcimadamore@795 3305 log.warning(LintCategory.SERIAL,
jjg@612 3306 tree.pos(), "missing.SVUID", c);
duke@1 3307 return;
duke@1 3308 }
duke@1 3309
duke@1 3310 // check that it is static final
duke@1 3311 VarSymbol svuid = (VarSymbol)e.sym;
duke@1 3312 if ((svuid.flags() & (STATIC | FINAL)) !=
duke@1 3313 (STATIC | FINAL))
mcimadamore@795 3314 log.warning(LintCategory.SERIAL,
jjg@612 3315 TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
duke@1 3316
duke@1 3317 // check that it is long
duke@1 3318 else if (svuid.type.tag != TypeTags.LONG)
mcimadamore@795 3319 log.warning(LintCategory.SERIAL,
jjg@612 3320 TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
duke@1 3321
duke@1 3322 // check constant
duke@1 3323 else if (svuid.getConstValue() == null)
mcimadamore@795 3324 log.warning(LintCategory.SERIAL,
jjg@612 3325 TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
duke@1 3326 }
duke@1 3327
duke@1 3328 private Type capture(Type type) {
duke@1 3329 return types.capture(type);
duke@1 3330 }
jjg@308 3331
mcimadamore@676 3332 // <editor-fold desc="post-attribution visitor">
mcimadamore@676 3333
mcimadamore@676 3334 /**
mcimadamore@676 3335 * Handle missing types/symbols in an AST. This routine is useful when
mcimadamore@676 3336 * the compiler has encountered some errors (which might have ended up
mcimadamore@676 3337 * terminating attribution abruptly); if the compiler is used in fail-over
mcimadamore@676 3338 * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
mcimadamore@676 3339 * prevents NPE to be progagated during subsequent compilation steps.
mcimadamore@676 3340 */
mcimadamore@676 3341 public void postAttr(Env<AttrContext> env) {
mcimadamore@676 3342 new PostAttrAnalyzer().scan(env.tree);
mcimadamore@676 3343 }
mcimadamore@676 3344
mcimadamore@676 3345 class PostAttrAnalyzer extends TreeScanner {
mcimadamore@676 3346
mcimadamore@676 3347 private void initTypeIfNeeded(JCTree that) {
mcimadamore@676 3348 if (that.type == null) {
mcimadamore@676 3349 that.type = syms.unknownType;
mcimadamore@676 3350 }
mcimadamore@676 3351 }
mcimadamore@676 3352
mcimadamore@676 3353 @Override
mcimadamore@676 3354 public void scan(JCTree tree) {
mcimadamore@676 3355 if (tree == null) return;
mcimadamore@676 3356 if (tree instanceof JCExpression) {
mcimadamore@676 3357 initTypeIfNeeded(tree);
mcimadamore@676 3358 }
mcimadamore@676 3359 super.scan(tree);
mcimadamore@676 3360 }
mcimadamore@676 3361
mcimadamore@676 3362 @Override
mcimadamore@676 3363 public void visitIdent(JCIdent that) {
mcimadamore@676 3364 if (that.sym == null) {
mcimadamore@676 3365 that.sym = syms.unknownSymbol;
mcimadamore@676 3366 }
mcimadamore@676 3367 }
mcimadamore@676 3368
mcimadamore@676 3369 @Override
mcimadamore@676 3370 public void visitSelect(JCFieldAccess that) {
mcimadamore@676 3371 if (that.sym == null) {
mcimadamore@676 3372 that.sym = syms.unknownSymbol;
mcimadamore@676 3373 }
mcimadamore@676 3374 super.visitSelect(that);
mcimadamore@676 3375 }
mcimadamore@676 3376
mcimadamore@676 3377 @Override
mcimadamore@676 3378 public void visitClassDef(JCClassDecl that) {
mcimadamore@676 3379 initTypeIfNeeded(that);
mcimadamore@676 3380 if (that.sym == null) {
mcimadamore@676 3381 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
mcimadamore@676 3382 }
mcimadamore@676 3383 super.visitClassDef(that);
mcimadamore@676 3384 }
mcimadamore@676 3385
mcimadamore@676 3386 @Override
mcimadamore@676 3387 public void visitMethodDef(JCMethodDecl that) {
mcimadamore@676 3388 initTypeIfNeeded(that);
mcimadamore@676 3389 if (that.sym == null) {
mcimadamore@676 3390 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
mcimadamore@676 3391 }
mcimadamore@676 3392 super.visitMethodDef(that);
mcimadamore@676 3393 }
mcimadamore@676 3394
mcimadamore@676 3395 @Override
mcimadamore@676 3396 public void visitVarDef(JCVariableDecl that) {
mcimadamore@676 3397 initTypeIfNeeded(that);
mcimadamore@676 3398 if (that.sym == null) {
mcimadamore@676 3399 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
mcimadamore@676 3400 that.sym.adr = 0;
mcimadamore@676 3401 }
mcimadamore@676 3402 super.visitVarDef(that);
mcimadamore@676 3403 }
mcimadamore@676 3404
mcimadamore@676 3405 @Override
mcimadamore@676 3406 public void visitNewClass(JCNewClass that) {
mcimadamore@676 3407 if (that.constructor == null) {
mcimadamore@676 3408 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
mcimadamore@676 3409 }
mcimadamore@676 3410 if (that.constructorType == null) {
mcimadamore@676 3411 that.constructorType = syms.unknownType;
mcimadamore@676 3412 }
mcimadamore@676 3413 super.visitNewClass(that);
mcimadamore@676 3414 }
mcimadamore@676 3415
mcimadamore@676 3416 @Override
jjg@1049 3417 public void visitAssignop(JCAssignOp that) {
jjg@1049 3418 if (that.operator == null)
jjg@1049 3419 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
jjg@1049 3420 super.visitAssignop(that);
jjg@1049 3421 }
jjg@1049 3422
jjg@1049 3423 @Override
mcimadamore@676 3424 public void visitBinary(JCBinary that) {
mcimadamore@676 3425 if (that.operator == null)
mcimadamore@676 3426 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
mcimadamore@676 3427 super.visitBinary(that);
mcimadamore@676 3428 }
mcimadamore@676 3429
mcimadamore@676 3430 @Override
mcimadamore@676 3431 public void visitUnary(JCUnary that) {
mcimadamore@676 3432 if (that.operator == null)
mcimadamore@676 3433 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
mcimadamore@676 3434 super.visitUnary(that);
mcimadamore@676 3435 }
mcimadamore@676 3436 }
mcimadamore@676 3437 // </editor-fold>
duke@1 3438 }

mercurial