src/share/classes/com/sun/tools/javac/comp/Attr.java

Mon, 02 Nov 2009 21:36:59 -0800

author
darcy
date
Mon, 02 Nov 2009 21:36:59 -0800
changeset 430
8fb9b4be3cb1
parent 383
8109aa93b212
child 504
6eca0895a644
permissions
-rw-r--r--

6827009: Project Coin: Strings in Switch
Reviewed-by: jjg, mcimadamore

duke@1 1 /*
xdono@229 2 * Copyright 1999-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
duke@1 7 * published by the Free Software Foundation. Sun designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
duke@1 9 * by Sun in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
duke@1 21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@1 22 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@1 23 * have any questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29 import java.util.Set;
duke@1 30 import javax.lang.model.element.ElementKind;
duke@1 31 import javax.tools.JavaFileObject;
duke@1 32
duke@1 33 import com.sun.tools.javac.code.*;
duke@1 34 import com.sun.tools.javac.jvm.*;
duke@1 35 import com.sun.tools.javac.tree.*;
duke@1 36 import com.sun.tools.javac.util.*;
duke@1 37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 38 import com.sun.tools.javac.util.List;
duke@1 39
duke@1 40 import com.sun.tools.javac.jvm.Target;
duke@1 41 import com.sun.tools.javac.code.Symbol.*;
duke@1 42 import com.sun.tools.javac.tree.JCTree.*;
duke@1 43 import com.sun.tools.javac.code.Type.*;
duke@1 44
duke@1 45 import com.sun.source.tree.IdentifierTree;
duke@1 46 import com.sun.source.tree.MemberSelectTree;
duke@1 47 import com.sun.source.tree.TreeVisitor;
duke@1 48 import com.sun.source.util.SimpleTreeVisitor;
duke@1 49
duke@1 50 import static com.sun.tools.javac.code.Flags.*;
duke@1 51 import static com.sun.tools.javac.code.Kinds.*;
duke@1 52 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 53
duke@1 54 /** This is the main context-dependent analysis phase in GJC. It
duke@1 55 * encompasses name resolution, type checking and constant folding as
duke@1 56 * subtasks. Some subtasks involve auxiliary classes.
duke@1 57 * @see Check
duke@1 58 * @see Resolve
duke@1 59 * @see ConstFold
duke@1 60 * @see Infer
duke@1 61 *
duke@1 62 * <p><b>This is NOT part of any API supported by Sun Microsystems. If
duke@1 63 * you write code that depends on this, you do so at your own risk.
duke@1 64 * This code and its internal interfaces are subject to change or
duke@1 65 * deletion without notice.</b>
duke@1 66 */
duke@1 67 public class Attr extends JCTree.Visitor {
duke@1 68 protected static final Context.Key<Attr> attrKey =
duke@1 69 new Context.Key<Attr>();
duke@1 70
jjg@113 71 final Names names;
duke@1 72 final Log log;
duke@1 73 final Symtab syms;
duke@1 74 final Resolve rs;
duke@1 75 final Check chk;
duke@1 76 final MemberEnter memberEnter;
duke@1 77 final TreeMaker make;
duke@1 78 final ConstFold cfolder;
duke@1 79 final Enter enter;
duke@1 80 final Target target;
duke@1 81 final Types types;
mcimadamore@89 82 final JCDiagnostic.Factory diags;
duke@1 83 final Annotate annotate;
duke@1 84
duke@1 85 public static Attr instance(Context context) {
duke@1 86 Attr instance = context.get(attrKey);
duke@1 87 if (instance == null)
duke@1 88 instance = new Attr(context);
duke@1 89 return instance;
duke@1 90 }
duke@1 91
duke@1 92 protected Attr(Context context) {
duke@1 93 context.put(attrKey, this);
duke@1 94
jjg@113 95 names = Names.instance(context);
duke@1 96 log = Log.instance(context);
duke@1 97 syms = Symtab.instance(context);
duke@1 98 rs = Resolve.instance(context);
duke@1 99 chk = Check.instance(context);
duke@1 100 memberEnter = MemberEnter.instance(context);
duke@1 101 make = TreeMaker.instance(context);
duke@1 102 enter = Enter.instance(context);
duke@1 103 cfolder = ConstFold.instance(context);
duke@1 104 target = Target.instance(context);
duke@1 105 types = Types.instance(context);
mcimadamore@89 106 diags = JCDiagnostic.Factory.instance(context);
duke@1 107 annotate = Annotate.instance(context);
duke@1 108
duke@1 109 Options options = Options.instance(context);
duke@1 110
duke@1 111 Source source = Source.instance(context);
duke@1 112 allowGenerics = source.allowGenerics();
duke@1 113 allowVarargs = source.allowVarargs();
duke@1 114 allowEnums = source.allowEnums();
duke@1 115 allowBoxing = source.allowBoxing();
duke@1 116 allowCovariantReturns = source.allowCovariantReturns();
duke@1 117 allowAnonOuterThis = source.allowAnonOuterThis();
darcy@430 118 allowStringsInSwitch = source.allowStringsInSwitch();
darcy@430 119 sourceName = source.name;
duke@1 120 relax = (options.get("-retrofit") != null ||
duke@1 121 options.get("-relax") != null);
duke@1 122 useBeforeDeclarationWarning = options.get("useBeforeDeclarationWarning") != null;
jrose@267 123 allowInvokedynamic = options.get("invokedynamic") != null;
jjg@377 124 enableSunApiLintControl = options.get("enableSunApiLintControl") != null;
duke@1 125 }
duke@1 126
duke@1 127 /** Switch: relax some constraints for retrofit mode.
duke@1 128 */
duke@1 129 boolean relax;
duke@1 130
duke@1 131 /** Switch: support generics?
duke@1 132 */
duke@1 133 boolean allowGenerics;
duke@1 134
duke@1 135 /** Switch: allow variable-arity methods.
duke@1 136 */
duke@1 137 boolean allowVarargs;
duke@1 138
duke@1 139 /** Switch: support enums?
duke@1 140 */
duke@1 141 boolean allowEnums;
duke@1 142
duke@1 143 /** Switch: support boxing and unboxing?
duke@1 144 */
duke@1 145 boolean allowBoxing;
duke@1 146
duke@1 147 /** Switch: support covariant result types?
duke@1 148 */
duke@1 149 boolean allowCovariantReturns;
duke@1 150
duke@1 151 /** Switch: allow references to surrounding object from anonymous
duke@1 152 * objects during constructor call?
duke@1 153 */
duke@1 154 boolean allowAnonOuterThis;
duke@1 155
jrose@267 156 /** Switch: allow invokedynamic syntax
jrose@267 157 */
jrose@267 158 boolean allowInvokedynamic;
jrose@267 159
duke@1 160 /**
duke@1 161 * Switch: warn about use of variable before declaration?
duke@1 162 * RFE: 6425594
duke@1 163 */
duke@1 164 boolean useBeforeDeclarationWarning;
duke@1 165
jjg@377 166 /**
jjg@377 167 * Switch: allow lint infrastructure to control Sun proprietary
jjg@377 168 * API warnings.
jjg@377 169 */
jjg@377 170 boolean enableSunApiLintControl;
jjg@377 171
darcy@430 172 /**
darcy@430 173 * Switch: allow strings in switch?
darcy@430 174 */
darcy@430 175 boolean allowStringsInSwitch;
darcy@430 176
darcy@430 177 /**
darcy@430 178 * Switch: name of source level; used for error reporting.
darcy@430 179 */
darcy@430 180 String sourceName;
darcy@430 181
duke@1 182 /** Check kind and type of given tree against protokind and prototype.
duke@1 183 * If check succeeds, store type in tree and return it.
duke@1 184 * If check fails, store errType in tree and return it.
duke@1 185 * No checks are performed if the prototype is a method type.
jjg@110 186 * It is not necessary in this case since we know that kind and type
duke@1 187 * are correct.
duke@1 188 *
duke@1 189 * @param tree The tree whose kind and type is checked
duke@1 190 * @param owntype The computed type of the tree
duke@1 191 * @param ownkind The computed kind of the tree
duke@1 192 * @param pkind The expected kind (or: protokind) of the tree
duke@1 193 * @param pt The expected type (or: prototype) of the tree
duke@1 194 */
duke@1 195 Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
duke@1 196 if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
duke@1 197 if ((ownkind & ~pkind) == 0) {
duke@1 198 owntype = chk.checkType(tree.pos(), owntype, pt);
duke@1 199 } else {
duke@1 200 log.error(tree.pos(), "unexpected.type",
mcimadamore@80 201 kindNames(pkind),
mcimadamore@80 202 kindName(ownkind));
jjg@110 203 owntype = types.createErrorType(owntype);
duke@1 204 }
duke@1 205 }
duke@1 206 tree.type = owntype;
duke@1 207 return owntype;
duke@1 208 }
duke@1 209
mcimadamore@383 210 Type checkReturn(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
mcimadamore@383 211 if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
mcimadamore@383 212 if ((ownkind & ~pkind) == 0) {
mcimadamore@383 213 owntype = chk.checkReturnType(tree.pos(), owntype, pt);
mcimadamore@383 214 } else {
mcimadamore@383 215 log.error(tree.pos(), "unexpected.type",
mcimadamore@383 216 kindNames(pkind),
mcimadamore@383 217 kindName(ownkind));
mcimadamore@383 218 owntype = types.createErrorType(owntype);
mcimadamore@383 219 }
mcimadamore@383 220 }
mcimadamore@383 221 tree.type = owntype;
mcimadamore@383 222 return owntype;
mcimadamore@383 223 }
mcimadamore@383 224
duke@1 225 /** Is given blank final variable assignable, i.e. in a scope where it
duke@1 226 * may be assigned to even though it is final?
duke@1 227 * @param v The blank final variable.
duke@1 228 * @param env The current environment.
duke@1 229 */
duke@1 230 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
duke@1 231 Symbol owner = env.info.scope.owner;
duke@1 232 // owner refers to the innermost variable, method or
duke@1 233 // initializer block declaration at this point.
duke@1 234 return
duke@1 235 v.owner == owner
duke@1 236 ||
duke@1 237 ((owner.name == names.init || // i.e. we are in a constructor
duke@1 238 owner.kind == VAR || // i.e. we are in a variable initializer
duke@1 239 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block
duke@1 240 &&
duke@1 241 v.owner == owner.owner
duke@1 242 &&
duke@1 243 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
duke@1 244 }
duke@1 245
duke@1 246 /** Check that variable can be assigned to.
duke@1 247 * @param pos The current source code position.
duke@1 248 * @param v The assigned varaible
duke@1 249 * @param base If the variable is referred to in a Select, the part
duke@1 250 * to the left of the `.', null otherwise.
duke@1 251 * @param env The current environment.
duke@1 252 */
duke@1 253 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
duke@1 254 if ((v.flags() & FINAL) != 0 &&
duke@1 255 ((v.flags() & HASINIT) != 0
duke@1 256 ||
duke@1 257 !((base == null ||
duke@1 258 (base.getTag() == JCTree.IDENT && TreeInfo.name(base) == names._this)) &&
duke@1 259 isAssignableAsBlankFinal(v, env)))) {
duke@1 260 log.error(pos, "cant.assign.val.to.final.var", v);
duke@1 261 }
duke@1 262 }
duke@1 263
duke@1 264 /** Does tree represent a static reference to an identifier?
duke@1 265 * It is assumed that tree is either a SELECT or an IDENT.
duke@1 266 * We have to weed out selects from non-type names here.
duke@1 267 * @param tree The candidate tree.
duke@1 268 */
duke@1 269 boolean isStaticReference(JCTree tree) {
duke@1 270 if (tree.getTag() == JCTree.SELECT) {
duke@1 271 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
duke@1 272 if (lsym == null || lsym.kind != TYP) {
duke@1 273 return false;
duke@1 274 }
duke@1 275 }
duke@1 276 return true;
duke@1 277 }
duke@1 278
duke@1 279 /** Is this symbol a type?
duke@1 280 */
duke@1 281 static boolean isType(Symbol sym) {
duke@1 282 return sym != null && sym.kind == TYP;
duke@1 283 }
duke@1 284
duke@1 285 /** The current `this' symbol.
duke@1 286 * @param env The current environment.
duke@1 287 */
duke@1 288 Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
duke@1 289 return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
duke@1 290 }
duke@1 291
duke@1 292 /** Attribute a parsed identifier.
duke@1 293 * @param tree Parsed identifier name
duke@1 294 * @param topLevel The toplevel to use
duke@1 295 */
duke@1 296 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
duke@1 297 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
duke@1 298 localEnv.enclClass = make.ClassDef(make.Modifiers(0),
duke@1 299 syms.errSymbol.name,
duke@1 300 null, null, null, null);
duke@1 301 localEnv.enclClass.sym = syms.errSymbol;
duke@1 302 return tree.accept(identAttributer, localEnv);
duke@1 303 }
duke@1 304 // where
duke@1 305 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
duke@1 306 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
duke@1 307 @Override
duke@1 308 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
duke@1 309 Symbol site = visit(node.getExpression(), env);
duke@1 310 if (site.kind == ERR)
duke@1 311 return site;
duke@1 312 Name name = (Name)node.getIdentifier();
duke@1 313 if (site.kind == PCK) {
duke@1 314 env.toplevel.packge = (PackageSymbol)site;
duke@1 315 return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
duke@1 316 } else {
duke@1 317 env.enclClass.sym = (ClassSymbol)site;
duke@1 318 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
duke@1 319 }
duke@1 320 }
duke@1 321
duke@1 322 @Override
duke@1 323 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
duke@1 324 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
duke@1 325 }
duke@1 326 }
duke@1 327
duke@1 328 public Type coerce(Type etype, Type ttype) {
duke@1 329 return cfolder.coerce(etype, ttype);
duke@1 330 }
duke@1 331
duke@1 332 public Type attribType(JCTree node, TypeSymbol sym) {
duke@1 333 Env<AttrContext> env = enter.typeEnvs.get(sym);
duke@1 334 Env<AttrContext> localEnv = env.dup(node, env.info.dup());
duke@1 335 return attribTree(node, localEnv, Kinds.TYP, Type.noType);
duke@1 336 }
duke@1 337
duke@1 338 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
duke@1 339 breakTree = tree;
mcimadamore@303 340 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
duke@1 341 try {
duke@1 342 attribExpr(expr, env);
duke@1 343 } catch (BreakAttr b) {
duke@1 344 return b.env;
duke@1 345 } finally {
duke@1 346 breakTree = null;
duke@1 347 log.useSource(prev);
duke@1 348 }
duke@1 349 return env;
duke@1 350 }
duke@1 351
duke@1 352 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
duke@1 353 breakTree = tree;
mcimadamore@303 354 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
duke@1 355 try {
duke@1 356 attribStat(stmt, env);
duke@1 357 } catch (BreakAttr b) {
duke@1 358 return b.env;
duke@1 359 } finally {
duke@1 360 breakTree = null;
duke@1 361 log.useSource(prev);
duke@1 362 }
duke@1 363 return env;
duke@1 364 }
duke@1 365
duke@1 366 private JCTree breakTree = null;
duke@1 367
duke@1 368 private static class BreakAttr extends RuntimeException {
duke@1 369 static final long serialVersionUID = -6924771130405446405L;
duke@1 370 private Env<AttrContext> env;
duke@1 371 private BreakAttr(Env<AttrContext> env) {
duke@1 372 this.env = env;
duke@1 373 }
duke@1 374 }
duke@1 375
duke@1 376
duke@1 377 /* ************************************************************************
duke@1 378 * Visitor methods
duke@1 379 *************************************************************************/
duke@1 380
duke@1 381 /** Visitor argument: the current environment.
duke@1 382 */
duke@1 383 Env<AttrContext> env;
duke@1 384
duke@1 385 /** Visitor argument: the currently expected proto-kind.
duke@1 386 */
duke@1 387 int pkind;
duke@1 388
duke@1 389 /** Visitor argument: the currently expected proto-type.
duke@1 390 */
duke@1 391 Type pt;
duke@1 392
duke@1 393 /** Visitor result: the computed type.
duke@1 394 */
duke@1 395 Type result;
duke@1 396
duke@1 397 /** Visitor method: attribute a tree, catching any completion failure
duke@1 398 * exceptions. Return the tree's type.
duke@1 399 *
duke@1 400 * @param tree The tree to be visited.
duke@1 401 * @param env The environment visitor argument.
duke@1 402 * @param pkind The protokind visitor argument.
duke@1 403 * @param pt The prototype visitor argument.
duke@1 404 */
duke@1 405 Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt) {
duke@1 406 Env<AttrContext> prevEnv = this.env;
duke@1 407 int prevPkind = this.pkind;
duke@1 408 Type prevPt = this.pt;
duke@1 409 try {
duke@1 410 this.env = env;
duke@1 411 this.pkind = pkind;
duke@1 412 this.pt = pt;
duke@1 413 tree.accept(this);
duke@1 414 if (tree == breakTree)
duke@1 415 throw new BreakAttr(env);
duke@1 416 return result;
duke@1 417 } catch (CompletionFailure ex) {
duke@1 418 tree.type = syms.errType;
duke@1 419 return chk.completionError(tree.pos(), ex);
duke@1 420 } finally {
duke@1 421 this.env = prevEnv;
duke@1 422 this.pkind = prevPkind;
duke@1 423 this.pt = prevPt;
duke@1 424 }
duke@1 425 }
duke@1 426
duke@1 427 /** Derived visitor method: attribute an expression tree.
duke@1 428 */
duke@1 429 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
duke@1 430 return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType);
duke@1 431 }
duke@1 432
duke@1 433 /** Derived visitor method: attribute an expression tree with
duke@1 434 * no constraints on the computed type.
duke@1 435 */
duke@1 436 Type attribExpr(JCTree tree, Env<AttrContext> env) {
duke@1 437 return attribTree(tree, env, VAL, Type.noType);
duke@1 438 }
duke@1 439
duke@1 440 /** Derived visitor method: attribute a type tree.
duke@1 441 */
duke@1 442 Type attribType(JCTree tree, Env<AttrContext> env) {
mcimadamore@383 443 Type result = attribType(tree, env, Type.noType);
mcimadamore@383 444 return result;
mcimadamore@383 445 }
mcimadamore@383 446
mcimadamore@383 447 /** Derived visitor method: attribute a type tree.
mcimadamore@383 448 */
mcimadamore@383 449 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
mcimadamore@383 450 Type result = attribTree(tree, env, TYP, pt);
duke@1 451 return result;
duke@1 452 }
duke@1 453
duke@1 454 /** Derived visitor method: attribute a statement or definition tree.
duke@1 455 */
duke@1 456 public Type attribStat(JCTree tree, Env<AttrContext> env) {
duke@1 457 return attribTree(tree, env, NIL, Type.noType);
duke@1 458 }
duke@1 459
duke@1 460 /** Attribute a list of expressions, returning a list of types.
duke@1 461 */
duke@1 462 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
duke@1 463 ListBuffer<Type> ts = new ListBuffer<Type>();
duke@1 464 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 465 ts.append(attribExpr(l.head, env, pt));
duke@1 466 return ts.toList();
duke@1 467 }
duke@1 468
duke@1 469 /** Attribute a list of statements, returning nothing.
duke@1 470 */
duke@1 471 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
duke@1 472 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
duke@1 473 attribStat(l.head, env);
duke@1 474 }
duke@1 475
duke@1 476 /** Attribute the arguments in a method call, returning a list of types.
duke@1 477 */
duke@1 478 List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
duke@1 479 ListBuffer<Type> argtypes = new ListBuffer<Type>();
duke@1 480 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 481 argtypes.append(chk.checkNonVoid(
duke@1 482 l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly))));
duke@1 483 return argtypes.toList();
duke@1 484 }
duke@1 485
duke@1 486 /** Attribute a type argument list, returning a list of types.
jrose@267 487 * Caller is responsible for calling checkRefTypes.
duke@1 488 */
jrose@267 489 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
duke@1 490 ListBuffer<Type> argtypes = new ListBuffer<Type>();
duke@1 491 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
jrose@267 492 argtypes.append(attribType(l.head, env));
duke@1 493 return argtypes.toList();
duke@1 494 }
duke@1 495
jrose@267 496 /** Attribute a type argument list, returning a list of types.
jrose@267 497 * Check that all the types are references.
jrose@267 498 */
jrose@267 499 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
jrose@267 500 List<Type> types = attribAnyTypes(trees, env);
jrose@267 501 return chk.checkRefTypes(trees, types);
jrose@267 502 }
duke@1 503
duke@1 504 /**
duke@1 505 * Attribute type variables (of generic classes or methods).
duke@1 506 * Compound types are attributed later in attribBounds.
duke@1 507 * @param typarams the type variables to enter
duke@1 508 * @param env the current environment
duke@1 509 */
duke@1 510 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
duke@1 511 for (JCTypeParameter tvar : typarams) {
duke@1 512 TypeVar a = (TypeVar)tvar.type;
mcimadamore@42 513 a.tsym.flags_field |= UNATTRIBUTED;
mcimadamore@42 514 a.bound = Type.noType;
duke@1 515 if (!tvar.bounds.isEmpty()) {
duke@1 516 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
duke@1 517 for (JCExpression bound : tvar.bounds.tail)
duke@1 518 bounds = bounds.prepend(attribType(bound, env));
duke@1 519 types.setBounds(a, bounds.reverse());
duke@1 520 } else {
duke@1 521 // if no bounds are given, assume a single bound of
duke@1 522 // java.lang.Object.
duke@1 523 types.setBounds(a, List.of(syms.objectType));
duke@1 524 }
mcimadamore@42 525 a.tsym.flags_field &= ~UNATTRIBUTED;
duke@1 526 }
duke@1 527 for (JCTypeParameter tvar : typarams)
duke@1 528 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
duke@1 529 attribStats(typarams, env);
mcimadamore@42 530 }
mcimadamore@42 531
mcimadamore@42 532 void attribBounds(List<JCTypeParameter> typarams) {
duke@1 533 for (JCTypeParameter typaram : typarams) {
duke@1 534 Type bound = typaram.type.getUpperBound();
duke@1 535 if (bound != null && bound.tsym instanceof ClassSymbol) {
duke@1 536 ClassSymbol c = (ClassSymbol)bound.tsym;
duke@1 537 if ((c.flags_field & COMPOUND) != 0) {
duke@1 538 assert (c.flags_field & UNATTRIBUTED) != 0 : c;
duke@1 539 attribClass(typaram.pos(), c);
duke@1 540 }
duke@1 541 }
duke@1 542 }
duke@1 543 }
duke@1 544
duke@1 545 /**
duke@1 546 * Attribute the type references in a list of annotations.
duke@1 547 */
duke@1 548 void attribAnnotationTypes(List<JCAnnotation> annotations,
duke@1 549 Env<AttrContext> env) {
duke@1 550 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
duke@1 551 JCAnnotation a = al.head;
duke@1 552 attribType(a.annotationType, env);
duke@1 553 }
duke@1 554 }
duke@1 555
duke@1 556 /** Attribute type reference in an `extends' or `implements' clause.
duke@1 557 *
duke@1 558 * @param tree The tree making up the type reference.
duke@1 559 * @param env The environment current at the reference.
duke@1 560 * @param classExpected true if only a class is expected here.
duke@1 561 * @param interfaceExpected true if only an interface is expected here.
duke@1 562 */
duke@1 563 Type attribBase(JCTree tree,
duke@1 564 Env<AttrContext> env,
duke@1 565 boolean classExpected,
duke@1 566 boolean interfaceExpected,
duke@1 567 boolean checkExtensible) {
duke@1 568 Type t = attribType(tree, env);
duke@1 569 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
duke@1 570 }
duke@1 571 Type checkBase(Type t,
duke@1 572 JCTree tree,
duke@1 573 Env<AttrContext> env,
duke@1 574 boolean classExpected,
duke@1 575 boolean interfaceExpected,
duke@1 576 boolean checkExtensible) {
duke@1 577 if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
duke@1 578 // check that type variable is already visible
duke@1 579 if (t.getUpperBound() == null) {
duke@1 580 log.error(tree.pos(), "illegal.forward.ref");
jjg@110 581 return types.createErrorType(t);
duke@1 582 }
duke@1 583 } else {
duke@1 584 t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
duke@1 585 }
duke@1 586 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
duke@1 587 log.error(tree.pos(), "intf.expected.here");
duke@1 588 // return errType is necessary since otherwise there might
duke@1 589 // be undetected cycles which cause attribution to loop
jjg@110 590 return types.createErrorType(t);
duke@1 591 } else if (checkExtensible &&
duke@1 592 classExpected &&
duke@1 593 (t.tsym.flags() & INTERFACE) != 0) {
duke@1 594 log.error(tree.pos(), "no.intf.expected.here");
jjg@110 595 return types.createErrorType(t);
duke@1 596 }
duke@1 597 if (checkExtensible &&
duke@1 598 ((t.tsym.flags() & FINAL) != 0)) {
duke@1 599 log.error(tree.pos(),
duke@1 600 "cant.inherit.from.final", t.tsym);
duke@1 601 }
duke@1 602 chk.checkNonCyclic(tree.pos(), t);
duke@1 603 return t;
duke@1 604 }
duke@1 605
duke@1 606 public void visitClassDef(JCClassDecl tree) {
duke@1 607 // Local classes have not been entered yet, so we need to do it now:
duke@1 608 if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
duke@1 609 enter.classEnter(tree, env);
duke@1 610
duke@1 611 ClassSymbol c = tree.sym;
duke@1 612 if (c == null) {
duke@1 613 // exit in case something drastic went wrong during enter.
duke@1 614 result = null;
duke@1 615 } else {
duke@1 616 // make sure class has been completed:
duke@1 617 c.complete();
duke@1 618
duke@1 619 // If this class appears as an anonymous class
duke@1 620 // in a superclass constructor call where
duke@1 621 // no explicit outer instance is given,
duke@1 622 // disable implicit outer instance from being passed.
duke@1 623 // (This would be an illegal access to "this before super").
duke@1 624 if (env.info.isSelfCall &&
duke@1 625 env.tree.getTag() == JCTree.NEWCLASS &&
duke@1 626 ((JCNewClass) env.tree).encl == null)
duke@1 627 {
duke@1 628 c.flags_field |= NOOUTERTHIS;
duke@1 629 }
duke@1 630 attribClass(tree.pos(), c);
duke@1 631 result = tree.type = c.type;
duke@1 632 }
duke@1 633 }
duke@1 634
duke@1 635 public void visitMethodDef(JCMethodDecl tree) {
duke@1 636 MethodSymbol m = tree.sym;
duke@1 637
duke@1 638 Lint lint = env.info.lint.augment(m.attributes_field, m.flags());
duke@1 639 Lint prevLint = chk.setLint(lint);
duke@1 640 try {
duke@1 641 chk.checkDeprecatedAnnotation(tree.pos(), m);
duke@1 642
mcimadamore@42 643 attribBounds(tree.typarams);
duke@1 644
duke@1 645 // If we override any other methods, check that we do so properly.
duke@1 646 // JLS ???
duke@1 647 chk.checkOverride(tree, m);
duke@1 648
duke@1 649 // Create a new environment with local scope
duke@1 650 // for attributing the method.
duke@1 651 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
duke@1 652
duke@1 653 localEnv.info.lint = lint;
duke@1 654
duke@1 655 // Enter all type parameters into the local method scope.
duke@1 656 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
duke@1 657 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
duke@1 658
duke@1 659 ClassSymbol owner = env.enclClass.sym;
duke@1 660 if ((owner.flags() & ANNOTATION) != 0 &&
duke@1 661 tree.params.nonEmpty())
duke@1 662 log.error(tree.params.head.pos(),
duke@1 663 "intf.annotation.members.cant.have.params");
duke@1 664
duke@1 665 // Attribute all value parameters.
duke@1 666 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
duke@1 667 attribStat(l.head, localEnv);
duke@1 668 }
duke@1 669
duke@1 670 // Check that type parameters are well-formed.
mcimadamore@122 671 chk.validate(tree.typarams, localEnv);
duke@1 672 if ((owner.flags() & ANNOTATION) != 0 &&
duke@1 673 tree.typarams.nonEmpty())
duke@1 674 log.error(tree.typarams.head.pos(),
duke@1 675 "intf.annotation.members.cant.have.type.params");
duke@1 676
duke@1 677 // Check that result type is well-formed.
mcimadamore@122 678 chk.validate(tree.restype, localEnv);
duke@1 679 if ((owner.flags() & ANNOTATION) != 0)
duke@1 680 chk.validateAnnotationType(tree.restype);
duke@1 681
duke@1 682 if ((owner.flags() & ANNOTATION) != 0)
duke@1 683 chk.validateAnnotationMethod(tree.pos(), m);
duke@1 684
duke@1 685 // Check that all exceptions mentioned in the throws clause extend
duke@1 686 // java.lang.Throwable.
duke@1 687 if ((owner.flags() & ANNOTATION) != 0 && tree.thrown.nonEmpty())
duke@1 688 log.error(tree.thrown.head.pos(),
duke@1 689 "throws.not.allowed.in.intf.annotation");
duke@1 690 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
duke@1 691 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
duke@1 692
duke@1 693 if (tree.body == null) {
duke@1 694 // Empty bodies are only allowed for
duke@1 695 // abstract, native, or interface methods, or for methods
duke@1 696 // in a retrofit signature class.
duke@1 697 if ((owner.flags() & INTERFACE) == 0 &&
duke@1 698 (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
duke@1 699 !relax)
duke@1 700 log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
duke@1 701 if (tree.defaultValue != null) {
duke@1 702 if ((owner.flags() & ANNOTATION) == 0)
duke@1 703 log.error(tree.pos(),
duke@1 704 "default.allowed.in.intf.annotation.member");
duke@1 705 }
duke@1 706 } else if ((owner.flags() & INTERFACE) != 0) {
duke@1 707 log.error(tree.body.pos(), "intf.meth.cant.have.body");
duke@1 708 } else if ((tree.mods.flags & ABSTRACT) != 0) {
duke@1 709 log.error(tree.pos(), "abstract.meth.cant.have.body");
duke@1 710 } else if ((tree.mods.flags & NATIVE) != 0) {
duke@1 711 log.error(tree.pos(), "native.meth.cant.have.body");
duke@1 712 } else {
duke@1 713 // Add an implicit super() call unless an explicit call to
duke@1 714 // super(...) or this(...) is given
duke@1 715 // or we are compiling class java.lang.Object.
duke@1 716 if (tree.name == names.init && owner.type != syms.objectType) {
duke@1 717 JCBlock body = tree.body;
duke@1 718 if (body.stats.isEmpty() ||
duke@1 719 !TreeInfo.isSelfCall(body.stats.head)) {
duke@1 720 body.stats = body.stats.
duke@1 721 prepend(memberEnter.SuperCall(make.at(body.pos),
duke@1 722 List.<Type>nil(),
duke@1 723 List.<JCVariableDecl>nil(),
duke@1 724 false));
duke@1 725 } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
duke@1 726 (tree.mods.flags & GENERATEDCONSTR) == 0 &&
duke@1 727 TreeInfo.isSuperCall(body.stats.head)) {
duke@1 728 // enum constructors are not allowed to call super
duke@1 729 // directly, so make sure there aren't any super calls
duke@1 730 // in enum constructors, except in the compiler
duke@1 731 // generated one.
duke@1 732 log.error(tree.body.stats.head.pos(),
duke@1 733 "call.to.super.not.allowed.in.enum.ctor",
duke@1 734 env.enclClass.sym);
duke@1 735 }
duke@1 736 }
duke@1 737
duke@1 738 // Attribute method body.
duke@1 739 attribStat(tree.body, localEnv);
duke@1 740 }
duke@1 741 localEnv.info.scope.leave();
duke@1 742 result = tree.type = m.type;
duke@1 743 chk.validateAnnotations(tree.mods.annotations, m);
duke@1 744 }
duke@1 745 finally {
duke@1 746 chk.setLint(prevLint);
duke@1 747 }
duke@1 748 }
duke@1 749
duke@1 750 public void visitVarDef(JCVariableDecl tree) {
duke@1 751 // Local variables have not been entered yet, so we need to do it now:
duke@1 752 if (env.info.scope.owner.kind == MTH) {
duke@1 753 if (tree.sym != null) {
duke@1 754 // parameters have already been entered
duke@1 755 env.info.scope.enter(tree.sym);
duke@1 756 } else {
duke@1 757 memberEnter.memberEnter(tree, env);
duke@1 758 annotate.flush();
duke@1 759 }
duke@1 760 }
duke@1 761
duke@1 762 VarSymbol v = tree.sym;
duke@1 763 Lint lint = env.info.lint.augment(v.attributes_field, v.flags());
duke@1 764 Lint prevLint = chk.setLint(lint);
duke@1 765
mcimadamore@165 766 // Check that the variable's declared type is well-formed.
mcimadamore@165 767 chk.validate(tree.vartype, env);
mcimadamore@165 768
duke@1 769 try {
duke@1 770 chk.checkDeprecatedAnnotation(tree.pos(), v);
duke@1 771
duke@1 772 if (tree.init != null) {
duke@1 773 if ((v.flags_field & FINAL) != 0 && tree.init.getTag() != JCTree.NEWCLASS) {
duke@1 774 // In this case, `v' is final. Ensure that it's initializer is
duke@1 775 // evaluated.
duke@1 776 v.getConstValue(); // ensure initializer is evaluated
duke@1 777 } else {
duke@1 778 // Attribute initializer in a new environment
duke@1 779 // with the declared variable as owner.
duke@1 780 // Check that initializer conforms to variable's declared type.
duke@1 781 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
duke@1 782 initEnv.info.lint = lint;
duke@1 783 // In order to catch self-references, we set the variable's
duke@1 784 // declaration position to maximal possible value, effectively
duke@1 785 // marking the variable as undefined.
mcimadamore@94 786 initEnv.info.enclVar = v;
duke@1 787 attribExpr(tree.init, initEnv, v.type);
duke@1 788 }
duke@1 789 }
duke@1 790 result = tree.type = v.type;
duke@1 791 chk.validateAnnotations(tree.mods.annotations, v);
duke@1 792 }
duke@1 793 finally {
duke@1 794 chk.setLint(prevLint);
duke@1 795 }
duke@1 796 }
duke@1 797
duke@1 798 public void visitSkip(JCSkip tree) {
duke@1 799 result = null;
duke@1 800 }
duke@1 801
duke@1 802 public void visitBlock(JCBlock tree) {
duke@1 803 if (env.info.scope.owner.kind == TYP) {
duke@1 804 // Block is a static or instance initializer;
duke@1 805 // let the owner of the environment be a freshly
duke@1 806 // created BLOCK-method.
duke@1 807 Env<AttrContext> localEnv =
duke@1 808 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
duke@1 809 localEnv.info.scope.owner =
duke@1 810 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
duke@1 811 env.info.scope.owner);
duke@1 812 if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
duke@1 813 attribStats(tree.stats, localEnv);
duke@1 814 } else {
duke@1 815 // Create a new local environment with a local scope.
duke@1 816 Env<AttrContext> localEnv =
duke@1 817 env.dup(tree, env.info.dup(env.info.scope.dup()));
duke@1 818 attribStats(tree.stats, localEnv);
duke@1 819 localEnv.info.scope.leave();
duke@1 820 }
duke@1 821 result = null;
duke@1 822 }
duke@1 823
duke@1 824 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 825 attribStat(tree.body, env.dup(tree));
duke@1 826 attribExpr(tree.cond, env, syms.booleanType);
duke@1 827 result = null;
duke@1 828 }
duke@1 829
duke@1 830 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 831 attribExpr(tree.cond, env, syms.booleanType);
duke@1 832 attribStat(tree.body, env.dup(tree));
duke@1 833 result = null;
duke@1 834 }
duke@1 835
duke@1 836 public void visitForLoop(JCForLoop tree) {
duke@1 837 Env<AttrContext> loopEnv =
duke@1 838 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
duke@1 839 attribStats(tree.init, loopEnv);
duke@1 840 if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
duke@1 841 loopEnv.tree = tree; // before, we were not in loop!
duke@1 842 attribStats(tree.step, loopEnv);
duke@1 843 attribStat(tree.body, loopEnv);
duke@1 844 loopEnv.info.scope.leave();
duke@1 845 result = null;
duke@1 846 }
duke@1 847
duke@1 848 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 849 Env<AttrContext> loopEnv =
duke@1 850 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
duke@1 851 attribStat(tree.var, loopEnv);
duke@1 852 Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
duke@1 853 chk.checkNonVoid(tree.pos(), exprType);
duke@1 854 Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
duke@1 855 if (elemtype == null) {
duke@1 856 // or perhaps expr implements Iterable<T>?
duke@1 857 Type base = types.asSuper(exprType, syms.iterableType.tsym);
duke@1 858 if (base == null) {
duke@1 859 log.error(tree.expr.pos(), "foreach.not.applicable.to.type");
jjg@110 860 elemtype = types.createErrorType(exprType);
duke@1 861 } else {
duke@1 862 List<Type> iterableParams = base.allparams();
duke@1 863 elemtype = iterableParams.isEmpty()
duke@1 864 ? syms.objectType
duke@1 865 : types.upperBound(iterableParams.head);
duke@1 866 }
duke@1 867 }
duke@1 868 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
duke@1 869 loopEnv.tree = tree; // before, we were not in loop!
duke@1 870 attribStat(tree.body, loopEnv);
duke@1 871 loopEnv.info.scope.leave();
duke@1 872 result = null;
duke@1 873 }
duke@1 874
duke@1 875 public void visitLabelled(JCLabeledStatement tree) {
duke@1 876 // Check that label is not used in an enclosing statement
duke@1 877 Env<AttrContext> env1 = env;
duke@1 878 while (env1 != null && env1.tree.getTag() != JCTree.CLASSDEF) {
duke@1 879 if (env1.tree.getTag() == JCTree.LABELLED &&
duke@1 880 ((JCLabeledStatement) env1.tree).label == tree.label) {
duke@1 881 log.error(tree.pos(), "label.already.in.use",
duke@1 882 tree.label);
duke@1 883 break;
duke@1 884 }
duke@1 885 env1 = env1.next;
duke@1 886 }
duke@1 887
duke@1 888 attribStat(tree.body, env.dup(tree));
duke@1 889 result = null;
duke@1 890 }
duke@1 891
duke@1 892 public void visitSwitch(JCSwitch tree) {
duke@1 893 Type seltype = attribExpr(tree.selector, env);
duke@1 894
duke@1 895 Env<AttrContext> switchEnv =
duke@1 896 env.dup(tree, env.info.dup(env.info.scope.dup()));
duke@1 897
duke@1 898 boolean enumSwitch =
duke@1 899 allowEnums &&
duke@1 900 (seltype.tsym.flags() & Flags.ENUM) != 0;
darcy@430 901 boolean stringSwitch = false;
darcy@430 902 if (types.isSameType(seltype, syms.stringType)) {
darcy@430 903 if (allowStringsInSwitch) {
darcy@430 904 stringSwitch = true;
darcy@430 905 } else {
darcy@430 906 log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
darcy@430 907 }
darcy@430 908 }
darcy@430 909 if (!enumSwitch && !stringSwitch)
duke@1 910 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
duke@1 911
duke@1 912 // Attribute all cases and
duke@1 913 // check that there are no duplicate case labels or default clauses.
duke@1 914 Set<Object> labels = new HashSet<Object>(); // The set of case labels.
duke@1 915 boolean hasDefault = false; // Is there a default label?
duke@1 916 for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
duke@1 917 JCCase c = l.head;
duke@1 918 Env<AttrContext> caseEnv =
duke@1 919 switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
duke@1 920 if (c.pat != null) {
duke@1 921 if (enumSwitch) {
duke@1 922 Symbol sym = enumConstant(c.pat, seltype);
duke@1 923 if (sym == null) {
duke@1 924 log.error(c.pat.pos(), "enum.const.req");
duke@1 925 } else if (!labels.add(sym)) {
duke@1 926 log.error(c.pos(), "duplicate.case.label");
duke@1 927 }
duke@1 928 } else {
duke@1 929 Type pattype = attribExpr(c.pat, switchEnv, seltype);
duke@1 930 if (pattype.tag != ERROR) {
duke@1 931 if (pattype.constValue() == null) {
darcy@430 932 log.error(c.pat.pos(),
darcy@430 933 (stringSwitch ? "string.const.req" : "const.expr.req"));
duke@1 934 } else if (labels.contains(pattype.constValue())) {
duke@1 935 log.error(c.pos(), "duplicate.case.label");
duke@1 936 } else {
duke@1 937 labels.add(pattype.constValue());
duke@1 938 }
duke@1 939 }
duke@1 940 }
duke@1 941 } else if (hasDefault) {
duke@1 942 log.error(c.pos(), "duplicate.default.label");
duke@1 943 } else {
duke@1 944 hasDefault = true;
duke@1 945 }
duke@1 946 attribStats(c.stats, caseEnv);
duke@1 947 caseEnv.info.scope.leave();
duke@1 948 addVars(c.stats, switchEnv.info.scope);
duke@1 949 }
duke@1 950
duke@1 951 switchEnv.info.scope.leave();
duke@1 952 result = null;
duke@1 953 }
duke@1 954 // where
duke@1 955 /** Add any variables defined in stats to the switch scope. */
duke@1 956 private static void addVars(List<JCStatement> stats, Scope switchScope) {
duke@1 957 for (;stats.nonEmpty(); stats = stats.tail) {
duke@1 958 JCTree stat = stats.head;
duke@1 959 if (stat.getTag() == JCTree.VARDEF)
duke@1 960 switchScope.enter(((JCVariableDecl) stat).sym);
duke@1 961 }
duke@1 962 }
duke@1 963 // where
duke@1 964 /** Return the selected enumeration constant symbol, or null. */
duke@1 965 private Symbol enumConstant(JCTree tree, Type enumType) {
duke@1 966 if (tree.getTag() != JCTree.IDENT) {
duke@1 967 log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
duke@1 968 return syms.errSymbol;
duke@1 969 }
duke@1 970 JCIdent ident = (JCIdent)tree;
duke@1 971 Name name = ident.name;
duke@1 972 for (Scope.Entry e = enumType.tsym.members().lookup(name);
duke@1 973 e.scope != null; e = e.next()) {
duke@1 974 if (e.sym.kind == VAR) {
duke@1 975 Symbol s = ident.sym = e.sym;
duke@1 976 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
duke@1 977 ident.type = s.type;
duke@1 978 return ((s.flags_field & Flags.ENUM) == 0)
duke@1 979 ? null : s;
duke@1 980 }
duke@1 981 }
duke@1 982 return null;
duke@1 983 }
duke@1 984
duke@1 985 public void visitSynchronized(JCSynchronized tree) {
duke@1 986 chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
duke@1 987 attribStat(tree.body, env);
duke@1 988 result = null;
duke@1 989 }
duke@1 990
duke@1 991 public void visitTry(JCTry tree) {
duke@1 992 // Attribute body
duke@1 993 attribStat(tree.body, env.dup(tree, env.info.dup()));
duke@1 994
duke@1 995 // Attribute catch clauses
duke@1 996 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
duke@1 997 JCCatch c = l.head;
duke@1 998 Env<AttrContext> catchEnv =
duke@1 999 env.dup(c, env.info.dup(env.info.scope.dup()));
duke@1 1000 Type ctype = attribStat(c.param, catchEnv);
duke@1 1001 if (c.param.type.tsym.kind == Kinds.VAR) {
duke@1 1002 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
duke@1 1003 }
duke@1 1004 chk.checkType(c.param.vartype.pos(),
duke@1 1005 chk.checkClassType(c.param.vartype.pos(), ctype),
duke@1 1006 syms.throwableType);
duke@1 1007 attribStat(c.body, catchEnv);
duke@1 1008 catchEnv.info.scope.leave();
duke@1 1009 }
duke@1 1010
duke@1 1011 // Attribute finalizer
duke@1 1012 if (tree.finalizer != null) attribStat(tree.finalizer, env);
duke@1 1013 result = null;
duke@1 1014 }
duke@1 1015
duke@1 1016 public void visitConditional(JCConditional tree) {
duke@1 1017 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1018 attribExpr(tree.truepart, env);
duke@1 1019 attribExpr(tree.falsepart, env);
duke@1 1020 result = check(tree,
duke@1 1021 capture(condType(tree.pos(), tree.cond.type,
duke@1 1022 tree.truepart.type, tree.falsepart.type)),
duke@1 1023 VAL, pkind, pt);
duke@1 1024 }
duke@1 1025 //where
duke@1 1026 /** Compute the type of a conditional expression, after
duke@1 1027 * checking that it exists. See Spec 15.25.
duke@1 1028 *
duke@1 1029 * @param pos The source position to be used for
duke@1 1030 * error diagnostics.
duke@1 1031 * @param condtype The type of the expression's condition.
duke@1 1032 * @param thentype The type of the expression's then-part.
duke@1 1033 * @param elsetype The type of the expression's else-part.
duke@1 1034 */
duke@1 1035 private Type condType(DiagnosticPosition pos,
duke@1 1036 Type condtype,
duke@1 1037 Type thentype,
duke@1 1038 Type elsetype) {
duke@1 1039 Type ctype = condType1(pos, condtype, thentype, elsetype);
duke@1 1040
duke@1 1041 // If condition and both arms are numeric constants,
duke@1 1042 // evaluate at compile-time.
duke@1 1043 return ((condtype.constValue() != null) &&
duke@1 1044 (thentype.constValue() != null) &&
duke@1 1045 (elsetype.constValue() != null))
duke@1 1046 ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype)
duke@1 1047 : ctype;
duke@1 1048 }
duke@1 1049 /** Compute the type of a conditional expression, after
duke@1 1050 * checking that it exists. Does not take into
duke@1 1051 * account the special case where condition and both arms
duke@1 1052 * are constants.
duke@1 1053 *
duke@1 1054 * @param pos The source position to be used for error
duke@1 1055 * diagnostics.
duke@1 1056 * @param condtype The type of the expression's condition.
duke@1 1057 * @param thentype The type of the expression's then-part.
duke@1 1058 * @param elsetype The type of the expression's else-part.
duke@1 1059 */
duke@1 1060 private Type condType1(DiagnosticPosition pos, Type condtype,
duke@1 1061 Type thentype, Type elsetype) {
duke@1 1062 // If same type, that is the result
duke@1 1063 if (types.isSameType(thentype, elsetype))
duke@1 1064 return thentype.baseType();
duke@1 1065
duke@1 1066 Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
duke@1 1067 ? thentype : types.unboxedType(thentype);
duke@1 1068 Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
duke@1 1069 ? elsetype : types.unboxedType(elsetype);
duke@1 1070
duke@1 1071 // Otherwise, if both arms can be converted to a numeric
duke@1 1072 // type, return the least numeric type that fits both arms
duke@1 1073 // (i.e. return larger of the two, or return int if one
duke@1 1074 // arm is short, the other is char).
duke@1 1075 if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
duke@1 1076 // If one arm has an integer subrange type (i.e., byte,
duke@1 1077 // short, or char), and the other is an integer constant
duke@1 1078 // that fits into the subrange, return the subrange type.
duke@1 1079 if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
duke@1 1080 types.isAssignable(elseUnboxed, thenUnboxed))
duke@1 1081 return thenUnboxed.baseType();
duke@1 1082 if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
duke@1 1083 types.isAssignable(thenUnboxed, elseUnboxed))
duke@1 1084 return elseUnboxed.baseType();
duke@1 1085
duke@1 1086 for (int i = BYTE; i < VOID; i++) {
duke@1 1087 Type candidate = syms.typeOfTag[i];
duke@1 1088 if (types.isSubtype(thenUnboxed, candidate) &&
duke@1 1089 types.isSubtype(elseUnboxed, candidate))
duke@1 1090 return candidate;
duke@1 1091 }
duke@1 1092 }
duke@1 1093
duke@1 1094 // Those were all the cases that could result in a primitive
duke@1 1095 if (allowBoxing) {
duke@1 1096 if (thentype.isPrimitive())
duke@1 1097 thentype = types.boxedClass(thentype).type;
duke@1 1098 if (elsetype.isPrimitive())
duke@1 1099 elsetype = types.boxedClass(elsetype).type;
duke@1 1100 }
duke@1 1101
duke@1 1102 if (types.isSubtype(thentype, elsetype))
duke@1 1103 return elsetype.baseType();
duke@1 1104 if (types.isSubtype(elsetype, thentype))
duke@1 1105 return thentype.baseType();
duke@1 1106
duke@1 1107 if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
duke@1 1108 log.error(pos, "neither.conditional.subtype",
duke@1 1109 thentype, elsetype);
duke@1 1110 return thentype.baseType();
duke@1 1111 }
duke@1 1112
duke@1 1113 // both are known to be reference types. The result is
duke@1 1114 // lub(thentype,elsetype). This cannot fail, as it will
duke@1 1115 // always be possible to infer "Object" if nothing better.
duke@1 1116 return types.lub(thentype.baseType(), elsetype.baseType());
duke@1 1117 }
duke@1 1118
duke@1 1119 public void visitIf(JCIf tree) {
duke@1 1120 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1121 attribStat(tree.thenpart, env);
duke@1 1122 if (tree.elsepart != null)
duke@1 1123 attribStat(tree.elsepart, env);
duke@1 1124 chk.checkEmptyIf(tree);
duke@1 1125 result = null;
duke@1 1126 }
duke@1 1127
duke@1 1128 public void visitExec(JCExpressionStatement tree) {
duke@1 1129 attribExpr(tree.expr, env);
duke@1 1130 result = null;
duke@1 1131 }
duke@1 1132
duke@1 1133 public void visitBreak(JCBreak tree) {
duke@1 1134 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
duke@1 1135 result = null;
duke@1 1136 }
duke@1 1137
duke@1 1138 public void visitContinue(JCContinue tree) {
duke@1 1139 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
duke@1 1140 result = null;
duke@1 1141 }
duke@1 1142 //where
duke@1 1143 /** Return the target of a break or continue statement, if it exists,
duke@1 1144 * report an error if not.
duke@1 1145 * Note: The target of a labelled break or continue is the
duke@1 1146 * (non-labelled) statement tree referred to by the label,
duke@1 1147 * not the tree representing the labelled statement itself.
duke@1 1148 *
duke@1 1149 * @param pos The position to be used for error diagnostics
duke@1 1150 * @param tag The tag of the jump statement. This is either
duke@1 1151 * Tree.BREAK or Tree.CONTINUE.
duke@1 1152 * @param label The label of the jump statement, or null if no
duke@1 1153 * label is given.
duke@1 1154 * @param env The environment current at the jump statement.
duke@1 1155 */
duke@1 1156 private JCTree findJumpTarget(DiagnosticPosition pos,
duke@1 1157 int tag,
duke@1 1158 Name label,
duke@1 1159 Env<AttrContext> env) {
duke@1 1160 // Search environments outwards from the point of jump.
duke@1 1161 Env<AttrContext> env1 = env;
duke@1 1162 LOOP:
duke@1 1163 while (env1 != null) {
duke@1 1164 switch (env1.tree.getTag()) {
duke@1 1165 case JCTree.LABELLED:
duke@1 1166 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
duke@1 1167 if (label == labelled.label) {
duke@1 1168 // If jump is a continue, check that target is a loop.
duke@1 1169 if (tag == JCTree.CONTINUE) {
duke@1 1170 if (labelled.body.getTag() != JCTree.DOLOOP &&
duke@1 1171 labelled.body.getTag() != JCTree.WHILELOOP &&
duke@1 1172 labelled.body.getTag() != JCTree.FORLOOP &&
duke@1 1173 labelled.body.getTag() != JCTree.FOREACHLOOP)
duke@1 1174 log.error(pos, "not.loop.label", label);
duke@1 1175 // Found labelled statement target, now go inwards
duke@1 1176 // to next non-labelled tree.
duke@1 1177 return TreeInfo.referencedStatement(labelled);
duke@1 1178 } else {
duke@1 1179 return labelled;
duke@1 1180 }
duke@1 1181 }
duke@1 1182 break;
duke@1 1183 case JCTree.DOLOOP:
duke@1 1184 case JCTree.WHILELOOP:
duke@1 1185 case JCTree.FORLOOP:
duke@1 1186 case JCTree.FOREACHLOOP:
duke@1 1187 if (label == null) return env1.tree;
duke@1 1188 break;
duke@1 1189 case JCTree.SWITCH:
duke@1 1190 if (label == null && tag == JCTree.BREAK) return env1.tree;
duke@1 1191 break;
duke@1 1192 case JCTree.METHODDEF:
duke@1 1193 case JCTree.CLASSDEF:
duke@1 1194 break LOOP;
duke@1 1195 default:
duke@1 1196 }
duke@1 1197 env1 = env1.next;
duke@1 1198 }
duke@1 1199 if (label != null)
duke@1 1200 log.error(pos, "undef.label", label);
duke@1 1201 else if (tag == JCTree.CONTINUE)
duke@1 1202 log.error(pos, "cont.outside.loop");
duke@1 1203 else
duke@1 1204 log.error(pos, "break.outside.switch.loop");
duke@1 1205 return null;
duke@1 1206 }
duke@1 1207
duke@1 1208 public void visitReturn(JCReturn tree) {
duke@1 1209 // Check that there is an enclosing method which is
duke@1 1210 // nested within than the enclosing class.
duke@1 1211 if (env.enclMethod == null ||
duke@1 1212 env.enclMethod.sym.owner != env.enclClass.sym) {
duke@1 1213 log.error(tree.pos(), "ret.outside.meth");
duke@1 1214
duke@1 1215 } else {
duke@1 1216 // Attribute return expression, if it exists, and check that
duke@1 1217 // it conforms to result type of enclosing method.
duke@1 1218 Symbol m = env.enclMethod.sym;
duke@1 1219 if (m.type.getReturnType().tag == VOID) {
duke@1 1220 if (tree.expr != null)
duke@1 1221 log.error(tree.expr.pos(),
duke@1 1222 "cant.ret.val.from.meth.decl.void");
duke@1 1223 } else if (tree.expr == null) {
duke@1 1224 log.error(tree.pos(), "missing.ret.val");
duke@1 1225 } else {
duke@1 1226 attribExpr(tree.expr, env, m.type.getReturnType());
duke@1 1227 }
duke@1 1228 }
duke@1 1229 result = null;
duke@1 1230 }
duke@1 1231
duke@1 1232 public void visitThrow(JCThrow tree) {
duke@1 1233 attribExpr(tree.expr, env, syms.throwableType);
duke@1 1234 result = null;
duke@1 1235 }
duke@1 1236
duke@1 1237 public void visitAssert(JCAssert tree) {
duke@1 1238 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1239 if (tree.detail != null) {
duke@1 1240 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
duke@1 1241 }
duke@1 1242 result = null;
duke@1 1243 }
duke@1 1244
duke@1 1245 /** Visitor method for method invocations.
duke@1 1246 * NOTE: The method part of an application will have in its type field
duke@1 1247 * the return type of the method, not the method's type itself!
duke@1 1248 */
duke@1 1249 public void visitApply(JCMethodInvocation tree) {
duke@1 1250 // The local environment of a method application is
duke@1 1251 // a new environment nested in the current one.
duke@1 1252 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
duke@1 1253
duke@1 1254 // The types of the actual method arguments.
duke@1 1255 List<Type> argtypes;
duke@1 1256
duke@1 1257 // The types of the actual method type arguments.
duke@1 1258 List<Type> typeargtypes = null;
jrose@267 1259 boolean typeargtypesNonRefOK = false;
duke@1 1260
duke@1 1261 Name methName = TreeInfo.name(tree.meth);
duke@1 1262
duke@1 1263 boolean isConstructorCall =
duke@1 1264 methName == names._this || methName == names._super;
duke@1 1265
duke@1 1266 if (isConstructorCall) {
duke@1 1267 // We are seeing a ...this(...) or ...super(...) call.
duke@1 1268 // Check that this is the first statement in a constructor.
duke@1 1269 if (checkFirstConstructorStat(tree, env)) {
duke@1 1270
duke@1 1271 // Record the fact
duke@1 1272 // that this is a constructor call (using isSelfCall).
duke@1 1273 localEnv.info.isSelfCall = true;
duke@1 1274
duke@1 1275 // Attribute arguments, yielding list of argument types.
duke@1 1276 argtypes = attribArgs(tree.args, localEnv);
duke@1 1277 typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1278
duke@1 1279 // Variable `site' points to the class in which the called
duke@1 1280 // constructor is defined.
duke@1 1281 Type site = env.enclClass.sym.type;
duke@1 1282 if (methName == names._super) {
duke@1 1283 if (site == syms.objectType) {
duke@1 1284 log.error(tree.meth.pos(), "no.superclass", site);
jjg@110 1285 site = types.createErrorType(syms.objectType);
duke@1 1286 } else {
duke@1 1287 site = types.supertype(site);
duke@1 1288 }
duke@1 1289 }
duke@1 1290
duke@1 1291 if (site.tag == CLASS) {
mcimadamore@361 1292 Type encl = site.getEnclosingType();
mcimadamore@361 1293 while (encl != null && encl.tag == TYPEVAR)
mcimadamore@361 1294 encl = encl.getUpperBound();
mcimadamore@361 1295 if (encl.tag == CLASS) {
duke@1 1296 // we are calling a nested class
duke@1 1297
duke@1 1298 if (tree.meth.getTag() == JCTree.SELECT) {
duke@1 1299 JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
duke@1 1300
duke@1 1301 // We are seeing a prefixed call, of the form
duke@1 1302 // <expr>.super(...).
duke@1 1303 // Check that the prefix expression conforms
duke@1 1304 // to the outer instance type of the class.
duke@1 1305 chk.checkRefType(qualifier.pos(),
duke@1 1306 attribExpr(qualifier, localEnv,
mcimadamore@361 1307 encl));
duke@1 1308 } else if (methName == names._super) {
duke@1 1309 // qualifier omitted; check for existence
duke@1 1310 // of an appropriate implicit qualifier.
duke@1 1311 rs.resolveImplicitThis(tree.meth.pos(),
duke@1 1312 localEnv, site);
duke@1 1313 }
duke@1 1314 } else if (tree.meth.getTag() == JCTree.SELECT) {
duke@1 1315 log.error(tree.meth.pos(), "illegal.qual.not.icls",
duke@1 1316 site.tsym);
duke@1 1317 }
duke@1 1318
duke@1 1319 // if we're calling a java.lang.Enum constructor,
duke@1 1320 // prefix the implicit String and int parameters
duke@1 1321 if (site.tsym == syms.enumSym && allowEnums)
duke@1 1322 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
duke@1 1323
duke@1 1324 // Resolve the called constructor under the assumption
duke@1 1325 // that we are referring to a superclass instance of the
duke@1 1326 // current instance (JLS ???).
duke@1 1327 boolean selectSuperPrev = localEnv.info.selectSuper;
duke@1 1328 localEnv.info.selectSuper = true;
duke@1 1329 localEnv.info.varArgs = false;
duke@1 1330 Symbol sym = rs.resolveConstructor(
duke@1 1331 tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
duke@1 1332 localEnv.info.selectSuper = selectSuperPrev;
duke@1 1333
duke@1 1334 // Set method symbol to resolved constructor...
duke@1 1335 TreeInfo.setSymbol(tree.meth, sym);
duke@1 1336
duke@1 1337 // ...and check that it is legal in the current context.
duke@1 1338 // (this will also set the tree's type)
duke@1 1339 Type mpt = newMethTemplate(argtypes, typeargtypes);
duke@1 1340 checkId(tree.meth, site, sym, localEnv, MTH,
duke@1 1341 mpt, tree.varargsElement != null);
duke@1 1342 }
duke@1 1343 // Otherwise, `site' is an error type and we do nothing
duke@1 1344 }
duke@1 1345 result = tree.type = syms.voidType;
duke@1 1346 } else {
duke@1 1347 // Otherwise, we are seeing a regular method call.
duke@1 1348 // Attribute the arguments, yielding list of argument types, ...
duke@1 1349 argtypes = attribArgs(tree.args, localEnv);
jrose@267 1350 typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
duke@1 1351
duke@1 1352 // ... and attribute the method using as a prototype a methodtype
duke@1 1353 // whose formal argument types is exactly the list of actual
duke@1 1354 // arguments (this will also set the method symbol).
duke@1 1355 Type mpt = newMethTemplate(argtypes, typeargtypes);
duke@1 1356 localEnv.info.varArgs = false;
duke@1 1357 Type mtype = attribExpr(tree.meth, localEnv, mpt);
duke@1 1358 if (localEnv.info.varArgs)
duke@1 1359 assert mtype.isErroneous() || tree.varargsElement != null;
duke@1 1360
duke@1 1361 // Compute the result type.
duke@1 1362 Type restype = mtype.getReturnType();
duke@1 1363 assert restype.tag != WILDCARD : mtype;
duke@1 1364
duke@1 1365 // as a special case, array.clone() has a result that is
duke@1 1366 // the same as static type of the array being cloned
duke@1 1367 if (tree.meth.getTag() == JCTree.SELECT &&
duke@1 1368 allowCovariantReturns &&
duke@1 1369 methName == names.clone &&
duke@1 1370 types.isArray(((JCFieldAccess) tree.meth).selected.type))
duke@1 1371 restype = ((JCFieldAccess) tree.meth).selected.type;
duke@1 1372
duke@1 1373 // as a special case, x.getClass() has type Class<? extends |X|>
duke@1 1374 if (allowGenerics &&
duke@1 1375 methName == names.getClass && tree.args.isEmpty()) {
duke@1 1376 Type qualifier = (tree.meth.getTag() == JCTree.SELECT)
duke@1 1377 ? ((JCFieldAccess) tree.meth).selected.type
duke@1 1378 : env.enclClass.sym.type;
duke@1 1379 restype = new
duke@1 1380 ClassType(restype.getEnclosingType(),
duke@1 1381 List.<Type>of(new WildcardType(types.erasure(qualifier),
duke@1 1382 BoundKind.EXTENDS,
duke@1 1383 syms.boundClass)),
duke@1 1384 restype.tsym);
duke@1 1385 }
duke@1 1386
jrose@267 1387 // as a special case, MethodHandle.<T>invoke(abc) and InvokeDynamic.<T>foo(abc)
jrose@267 1388 // has type <T>, and T can be a primitive type.
jrose@267 1389 if (tree.meth.getTag() == JCTree.SELECT && !typeargtypes.isEmpty()) {
jrose@267 1390 Type selt = ((JCFieldAccess) tree.meth).selected.type;
jrose@267 1391 if ((selt == syms.methodHandleType && methName == names.invoke) || selt == syms.invokeDynamicType) {
jrose@267 1392 assert types.isSameType(restype, typeargtypes.head) : mtype;
jrose@267 1393 typeargtypesNonRefOK = true;
jrose@267 1394 }
jrose@267 1395 }
jrose@267 1396
jrose@267 1397 if (!typeargtypesNonRefOK) {
jrose@267 1398 chk.checkRefTypes(tree.typeargs, typeargtypes);
jrose@267 1399 }
jrose@267 1400
duke@1 1401 // Check that value of resulting type is admissible in the
duke@1 1402 // current context. Also, capture the return type
mcimadamore@383 1403 result = checkReturn(tree, capture(restype), VAL, pkind, pt);
duke@1 1404 }
mcimadamore@122 1405 chk.validate(tree.typeargs, localEnv);
duke@1 1406 }
duke@1 1407 //where
duke@1 1408 /** Check that given application node appears as first statement
duke@1 1409 * in a constructor call.
duke@1 1410 * @param tree The application node
duke@1 1411 * @param env The environment current at the application.
duke@1 1412 */
duke@1 1413 boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
duke@1 1414 JCMethodDecl enclMethod = env.enclMethod;
duke@1 1415 if (enclMethod != null && enclMethod.name == names.init) {
duke@1 1416 JCBlock body = enclMethod.body;
duke@1 1417 if (body.stats.head.getTag() == JCTree.EXEC &&
duke@1 1418 ((JCExpressionStatement) body.stats.head).expr == tree)
duke@1 1419 return true;
duke@1 1420 }
duke@1 1421 log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
duke@1 1422 TreeInfo.name(tree.meth));
duke@1 1423 return false;
duke@1 1424 }
duke@1 1425
duke@1 1426 /** Obtain a method type with given argument types.
duke@1 1427 */
duke@1 1428 Type newMethTemplate(List<Type> argtypes, List<Type> typeargtypes) {
duke@1 1429 MethodType mt = new MethodType(argtypes, null, null, syms.methodClass);
duke@1 1430 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
duke@1 1431 }
duke@1 1432
duke@1 1433 public void visitNewClass(JCNewClass tree) {
jjg@110 1434 Type owntype = types.createErrorType(tree.type);
duke@1 1435
duke@1 1436 // The local environment of a class creation is
duke@1 1437 // a new environment nested in the current one.
duke@1 1438 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
duke@1 1439
duke@1 1440 // The anonymous inner class definition of the new expression,
duke@1 1441 // if one is defined by it.
duke@1 1442 JCClassDecl cdef = tree.def;
duke@1 1443
duke@1 1444 // If enclosing class is given, attribute it, and
duke@1 1445 // complete class name to be fully qualified
duke@1 1446 JCExpression clazz = tree.clazz; // Class field following new
duke@1 1447 JCExpression clazzid = // Identifier in class field
duke@1 1448 (clazz.getTag() == JCTree.TYPEAPPLY)
duke@1 1449 ? ((JCTypeApply) clazz).clazz
duke@1 1450 : clazz;
duke@1 1451
duke@1 1452 JCExpression clazzid1 = clazzid; // The same in fully qualified form
duke@1 1453
duke@1 1454 if (tree.encl != null) {
duke@1 1455 // We are seeing a qualified new, of the form
duke@1 1456 // <expr>.new C <...> (...) ...
duke@1 1457 // In this case, we let clazz stand for the name of the
duke@1 1458 // allocated class C prefixed with the type of the qualifier
duke@1 1459 // expression, so that we can
duke@1 1460 // resolve it with standard techniques later. I.e., if
duke@1 1461 // <expr> has type T, then <expr>.new C <...> (...)
duke@1 1462 // yields a clazz T.C.
duke@1 1463 Type encltype = chk.checkRefType(tree.encl.pos(),
duke@1 1464 attribExpr(tree.encl, env));
duke@1 1465 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
duke@1 1466 ((JCIdent) clazzid).name);
duke@1 1467 if (clazz.getTag() == JCTree.TYPEAPPLY)
duke@1 1468 clazz = make.at(tree.pos).
duke@1 1469 TypeApply(clazzid1,
duke@1 1470 ((JCTypeApply) clazz).arguments);
duke@1 1471 else
duke@1 1472 clazz = clazzid1;
duke@1 1473 // System.out.println(clazz + " generated.");//DEBUG
duke@1 1474 }
duke@1 1475
duke@1 1476 // Attribute clazz expression and store
duke@1 1477 // symbol + type back into the attributed tree.
mcimadamore@383 1478 Type clazztype = attribType(clazz, env);
mcimadamore@122 1479 chk.validate(clazz, localEnv);
mcimadamore@383 1480 clazztype = chk.checkNewClassType(clazz.pos(), clazztype, true, pt);
duke@1 1481 if (tree.encl != null) {
duke@1 1482 // We have to work in this case to store
duke@1 1483 // symbol + type back into the attributed tree.
duke@1 1484 tree.clazz.type = clazztype;
duke@1 1485 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
duke@1 1486 clazzid.type = ((JCIdent) clazzid).sym.type;
duke@1 1487 if (!clazztype.isErroneous()) {
duke@1 1488 if (cdef != null && clazztype.tsym.isInterface()) {
duke@1 1489 log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
duke@1 1490 } else if (clazztype.tsym.isStatic()) {
duke@1 1491 log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
duke@1 1492 }
duke@1 1493 }
duke@1 1494 } else if (!clazztype.tsym.isInterface() &&
duke@1 1495 clazztype.getEnclosingType().tag == CLASS) {
duke@1 1496 // Check for the existence of an apropos outer instance
duke@1 1497 rs.resolveImplicitThis(tree.pos(), env, clazztype);
duke@1 1498 }
duke@1 1499
duke@1 1500 // Attribute constructor arguments.
duke@1 1501 List<Type> argtypes = attribArgs(tree.args, localEnv);
duke@1 1502 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1503
duke@1 1504 // If we have made no mistakes in the class type...
duke@1 1505 if (clazztype.tag == CLASS) {
duke@1 1506 // Enums may not be instantiated except implicitly
duke@1 1507 if (allowEnums &&
duke@1 1508 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
duke@1 1509 (env.tree.getTag() != JCTree.VARDEF ||
duke@1 1510 (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
duke@1 1511 ((JCVariableDecl) env.tree).init != tree))
duke@1 1512 log.error(tree.pos(), "enum.cant.be.instantiated");
duke@1 1513 // Check that class is not abstract
duke@1 1514 if (cdef == null &&
duke@1 1515 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
duke@1 1516 log.error(tree.pos(), "abstract.cant.be.instantiated",
duke@1 1517 clazztype.tsym);
duke@1 1518 } else if (cdef != null && clazztype.tsym.isInterface()) {
duke@1 1519 // Check that no constructor arguments are given to
duke@1 1520 // anonymous classes implementing an interface
duke@1 1521 if (!argtypes.isEmpty())
duke@1 1522 log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
duke@1 1523
duke@1 1524 if (!typeargtypes.isEmpty())
duke@1 1525 log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
duke@1 1526
duke@1 1527 // Error recovery: pretend no arguments were supplied.
duke@1 1528 argtypes = List.nil();
duke@1 1529 typeargtypes = List.nil();
duke@1 1530 }
duke@1 1531
duke@1 1532 // Resolve the called constructor under the assumption
duke@1 1533 // that we are referring to a superclass instance of the
duke@1 1534 // current instance (JLS ???).
duke@1 1535 else {
duke@1 1536 localEnv.info.selectSuper = cdef != null;
duke@1 1537 localEnv.info.varArgs = false;
duke@1 1538 tree.constructor = rs.resolveConstructor(
duke@1 1539 tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
mcimadamore@186 1540 tree.constructorType = checkMethod(clazztype,
duke@1 1541 tree.constructor,
duke@1 1542 localEnv,
duke@1 1543 tree.args,
duke@1 1544 argtypes,
duke@1 1545 typeargtypes,
duke@1 1546 localEnv.info.varArgs);
duke@1 1547 if (localEnv.info.varArgs)
mcimadamore@186 1548 assert tree.constructorType.isErroneous() || tree.varargsElement != null;
duke@1 1549 }
duke@1 1550
duke@1 1551 if (cdef != null) {
duke@1 1552 // We are seeing an anonymous class instance creation.
duke@1 1553 // In this case, the class instance creation
duke@1 1554 // expression
duke@1 1555 //
duke@1 1556 // E.new <typeargs1>C<typargs2>(args) { ... }
duke@1 1557 //
duke@1 1558 // is represented internally as
duke@1 1559 //
duke@1 1560 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) .
duke@1 1561 //
duke@1 1562 // This expression is then *transformed* as follows:
duke@1 1563 //
duke@1 1564 // (1) add a STATIC flag to the class definition
duke@1 1565 // if the current environment is static
duke@1 1566 // (2) add an extends or implements clause
duke@1 1567 // (3) add a constructor.
duke@1 1568 //
duke@1 1569 // For instance, if C is a class, and ET is the type of E,
duke@1 1570 // the expression
duke@1 1571 //
duke@1 1572 // E.new <typeargs1>C<typargs2>(args) { ... }
duke@1 1573 //
duke@1 1574 // is translated to (where X is a fresh name and typarams is the
duke@1 1575 // parameter list of the super constructor):
duke@1 1576 //
duke@1 1577 // new <typeargs1>X(<*nullchk*>E, args) where
duke@1 1578 // X extends C<typargs2> {
duke@1 1579 // <typarams> X(ET e, args) {
duke@1 1580 // e.<typeargs1>super(args)
duke@1 1581 // }
duke@1 1582 // ...
duke@1 1583 // }
duke@1 1584 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
mcimadamore@383 1585 clazz = TreeInfo.isDiamond(tree) ?
mcimadamore@383 1586 make.Type(clazztype)
mcimadamore@383 1587 : clazz;
duke@1 1588 if (clazztype.tsym.isInterface()) {
duke@1 1589 cdef.implementing = List.of(clazz);
duke@1 1590 } else {
duke@1 1591 cdef.extending = clazz;
duke@1 1592 }
duke@1 1593
duke@1 1594 attribStat(cdef, localEnv);
duke@1 1595
duke@1 1596 // If an outer instance is given,
duke@1 1597 // prefix it to the constructor arguments
duke@1 1598 // and delete it from the new expression
duke@1 1599 if (tree.encl != null && !clazztype.tsym.isInterface()) {
duke@1 1600 tree.args = tree.args.prepend(makeNullCheck(tree.encl));
duke@1 1601 argtypes = argtypes.prepend(tree.encl.type);
duke@1 1602 tree.encl = null;
duke@1 1603 }
duke@1 1604
duke@1 1605 // Reassign clazztype and recompute constructor.
duke@1 1606 clazztype = cdef.sym.type;
duke@1 1607 Symbol sym = rs.resolveConstructor(
duke@1 1608 tree.pos(), localEnv, clazztype, argtypes,
duke@1 1609 typeargtypes, true, tree.varargsElement != null);
duke@1 1610 assert sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous();
duke@1 1611 tree.constructor = sym;
mcimadamore@358 1612 if (tree.constructor.kind > ERRONEOUS) {
mcimadamore@358 1613 tree.constructorType = syms.errType;
mcimadamore@358 1614 }
mcimadamore@358 1615 else {
mcimadamore@358 1616 tree.constructorType = checkMethod(clazztype,
mcimadamore@358 1617 tree.constructor,
mcimadamore@358 1618 localEnv,
mcimadamore@358 1619 tree.args,
mcimadamore@358 1620 argtypes,
mcimadamore@358 1621 typeargtypes,
mcimadamore@358 1622 localEnv.info.varArgs);
mcimadamore@358 1623 }
duke@1 1624 }
duke@1 1625
duke@1 1626 if (tree.constructor != null && tree.constructor.kind == MTH)
duke@1 1627 owntype = clazztype;
duke@1 1628 }
duke@1 1629 result = check(tree, owntype, VAL, pkind, pt);
mcimadamore@122 1630 chk.validate(tree.typeargs, localEnv);
duke@1 1631 }
duke@1 1632
duke@1 1633 /** Make an attributed null check tree.
duke@1 1634 */
duke@1 1635 public JCExpression makeNullCheck(JCExpression arg) {
duke@1 1636 // optimization: X.this is never null; skip null check
duke@1 1637 Name name = TreeInfo.name(arg);
duke@1 1638 if (name == names._this || name == names._super) return arg;
duke@1 1639
duke@1 1640 int optag = JCTree.NULLCHK;
duke@1 1641 JCUnary tree = make.at(arg.pos).Unary(optag, arg);
duke@1 1642 tree.operator = syms.nullcheck;
duke@1 1643 tree.type = arg.type;
duke@1 1644 return tree;
duke@1 1645 }
duke@1 1646
duke@1 1647 public void visitNewArray(JCNewArray tree) {
jjg@110 1648 Type owntype = types.createErrorType(tree.type);
duke@1 1649 Type elemtype;
duke@1 1650 if (tree.elemtype != null) {
duke@1 1651 elemtype = attribType(tree.elemtype, env);
mcimadamore@122 1652 chk.validate(tree.elemtype, env);
duke@1 1653 owntype = elemtype;
duke@1 1654 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
duke@1 1655 attribExpr(l.head, env, syms.intType);
duke@1 1656 owntype = new ArrayType(owntype, syms.arrayClass);
duke@1 1657 }
duke@1 1658 } else {
duke@1 1659 // we are seeing an untyped aggregate { ... }
duke@1 1660 // this is allowed only if the prototype is an array
duke@1 1661 if (pt.tag == ARRAY) {
duke@1 1662 elemtype = types.elemtype(pt);
duke@1 1663 } else {
duke@1 1664 if (pt.tag != ERROR) {
duke@1 1665 log.error(tree.pos(), "illegal.initializer.for.type",
duke@1 1666 pt);
duke@1 1667 }
jjg@110 1668 elemtype = types.createErrorType(pt);
duke@1 1669 }
duke@1 1670 }
duke@1 1671 if (tree.elems != null) {
duke@1 1672 attribExprs(tree.elems, env, elemtype);
duke@1 1673 owntype = new ArrayType(elemtype, syms.arrayClass);
duke@1 1674 }
duke@1 1675 if (!types.isReifiable(elemtype))
duke@1 1676 log.error(tree.pos(), "generic.array.creation");
duke@1 1677 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1678 }
duke@1 1679
duke@1 1680 public void visitParens(JCParens tree) {
duke@1 1681 Type owntype = attribTree(tree.expr, env, pkind, pt);
duke@1 1682 result = check(tree, owntype, pkind, pkind, pt);
duke@1 1683 Symbol sym = TreeInfo.symbol(tree);
duke@1 1684 if (sym != null && (sym.kind&(TYP|PCK)) != 0)
duke@1 1685 log.error(tree.pos(), "illegal.start.of.type");
duke@1 1686 }
duke@1 1687
duke@1 1688 public void visitAssign(JCAssign tree) {
duke@1 1689 Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType);
duke@1 1690 Type capturedType = capture(owntype);
duke@1 1691 attribExpr(tree.rhs, env, owntype);
duke@1 1692 result = check(tree, capturedType, VAL, pkind, pt);
duke@1 1693 }
duke@1 1694
duke@1 1695 public void visitAssignop(JCAssignOp tree) {
duke@1 1696 // Attribute arguments.
duke@1 1697 Type owntype = attribTree(tree.lhs, env, VAR, Type.noType);
duke@1 1698 Type operand = attribExpr(tree.rhs, env);
duke@1 1699 // Find operator.
duke@1 1700 Symbol operator = tree.operator = rs.resolveBinaryOperator(
duke@1 1701 tree.pos(), tree.getTag() - JCTree.ASGOffset, env,
duke@1 1702 owntype, operand);
duke@1 1703
duke@1 1704 if (operator.kind == MTH) {
duke@1 1705 chk.checkOperator(tree.pos(),
duke@1 1706 (OperatorSymbol)operator,
duke@1 1707 tree.getTag() - JCTree.ASGOffset,
duke@1 1708 owntype,
duke@1 1709 operand);
jjg@9 1710 chk.checkDivZero(tree.rhs.pos(), operator, operand);
jjg@9 1711 chk.checkCastable(tree.rhs.pos(),
jjg@9 1712 operator.type.getReturnType(),
jjg@9 1713 owntype);
duke@1 1714 }
duke@1 1715 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1716 }
duke@1 1717
duke@1 1718 public void visitUnary(JCUnary tree) {
duke@1 1719 // Attribute arguments.
duke@1 1720 Type argtype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
duke@1 1721 ? attribTree(tree.arg, env, VAR, Type.noType)
duke@1 1722 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
duke@1 1723
duke@1 1724 // Find operator.
duke@1 1725 Symbol operator = tree.operator =
duke@1 1726 rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
duke@1 1727
jjg@110 1728 Type owntype = types.createErrorType(tree.type);
duke@1 1729 if (operator.kind == MTH) {
duke@1 1730 owntype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
duke@1 1731 ? tree.arg.type
duke@1 1732 : operator.type.getReturnType();
duke@1 1733 int opc = ((OperatorSymbol)operator).opcode;
duke@1 1734
duke@1 1735 // If the argument is constant, fold it.
duke@1 1736 if (argtype.constValue() != null) {
duke@1 1737 Type ctype = cfolder.fold1(opc, argtype);
duke@1 1738 if (ctype != null) {
duke@1 1739 owntype = cfolder.coerce(ctype, owntype);
duke@1 1740
duke@1 1741 // Remove constant types from arguments to
duke@1 1742 // conserve space. The parser will fold concatenations
duke@1 1743 // of string literals; the code here also
duke@1 1744 // gets rid of intermediate results when some of the
duke@1 1745 // operands are constant identifiers.
duke@1 1746 if (tree.arg.type.tsym == syms.stringType.tsym) {
duke@1 1747 tree.arg.type = syms.stringType;
duke@1 1748 }
duke@1 1749 }
duke@1 1750 }
duke@1 1751 }
duke@1 1752 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1753 }
duke@1 1754
duke@1 1755 public void visitBinary(JCBinary tree) {
duke@1 1756 // Attribute arguments.
duke@1 1757 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
duke@1 1758 Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
duke@1 1759
duke@1 1760 // Find operator.
duke@1 1761 Symbol operator = tree.operator =
duke@1 1762 rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
duke@1 1763
jjg@110 1764 Type owntype = types.createErrorType(tree.type);
duke@1 1765 if (operator.kind == MTH) {
duke@1 1766 owntype = operator.type.getReturnType();
duke@1 1767 int opc = chk.checkOperator(tree.lhs.pos(),
duke@1 1768 (OperatorSymbol)operator,
duke@1 1769 tree.getTag(),
duke@1 1770 left,
duke@1 1771 right);
duke@1 1772
duke@1 1773 // If both arguments are constants, fold them.
duke@1 1774 if (left.constValue() != null && right.constValue() != null) {
duke@1 1775 Type ctype = cfolder.fold2(opc, left, right);
duke@1 1776 if (ctype != null) {
duke@1 1777 owntype = cfolder.coerce(ctype, owntype);
duke@1 1778
duke@1 1779 // Remove constant types from arguments to
duke@1 1780 // conserve space. The parser will fold concatenations
duke@1 1781 // of string literals; the code here also
duke@1 1782 // gets rid of intermediate results when some of the
duke@1 1783 // operands are constant identifiers.
duke@1 1784 if (tree.lhs.type.tsym == syms.stringType.tsym) {
duke@1 1785 tree.lhs.type = syms.stringType;
duke@1 1786 }
duke@1 1787 if (tree.rhs.type.tsym == syms.stringType.tsym) {
duke@1 1788 tree.rhs.type = syms.stringType;
duke@1 1789 }
duke@1 1790 }
duke@1 1791 }
duke@1 1792
duke@1 1793 // Check that argument types of a reference ==, != are
duke@1 1794 // castable to each other, (JLS???).
duke@1 1795 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
duke@1 1796 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
duke@1 1797 log.error(tree.pos(), "incomparable.types", left, right);
duke@1 1798 }
duke@1 1799 }
duke@1 1800
duke@1 1801 chk.checkDivZero(tree.rhs.pos(), operator, right);
duke@1 1802 }
duke@1 1803 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1804 }
duke@1 1805
duke@1 1806 public void visitTypeCast(JCTypeCast tree) {
duke@1 1807 Type clazztype = attribType(tree.clazz, env);
mcimadamore@122 1808 chk.validate(tree.clazz, env);
duke@1 1809 Type exprtype = attribExpr(tree.expr, env, Infer.anyPoly);
duke@1 1810 Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
duke@1 1811 if (exprtype.constValue() != null)
duke@1 1812 owntype = cfolder.coerce(exprtype, owntype);
duke@1 1813 result = check(tree, capture(owntype), VAL, pkind, pt);
duke@1 1814 }
duke@1 1815
duke@1 1816 public void visitTypeTest(JCInstanceOf tree) {
duke@1 1817 Type exprtype = chk.checkNullOrRefType(
duke@1 1818 tree.expr.pos(), attribExpr(tree.expr, env));
duke@1 1819 Type clazztype = chk.checkReifiableReferenceType(
duke@1 1820 tree.clazz.pos(), attribType(tree.clazz, env));
mcimadamore@122 1821 chk.validate(tree.clazz, env);
duke@1 1822 chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
duke@1 1823 result = check(tree, syms.booleanType, VAL, pkind, pt);
duke@1 1824 }
duke@1 1825
duke@1 1826 public void visitIndexed(JCArrayAccess tree) {
jjg@110 1827 Type owntype = types.createErrorType(tree.type);
duke@1 1828 Type atype = attribExpr(tree.indexed, env);
duke@1 1829 attribExpr(tree.index, env, syms.intType);
duke@1 1830 if (types.isArray(atype))
duke@1 1831 owntype = types.elemtype(atype);
duke@1 1832 else if (atype.tag != ERROR)
duke@1 1833 log.error(tree.pos(), "array.req.but.found", atype);
duke@1 1834 if ((pkind & VAR) == 0) owntype = capture(owntype);
duke@1 1835 result = check(tree, owntype, VAR, pkind, pt);
duke@1 1836 }
duke@1 1837
duke@1 1838 public void visitIdent(JCIdent tree) {
duke@1 1839 Symbol sym;
duke@1 1840 boolean varArgs = false;
duke@1 1841
duke@1 1842 // Find symbol
duke@1 1843 if (pt.tag == METHOD || pt.tag == FORALL) {
duke@1 1844 // If we are looking for a method, the prototype `pt' will be a
duke@1 1845 // method type with the type of the call's arguments as parameters.
duke@1 1846 env.info.varArgs = false;
duke@1 1847 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments());
duke@1 1848 varArgs = env.info.varArgs;
duke@1 1849 } else if (tree.sym != null && tree.sym.kind != VAR) {
duke@1 1850 sym = tree.sym;
duke@1 1851 } else {
duke@1 1852 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind);
duke@1 1853 }
duke@1 1854 tree.sym = sym;
duke@1 1855
duke@1 1856 // (1) Also find the environment current for the class where
duke@1 1857 // sym is defined (`symEnv').
duke@1 1858 // Only for pre-tiger versions (1.4 and earlier):
duke@1 1859 // (2) Also determine whether we access symbol out of an anonymous
duke@1 1860 // class in a this or super call. This is illegal for instance
duke@1 1861 // members since such classes don't carry a this$n link.
duke@1 1862 // (`noOuterThisPath').
duke@1 1863 Env<AttrContext> symEnv = env;
duke@1 1864 boolean noOuterThisPath = false;
duke@1 1865 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
duke@1 1866 (sym.kind & (VAR | MTH | TYP)) != 0 &&
duke@1 1867 sym.owner.kind == TYP &&
duke@1 1868 tree.name != names._this && tree.name != names._super) {
duke@1 1869
duke@1 1870 // Find environment in which identifier is defined.
duke@1 1871 while (symEnv.outer != null &&
duke@1 1872 !sym.isMemberOf(symEnv.enclClass.sym, types)) {
duke@1 1873 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
duke@1 1874 noOuterThisPath = !allowAnonOuterThis;
duke@1 1875 symEnv = symEnv.outer;
duke@1 1876 }
duke@1 1877 }
duke@1 1878
duke@1 1879 // If symbol is a variable, ...
duke@1 1880 if (sym.kind == VAR) {
duke@1 1881 VarSymbol v = (VarSymbol)sym;
duke@1 1882
duke@1 1883 // ..., evaluate its initializer, if it has one, and check for
duke@1 1884 // illegal forward reference.
duke@1 1885 checkInit(tree, env, v, false);
duke@1 1886
duke@1 1887 // If symbol is a local variable accessed from an embedded
duke@1 1888 // inner class check that it is final.
duke@1 1889 if (v.owner.kind == MTH &&
duke@1 1890 v.owner != env.info.scope.owner &&
duke@1 1891 (v.flags_field & FINAL) == 0) {
duke@1 1892 log.error(tree.pos(),
duke@1 1893 "local.var.accessed.from.icls.needs.final",
duke@1 1894 v);
duke@1 1895 }
duke@1 1896
duke@1 1897 // If we are expecting a variable (as opposed to a value), check
duke@1 1898 // that the variable is assignable in the current environment.
duke@1 1899 if (pkind == VAR)
duke@1 1900 checkAssignable(tree.pos(), v, null, env);
duke@1 1901 }
duke@1 1902
duke@1 1903 // In a constructor body,
duke@1 1904 // if symbol is a field or instance method, check that it is
duke@1 1905 // not accessed before the supertype constructor is called.
duke@1 1906 if ((symEnv.info.isSelfCall || noOuterThisPath) &&
duke@1 1907 (sym.kind & (VAR | MTH)) != 0 &&
duke@1 1908 sym.owner.kind == TYP &&
duke@1 1909 (sym.flags() & STATIC) == 0) {
duke@1 1910 chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
duke@1 1911 }
duke@1 1912 Env<AttrContext> env1 = env;
mcimadamore@28 1913 if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
duke@1 1914 // If the found symbol is inaccessible, then it is
duke@1 1915 // accessed through an enclosing instance. Locate this
duke@1 1916 // enclosing instance:
duke@1 1917 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
duke@1 1918 env1 = env1.outer;
duke@1 1919 }
duke@1 1920 result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs);
duke@1 1921 }
duke@1 1922
duke@1 1923 public void visitSelect(JCFieldAccess tree) {
duke@1 1924 // Determine the expected kind of the qualifier expression.
duke@1 1925 int skind = 0;
duke@1 1926 if (tree.name == names._this || tree.name == names._super ||
duke@1 1927 tree.name == names._class)
duke@1 1928 {
duke@1 1929 skind = TYP;
duke@1 1930 } else {
duke@1 1931 if ((pkind & PCK) != 0) skind = skind | PCK;
duke@1 1932 if ((pkind & TYP) != 0) skind = skind | TYP | PCK;
duke@1 1933 if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
duke@1 1934 }
duke@1 1935
duke@1 1936 // Attribute the qualifier expression, and determine its symbol (if any).
duke@1 1937 Type site = attribTree(tree.selected, env, skind, Infer.anyPoly);
duke@1 1938 if ((pkind & (PCK | TYP)) == 0)
duke@1 1939 site = capture(site); // Capture field access
duke@1 1940
duke@1 1941 // don't allow T.class T[].class, etc
duke@1 1942 if (skind == TYP) {
duke@1 1943 Type elt = site;
duke@1 1944 while (elt.tag == ARRAY)
duke@1 1945 elt = ((ArrayType)elt).elemtype;
duke@1 1946 if (elt.tag == TYPEVAR) {
duke@1 1947 log.error(tree.pos(), "type.var.cant.be.deref");
jjg@110 1948 result = types.createErrorType(tree.type);
duke@1 1949 return;
duke@1 1950 }
duke@1 1951 }
duke@1 1952
duke@1 1953 // If qualifier symbol is a type or `super', assert `selectSuper'
duke@1 1954 // for the selection. This is relevant for determining whether
duke@1 1955 // protected symbols are accessible.
duke@1 1956 Symbol sitesym = TreeInfo.symbol(tree.selected);
duke@1 1957 boolean selectSuperPrev = env.info.selectSuper;
duke@1 1958 env.info.selectSuper =
duke@1 1959 sitesym != null &&
duke@1 1960 sitesym.name == names._super;
duke@1 1961
duke@1 1962 // If selected expression is polymorphic, strip
duke@1 1963 // type parameters and remember in env.info.tvars, so that
duke@1 1964 // they can be added later (in Attr.checkId and Infer.instantiateMethod).
duke@1 1965 if (tree.selected.type.tag == FORALL) {
duke@1 1966 ForAll pstype = (ForAll)tree.selected.type;
duke@1 1967 env.info.tvars = pstype.tvars;
duke@1 1968 site = tree.selected.type = pstype.qtype;
duke@1 1969 }
duke@1 1970
duke@1 1971 // Determine the symbol represented by the selection.
duke@1 1972 env.info.varArgs = false;
duke@1 1973 Symbol sym = selectSym(tree, site, env, pt, pkind);
duke@1 1974 if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) {
duke@1 1975 site = capture(site);
duke@1 1976 sym = selectSym(tree, site, env, pt, pkind);
duke@1 1977 }
duke@1 1978 boolean varArgs = env.info.varArgs;
duke@1 1979 tree.sym = sym;
duke@1 1980
mcimadamore@27 1981 if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR) {
mcimadamore@27 1982 while (site.tag == TYPEVAR) site = site.getUpperBound();
mcimadamore@27 1983 site = capture(site);
mcimadamore@27 1984 }
duke@1 1985
duke@1 1986 // If that symbol is a variable, ...
duke@1 1987 if (sym.kind == VAR) {
duke@1 1988 VarSymbol v = (VarSymbol)sym;
duke@1 1989
duke@1 1990 // ..., evaluate its initializer, if it has one, and check for
duke@1 1991 // illegal forward reference.
duke@1 1992 checkInit(tree, env, v, true);
duke@1 1993
duke@1 1994 // If we are expecting a variable (as opposed to a value), check
duke@1 1995 // that the variable is assignable in the current environment.
duke@1 1996 if (pkind == VAR)
duke@1 1997 checkAssignable(tree.pos(), v, tree.selected, env);
duke@1 1998 }
duke@1 1999
duke@1 2000 // Disallow selecting a type from an expression
duke@1 2001 if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
duke@1 2002 tree.type = check(tree.selected, pt,
duke@1 2003 sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt);
duke@1 2004 }
duke@1 2005
duke@1 2006 if (isType(sitesym)) {
duke@1 2007 if (sym.name == names._this) {
duke@1 2008 // If `C' is the currently compiled class, check that
duke@1 2009 // C.this' does not appear in a call to a super(...)
duke@1 2010 if (env.info.isSelfCall &&
duke@1 2011 site.tsym == env.enclClass.sym) {
duke@1 2012 chk.earlyRefError(tree.pos(), sym);
duke@1 2013 }
duke@1 2014 } else {
duke@1 2015 // Check if type-qualified fields or methods are static (JLS)
duke@1 2016 if ((sym.flags() & STATIC) == 0 &&
duke@1 2017 sym.name != names._super &&
duke@1 2018 (sym.kind == VAR || sym.kind == MTH)) {
duke@1 2019 rs.access(rs.new StaticError(sym),
duke@1 2020 tree.pos(), site, sym.name, true);
duke@1 2021 }
duke@1 2022 }
duke@1 2023 }
duke@1 2024
duke@1 2025 // If we are selecting an instance member via a `super', ...
duke@1 2026 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
duke@1 2027
duke@1 2028 // Check that super-qualified symbols are not abstract (JLS)
duke@1 2029 rs.checkNonAbstract(tree.pos(), sym);
duke@1 2030
duke@1 2031 if (site.isRaw()) {
duke@1 2032 // Determine argument types for site.
duke@1 2033 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
duke@1 2034 if (site1 != null) site = site1;
duke@1 2035 }
duke@1 2036 }
duke@1 2037
duke@1 2038 env.info.selectSuper = selectSuperPrev;
duke@1 2039 result = checkId(tree, site, sym, env, pkind, pt, varArgs);
duke@1 2040 env.info.tvars = List.nil();
duke@1 2041 }
duke@1 2042 //where
duke@1 2043 /** Determine symbol referenced by a Select expression,
duke@1 2044 *
duke@1 2045 * @param tree The select tree.
duke@1 2046 * @param site The type of the selected expression,
duke@1 2047 * @param env The current environment.
duke@1 2048 * @param pt The current prototype.
duke@1 2049 * @param pkind The expected kind(s) of the Select expression.
duke@1 2050 */
duke@1 2051 private Symbol selectSym(JCFieldAccess tree,
duke@1 2052 Type site,
duke@1 2053 Env<AttrContext> env,
duke@1 2054 Type pt,
duke@1 2055 int pkind) {
duke@1 2056 DiagnosticPosition pos = tree.pos();
duke@1 2057 Name name = tree.name;
duke@1 2058
duke@1 2059 switch (site.tag) {
duke@1 2060 case PACKAGE:
duke@1 2061 return rs.access(
duke@1 2062 rs.findIdentInPackage(env, site.tsym, name, pkind),
duke@1 2063 pos, site, name, true);
duke@1 2064 case ARRAY:
duke@1 2065 case CLASS:
duke@1 2066 if (pt.tag == METHOD || pt.tag == FORALL) {
duke@1 2067 return rs.resolveQualifiedMethod(
duke@1 2068 pos, env, site, name, pt.getParameterTypes(), pt.getTypeArguments());
duke@1 2069 } else if (name == names._this || name == names._super) {
duke@1 2070 return rs.resolveSelf(pos, env, site.tsym, name);
duke@1 2071 } else if (name == names._class) {
duke@1 2072 // In this case, we have already made sure in
duke@1 2073 // visitSelect that qualifier expression is a type.
duke@1 2074 Type t = syms.classType;
duke@1 2075 List<Type> typeargs = allowGenerics
duke@1 2076 ? List.of(types.erasure(site))
duke@1 2077 : List.<Type>nil();
duke@1 2078 t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
duke@1 2079 return new VarSymbol(
duke@1 2080 STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
duke@1 2081 } else {
duke@1 2082 // We are seeing a plain identifier as selector.
duke@1 2083 Symbol sym = rs.findIdentInType(env, site, name, pkind);
duke@1 2084 if ((pkind & ERRONEOUS) == 0)
duke@1 2085 sym = rs.access(sym, pos, site, name, true);
duke@1 2086 return sym;
duke@1 2087 }
duke@1 2088 case WILDCARD:
duke@1 2089 throw new AssertionError(tree);
duke@1 2090 case TYPEVAR:
duke@1 2091 // Normally, site.getUpperBound() shouldn't be null.
duke@1 2092 // It should only happen during memberEnter/attribBase
duke@1 2093 // when determining the super type which *must* be
duke@1 2094 // done before attributing the type variables. In
duke@1 2095 // other words, we are seeing this illegal program:
duke@1 2096 // class B<T> extends A<T.foo> {}
duke@1 2097 Symbol sym = (site.getUpperBound() != null)
duke@1 2098 ? selectSym(tree, capture(site.getUpperBound()), env, pt, pkind)
duke@1 2099 : null;
mcimadamore@361 2100 if (sym == null) {
duke@1 2101 log.error(pos, "type.var.cant.be.deref");
duke@1 2102 return syms.errSymbol;
duke@1 2103 } else {
mcimadamore@155 2104 Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
mcimadamore@155 2105 rs.new AccessError(env, site, sym) :
mcimadamore@155 2106 sym;
mcimadamore@155 2107 rs.access(sym2, pos, site, name, true);
duke@1 2108 return sym;
duke@1 2109 }
duke@1 2110 case ERROR:
duke@1 2111 // preserve identifier names through errors
jjg@110 2112 return types.createErrorType(name, site.tsym, site).tsym;
duke@1 2113 default:
duke@1 2114 // The qualifier expression is of a primitive type -- only
duke@1 2115 // .class is allowed for these.
duke@1 2116 if (name == names._class) {
duke@1 2117 // In this case, we have already made sure in Select that
duke@1 2118 // qualifier expression is a type.
duke@1 2119 Type t = syms.classType;
duke@1 2120 Type arg = types.boxedClass(site).type;
duke@1 2121 t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
duke@1 2122 return new VarSymbol(
duke@1 2123 STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
duke@1 2124 } else {
duke@1 2125 log.error(pos, "cant.deref", site);
duke@1 2126 return syms.errSymbol;
duke@1 2127 }
duke@1 2128 }
duke@1 2129 }
duke@1 2130
duke@1 2131 /** Determine type of identifier or select expression and check that
duke@1 2132 * (1) the referenced symbol is not deprecated
duke@1 2133 * (2) the symbol's type is safe (@see checkSafe)
duke@1 2134 * (3) if symbol is a variable, check that its type and kind are
duke@1 2135 * compatible with the prototype and protokind.
duke@1 2136 * (4) if symbol is an instance field of a raw type,
duke@1 2137 * which is being assigned to, issue an unchecked warning if its
duke@1 2138 * type changes under erasure.
duke@1 2139 * (5) if symbol is an instance method of a raw type, issue an
duke@1 2140 * unchecked warning if its argument types change under erasure.
duke@1 2141 * If checks succeed:
duke@1 2142 * If symbol is a constant, return its constant type
duke@1 2143 * else if symbol is a method, return its result type
duke@1 2144 * otherwise return its type.
duke@1 2145 * Otherwise return errType.
duke@1 2146 *
duke@1 2147 * @param tree The syntax tree representing the identifier
duke@1 2148 * @param site If this is a select, the type of the selected
duke@1 2149 * expression, otherwise the type of the current class.
duke@1 2150 * @param sym The symbol representing the identifier.
duke@1 2151 * @param env The current environment.
duke@1 2152 * @param pkind The set of expected kinds.
duke@1 2153 * @param pt The expected type.
duke@1 2154 */
duke@1 2155 Type checkId(JCTree tree,
duke@1 2156 Type site,
duke@1 2157 Symbol sym,
duke@1 2158 Env<AttrContext> env,
duke@1 2159 int pkind,
duke@1 2160 Type pt,
duke@1 2161 boolean useVarargs) {
jjg@110 2162 if (pt.isErroneous()) return types.createErrorType(site);
duke@1 2163 Type owntype; // The computed type of this identifier occurrence.
duke@1 2164 switch (sym.kind) {
duke@1 2165 case TYP:
duke@1 2166 // For types, the computed type equals the symbol's type,
duke@1 2167 // except for two situations:
duke@1 2168 owntype = sym.type;
duke@1 2169 if (owntype.tag == CLASS) {
duke@1 2170 Type ownOuter = owntype.getEnclosingType();
duke@1 2171
duke@1 2172 // (a) If the symbol's type is parameterized, erase it
duke@1 2173 // because no type parameters were given.
duke@1 2174 // We recover generic outer type later in visitTypeApply.
duke@1 2175 if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
duke@1 2176 owntype = types.erasure(owntype);
duke@1 2177 }
duke@1 2178
duke@1 2179 // (b) If the symbol's type is an inner class, then
duke@1 2180 // we have to interpret its outer type as a superclass
duke@1 2181 // of the site type. Example:
duke@1 2182 //
duke@1 2183 // class Tree<A> { class Visitor { ... } }
duke@1 2184 // class PointTree extends Tree<Point> { ... }
duke@1 2185 // ...PointTree.Visitor...
duke@1 2186 //
duke@1 2187 // Then the type of the last expression above is
duke@1 2188 // Tree<Point>.Visitor.
duke@1 2189 else if (ownOuter.tag == CLASS && site != ownOuter) {
duke@1 2190 Type normOuter = site;
duke@1 2191 if (normOuter.tag == CLASS)
duke@1 2192 normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
duke@1 2193 if (normOuter == null) // perhaps from an import
duke@1 2194 normOuter = types.erasure(ownOuter);
duke@1 2195 if (normOuter != ownOuter)
duke@1 2196 owntype = new ClassType(
duke@1 2197 normOuter, List.<Type>nil(), owntype.tsym);
duke@1 2198 }
duke@1 2199 }
duke@1 2200 break;
duke@1 2201 case VAR:
duke@1 2202 VarSymbol v = (VarSymbol)sym;
duke@1 2203 // Test (4): if symbol is an instance field of a raw type,
duke@1 2204 // which is being assigned to, issue an unchecked warning if
duke@1 2205 // its type changes under erasure.
duke@1 2206 if (allowGenerics &&
duke@1 2207 pkind == VAR &&
duke@1 2208 v.owner.kind == TYP &&
duke@1 2209 (v.flags() & STATIC) == 0 &&
duke@1 2210 (site.tag == CLASS || site.tag == TYPEVAR)) {
duke@1 2211 Type s = types.asOuterSuper(site, v.owner);
duke@1 2212 if (s != null &&
duke@1 2213 s.isRaw() &&
duke@1 2214 !types.isSameType(v.type, v.erasure(types))) {
duke@1 2215 chk.warnUnchecked(tree.pos(),
duke@1 2216 "unchecked.assign.to.var",
duke@1 2217 v, s);
duke@1 2218 }
duke@1 2219 }
duke@1 2220 // The computed type of a variable is the type of the
duke@1 2221 // variable symbol, taken as a member of the site type.
duke@1 2222 owntype = (sym.owner.kind == TYP &&
duke@1 2223 sym.name != names._this && sym.name != names._super)
duke@1 2224 ? types.memberType(site, sym)
duke@1 2225 : sym.type;
duke@1 2226
duke@1 2227 if (env.info.tvars.nonEmpty()) {
duke@1 2228 Type owntype1 = new ForAll(env.info.tvars, owntype);
duke@1 2229 for (List<Type> l = env.info.tvars; l.nonEmpty(); l = l.tail)
duke@1 2230 if (!owntype.contains(l.head)) {
duke@1 2231 log.error(tree.pos(), "undetermined.type", owntype1);
jjg@110 2232 owntype1 = types.createErrorType(owntype1);
duke@1 2233 }
duke@1 2234 owntype = owntype1;
duke@1 2235 }
duke@1 2236
duke@1 2237 // If the variable is a constant, record constant value in
duke@1 2238 // computed type.
duke@1 2239 if (v.getConstValue() != null && isStaticReference(tree))
duke@1 2240 owntype = owntype.constType(v.getConstValue());
duke@1 2241
duke@1 2242 if (pkind == VAL) {
duke@1 2243 owntype = capture(owntype); // capture "names as expressions"
duke@1 2244 }
duke@1 2245 break;
duke@1 2246 case MTH: {
duke@1 2247 JCMethodInvocation app = (JCMethodInvocation)env.tree;
duke@1 2248 owntype = checkMethod(site, sym, env, app.args,
duke@1 2249 pt.getParameterTypes(), pt.getTypeArguments(),
duke@1 2250 env.info.varArgs);
duke@1 2251 break;
duke@1 2252 }
duke@1 2253 case PCK: case ERR:
duke@1 2254 owntype = sym.type;
duke@1 2255 break;
duke@1 2256 default:
duke@1 2257 throw new AssertionError("unexpected kind: " + sym.kind +
duke@1 2258 " in tree " + tree);
duke@1 2259 }
duke@1 2260
duke@1 2261 // Test (1): emit a `deprecation' warning if symbol is deprecated.
duke@1 2262 // (for constructors, the error was given when the constructor was
duke@1 2263 // resolved)
duke@1 2264 if (sym.name != names.init &&
duke@1 2265 (sym.flags() & DEPRECATED) != 0 &&
duke@1 2266 (env.info.scope.owner.flags() & DEPRECATED) == 0 &&
duke@1 2267 sym.outermostClass() != env.info.scope.owner.outermostClass())
duke@1 2268 chk.warnDeprecated(tree.pos(), sym);
duke@1 2269
jjg@377 2270 if ((sym.flags() & PROPRIETARY) != 0) {
jjg@377 2271 if (enableSunApiLintControl)
jjg@377 2272 chk.warnSunApi(tree.pos(), "sun.proprietary", sym);
jjg@377 2273 else
jjg@377 2274 log.strictWarning(tree.pos(), "sun.proprietary", sym);
jjg@377 2275 }
duke@1 2276
duke@1 2277 // Test (3): if symbol is a variable, check that its type and
duke@1 2278 // kind are compatible with the prototype and protokind.
duke@1 2279 return check(tree, owntype, sym.kind, pkind, pt);
duke@1 2280 }
duke@1 2281
duke@1 2282 /** Check that variable is initialized and evaluate the variable's
duke@1 2283 * initializer, if not yet done. Also check that variable is not
duke@1 2284 * referenced before it is defined.
duke@1 2285 * @param tree The tree making up the variable reference.
duke@1 2286 * @param env The current environment.
duke@1 2287 * @param v The variable's symbol.
duke@1 2288 */
duke@1 2289 private void checkInit(JCTree tree,
duke@1 2290 Env<AttrContext> env,
duke@1 2291 VarSymbol v,
duke@1 2292 boolean onlyWarning) {
duke@1 2293 // System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
duke@1 2294 // tree.pos + " " + v.pos + " " +
duke@1 2295 // Resolve.isStatic(env));//DEBUG
duke@1 2296
duke@1 2297 // A forward reference is diagnosed if the declaration position
duke@1 2298 // of the variable is greater than the current tree position
duke@1 2299 // and the tree and variable definition occur in the same class
duke@1 2300 // definition. Note that writes don't count as references.
duke@1 2301 // This check applies only to class and instance
duke@1 2302 // variables. Local variables follow different scope rules,
duke@1 2303 // and are subject to definite assignment checking.
mcimadamore@94 2304 if ((env.info.enclVar == v || v.pos > tree.pos) &&
duke@1 2305 v.owner.kind == TYP &&
duke@1 2306 canOwnInitializer(env.info.scope.owner) &&
duke@1 2307 v.owner == env.info.scope.owner.enclClass() &&
duke@1 2308 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
duke@1 2309 (env.tree.getTag() != JCTree.ASSIGN ||
duke@1 2310 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
mcimadamore@94 2311 String suffix = (env.info.enclVar == v) ?
mcimadamore@94 2312 "self.ref" : "forward.ref";
mcimadamore@18 2313 if (!onlyWarning || isStaticEnumField(v)) {
mcimadamore@94 2314 log.error(tree.pos(), "illegal." + suffix);
duke@1 2315 } else if (useBeforeDeclarationWarning) {
mcimadamore@94 2316 log.warning(tree.pos(), suffix, v);
duke@1 2317 }
duke@1 2318 }
duke@1 2319
duke@1 2320 v.getConstValue(); // ensure initializer is evaluated
duke@1 2321
duke@1 2322 checkEnumInitializer(tree, env, v);
duke@1 2323 }
duke@1 2324
duke@1 2325 /**
duke@1 2326 * Check for illegal references to static members of enum. In
duke@1 2327 * an enum type, constructors and initializers may not
duke@1 2328 * reference its static members unless they are constant.
duke@1 2329 *
duke@1 2330 * @param tree The tree making up the variable reference.
duke@1 2331 * @param env The current environment.
duke@1 2332 * @param v The variable's symbol.
duke@1 2333 * @see JLS 3rd Ed. (8.9 Enums)
duke@1 2334 */
duke@1 2335 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
duke@1 2336 // JLS 3rd Ed.:
duke@1 2337 //
duke@1 2338 // "It is a compile-time error to reference a static field
duke@1 2339 // of an enum type that is not a compile-time constant
duke@1 2340 // (15.28) from constructors, instance initializer blocks,
duke@1 2341 // or instance variable initializer expressions of that
duke@1 2342 // type. It is a compile-time error for the constructors,
duke@1 2343 // instance initializer blocks, or instance variable
duke@1 2344 // initializer expressions of an enum constant e to refer
duke@1 2345 // to itself or to an enum constant of the same type that
duke@1 2346 // is declared to the right of e."
mcimadamore@18 2347 if (isStaticEnumField(v)) {
duke@1 2348 ClassSymbol enclClass = env.info.scope.owner.enclClass();
duke@1 2349
duke@1 2350 if (enclClass == null || enclClass.owner == null)
duke@1 2351 return;
duke@1 2352
duke@1 2353 // See if the enclosing class is the enum (or a
duke@1 2354 // subclass thereof) declaring v. If not, this
duke@1 2355 // reference is OK.
duke@1 2356 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
duke@1 2357 return;
duke@1 2358
duke@1 2359 // If the reference isn't from an initializer, then
duke@1 2360 // the reference is OK.
duke@1 2361 if (!Resolve.isInitializer(env))
duke@1 2362 return;
duke@1 2363
duke@1 2364 log.error(tree.pos(), "illegal.enum.static.ref");
duke@1 2365 }
duke@1 2366 }
duke@1 2367
mcimadamore@18 2368 /** Is the given symbol a static, non-constant field of an Enum?
mcimadamore@18 2369 * Note: enum literals should not be regarded as such
mcimadamore@18 2370 */
mcimadamore@18 2371 private boolean isStaticEnumField(VarSymbol v) {
mcimadamore@18 2372 return Flags.isEnum(v.owner) &&
mcimadamore@18 2373 Flags.isStatic(v) &&
mcimadamore@18 2374 !Flags.isConstant(v) &&
mcimadamore@18 2375 v.name != names._class;
duke@1 2376 }
duke@1 2377
duke@1 2378 /** Can the given symbol be the owner of code which forms part
duke@1 2379 * if class initialization? This is the case if the symbol is
duke@1 2380 * a type or field, or if the symbol is the synthetic method.
duke@1 2381 * owning a block.
duke@1 2382 */
duke@1 2383 private boolean canOwnInitializer(Symbol sym) {
duke@1 2384 return
duke@1 2385 (sym.kind & (VAR | TYP)) != 0 ||
duke@1 2386 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
duke@1 2387 }
duke@1 2388
duke@1 2389 Warner noteWarner = new Warner();
duke@1 2390
duke@1 2391 /**
duke@1 2392 * Check that method arguments conform to its instantation.
duke@1 2393 **/
duke@1 2394 public Type checkMethod(Type site,
duke@1 2395 Symbol sym,
duke@1 2396 Env<AttrContext> env,
duke@1 2397 final List<JCExpression> argtrees,
duke@1 2398 List<Type> argtypes,
duke@1 2399 List<Type> typeargtypes,
duke@1 2400 boolean useVarargs) {
duke@1 2401 // Test (5): if symbol is an instance method of a raw type, issue
duke@1 2402 // an unchecked warning if its argument types change under erasure.
duke@1 2403 if (allowGenerics &&
duke@1 2404 (sym.flags() & STATIC) == 0 &&
duke@1 2405 (site.tag == CLASS || site.tag == TYPEVAR)) {
duke@1 2406 Type s = types.asOuterSuper(site, sym.owner);
duke@1 2407 if (s != null && s.isRaw() &&
duke@1 2408 !types.isSameTypes(sym.type.getParameterTypes(),
duke@1 2409 sym.erasure(types).getParameterTypes())) {
duke@1 2410 chk.warnUnchecked(env.tree.pos(),
duke@1 2411 "unchecked.call.mbr.of.raw.type",
duke@1 2412 sym, s);
duke@1 2413 }
duke@1 2414 }
duke@1 2415
duke@1 2416 // Compute the identifier's instantiated type.
duke@1 2417 // For methods, we need to compute the instance type by
duke@1 2418 // Resolve.instantiate from the symbol's type as well as
duke@1 2419 // any type arguments and value arguments.
duke@1 2420 noteWarner.warned = false;
duke@1 2421 Type owntype = rs.instantiate(env,
duke@1 2422 site,
duke@1 2423 sym,
duke@1 2424 argtypes,
duke@1 2425 typeargtypes,
duke@1 2426 true,
duke@1 2427 useVarargs,
duke@1 2428 noteWarner);
duke@1 2429 boolean warned = noteWarner.warned;
duke@1 2430
duke@1 2431 // If this fails, something went wrong; we should not have
duke@1 2432 // found the identifier in the first place.
duke@1 2433 if (owntype == null) {
duke@1 2434 if (!pt.isErroneous())
duke@1 2435 log.error(env.tree.pos(),
duke@1 2436 "internal.error.cant.instantiate",
duke@1 2437 sym, site,
duke@1 2438 Type.toString(pt.getParameterTypes()));
jjg@110 2439 owntype = types.createErrorType(site);
duke@1 2440 } else {
duke@1 2441 // System.out.println("call : " + env.tree);
duke@1 2442 // System.out.println("method : " + owntype);
duke@1 2443 // System.out.println("actuals: " + argtypes);
duke@1 2444 List<Type> formals = owntype.getParameterTypes();
duke@1 2445 Type last = useVarargs ? formals.last() : null;
duke@1 2446 if (sym.name==names.init &&
duke@1 2447 sym.owner == syms.enumSym)
duke@1 2448 formals = formals.tail.tail;
duke@1 2449 List<JCExpression> args = argtrees;
duke@1 2450 while (formals.head != last) {
duke@1 2451 JCTree arg = args.head;
duke@1 2452 Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head);
duke@1 2453 assertConvertible(arg, arg.type, formals.head, warn);
duke@1 2454 warned |= warn.warned;
duke@1 2455 args = args.tail;
duke@1 2456 formals = formals.tail;
duke@1 2457 }
duke@1 2458 if (useVarargs) {
duke@1 2459 Type varArg = types.elemtype(last);
duke@1 2460 while (args.tail != null) {
duke@1 2461 JCTree arg = args.head;
duke@1 2462 Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg);
duke@1 2463 assertConvertible(arg, arg.type, varArg, warn);
duke@1 2464 warned |= warn.warned;
duke@1 2465 args = args.tail;
duke@1 2466 }
duke@1 2467 } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
duke@1 2468 // non-varargs call to varargs method
duke@1 2469 Type varParam = owntype.getParameterTypes().last();
duke@1 2470 Type lastArg = argtypes.last();
duke@1 2471 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
duke@1 2472 !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
duke@1 2473 log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
duke@1 2474 types.elemtype(varParam),
duke@1 2475 varParam);
duke@1 2476 }
duke@1 2477
duke@1 2478 if (warned && sym.type.tag == FORALL) {
duke@1 2479 chk.warnUnchecked(env.tree.pos(),
duke@1 2480 "unchecked.meth.invocation.applied",
mcimadamore@161 2481 kindName(sym),
mcimadamore@161 2482 sym.name,
mcimadamore@161 2483 rs.methodArguments(sym.type.getParameterTypes()),
mcimadamore@161 2484 rs.methodArguments(argtypes),
mcimadamore@161 2485 kindName(sym.location()),
mcimadamore@161 2486 sym.location());
duke@1 2487 owntype = new MethodType(owntype.getParameterTypes(),
duke@1 2488 types.erasure(owntype.getReturnType()),
duke@1 2489 owntype.getThrownTypes(),
duke@1 2490 syms.methodClass);
duke@1 2491 }
duke@1 2492 if (useVarargs) {
duke@1 2493 JCTree tree = env.tree;
duke@1 2494 Type argtype = owntype.getParameterTypes().last();
duke@1 2495 if (!types.isReifiable(argtype))
duke@1 2496 chk.warnUnchecked(env.tree.pos(),
duke@1 2497 "unchecked.generic.array.creation",
duke@1 2498 argtype);
duke@1 2499 Type elemtype = types.elemtype(argtype);
duke@1 2500 switch (tree.getTag()) {
duke@1 2501 case JCTree.APPLY:
duke@1 2502 ((JCMethodInvocation) tree).varargsElement = elemtype;
duke@1 2503 break;
duke@1 2504 case JCTree.NEWCLASS:
duke@1 2505 ((JCNewClass) tree).varargsElement = elemtype;
duke@1 2506 break;
duke@1 2507 default:
duke@1 2508 throw new AssertionError(""+tree);
duke@1 2509 }
duke@1 2510 }
duke@1 2511 }
duke@1 2512 return owntype;
duke@1 2513 }
duke@1 2514
duke@1 2515 private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
duke@1 2516 if (types.isConvertible(actual, formal, warn))
duke@1 2517 return;
duke@1 2518
duke@1 2519 if (formal.isCompound()
duke@1 2520 && types.isSubtype(actual, types.supertype(formal))
duke@1 2521 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
duke@1 2522 return;
duke@1 2523
duke@1 2524 if (false) {
duke@1 2525 // TODO: make assertConvertible work
mcimadamore@89 2526 chk.typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal);
duke@1 2527 throw new AssertionError("Tree: " + tree
duke@1 2528 + " actual:" + actual
duke@1 2529 + " formal: " + formal);
duke@1 2530 }
duke@1 2531 }
duke@1 2532
duke@1 2533 public void visitLiteral(JCLiteral tree) {
duke@1 2534 result = check(
duke@1 2535 tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt);
duke@1 2536 }
duke@1 2537 //where
duke@1 2538 /** Return the type of a literal with given type tag.
duke@1 2539 */
duke@1 2540 Type litType(int tag) {
duke@1 2541 return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
duke@1 2542 }
duke@1 2543
duke@1 2544 public void visitTypeIdent(JCPrimitiveTypeTree tree) {
duke@1 2545 result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt);
duke@1 2546 }
duke@1 2547
duke@1 2548 public void visitTypeArray(JCArrayTypeTree tree) {
duke@1 2549 Type etype = attribType(tree.elemtype, env);
duke@1 2550 Type type = new ArrayType(etype, syms.arrayClass);
duke@1 2551 result = check(tree, type, TYP, pkind, pt);
duke@1 2552 }
duke@1 2553
duke@1 2554 /** Visitor method for parameterized types.
duke@1 2555 * Bound checking is left until later, since types are attributed
duke@1 2556 * before supertype structure is completely known
duke@1 2557 */
duke@1 2558 public void visitTypeApply(JCTypeApply tree) {
jjg@110 2559 Type owntype = types.createErrorType(tree.type);
duke@1 2560
duke@1 2561 // Attribute functor part of application and make sure it's a class.
duke@1 2562 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
duke@1 2563
duke@1 2564 // Attribute type parameters
duke@1 2565 List<Type> actuals = attribTypes(tree.arguments, env);
duke@1 2566
duke@1 2567 if (clazztype.tag == CLASS) {
duke@1 2568 List<Type> formals = clazztype.tsym.type.getTypeArguments();
duke@1 2569
mcimadamore@383 2570 if (actuals.length() == formals.length() || actuals.isEmpty()) {
duke@1 2571 List<Type> a = actuals;
duke@1 2572 List<Type> f = formals;
duke@1 2573 while (a.nonEmpty()) {
duke@1 2574 a.head = a.head.withTypeVar(f.head);
duke@1 2575 a = a.tail;
duke@1 2576 f = f.tail;
duke@1 2577 }
duke@1 2578 // Compute the proper generic outer
duke@1 2579 Type clazzOuter = clazztype.getEnclosingType();
duke@1 2580 if (clazzOuter.tag == CLASS) {
duke@1 2581 Type site;
jjg@308 2582 JCExpression clazz = TreeInfo.typeIn(tree.clazz);
jjg@308 2583 if (clazz.getTag() == JCTree.IDENT) {
duke@1 2584 site = env.enclClass.sym.type;
jjg@308 2585 } else if (clazz.getTag() == JCTree.SELECT) {
jjg@308 2586 site = ((JCFieldAccess) clazz).selected.type;
duke@1 2587 } else throw new AssertionError(""+tree);
duke@1 2588 if (clazzOuter.tag == CLASS && site != clazzOuter) {
duke@1 2589 if (site.tag == CLASS)
duke@1 2590 site = types.asOuterSuper(site, clazzOuter.tsym);
duke@1 2591 if (site == null)
duke@1 2592 site = types.erasure(clazzOuter);
duke@1 2593 clazzOuter = site;
duke@1 2594 }
duke@1 2595 }
mcimadamore@383 2596 if (actuals.nonEmpty()) {
mcimadamore@383 2597 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
mcimadamore@383 2598 }
mcimadamore@383 2599 else if (TreeInfo.isDiamond(tree)) {
mcimadamore@383 2600 //a type apply with no explicit type arguments - diamond operator
mcimadamore@383 2601 //the result type is a forall F where F's tvars are the type-variables
mcimadamore@383 2602 //that will be inferred when F is checked against the expected type
mcimadamore@383 2603 List<Type> ftvars = clazztype.tsym.type.getTypeArguments();
mcimadamore@383 2604 List<Type> new_tvars = types.newInstances(ftvars);
mcimadamore@383 2605 clazztype = new ClassType(clazzOuter, new_tvars, clazztype.tsym);
mcimadamore@383 2606 owntype = new ForAll(new_tvars, clazztype);
mcimadamore@383 2607 }
duke@1 2608 } else {
duke@1 2609 if (formals.length() != 0) {
duke@1 2610 log.error(tree.pos(), "wrong.number.type.args",
duke@1 2611 Integer.toString(formals.length()));
duke@1 2612 } else {
duke@1 2613 log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
duke@1 2614 }
jjg@110 2615 owntype = types.createErrorType(tree.type);
duke@1 2616 }
duke@1 2617 }
duke@1 2618 result = check(tree, owntype, TYP, pkind, pt);
duke@1 2619 }
duke@1 2620
duke@1 2621 public void visitTypeParameter(JCTypeParameter tree) {
duke@1 2622 TypeVar a = (TypeVar)tree.type;
duke@1 2623 Set<Type> boundSet = new HashSet<Type>();
duke@1 2624 if (a.bound.isErroneous())
duke@1 2625 return;
duke@1 2626 List<Type> bs = types.getBounds(a);
duke@1 2627 if (tree.bounds.nonEmpty()) {
duke@1 2628 // accept class or interface or typevar as first bound.
duke@1 2629 Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
duke@1 2630 boundSet.add(types.erasure(b));
mcimadamore@159 2631 if (b.isErroneous()) {
mcimadamore@159 2632 a.bound = b;
mcimadamore@159 2633 }
mcimadamore@159 2634 else if (b.tag == TYPEVAR) {
duke@1 2635 // if first bound was a typevar, do not accept further bounds.
duke@1 2636 if (tree.bounds.tail.nonEmpty()) {
duke@1 2637 log.error(tree.bounds.tail.head.pos(),
duke@1 2638 "type.var.may.not.be.followed.by.other.bounds");
duke@1 2639 tree.bounds = List.of(tree.bounds.head);
mcimadamore@7 2640 a.bound = bs.head;
duke@1 2641 }
duke@1 2642 } else {
duke@1 2643 // if first bound was a class or interface, accept only interfaces
duke@1 2644 // as further bounds.
duke@1 2645 for (JCExpression bound : tree.bounds.tail) {
duke@1 2646 bs = bs.tail;
duke@1 2647 Type i = checkBase(bs.head, bound, env, false, true, false);
mcimadamore@159 2648 if (i.isErroneous())
mcimadamore@159 2649 a.bound = i;
mcimadamore@159 2650 else if (i.tag == CLASS)
duke@1 2651 chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
duke@1 2652 }
duke@1 2653 }
duke@1 2654 }
duke@1 2655 bs = types.getBounds(a);
duke@1 2656
duke@1 2657 // in case of multiple bounds ...
duke@1 2658 if (bs.length() > 1) {
duke@1 2659 // ... the variable's bound is a class type flagged COMPOUND
duke@1 2660 // (see comment for TypeVar.bound).
duke@1 2661 // In this case, generate a class tree that represents the
duke@1 2662 // bound class, ...
duke@1 2663 JCTree extending;
duke@1 2664 List<JCExpression> implementing;
duke@1 2665 if ((bs.head.tsym.flags() & INTERFACE) == 0) {
duke@1 2666 extending = tree.bounds.head;
duke@1 2667 implementing = tree.bounds.tail;
duke@1 2668 } else {
duke@1 2669 extending = null;
duke@1 2670 implementing = tree.bounds;
duke@1 2671 }
duke@1 2672 JCClassDecl cd = make.at(tree.pos).ClassDef(
duke@1 2673 make.Modifiers(PUBLIC | ABSTRACT),
duke@1 2674 tree.name, List.<JCTypeParameter>nil(),
duke@1 2675 extending, implementing, List.<JCTree>nil());
duke@1 2676
duke@1 2677 ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
duke@1 2678 assert (c.flags() & COMPOUND) != 0;
duke@1 2679 cd.sym = c;
duke@1 2680 c.sourcefile = env.toplevel.sourcefile;
duke@1 2681
duke@1 2682 // ... and attribute the bound class
duke@1 2683 c.flags_field |= UNATTRIBUTED;
duke@1 2684 Env<AttrContext> cenv = enter.classEnv(cd, env);
duke@1 2685 enter.typeEnvs.put(c, cenv);
duke@1 2686 }
duke@1 2687 }
duke@1 2688
duke@1 2689
duke@1 2690 public void visitWildcard(JCWildcard tree) {
duke@1 2691 //- System.err.println("visitWildcard("+tree+");");//DEBUG
duke@1 2692 Type type = (tree.kind.kind == BoundKind.UNBOUND)
duke@1 2693 ? syms.objectType
duke@1 2694 : attribType(tree.inner, env);
duke@1 2695 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
duke@1 2696 tree.kind.kind,
duke@1 2697 syms.boundClass),
duke@1 2698 TYP, pkind, pt);
duke@1 2699 }
duke@1 2700
duke@1 2701 public void visitAnnotation(JCAnnotation tree) {
duke@1 2702 log.error(tree.pos(), "annotation.not.valid.for.type", pt);
duke@1 2703 result = tree.type = syms.errType;
duke@1 2704 }
duke@1 2705
jjg@308 2706 public void visitAnnotatedType(JCAnnotatedType tree) {
jjg@308 2707 result = tree.type = attribType(tree.getUnderlyingType(), env);
jjg@308 2708 }
jjg@308 2709
duke@1 2710 public void visitErroneous(JCErroneous tree) {
duke@1 2711 if (tree.errs != null)
duke@1 2712 for (JCTree err : tree.errs)
duke@1 2713 attribTree(err, env, ERR, pt);
duke@1 2714 result = tree.type = syms.errType;
duke@1 2715 }
duke@1 2716
duke@1 2717 /** Default visitor method for all other trees.
duke@1 2718 */
duke@1 2719 public void visitTree(JCTree tree) {
duke@1 2720 throw new AssertionError();
duke@1 2721 }
duke@1 2722
duke@1 2723 /** Main method: attribute class definition associated with given class symbol.
duke@1 2724 * reporting completion failures at the given position.
duke@1 2725 * @param pos The source position at which completion errors are to be
duke@1 2726 * reported.
duke@1 2727 * @param c The class symbol whose definition will be attributed.
duke@1 2728 */
duke@1 2729 public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
duke@1 2730 try {
duke@1 2731 annotate.flush();
duke@1 2732 attribClass(c);
duke@1 2733 } catch (CompletionFailure ex) {
duke@1 2734 chk.completionError(pos, ex);
duke@1 2735 }
duke@1 2736 }
duke@1 2737
duke@1 2738 /** Attribute class definition associated with given class symbol.
duke@1 2739 * @param c The class symbol whose definition will be attributed.
duke@1 2740 */
duke@1 2741 void attribClass(ClassSymbol c) throws CompletionFailure {
duke@1 2742 if (c.type.tag == ERROR) return;
duke@1 2743
duke@1 2744 // Check for cycles in the inheritance graph, which can arise from
duke@1 2745 // ill-formed class files.
duke@1 2746 chk.checkNonCyclic(null, c.type);
duke@1 2747
duke@1 2748 Type st = types.supertype(c.type);
duke@1 2749 if ((c.flags_field & Flags.COMPOUND) == 0) {
duke@1 2750 // First, attribute superclass.
duke@1 2751 if (st.tag == CLASS)
duke@1 2752 attribClass((ClassSymbol)st.tsym);
duke@1 2753
duke@1 2754 // Next attribute owner, if it is a class.
duke@1 2755 if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
duke@1 2756 attribClass((ClassSymbol)c.owner);
duke@1 2757 }
duke@1 2758
duke@1 2759 // The previous operations might have attributed the current class
duke@1 2760 // if there was a cycle. So we test first whether the class is still
duke@1 2761 // UNATTRIBUTED.
duke@1 2762 if ((c.flags_field & UNATTRIBUTED) != 0) {
duke@1 2763 c.flags_field &= ~UNATTRIBUTED;
duke@1 2764
duke@1 2765 // Get environment current at the point of class definition.
duke@1 2766 Env<AttrContext> env = enter.typeEnvs.get(c);
duke@1 2767
duke@1 2768 // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
duke@1 2769 // because the annotations were not available at the time the env was created. Therefore,
duke@1 2770 // we look up the environment chain for the first enclosing environment for which the
duke@1 2771 // lint value is set. Typically, this is the parent env, but might be further if there
duke@1 2772 // are any envs created as a result of TypeParameter nodes.
duke@1 2773 Env<AttrContext> lintEnv = env;
duke@1 2774 while (lintEnv.info.lint == null)
duke@1 2775 lintEnv = lintEnv.next;
duke@1 2776
duke@1 2777 // Having found the enclosing lint value, we can initialize the lint value for this class
duke@1 2778 env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags());
duke@1 2779
duke@1 2780 Lint prevLint = chk.setLint(env.info.lint);
duke@1 2781 JavaFileObject prev = log.useSource(c.sourcefile);
duke@1 2782
duke@1 2783 try {
duke@1 2784 // java.lang.Enum may not be subclassed by a non-enum
duke@1 2785 if (st.tsym == syms.enumSym &&
duke@1 2786 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
duke@1 2787 log.error(env.tree.pos(), "enum.no.subclassing");
duke@1 2788
duke@1 2789 // Enums may not be extended by source-level classes
duke@1 2790 if (st.tsym != null &&
duke@1 2791 ((st.tsym.flags_field & Flags.ENUM) != 0) &&
mcimadamore@82 2792 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
duke@1 2793 !target.compilerBootstrap(c)) {
duke@1 2794 log.error(env.tree.pos(), "enum.types.not.extensible");
duke@1 2795 }
duke@1 2796 attribClassBody(env, c);
duke@1 2797
duke@1 2798 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
duke@1 2799 } finally {
duke@1 2800 log.useSource(prev);
duke@1 2801 chk.setLint(prevLint);
duke@1 2802 }
duke@1 2803
duke@1 2804 }
duke@1 2805 }
duke@1 2806
duke@1 2807 public void visitImport(JCImport tree) {
duke@1 2808 // nothing to do
duke@1 2809 }
duke@1 2810
duke@1 2811 /** Finish the attribution of a class. */
duke@1 2812 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
duke@1 2813 JCClassDecl tree = (JCClassDecl)env.tree;
duke@1 2814 assert c == tree.sym;
duke@1 2815
duke@1 2816 // Validate annotations
duke@1 2817 chk.validateAnnotations(tree.mods.annotations, c);
duke@1 2818
duke@1 2819 // Validate type parameters, supertype and interfaces.
mcimadamore@42 2820 attribBounds(tree.typarams);
mcimadamore@122 2821 chk.validate(tree.typarams, env);
mcimadamore@122 2822 chk.validate(tree.extending, env);
mcimadamore@122 2823 chk.validate(tree.implementing, env);
duke@1 2824
duke@1 2825 // If this is a non-abstract class, check that it has no abstract
duke@1 2826 // methods or unimplemented methods of an implemented interface.
duke@1 2827 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
duke@1 2828 if (!relax)
duke@1 2829 chk.checkAllDefined(tree.pos(), c);
duke@1 2830 }
duke@1 2831
duke@1 2832 if ((c.flags() & ANNOTATION) != 0) {
duke@1 2833 if (tree.implementing.nonEmpty())
duke@1 2834 log.error(tree.implementing.head.pos(),
duke@1 2835 "cant.extend.intf.annotation");
duke@1 2836 if (tree.typarams.nonEmpty())
duke@1 2837 log.error(tree.typarams.head.pos(),
duke@1 2838 "intf.annotation.cant.have.type.params");
duke@1 2839 } else {
duke@1 2840 // Check that all extended classes and interfaces
duke@1 2841 // are compatible (i.e. no two define methods with same arguments
duke@1 2842 // yet different return types). (JLS 8.4.6.3)
duke@1 2843 chk.checkCompatibleSupertypes(tree.pos(), c.type);
duke@1 2844 }
duke@1 2845
duke@1 2846 // Check that class does not import the same parameterized interface
duke@1 2847 // with two different argument lists.
duke@1 2848 chk.checkClassBounds(tree.pos(), c.type);
duke@1 2849
duke@1 2850 tree.type = c.type;
duke@1 2851
duke@1 2852 boolean assertsEnabled = false;
duke@1 2853 assert assertsEnabled = true;
duke@1 2854 if (assertsEnabled) {
duke@1 2855 for (List<JCTypeParameter> l = tree.typarams;
duke@1 2856 l.nonEmpty(); l = l.tail)
duke@1 2857 assert env.info.scope.lookup(l.head.name).scope != null;
duke@1 2858 }
duke@1 2859
duke@1 2860 // Check that a generic class doesn't extend Throwable
duke@1 2861 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
duke@1 2862 log.error(tree.extending.pos(), "generic.throwable");
duke@1 2863
duke@1 2864 // Check that all methods which implement some
duke@1 2865 // method conform to the method they implement.
duke@1 2866 chk.checkImplementations(tree);
duke@1 2867
duke@1 2868 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 2869 // Attribute declaration
duke@1 2870 attribStat(l.head, env);
duke@1 2871 // Check that declarations in inner classes are not static (JLS 8.1.2)
duke@1 2872 // Make an exception for static constants.
duke@1 2873 if (c.owner.kind != PCK &&
duke@1 2874 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
duke@1 2875 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
duke@1 2876 Symbol sym = null;
duke@1 2877 if (l.head.getTag() == JCTree.VARDEF) sym = ((JCVariableDecl) l.head).sym;
duke@1 2878 if (sym == null ||
duke@1 2879 sym.kind != VAR ||
duke@1 2880 ((VarSymbol) sym).getConstValue() == null)
duke@1 2881 log.error(l.head.pos(), "icls.cant.have.static.decl");
duke@1 2882 }
duke@1 2883 }
duke@1 2884
duke@1 2885 // Check for cycles among non-initial constructors.
duke@1 2886 chk.checkCyclicConstructors(tree);
duke@1 2887
duke@1 2888 // Check for cycles among annotation elements.
duke@1 2889 chk.checkNonCyclicElements(tree);
duke@1 2890
duke@1 2891 // Check for proper use of serialVersionUID
duke@1 2892 if (env.info.lint.isEnabled(Lint.LintCategory.SERIAL) &&
duke@1 2893 isSerializable(c) &&
duke@1 2894 (c.flags() & Flags.ENUM) == 0 &&
duke@1 2895 (c.flags() & ABSTRACT) == 0) {
duke@1 2896 checkSerialVersionUID(tree, c);
duke@1 2897 }
jjg@308 2898
jjg@308 2899 // Check type annotations applicability rules
jjg@308 2900 validateTypeAnnotations(tree);
duke@1 2901 }
duke@1 2902 // where
duke@1 2903 /** check if a class is a subtype of Serializable, if that is available. */
duke@1 2904 private boolean isSerializable(ClassSymbol c) {
duke@1 2905 try {
duke@1 2906 syms.serializableType.complete();
duke@1 2907 }
duke@1 2908 catch (CompletionFailure e) {
duke@1 2909 return false;
duke@1 2910 }
duke@1 2911 return types.isSubtype(c.type, syms.serializableType);
duke@1 2912 }
duke@1 2913
duke@1 2914 /** Check that an appropriate serialVersionUID member is defined. */
duke@1 2915 private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
duke@1 2916
duke@1 2917 // check for presence of serialVersionUID
duke@1 2918 Scope.Entry e = c.members().lookup(names.serialVersionUID);
duke@1 2919 while (e.scope != null && e.sym.kind != VAR) e = e.next();
duke@1 2920 if (e.scope == null) {
duke@1 2921 log.warning(tree.pos(), "missing.SVUID", c);
duke@1 2922 return;
duke@1 2923 }
duke@1 2924
duke@1 2925 // check that it is static final
duke@1 2926 VarSymbol svuid = (VarSymbol)e.sym;
duke@1 2927 if ((svuid.flags() & (STATIC | FINAL)) !=
duke@1 2928 (STATIC | FINAL))
duke@1 2929 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
duke@1 2930
duke@1 2931 // check that it is long
duke@1 2932 else if (svuid.type.tag != TypeTags.LONG)
duke@1 2933 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
duke@1 2934
duke@1 2935 // check constant
duke@1 2936 else if (svuid.getConstValue() == null)
duke@1 2937 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
duke@1 2938 }
duke@1 2939
duke@1 2940 private Type capture(Type type) {
duke@1 2941 return types.capture(type);
duke@1 2942 }
jjg@308 2943
jjg@308 2944 private void validateTypeAnnotations(JCTree tree) {
jjg@308 2945 tree.accept(typeAnnotationsValidator);
jjg@308 2946 }
jjg@308 2947 //where
jjg@308 2948 private final JCTree.Visitor typeAnnotationsValidator =
jjg@308 2949 new TreeScanner() {
jjg@308 2950 public void visitAnnotation(JCAnnotation tree) {
jjg@308 2951 if (tree instanceof JCTypeAnnotation) {
jjg@308 2952 chk.validateTypeAnnotation((JCTypeAnnotation)tree, false);
jjg@308 2953 }
jjg@308 2954 super.visitAnnotation(tree);
jjg@308 2955 }
jjg@308 2956 public void visitTypeParameter(JCTypeParameter tree) {
jjg@308 2957 chk.validateTypeAnnotations(tree.annotations, true);
jjg@308 2958 // don't call super. skip type annotations
jjg@308 2959 scan(tree.bounds);
jjg@308 2960 }
jjg@308 2961 public void visitMethodDef(JCMethodDecl tree) {
jjg@308 2962 // need to check static methods
jjg@308 2963 if ((tree.sym.flags() & Flags.STATIC) != 0) {
jjg@308 2964 for (JCTypeAnnotation a : tree.receiverAnnotations) {
jjg@308 2965 if (chk.isTypeAnnotation(a, false))
jjg@308 2966 log.error(a.pos(), "annotation.type.not.applicable");
jjg@308 2967 }
jjg@308 2968 }
jjg@308 2969 super.visitMethodDef(tree);
jjg@308 2970 }
jjg@308 2971 };
duke@1 2972 }

mercurial