src/share/classes/com/sun/tools/javac/comp/Attr.java

Tue, 02 Nov 2010 12:01:35 +0000

author
mcimadamore
date
Tue, 02 Nov 2010 12:01:35 +0000
changeset 731
fadc6d3e63f4
parent 724
7755f47542a0
child 735
f2048d9c666e
permissions
-rw-r--r--

6939780: add a warning to detect diamond sites
Summary: added hidden compiler flag '-XDfindDiamond' to detect 'diamondifiable' sites
Reviewed-by: jjg

duke@1 1 /*
ohair@554 2 * Copyright (c) 1999, 2009, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29 import java.util.Set;
duke@1 30 import javax.lang.model.element.ElementKind;
duke@1 31 import javax.tools.JavaFileObject;
duke@1 32
duke@1 33 import com.sun.tools.javac.code.*;
duke@1 34 import com.sun.tools.javac.jvm.*;
duke@1 35 import com.sun.tools.javac.tree.*;
duke@1 36 import com.sun.tools.javac.util.*;
duke@1 37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 38 import com.sun.tools.javac.util.List;
duke@1 39
duke@1 40 import com.sun.tools.javac.jvm.Target;
duke@1 41 import com.sun.tools.javac.code.Symbol.*;
duke@1 42 import com.sun.tools.javac.tree.JCTree.*;
duke@1 43 import com.sun.tools.javac.code.Type.*;
duke@1 44
duke@1 45 import com.sun.source.tree.IdentifierTree;
duke@1 46 import com.sun.source.tree.MemberSelectTree;
duke@1 47 import com.sun.source.tree.TreeVisitor;
duke@1 48 import com.sun.source.util.SimpleTreeVisitor;
duke@1 49
duke@1 50 import static com.sun.tools.javac.code.Flags.*;
duke@1 51 import static com.sun.tools.javac.code.Kinds.*;
duke@1 52 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 53
duke@1 54 /** This is the main context-dependent analysis phase in GJC. It
duke@1 55 * encompasses name resolution, type checking and constant folding as
duke@1 56 * subtasks. Some subtasks involve auxiliary classes.
duke@1 57 * @see Check
duke@1 58 * @see Resolve
duke@1 59 * @see ConstFold
duke@1 60 * @see Infer
duke@1 61 *
jjg@581 62 * <p><b>This is NOT part of any supported API.
jjg@581 63 * If you write code that depends on this, you do so at your own risk.
duke@1 64 * This code and its internal interfaces are subject to change or
duke@1 65 * deletion without notice.</b>
duke@1 66 */
duke@1 67 public class Attr extends JCTree.Visitor {
duke@1 68 protected static final Context.Key<Attr> attrKey =
duke@1 69 new Context.Key<Attr>();
duke@1 70
jjg@113 71 final Names names;
duke@1 72 final Log log;
duke@1 73 final Symtab syms;
duke@1 74 final Resolve rs;
mcimadamore@537 75 final Infer infer;
duke@1 76 final Check chk;
duke@1 77 final MemberEnter memberEnter;
duke@1 78 final TreeMaker make;
duke@1 79 final ConstFold cfolder;
duke@1 80 final Enter enter;
duke@1 81 final Target target;
duke@1 82 final Types types;
mcimadamore@89 83 final JCDiagnostic.Factory diags;
duke@1 84 final Annotate annotate;
duke@1 85
duke@1 86 public static Attr instance(Context context) {
duke@1 87 Attr instance = context.get(attrKey);
duke@1 88 if (instance == null)
duke@1 89 instance = new Attr(context);
duke@1 90 return instance;
duke@1 91 }
duke@1 92
duke@1 93 protected Attr(Context context) {
duke@1 94 context.put(attrKey, this);
duke@1 95
jjg@113 96 names = Names.instance(context);
duke@1 97 log = Log.instance(context);
duke@1 98 syms = Symtab.instance(context);
duke@1 99 rs = Resolve.instance(context);
duke@1 100 chk = Check.instance(context);
duke@1 101 memberEnter = MemberEnter.instance(context);
duke@1 102 make = TreeMaker.instance(context);
duke@1 103 enter = Enter.instance(context);
mcimadamore@537 104 infer = Infer.instance(context);
duke@1 105 cfolder = ConstFold.instance(context);
duke@1 106 target = Target.instance(context);
duke@1 107 types = Types.instance(context);
mcimadamore@89 108 diags = JCDiagnostic.Factory.instance(context);
duke@1 109 annotate = Annotate.instance(context);
duke@1 110
duke@1 111 Options options = Options.instance(context);
duke@1 112
duke@1 113 Source source = Source.instance(context);
duke@1 114 allowGenerics = source.allowGenerics();
duke@1 115 allowVarargs = source.allowVarargs();
duke@1 116 allowEnums = source.allowEnums();
duke@1 117 allowBoxing = source.allowBoxing();
duke@1 118 allowCovariantReturns = source.allowCovariantReturns();
duke@1 119 allowAnonOuterThis = source.allowAnonOuterThis();
darcy@430 120 allowStringsInSwitch = source.allowStringsInSwitch();
darcy@430 121 sourceName = source.name;
jjg@700 122 relax = (options.isSet("-retrofit") ||
jjg@700 123 options.isSet("-relax"));
mcimadamore@731 124 findDiamonds = options.get("findDiamond") != null &&
mcimadamore@731 125 source.allowDiamond();
jjg@700 126 useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
jjg@700 127 enableSunApiLintControl = options.isSet("enableSunApiLintControl");
duke@1 128 }
duke@1 129
duke@1 130 /** Switch: relax some constraints for retrofit mode.
duke@1 131 */
duke@1 132 boolean relax;
duke@1 133
duke@1 134 /** Switch: support generics?
duke@1 135 */
duke@1 136 boolean allowGenerics;
duke@1 137
duke@1 138 /** Switch: allow variable-arity methods.
duke@1 139 */
duke@1 140 boolean allowVarargs;
duke@1 141
duke@1 142 /** Switch: support enums?
duke@1 143 */
duke@1 144 boolean allowEnums;
duke@1 145
duke@1 146 /** Switch: support boxing and unboxing?
duke@1 147 */
duke@1 148 boolean allowBoxing;
duke@1 149
duke@1 150 /** Switch: support covariant result types?
duke@1 151 */
duke@1 152 boolean allowCovariantReturns;
duke@1 153
duke@1 154 /** Switch: allow references to surrounding object from anonymous
duke@1 155 * objects during constructor call?
duke@1 156 */
duke@1 157 boolean allowAnonOuterThis;
duke@1 158
mcimadamore@731 159 /** Switch: generates a warning if diamond can be safely applied
mcimadamore@731 160 * to a given new expression
mcimadamore@731 161 */
mcimadamore@731 162 boolean findDiamonds;
mcimadamore@731 163
mcimadamore@731 164 /**
mcimadamore@731 165 * Internally enables/disables diamond finder feature
mcimadamore@731 166 */
mcimadamore@731 167 static final boolean allowDiamondFinder = true;
mcimadamore@731 168
duke@1 169 /**
duke@1 170 * Switch: warn about use of variable before declaration?
duke@1 171 * RFE: 6425594
duke@1 172 */
duke@1 173 boolean useBeforeDeclarationWarning;
duke@1 174
jjg@377 175 /**
jjg@582 176 * Switch: allow lint infrastructure to control proprietary
jjg@377 177 * API warnings.
jjg@377 178 */
jjg@377 179 boolean enableSunApiLintControl;
jjg@377 180
darcy@430 181 /**
darcy@430 182 * Switch: allow strings in switch?
darcy@430 183 */
darcy@430 184 boolean allowStringsInSwitch;
darcy@430 185
darcy@430 186 /**
darcy@430 187 * Switch: name of source level; used for error reporting.
darcy@430 188 */
darcy@430 189 String sourceName;
darcy@430 190
duke@1 191 /** Check kind and type of given tree against protokind and prototype.
duke@1 192 * If check succeeds, store type in tree and return it.
duke@1 193 * If check fails, store errType in tree and return it.
duke@1 194 * No checks are performed if the prototype is a method type.
jjg@110 195 * It is not necessary in this case since we know that kind and type
duke@1 196 * are correct.
duke@1 197 *
duke@1 198 * @param tree The tree whose kind and type is checked
duke@1 199 * @param owntype The computed type of the tree
duke@1 200 * @param ownkind The computed kind of the tree
duke@1 201 * @param pkind The expected kind (or: protokind) of the tree
duke@1 202 * @param pt The expected type (or: prototype) of the tree
duke@1 203 */
duke@1 204 Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
duke@1 205 if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
duke@1 206 if ((ownkind & ~pkind) == 0) {
darcy@609 207 owntype = chk.checkType(tree.pos(), owntype, pt, errKey);
duke@1 208 } else {
duke@1 209 log.error(tree.pos(), "unexpected.type",
mcimadamore@80 210 kindNames(pkind),
mcimadamore@80 211 kindName(ownkind));
jjg@110 212 owntype = types.createErrorType(owntype);
duke@1 213 }
duke@1 214 }
duke@1 215 tree.type = owntype;
duke@1 216 return owntype;
duke@1 217 }
duke@1 218
duke@1 219 /** Is given blank final variable assignable, i.e. in a scope where it
duke@1 220 * may be assigned to even though it is final?
duke@1 221 * @param v The blank final variable.
duke@1 222 * @param env The current environment.
duke@1 223 */
duke@1 224 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
duke@1 225 Symbol owner = env.info.scope.owner;
duke@1 226 // owner refers to the innermost variable, method or
duke@1 227 // initializer block declaration at this point.
duke@1 228 return
duke@1 229 v.owner == owner
duke@1 230 ||
duke@1 231 ((owner.name == names.init || // i.e. we are in a constructor
duke@1 232 owner.kind == VAR || // i.e. we are in a variable initializer
duke@1 233 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block
duke@1 234 &&
duke@1 235 v.owner == owner.owner
duke@1 236 &&
duke@1 237 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
duke@1 238 }
duke@1 239
duke@1 240 /** Check that variable can be assigned to.
duke@1 241 * @param pos The current source code position.
duke@1 242 * @param v The assigned varaible
duke@1 243 * @param base If the variable is referred to in a Select, the part
duke@1 244 * to the left of the `.', null otherwise.
duke@1 245 * @param env The current environment.
duke@1 246 */
duke@1 247 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
duke@1 248 if ((v.flags() & FINAL) != 0 &&
duke@1 249 ((v.flags() & HASINIT) != 0
duke@1 250 ||
duke@1 251 !((base == null ||
duke@1 252 (base.getTag() == JCTree.IDENT && TreeInfo.name(base) == names._this)) &&
duke@1 253 isAssignableAsBlankFinal(v, env)))) {
darcy@609 254 if (v.isResourceVariable()) { //TWR resource
darcy@609 255 log.error(pos, "twr.resource.may.not.be.assigned", v);
darcy@609 256 } else {
darcy@609 257 log.error(pos, "cant.assign.val.to.final.var", v);
darcy@609 258 }
duke@1 259 }
duke@1 260 }
duke@1 261
duke@1 262 /** Does tree represent a static reference to an identifier?
duke@1 263 * It is assumed that tree is either a SELECT or an IDENT.
duke@1 264 * We have to weed out selects from non-type names here.
duke@1 265 * @param tree The candidate tree.
duke@1 266 */
duke@1 267 boolean isStaticReference(JCTree tree) {
duke@1 268 if (tree.getTag() == JCTree.SELECT) {
duke@1 269 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
duke@1 270 if (lsym == null || lsym.kind != TYP) {
duke@1 271 return false;
duke@1 272 }
duke@1 273 }
duke@1 274 return true;
duke@1 275 }
duke@1 276
duke@1 277 /** Is this symbol a type?
duke@1 278 */
duke@1 279 static boolean isType(Symbol sym) {
duke@1 280 return sym != null && sym.kind == TYP;
duke@1 281 }
duke@1 282
duke@1 283 /** The current `this' symbol.
duke@1 284 * @param env The current environment.
duke@1 285 */
duke@1 286 Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
duke@1 287 return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
duke@1 288 }
duke@1 289
duke@1 290 /** Attribute a parsed identifier.
duke@1 291 * @param tree Parsed identifier name
duke@1 292 * @param topLevel The toplevel to use
duke@1 293 */
duke@1 294 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
duke@1 295 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
duke@1 296 localEnv.enclClass = make.ClassDef(make.Modifiers(0),
duke@1 297 syms.errSymbol.name,
duke@1 298 null, null, null, null);
duke@1 299 localEnv.enclClass.sym = syms.errSymbol;
duke@1 300 return tree.accept(identAttributer, localEnv);
duke@1 301 }
duke@1 302 // where
duke@1 303 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
duke@1 304 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
duke@1 305 @Override
duke@1 306 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
duke@1 307 Symbol site = visit(node.getExpression(), env);
duke@1 308 if (site.kind == ERR)
duke@1 309 return site;
duke@1 310 Name name = (Name)node.getIdentifier();
duke@1 311 if (site.kind == PCK) {
duke@1 312 env.toplevel.packge = (PackageSymbol)site;
duke@1 313 return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
duke@1 314 } else {
duke@1 315 env.enclClass.sym = (ClassSymbol)site;
duke@1 316 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
duke@1 317 }
duke@1 318 }
duke@1 319
duke@1 320 @Override
duke@1 321 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
duke@1 322 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
duke@1 323 }
duke@1 324 }
duke@1 325
duke@1 326 public Type coerce(Type etype, Type ttype) {
duke@1 327 return cfolder.coerce(etype, ttype);
duke@1 328 }
duke@1 329
duke@1 330 public Type attribType(JCTree node, TypeSymbol sym) {
duke@1 331 Env<AttrContext> env = enter.typeEnvs.get(sym);
duke@1 332 Env<AttrContext> localEnv = env.dup(node, env.info.dup());
duke@1 333 return attribTree(node, localEnv, Kinds.TYP, Type.noType);
duke@1 334 }
duke@1 335
duke@1 336 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
duke@1 337 breakTree = tree;
mcimadamore@303 338 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
duke@1 339 try {
duke@1 340 attribExpr(expr, env);
duke@1 341 } catch (BreakAttr b) {
duke@1 342 return b.env;
sundar@669 343 } catch (AssertionError ae) {
sundar@669 344 if (ae.getCause() instanceof BreakAttr) {
sundar@669 345 return ((BreakAttr)(ae.getCause())).env;
sundar@669 346 } else {
sundar@669 347 throw ae;
sundar@669 348 }
duke@1 349 } finally {
duke@1 350 breakTree = null;
duke@1 351 log.useSource(prev);
duke@1 352 }
duke@1 353 return env;
duke@1 354 }
duke@1 355
duke@1 356 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
duke@1 357 breakTree = tree;
mcimadamore@303 358 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
duke@1 359 try {
duke@1 360 attribStat(stmt, env);
duke@1 361 } catch (BreakAttr b) {
duke@1 362 return b.env;
sundar@669 363 } catch (AssertionError ae) {
sundar@669 364 if (ae.getCause() instanceof BreakAttr) {
sundar@669 365 return ((BreakAttr)(ae.getCause())).env;
sundar@669 366 } else {
sundar@669 367 throw ae;
sundar@669 368 }
duke@1 369 } finally {
duke@1 370 breakTree = null;
duke@1 371 log.useSource(prev);
duke@1 372 }
duke@1 373 return env;
duke@1 374 }
duke@1 375
duke@1 376 private JCTree breakTree = null;
duke@1 377
duke@1 378 private static class BreakAttr extends RuntimeException {
duke@1 379 static final long serialVersionUID = -6924771130405446405L;
duke@1 380 private Env<AttrContext> env;
duke@1 381 private BreakAttr(Env<AttrContext> env) {
duke@1 382 this.env = env;
duke@1 383 }
duke@1 384 }
duke@1 385
duke@1 386
duke@1 387 /* ************************************************************************
duke@1 388 * Visitor methods
duke@1 389 *************************************************************************/
duke@1 390
duke@1 391 /** Visitor argument: the current environment.
duke@1 392 */
duke@1 393 Env<AttrContext> env;
duke@1 394
duke@1 395 /** Visitor argument: the currently expected proto-kind.
duke@1 396 */
duke@1 397 int pkind;
duke@1 398
duke@1 399 /** Visitor argument: the currently expected proto-type.
duke@1 400 */
duke@1 401 Type pt;
duke@1 402
darcy@609 403 /** Visitor argument: the error key to be generated when a type error occurs
darcy@609 404 */
darcy@609 405 String errKey;
darcy@609 406
duke@1 407 /** Visitor result: the computed type.
duke@1 408 */
duke@1 409 Type result;
duke@1 410
duke@1 411 /** Visitor method: attribute a tree, catching any completion failure
duke@1 412 * exceptions. Return the tree's type.
duke@1 413 *
duke@1 414 * @param tree The tree to be visited.
duke@1 415 * @param env The environment visitor argument.
duke@1 416 * @param pkind The protokind visitor argument.
duke@1 417 * @param pt The prototype visitor argument.
duke@1 418 */
duke@1 419 Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt) {
darcy@609 420 return attribTree(tree, env, pkind, pt, "incompatible.types");
darcy@609 421 }
darcy@609 422
darcy@609 423 Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt, String errKey) {
duke@1 424 Env<AttrContext> prevEnv = this.env;
duke@1 425 int prevPkind = this.pkind;
duke@1 426 Type prevPt = this.pt;
darcy@609 427 String prevErrKey = this.errKey;
duke@1 428 try {
duke@1 429 this.env = env;
duke@1 430 this.pkind = pkind;
duke@1 431 this.pt = pt;
darcy@609 432 this.errKey = errKey;
duke@1 433 tree.accept(this);
duke@1 434 if (tree == breakTree)
duke@1 435 throw new BreakAttr(env);
duke@1 436 return result;
duke@1 437 } catch (CompletionFailure ex) {
duke@1 438 tree.type = syms.errType;
duke@1 439 return chk.completionError(tree.pos(), ex);
duke@1 440 } finally {
duke@1 441 this.env = prevEnv;
duke@1 442 this.pkind = prevPkind;
duke@1 443 this.pt = prevPt;
darcy@609 444 this.errKey = prevErrKey;
duke@1 445 }
duke@1 446 }
duke@1 447
duke@1 448 /** Derived visitor method: attribute an expression tree.
duke@1 449 */
duke@1 450 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
duke@1 451 return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType);
duke@1 452 }
duke@1 453
darcy@609 454 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt, String key) {
darcy@609 455 return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType, key);
darcy@609 456 }
darcy@609 457
duke@1 458 /** Derived visitor method: attribute an expression tree with
duke@1 459 * no constraints on the computed type.
duke@1 460 */
duke@1 461 Type attribExpr(JCTree tree, Env<AttrContext> env) {
duke@1 462 return attribTree(tree, env, VAL, Type.noType);
duke@1 463 }
duke@1 464
duke@1 465 /** Derived visitor method: attribute a type tree.
duke@1 466 */
duke@1 467 Type attribType(JCTree tree, Env<AttrContext> env) {
mcimadamore@537 468 Type result = attribType(tree, env, Type.noType);
mcimadamore@537 469 return result;
mcimadamore@537 470 }
mcimadamore@537 471
mcimadamore@537 472 /** Derived visitor method: attribute a type tree.
mcimadamore@537 473 */
mcimadamore@537 474 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
mcimadamore@537 475 Type result = attribTree(tree, env, TYP, pt);
duke@1 476 return result;
duke@1 477 }
duke@1 478
duke@1 479 /** Derived visitor method: attribute a statement or definition tree.
duke@1 480 */
duke@1 481 public Type attribStat(JCTree tree, Env<AttrContext> env) {
duke@1 482 return attribTree(tree, env, NIL, Type.noType);
duke@1 483 }
duke@1 484
duke@1 485 /** Attribute a list of expressions, returning a list of types.
duke@1 486 */
duke@1 487 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
duke@1 488 ListBuffer<Type> ts = new ListBuffer<Type>();
duke@1 489 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 490 ts.append(attribExpr(l.head, env, pt));
duke@1 491 return ts.toList();
duke@1 492 }
duke@1 493
duke@1 494 /** Attribute a list of statements, returning nothing.
duke@1 495 */
duke@1 496 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
duke@1 497 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
duke@1 498 attribStat(l.head, env);
duke@1 499 }
duke@1 500
duke@1 501 /** Attribute the arguments in a method call, returning a list of types.
duke@1 502 */
duke@1 503 List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
duke@1 504 ListBuffer<Type> argtypes = new ListBuffer<Type>();
duke@1 505 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 506 argtypes.append(chk.checkNonVoid(
duke@1 507 l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly))));
duke@1 508 return argtypes.toList();
duke@1 509 }
duke@1 510
duke@1 511 /** Attribute a type argument list, returning a list of types.
jrose@267 512 * Caller is responsible for calling checkRefTypes.
duke@1 513 */
jrose@267 514 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
duke@1 515 ListBuffer<Type> argtypes = new ListBuffer<Type>();
duke@1 516 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
jrose@267 517 argtypes.append(attribType(l.head, env));
duke@1 518 return argtypes.toList();
duke@1 519 }
duke@1 520
jrose@267 521 /** Attribute a type argument list, returning a list of types.
jrose@267 522 * Check that all the types are references.
jrose@267 523 */
jrose@267 524 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
jrose@267 525 List<Type> types = attribAnyTypes(trees, env);
jrose@267 526 return chk.checkRefTypes(trees, types);
jrose@267 527 }
duke@1 528
duke@1 529 /**
duke@1 530 * Attribute type variables (of generic classes or methods).
duke@1 531 * Compound types are attributed later in attribBounds.
duke@1 532 * @param typarams the type variables to enter
duke@1 533 * @param env the current environment
duke@1 534 */
duke@1 535 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
duke@1 536 for (JCTypeParameter tvar : typarams) {
duke@1 537 TypeVar a = (TypeVar)tvar.type;
mcimadamore@42 538 a.tsym.flags_field |= UNATTRIBUTED;
mcimadamore@42 539 a.bound = Type.noType;
duke@1 540 if (!tvar.bounds.isEmpty()) {
duke@1 541 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
duke@1 542 for (JCExpression bound : tvar.bounds.tail)
duke@1 543 bounds = bounds.prepend(attribType(bound, env));
duke@1 544 types.setBounds(a, bounds.reverse());
duke@1 545 } else {
duke@1 546 // if no bounds are given, assume a single bound of
duke@1 547 // java.lang.Object.
duke@1 548 types.setBounds(a, List.of(syms.objectType));
duke@1 549 }
mcimadamore@42 550 a.tsym.flags_field &= ~UNATTRIBUTED;
duke@1 551 }
duke@1 552 for (JCTypeParameter tvar : typarams)
duke@1 553 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
duke@1 554 attribStats(typarams, env);
mcimadamore@42 555 }
mcimadamore@42 556
mcimadamore@42 557 void attribBounds(List<JCTypeParameter> typarams) {
duke@1 558 for (JCTypeParameter typaram : typarams) {
duke@1 559 Type bound = typaram.type.getUpperBound();
duke@1 560 if (bound != null && bound.tsym instanceof ClassSymbol) {
duke@1 561 ClassSymbol c = (ClassSymbol)bound.tsym;
duke@1 562 if ((c.flags_field & COMPOUND) != 0) {
duke@1 563 assert (c.flags_field & UNATTRIBUTED) != 0 : c;
duke@1 564 attribClass(typaram.pos(), c);
duke@1 565 }
duke@1 566 }
duke@1 567 }
duke@1 568 }
duke@1 569
duke@1 570 /**
duke@1 571 * Attribute the type references in a list of annotations.
duke@1 572 */
duke@1 573 void attribAnnotationTypes(List<JCAnnotation> annotations,
duke@1 574 Env<AttrContext> env) {
duke@1 575 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
duke@1 576 JCAnnotation a = al.head;
duke@1 577 attribType(a.annotationType, env);
duke@1 578 }
duke@1 579 }
duke@1 580
duke@1 581 /** Attribute type reference in an `extends' or `implements' clause.
mcimadamore@537 582 * Supertypes of anonymous inner classes are usually already attributed.
duke@1 583 *
duke@1 584 * @param tree The tree making up the type reference.
duke@1 585 * @param env The environment current at the reference.
duke@1 586 * @param classExpected true if only a class is expected here.
duke@1 587 * @param interfaceExpected true if only an interface is expected here.
duke@1 588 */
duke@1 589 Type attribBase(JCTree tree,
duke@1 590 Env<AttrContext> env,
duke@1 591 boolean classExpected,
duke@1 592 boolean interfaceExpected,
duke@1 593 boolean checkExtensible) {
mcimadamore@537 594 Type t = tree.type != null ?
mcimadamore@537 595 tree.type :
mcimadamore@537 596 attribType(tree, env);
duke@1 597 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
duke@1 598 }
duke@1 599 Type checkBase(Type t,
duke@1 600 JCTree tree,
duke@1 601 Env<AttrContext> env,
duke@1 602 boolean classExpected,
duke@1 603 boolean interfaceExpected,
duke@1 604 boolean checkExtensible) {
jjg@664 605 if (t.isErroneous())
jjg@664 606 return t;
duke@1 607 if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
duke@1 608 // check that type variable is already visible
duke@1 609 if (t.getUpperBound() == null) {
duke@1 610 log.error(tree.pos(), "illegal.forward.ref");
jjg@110 611 return types.createErrorType(t);
duke@1 612 }
duke@1 613 } else {
duke@1 614 t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
duke@1 615 }
duke@1 616 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
duke@1 617 log.error(tree.pos(), "intf.expected.here");
duke@1 618 // return errType is necessary since otherwise there might
duke@1 619 // be undetected cycles which cause attribution to loop
jjg@110 620 return types.createErrorType(t);
duke@1 621 } else if (checkExtensible &&
duke@1 622 classExpected &&
duke@1 623 (t.tsym.flags() & INTERFACE) != 0) {
jjg@664 624 log.error(tree.pos(), "no.intf.expected.here");
jjg@110 625 return types.createErrorType(t);
duke@1 626 }
duke@1 627 if (checkExtensible &&
duke@1 628 ((t.tsym.flags() & FINAL) != 0)) {
duke@1 629 log.error(tree.pos(),
duke@1 630 "cant.inherit.from.final", t.tsym);
duke@1 631 }
duke@1 632 chk.checkNonCyclic(tree.pos(), t);
duke@1 633 return t;
duke@1 634 }
duke@1 635
duke@1 636 public void visitClassDef(JCClassDecl tree) {
duke@1 637 // Local classes have not been entered yet, so we need to do it now:
duke@1 638 if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
duke@1 639 enter.classEnter(tree, env);
duke@1 640
duke@1 641 ClassSymbol c = tree.sym;
duke@1 642 if (c == null) {
duke@1 643 // exit in case something drastic went wrong during enter.
duke@1 644 result = null;
duke@1 645 } else {
duke@1 646 // make sure class has been completed:
duke@1 647 c.complete();
duke@1 648
duke@1 649 // If this class appears as an anonymous class
duke@1 650 // in a superclass constructor call where
duke@1 651 // no explicit outer instance is given,
duke@1 652 // disable implicit outer instance from being passed.
duke@1 653 // (This would be an illegal access to "this before super").
duke@1 654 if (env.info.isSelfCall &&
duke@1 655 env.tree.getTag() == JCTree.NEWCLASS &&
duke@1 656 ((JCNewClass) env.tree).encl == null)
duke@1 657 {
duke@1 658 c.flags_field |= NOOUTERTHIS;
duke@1 659 }
duke@1 660 attribClass(tree.pos(), c);
duke@1 661 result = tree.type = c.type;
duke@1 662 }
duke@1 663 }
duke@1 664
duke@1 665 public void visitMethodDef(JCMethodDecl tree) {
duke@1 666 MethodSymbol m = tree.sym;
duke@1 667
duke@1 668 Lint lint = env.info.lint.augment(m.attributes_field, m.flags());
duke@1 669 Lint prevLint = chk.setLint(lint);
duke@1 670 try {
duke@1 671 chk.checkDeprecatedAnnotation(tree.pos(), m);
duke@1 672
mcimadamore@42 673 attribBounds(tree.typarams);
duke@1 674
duke@1 675 // If we override any other methods, check that we do so properly.
duke@1 676 // JLS ???
duke@1 677 chk.checkOverride(tree, m);
duke@1 678
duke@1 679 // Create a new environment with local scope
duke@1 680 // for attributing the method.
duke@1 681 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
duke@1 682
duke@1 683 localEnv.info.lint = lint;
duke@1 684
duke@1 685 // Enter all type parameters into the local method scope.
duke@1 686 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
duke@1 687 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
duke@1 688
duke@1 689 ClassSymbol owner = env.enclClass.sym;
duke@1 690 if ((owner.flags() & ANNOTATION) != 0 &&
duke@1 691 tree.params.nonEmpty())
duke@1 692 log.error(tree.params.head.pos(),
duke@1 693 "intf.annotation.members.cant.have.params");
duke@1 694
duke@1 695 // Attribute all value parameters.
duke@1 696 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
duke@1 697 attribStat(l.head, localEnv);
duke@1 698 }
duke@1 699
mcimadamore@580 700 chk.checkVarargMethodDecl(tree);
mcimadamore@580 701
duke@1 702 // Check that type parameters are well-formed.
mcimadamore@122 703 chk.validate(tree.typarams, localEnv);
duke@1 704
duke@1 705 // Check that result type is well-formed.
mcimadamore@122 706 chk.validate(tree.restype, localEnv);
mcimadamore@629 707
mcimadamore@629 708 // annotation method checks
mcimadamore@629 709 if ((owner.flags() & ANNOTATION) != 0) {
mcimadamore@629 710 // annotation method cannot have throws clause
mcimadamore@629 711 if (tree.thrown.nonEmpty()) {
mcimadamore@629 712 log.error(tree.thrown.head.pos(),
mcimadamore@629 713 "throws.not.allowed.in.intf.annotation");
mcimadamore@629 714 }
mcimadamore@629 715 // annotation method cannot declare type-parameters
mcimadamore@629 716 if (tree.typarams.nonEmpty()) {
mcimadamore@629 717 log.error(tree.typarams.head.pos(),
mcimadamore@629 718 "intf.annotation.members.cant.have.type.params");
mcimadamore@629 719 }
mcimadamore@629 720 // validate annotation method's return type (could be an annotation type)
duke@1 721 chk.validateAnnotationType(tree.restype);
mcimadamore@629 722 // ensure that annotation method does not clash with members of Object/Annotation
duke@1 723 chk.validateAnnotationMethod(tree.pos(), m);
duke@1 724
mcimadamore@634 725 if (tree.defaultValue != null) {
mcimadamore@634 726 // if default value is an annotation, check it is a well-formed
mcimadamore@634 727 // annotation value (e.g. no duplicate values, no missing values, etc.)
mcimadamore@634 728 chk.validateAnnotationTree(tree.defaultValue);
mcimadamore@634 729 }
mcimadamore@629 730 }
mcimadamore@629 731
duke@1 732 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
duke@1 733 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
duke@1 734
duke@1 735 if (tree.body == null) {
duke@1 736 // Empty bodies are only allowed for
duke@1 737 // abstract, native, or interface methods, or for methods
duke@1 738 // in a retrofit signature class.
duke@1 739 if ((owner.flags() & INTERFACE) == 0 &&
duke@1 740 (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
duke@1 741 !relax)
duke@1 742 log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
duke@1 743 if (tree.defaultValue != null) {
duke@1 744 if ((owner.flags() & ANNOTATION) == 0)
duke@1 745 log.error(tree.pos(),
duke@1 746 "default.allowed.in.intf.annotation.member");
duke@1 747 }
duke@1 748 } else if ((owner.flags() & INTERFACE) != 0) {
duke@1 749 log.error(tree.body.pos(), "intf.meth.cant.have.body");
duke@1 750 } else if ((tree.mods.flags & ABSTRACT) != 0) {
duke@1 751 log.error(tree.pos(), "abstract.meth.cant.have.body");
duke@1 752 } else if ((tree.mods.flags & NATIVE) != 0) {
duke@1 753 log.error(tree.pos(), "native.meth.cant.have.body");
duke@1 754 } else {
duke@1 755 // Add an implicit super() call unless an explicit call to
duke@1 756 // super(...) or this(...) is given
duke@1 757 // or we are compiling class java.lang.Object.
duke@1 758 if (tree.name == names.init && owner.type != syms.objectType) {
duke@1 759 JCBlock body = tree.body;
duke@1 760 if (body.stats.isEmpty() ||
duke@1 761 !TreeInfo.isSelfCall(body.stats.head)) {
duke@1 762 body.stats = body.stats.
duke@1 763 prepend(memberEnter.SuperCall(make.at(body.pos),
duke@1 764 List.<Type>nil(),
duke@1 765 List.<JCVariableDecl>nil(),
duke@1 766 false));
duke@1 767 } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
duke@1 768 (tree.mods.flags & GENERATEDCONSTR) == 0 &&
duke@1 769 TreeInfo.isSuperCall(body.stats.head)) {
duke@1 770 // enum constructors are not allowed to call super
duke@1 771 // directly, so make sure there aren't any super calls
duke@1 772 // in enum constructors, except in the compiler
duke@1 773 // generated one.
duke@1 774 log.error(tree.body.stats.head.pos(),
duke@1 775 "call.to.super.not.allowed.in.enum.ctor",
duke@1 776 env.enclClass.sym);
duke@1 777 }
duke@1 778 }
duke@1 779
duke@1 780 // Attribute method body.
duke@1 781 attribStat(tree.body, localEnv);
duke@1 782 }
duke@1 783 localEnv.info.scope.leave();
duke@1 784 result = tree.type = m.type;
duke@1 785 chk.validateAnnotations(tree.mods.annotations, m);
duke@1 786 }
duke@1 787 finally {
duke@1 788 chk.setLint(prevLint);
duke@1 789 }
duke@1 790 }
duke@1 791
duke@1 792 public void visitVarDef(JCVariableDecl tree) {
duke@1 793 // Local variables have not been entered yet, so we need to do it now:
duke@1 794 if (env.info.scope.owner.kind == MTH) {
duke@1 795 if (tree.sym != null) {
duke@1 796 // parameters have already been entered
duke@1 797 env.info.scope.enter(tree.sym);
duke@1 798 } else {
duke@1 799 memberEnter.memberEnter(tree, env);
duke@1 800 annotate.flush();
duke@1 801 }
duke@1 802 }
duke@1 803
duke@1 804 VarSymbol v = tree.sym;
duke@1 805 Lint lint = env.info.lint.augment(v.attributes_field, v.flags());
duke@1 806 Lint prevLint = chk.setLint(lint);
duke@1 807
mcimadamore@165 808 // Check that the variable's declared type is well-formed.
mcimadamore@165 809 chk.validate(tree.vartype, env);
mcimadamore@165 810
duke@1 811 try {
duke@1 812 chk.checkDeprecatedAnnotation(tree.pos(), v);
duke@1 813
duke@1 814 if (tree.init != null) {
duke@1 815 if ((v.flags_field & FINAL) != 0 && tree.init.getTag() != JCTree.NEWCLASS) {
duke@1 816 // In this case, `v' is final. Ensure that it's initializer is
duke@1 817 // evaluated.
duke@1 818 v.getConstValue(); // ensure initializer is evaluated
duke@1 819 } else {
duke@1 820 // Attribute initializer in a new environment
duke@1 821 // with the declared variable as owner.
duke@1 822 // Check that initializer conforms to variable's declared type.
duke@1 823 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
duke@1 824 initEnv.info.lint = lint;
duke@1 825 // In order to catch self-references, we set the variable's
duke@1 826 // declaration position to maximal possible value, effectively
duke@1 827 // marking the variable as undefined.
mcimadamore@94 828 initEnv.info.enclVar = v;
duke@1 829 attribExpr(tree.init, initEnv, v.type);
duke@1 830 }
duke@1 831 }
duke@1 832 result = tree.type = v.type;
duke@1 833 chk.validateAnnotations(tree.mods.annotations, v);
duke@1 834 }
duke@1 835 finally {
duke@1 836 chk.setLint(prevLint);
duke@1 837 }
duke@1 838 }
duke@1 839
duke@1 840 public void visitSkip(JCSkip tree) {
duke@1 841 result = null;
duke@1 842 }
duke@1 843
duke@1 844 public void visitBlock(JCBlock tree) {
duke@1 845 if (env.info.scope.owner.kind == TYP) {
duke@1 846 // Block is a static or instance initializer;
duke@1 847 // let the owner of the environment be a freshly
duke@1 848 // created BLOCK-method.
duke@1 849 Env<AttrContext> localEnv =
duke@1 850 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
duke@1 851 localEnv.info.scope.owner =
duke@1 852 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
duke@1 853 env.info.scope.owner);
duke@1 854 if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
duke@1 855 attribStats(tree.stats, localEnv);
duke@1 856 } else {
duke@1 857 // Create a new local environment with a local scope.
duke@1 858 Env<AttrContext> localEnv =
duke@1 859 env.dup(tree, env.info.dup(env.info.scope.dup()));
duke@1 860 attribStats(tree.stats, localEnv);
duke@1 861 localEnv.info.scope.leave();
duke@1 862 }
duke@1 863 result = null;
duke@1 864 }
duke@1 865
duke@1 866 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 867 attribStat(tree.body, env.dup(tree));
duke@1 868 attribExpr(tree.cond, env, syms.booleanType);
duke@1 869 result = null;
duke@1 870 }
duke@1 871
duke@1 872 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 873 attribExpr(tree.cond, env, syms.booleanType);
duke@1 874 attribStat(tree.body, env.dup(tree));
duke@1 875 result = null;
duke@1 876 }
duke@1 877
duke@1 878 public void visitForLoop(JCForLoop tree) {
duke@1 879 Env<AttrContext> loopEnv =
duke@1 880 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
duke@1 881 attribStats(tree.init, loopEnv);
duke@1 882 if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
duke@1 883 loopEnv.tree = tree; // before, we were not in loop!
duke@1 884 attribStats(tree.step, loopEnv);
duke@1 885 attribStat(tree.body, loopEnv);
duke@1 886 loopEnv.info.scope.leave();
duke@1 887 result = null;
duke@1 888 }
duke@1 889
duke@1 890 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 891 Env<AttrContext> loopEnv =
duke@1 892 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
duke@1 893 attribStat(tree.var, loopEnv);
duke@1 894 Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
duke@1 895 chk.checkNonVoid(tree.pos(), exprType);
duke@1 896 Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
duke@1 897 if (elemtype == null) {
duke@1 898 // or perhaps expr implements Iterable<T>?
duke@1 899 Type base = types.asSuper(exprType, syms.iterableType.tsym);
duke@1 900 if (base == null) {
duke@1 901 log.error(tree.expr.pos(), "foreach.not.applicable.to.type");
jjg@110 902 elemtype = types.createErrorType(exprType);
duke@1 903 } else {
duke@1 904 List<Type> iterableParams = base.allparams();
duke@1 905 elemtype = iterableParams.isEmpty()
duke@1 906 ? syms.objectType
duke@1 907 : types.upperBound(iterableParams.head);
duke@1 908 }
duke@1 909 }
duke@1 910 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
duke@1 911 loopEnv.tree = tree; // before, we were not in loop!
duke@1 912 attribStat(tree.body, loopEnv);
duke@1 913 loopEnv.info.scope.leave();
duke@1 914 result = null;
duke@1 915 }
duke@1 916
duke@1 917 public void visitLabelled(JCLabeledStatement tree) {
duke@1 918 // Check that label is not used in an enclosing statement
duke@1 919 Env<AttrContext> env1 = env;
duke@1 920 while (env1 != null && env1.tree.getTag() != JCTree.CLASSDEF) {
duke@1 921 if (env1.tree.getTag() == JCTree.LABELLED &&
duke@1 922 ((JCLabeledStatement) env1.tree).label == tree.label) {
duke@1 923 log.error(tree.pos(), "label.already.in.use",
duke@1 924 tree.label);
duke@1 925 break;
duke@1 926 }
duke@1 927 env1 = env1.next;
duke@1 928 }
duke@1 929
duke@1 930 attribStat(tree.body, env.dup(tree));
duke@1 931 result = null;
duke@1 932 }
duke@1 933
duke@1 934 public void visitSwitch(JCSwitch tree) {
duke@1 935 Type seltype = attribExpr(tree.selector, env);
duke@1 936
duke@1 937 Env<AttrContext> switchEnv =
duke@1 938 env.dup(tree, env.info.dup(env.info.scope.dup()));
duke@1 939
duke@1 940 boolean enumSwitch =
duke@1 941 allowEnums &&
duke@1 942 (seltype.tsym.flags() & Flags.ENUM) != 0;
darcy@430 943 boolean stringSwitch = false;
darcy@430 944 if (types.isSameType(seltype, syms.stringType)) {
darcy@430 945 if (allowStringsInSwitch) {
darcy@430 946 stringSwitch = true;
darcy@430 947 } else {
darcy@430 948 log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
darcy@430 949 }
darcy@430 950 }
darcy@430 951 if (!enumSwitch && !stringSwitch)
duke@1 952 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
duke@1 953
duke@1 954 // Attribute all cases and
duke@1 955 // check that there are no duplicate case labels or default clauses.
duke@1 956 Set<Object> labels = new HashSet<Object>(); // The set of case labels.
duke@1 957 boolean hasDefault = false; // Is there a default label?
duke@1 958 for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
duke@1 959 JCCase c = l.head;
duke@1 960 Env<AttrContext> caseEnv =
duke@1 961 switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
duke@1 962 if (c.pat != null) {
duke@1 963 if (enumSwitch) {
duke@1 964 Symbol sym = enumConstant(c.pat, seltype);
duke@1 965 if (sym == null) {
duke@1 966 log.error(c.pat.pos(), "enum.const.req");
duke@1 967 } else if (!labels.add(sym)) {
duke@1 968 log.error(c.pos(), "duplicate.case.label");
duke@1 969 }
duke@1 970 } else {
duke@1 971 Type pattype = attribExpr(c.pat, switchEnv, seltype);
duke@1 972 if (pattype.tag != ERROR) {
duke@1 973 if (pattype.constValue() == null) {
darcy@430 974 log.error(c.pat.pos(),
darcy@430 975 (stringSwitch ? "string.const.req" : "const.expr.req"));
duke@1 976 } else if (labels.contains(pattype.constValue())) {
duke@1 977 log.error(c.pos(), "duplicate.case.label");
duke@1 978 } else {
duke@1 979 labels.add(pattype.constValue());
duke@1 980 }
duke@1 981 }
duke@1 982 }
duke@1 983 } else if (hasDefault) {
duke@1 984 log.error(c.pos(), "duplicate.default.label");
duke@1 985 } else {
duke@1 986 hasDefault = true;
duke@1 987 }
duke@1 988 attribStats(c.stats, caseEnv);
duke@1 989 caseEnv.info.scope.leave();
duke@1 990 addVars(c.stats, switchEnv.info.scope);
duke@1 991 }
duke@1 992
duke@1 993 switchEnv.info.scope.leave();
duke@1 994 result = null;
duke@1 995 }
duke@1 996 // where
duke@1 997 /** Add any variables defined in stats to the switch scope. */
duke@1 998 private static void addVars(List<JCStatement> stats, Scope switchScope) {
duke@1 999 for (;stats.nonEmpty(); stats = stats.tail) {
duke@1 1000 JCTree stat = stats.head;
duke@1 1001 if (stat.getTag() == JCTree.VARDEF)
duke@1 1002 switchScope.enter(((JCVariableDecl) stat).sym);
duke@1 1003 }
duke@1 1004 }
duke@1 1005 // where
duke@1 1006 /** Return the selected enumeration constant symbol, or null. */
duke@1 1007 private Symbol enumConstant(JCTree tree, Type enumType) {
duke@1 1008 if (tree.getTag() != JCTree.IDENT) {
duke@1 1009 log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
duke@1 1010 return syms.errSymbol;
duke@1 1011 }
duke@1 1012 JCIdent ident = (JCIdent)tree;
duke@1 1013 Name name = ident.name;
duke@1 1014 for (Scope.Entry e = enumType.tsym.members().lookup(name);
duke@1 1015 e.scope != null; e = e.next()) {
duke@1 1016 if (e.sym.kind == VAR) {
duke@1 1017 Symbol s = ident.sym = e.sym;
duke@1 1018 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
duke@1 1019 ident.type = s.type;
duke@1 1020 return ((s.flags_field & Flags.ENUM) == 0)
duke@1 1021 ? null : s;
duke@1 1022 }
duke@1 1023 }
duke@1 1024 return null;
duke@1 1025 }
duke@1 1026
duke@1 1027 public void visitSynchronized(JCSynchronized tree) {
duke@1 1028 chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
duke@1 1029 attribStat(tree.body, env);
duke@1 1030 result = null;
duke@1 1031 }
duke@1 1032
duke@1 1033 public void visitTry(JCTry tree) {
darcy@609 1034 // Create a new local environment with a local
darcy@609 1035 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
darcy@609 1036 boolean isTryWithResource = tree.resources.nonEmpty();
darcy@609 1037 // Create a nested environment for attributing the try block if needed
darcy@609 1038 Env<AttrContext> tryEnv = isTryWithResource ?
darcy@609 1039 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
darcy@609 1040 localEnv;
darcy@609 1041 // Attribute resource declarations
darcy@609 1042 for (JCTree resource : tree.resources) {
darcy@609 1043 if (resource.getTag() == JCTree.VARDEF) {
darcy@609 1044 attribStat(resource, tryEnv);
darcy@609 1045 chk.checkType(resource, resource.type, syms.autoCloseableType, "twr.not.applicable.to.type");
darcy@609 1046 VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource);
darcy@609 1047 var.setData(ElementKind.RESOURCE_VARIABLE);
darcy@609 1048 } else {
darcy@609 1049 attribExpr(resource, tryEnv, syms.autoCloseableType, "twr.not.applicable.to.type");
darcy@609 1050 }
darcy@609 1051 }
duke@1 1052 // Attribute body
darcy@609 1053 attribStat(tree.body, tryEnv);
darcy@609 1054 if (isTryWithResource)
darcy@609 1055 tryEnv.info.scope.leave();
duke@1 1056
duke@1 1057 // Attribute catch clauses
duke@1 1058 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
duke@1 1059 JCCatch c = l.head;
duke@1 1060 Env<AttrContext> catchEnv =
darcy@609 1061 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
duke@1 1062 Type ctype = attribStat(c.param, catchEnv);
mcimadamore@550 1063 if (TreeInfo.isMultiCatch(c)) {
mcimadamore@550 1064 //check that multi-catch parameter is marked as final
mcimadamore@550 1065 if ((c.param.sym.flags() & FINAL) == 0) {
mcimadamore@550 1066 log.error(c.param.pos(), "multicatch.param.must.be.final", c.param.sym);
mcimadamore@550 1067 }
jjg@724 1068 c.param.sym.flags_field = c.param.sym.flags() | DISJUNCTION;
mcimadamore@550 1069 }
jjg@723 1070 if (c.param.sym.kind == Kinds.VAR) {
duke@1 1071 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
duke@1 1072 }
duke@1 1073 chk.checkType(c.param.vartype.pos(),
duke@1 1074 chk.checkClassType(c.param.vartype.pos(), ctype),
duke@1 1075 syms.throwableType);
duke@1 1076 attribStat(c.body, catchEnv);
duke@1 1077 catchEnv.info.scope.leave();
duke@1 1078 }
duke@1 1079
duke@1 1080 // Attribute finalizer
darcy@609 1081 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
darcy@609 1082
darcy@609 1083 localEnv.info.scope.leave();
duke@1 1084 result = null;
duke@1 1085 }
duke@1 1086
duke@1 1087 public void visitConditional(JCConditional tree) {
duke@1 1088 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1089 attribExpr(tree.truepart, env);
duke@1 1090 attribExpr(tree.falsepart, env);
duke@1 1091 result = check(tree,
duke@1 1092 capture(condType(tree.pos(), tree.cond.type,
duke@1 1093 tree.truepart.type, tree.falsepart.type)),
duke@1 1094 VAL, pkind, pt);
duke@1 1095 }
duke@1 1096 //where
duke@1 1097 /** Compute the type of a conditional expression, after
duke@1 1098 * checking that it exists. See Spec 15.25.
duke@1 1099 *
duke@1 1100 * @param pos The source position to be used for
duke@1 1101 * error diagnostics.
duke@1 1102 * @param condtype The type of the expression's condition.
duke@1 1103 * @param thentype The type of the expression's then-part.
duke@1 1104 * @param elsetype The type of the expression's else-part.
duke@1 1105 */
duke@1 1106 private Type condType(DiagnosticPosition pos,
duke@1 1107 Type condtype,
duke@1 1108 Type thentype,
duke@1 1109 Type elsetype) {
duke@1 1110 Type ctype = condType1(pos, condtype, thentype, elsetype);
duke@1 1111
duke@1 1112 // If condition and both arms are numeric constants,
duke@1 1113 // evaluate at compile-time.
duke@1 1114 return ((condtype.constValue() != null) &&
duke@1 1115 (thentype.constValue() != null) &&
duke@1 1116 (elsetype.constValue() != null))
duke@1 1117 ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype)
duke@1 1118 : ctype;
duke@1 1119 }
duke@1 1120 /** Compute the type of a conditional expression, after
duke@1 1121 * checking that it exists. Does not take into
duke@1 1122 * account the special case where condition and both arms
duke@1 1123 * are constants.
duke@1 1124 *
duke@1 1125 * @param pos The source position to be used for error
duke@1 1126 * diagnostics.
duke@1 1127 * @param condtype The type of the expression's condition.
duke@1 1128 * @param thentype The type of the expression's then-part.
duke@1 1129 * @param elsetype The type of the expression's else-part.
duke@1 1130 */
duke@1 1131 private Type condType1(DiagnosticPosition pos, Type condtype,
duke@1 1132 Type thentype, Type elsetype) {
duke@1 1133 // If same type, that is the result
duke@1 1134 if (types.isSameType(thentype, elsetype))
duke@1 1135 return thentype.baseType();
duke@1 1136
duke@1 1137 Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
duke@1 1138 ? thentype : types.unboxedType(thentype);
duke@1 1139 Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
duke@1 1140 ? elsetype : types.unboxedType(elsetype);
duke@1 1141
duke@1 1142 // Otherwise, if both arms can be converted to a numeric
duke@1 1143 // type, return the least numeric type that fits both arms
duke@1 1144 // (i.e. return larger of the two, or return int if one
duke@1 1145 // arm is short, the other is char).
duke@1 1146 if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
duke@1 1147 // If one arm has an integer subrange type (i.e., byte,
duke@1 1148 // short, or char), and the other is an integer constant
duke@1 1149 // that fits into the subrange, return the subrange type.
duke@1 1150 if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
duke@1 1151 types.isAssignable(elseUnboxed, thenUnboxed))
duke@1 1152 return thenUnboxed.baseType();
duke@1 1153 if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
duke@1 1154 types.isAssignable(thenUnboxed, elseUnboxed))
duke@1 1155 return elseUnboxed.baseType();
duke@1 1156
duke@1 1157 for (int i = BYTE; i < VOID; i++) {
duke@1 1158 Type candidate = syms.typeOfTag[i];
duke@1 1159 if (types.isSubtype(thenUnboxed, candidate) &&
duke@1 1160 types.isSubtype(elseUnboxed, candidate))
duke@1 1161 return candidate;
duke@1 1162 }
duke@1 1163 }
duke@1 1164
duke@1 1165 // Those were all the cases that could result in a primitive
duke@1 1166 if (allowBoxing) {
duke@1 1167 if (thentype.isPrimitive())
duke@1 1168 thentype = types.boxedClass(thentype).type;
duke@1 1169 if (elsetype.isPrimitive())
duke@1 1170 elsetype = types.boxedClass(elsetype).type;
duke@1 1171 }
duke@1 1172
duke@1 1173 if (types.isSubtype(thentype, elsetype))
duke@1 1174 return elsetype.baseType();
duke@1 1175 if (types.isSubtype(elsetype, thentype))
duke@1 1176 return thentype.baseType();
duke@1 1177
duke@1 1178 if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
duke@1 1179 log.error(pos, "neither.conditional.subtype",
duke@1 1180 thentype, elsetype);
duke@1 1181 return thentype.baseType();
duke@1 1182 }
duke@1 1183
duke@1 1184 // both are known to be reference types. The result is
duke@1 1185 // lub(thentype,elsetype). This cannot fail, as it will
duke@1 1186 // always be possible to infer "Object" if nothing better.
duke@1 1187 return types.lub(thentype.baseType(), elsetype.baseType());
duke@1 1188 }
duke@1 1189
duke@1 1190 public void visitIf(JCIf tree) {
duke@1 1191 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1192 attribStat(tree.thenpart, env);
duke@1 1193 if (tree.elsepart != null)
duke@1 1194 attribStat(tree.elsepart, env);
duke@1 1195 chk.checkEmptyIf(tree);
duke@1 1196 result = null;
duke@1 1197 }
duke@1 1198
duke@1 1199 public void visitExec(JCExpressionStatement tree) {
mcimadamore@674 1200 //a fresh environment is required for 292 inference to work properly ---
mcimadamore@674 1201 //see Infer.instantiatePolymorphicSignatureInstance()
mcimadamore@674 1202 Env<AttrContext> localEnv = env.dup(tree);
mcimadamore@674 1203 attribExpr(tree.expr, localEnv);
duke@1 1204 result = null;
duke@1 1205 }
duke@1 1206
duke@1 1207 public void visitBreak(JCBreak tree) {
duke@1 1208 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
duke@1 1209 result = null;
duke@1 1210 }
duke@1 1211
duke@1 1212 public void visitContinue(JCContinue tree) {
duke@1 1213 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
duke@1 1214 result = null;
duke@1 1215 }
duke@1 1216 //where
duke@1 1217 /** Return the target of a break or continue statement, if it exists,
duke@1 1218 * report an error if not.
duke@1 1219 * Note: The target of a labelled break or continue is the
duke@1 1220 * (non-labelled) statement tree referred to by the label,
duke@1 1221 * not the tree representing the labelled statement itself.
duke@1 1222 *
duke@1 1223 * @param pos The position to be used for error diagnostics
duke@1 1224 * @param tag The tag of the jump statement. This is either
duke@1 1225 * Tree.BREAK or Tree.CONTINUE.
duke@1 1226 * @param label The label of the jump statement, or null if no
duke@1 1227 * label is given.
duke@1 1228 * @param env The environment current at the jump statement.
duke@1 1229 */
duke@1 1230 private JCTree findJumpTarget(DiagnosticPosition pos,
duke@1 1231 int tag,
duke@1 1232 Name label,
duke@1 1233 Env<AttrContext> env) {
duke@1 1234 // Search environments outwards from the point of jump.
duke@1 1235 Env<AttrContext> env1 = env;
duke@1 1236 LOOP:
duke@1 1237 while (env1 != null) {
duke@1 1238 switch (env1.tree.getTag()) {
duke@1 1239 case JCTree.LABELLED:
duke@1 1240 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
duke@1 1241 if (label == labelled.label) {
duke@1 1242 // If jump is a continue, check that target is a loop.
duke@1 1243 if (tag == JCTree.CONTINUE) {
duke@1 1244 if (labelled.body.getTag() != JCTree.DOLOOP &&
duke@1 1245 labelled.body.getTag() != JCTree.WHILELOOP &&
duke@1 1246 labelled.body.getTag() != JCTree.FORLOOP &&
duke@1 1247 labelled.body.getTag() != JCTree.FOREACHLOOP)
duke@1 1248 log.error(pos, "not.loop.label", label);
duke@1 1249 // Found labelled statement target, now go inwards
duke@1 1250 // to next non-labelled tree.
duke@1 1251 return TreeInfo.referencedStatement(labelled);
duke@1 1252 } else {
duke@1 1253 return labelled;
duke@1 1254 }
duke@1 1255 }
duke@1 1256 break;
duke@1 1257 case JCTree.DOLOOP:
duke@1 1258 case JCTree.WHILELOOP:
duke@1 1259 case JCTree.FORLOOP:
duke@1 1260 case JCTree.FOREACHLOOP:
duke@1 1261 if (label == null) return env1.tree;
duke@1 1262 break;
duke@1 1263 case JCTree.SWITCH:
duke@1 1264 if (label == null && tag == JCTree.BREAK) return env1.tree;
duke@1 1265 break;
duke@1 1266 case JCTree.METHODDEF:
duke@1 1267 case JCTree.CLASSDEF:
duke@1 1268 break LOOP;
duke@1 1269 default:
duke@1 1270 }
duke@1 1271 env1 = env1.next;
duke@1 1272 }
duke@1 1273 if (label != null)
duke@1 1274 log.error(pos, "undef.label", label);
duke@1 1275 else if (tag == JCTree.CONTINUE)
duke@1 1276 log.error(pos, "cont.outside.loop");
duke@1 1277 else
duke@1 1278 log.error(pos, "break.outside.switch.loop");
duke@1 1279 return null;
duke@1 1280 }
duke@1 1281
duke@1 1282 public void visitReturn(JCReturn tree) {
duke@1 1283 // Check that there is an enclosing method which is
duke@1 1284 // nested within than the enclosing class.
duke@1 1285 if (env.enclMethod == null ||
duke@1 1286 env.enclMethod.sym.owner != env.enclClass.sym) {
duke@1 1287 log.error(tree.pos(), "ret.outside.meth");
duke@1 1288
duke@1 1289 } else {
duke@1 1290 // Attribute return expression, if it exists, and check that
duke@1 1291 // it conforms to result type of enclosing method.
duke@1 1292 Symbol m = env.enclMethod.sym;
duke@1 1293 if (m.type.getReturnType().tag == VOID) {
duke@1 1294 if (tree.expr != null)
duke@1 1295 log.error(tree.expr.pos(),
duke@1 1296 "cant.ret.val.from.meth.decl.void");
duke@1 1297 } else if (tree.expr == null) {
duke@1 1298 log.error(tree.pos(), "missing.ret.val");
duke@1 1299 } else {
duke@1 1300 attribExpr(tree.expr, env, m.type.getReturnType());
duke@1 1301 }
duke@1 1302 }
duke@1 1303 result = null;
duke@1 1304 }
duke@1 1305
duke@1 1306 public void visitThrow(JCThrow tree) {
duke@1 1307 attribExpr(tree.expr, env, syms.throwableType);
duke@1 1308 result = null;
duke@1 1309 }
duke@1 1310
duke@1 1311 public void visitAssert(JCAssert tree) {
duke@1 1312 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1313 if (tree.detail != null) {
duke@1 1314 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
duke@1 1315 }
duke@1 1316 result = null;
duke@1 1317 }
duke@1 1318
duke@1 1319 /** Visitor method for method invocations.
duke@1 1320 * NOTE: The method part of an application will have in its type field
duke@1 1321 * the return type of the method, not the method's type itself!
duke@1 1322 */
duke@1 1323 public void visitApply(JCMethodInvocation tree) {
duke@1 1324 // The local environment of a method application is
duke@1 1325 // a new environment nested in the current one.
duke@1 1326 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
duke@1 1327
duke@1 1328 // The types of the actual method arguments.
duke@1 1329 List<Type> argtypes;
duke@1 1330
duke@1 1331 // The types of the actual method type arguments.
duke@1 1332 List<Type> typeargtypes = null;
jrose@267 1333 boolean typeargtypesNonRefOK = false;
duke@1 1334
duke@1 1335 Name methName = TreeInfo.name(tree.meth);
duke@1 1336
duke@1 1337 boolean isConstructorCall =
duke@1 1338 methName == names._this || methName == names._super;
duke@1 1339
duke@1 1340 if (isConstructorCall) {
duke@1 1341 // We are seeing a ...this(...) or ...super(...) call.
duke@1 1342 // Check that this is the first statement in a constructor.
duke@1 1343 if (checkFirstConstructorStat(tree, env)) {
duke@1 1344
duke@1 1345 // Record the fact
duke@1 1346 // that this is a constructor call (using isSelfCall).
duke@1 1347 localEnv.info.isSelfCall = true;
duke@1 1348
duke@1 1349 // Attribute arguments, yielding list of argument types.
duke@1 1350 argtypes = attribArgs(tree.args, localEnv);
duke@1 1351 typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1352
duke@1 1353 // Variable `site' points to the class in which the called
duke@1 1354 // constructor is defined.
duke@1 1355 Type site = env.enclClass.sym.type;
duke@1 1356 if (methName == names._super) {
duke@1 1357 if (site == syms.objectType) {
duke@1 1358 log.error(tree.meth.pos(), "no.superclass", site);
jjg@110 1359 site = types.createErrorType(syms.objectType);
duke@1 1360 } else {
duke@1 1361 site = types.supertype(site);
duke@1 1362 }
duke@1 1363 }
duke@1 1364
duke@1 1365 if (site.tag == CLASS) {
mcimadamore@361 1366 Type encl = site.getEnclosingType();
mcimadamore@361 1367 while (encl != null && encl.tag == TYPEVAR)
mcimadamore@361 1368 encl = encl.getUpperBound();
mcimadamore@361 1369 if (encl.tag == CLASS) {
duke@1 1370 // we are calling a nested class
duke@1 1371
duke@1 1372 if (tree.meth.getTag() == JCTree.SELECT) {
duke@1 1373 JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
duke@1 1374
duke@1 1375 // We are seeing a prefixed call, of the form
duke@1 1376 // <expr>.super(...).
duke@1 1377 // Check that the prefix expression conforms
duke@1 1378 // to the outer instance type of the class.
duke@1 1379 chk.checkRefType(qualifier.pos(),
duke@1 1380 attribExpr(qualifier, localEnv,
mcimadamore@361 1381 encl));
duke@1 1382 } else if (methName == names._super) {
duke@1 1383 // qualifier omitted; check for existence
duke@1 1384 // of an appropriate implicit qualifier.
duke@1 1385 rs.resolveImplicitThis(tree.meth.pos(),
duke@1 1386 localEnv, site);
duke@1 1387 }
duke@1 1388 } else if (tree.meth.getTag() == JCTree.SELECT) {
duke@1 1389 log.error(tree.meth.pos(), "illegal.qual.not.icls",
duke@1 1390 site.tsym);
duke@1 1391 }
duke@1 1392
duke@1 1393 // if we're calling a java.lang.Enum constructor,
duke@1 1394 // prefix the implicit String and int parameters
duke@1 1395 if (site.tsym == syms.enumSym && allowEnums)
duke@1 1396 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
duke@1 1397
duke@1 1398 // Resolve the called constructor under the assumption
duke@1 1399 // that we are referring to a superclass instance of the
duke@1 1400 // current instance (JLS ???).
duke@1 1401 boolean selectSuperPrev = localEnv.info.selectSuper;
duke@1 1402 localEnv.info.selectSuper = true;
duke@1 1403 localEnv.info.varArgs = false;
duke@1 1404 Symbol sym = rs.resolveConstructor(
duke@1 1405 tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
duke@1 1406 localEnv.info.selectSuper = selectSuperPrev;
duke@1 1407
duke@1 1408 // Set method symbol to resolved constructor...
duke@1 1409 TreeInfo.setSymbol(tree.meth, sym);
duke@1 1410
duke@1 1411 // ...and check that it is legal in the current context.
duke@1 1412 // (this will also set the tree's type)
duke@1 1413 Type mpt = newMethTemplate(argtypes, typeargtypes);
duke@1 1414 checkId(tree.meth, site, sym, localEnv, MTH,
duke@1 1415 mpt, tree.varargsElement != null);
duke@1 1416 }
duke@1 1417 // Otherwise, `site' is an error type and we do nothing
duke@1 1418 }
duke@1 1419 result = tree.type = syms.voidType;
duke@1 1420 } else {
duke@1 1421 // Otherwise, we are seeing a regular method call.
duke@1 1422 // Attribute the arguments, yielding list of argument types, ...
duke@1 1423 argtypes = attribArgs(tree.args, localEnv);
jrose@267 1424 typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
duke@1 1425
duke@1 1426 // ... and attribute the method using as a prototype a methodtype
duke@1 1427 // whose formal argument types is exactly the list of actual
duke@1 1428 // arguments (this will also set the method symbol).
duke@1 1429 Type mpt = newMethTemplate(argtypes, typeargtypes);
duke@1 1430 localEnv.info.varArgs = false;
duke@1 1431 Type mtype = attribExpr(tree.meth, localEnv, mpt);
duke@1 1432 if (localEnv.info.varArgs)
duke@1 1433 assert mtype.isErroneous() || tree.varargsElement != null;
duke@1 1434
duke@1 1435 // Compute the result type.
duke@1 1436 Type restype = mtype.getReturnType();
mcimadamore@689 1437 if (restype.tag == WILDCARD)
mcimadamore@689 1438 throw new AssertionError(mtype);
duke@1 1439
duke@1 1440 // as a special case, array.clone() has a result that is
duke@1 1441 // the same as static type of the array being cloned
duke@1 1442 if (tree.meth.getTag() == JCTree.SELECT &&
duke@1 1443 allowCovariantReturns &&
duke@1 1444 methName == names.clone &&
duke@1 1445 types.isArray(((JCFieldAccess) tree.meth).selected.type))
duke@1 1446 restype = ((JCFieldAccess) tree.meth).selected.type;
duke@1 1447
duke@1 1448 // as a special case, x.getClass() has type Class<? extends |X|>
duke@1 1449 if (allowGenerics &&
duke@1 1450 methName == names.getClass && tree.args.isEmpty()) {
duke@1 1451 Type qualifier = (tree.meth.getTag() == JCTree.SELECT)
duke@1 1452 ? ((JCFieldAccess) tree.meth).selected.type
duke@1 1453 : env.enclClass.sym.type;
duke@1 1454 restype = new
duke@1 1455 ClassType(restype.getEnclosingType(),
duke@1 1456 List.<Type>of(new WildcardType(types.erasure(qualifier),
duke@1 1457 BoundKind.EXTENDS,
duke@1 1458 syms.boundClass)),
duke@1 1459 restype.tsym);
duke@1 1460 }
duke@1 1461
mcimadamore@674 1462 // Special case logic for JSR 292 types.
mcimadamore@674 1463 if (rs.allowTransitionalJSR292 &&
mcimadamore@674 1464 tree.meth.getTag() == JCTree.SELECT &&
mcimadamore@674 1465 !typeargtypes.isEmpty()) {
mcimadamore@674 1466 JCFieldAccess mfield = (JCFieldAccess) tree.meth;
mcimadamore@674 1467 // MethodHandle.<T>invoke(abc) and InvokeDynamic.<T>foo(abc)
mcimadamore@674 1468 // has type <T>, and T can be a primitive type.
mcimadamore@674 1469 if (mfield.sym != null &&
mcimadamore@674 1470 mfield.sym.isPolymorphicSignatureInstance())
mcimadamore@674 1471 typeargtypesNonRefOK = true;
jrose@267 1472 }
jrose@267 1473
mcimadamore@674 1474 if (!(rs.allowTransitionalJSR292 && typeargtypesNonRefOK)) {
jrose@267 1475 chk.checkRefTypes(tree.typeargs, typeargtypes);
jrose@267 1476 }
jrose@267 1477
duke@1 1478 // Check that value of resulting type is admissible in the
duke@1 1479 // current context. Also, capture the return type
mcimadamore@536 1480 result = check(tree, capture(restype), VAL, pkind, pt);
duke@1 1481 }
mcimadamore@122 1482 chk.validate(tree.typeargs, localEnv);
duke@1 1483 }
duke@1 1484 //where
duke@1 1485 /** Check that given application node appears as first statement
duke@1 1486 * in a constructor call.
duke@1 1487 * @param tree The application node
duke@1 1488 * @param env The environment current at the application.
duke@1 1489 */
duke@1 1490 boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
duke@1 1491 JCMethodDecl enclMethod = env.enclMethod;
duke@1 1492 if (enclMethod != null && enclMethod.name == names.init) {
duke@1 1493 JCBlock body = enclMethod.body;
duke@1 1494 if (body.stats.head.getTag() == JCTree.EXEC &&
duke@1 1495 ((JCExpressionStatement) body.stats.head).expr == tree)
duke@1 1496 return true;
duke@1 1497 }
duke@1 1498 log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
duke@1 1499 TreeInfo.name(tree.meth));
duke@1 1500 return false;
duke@1 1501 }
duke@1 1502
duke@1 1503 /** Obtain a method type with given argument types.
duke@1 1504 */
duke@1 1505 Type newMethTemplate(List<Type> argtypes, List<Type> typeargtypes) {
duke@1 1506 MethodType mt = new MethodType(argtypes, null, null, syms.methodClass);
duke@1 1507 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
duke@1 1508 }
duke@1 1509
duke@1 1510 public void visitNewClass(JCNewClass tree) {
jjg@110 1511 Type owntype = types.createErrorType(tree.type);
duke@1 1512
duke@1 1513 // The local environment of a class creation is
duke@1 1514 // a new environment nested in the current one.
duke@1 1515 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
duke@1 1516
duke@1 1517 // The anonymous inner class definition of the new expression,
duke@1 1518 // if one is defined by it.
duke@1 1519 JCClassDecl cdef = tree.def;
duke@1 1520
duke@1 1521 // If enclosing class is given, attribute it, and
duke@1 1522 // complete class name to be fully qualified
duke@1 1523 JCExpression clazz = tree.clazz; // Class field following new
duke@1 1524 JCExpression clazzid = // Identifier in class field
duke@1 1525 (clazz.getTag() == JCTree.TYPEAPPLY)
duke@1 1526 ? ((JCTypeApply) clazz).clazz
duke@1 1527 : clazz;
duke@1 1528
duke@1 1529 JCExpression clazzid1 = clazzid; // The same in fully qualified form
duke@1 1530
duke@1 1531 if (tree.encl != null) {
duke@1 1532 // We are seeing a qualified new, of the form
duke@1 1533 // <expr>.new C <...> (...) ...
duke@1 1534 // In this case, we let clazz stand for the name of the
duke@1 1535 // allocated class C prefixed with the type of the qualifier
duke@1 1536 // expression, so that we can
duke@1 1537 // resolve it with standard techniques later. I.e., if
duke@1 1538 // <expr> has type T, then <expr>.new C <...> (...)
duke@1 1539 // yields a clazz T.C.
duke@1 1540 Type encltype = chk.checkRefType(tree.encl.pos(),
duke@1 1541 attribExpr(tree.encl, env));
duke@1 1542 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
duke@1 1543 ((JCIdent) clazzid).name);
duke@1 1544 if (clazz.getTag() == JCTree.TYPEAPPLY)
duke@1 1545 clazz = make.at(tree.pos).
duke@1 1546 TypeApply(clazzid1,
duke@1 1547 ((JCTypeApply) clazz).arguments);
duke@1 1548 else
duke@1 1549 clazz = clazzid1;
duke@1 1550 }
duke@1 1551
duke@1 1552 // Attribute clazz expression and store
duke@1 1553 // symbol + type back into the attributed tree.
mcimadamore@537 1554 Type clazztype = attribType(clazz, env);
mcimadamore@562 1555 Pair<Scope,Scope> mapping = getSyntheticScopeMapping(clazztype);
mcimadamore@537 1556 if (!TreeInfo.isDiamond(tree)) {
mcimadamore@537 1557 clazztype = chk.checkClassType(
mcimadamore@537 1558 tree.clazz.pos(), clazztype, true);
mcimadamore@537 1559 }
mcimadamore@122 1560 chk.validate(clazz, localEnv);
duke@1 1561 if (tree.encl != null) {
duke@1 1562 // We have to work in this case to store
duke@1 1563 // symbol + type back into the attributed tree.
duke@1 1564 tree.clazz.type = clazztype;
duke@1 1565 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
duke@1 1566 clazzid.type = ((JCIdent) clazzid).sym.type;
duke@1 1567 if (!clazztype.isErroneous()) {
duke@1 1568 if (cdef != null && clazztype.tsym.isInterface()) {
duke@1 1569 log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
duke@1 1570 } else if (clazztype.tsym.isStatic()) {
duke@1 1571 log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
duke@1 1572 }
duke@1 1573 }
duke@1 1574 } else if (!clazztype.tsym.isInterface() &&
duke@1 1575 clazztype.getEnclosingType().tag == CLASS) {
duke@1 1576 // Check for the existence of an apropos outer instance
duke@1 1577 rs.resolveImplicitThis(tree.pos(), env, clazztype);
duke@1 1578 }
duke@1 1579
duke@1 1580 // Attribute constructor arguments.
duke@1 1581 List<Type> argtypes = attribArgs(tree.args, localEnv);
duke@1 1582 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1583
mcimadamore@537 1584 if (TreeInfo.isDiamond(tree)) {
mcimadamore@631 1585 clazztype = attribDiamond(localEnv, tree, clazztype, mapping, argtypes, typeargtypes);
mcimadamore@537 1586 clazz.type = clazztype;
mcimadamore@731 1587 } else if (allowDiamondFinder &&
mcimadamore@731 1588 clazztype.getTypeArguments().nonEmpty() &&
mcimadamore@731 1589 findDiamonds) {
mcimadamore@731 1590 Type inferred = attribDiamond(localEnv,
mcimadamore@731 1591 tree,
mcimadamore@731 1592 clazztype,
mcimadamore@731 1593 mapping,
mcimadamore@731 1594 argtypes,
mcimadamore@731 1595 typeargtypes);
mcimadamore@731 1596 if (!inferred.isErroneous() &&
mcimadamore@731 1597 inferred.tag == CLASS &&
mcimadamore@731 1598 types.isAssignable(inferred, pt.tag == NONE ? clazztype : pt, Warner.noWarnings) &&
mcimadamore@731 1599 chk.checkDiamond((ClassType)inferred).isEmpty()) {
mcimadamore@731 1600 String key = types.isSameType(clazztype, inferred) ?
mcimadamore@731 1601 "diamond.redundant.args" :
mcimadamore@731 1602 "diamond.redundant.args.1";
mcimadamore@731 1603 log.warning(tree.clazz.pos(), key, clazztype, inferred);
mcimadamore@731 1604 }
mcimadamore@537 1605 }
mcimadamore@537 1606
duke@1 1607 // If we have made no mistakes in the class type...
duke@1 1608 if (clazztype.tag == CLASS) {
duke@1 1609 // Enums may not be instantiated except implicitly
duke@1 1610 if (allowEnums &&
duke@1 1611 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
duke@1 1612 (env.tree.getTag() != JCTree.VARDEF ||
duke@1 1613 (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
duke@1 1614 ((JCVariableDecl) env.tree).init != tree))
duke@1 1615 log.error(tree.pos(), "enum.cant.be.instantiated");
duke@1 1616 // Check that class is not abstract
duke@1 1617 if (cdef == null &&
duke@1 1618 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
duke@1 1619 log.error(tree.pos(), "abstract.cant.be.instantiated",
duke@1 1620 clazztype.tsym);
duke@1 1621 } else if (cdef != null && clazztype.tsym.isInterface()) {
duke@1 1622 // Check that no constructor arguments are given to
duke@1 1623 // anonymous classes implementing an interface
duke@1 1624 if (!argtypes.isEmpty())
duke@1 1625 log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
duke@1 1626
duke@1 1627 if (!typeargtypes.isEmpty())
duke@1 1628 log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
duke@1 1629
duke@1 1630 // Error recovery: pretend no arguments were supplied.
duke@1 1631 argtypes = List.nil();
duke@1 1632 typeargtypes = List.nil();
duke@1 1633 }
duke@1 1634
duke@1 1635 // Resolve the called constructor under the assumption
duke@1 1636 // that we are referring to a superclass instance of the
duke@1 1637 // current instance (JLS ???).
duke@1 1638 else {
duke@1 1639 localEnv.info.selectSuper = cdef != null;
duke@1 1640 localEnv.info.varArgs = false;
duke@1 1641 tree.constructor = rs.resolveConstructor(
duke@1 1642 tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
mcimadamore@630 1643 tree.constructorType = tree.constructor.type.isErroneous() ?
mcimadamore@630 1644 syms.errType :
mcimadamore@630 1645 checkMethod(clazztype,
mcimadamore@630 1646 tree.constructor,
mcimadamore@630 1647 localEnv,
mcimadamore@630 1648 tree.args,
mcimadamore@630 1649 argtypes,
mcimadamore@630 1650 typeargtypes,
mcimadamore@630 1651 localEnv.info.varArgs);
duke@1 1652 if (localEnv.info.varArgs)
mcimadamore@186 1653 assert tree.constructorType.isErroneous() || tree.varargsElement != null;
duke@1 1654 }
duke@1 1655
duke@1 1656 if (cdef != null) {
duke@1 1657 // We are seeing an anonymous class instance creation.
duke@1 1658 // In this case, the class instance creation
duke@1 1659 // expression
duke@1 1660 //
duke@1 1661 // E.new <typeargs1>C<typargs2>(args) { ... }
duke@1 1662 //
duke@1 1663 // is represented internally as
duke@1 1664 //
duke@1 1665 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) .
duke@1 1666 //
duke@1 1667 // This expression is then *transformed* as follows:
duke@1 1668 //
duke@1 1669 // (1) add a STATIC flag to the class definition
duke@1 1670 // if the current environment is static
duke@1 1671 // (2) add an extends or implements clause
duke@1 1672 // (3) add a constructor.
duke@1 1673 //
duke@1 1674 // For instance, if C is a class, and ET is the type of E,
duke@1 1675 // the expression
duke@1 1676 //
duke@1 1677 // E.new <typeargs1>C<typargs2>(args) { ... }
duke@1 1678 //
duke@1 1679 // is translated to (where X is a fresh name and typarams is the
duke@1 1680 // parameter list of the super constructor):
duke@1 1681 //
duke@1 1682 // new <typeargs1>X(<*nullchk*>E, args) where
duke@1 1683 // X extends C<typargs2> {
duke@1 1684 // <typarams> X(ET e, args) {
duke@1 1685 // e.<typeargs1>super(args)
duke@1 1686 // }
duke@1 1687 // ...
duke@1 1688 // }
duke@1 1689 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
mcimadamore@536 1690
duke@1 1691 if (clazztype.tsym.isInterface()) {
duke@1 1692 cdef.implementing = List.of(clazz);
duke@1 1693 } else {
duke@1 1694 cdef.extending = clazz;
duke@1 1695 }
duke@1 1696
duke@1 1697 attribStat(cdef, localEnv);
duke@1 1698
duke@1 1699 // If an outer instance is given,
duke@1 1700 // prefix it to the constructor arguments
duke@1 1701 // and delete it from the new expression
duke@1 1702 if (tree.encl != null && !clazztype.tsym.isInterface()) {
duke@1 1703 tree.args = tree.args.prepend(makeNullCheck(tree.encl));
duke@1 1704 argtypes = argtypes.prepend(tree.encl.type);
duke@1 1705 tree.encl = null;
duke@1 1706 }
duke@1 1707
duke@1 1708 // Reassign clazztype and recompute constructor.
duke@1 1709 clazztype = cdef.sym.type;
duke@1 1710 Symbol sym = rs.resolveConstructor(
duke@1 1711 tree.pos(), localEnv, clazztype, argtypes,
duke@1 1712 typeargtypes, true, tree.varargsElement != null);
duke@1 1713 assert sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous();
duke@1 1714 tree.constructor = sym;
mcimadamore@358 1715 if (tree.constructor.kind > ERRONEOUS) {
mcimadamore@358 1716 tree.constructorType = syms.errType;
mcimadamore@358 1717 }
mcimadamore@358 1718 else {
mcimadamore@358 1719 tree.constructorType = checkMethod(clazztype,
mcimadamore@358 1720 tree.constructor,
mcimadamore@358 1721 localEnv,
mcimadamore@358 1722 tree.args,
mcimadamore@358 1723 argtypes,
mcimadamore@358 1724 typeargtypes,
mcimadamore@358 1725 localEnv.info.varArgs);
mcimadamore@358 1726 }
duke@1 1727 }
duke@1 1728
duke@1 1729 if (tree.constructor != null && tree.constructor.kind == MTH)
duke@1 1730 owntype = clazztype;
duke@1 1731 }
duke@1 1732 result = check(tree, owntype, VAL, pkind, pt);
mcimadamore@122 1733 chk.validate(tree.typeargs, localEnv);
duke@1 1734 }
duke@1 1735
mcimadamore@537 1736 Type attribDiamond(Env<AttrContext> env,
mcimadamore@537 1737 JCNewClass tree,
mcimadamore@537 1738 Type clazztype,
mcimadamore@537 1739 Pair<Scope, Scope> mapping,
mcimadamore@537 1740 List<Type> argtypes,
mcimadamore@631 1741 List<Type> typeargtypes) {
mcimadamore@562 1742 if (clazztype.isErroneous() || mapping == erroneousMapping) {
mcimadamore@562 1743 //if the type of the instance creation expression is erroneous,
mcimadamore@562 1744 //or something prevented us to form a valid mapping, return the
mcimadamore@562 1745 //(possibly erroneous) type unchanged
mcimadamore@537 1746 return clazztype;
mcimadamore@537 1747 }
mcimadamore@537 1748 else if (clazztype.isInterface()) {
mcimadamore@537 1749 //if the type of the instance creation expression is an interface
mcimadamore@537 1750 //skip the method resolution step (JLS 15.12.2.7). The type to be
mcimadamore@537 1751 //inferred is of the kind <X1,X2, ... Xn>C<X1,X2, ... Xn>
mcimadamore@615 1752 clazztype = new ForAll(clazztype.tsym.type.allparams(), clazztype.tsym.type) {
mcimadamore@615 1753 @Override
mcimadamore@615 1754 public List<Type> getConstraints(TypeVar tv, ConstraintKind ck) {
mcimadamore@615 1755 switch (ck) {
mcimadamore@615 1756 case EXTENDS: return types.getBounds(tv);
mcimadamore@615 1757 default: return List.nil();
mcimadamore@615 1758 }
mcimadamore@615 1759 }
mcimadamore@615 1760 @Override
mcimadamore@615 1761 public Type inst(List<Type> inferred, Types types) throws Infer.NoInstanceException {
mcimadamore@615 1762 // check that inferred bounds conform to their bounds
mcimadamore@615 1763 infer.checkWithinBounds(tvars,
mcimadamore@615 1764 types.subst(tvars, tvars, inferred), Warner.noWarnings);
mcimadamore@615 1765 return super.inst(inferred, types);
mcimadamore@615 1766 }
mcimadamore@615 1767 };
mcimadamore@537 1768 } else {
mcimadamore@537 1769 //if the type of the instance creation expression is a class type
mcimadamore@537 1770 //apply method resolution inference (JLS 15.12.2.7). The return type
mcimadamore@537 1771 //of the resolved constructor will be a partially instantiated type
mcimadamore@537 1772 ((ClassSymbol) clazztype.tsym).members_field = mapping.snd;
mcimadamore@537 1773 Symbol constructor;
mcimadamore@537 1774 try {
mcimadamore@537 1775 constructor = rs.resolveDiamond(tree.pos(),
mcimadamore@537 1776 env,
mcimadamore@537 1777 clazztype.tsym.type,
mcimadamore@537 1778 argtypes,
mcimadamore@631 1779 typeargtypes);
mcimadamore@537 1780 } finally {
mcimadamore@537 1781 ((ClassSymbol) clazztype.tsym).members_field = mapping.fst;
mcimadamore@537 1782 }
mcimadamore@537 1783 if (constructor.kind == MTH) {
mcimadamore@537 1784 ClassType ct = new ClassType(clazztype.getEnclosingType(),
mcimadamore@537 1785 clazztype.tsym.type.getTypeArguments(),
mcimadamore@537 1786 clazztype.tsym);
mcimadamore@537 1787 clazztype = checkMethod(ct,
mcimadamore@537 1788 constructor,
mcimadamore@537 1789 env,
mcimadamore@537 1790 tree.args,
mcimadamore@537 1791 argtypes,
mcimadamore@537 1792 typeargtypes,
mcimadamore@537 1793 env.info.varArgs).getReturnType();
mcimadamore@537 1794 } else {
mcimadamore@537 1795 clazztype = syms.errType;
mcimadamore@537 1796 }
mcimadamore@537 1797 }
mcimadamore@537 1798 if (clazztype.tag == FORALL && !pt.isErroneous()) {
mcimadamore@537 1799 //if the resolved constructor's return type has some uninferred
mcimadamore@537 1800 //type-variables, infer them using the expected type and declared
mcimadamore@537 1801 //bounds (JLS 15.12.2.8).
mcimadamore@537 1802 try {
mcimadamore@537 1803 clazztype = infer.instantiateExpr((ForAll) clazztype,
mcimadamore@537 1804 pt.tag == NONE ? syms.objectType : pt,
mcimadamore@537 1805 Warner.noWarnings);
mcimadamore@537 1806 } catch (Infer.InferenceException ex) {
mcimadamore@537 1807 //an error occurred while inferring uninstantiated type-variables
mcimadamore@631 1808 log.error(tree.clazz.pos(),
mcimadamore@631 1809 "cant.apply.diamond.1",
mcimadamore@631 1810 diags.fragment("diamond", clazztype.tsym),
mcimadamore@631 1811 ex.diagnostic);
mcimadamore@631 1812 }
mcimadamore@631 1813 }
mcimadamore@631 1814 clazztype = chk.checkClassType(tree.clazz.pos(),
mcimadamore@631 1815 clazztype,
mcimadamore@631 1816 true);
mcimadamore@631 1817 if (clazztype.tag == CLASS) {
mcimadamore@631 1818 List<Type> invalidDiamondArgs = chk.checkDiamond((ClassType)clazztype);
mcimadamore@631 1819 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
mcimadamore@631 1820 //one or more types inferred in the previous steps is either a
mcimadamore@631 1821 //captured type or an intersection type --- we need to report an error.
mcimadamore@631 1822 String subkey = invalidDiamondArgs.size() > 1 ?
mcimadamore@631 1823 "diamond.invalid.args" :
mcimadamore@631 1824 "diamond.invalid.arg";
mcimadamore@631 1825 //The error message is of the kind:
mcimadamore@631 1826 //
mcimadamore@631 1827 //cannot infer type arguments for {clazztype}<>;
mcimadamore@631 1828 //reason: {subkey}
mcimadamore@631 1829 //
mcimadamore@631 1830 //where subkey is a fragment of the kind:
mcimadamore@631 1831 //
mcimadamore@631 1832 //type argument(s) {invalidDiamondArgs} inferred for {clazztype}<> is not allowed in this context
mcimadamore@631 1833 log.error(tree.clazz.pos(),
mcimadamore@537 1834 "cant.apply.diamond.1",
mcimadamore@537 1835 diags.fragment("diamond", clazztype.tsym),
mcimadamore@631 1836 diags.fragment(subkey,
mcimadamore@631 1837 invalidDiamondArgs,
mcimadamore@631 1838 diags.fragment("diamond", clazztype.tsym)));
mcimadamore@537 1839 }
mcimadamore@537 1840 }
mcimadamore@537 1841 return clazztype;
mcimadamore@537 1842 }
mcimadamore@537 1843
mcimadamore@537 1844 /** Creates a synthetic scope containing fake generic constructors.
mcimadamore@537 1845 * Assuming that the original scope contains a constructor of the kind:
mcimadamore@537 1846 * Foo(X x, Y y), where X,Y are class type-variables declared in Foo,
mcimadamore@537 1847 * the synthetic scope is added a generic constructor of the kind:
mcimadamore@537 1848 * <X,Y>Foo<X,Y>(X x, Y y). This is crucial in order to enable diamond
mcimadamore@537 1849 * inference. The inferred return type of the synthetic constructor IS
mcimadamore@537 1850 * the inferred type for the diamond operator.
mcimadamore@537 1851 */
mcimadamore@562 1852 private Pair<Scope, Scope> getSyntheticScopeMapping(Type ctype) {
mcimadamore@562 1853 if (ctype.tag != CLASS) {
mcimadamore@562 1854 return erroneousMapping;
mcimadamore@562 1855 }
mcimadamore@537 1856 Pair<Scope, Scope> mapping =
mcimadamore@537 1857 new Pair<Scope, Scope>(ctype.tsym.members(), new Scope(ctype.tsym));
mcimadamore@537 1858 List<Type> typevars = ctype.tsym.type.getTypeArguments();
mcimadamore@537 1859 for (Scope.Entry e = mapping.fst.lookup(names.init);
mcimadamore@537 1860 e.scope != null;
mcimadamore@537 1861 e = e.next()) {
mcimadamore@537 1862 MethodSymbol newConstr = (MethodSymbol) e.sym.clone(ctype.tsym);
mcimadamore@537 1863 newConstr.name = names.init;
mcimadamore@537 1864 List<Type> oldTypeargs = List.nil();
mcimadamore@537 1865 if (newConstr.type.tag == FORALL) {
mcimadamore@537 1866 oldTypeargs = ((ForAll) newConstr.type).tvars;
mcimadamore@537 1867 }
mcimadamore@537 1868 newConstr.type = new MethodType(newConstr.type.getParameterTypes(),
mcimadamore@537 1869 new ClassType(ctype.getEnclosingType(), ctype.tsym.type.getTypeArguments(), ctype.tsym),
mcimadamore@537 1870 newConstr.type.getThrownTypes(),
mcimadamore@537 1871 syms.methodClass);
mcimadamore@537 1872 newConstr.type = new ForAll(typevars.prependList(oldTypeargs), newConstr.type);
mcimadamore@537 1873 mapping.snd.enter(newConstr);
mcimadamore@537 1874 }
mcimadamore@537 1875 return mapping;
mcimadamore@537 1876 }
mcimadamore@537 1877
mcimadamore@562 1878 private final Pair<Scope,Scope> erroneousMapping = new Pair<Scope,Scope>(null, null);
mcimadamore@562 1879
duke@1 1880 /** Make an attributed null check tree.
duke@1 1881 */
duke@1 1882 public JCExpression makeNullCheck(JCExpression arg) {
duke@1 1883 // optimization: X.this is never null; skip null check
duke@1 1884 Name name = TreeInfo.name(arg);
duke@1 1885 if (name == names._this || name == names._super) return arg;
duke@1 1886
duke@1 1887 int optag = JCTree.NULLCHK;
duke@1 1888 JCUnary tree = make.at(arg.pos).Unary(optag, arg);
duke@1 1889 tree.operator = syms.nullcheck;
duke@1 1890 tree.type = arg.type;
duke@1 1891 return tree;
duke@1 1892 }
duke@1 1893
duke@1 1894 public void visitNewArray(JCNewArray tree) {
jjg@110 1895 Type owntype = types.createErrorType(tree.type);
duke@1 1896 Type elemtype;
duke@1 1897 if (tree.elemtype != null) {
duke@1 1898 elemtype = attribType(tree.elemtype, env);
mcimadamore@122 1899 chk.validate(tree.elemtype, env);
duke@1 1900 owntype = elemtype;
duke@1 1901 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
duke@1 1902 attribExpr(l.head, env, syms.intType);
duke@1 1903 owntype = new ArrayType(owntype, syms.arrayClass);
duke@1 1904 }
duke@1 1905 } else {
duke@1 1906 // we are seeing an untyped aggregate { ... }
duke@1 1907 // this is allowed only if the prototype is an array
duke@1 1908 if (pt.tag == ARRAY) {
duke@1 1909 elemtype = types.elemtype(pt);
duke@1 1910 } else {
duke@1 1911 if (pt.tag != ERROR) {
duke@1 1912 log.error(tree.pos(), "illegal.initializer.for.type",
duke@1 1913 pt);
duke@1 1914 }
jjg@110 1915 elemtype = types.createErrorType(pt);
duke@1 1916 }
duke@1 1917 }
duke@1 1918 if (tree.elems != null) {
duke@1 1919 attribExprs(tree.elems, env, elemtype);
duke@1 1920 owntype = new ArrayType(elemtype, syms.arrayClass);
duke@1 1921 }
duke@1 1922 if (!types.isReifiable(elemtype))
duke@1 1923 log.error(tree.pos(), "generic.array.creation");
duke@1 1924 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1925 }
duke@1 1926
duke@1 1927 public void visitParens(JCParens tree) {
duke@1 1928 Type owntype = attribTree(tree.expr, env, pkind, pt);
duke@1 1929 result = check(tree, owntype, pkind, pkind, pt);
duke@1 1930 Symbol sym = TreeInfo.symbol(tree);
duke@1 1931 if (sym != null && (sym.kind&(TYP|PCK)) != 0)
duke@1 1932 log.error(tree.pos(), "illegal.start.of.type");
duke@1 1933 }
duke@1 1934
duke@1 1935 public void visitAssign(JCAssign tree) {
duke@1 1936 Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType);
duke@1 1937 Type capturedType = capture(owntype);
duke@1 1938 attribExpr(tree.rhs, env, owntype);
duke@1 1939 result = check(tree, capturedType, VAL, pkind, pt);
duke@1 1940 }
duke@1 1941
duke@1 1942 public void visitAssignop(JCAssignOp tree) {
duke@1 1943 // Attribute arguments.
duke@1 1944 Type owntype = attribTree(tree.lhs, env, VAR, Type.noType);
duke@1 1945 Type operand = attribExpr(tree.rhs, env);
duke@1 1946 // Find operator.
duke@1 1947 Symbol operator = tree.operator = rs.resolveBinaryOperator(
duke@1 1948 tree.pos(), tree.getTag() - JCTree.ASGOffset, env,
duke@1 1949 owntype, operand);
duke@1 1950
duke@1 1951 if (operator.kind == MTH) {
duke@1 1952 chk.checkOperator(tree.pos(),
duke@1 1953 (OperatorSymbol)operator,
duke@1 1954 tree.getTag() - JCTree.ASGOffset,
duke@1 1955 owntype,
duke@1 1956 operand);
jjg@9 1957 chk.checkDivZero(tree.rhs.pos(), operator, operand);
jjg@9 1958 chk.checkCastable(tree.rhs.pos(),
jjg@9 1959 operator.type.getReturnType(),
jjg@9 1960 owntype);
duke@1 1961 }
duke@1 1962 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1963 }
duke@1 1964
duke@1 1965 public void visitUnary(JCUnary tree) {
duke@1 1966 // Attribute arguments.
duke@1 1967 Type argtype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
duke@1 1968 ? attribTree(tree.arg, env, VAR, Type.noType)
duke@1 1969 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
duke@1 1970
duke@1 1971 // Find operator.
duke@1 1972 Symbol operator = tree.operator =
duke@1 1973 rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
duke@1 1974
jjg@110 1975 Type owntype = types.createErrorType(tree.type);
duke@1 1976 if (operator.kind == MTH) {
duke@1 1977 owntype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
duke@1 1978 ? tree.arg.type
duke@1 1979 : operator.type.getReturnType();
duke@1 1980 int opc = ((OperatorSymbol)operator).opcode;
duke@1 1981
duke@1 1982 // If the argument is constant, fold it.
duke@1 1983 if (argtype.constValue() != null) {
duke@1 1984 Type ctype = cfolder.fold1(opc, argtype);
duke@1 1985 if (ctype != null) {
duke@1 1986 owntype = cfolder.coerce(ctype, owntype);
duke@1 1987
duke@1 1988 // Remove constant types from arguments to
duke@1 1989 // conserve space. The parser will fold concatenations
duke@1 1990 // of string literals; the code here also
duke@1 1991 // gets rid of intermediate results when some of the
duke@1 1992 // operands are constant identifiers.
duke@1 1993 if (tree.arg.type.tsym == syms.stringType.tsym) {
duke@1 1994 tree.arg.type = syms.stringType;
duke@1 1995 }
duke@1 1996 }
duke@1 1997 }
duke@1 1998 }
duke@1 1999 result = check(tree, owntype, VAL, pkind, pt);
duke@1 2000 }
duke@1 2001
duke@1 2002 public void visitBinary(JCBinary tree) {
duke@1 2003 // Attribute arguments.
duke@1 2004 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
duke@1 2005 Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
duke@1 2006
duke@1 2007 // Find operator.
duke@1 2008 Symbol operator = tree.operator =
duke@1 2009 rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
duke@1 2010
jjg@110 2011 Type owntype = types.createErrorType(tree.type);
duke@1 2012 if (operator.kind == MTH) {
duke@1 2013 owntype = operator.type.getReturnType();
duke@1 2014 int opc = chk.checkOperator(tree.lhs.pos(),
duke@1 2015 (OperatorSymbol)operator,
duke@1 2016 tree.getTag(),
duke@1 2017 left,
duke@1 2018 right);
duke@1 2019
duke@1 2020 // If both arguments are constants, fold them.
duke@1 2021 if (left.constValue() != null && right.constValue() != null) {
duke@1 2022 Type ctype = cfolder.fold2(opc, left, right);
duke@1 2023 if (ctype != null) {
duke@1 2024 owntype = cfolder.coerce(ctype, owntype);
duke@1 2025
duke@1 2026 // Remove constant types from arguments to
duke@1 2027 // conserve space. The parser will fold concatenations
duke@1 2028 // of string literals; the code here also
duke@1 2029 // gets rid of intermediate results when some of the
duke@1 2030 // operands are constant identifiers.
duke@1 2031 if (tree.lhs.type.tsym == syms.stringType.tsym) {
duke@1 2032 tree.lhs.type = syms.stringType;
duke@1 2033 }
duke@1 2034 if (tree.rhs.type.tsym == syms.stringType.tsym) {
duke@1 2035 tree.rhs.type = syms.stringType;
duke@1 2036 }
duke@1 2037 }
duke@1 2038 }
duke@1 2039
duke@1 2040 // Check that argument types of a reference ==, != are
duke@1 2041 // castable to each other, (JLS???).
duke@1 2042 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
duke@1 2043 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
duke@1 2044 log.error(tree.pos(), "incomparable.types", left, right);
duke@1 2045 }
duke@1 2046 }
duke@1 2047
duke@1 2048 chk.checkDivZero(tree.rhs.pos(), operator, right);
duke@1 2049 }
duke@1 2050 result = check(tree, owntype, VAL, pkind, pt);
duke@1 2051 }
duke@1 2052
duke@1 2053 public void visitTypeCast(JCTypeCast tree) {
duke@1 2054 Type clazztype = attribType(tree.clazz, env);
mcimadamore@638 2055 chk.validate(tree.clazz, env, false);
mcimadamore@674 2056 //a fresh environment is required for 292 inference to work properly ---
mcimadamore@674 2057 //see Infer.instantiatePolymorphicSignatureInstance()
mcimadamore@674 2058 Env<AttrContext> localEnv = env.dup(tree);
mcimadamore@674 2059 Type exprtype = attribExpr(tree.expr, localEnv, Infer.anyPoly);
duke@1 2060 Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
duke@1 2061 if (exprtype.constValue() != null)
duke@1 2062 owntype = cfolder.coerce(exprtype, owntype);
duke@1 2063 result = check(tree, capture(owntype), VAL, pkind, pt);
duke@1 2064 }
duke@1 2065
duke@1 2066 public void visitTypeTest(JCInstanceOf tree) {
duke@1 2067 Type exprtype = chk.checkNullOrRefType(
duke@1 2068 tree.expr.pos(), attribExpr(tree.expr, env));
duke@1 2069 Type clazztype = chk.checkReifiableReferenceType(
duke@1 2070 tree.clazz.pos(), attribType(tree.clazz, env));
mcimadamore@638 2071 chk.validate(tree.clazz, env, false);
duke@1 2072 chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
duke@1 2073 result = check(tree, syms.booleanType, VAL, pkind, pt);
duke@1 2074 }
duke@1 2075
duke@1 2076 public void visitIndexed(JCArrayAccess tree) {
jjg@110 2077 Type owntype = types.createErrorType(tree.type);
duke@1 2078 Type atype = attribExpr(tree.indexed, env);
duke@1 2079 attribExpr(tree.index, env, syms.intType);
duke@1 2080 if (types.isArray(atype))
duke@1 2081 owntype = types.elemtype(atype);
duke@1 2082 else if (atype.tag != ERROR)
duke@1 2083 log.error(tree.pos(), "array.req.but.found", atype);
duke@1 2084 if ((pkind & VAR) == 0) owntype = capture(owntype);
duke@1 2085 result = check(tree, owntype, VAR, pkind, pt);
duke@1 2086 }
duke@1 2087
duke@1 2088 public void visitIdent(JCIdent tree) {
duke@1 2089 Symbol sym;
duke@1 2090 boolean varArgs = false;
duke@1 2091
duke@1 2092 // Find symbol
duke@1 2093 if (pt.tag == METHOD || pt.tag == FORALL) {
duke@1 2094 // If we are looking for a method, the prototype `pt' will be a
duke@1 2095 // method type with the type of the call's arguments as parameters.
duke@1 2096 env.info.varArgs = false;
duke@1 2097 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments());
duke@1 2098 varArgs = env.info.varArgs;
duke@1 2099 } else if (tree.sym != null && tree.sym.kind != VAR) {
duke@1 2100 sym = tree.sym;
duke@1 2101 } else {
duke@1 2102 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind);
duke@1 2103 }
duke@1 2104 tree.sym = sym;
duke@1 2105
duke@1 2106 // (1) Also find the environment current for the class where
duke@1 2107 // sym is defined (`symEnv').
duke@1 2108 // Only for pre-tiger versions (1.4 and earlier):
duke@1 2109 // (2) Also determine whether we access symbol out of an anonymous
duke@1 2110 // class in a this or super call. This is illegal for instance
duke@1 2111 // members since such classes don't carry a this$n link.
duke@1 2112 // (`noOuterThisPath').
duke@1 2113 Env<AttrContext> symEnv = env;
duke@1 2114 boolean noOuterThisPath = false;
duke@1 2115 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
duke@1 2116 (sym.kind & (VAR | MTH | TYP)) != 0 &&
duke@1 2117 sym.owner.kind == TYP &&
duke@1 2118 tree.name != names._this && tree.name != names._super) {
duke@1 2119
duke@1 2120 // Find environment in which identifier is defined.
duke@1 2121 while (symEnv.outer != null &&
duke@1 2122 !sym.isMemberOf(symEnv.enclClass.sym, types)) {
duke@1 2123 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
duke@1 2124 noOuterThisPath = !allowAnonOuterThis;
duke@1 2125 symEnv = symEnv.outer;
duke@1 2126 }
duke@1 2127 }
duke@1 2128
duke@1 2129 // If symbol is a variable, ...
duke@1 2130 if (sym.kind == VAR) {
duke@1 2131 VarSymbol v = (VarSymbol)sym;
duke@1 2132
duke@1 2133 // ..., evaluate its initializer, if it has one, and check for
duke@1 2134 // illegal forward reference.
duke@1 2135 checkInit(tree, env, v, false);
duke@1 2136
duke@1 2137 // If symbol is a local variable accessed from an embedded
duke@1 2138 // inner class check that it is final.
duke@1 2139 if (v.owner.kind == MTH &&
duke@1 2140 v.owner != env.info.scope.owner &&
duke@1 2141 (v.flags_field & FINAL) == 0) {
duke@1 2142 log.error(tree.pos(),
duke@1 2143 "local.var.accessed.from.icls.needs.final",
duke@1 2144 v);
duke@1 2145 }
duke@1 2146
duke@1 2147 // If we are expecting a variable (as opposed to a value), check
duke@1 2148 // that the variable is assignable in the current environment.
duke@1 2149 if (pkind == VAR)
duke@1 2150 checkAssignable(tree.pos(), v, null, env);
duke@1 2151 }
duke@1 2152
duke@1 2153 // In a constructor body,
duke@1 2154 // if symbol is a field or instance method, check that it is
duke@1 2155 // not accessed before the supertype constructor is called.
duke@1 2156 if ((symEnv.info.isSelfCall || noOuterThisPath) &&
duke@1 2157 (sym.kind & (VAR | MTH)) != 0 &&
duke@1 2158 sym.owner.kind == TYP &&
duke@1 2159 (sym.flags() & STATIC) == 0) {
duke@1 2160 chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
duke@1 2161 }
duke@1 2162 Env<AttrContext> env1 = env;
mcimadamore@28 2163 if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
duke@1 2164 // If the found symbol is inaccessible, then it is
duke@1 2165 // accessed through an enclosing instance. Locate this
duke@1 2166 // enclosing instance:
duke@1 2167 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
duke@1 2168 env1 = env1.outer;
duke@1 2169 }
duke@1 2170 result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs);
duke@1 2171 }
duke@1 2172
duke@1 2173 public void visitSelect(JCFieldAccess tree) {
duke@1 2174 // Determine the expected kind of the qualifier expression.
duke@1 2175 int skind = 0;
duke@1 2176 if (tree.name == names._this || tree.name == names._super ||
duke@1 2177 tree.name == names._class)
duke@1 2178 {
duke@1 2179 skind = TYP;
duke@1 2180 } else {
duke@1 2181 if ((pkind & PCK) != 0) skind = skind | PCK;
duke@1 2182 if ((pkind & TYP) != 0) skind = skind | TYP | PCK;
duke@1 2183 if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
duke@1 2184 }
duke@1 2185
duke@1 2186 // Attribute the qualifier expression, and determine its symbol (if any).
duke@1 2187 Type site = attribTree(tree.selected, env, skind, Infer.anyPoly);
duke@1 2188 if ((pkind & (PCK | TYP)) == 0)
duke@1 2189 site = capture(site); // Capture field access
duke@1 2190
duke@1 2191 // don't allow T.class T[].class, etc
duke@1 2192 if (skind == TYP) {
duke@1 2193 Type elt = site;
duke@1 2194 while (elt.tag == ARRAY)
duke@1 2195 elt = ((ArrayType)elt).elemtype;
duke@1 2196 if (elt.tag == TYPEVAR) {
duke@1 2197 log.error(tree.pos(), "type.var.cant.be.deref");
jjg@110 2198 result = types.createErrorType(tree.type);
duke@1 2199 return;
duke@1 2200 }
duke@1 2201 }
duke@1 2202
duke@1 2203 // If qualifier symbol is a type or `super', assert `selectSuper'
duke@1 2204 // for the selection. This is relevant for determining whether
duke@1 2205 // protected symbols are accessible.
duke@1 2206 Symbol sitesym = TreeInfo.symbol(tree.selected);
duke@1 2207 boolean selectSuperPrev = env.info.selectSuper;
duke@1 2208 env.info.selectSuper =
duke@1 2209 sitesym != null &&
duke@1 2210 sitesym.name == names._super;
duke@1 2211
duke@1 2212 // If selected expression is polymorphic, strip
duke@1 2213 // type parameters and remember in env.info.tvars, so that
duke@1 2214 // they can be added later (in Attr.checkId and Infer.instantiateMethod).
duke@1 2215 if (tree.selected.type.tag == FORALL) {
duke@1 2216 ForAll pstype = (ForAll)tree.selected.type;
duke@1 2217 env.info.tvars = pstype.tvars;
duke@1 2218 site = tree.selected.type = pstype.qtype;
duke@1 2219 }
duke@1 2220
duke@1 2221 // Determine the symbol represented by the selection.
duke@1 2222 env.info.varArgs = false;
duke@1 2223 Symbol sym = selectSym(tree, site, env, pt, pkind);
duke@1 2224 if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) {
duke@1 2225 site = capture(site);
duke@1 2226 sym = selectSym(tree, site, env, pt, pkind);
duke@1 2227 }
duke@1 2228 boolean varArgs = env.info.varArgs;
duke@1 2229 tree.sym = sym;
duke@1 2230
mcimadamore@27 2231 if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR) {
mcimadamore@27 2232 while (site.tag == TYPEVAR) site = site.getUpperBound();
mcimadamore@27 2233 site = capture(site);
mcimadamore@27 2234 }
duke@1 2235
duke@1 2236 // If that symbol is a variable, ...
duke@1 2237 if (sym.kind == VAR) {
duke@1 2238 VarSymbol v = (VarSymbol)sym;
duke@1 2239
duke@1 2240 // ..., evaluate its initializer, if it has one, and check for
duke@1 2241 // illegal forward reference.
duke@1 2242 checkInit(tree, env, v, true);
duke@1 2243
duke@1 2244 // If we are expecting a variable (as opposed to a value), check
duke@1 2245 // that the variable is assignable in the current environment.
duke@1 2246 if (pkind == VAR)
duke@1 2247 checkAssignable(tree.pos(), v, tree.selected, env);
duke@1 2248 }
duke@1 2249
darcy@609 2250 if (sitesym != null &&
darcy@609 2251 sitesym.kind == VAR &&
darcy@609 2252 ((VarSymbol)sitesym).isResourceVariable() &&
darcy@609 2253 sym.kind == MTH &&
darcy@609 2254 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
darcy@609 2255 env.info.lint.isEnabled(Lint.LintCategory.ARM)) {
darcy@609 2256 log.warning(tree, "twr.explicit.close.call");
darcy@609 2257 }
darcy@609 2258
duke@1 2259 // Disallow selecting a type from an expression
duke@1 2260 if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
duke@1 2261 tree.type = check(tree.selected, pt,
duke@1 2262 sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt);
duke@1 2263 }
duke@1 2264
duke@1 2265 if (isType(sitesym)) {
duke@1 2266 if (sym.name == names._this) {
duke@1 2267 // If `C' is the currently compiled class, check that
duke@1 2268 // C.this' does not appear in a call to a super(...)
duke@1 2269 if (env.info.isSelfCall &&
duke@1 2270 site.tsym == env.enclClass.sym) {
duke@1 2271 chk.earlyRefError(tree.pos(), sym);
duke@1 2272 }
duke@1 2273 } else {
duke@1 2274 // Check if type-qualified fields or methods are static (JLS)
duke@1 2275 if ((sym.flags() & STATIC) == 0 &&
duke@1 2276 sym.name != names._super &&
duke@1 2277 (sym.kind == VAR || sym.kind == MTH)) {
duke@1 2278 rs.access(rs.new StaticError(sym),
duke@1 2279 tree.pos(), site, sym.name, true);
duke@1 2280 }
duke@1 2281 }
jjg@505 2282 } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
jjg@505 2283 // If the qualified item is not a type and the selected item is static, report
jjg@505 2284 // a warning. Make allowance for the class of an array type e.g. Object[].class)
jjg@505 2285 chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
duke@1 2286 }
duke@1 2287
duke@1 2288 // If we are selecting an instance member via a `super', ...
duke@1 2289 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
duke@1 2290
duke@1 2291 // Check that super-qualified symbols are not abstract (JLS)
duke@1 2292 rs.checkNonAbstract(tree.pos(), sym);
duke@1 2293
duke@1 2294 if (site.isRaw()) {
duke@1 2295 // Determine argument types for site.
duke@1 2296 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
duke@1 2297 if (site1 != null) site = site1;
duke@1 2298 }
duke@1 2299 }
duke@1 2300
duke@1 2301 env.info.selectSuper = selectSuperPrev;
duke@1 2302 result = checkId(tree, site, sym, env, pkind, pt, varArgs);
duke@1 2303 env.info.tvars = List.nil();
duke@1 2304 }
duke@1 2305 //where
duke@1 2306 /** Determine symbol referenced by a Select expression,
duke@1 2307 *
duke@1 2308 * @param tree The select tree.
duke@1 2309 * @param site The type of the selected expression,
duke@1 2310 * @param env The current environment.
duke@1 2311 * @param pt The current prototype.
duke@1 2312 * @param pkind The expected kind(s) of the Select expression.
duke@1 2313 */
duke@1 2314 private Symbol selectSym(JCFieldAccess tree,
duke@1 2315 Type site,
duke@1 2316 Env<AttrContext> env,
duke@1 2317 Type pt,
duke@1 2318 int pkind) {
duke@1 2319 DiagnosticPosition pos = tree.pos();
duke@1 2320 Name name = tree.name;
duke@1 2321
duke@1 2322 switch (site.tag) {
duke@1 2323 case PACKAGE:
duke@1 2324 return rs.access(
duke@1 2325 rs.findIdentInPackage(env, site.tsym, name, pkind),
duke@1 2326 pos, site, name, true);
duke@1 2327 case ARRAY:
duke@1 2328 case CLASS:
duke@1 2329 if (pt.tag == METHOD || pt.tag == FORALL) {
duke@1 2330 return rs.resolveQualifiedMethod(
duke@1 2331 pos, env, site, name, pt.getParameterTypes(), pt.getTypeArguments());
duke@1 2332 } else if (name == names._this || name == names._super) {
duke@1 2333 return rs.resolveSelf(pos, env, site.tsym, name);
duke@1 2334 } else if (name == names._class) {
duke@1 2335 // In this case, we have already made sure in
duke@1 2336 // visitSelect that qualifier expression is a type.
duke@1 2337 Type t = syms.classType;
duke@1 2338 List<Type> typeargs = allowGenerics
duke@1 2339 ? List.of(types.erasure(site))
duke@1 2340 : List.<Type>nil();
duke@1 2341 t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
duke@1 2342 return new VarSymbol(
duke@1 2343 STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
duke@1 2344 } else {
duke@1 2345 // We are seeing a plain identifier as selector.
duke@1 2346 Symbol sym = rs.findIdentInType(env, site, name, pkind);
duke@1 2347 if ((pkind & ERRONEOUS) == 0)
duke@1 2348 sym = rs.access(sym, pos, site, name, true);
duke@1 2349 return sym;
duke@1 2350 }
duke@1 2351 case WILDCARD:
duke@1 2352 throw new AssertionError(tree);
duke@1 2353 case TYPEVAR:
duke@1 2354 // Normally, site.getUpperBound() shouldn't be null.
duke@1 2355 // It should only happen during memberEnter/attribBase
duke@1 2356 // when determining the super type which *must* be
duke@1 2357 // done before attributing the type variables. In
duke@1 2358 // other words, we are seeing this illegal program:
duke@1 2359 // class B<T> extends A<T.foo> {}
duke@1 2360 Symbol sym = (site.getUpperBound() != null)
duke@1 2361 ? selectSym(tree, capture(site.getUpperBound()), env, pt, pkind)
duke@1 2362 : null;
mcimadamore@361 2363 if (sym == null) {
duke@1 2364 log.error(pos, "type.var.cant.be.deref");
duke@1 2365 return syms.errSymbol;
duke@1 2366 } else {
mcimadamore@155 2367 Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
mcimadamore@155 2368 rs.new AccessError(env, site, sym) :
mcimadamore@155 2369 sym;
mcimadamore@155 2370 rs.access(sym2, pos, site, name, true);
duke@1 2371 return sym;
duke@1 2372 }
duke@1 2373 case ERROR:
duke@1 2374 // preserve identifier names through errors
jjg@110 2375 return types.createErrorType(name, site.tsym, site).tsym;
duke@1 2376 default:
duke@1 2377 // The qualifier expression is of a primitive type -- only
duke@1 2378 // .class is allowed for these.
duke@1 2379 if (name == names._class) {
duke@1 2380 // In this case, we have already made sure in Select that
duke@1 2381 // qualifier expression is a type.
duke@1 2382 Type t = syms.classType;
duke@1 2383 Type arg = types.boxedClass(site).type;
duke@1 2384 t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
duke@1 2385 return new VarSymbol(
duke@1 2386 STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
duke@1 2387 } else {
duke@1 2388 log.error(pos, "cant.deref", site);
duke@1 2389 return syms.errSymbol;
duke@1 2390 }
duke@1 2391 }
duke@1 2392 }
duke@1 2393
duke@1 2394 /** Determine type of identifier or select expression and check that
duke@1 2395 * (1) the referenced symbol is not deprecated
duke@1 2396 * (2) the symbol's type is safe (@see checkSafe)
duke@1 2397 * (3) if symbol is a variable, check that its type and kind are
duke@1 2398 * compatible with the prototype and protokind.
duke@1 2399 * (4) if symbol is an instance field of a raw type,
duke@1 2400 * which is being assigned to, issue an unchecked warning if its
duke@1 2401 * type changes under erasure.
duke@1 2402 * (5) if symbol is an instance method of a raw type, issue an
duke@1 2403 * unchecked warning if its argument types change under erasure.
duke@1 2404 * If checks succeed:
duke@1 2405 * If symbol is a constant, return its constant type
duke@1 2406 * else if symbol is a method, return its result type
duke@1 2407 * otherwise return its type.
duke@1 2408 * Otherwise return errType.
duke@1 2409 *
duke@1 2410 * @param tree The syntax tree representing the identifier
duke@1 2411 * @param site If this is a select, the type of the selected
duke@1 2412 * expression, otherwise the type of the current class.
duke@1 2413 * @param sym The symbol representing the identifier.
duke@1 2414 * @param env The current environment.
duke@1 2415 * @param pkind The set of expected kinds.
duke@1 2416 * @param pt The expected type.
duke@1 2417 */
duke@1 2418 Type checkId(JCTree tree,
duke@1 2419 Type site,
duke@1 2420 Symbol sym,
duke@1 2421 Env<AttrContext> env,
duke@1 2422 int pkind,
duke@1 2423 Type pt,
duke@1 2424 boolean useVarargs) {
jjg@110 2425 if (pt.isErroneous()) return types.createErrorType(site);
duke@1 2426 Type owntype; // The computed type of this identifier occurrence.
duke@1 2427 switch (sym.kind) {
duke@1 2428 case TYP:
duke@1 2429 // For types, the computed type equals the symbol's type,
duke@1 2430 // except for two situations:
duke@1 2431 owntype = sym.type;
duke@1 2432 if (owntype.tag == CLASS) {
duke@1 2433 Type ownOuter = owntype.getEnclosingType();
duke@1 2434
duke@1 2435 // (a) If the symbol's type is parameterized, erase it
duke@1 2436 // because no type parameters were given.
duke@1 2437 // We recover generic outer type later in visitTypeApply.
duke@1 2438 if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
duke@1 2439 owntype = types.erasure(owntype);
duke@1 2440 }
duke@1 2441
duke@1 2442 // (b) If the symbol's type is an inner class, then
duke@1 2443 // we have to interpret its outer type as a superclass
duke@1 2444 // of the site type. Example:
duke@1 2445 //
duke@1 2446 // class Tree<A> { class Visitor { ... } }
duke@1 2447 // class PointTree extends Tree<Point> { ... }
duke@1 2448 // ...PointTree.Visitor...
duke@1 2449 //
duke@1 2450 // Then the type of the last expression above is
duke@1 2451 // Tree<Point>.Visitor.
duke@1 2452 else if (ownOuter.tag == CLASS && site != ownOuter) {
duke@1 2453 Type normOuter = site;
duke@1 2454 if (normOuter.tag == CLASS)
duke@1 2455 normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
duke@1 2456 if (normOuter == null) // perhaps from an import
duke@1 2457 normOuter = types.erasure(ownOuter);
duke@1 2458 if (normOuter != ownOuter)
duke@1 2459 owntype = new ClassType(
duke@1 2460 normOuter, List.<Type>nil(), owntype.tsym);
duke@1 2461 }
duke@1 2462 }
duke@1 2463 break;
duke@1 2464 case VAR:
duke@1 2465 VarSymbol v = (VarSymbol)sym;
duke@1 2466 // Test (4): if symbol is an instance field of a raw type,
duke@1 2467 // which is being assigned to, issue an unchecked warning if
duke@1 2468 // its type changes under erasure.
duke@1 2469 if (allowGenerics &&
duke@1 2470 pkind == VAR &&
duke@1 2471 v.owner.kind == TYP &&
duke@1 2472 (v.flags() & STATIC) == 0 &&
duke@1 2473 (site.tag == CLASS || site.tag == TYPEVAR)) {
duke@1 2474 Type s = types.asOuterSuper(site, v.owner);
duke@1 2475 if (s != null &&
duke@1 2476 s.isRaw() &&
duke@1 2477 !types.isSameType(v.type, v.erasure(types))) {
duke@1 2478 chk.warnUnchecked(tree.pos(),
duke@1 2479 "unchecked.assign.to.var",
duke@1 2480 v, s);
duke@1 2481 }
duke@1 2482 }
duke@1 2483 // The computed type of a variable is the type of the
duke@1 2484 // variable symbol, taken as a member of the site type.
duke@1 2485 owntype = (sym.owner.kind == TYP &&
duke@1 2486 sym.name != names._this && sym.name != names._super)
duke@1 2487 ? types.memberType(site, sym)
duke@1 2488 : sym.type;
duke@1 2489
duke@1 2490 if (env.info.tvars.nonEmpty()) {
duke@1 2491 Type owntype1 = new ForAll(env.info.tvars, owntype);
duke@1 2492 for (List<Type> l = env.info.tvars; l.nonEmpty(); l = l.tail)
duke@1 2493 if (!owntype.contains(l.head)) {
duke@1 2494 log.error(tree.pos(), "undetermined.type", owntype1);
jjg@110 2495 owntype1 = types.createErrorType(owntype1);
duke@1 2496 }
duke@1 2497 owntype = owntype1;
duke@1 2498 }
duke@1 2499
duke@1 2500 // If the variable is a constant, record constant value in
duke@1 2501 // computed type.
duke@1 2502 if (v.getConstValue() != null && isStaticReference(tree))
duke@1 2503 owntype = owntype.constType(v.getConstValue());
duke@1 2504
duke@1 2505 if (pkind == VAL) {
duke@1 2506 owntype = capture(owntype); // capture "names as expressions"
duke@1 2507 }
duke@1 2508 break;
duke@1 2509 case MTH: {
duke@1 2510 JCMethodInvocation app = (JCMethodInvocation)env.tree;
duke@1 2511 owntype = checkMethod(site, sym, env, app.args,
duke@1 2512 pt.getParameterTypes(), pt.getTypeArguments(),
duke@1 2513 env.info.varArgs);
duke@1 2514 break;
duke@1 2515 }
duke@1 2516 case PCK: case ERR:
duke@1 2517 owntype = sym.type;
duke@1 2518 break;
duke@1 2519 default:
duke@1 2520 throw new AssertionError("unexpected kind: " + sym.kind +
duke@1 2521 " in tree " + tree);
duke@1 2522 }
duke@1 2523
duke@1 2524 // Test (1): emit a `deprecation' warning if symbol is deprecated.
duke@1 2525 // (for constructors, the error was given when the constructor was
duke@1 2526 // resolved)
duke@1 2527 if (sym.name != names.init &&
duke@1 2528 (sym.flags() & DEPRECATED) != 0 &&
duke@1 2529 (env.info.scope.owner.flags() & DEPRECATED) == 0 &&
duke@1 2530 sym.outermostClass() != env.info.scope.owner.outermostClass())
duke@1 2531 chk.warnDeprecated(tree.pos(), sym);
duke@1 2532
jjg@377 2533 if ((sym.flags() & PROPRIETARY) != 0) {
jjg@377 2534 if (enableSunApiLintControl)
jjg@377 2535 chk.warnSunApi(tree.pos(), "sun.proprietary", sym);
jjg@377 2536 else
jjg@377 2537 log.strictWarning(tree.pos(), "sun.proprietary", sym);
jjg@377 2538 }
duke@1 2539
duke@1 2540 // Test (3): if symbol is a variable, check that its type and
duke@1 2541 // kind are compatible with the prototype and protokind.
duke@1 2542 return check(tree, owntype, sym.kind, pkind, pt);
duke@1 2543 }
duke@1 2544
duke@1 2545 /** Check that variable is initialized and evaluate the variable's
duke@1 2546 * initializer, if not yet done. Also check that variable is not
duke@1 2547 * referenced before it is defined.
duke@1 2548 * @param tree The tree making up the variable reference.
duke@1 2549 * @param env The current environment.
duke@1 2550 * @param v The variable's symbol.
duke@1 2551 */
duke@1 2552 private void checkInit(JCTree tree,
duke@1 2553 Env<AttrContext> env,
duke@1 2554 VarSymbol v,
duke@1 2555 boolean onlyWarning) {
duke@1 2556 // System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
duke@1 2557 // tree.pos + " " + v.pos + " " +
duke@1 2558 // Resolve.isStatic(env));//DEBUG
duke@1 2559
duke@1 2560 // A forward reference is diagnosed if the declaration position
duke@1 2561 // of the variable is greater than the current tree position
duke@1 2562 // and the tree and variable definition occur in the same class
duke@1 2563 // definition. Note that writes don't count as references.
duke@1 2564 // This check applies only to class and instance
duke@1 2565 // variables. Local variables follow different scope rules,
duke@1 2566 // and are subject to definite assignment checking.
mcimadamore@94 2567 if ((env.info.enclVar == v || v.pos > tree.pos) &&
duke@1 2568 v.owner.kind == TYP &&
duke@1 2569 canOwnInitializer(env.info.scope.owner) &&
duke@1 2570 v.owner == env.info.scope.owner.enclClass() &&
duke@1 2571 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
duke@1 2572 (env.tree.getTag() != JCTree.ASSIGN ||
duke@1 2573 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
mcimadamore@94 2574 String suffix = (env.info.enclVar == v) ?
mcimadamore@94 2575 "self.ref" : "forward.ref";
mcimadamore@18 2576 if (!onlyWarning || isStaticEnumField(v)) {
mcimadamore@94 2577 log.error(tree.pos(), "illegal." + suffix);
duke@1 2578 } else if (useBeforeDeclarationWarning) {
mcimadamore@94 2579 log.warning(tree.pos(), suffix, v);
duke@1 2580 }
duke@1 2581 }
duke@1 2582
duke@1 2583 v.getConstValue(); // ensure initializer is evaluated
duke@1 2584
duke@1 2585 checkEnumInitializer(tree, env, v);
duke@1 2586 }
duke@1 2587
duke@1 2588 /**
duke@1 2589 * Check for illegal references to static members of enum. In
duke@1 2590 * an enum type, constructors and initializers may not
duke@1 2591 * reference its static members unless they are constant.
duke@1 2592 *
duke@1 2593 * @param tree The tree making up the variable reference.
duke@1 2594 * @param env The current environment.
duke@1 2595 * @param v The variable's symbol.
duke@1 2596 * @see JLS 3rd Ed. (8.9 Enums)
duke@1 2597 */
duke@1 2598 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
duke@1 2599 // JLS 3rd Ed.:
duke@1 2600 //
duke@1 2601 // "It is a compile-time error to reference a static field
duke@1 2602 // of an enum type that is not a compile-time constant
duke@1 2603 // (15.28) from constructors, instance initializer blocks,
duke@1 2604 // or instance variable initializer expressions of that
duke@1 2605 // type. It is a compile-time error for the constructors,
duke@1 2606 // instance initializer blocks, or instance variable
duke@1 2607 // initializer expressions of an enum constant e to refer
duke@1 2608 // to itself or to an enum constant of the same type that
duke@1 2609 // is declared to the right of e."
mcimadamore@18 2610 if (isStaticEnumField(v)) {
duke@1 2611 ClassSymbol enclClass = env.info.scope.owner.enclClass();
duke@1 2612
duke@1 2613 if (enclClass == null || enclClass.owner == null)
duke@1 2614 return;
duke@1 2615
duke@1 2616 // See if the enclosing class is the enum (or a
duke@1 2617 // subclass thereof) declaring v. If not, this
duke@1 2618 // reference is OK.
duke@1 2619 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
duke@1 2620 return;
duke@1 2621
duke@1 2622 // If the reference isn't from an initializer, then
duke@1 2623 // the reference is OK.
duke@1 2624 if (!Resolve.isInitializer(env))
duke@1 2625 return;
duke@1 2626
duke@1 2627 log.error(tree.pos(), "illegal.enum.static.ref");
duke@1 2628 }
duke@1 2629 }
duke@1 2630
mcimadamore@18 2631 /** Is the given symbol a static, non-constant field of an Enum?
mcimadamore@18 2632 * Note: enum literals should not be regarded as such
mcimadamore@18 2633 */
mcimadamore@18 2634 private boolean isStaticEnumField(VarSymbol v) {
mcimadamore@18 2635 return Flags.isEnum(v.owner) &&
mcimadamore@18 2636 Flags.isStatic(v) &&
mcimadamore@18 2637 !Flags.isConstant(v) &&
mcimadamore@18 2638 v.name != names._class;
duke@1 2639 }
duke@1 2640
duke@1 2641 /** Can the given symbol be the owner of code which forms part
duke@1 2642 * if class initialization? This is the case if the symbol is
duke@1 2643 * a type or field, or if the symbol is the synthetic method.
duke@1 2644 * owning a block.
duke@1 2645 */
duke@1 2646 private boolean canOwnInitializer(Symbol sym) {
duke@1 2647 return
duke@1 2648 (sym.kind & (VAR | TYP)) != 0 ||
duke@1 2649 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
duke@1 2650 }
duke@1 2651
duke@1 2652 Warner noteWarner = new Warner();
duke@1 2653
duke@1 2654 /**
duke@1 2655 * Check that method arguments conform to its instantation.
duke@1 2656 **/
duke@1 2657 public Type checkMethod(Type site,
duke@1 2658 Symbol sym,
duke@1 2659 Env<AttrContext> env,
duke@1 2660 final List<JCExpression> argtrees,
duke@1 2661 List<Type> argtypes,
duke@1 2662 List<Type> typeargtypes,
duke@1 2663 boolean useVarargs) {
duke@1 2664 // Test (5): if symbol is an instance method of a raw type, issue
duke@1 2665 // an unchecked warning if its argument types change under erasure.
duke@1 2666 if (allowGenerics &&
duke@1 2667 (sym.flags() & STATIC) == 0 &&
duke@1 2668 (site.tag == CLASS || site.tag == TYPEVAR)) {
duke@1 2669 Type s = types.asOuterSuper(site, sym.owner);
duke@1 2670 if (s != null && s.isRaw() &&
duke@1 2671 !types.isSameTypes(sym.type.getParameterTypes(),
duke@1 2672 sym.erasure(types).getParameterTypes())) {
duke@1 2673 chk.warnUnchecked(env.tree.pos(),
duke@1 2674 "unchecked.call.mbr.of.raw.type",
duke@1 2675 sym, s);
duke@1 2676 }
duke@1 2677 }
duke@1 2678
duke@1 2679 // Compute the identifier's instantiated type.
duke@1 2680 // For methods, we need to compute the instance type by
duke@1 2681 // Resolve.instantiate from the symbol's type as well as
duke@1 2682 // any type arguments and value arguments.
duke@1 2683 noteWarner.warned = false;
duke@1 2684 Type owntype = rs.instantiate(env,
duke@1 2685 site,
duke@1 2686 sym,
duke@1 2687 argtypes,
duke@1 2688 typeargtypes,
duke@1 2689 true,
duke@1 2690 useVarargs,
duke@1 2691 noteWarner);
duke@1 2692 boolean warned = noteWarner.warned;
duke@1 2693
duke@1 2694 // If this fails, something went wrong; we should not have
duke@1 2695 // found the identifier in the first place.
duke@1 2696 if (owntype == null) {
duke@1 2697 if (!pt.isErroneous())
duke@1 2698 log.error(env.tree.pos(),
duke@1 2699 "internal.error.cant.instantiate",
duke@1 2700 sym, site,
duke@1 2701 Type.toString(pt.getParameterTypes()));
jjg@110 2702 owntype = types.createErrorType(site);
duke@1 2703 } else {
duke@1 2704 // System.out.println("call : " + env.tree);
duke@1 2705 // System.out.println("method : " + owntype);
duke@1 2706 // System.out.println("actuals: " + argtypes);
duke@1 2707 List<Type> formals = owntype.getParameterTypes();
duke@1 2708 Type last = useVarargs ? formals.last() : null;
duke@1 2709 if (sym.name==names.init &&
duke@1 2710 sym.owner == syms.enumSym)
duke@1 2711 formals = formals.tail.tail;
duke@1 2712 List<JCExpression> args = argtrees;
duke@1 2713 while (formals.head != last) {
duke@1 2714 JCTree arg = args.head;
duke@1 2715 Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head);
duke@1 2716 assertConvertible(arg, arg.type, formals.head, warn);
duke@1 2717 warned |= warn.warned;
duke@1 2718 args = args.tail;
duke@1 2719 formals = formals.tail;
duke@1 2720 }
duke@1 2721 if (useVarargs) {
duke@1 2722 Type varArg = types.elemtype(last);
duke@1 2723 while (args.tail != null) {
duke@1 2724 JCTree arg = args.head;
duke@1 2725 Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg);
duke@1 2726 assertConvertible(arg, arg.type, varArg, warn);
duke@1 2727 warned |= warn.warned;
duke@1 2728 args = args.tail;
duke@1 2729 }
duke@1 2730 } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
duke@1 2731 // non-varargs call to varargs method
duke@1 2732 Type varParam = owntype.getParameterTypes().last();
duke@1 2733 Type lastArg = argtypes.last();
duke@1 2734 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
duke@1 2735 !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
duke@1 2736 log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
duke@1 2737 types.elemtype(varParam),
duke@1 2738 varParam);
duke@1 2739 }
duke@1 2740
duke@1 2741 if (warned && sym.type.tag == FORALL) {
duke@1 2742 chk.warnUnchecked(env.tree.pos(),
duke@1 2743 "unchecked.meth.invocation.applied",
mcimadamore@161 2744 kindName(sym),
mcimadamore@161 2745 sym.name,
mcimadamore@161 2746 rs.methodArguments(sym.type.getParameterTypes()),
mcimadamore@161 2747 rs.methodArguments(argtypes),
mcimadamore@161 2748 kindName(sym.location()),
mcimadamore@161 2749 sym.location());
duke@1 2750 owntype = new MethodType(owntype.getParameterTypes(),
duke@1 2751 types.erasure(owntype.getReturnType()),
duke@1 2752 owntype.getThrownTypes(),
duke@1 2753 syms.methodClass);
duke@1 2754 }
duke@1 2755 if (useVarargs) {
duke@1 2756 JCTree tree = env.tree;
mcimadamore@580 2757 Type argtype = owntype.getParameterTypes().last();
mcimadamore@547 2758 if (owntype.getReturnType().tag != FORALL || warned) {
mcimadamore@580 2759 chk.checkVararg(env.tree.pos(), owntype.getParameterTypes(), sym, env);
mcimadamore@547 2760 }
mcimadamore@580 2761 Type elemtype = types.elemtype(argtype);
duke@1 2762 switch (tree.getTag()) {
duke@1 2763 case JCTree.APPLY:
duke@1 2764 ((JCMethodInvocation) tree).varargsElement = elemtype;
duke@1 2765 break;
duke@1 2766 case JCTree.NEWCLASS:
duke@1 2767 ((JCNewClass) tree).varargsElement = elemtype;
duke@1 2768 break;
duke@1 2769 default:
duke@1 2770 throw new AssertionError(""+tree);
duke@1 2771 }
duke@1 2772 }
duke@1 2773 }
duke@1 2774 return owntype;
duke@1 2775 }
duke@1 2776
duke@1 2777 private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
duke@1 2778 if (types.isConvertible(actual, formal, warn))
duke@1 2779 return;
duke@1 2780
duke@1 2781 if (formal.isCompound()
duke@1 2782 && types.isSubtype(actual, types.supertype(formal))
duke@1 2783 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
duke@1 2784 return;
duke@1 2785
duke@1 2786 if (false) {
duke@1 2787 // TODO: make assertConvertible work
mcimadamore@89 2788 chk.typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal);
duke@1 2789 throw new AssertionError("Tree: " + tree
duke@1 2790 + " actual:" + actual
duke@1 2791 + " formal: " + formal);
duke@1 2792 }
duke@1 2793 }
duke@1 2794
duke@1 2795 public void visitLiteral(JCLiteral tree) {
duke@1 2796 result = check(
duke@1 2797 tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt);
duke@1 2798 }
duke@1 2799 //where
duke@1 2800 /** Return the type of a literal with given type tag.
duke@1 2801 */
duke@1 2802 Type litType(int tag) {
duke@1 2803 return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
duke@1 2804 }
duke@1 2805
duke@1 2806 public void visitTypeIdent(JCPrimitiveTypeTree tree) {
duke@1 2807 result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt);
duke@1 2808 }
duke@1 2809
duke@1 2810 public void visitTypeArray(JCArrayTypeTree tree) {
duke@1 2811 Type etype = attribType(tree.elemtype, env);
duke@1 2812 Type type = new ArrayType(etype, syms.arrayClass);
duke@1 2813 result = check(tree, type, TYP, pkind, pt);
duke@1 2814 }
duke@1 2815
duke@1 2816 /** Visitor method for parameterized types.
duke@1 2817 * Bound checking is left until later, since types are attributed
duke@1 2818 * before supertype structure is completely known
duke@1 2819 */
duke@1 2820 public void visitTypeApply(JCTypeApply tree) {
jjg@110 2821 Type owntype = types.createErrorType(tree.type);
duke@1 2822
duke@1 2823 // Attribute functor part of application and make sure it's a class.
duke@1 2824 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
duke@1 2825
duke@1 2826 // Attribute type parameters
duke@1 2827 List<Type> actuals = attribTypes(tree.arguments, env);
duke@1 2828
duke@1 2829 if (clazztype.tag == CLASS) {
duke@1 2830 List<Type> formals = clazztype.tsym.type.getTypeArguments();
duke@1 2831
mcimadamore@537 2832 if (actuals.length() == formals.length() || actuals.length() == 0) {
duke@1 2833 List<Type> a = actuals;
duke@1 2834 List<Type> f = formals;
duke@1 2835 while (a.nonEmpty()) {
duke@1 2836 a.head = a.head.withTypeVar(f.head);
duke@1 2837 a = a.tail;
duke@1 2838 f = f.tail;
duke@1 2839 }
duke@1 2840 // Compute the proper generic outer
duke@1 2841 Type clazzOuter = clazztype.getEnclosingType();
duke@1 2842 if (clazzOuter.tag == CLASS) {
duke@1 2843 Type site;
jjg@308 2844 JCExpression clazz = TreeInfo.typeIn(tree.clazz);
jjg@308 2845 if (clazz.getTag() == JCTree.IDENT) {
duke@1 2846 site = env.enclClass.sym.type;
jjg@308 2847 } else if (clazz.getTag() == JCTree.SELECT) {
jjg@308 2848 site = ((JCFieldAccess) clazz).selected.type;
duke@1 2849 } else throw new AssertionError(""+tree);
duke@1 2850 if (clazzOuter.tag == CLASS && site != clazzOuter) {
duke@1 2851 if (site.tag == CLASS)
duke@1 2852 site = types.asOuterSuper(site, clazzOuter.tsym);
duke@1 2853 if (site == null)
duke@1 2854 site = types.erasure(clazzOuter);
duke@1 2855 clazzOuter = site;
duke@1 2856 }
duke@1 2857 }
mcimadamore@536 2858 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
duke@1 2859 } else {
duke@1 2860 if (formals.length() != 0) {
duke@1 2861 log.error(tree.pos(), "wrong.number.type.args",
duke@1 2862 Integer.toString(formals.length()));
duke@1 2863 } else {
duke@1 2864 log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
duke@1 2865 }
jjg@110 2866 owntype = types.createErrorType(tree.type);
duke@1 2867 }
duke@1 2868 }
duke@1 2869 result = check(tree, owntype, TYP, pkind, pt);
duke@1 2870 }
duke@1 2871
jjg@724 2872 public void visitTypeDisjunction(JCTypeDisjunction tree) {
jjg@724 2873 List<Type> alternatives = attribTypes(tree.alternatives, env);
jjg@724 2874 tree.type = result = check(tree, types.lub(alternatives), TYP, pkind, pt);
mcimadamore@550 2875 }
mcimadamore@550 2876
duke@1 2877 public void visitTypeParameter(JCTypeParameter tree) {
duke@1 2878 TypeVar a = (TypeVar)tree.type;
duke@1 2879 Set<Type> boundSet = new HashSet<Type>();
duke@1 2880 if (a.bound.isErroneous())
duke@1 2881 return;
duke@1 2882 List<Type> bs = types.getBounds(a);
duke@1 2883 if (tree.bounds.nonEmpty()) {
duke@1 2884 // accept class or interface or typevar as first bound.
duke@1 2885 Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
duke@1 2886 boundSet.add(types.erasure(b));
mcimadamore@159 2887 if (b.isErroneous()) {
mcimadamore@159 2888 a.bound = b;
mcimadamore@159 2889 }
mcimadamore@159 2890 else if (b.tag == TYPEVAR) {
duke@1 2891 // if first bound was a typevar, do not accept further bounds.
duke@1 2892 if (tree.bounds.tail.nonEmpty()) {
duke@1 2893 log.error(tree.bounds.tail.head.pos(),
duke@1 2894 "type.var.may.not.be.followed.by.other.bounds");
duke@1 2895 tree.bounds = List.of(tree.bounds.head);
mcimadamore@7 2896 a.bound = bs.head;
duke@1 2897 }
duke@1 2898 } else {
duke@1 2899 // if first bound was a class or interface, accept only interfaces
duke@1 2900 // as further bounds.
duke@1 2901 for (JCExpression bound : tree.bounds.tail) {
duke@1 2902 bs = bs.tail;
duke@1 2903 Type i = checkBase(bs.head, bound, env, false, true, false);
mcimadamore@159 2904 if (i.isErroneous())
mcimadamore@159 2905 a.bound = i;
mcimadamore@159 2906 else if (i.tag == CLASS)
duke@1 2907 chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
duke@1 2908 }
duke@1 2909 }
duke@1 2910 }
duke@1 2911 bs = types.getBounds(a);
duke@1 2912
duke@1 2913 // in case of multiple bounds ...
duke@1 2914 if (bs.length() > 1) {
duke@1 2915 // ... the variable's bound is a class type flagged COMPOUND
duke@1 2916 // (see comment for TypeVar.bound).
duke@1 2917 // In this case, generate a class tree that represents the
duke@1 2918 // bound class, ...
duke@1 2919 JCTree extending;
duke@1 2920 List<JCExpression> implementing;
duke@1 2921 if ((bs.head.tsym.flags() & INTERFACE) == 0) {
duke@1 2922 extending = tree.bounds.head;
duke@1 2923 implementing = tree.bounds.tail;
duke@1 2924 } else {
duke@1 2925 extending = null;
duke@1 2926 implementing = tree.bounds;
duke@1 2927 }
duke@1 2928 JCClassDecl cd = make.at(tree.pos).ClassDef(
duke@1 2929 make.Modifiers(PUBLIC | ABSTRACT),
duke@1 2930 tree.name, List.<JCTypeParameter>nil(),
duke@1 2931 extending, implementing, List.<JCTree>nil());
duke@1 2932
duke@1 2933 ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
duke@1 2934 assert (c.flags() & COMPOUND) != 0;
duke@1 2935 cd.sym = c;
duke@1 2936 c.sourcefile = env.toplevel.sourcefile;
duke@1 2937
duke@1 2938 // ... and attribute the bound class
duke@1 2939 c.flags_field |= UNATTRIBUTED;
duke@1 2940 Env<AttrContext> cenv = enter.classEnv(cd, env);
duke@1 2941 enter.typeEnvs.put(c, cenv);
duke@1 2942 }
duke@1 2943 }
duke@1 2944
duke@1 2945
duke@1 2946 public void visitWildcard(JCWildcard tree) {
duke@1 2947 //- System.err.println("visitWildcard("+tree+");");//DEBUG
duke@1 2948 Type type = (tree.kind.kind == BoundKind.UNBOUND)
duke@1 2949 ? syms.objectType
duke@1 2950 : attribType(tree.inner, env);
duke@1 2951 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
duke@1 2952 tree.kind.kind,
duke@1 2953 syms.boundClass),
duke@1 2954 TYP, pkind, pt);
duke@1 2955 }
duke@1 2956
duke@1 2957 public void visitAnnotation(JCAnnotation tree) {
duke@1 2958 log.error(tree.pos(), "annotation.not.valid.for.type", pt);
duke@1 2959 result = tree.type = syms.errType;
duke@1 2960 }
duke@1 2961
jjg@308 2962 public void visitAnnotatedType(JCAnnotatedType tree) {
jjg@308 2963 result = tree.type = attribType(tree.getUnderlyingType(), env);
jjg@308 2964 }
jjg@308 2965
duke@1 2966 public void visitErroneous(JCErroneous tree) {
duke@1 2967 if (tree.errs != null)
duke@1 2968 for (JCTree err : tree.errs)
duke@1 2969 attribTree(err, env, ERR, pt);
duke@1 2970 result = tree.type = syms.errType;
duke@1 2971 }
duke@1 2972
duke@1 2973 /** Default visitor method for all other trees.
duke@1 2974 */
duke@1 2975 public void visitTree(JCTree tree) {
duke@1 2976 throw new AssertionError();
duke@1 2977 }
duke@1 2978
duke@1 2979 /** Main method: attribute class definition associated with given class symbol.
duke@1 2980 * reporting completion failures at the given position.
duke@1 2981 * @param pos The source position at which completion errors are to be
duke@1 2982 * reported.
duke@1 2983 * @param c The class symbol whose definition will be attributed.
duke@1 2984 */
duke@1 2985 public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
duke@1 2986 try {
duke@1 2987 annotate.flush();
duke@1 2988 attribClass(c);
duke@1 2989 } catch (CompletionFailure ex) {
duke@1 2990 chk.completionError(pos, ex);
duke@1 2991 }
duke@1 2992 }
duke@1 2993
duke@1 2994 /** Attribute class definition associated with given class symbol.
duke@1 2995 * @param c The class symbol whose definition will be attributed.
duke@1 2996 */
duke@1 2997 void attribClass(ClassSymbol c) throws CompletionFailure {
duke@1 2998 if (c.type.tag == ERROR) return;
duke@1 2999
duke@1 3000 // Check for cycles in the inheritance graph, which can arise from
duke@1 3001 // ill-formed class files.
duke@1 3002 chk.checkNonCyclic(null, c.type);
duke@1 3003
duke@1 3004 Type st = types.supertype(c.type);
duke@1 3005 if ((c.flags_field & Flags.COMPOUND) == 0) {
duke@1 3006 // First, attribute superclass.
duke@1 3007 if (st.tag == CLASS)
duke@1 3008 attribClass((ClassSymbol)st.tsym);
duke@1 3009
duke@1 3010 // Next attribute owner, if it is a class.
duke@1 3011 if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
duke@1 3012 attribClass((ClassSymbol)c.owner);
duke@1 3013 }
duke@1 3014
duke@1 3015 // The previous operations might have attributed the current class
duke@1 3016 // if there was a cycle. So we test first whether the class is still
duke@1 3017 // UNATTRIBUTED.
duke@1 3018 if ((c.flags_field & UNATTRIBUTED) != 0) {
duke@1 3019 c.flags_field &= ~UNATTRIBUTED;
duke@1 3020
duke@1 3021 // Get environment current at the point of class definition.
duke@1 3022 Env<AttrContext> env = enter.typeEnvs.get(c);
duke@1 3023
duke@1 3024 // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
duke@1 3025 // because the annotations were not available at the time the env was created. Therefore,
duke@1 3026 // we look up the environment chain for the first enclosing environment for which the
duke@1 3027 // lint value is set. Typically, this is the parent env, but might be further if there
duke@1 3028 // are any envs created as a result of TypeParameter nodes.
duke@1 3029 Env<AttrContext> lintEnv = env;
duke@1 3030 while (lintEnv.info.lint == null)
duke@1 3031 lintEnv = lintEnv.next;
duke@1 3032
duke@1 3033 // Having found the enclosing lint value, we can initialize the lint value for this class
duke@1 3034 env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags());
duke@1 3035
duke@1 3036 Lint prevLint = chk.setLint(env.info.lint);
duke@1 3037 JavaFileObject prev = log.useSource(c.sourcefile);
duke@1 3038
duke@1 3039 try {
duke@1 3040 // java.lang.Enum may not be subclassed by a non-enum
duke@1 3041 if (st.tsym == syms.enumSym &&
duke@1 3042 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
duke@1 3043 log.error(env.tree.pos(), "enum.no.subclassing");
duke@1 3044
duke@1 3045 // Enums may not be extended by source-level classes
duke@1 3046 if (st.tsym != null &&
duke@1 3047 ((st.tsym.flags_field & Flags.ENUM) != 0) &&
mcimadamore@82 3048 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
duke@1 3049 !target.compilerBootstrap(c)) {
duke@1 3050 log.error(env.tree.pos(), "enum.types.not.extensible");
duke@1 3051 }
duke@1 3052 attribClassBody(env, c);
duke@1 3053
duke@1 3054 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
duke@1 3055 } finally {
duke@1 3056 log.useSource(prev);
duke@1 3057 chk.setLint(prevLint);
duke@1 3058 }
duke@1 3059
duke@1 3060 }
duke@1 3061 }
duke@1 3062
duke@1 3063 public void visitImport(JCImport tree) {
duke@1 3064 // nothing to do
duke@1 3065 }
duke@1 3066
duke@1 3067 /** Finish the attribution of a class. */
duke@1 3068 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
duke@1 3069 JCClassDecl tree = (JCClassDecl)env.tree;
duke@1 3070 assert c == tree.sym;
duke@1 3071
duke@1 3072 // Validate annotations
duke@1 3073 chk.validateAnnotations(tree.mods.annotations, c);
duke@1 3074
duke@1 3075 // Validate type parameters, supertype and interfaces.
mcimadamore@42 3076 attribBounds(tree.typarams);
mcimadamore@537 3077 if (!c.isAnonymous()) {
mcimadamore@537 3078 //already checked if anonymous
mcimadamore@537 3079 chk.validate(tree.typarams, env);
mcimadamore@537 3080 chk.validate(tree.extending, env);
mcimadamore@537 3081 chk.validate(tree.implementing, env);
mcimadamore@537 3082 }
duke@1 3083
duke@1 3084 // If this is a non-abstract class, check that it has no abstract
duke@1 3085 // methods or unimplemented methods of an implemented interface.
duke@1 3086 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
duke@1 3087 if (!relax)
duke@1 3088 chk.checkAllDefined(tree.pos(), c);
duke@1 3089 }
duke@1 3090
duke@1 3091 if ((c.flags() & ANNOTATION) != 0) {
duke@1 3092 if (tree.implementing.nonEmpty())
duke@1 3093 log.error(tree.implementing.head.pos(),
duke@1 3094 "cant.extend.intf.annotation");
duke@1 3095 if (tree.typarams.nonEmpty())
duke@1 3096 log.error(tree.typarams.head.pos(),
duke@1 3097 "intf.annotation.cant.have.type.params");
duke@1 3098 } else {
duke@1 3099 // Check that all extended classes and interfaces
duke@1 3100 // are compatible (i.e. no two define methods with same arguments
duke@1 3101 // yet different return types). (JLS 8.4.6.3)
duke@1 3102 chk.checkCompatibleSupertypes(tree.pos(), c.type);
duke@1 3103 }
duke@1 3104
duke@1 3105 // Check that class does not import the same parameterized interface
duke@1 3106 // with two different argument lists.
duke@1 3107 chk.checkClassBounds(tree.pos(), c.type);
duke@1 3108
duke@1 3109 tree.type = c.type;
duke@1 3110
duke@1 3111 boolean assertsEnabled = false;
duke@1 3112 assert assertsEnabled = true;
duke@1 3113 if (assertsEnabled) {
duke@1 3114 for (List<JCTypeParameter> l = tree.typarams;
duke@1 3115 l.nonEmpty(); l = l.tail)
duke@1 3116 assert env.info.scope.lookup(l.head.name).scope != null;
duke@1 3117 }
duke@1 3118
duke@1 3119 // Check that a generic class doesn't extend Throwable
duke@1 3120 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
duke@1 3121 log.error(tree.extending.pos(), "generic.throwable");
duke@1 3122
duke@1 3123 // Check that all methods which implement some
duke@1 3124 // method conform to the method they implement.
duke@1 3125 chk.checkImplementations(tree);
duke@1 3126
duke@1 3127 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 3128 // Attribute declaration
duke@1 3129 attribStat(l.head, env);
duke@1 3130 // Check that declarations in inner classes are not static (JLS 8.1.2)
duke@1 3131 // Make an exception for static constants.
duke@1 3132 if (c.owner.kind != PCK &&
duke@1 3133 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
duke@1 3134 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
duke@1 3135 Symbol sym = null;
duke@1 3136 if (l.head.getTag() == JCTree.VARDEF) sym = ((JCVariableDecl) l.head).sym;
duke@1 3137 if (sym == null ||
duke@1 3138 sym.kind != VAR ||
duke@1 3139 ((VarSymbol) sym).getConstValue() == null)
duke@1 3140 log.error(l.head.pos(), "icls.cant.have.static.decl");
duke@1 3141 }
duke@1 3142 }
duke@1 3143
duke@1 3144 // Check for cycles among non-initial constructors.
duke@1 3145 chk.checkCyclicConstructors(tree);
duke@1 3146
duke@1 3147 // Check for cycles among annotation elements.
duke@1 3148 chk.checkNonCyclicElements(tree);
duke@1 3149
duke@1 3150 // Check for proper use of serialVersionUID
duke@1 3151 if (env.info.lint.isEnabled(Lint.LintCategory.SERIAL) &&
duke@1 3152 isSerializable(c) &&
duke@1 3153 (c.flags() & Flags.ENUM) == 0 &&
duke@1 3154 (c.flags() & ABSTRACT) == 0) {
duke@1 3155 checkSerialVersionUID(tree, c);
duke@1 3156 }
jjg@308 3157
jjg@308 3158 // Check type annotations applicability rules
jjg@308 3159 validateTypeAnnotations(tree);
duke@1 3160 }
duke@1 3161 // where
duke@1 3162 /** check if a class is a subtype of Serializable, if that is available. */
duke@1 3163 private boolean isSerializable(ClassSymbol c) {
duke@1 3164 try {
duke@1 3165 syms.serializableType.complete();
duke@1 3166 }
duke@1 3167 catch (CompletionFailure e) {
duke@1 3168 return false;
duke@1 3169 }
duke@1 3170 return types.isSubtype(c.type, syms.serializableType);
duke@1 3171 }
duke@1 3172
duke@1 3173 /** Check that an appropriate serialVersionUID member is defined. */
duke@1 3174 private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
duke@1 3175
duke@1 3176 // check for presence of serialVersionUID
duke@1 3177 Scope.Entry e = c.members().lookup(names.serialVersionUID);
duke@1 3178 while (e.scope != null && e.sym.kind != VAR) e = e.next();
duke@1 3179 if (e.scope == null) {
jjg@612 3180 log.warning(Lint.LintCategory.SERIAL,
jjg@612 3181 tree.pos(), "missing.SVUID", c);
duke@1 3182 return;
duke@1 3183 }
duke@1 3184
duke@1 3185 // check that it is static final
duke@1 3186 VarSymbol svuid = (VarSymbol)e.sym;
duke@1 3187 if ((svuid.flags() & (STATIC | FINAL)) !=
duke@1 3188 (STATIC | FINAL))
jjg@612 3189 log.warning(Lint.LintCategory.SERIAL,
jjg@612 3190 TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
duke@1 3191
duke@1 3192 // check that it is long
duke@1 3193 else if (svuid.type.tag != TypeTags.LONG)
jjg@612 3194 log.warning(Lint.LintCategory.SERIAL,
jjg@612 3195 TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
duke@1 3196
duke@1 3197 // check constant
duke@1 3198 else if (svuid.getConstValue() == null)
jjg@612 3199 log.warning(Lint.LintCategory.SERIAL,
jjg@612 3200 TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
duke@1 3201 }
duke@1 3202
duke@1 3203 private Type capture(Type type) {
duke@1 3204 return types.capture(type);
duke@1 3205 }
jjg@308 3206
jjg@308 3207 private void validateTypeAnnotations(JCTree tree) {
jjg@308 3208 tree.accept(typeAnnotationsValidator);
jjg@308 3209 }
jjg@308 3210 //where
jjg@308 3211 private final JCTree.Visitor typeAnnotationsValidator =
jjg@308 3212 new TreeScanner() {
jjg@308 3213 public void visitAnnotation(JCAnnotation tree) {
jjg@308 3214 if (tree instanceof JCTypeAnnotation) {
jjg@308 3215 chk.validateTypeAnnotation((JCTypeAnnotation)tree, false);
jjg@308 3216 }
jjg@308 3217 super.visitAnnotation(tree);
jjg@308 3218 }
jjg@308 3219 public void visitTypeParameter(JCTypeParameter tree) {
jjg@308 3220 chk.validateTypeAnnotations(tree.annotations, true);
jjg@308 3221 // don't call super. skip type annotations
jjg@308 3222 scan(tree.bounds);
jjg@308 3223 }
jjg@308 3224 public void visitMethodDef(JCMethodDecl tree) {
jjg@308 3225 // need to check static methods
jjg@308 3226 if ((tree.sym.flags() & Flags.STATIC) != 0) {
jjg@308 3227 for (JCTypeAnnotation a : tree.receiverAnnotations) {
jjg@308 3228 if (chk.isTypeAnnotation(a, false))
jjg@308 3229 log.error(a.pos(), "annotation.type.not.applicable");
jjg@308 3230 }
jjg@308 3231 }
jjg@308 3232 super.visitMethodDef(tree);
jjg@308 3233 }
jjg@308 3234 };
mcimadamore@676 3235
mcimadamore@676 3236 // <editor-fold desc="post-attribution visitor">
mcimadamore@676 3237
mcimadamore@676 3238 /**
mcimadamore@676 3239 * Handle missing types/symbols in an AST. This routine is useful when
mcimadamore@676 3240 * the compiler has encountered some errors (which might have ended up
mcimadamore@676 3241 * terminating attribution abruptly); if the compiler is used in fail-over
mcimadamore@676 3242 * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
mcimadamore@676 3243 * prevents NPE to be progagated during subsequent compilation steps.
mcimadamore@676 3244 */
mcimadamore@676 3245 public void postAttr(Env<AttrContext> env) {
mcimadamore@676 3246 new PostAttrAnalyzer().scan(env.tree);
mcimadamore@676 3247 }
mcimadamore@676 3248
mcimadamore@676 3249 class PostAttrAnalyzer extends TreeScanner {
mcimadamore@676 3250
mcimadamore@676 3251 private void initTypeIfNeeded(JCTree that) {
mcimadamore@676 3252 if (that.type == null) {
mcimadamore@676 3253 that.type = syms.unknownType;
mcimadamore@676 3254 }
mcimadamore@676 3255 }
mcimadamore@676 3256
mcimadamore@676 3257 @Override
mcimadamore@676 3258 public void scan(JCTree tree) {
mcimadamore@676 3259 if (tree == null) return;
mcimadamore@676 3260 if (tree instanceof JCExpression) {
mcimadamore@676 3261 initTypeIfNeeded(tree);
mcimadamore@676 3262 }
mcimadamore@676 3263 super.scan(tree);
mcimadamore@676 3264 }
mcimadamore@676 3265
mcimadamore@676 3266 @Override
mcimadamore@676 3267 public void visitIdent(JCIdent that) {
mcimadamore@676 3268 if (that.sym == null) {
mcimadamore@676 3269 that.sym = syms.unknownSymbol;
mcimadamore@676 3270 }
mcimadamore@676 3271 }
mcimadamore@676 3272
mcimadamore@676 3273 @Override
mcimadamore@676 3274 public void visitSelect(JCFieldAccess that) {
mcimadamore@676 3275 if (that.sym == null) {
mcimadamore@676 3276 that.sym = syms.unknownSymbol;
mcimadamore@676 3277 }
mcimadamore@676 3278 super.visitSelect(that);
mcimadamore@676 3279 }
mcimadamore@676 3280
mcimadamore@676 3281 @Override
mcimadamore@676 3282 public void visitClassDef(JCClassDecl that) {
mcimadamore@676 3283 initTypeIfNeeded(that);
mcimadamore@676 3284 if (that.sym == null) {
mcimadamore@676 3285 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
mcimadamore@676 3286 }
mcimadamore@676 3287 super.visitClassDef(that);
mcimadamore@676 3288 }
mcimadamore@676 3289
mcimadamore@676 3290 @Override
mcimadamore@676 3291 public void visitMethodDef(JCMethodDecl that) {
mcimadamore@676 3292 initTypeIfNeeded(that);
mcimadamore@676 3293 if (that.sym == null) {
mcimadamore@676 3294 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
mcimadamore@676 3295 }
mcimadamore@676 3296 super.visitMethodDef(that);
mcimadamore@676 3297 }
mcimadamore@676 3298
mcimadamore@676 3299 @Override
mcimadamore@676 3300 public void visitVarDef(JCVariableDecl that) {
mcimadamore@676 3301 initTypeIfNeeded(that);
mcimadamore@676 3302 if (that.sym == null) {
mcimadamore@676 3303 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
mcimadamore@676 3304 that.sym.adr = 0;
mcimadamore@676 3305 }
mcimadamore@676 3306 super.visitVarDef(that);
mcimadamore@676 3307 }
mcimadamore@676 3308
mcimadamore@676 3309 @Override
mcimadamore@676 3310 public void visitNewClass(JCNewClass that) {
mcimadamore@676 3311 if (that.constructor == null) {
mcimadamore@676 3312 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
mcimadamore@676 3313 }
mcimadamore@676 3314 if (that.constructorType == null) {
mcimadamore@676 3315 that.constructorType = syms.unknownType;
mcimadamore@676 3316 }
mcimadamore@676 3317 super.visitNewClass(that);
mcimadamore@676 3318 }
mcimadamore@676 3319
mcimadamore@676 3320 @Override
mcimadamore@676 3321 public void visitBinary(JCBinary that) {
mcimadamore@676 3322 if (that.operator == null)
mcimadamore@676 3323 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
mcimadamore@676 3324 super.visitBinary(that);
mcimadamore@676 3325 }
mcimadamore@676 3326
mcimadamore@676 3327 @Override
mcimadamore@676 3328 public void visitUnary(JCUnary that) {
mcimadamore@676 3329 if (that.operator == null)
mcimadamore@676 3330 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
mcimadamore@676 3331 super.visitUnary(that);
mcimadamore@676 3332 }
mcimadamore@676 3333 }
mcimadamore@676 3334 // </editor-fold>
duke@1 3335 }

mercurial