src/share/classes/com/sun/tools/javac/comp/Attr.java

Wed, 02 Mar 2011 21:13:55 -0800

author
jjg
date
Wed, 02 Mar 2011 21:13:55 -0800
changeset 904
4baab658f357
parent 901
02b699d97a55
child 914
ca32f2986301
permissions
-rw-r--r--

6639645: Modeling type implementing missing interfaces
Reviewed-by: darcy, mcimadamore

duke@1 1 /*
jjg@815 2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29 import java.util.Set;
duke@1 30 import javax.lang.model.element.ElementKind;
duke@1 31 import javax.tools.JavaFileObject;
duke@1 32
duke@1 33 import com.sun.tools.javac.code.*;
duke@1 34 import com.sun.tools.javac.jvm.*;
duke@1 35 import com.sun.tools.javac.tree.*;
duke@1 36 import com.sun.tools.javac.util.*;
duke@1 37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 38 import com.sun.tools.javac.util.List;
duke@1 39
duke@1 40 import com.sun.tools.javac.jvm.Target;
mcimadamore@795 41 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 42 import com.sun.tools.javac.code.Symbol.*;
duke@1 43 import com.sun.tools.javac.tree.JCTree.*;
duke@1 44 import com.sun.tools.javac.code.Type.*;
duke@1 45
duke@1 46 import com.sun.source.tree.IdentifierTree;
duke@1 47 import com.sun.source.tree.MemberSelectTree;
duke@1 48 import com.sun.source.tree.TreeVisitor;
duke@1 49 import com.sun.source.util.SimpleTreeVisitor;
duke@1 50
duke@1 51 import static com.sun.tools.javac.code.Flags.*;
duke@1 52 import static com.sun.tools.javac.code.Kinds.*;
duke@1 53 import static com.sun.tools.javac.code.TypeTags.*;
duke@1 54
duke@1 55 /** This is the main context-dependent analysis phase in GJC. It
duke@1 56 * encompasses name resolution, type checking and constant folding as
duke@1 57 * subtasks. Some subtasks involve auxiliary classes.
duke@1 58 * @see Check
duke@1 59 * @see Resolve
duke@1 60 * @see ConstFold
duke@1 61 * @see Infer
duke@1 62 *
jjg@581 63 * <p><b>This is NOT part of any supported API.
jjg@581 64 * If you write code that depends on this, you do so at your own risk.
duke@1 65 * This code and its internal interfaces are subject to change or
duke@1 66 * deletion without notice.</b>
duke@1 67 */
duke@1 68 public class Attr extends JCTree.Visitor {
duke@1 69 protected static final Context.Key<Attr> attrKey =
duke@1 70 new Context.Key<Attr>();
duke@1 71
jjg@113 72 final Names names;
duke@1 73 final Log log;
duke@1 74 final Symtab syms;
duke@1 75 final Resolve rs;
mcimadamore@537 76 final Infer infer;
duke@1 77 final Check chk;
duke@1 78 final MemberEnter memberEnter;
duke@1 79 final TreeMaker make;
duke@1 80 final ConstFold cfolder;
duke@1 81 final Enter enter;
duke@1 82 final Target target;
duke@1 83 final Types types;
mcimadamore@89 84 final JCDiagnostic.Factory diags;
duke@1 85 final Annotate annotate;
mcimadamore@852 86 final DeferredLintHandler deferredLintHandler;
duke@1 87
duke@1 88 public static Attr instance(Context context) {
duke@1 89 Attr instance = context.get(attrKey);
duke@1 90 if (instance == null)
duke@1 91 instance = new Attr(context);
duke@1 92 return instance;
duke@1 93 }
duke@1 94
duke@1 95 protected Attr(Context context) {
duke@1 96 context.put(attrKey, this);
duke@1 97
jjg@113 98 names = Names.instance(context);
duke@1 99 log = Log.instance(context);
duke@1 100 syms = Symtab.instance(context);
duke@1 101 rs = Resolve.instance(context);
duke@1 102 chk = Check.instance(context);
duke@1 103 memberEnter = MemberEnter.instance(context);
duke@1 104 make = TreeMaker.instance(context);
duke@1 105 enter = Enter.instance(context);
mcimadamore@537 106 infer = Infer.instance(context);
duke@1 107 cfolder = ConstFold.instance(context);
duke@1 108 target = Target.instance(context);
duke@1 109 types = Types.instance(context);
mcimadamore@89 110 diags = JCDiagnostic.Factory.instance(context);
duke@1 111 annotate = Annotate.instance(context);
mcimadamore@852 112 deferredLintHandler = DeferredLintHandler.instance(context);
duke@1 113
duke@1 114 Options options = Options.instance(context);
duke@1 115
duke@1 116 Source source = Source.instance(context);
duke@1 117 allowGenerics = source.allowGenerics();
duke@1 118 allowVarargs = source.allowVarargs();
duke@1 119 allowEnums = source.allowEnums();
duke@1 120 allowBoxing = source.allowBoxing();
duke@1 121 allowCovariantReturns = source.allowCovariantReturns();
duke@1 122 allowAnonOuterThis = source.allowAnonOuterThis();
darcy@430 123 allowStringsInSwitch = source.allowStringsInSwitch();
darcy@430 124 sourceName = source.name;
jjg@700 125 relax = (options.isSet("-retrofit") ||
jjg@700 126 options.isSet("-relax"));
mcimadamore@731 127 findDiamonds = options.get("findDiamond") != null &&
mcimadamore@731 128 source.allowDiamond();
jjg@700 129 useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
duke@1 130 }
duke@1 131
duke@1 132 /** Switch: relax some constraints for retrofit mode.
duke@1 133 */
duke@1 134 boolean relax;
duke@1 135
duke@1 136 /** Switch: support generics?
duke@1 137 */
duke@1 138 boolean allowGenerics;
duke@1 139
duke@1 140 /** Switch: allow variable-arity methods.
duke@1 141 */
duke@1 142 boolean allowVarargs;
duke@1 143
duke@1 144 /** Switch: support enums?
duke@1 145 */
duke@1 146 boolean allowEnums;
duke@1 147
duke@1 148 /** Switch: support boxing and unboxing?
duke@1 149 */
duke@1 150 boolean allowBoxing;
duke@1 151
duke@1 152 /** Switch: support covariant result types?
duke@1 153 */
duke@1 154 boolean allowCovariantReturns;
duke@1 155
duke@1 156 /** Switch: allow references to surrounding object from anonymous
duke@1 157 * objects during constructor call?
duke@1 158 */
duke@1 159 boolean allowAnonOuterThis;
duke@1 160
mcimadamore@731 161 /** Switch: generates a warning if diamond can be safely applied
mcimadamore@731 162 * to a given new expression
mcimadamore@731 163 */
mcimadamore@731 164 boolean findDiamonds;
mcimadamore@731 165
mcimadamore@731 166 /**
mcimadamore@731 167 * Internally enables/disables diamond finder feature
mcimadamore@731 168 */
mcimadamore@731 169 static final boolean allowDiamondFinder = true;
mcimadamore@731 170
duke@1 171 /**
duke@1 172 * Switch: warn about use of variable before declaration?
duke@1 173 * RFE: 6425594
duke@1 174 */
duke@1 175 boolean useBeforeDeclarationWarning;
duke@1 176
jjg@377 177 /**
darcy@430 178 * Switch: allow strings in switch?
darcy@430 179 */
darcy@430 180 boolean allowStringsInSwitch;
darcy@430 181
darcy@430 182 /**
darcy@430 183 * Switch: name of source level; used for error reporting.
darcy@430 184 */
darcy@430 185 String sourceName;
darcy@430 186
duke@1 187 /** Check kind and type of given tree against protokind and prototype.
duke@1 188 * If check succeeds, store type in tree and return it.
duke@1 189 * If check fails, store errType in tree and return it.
duke@1 190 * No checks are performed if the prototype is a method type.
jjg@110 191 * It is not necessary in this case since we know that kind and type
duke@1 192 * are correct.
duke@1 193 *
duke@1 194 * @param tree The tree whose kind and type is checked
duke@1 195 * @param owntype The computed type of the tree
duke@1 196 * @param ownkind The computed kind of the tree
duke@1 197 * @param pkind The expected kind (or: protokind) of the tree
duke@1 198 * @param pt The expected type (or: prototype) of the tree
duke@1 199 */
duke@1 200 Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
duke@1 201 if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
duke@1 202 if ((ownkind & ~pkind) == 0) {
darcy@609 203 owntype = chk.checkType(tree.pos(), owntype, pt, errKey);
duke@1 204 } else {
duke@1 205 log.error(tree.pos(), "unexpected.type",
mcimadamore@80 206 kindNames(pkind),
mcimadamore@80 207 kindName(ownkind));
jjg@110 208 owntype = types.createErrorType(owntype);
duke@1 209 }
duke@1 210 }
duke@1 211 tree.type = owntype;
duke@1 212 return owntype;
duke@1 213 }
duke@1 214
duke@1 215 /** Is given blank final variable assignable, i.e. in a scope where it
duke@1 216 * may be assigned to even though it is final?
duke@1 217 * @param v The blank final variable.
duke@1 218 * @param env The current environment.
duke@1 219 */
duke@1 220 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
duke@1 221 Symbol owner = env.info.scope.owner;
duke@1 222 // owner refers to the innermost variable, method or
duke@1 223 // initializer block declaration at this point.
duke@1 224 return
duke@1 225 v.owner == owner
duke@1 226 ||
duke@1 227 ((owner.name == names.init || // i.e. we are in a constructor
duke@1 228 owner.kind == VAR || // i.e. we are in a variable initializer
duke@1 229 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block
duke@1 230 &&
duke@1 231 v.owner == owner.owner
duke@1 232 &&
duke@1 233 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
duke@1 234 }
duke@1 235
duke@1 236 /** Check that variable can be assigned to.
duke@1 237 * @param pos The current source code position.
duke@1 238 * @param v The assigned varaible
duke@1 239 * @param base If the variable is referred to in a Select, the part
duke@1 240 * to the left of the `.', null otherwise.
duke@1 241 * @param env The current environment.
duke@1 242 */
duke@1 243 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
duke@1 244 if ((v.flags() & FINAL) != 0 &&
duke@1 245 ((v.flags() & HASINIT) != 0
duke@1 246 ||
duke@1 247 !((base == null ||
duke@1 248 (base.getTag() == JCTree.IDENT && TreeInfo.name(base) == names._this)) &&
duke@1 249 isAssignableAsBlankFinal(v, env)))) {
darcy@609 250 if (v.isResourceVariable()) { //TWR resource
mcimadamore@743 251 log.error(pos, "try.resource.may.not.be.assigned", v);
darcy@609 252 } else {
darcy@609 253 log.error(pos, "cant.assign.val.to.final.var", v);
darcy@609 254 }
mcimadamore@735 255 } else if ((v.flags() & EFFECTIVELY_FINAL) != 0) {
mcimadamore@735 256 v.flags_field &= ~EFFECTIVELY_FINAL;
duke@1 257 }
duke@1 258 }
duke@1 259
duke@1 260 /** Does tree represent a static reference to an identifier?
duke@1 261 * It is assumed that tree is either a SELECT or an IDENT.
duke@1 262 * We have to weed out selects from non-type names here.
duke@1 263 * @param tree The candidate tree.
duke@1 264 */
duke@1 265 boolean isStaticReference(JCTree tree) {
duke@1 266 if (tree.getTag() == JCTree.SELECT) {
duke@1 267 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
duke@1 268 if (lsym == null || lsym.kind != TYP) {
duke@1 269 return false;
duke@1 270 }
duke@1 271 }
duke@1 272 return true;
duke@1 273 }
duke@1 274
duke@1 275 /** Is this symbol a type?
duke@1 276 */
duke@1 277 static boolean isType(Symbol sym) {
duke@1 278 return sym != null && sym.kind == TYP;
duke@1 279 }
duke@1 280
duke@1 281 /** The current `this' symbol.
duke@1 282 * @param env The current environment.
duke@1 283 */
duke@1 284 Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
duke@1 285 return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
duke@1 286 }
duke@1 287
duke@1 288 /** Attribute a parsed identifier.
duke@1 289 * @param tree Parsed identifier name
duke@1 290 * @param topLevel The toplevel to use
duke@1 291 */
duke@1 292 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
duke@1 293 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
duke@1 294 localEnv.enclClass = make.ClassDef(make.Modifiers(0),
duke@1 295 syms.errSymbol.name,
duke@1 296 null, null, null, null);
duke@1 297 localEnv.enclClass.sym = syms.errSymbol;
duke@1 298 return tree.accept(identAttributer, localEnv);
duke@1 299 }
duke@1 300 // where
duke@1 301 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
duke@1 302 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
duke@1 303 @Override
duke@1 304 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
duke@1 305 Symbol site = visit(node.getExpression(), env);
duke@1 306 if (site.kind == ERR)
duke@1 307 return site;
duke@1 308 Name name = (Name)node.getIdentifier();
duke@1 309 if (site.kind == PCK) {
duke@1 310 env.toplevel.packge = (PackageSymbol)site;
duke@1 311 return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
duke@1 312 } else {
duke@1 313 env.enclClass.sym = (ClassSymbol)site;
duke@1 314 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
duke@1 315 }
duke@1 316 }
duke@1 317
duke@1 318 @Override
duke@1 319 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
duke@1 320 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
duke@1 321 }
duke@1 322 }
duke@1 323
duke@1 324 public Type coerce(Type etype, Type ttype) {
duke@1 325 return cfolder.coerce(etype, ttype);
duke@1 326 }
duke@1 327
duke@1 328 public Type attribType(JCTree node, TypeSymbol sym) {
duke@1 329 Env<AttrContext> env = enter.typeEnvs.get(sym);
duke@1 330 Env<AttrContext> localEnv = env.dup(node, env.info.dup());
duke@1 331 return attribTree(node, localEnv, Kinds.TYP, Type.noType);
duke@1 332 }
duke@1 333
duke@1 334 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
duke@1 335 breakTree = tree;
mcimadamore@303 336 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
duke@1 337 try {
duke@1 338 attribExpr(expr, env);
duke@1 339 } catch (BreakAttr b) {
duke@1 340 return b.env;
sundar@669 341 } catch (AssertionError ae) {
sundar@669 342 if (ae.getCause() instanceof BreakAttr) {
sundar@669 343 return ((BreakAttr)(ae.getCause())).env;
sundar@669 344 } else {
sundar@669 345 throw ae;
sundar@669 346 }
duke@1 347 } finally {
duke@1 348 breakTree = null;
duke@1 349 log.useSource(prev);
duke@1 350 }
duke@1 351 return env;
duke@1 352 }
duke@1 353
duke@1 354 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
duke@1 355 breakTree = tree;
mcimadamore@303 356 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
duke@1 357 try {
duke@1 358 attribStat(stmt, env);
duke@1 359 } catch (BreakAttr b) {
duke@1 360 return b.env;
sundar@669 361 } catch (AssertionError ae) {
sundar@669 362 if (ae.getCause() instanceof BreakAttr) {
sundar@669 363 return ((BreakAttr)(ae.getCause())).env;
sundar@669 364 } else {
sundar@669 365 throw ae;
sundar@669 366 }
duke@1 367 } finally {
duke@1 368 breakTree = null;
duke@1 369 log.useSource(prev);
duke@1 370 }
duke@1 371 return env;
duke@1 372 }
duke@1 373
duke@1 374 private JCTree breakTree = null;
duke@1 375
duke@1 376 private static class BreakAttr extends RuntimeException {
duke@1 377 static final long serialVersionUID = -6924771130405446405L;
duke@1 378 private Env<AttrContext> env;
duke@1 379 private BreakAttr(Env<AttrContext> env) {
duke@1 380 this.env = env;
duke@1 381 }
duke@1 382 }
duke@1 383
duke@1 384
duke@1 385 /* ************************************************************************
duke@1 386 * Visitor methods
duke@1 387 *************************************************************************/
duke@1 388
duke@1 389 /** Visitor argument: the current environment.
duke@1 390 */
duke@1 391 Env<AttrContext> env;
duke@1 392
duke@1 393 /** Visitor argument: the currently expected proto-kind.
duke@1 394 */
duke@1 395 int pkind;
duke@1 396
duke@1 397 /** Visitor argument: the currently expected proto-type.
duke@1 398 */
duke@1 399 Type pt;
duke@1 400
darcy@609 401 /** Visitor argument: the error key to be generated when a type error occurs
darcy@609 402 */
darcy@609 403 String errKey;
darcy@609 404
duke@1 405 /** Visitor result: the computed type.
duke@1 406 */
duke@1 407 Type result;
duke@1 408
duke@1 409 /** Visitor method: attribute a tree, catching any completion failure
duke@1 410 * exceptions. Return the tree's type.
duke@1 411 *
duke@1 412 * @param tree The tree to be visited.
duke@1 413 * @param env The environment visitor argument.
duke@1 414 * @param pkind The protokind visitor argument.
duke@1 415 * @param pt The prototype visitor argument.
duke@1 416 */
duke@1 417 Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt) {
darcy@609 418 return attribTree(tree, env, pkind, pt, "incompatible.types");
darcy@609 419 }
darcy@609 420
darcy@609 421 Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt, String errKey) {
duke@1 422 Env<AttrContext> prevEnv = this.env;
duke@1 423 int prevPkind = this.pkind;
duke@1 424 Type prevPt = this.pt;
darcy@609 425 String prevErrKey = this.errKey;
duke@1 426 try {
duke@1 427 this.env = env;
duke@1 428 this.pkind = pkind;
duke@1 429 this.pt = pt;
darcy@609 430 this.errKey = errKey;
duke@1 431 tree.accept(this);
duke@1 432 if (tree == breakTree)
duke@1 433 throw new BreakAttr(env);
duke@1 434 return result;
duke@1 435 } catch (CompletionFailure ex) {
duke@1 436 tree.type = syms.errType;
duke@1 437 return chk.completionError(tree.pos(), ex);
duke@1 438 } finally {
duke@1 439 this.env = prevEnv;
duke@1 440 this.pkind = prevPkind;
duke@1 441 this.pt = prevPt;
darcy@609 442 this.errKey = prevErrKey;
duke@1 443 }
duke@1 444 }
duke@1 445
duke@1 446 /** Derived visitor method: attribute an expression tree.
duke@1 447 */
duke@1 448 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
duke@1 449 return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType);
duke@1 450 }
duke@1 451
darcy@609 452 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt, String key) {
darcy@609 453 return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType, key);
darcy@609 454 }
darcy@609 455
duke@1 456 /** Derived visitor method: attribute an expression tree with
duke@1 457 * no constraints on the computed type.
duke@1 458 */
duke@1 459 Type attribExpr(JCTree tree, Env<AttrContext> env) {
duke@1 460 return attribTree(tree, env, VAL, Type.noType);
duke@1 461 }
duke@1 462
duke@1 463 /** Derived visitor method: attribute a type tree.
duke@1 464 */
duke@1 465 Type attribType(JCTree tree, Env<AttrContext> env) {
mcimadamore@537 466 Type result = attribType(tree, env, Type.noType);
mcimadamore@537 467 return result;
mcimadamore@537 468 }
mcimadamore@537 469
mcimadamore@537 470 /** Derived visitor method: attribute a type tree.
mcimadamore@537 471 */
mcimadamore@537 472 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
mcimadamore@537 473 Type result = attribTree(tree, env, TYP, pt);
duke@1 474 return result;
duke@1 475 }
duke@1 476
duke@1 477 /** Derived visitor method: attribute a statement or definition tree.
duke@1 478 */
duke@1 479 public Type attribStat(JCTree tree, Env<AttrContext> env) {
duke@1 480 return attribTree(tree, env, NIL, Type.noType);
duke@1 481 }
duke@1 482
duke@1 483 /** Attribute a list of expressions, returning a list of types.
duke@1 484 */
duke@1 485 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
duke@1 486 ListBuffer<Type> ts = new ListBuffer<Type>();
duke@1 487 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 488 ts.append(attribExpr(l.head, env, pt));
duke@1 489 return ts.toList();
duke@1 490 }
duke@1 491
duke@1 492 /** Attribute a list of statements, returning nothing.
duke@1 493 */
duke@1 494 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
duke@1 495 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
duke@1 496 attribStat(l.head, env);
duke@1 497 }
duke@1 498
duke@1 499 /** Attribute the arguments in a method call, returning a list of types.
duke@1 500 */
duke@1 501 List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
duke@1 502 ListBuffer<Type> argtypes = new ListBuffer<Type>();
duke@1 503 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 504 argtypes.append(chk.checkNonVoid(
duke@1 505 l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly))));
duke@1 506 return argtypes.toList();
duke@1 507 }
duke@1 508
duke@1 509 /** Attribute a type argument list, returning a list of types.
jrose@267 510 * Caller is responsible for calling checkRefTypes.
duke@1 511 */
jrose@267 512 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
duke@1 513 ListBuffer<Type> argtypes = new ListBuffer<Type>();
duke@1 514 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
jrose@267 515 argtypes.append(attribType(l.head, env));
duke@1 516 return argtypes.toList();
duke@1 517 }
duke@1 518
jrose@267 519 /** Attribute a type argument list, returning a list of types.
jrose@267 520 * Check that all the types are references.
jrose@267 521 */
jrose@267 522 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
jrose@267 523 List<Type> types = attribAnyTypes(trees, env);
jrose@267 524 return chk.checkRefTypes(trees, types);
jrose@267 525 }
duke@1 526
duke@1 527 /**
duke@1 528 * Attribute type variables (of generic classes or methods).
duke@1 529 * Compound types are attributed later in attribBounds.
duke@1 530 * @param typarams the type variables to enter
duke@1 531 * @param env the current environment
duke@1 532 */
duke@1 533 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
duke@1 534 for (JCTypeParameter tvar : typarams) {
duke@1 535 TypeVar a = (TypeVar)tvar.type;
mcimadamore@42 536 a.tsym.flags_field |= UNATTRIBUTED;
mcimadamore@42 537 a.bound = Type.noType;
duke@1 538 if (!tvar.bounds.isEmpty()) {
duke@1 539 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
duke@1 540 for (JCExpression bound : tvar.bounds.tail)
duke@1 541 bounds = bounds.prepend(attribType(bound, env));
duke@1 542 types.setBounds(a, bounds.reverse());
duke@1 543 } else {
duke@1 544 // if no bounds are given, assume a single bound of
duke@1 545 // java.lang.Object.
duke@1 546 types.setBounds(a, List.of(syms.objectType));
duke@1 547 }
mcimadamore@42 548 a.tsym.flags_field &= ~UNATTRIBUTED;
duke@1 549 }
duke@1 550 for (JCTypeParameter tvar : typarams)
duke@1 551 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
duke@1 552 attribStats(typarams, env);
mcimadamore@42 553 }
mcimadamore@42 554
mcimadamore@42 555 void attribBounds(List<JCTypeParameter> typarams) {
duke@1 556 for (JCTypeParameter typaram : typarams) {
duke@1 557 Type bound = typaram.type.getUpperBound();
duke@1 558 if (bound != null && bound.tsym instanceof ClassSymbol) {
duke@1 559 ClassSymbol c = (ClassSymbol)bound.tsym;
duke@1 560 if ((c.flags_field & COMPOUND) != 0) {
jjg@816 561 Assert.check((c.flags_field & UNATTRIBUTED) != 0, c);
duke@1 562 attribClass(typaram.pos(), c);
duke@1 563 }
duke@1 564 }
duke@1 565 }
duke@1 566 }
duke@1 567
duke@1 568 /**
duke@1 569 * Attribute the type references in a list of annotations.
duke@1 570 */
duke@1 571 void attribAnnotationTypes(List<JCAnnotation> annotations,
duke@1 572 Env<AttrContext> env) {
duke@1 573 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
duke@1 574 JCAnnotation a = al.head;
duke@1 575 attribType(a.annotationType, env);
duke@1 576 }
duke@1 577 }
duke@1 578
jjg@841 579 /**
jjg@841 580 * Attribute a "lazy constant value".
jjg@841 581 * @param env The env for the const value
jjg@841 582 * @param initializer The initializer for the const value
jjg@841 583 * @param type The expected type, or null
jjg@841 584 * @see VarSymbol#setlazyConstValue
jjg@841 585 */
jjg@841 586 public Object attribLazyConstantValue(Env<AttrContext> env,
jjg@841 587 JCTree.JCExpression initializer,
jjg@841 588 Type type) {
jjg@841 589
jjg@841 590 // in case no lint value has been set up for this env, scan up
jjg@841 591 // env stack looking for smallest enclosing env for which it is set.
jjg@841 592 Env<AttrContext> lintEnv = env;
jjg@841 593 while (lintEnv.info.lint == null)
jjg@841 594 lintEnv = lintEnv.next;
jjg@841 595
jjg@841 596 // Having found the enclosing lint value, we can initialize the lint value for this class
jjg@841 597 env.info.lint = lintEnv.info.lint.augment(env.info.enclVar.attributes_field, env.info.enclVar.flags());
jjg@841 598
jjg@841 599 Lint prevLint = chk.setLint(env.info.lint);
jjg@841 600 JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
jjg@841 601
jjg@841 602 try {
jjg@841 603 Type itype = attribExpr(initializer, env, type);
jjg@841 604 if (itype.constValue() != null)
jjg@841 605 return coerce(itype, type).constValue();
jjg@841 606 else
jjg@841 607 return null;
jjg@841 608 } finally {
jjg@841 609 env.info.lint = prevLint;
jjg@841 610 log.useSource(prevSource);
jjg@841 611 }
jjg@841 612 }
jjg@841 613
duke@1 614 /** Attribute type reference in an `extends' or `implements' clause.
mcimadamore@537 615 * Supertypes of anonymous inner classes are usually already attributed.
duke@1 616 *
duke@1 617 * @param tree The tree making up the type reference.
duke@1 618 * @param env The environment current at the reference.
duke@1 619 * @param classExpected true if only a class is expected here.
duke@1 620 * @param interfaceExpected true if only an interface is expected here.
duke@1 621 */
duke@1 622 Type attribBase(JCTree tree,
duke@1 623 Env<AttrContext> env,
duke@1 624 boolean classExpected,
duke@1 625 boolean interfaceExpected,
duke@1 626 boolean checkExtensible) {
mcimadamore@537 627 Type t = tree.type != null ?
mcimadamore@537 628 tree.type :
mcimadamore@537 629 attribType(tree, env);
duke@1 630 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
duke@1 631 }
duke@1 632 Type checkBase(Type t,
duke@1 633 JCTree tree,
duke@1 634 Env<AttrContext> env,
duke@1 635 boolean classExpected,
duke@1 636 boolean interfaceExpected,
duke@1 637 boolean checkExtensible) {
jjg@664 638 if (t.isErroneous())
jjg@664 639 return t;
duke@1 640 if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
duke@1 641 // check that type variable is already visible
duke@1 642 if (t.getUpperBound() == null) {
duke@1 643 log.error(tree.pos(), "illegal.forward.ref");
jjg@110 644 return types.createErrorType(t);
duke@1 645 }
duke@1 646 } else {
duke@1 647 t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
duke@1 648 }
duke@1 649 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
duke@1 650 log.error(tree.pos(), "intf.expected.here");
duke@1 651 // return errType is necessary since otherwise there might
duke@1 652 // be undetected cycles which cause attribution to loop
jjg@110 653 return types.createErrorType(t);
duke@1 654 } else if (checkExtensible &&
duke@1 655 classExpected &&
duke@1 656 (t.tsym.flags() & INTERFACE) != 0) {
jjg@664 657 log.error(tree.pos(), "no.intf.expected.here");
jjg@110 658 return types.createErrorType(t);
duke@1 659 }
duke@1 660 if (checkExtensible &&
duke@1 661 ((t.tsym.flags() & FINAL) != 0)) {
duke@1 662 log.error(tree.pos(),
duke@1 663 "cant.inherit.from.final", t.tsym);
duke@1 664 }
duke@1 665 chk.checkNonCyclic(tree.pos(), t);
duke@1 666 return t;
duke@1 667 }
duke@1 668
duke@1 669 public void visitClassDef(JCClassDecl tree) {
duke@1 670 // Local classes have not been entered yet, so we need to do it now:
duke@1 671 if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
duke@1 672 enter.classEnter(tree, env);
duke@1 673
duke@1 674 ClassSymbol c = tree.sym;
duke@1 675 if (c == null) {
duke@1 676 // exit in case something drastic went wrong during enter.
duke@1 677 result = null;
duke@1 678 } else {
duke@1 679 // make sure class has been completed:
duke@1 680 c.complete();
duke@1 681
duke@1 682 // If this class appears as an anonymous class
duke@1 683 // in a superclass constructor call where
duke@1 684 // no explicit outer instance is given,
duke@1 685 // disable implicit outer instance from being passed.
duke@1 686 // (This would be an illegal access to "this before super").
duke@1 687 if (env.info.isSelfCall &&
duke@1 688 env.tree.getTag() == JCTree.NEWCLASS &&
duke@1 689 ((JCNewClass) env.tree).encl == null)
duke@1 690 {
duke@1 691 c.flags_field |= NOOUTERTHIS;
duke@1 692 }
duke@1 693 attribClass(tree.pos(), c);
duke@1 694 result = tree.type = c.type;
duke@1 695 }
duke@1 696 }
duke@1 697
duke@1 698 public void visitMethodDef(JCMethodDecl tree) {
duke@1 699 MethodSymbol m = tree.sym;
duke@1 700
duke@1 701 Lint lint = env.info.lint.augment(m.attributes_field, m.flags());
duke@1 702 Lint prevLint = chk.setLint(lint);
mcimadamore@795 703 MethodSymbol prevMethod = chk.setMethod(m);
duke@1 704 try {
mcimadamore@852 705 deferredLintHandler.flush(tree.pos());
duke@1 706 chk.checkDeprecatedAnnotation(tree.pos(), m);
duke@1 707
mcimadamore@42 708 attribBounds(tree.typarams);
duke@1 709
duke@1 710 // If we override any other methods, check that we do so properly.
duke@1 711 // JLS ???
mcimadamore@858 712 if (m.isStatic()) {
mcimadamore@858 713 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
mcimadamore@858 714 } else {
mcimadamore@858 715 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
mcimadamore@858 716 }
duke@1 717 chk.checkOverride(tree, m);
duke@1 718
duke@1 719 // Create a new environment with local scope
duke@1 720 // for attributing the method.
duke@1 721 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
duke@1 722
duke@1 723 localEnv.info.lint = lint;
duke@1 724
duke@1 725 // Enter all type parameters into the local method scope.
duke@1 726 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
duke@1 727 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
duke@1 728
duke@1 729 ClassSymbol owner = env.enclClass.sym;
duke@1 730 if ((owner.flags() & ANNOTATION) != 0 &&
duke@1 731 tree.params.nonEmpty())
duke@1 732 log.error(tree.params.head.pos(),
duke@1 733 "intf.annotation.members.cant.have.params");
duke@1 734
duke@1 735 // Attribute all value parameters.
duke@1 736 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
duke@1 737 attribStat(l.head, localEnv);
duke@1 738 }
duke@1 739
mcimadamore@795 740 chk.checkVarargsMethodDecl(localEnv, tree);
mcimadamore@580 741
duke@1 742 // Check that type parameters are well-formed.
mcimadamore@122 743 chk.validate(tree.typarams, localEnv);
duke@1 744
duke@1 745 // Check that result type is well-formed.
mcimadamore@122 746 chk.validate(tree.restype, localEnv);
mcimadamore@629 747
mcimadamore@629 748 // annotation method checks
mcimadamore@629 749 if ((owner.flags() & ANNOTATION) != 0) {
mcimadamore@629 750 // annotation method cannot have throws clause
mcimadamore@629 751 if (tree.thrown.nonEmpty()) {
mcimadamore@629 752 log.error(tree.thrown.head.pos(),
mcimadamore@629 753 "throws.not.allowed.in.intf.annotation");
mcimadamore@629 754 }
mcimadamore@629 755 // annotation method cannot declare type-parameters
mcimadamore@629 756 if (tree.typarams.nonEmpty()) {
mcimadamore@629 757 log.error(tree.typarams.head.pos(),
mcimadamore@629 758 "intf.annotation.members.cant.have.type.params");
mcimadamore@629 759 }
mcimadamore@629 760 // validate annotation method's return type (could be an annotation type)
duke@1 761 chk.validateAnnotationType(tree.restype);
mcimadamore@629 762 // ensure that annotation method does not clash with members of Object/Annotation
duke@1 763 chk.validateAnnotationMethod(tree.pos(), m);
duke@1 764
mcimadamore@634 765 if (tree.defaultValue != null) {
mcimadamore@634 766 // if default value is an annotation, check it is a well-formed
mcimadamore@634 767 // annotation value (e.g. no duplicate values, no missing values, etc.)
mcimadamore@634 768 chk.validateAnnotationTree(tree.defaultValue);
mcimadamore@634 769 }
mcimadamore@629 770 }
mcimadamore@629 771
duke@1 772 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
duke@1 773 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
duke@1 774
duke@1 775 if (tree.body == null) {
duke@1 776 // Empty bodies are only allowed for
duke@1 777 // abstract, native, or interface methods, or for methods
duke@1 778 // in a retrofit signature class.
duke@1 779 if ((owner.flags() & INTERFACE) == 0 &&
duke@1 780 (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
duke@1 781 !relax)
duke@1 782 log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
duke@1 783 if (tree.defaultValue != null) {
duke@1 784 if ((owner.flags() & ANNOTATION) == 0)
duke@1 785 log.error(tree.pos(),
duke@1 786 "default.allowed.in.intf.annotation.member");
duke@1 787 }
duke@1 788 } else if ((owner.flags() & INTERFACE) != 0) {
duke@1 789 log.error(tree.body.pos(), "intf.meth.cant.have.body");
duke@1 790 } else if ((tree.mods.flags & ABSTRACT) != 0) {
duke@1 791 log.error(tree.pos(), "abstract.meth.cant.have.body");
duke@1 792 } else if ((tree.mods.flags & NATIVE) != 0) {
duke@1 793 log.error(tree.pos(), "native.meth.cant.have.body");
duke@1 794 } else {
duke@1 795 // Add an implicit super() call unless an explicit call to
duke@1 796 // super(...) or this(...) is given
duke@1 797 // or we are compiling class java.lang.Object.
duke@1 798 if (tree.name == names.init && owner.type != syms.objectType) {
duke@1 799 JCBlock body = tree.body;
duke@1 800 if (body.stats.isEmpty() ||
duke@1 801 !TreeInfo.isSelfCall(body.stats.head)) {
duke@1 802 body.stats = body.stats.
duke@1 803 prepend(memberEnter.SuperCall(make.at(body.pos),
duke@1 804 List.<Type>nil(),
duke@1 805 List.<JCVariableDecl>nil(),
duke@1 806 false));
duke@1 807 } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
duke@1 808 (tree.mods.flags & GENERATEDCONSTR) == 0 &&
duke@1 809 TreeInfo.isSuperCall(body.stats.head)) {
duke@1 810 // enum constructors are not allowed to call super
duke@1 811 // directly, so make sure there aren't any super calls
duke@1 812 // in enum constructors, except in the compiler
duke@1 813 // generated one.
duke@1 814 log.error(tree.body.stats.head.pos(),
duke@1 815 "call.to.super.not.allowed.in.enum.ctor",
duke@1 816 env.enclClass.sym);
duke@1 817 }
duke@1 818 }
duke@1 819
duke@1 820 // Attribute method body.
duke@1 821 attribStat(tree.body, localEnv);
duke@1 822 }
duke@1 823 localEnv.info.scope.leave();
duke@1 824 result = tree.type = m.type;
duke@1 825 chk.validateAnnotations(tree.mods.annotations, m);
duke@1 826 }
duke@1 827 finally {
duke@1 828 chk.setLint(prevLint);
mcimadamore@795 829 chk.setMethod(prevMethod);
duke@1 830 }
duke@1 831 }
duke@1 832
duke@1 833 public void visitVarDef(JCVariableDecl tree) {
duke@1 834 // Local variables have not been entered yet, so we need to do it now:
duke@1 835 if (env.info.scope.owner.kind == MTH) {
duke@1 836 if (tree.sym != null) {
duke@1 837 // parameters have already been entered
duke@1 838 env.info.scope.enter(tree.sym);
duke@1 839 } else {
duke@1 840 memberEnter.memberEnter(tree, env);
duke@1 841 annotate.flush();
duke@1 842 }
mcimadamore@735 843 tree.sym.flags_field |= EFFECTIVELY_FINAL;
duke@1 844 }
duke@1 845
duke@1 846 VarSymbol v = tree.sym;
duke@1 847 Lint lint = env.info.lint.augment(v.attributes_field, v.flags());
duke@1 848 Lint prevLint = chk.setLint(lint);
duke@1 849
mcimadamore@165 850 // Check that the variable's declared type is well-formed.
mcimadamore@165 851 chk.validate(tree.vartype, env);
mcimadamore@852 852 deferredLintHandler.flush(tree.pos());
mcimadamore@165 853
duke@1 854 try {
duke@1 855 chk.checkDeprecatedAnnotation(tree.pos(), v);
duke@1 856
duke@1 857 if (tree.init != null) {
duke@1 858 if ((v.flags_field & FINAL) != 0 && tree.init.getTag() != JCTree.NEWCLASS) {
duke@1 859 // In this case, `v' is final. Ensure that it's initializer is
duke@1 860 // evaluated.
duke@1 861 v.getConstValue(); // ensure initializer is evaluated
duke@1 862 } else {
duke@1 863 // Attribute initializer in a new environment
duke@1 864 // with the declared variable as owner.
duke@1 865 // Check that initializer conforms to variable's declared type.
duke@1 866 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
duke@1 867 initEnv.info.lint = lint;
duke@1 868 // In order to catch self-references, we set the variable's
duke@1 869 // declaration position to maximal possible value, effectively
duke@1 870 // marking the variable as undefined.
mcimadamore@94 871 initEnv.info.enclVar = v;
duke@1 872 attribExpr(tree.init, initEnv, v.type);
duke@1 873 }
duke@1 874 }
duke@1 875 result = tree.type = v.type;
duke@1 876 chk.validateAnnotations(tree.mods.annotations, v);
duke@1 877 }
duke@1 878 finally {
duke@1 879 chk.setLint(prevLint);
duke@1 880 }
duke@1 881 }
duke@1 882
duke@1 883 public void visitSkip(JCSkip tree) {
duke@1 884 result = null;
duke@1 885 }
duke@1 886
duke@1 887 public void visitBlock(JCBlock tree) {
duke@1 888 if (env.info.scope.owner.kind == TYP) {
duke@1 889 // Block is a static or instance initializer;
duke@1 890 // let the owner of the environment be a freshly
duke@1 891 // created BLOCK-method.
duke@1 892 Env<AttrContext> localEnv =
duke@1 893 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
duke@1 894 localEnv.info.scope.owner =
duke@1 895 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
duke@1 896 env.info.scope.owner);
duke@1 897 if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
duke@1 898 attribStats(tree.stats, localEnv);
duke@1 899 } else {
duke@1 900 // Create a new local environment with a local scope.
duke@1 901 Env<AttrContext> localEnv =
duke@1 902 env.dup(tree, env.info.dup(env.info.scope.dup()));
duke@1 903 attribStats(tree.stats, localEnv);
duke@1 904 localEnv.info.scope.leave();
duke@1 905 }
duke@1 906 result = null;
duke@1 907 }
duke@1 908
duke@1 909 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 910 attribStat(tree.body, env.dup(tree));
duke@1 911 attribExpr(tree.cond, env, syms.booleanType);
duke@1 912 result = null;
duke@1 913 }
duke@1 914
duke@1 915 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 916 attribExpr(tree.cond, env, syms.booleanType);
duke@1 917 attribStat(tree.body, env.dup(tree));
duke@1 918 result = null;
duke@1 919 }
duke@1 920
duke@1 921 public void visitForLoop(JCForLoop tree) {
duke@1 922 Env<AttrContext> loopEnv =
duke@1 923 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
duke@1 924 attribStats(tree.init, loopEnv);
duke@1 925 if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
duke@1 926 loopEnv.tree = tree; // before, we were not in loop!
duke@1 927 attribStats(tree.step, loopEnv);
duke@1 928 attribStat(tree.body, loopEnv);
duke@1 929 loopEnv.info.scope.leave();
duke@1 930 result = null;
duke@1 931 }
duke@1 932
duke@1 933 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 934 Env<AttrContext> loopEnv =
duke@1 935 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
duke@1 936 attribStat(tree.var, loopEnv);
duke@1 937 Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
duke@1 938 chk.checkNonVoid(tree.pos(), exprType);
duke@1 939 Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
duke@1 940 if (elemtype == null) {
duke@1 941 // or perhaps expr implements Iterable<T>?
duke@1 942 Type base = types.asSuper(exprType, syms.iterableType.tsym);
duke@1 943 if (base == null) {
mcimadamore@829 944 log.error(tree.expr.pos(),
mcimadamore@829 945 "foreach.not.applicable.to.type",
mcimadamore@829 946 exprType,
mcimadamore@829 947 diags.fragment("type.req.array.or.iterable"));
jjg@110 948 elemtype = types.createErrorType(exprType);
duke@1 949 } else {
duke@1 950 List<Type> iterableParams = base.allparams();
duke@1 951 elemtype = iterableParams.isEmpty()
duke@1 952 ? syms.objectType
duke@1 953 : types.upperBound(iterableParams.head);
duke@1 954 }
duke@1 955 }
duke@1 956 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
duke@1 957 loopEnv.tree = tree; // before, we were not in loop!
duke@1 958 attribStat(tree.body, loopEnv);
duke@1 959 loopEnv.info.scope.leave();
duke@1 960 result = null;
duke@1 961 }
duke@1 962
duke@1 963 public void visitLabelled(JCLabeledStatement tree) {
duke@1 964 // Check that label is not used in an enclosing statement
duke@1 965 Env<AttrContext> env1 = env;
duke@1 966 while (env1 != null && env1.tree.getTag() != JCTree.CLASSDEF) {
duke@1 967 if (env1.tree.getTag() == JCTree.LABELLED &&
duke@1 968 ((JCLabeledStatement) env1.tree).label == tree.label) {
duke@1 969 log.error(tree.pos(), "label.already.in.use",
duke@1 970 tree.label);
duke@1 971 break;
duke@1 972 }
duke@1 973 env1 = env1.next;
duke@1 974 }
duke@1 975
duke@1 976 attribStat(tree.body, env.dup(tree));
duke@1 977 result = null;
duke@1 978 }
duke@1 979
duke@1 980 public void visitSwitch(JCSwitch tree) {
duke@1 981 Type seltype = attribExpr(tree.selector, env);
duke@1 982
duke@1 983 Env<AttrContext> switchEnv =
duke@1 984 env.dup(tree, env.info.dup(env.info.scope.dup()));
duke@1 985
duke@1 986 boolean enumSwitch =
duke@1 987 allowEnums &&
duke@1 988 (seltype.tsym.flags() & Flags.ENUM) != 0;
darcy@430 989 boolean stringSwitch = false;
darcy@430 990 if (types.isSameType(seltype, syms.stringType)) {
darcy@430 991 if (allowStringsInSwitch) {
darcy@430 992 stringSwitch = true;
darcy@430 993 } else {
darcy@430 994 log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
darcy@430 995 }
darcy@430 996 }
darcy@430 997 if (!enumSwitch && !stringSwitch)
duke@1 998 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
duke@1 999
duke@1 1000 // Attribute all cases and
duke@1 1001 // check that there are no duplicate case labels or default clauses.
duke@1 1002 Set<Object> labels = new HashSet<Object>(); // The set of case labels.
duke@1 1003 boolean hasDefault = false; // Is there a default label?
duke@1 1004 for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
duke@1 1005 JCCase c = l.head;
duke@1 1006 Env<AttrContext> caseEnv =
duke@1 1007 switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
duke@1 1008 if (c.pat != null) {
duke@1 1009 if (enumSwitch) {
duke@1 1010 Symbol sym = enumConstant(c.pat, seltype);
duke@1 1011 if (sym == null) {
mcimadamore@829 1012 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
duke@1 1013 } else if (!labels.add(sym)) {
duke@1 1014 log.error(c.pos(), "duplicate.case.label");
duke@1 1015 }
duke@1 1016 } else {
duke@1 1017 Type pattype = attribExpr(c.pat, switchEnv, seltype);
duke@1 1018 if (pattype.tag != ERROR) {
duke@1 1019 if (pattype.constValue() == null) {
darcy@430 1020 log.error(c.pat.pos(),
darcy@430 1021 (stringSwitch ? "string.const.req" : "const.expr.req"));
duke@1 1022 } else if (labels.contains(pattype.constValue())) {
duke@1 1023 log.error(c.pos(), "duplicate.case.label");
duke@1 1024 } else {
duke@1 1025 labels.add(pattype.constValue());
duke@1 1026 }
duke@1 1027 }
duke@1 1028 }
duke@1 1029 } else if (hasDefault) {
duke@1 1030 log.error(c.pos(), "duplicate.default.label");
duke@1 1031 } else {
duke@1 1032 hasDefault = true;
duke@1 1033 }
duke@1 1034 attribStats(c.stats, caseEnv);
duke@1 1035 caseEnv.info.scope.leave();
duke@1 1036 addVars(c.stats, switchEnv.info.scope);
duke@1 1037 }
duke@1 1038
duke@1 1039 switchEnv.info.scope.leave();
duke@1 1040 result = null;
duke@1 1041 }
duke@1 1042 // where
duke@1 1043 /** Add any variables defined in stats to the switch scope. */
duke@1 1044 private static void addVars(List<JCStatement> stats, Scope switchScope) {
duke@1 1045 for (;stats.nonEmpty(); stats = stats.tail) {
duke@1 1046 JCTree stat = stats.head;
duke@1 1047 if (stat.getTag() == JCTree.VARDEF)
duke@1 1048 switchScope.enter(((JCVariableDecl) stat).sym);
duke@1 1049 }
duke@1 1050 }
duke@1 1051 // where
duke@1 1052 /** Return the selected enumeration constant symbol, or null. */
duke@1 1053 private Symbol enumConstant(JCTree tree, Type enumType) {
duke@1 1054 if (tree.getTag() != JCTree.IDENT) {
duke@1 1055 log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
duke@1 1056 return syms.errSymbol;
duke@1 1057 }
duke@1 1058 JCIdent ident = (JCIdent)tree;
duke@1 1059 Name name = ident.name;
duke@1 1060 for (Scope.Entry e = enumType.tsym.members().lookup(name);
duke@1 1061 e.scope != null; e = e.next()) {
duke@1 1062 if (e.sym.kind == VAR) {
duke@1 1063 Symbol s = ident.sym = e.sym;
duke@1 1064 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
duke@1 1065 ident.type = s.type;
duke@1 1066 return ((s.flags_field & Flags.ENUM) == 0)
duke@1 1067 ? null : s;
duke@1 1068 }
duke@1 1069 }
duke@1 1070 return null;
duke@1 1071 }
duke@1 1072
duke@1 1073 public void visitSynchronized(JCSynchronized tree) {
duke@1 1074 chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
duke@1 1075 attribStat(tree.body, env);
duke@1 1076 result = null;
duke@1 1077 }
duke@1 1078
duke@1 1079 public void visitTry(JCTry tree) {
darcy@609 1080 // Create a new local environment with a local
darcy@609 1081 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
darcy@609 1082 boolean isTryWithResource = tree.resources.nonEmpty();
darcy@609 1083 // Create a nested environment for attributing the try block if needed
darcy@609 1084 Env<AttrContext> tryEnv = isTryWithResource ?
darcy@609 1085 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
darcy@609 1086 localEnv;
darcy@609 1087 // Attribute resource declarations
darcy@609 1088 for (JCTree resource : tree.resources) {
darcy@609 1089 if (resource.getTag() == JCTree.VARDEF) {
darcy@609 1090 attribStat(resource, tryEnv);
mcimadamore@743 1091 chk.checkType(resource, resource.type, syms.autoCloseableType, "try.not.applicable.to.type");
darcy@609 1092 VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource);
darcy@609 1093 var.setData(ElementKind.RESOURCE_VARIABLE);
darcy@609 1094 } else {
mcimadamore@743 1095 attribExpr(resource, tryEnv, syms.autoCloseableType, "try.not.applicable.to.type");
darcy@609 1096 }
darcy@609 1097 }
duke@1 1098 // Attribute body
darcy@609 1099 attribStat(tree.body, tryEnv);
darcy@609 1100 if (isTryWithResource)
darcy@609 1101 tryEnv.info.scope.leave();
duke@1 1102
duke@1 1103 // Attribute catch clauses
duke@1 1104 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
duke@1 1105 JCCatch c = l.head;
duke@1 1106 Env<AttrContext> catchEnv =
darcy@609 1107 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
duke@1 1108 Type ctype = attribStat(c.param, catchEnv);
mcimadamore@550 1109 if (TreeInfo.isMultiCatch(c)) {
mcimadamore@735 1110 //multi-catch parameter is implicitly marked as final
mcimadamore@735 1111 c.param.sym.flags_field |= FINAL | DISJUNCTION;
mcimadamore@550 1112 }
jjg@723 1113 if (c.param.sym.kind == Kinds.VAR) {
duke@1 1114 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
duke@1 1115 }
duke@1 1116 chk.checkType(c.param.vartype.pos(),
duke@1 1117 chk.checkClassType(c.param.vartype.pos(), ctype),
duke@1 1118 syms.throwableType);
duke@1 1119 attribStat(c.body, catchEnv);
duke@1 1120 catchEnv.info.scope.leave();
duke@1 1121 }
duke@1 1122
duke@1 1123 // Attribute finalizer
darcy@609 1124 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
darcy@609 1125
darcy@609 1126 localEnv.info.scope.leave();
duke@1 1127 result = null;
duke@1 1128 }
duke@1 1129
duke@1 1130 public void visitConditional(JCConditional tree) {
duke@1 1131 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1132 attribExpr(tree.truepart, env);
duke@1 1133 attribExpr(tree.falsepart, env);
duke@1 1134 result = check(tree,
duke@1 1135 capture(condType(tree.pos(), tree.cond.type,
duke@1 1136 tree.truepart.type, tree.falsepart.type)),
duke@1 1137 VAL, pkind, pt);
duke@1 1138 }
duke@1 1139 //where
duke@1 1140 /** Compute the type of a conditional expression, after
duke@1 1141 * checking that it exists. See Spec 15.25.
duke@1 1142 *
duke@1 1143 * @param pos The source position to be used for
duke@1 1144 * error diagnostics.
duke@1 1145 * @param condtype The type of the expression's condition.
duke@1 1146 * @param thentype The type of the expression's then-part.
duke@1 1147 * @param elsetype The type of the expression's else-part.
duke@1 1148 */
duke@1 1149 private Type condType(DiagnosticPosition pos,
duke@1 1150 Type condtype,
duke@1 1151 Type thentype,
duke@1 1152 Type elsetype) {
duke@1 1153 Type ctype = condType1(pos, condtype, thentype, elsetype);
duke@1 1154
duke@1 1155 // If condition and both arms are numeric constants,
duke@1 1156 // evaluate at compile-time.
duke@1 1157 return ((condtype.constValue() != null) &&
duke@1 1158 (thentype.constValue() != null) &&
duke@1 1159 (elsetype.constValue() != null))
duke@1 1160 ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype)
duke@1 1161 : ctype;
duke@1 1162 }
duke@1 1163 /** Compute the type of a conditional expression, after
duke@1 1164 * checking that it exists. Does not take into
duke@1 1165 * account the special case where condition and both arms
duke@1 1166 * are constants.
duke@1 1167 *
duke@1 1168 * @param pos The source position to be used for error
duke@1 1169 * diagnostics.
duke@1 1170 * @param condtype The type of the expression's condition.
duke@1 1171 * @param thentype The type of the expression's then-part.
duke@1 1172 * @param elsetype The type of the expression's else-part.
duke@1 1173 */
duke@1 1174 private Type condType1(DiagnosticPosition pos, Type condtype,
duke@1 1175 Type thentype, Type elsetype) {
duke@1 1176 // If same type, that is the result
duke@1 1177 if (types.isSameType(thentype, elsetype))
duke@1 1178 return thentype.baseType();
duke@1 1179
duke@1 1180 Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
duke@1 1181 ? thentype : types.unboxedType(thentype);
duke@1 1182 Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
duke@1 1183 ? elsetype : types.unboxedType(elsetype);
duke@1 1184
duke@1 1185 // Otherwise, if both arms can be converted to a numeric
duke@1 1186 // type, return the least numeric type that fits both arms
duke@1 1187 // (i.e. return larger of the two, or return int if one
duke@1 1188 // arm is short, the other is char).
duke@1 1189 if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
duke@1 1190 // If one arm has an integer subrange type (i.e., byte,
duke@1 1191 // short, or char), and the other is an integer constant
duke@1 1192 // that fits into the subrange, return the subrange type.
duke@1 1193 if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
duke@1 1194 types.isAssignable(elseUnboxed, thenUnboxed))
duke@1 1195 return thenUnboxed.baseType();
duke@1 1196 if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
duke@1 1197 types.isAssignable(thenUnboxed, elseUnboxed))
duke@1 1198 return elseUnboxed.baseType();
duke@1 1199
duke@1 1200 for (int i = BYTE; i < VOID; i++) {
duke@1 1201 Type candidate = syms.typeOfTag[i];
duke@1 1202 if (types.isSubtype(thenUnboxed, candidate) &&
duke@1 1203 types.isSubtype(elseUnboxed, candidate))
duke@1 1204 return candidate;
duke@1 1205 }
duke@1 1206 }
duke@1 1207
duke@1 1208 // Those were all the cases that could result in a primitive
duke@1 1209 if (allowBoxing) {
duke@1 1210 if (thentype.isPrimitive())
duke@1 1211 thentype = types.boxedClass(thentype).type;
duke@1 1212 if (elsetype.isPrimitive())
duke@1 1213 elsetype = types.boxedClass(elsetype).type;
duke@1 1214 }
duke@1 1215
duke@1 1216 if (types.isSubtype(thentype, elsetype))
duke@1 1217 return elsetype.baseType();
duke@1 1218 if (types.isSubtype(elsetype, thentype))
duke@1 1219 return thentype.baseType();
duke@1 1220
duke@1 1221 if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
duke@1 1222 log.error(pos, "neither.conditional.subtype",
duke@1 1223 thentype, elsetype);
duke@1 1224 return thentype.baseType();
duke@1 1225 }
duke@1 1226
duke@1 1227 // both are known to be reference types. The result is
duke@1 1228 // lub(thentype,elsetype). This cannot fail, as it will
duke@1 1229 // always be possible to infer "Object" if nothing better.
duke@1 1230 return types.lub(thentype.baseType(), elsetype.baseType());
duke@1 1231 }
duke@1 1232
duke@1 1233 public void visitIf(JCIf tree) {
duke@1 1234 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1235 attribStat(tree.thenpart, env);
duke@1 1236 if (tree.elsepart != null)
duke@1 1237 attribStat(tree.elsepart, env);
duke@1 1238 chk.checkEmptyIf(tree);
duke@1 1239 result = null;
duke@1 1240 }
duke@1 1241
duke@1 1242 public void visitExec(JCExpressionStatement tree) {
mcimadamore@674 1243 //a fresh environment is required for 292 inference to work properly ---
mcimadamore@674 1244 //see Infer.instantiatePolymorphicSignatureInstance()
mcimadamore@674 1245 Env<AttrContext> localEnv = env.dup(tree);
mcimadamore@674 1246 attribExpr(tree.expr, localEnv);
duke@1 1247 result = null;
duke@1 1248 }
duke@1 1249
duke@1 1250 public void visitBreak(JCBreak tree) {
duke@1 1251 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
duke@1 1252 result = null;
duke@1 1253 }
duke@1 1254
duke@1 1255 public void visitContinue(JCContinue tree) {
duke@1 1256 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
duke@1 1257 result = null;
duke@1 1258 }
duke@1 1259 //where
duke@1 1260 /** Return the target of a break or continue statement, if it exists,
duke@1 1261 * report an error if not.
duke@1 1262 * Note: The target of a labelled break or continue is the
duke@1 1263 * (non-labelled) statement tree referred to by the label,
duke@1 1264 * not the tree representing the labelled statement itself.
duke@1 1265 *
duke@1 1266 * @param pos The position to be used for error diagnostics
duke@1 1267 * @param tag The tag of the jump statement. This is either
duke@1 1268 * Tree.BREAK or Tree.CONTINUE.
duke@1 1269 * @param label The label of the jump statement, or null if no
duke@1 1270 * label is given.
duke@1 1271 * @param env The environment current at the jump statement.
duke@1 1272 */
duke@1 1273 private JCTree findJumpTarget(DiagnosticPosition pos,
duke@1 1274 int tag,
duke@1 1275 Name label,
duke@1 1276 Env<AttrContext> env) {
duke@1 1277 // Search environments outwards from the point of jump.
duke@1 1278 Env<AttrContext> env1 = env;
duke@1 1279 LOOP:
duke@1 1280 while (env1 != null) {
duke@1 1281 switch (env1.tree.getTag()) {
duke@1 1282 case JCTree.LABELLED:
duke@1 1283 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
duke@1 1284 if (label == labelled.label) {
duke@1 1285 // If jump is a continue, check that target is a loop.
duke@1 1286 if (tag == JCTree.CONTINUE) {
duke@1 1287 if (labelled.body.getTag() != JCTree.DOLOOP &&
duke@1 1288 labelled.body.getTag() != JCTree.WHILELOOP &&
duke@1 1289 labelled.body.getTag() != JCTree.FORLOOP &&
duke@1 1290 labelled.body.getTag() != JCTree.FOREACHLOOP)
duke@1 1291 log.error(pos, "not.loop.label", label);
duke@1 1292 // Found labelled statement target, now go inwards
duke@1 1293 // to next non-labelled tree.
duke@1 1294 return TreeInfo.referencedStatement(labelled);
duke@1 1295 } else {
duke@1 1296 return labelled;
duke@1 1297 }
duke@1 1298 }
duke@1 1299 break;
duke@1 1300 case JCTree.DOLOOP:
duke@1 1301 case JCTree.WHILELOOP:
duke@1 1302 case JCTree.FORLOOP:
duke@1 1303 case JCTree.FOREACHLOOP:
duke@1 1304 if (label == null) return env1.tree;
duke@1 1305 break;
duke@1 1306 case JCTree.SWITCH:
duke@1 1307 if (label == null && tag == JCTree.BREAK) return env1.tree;
duke@1 1308 break;
duke@1 1309 case JCTree.METHODDEF:
duke@1 1310 case JCTree.CLASSDEF:
duke@1 1311 break LOOP;
duke@1 1312 default:
duke@1 1313 }
duke@1 1314 env1 = env1.next;
duke@1 1315 }
duke@1 1316 if (label != null)
duke@1 1317 log.error(pos, "undef.label", label);
duke@1 1318 else if (tag == JCTree.CONTINUE)
duke@1 1319 log.error(pos, "cont.outside.loop");
duke@1 1320 else
duke@1 1321 log.error(pos, "break.outside.switch.loop");
duke@1 1322 return null;
duke@1 1323 }
duke@1 1324
duke@1 1325 public void visitReturn(JCReturn tree) {
duke@1 1326 // Check that there is an enclosing method which is
duke@1 1327 // nested within than the enclosing class.
duke@1 1328 if (env.enclMethod == null ||
duke@1 1329 env.enclMethod.sym.owner != env.enclClass.sym) {
duke@1 1330 log.error(tree.pos(), "ret.outside.meth");
duke@1 1331
duke@1 1332 } else {
duke@1 1333 // Attribute return expression, if it exists, and check that
duke@1 1334 // it conforms to result type of enclosing method.
duke@1 1335 Symbol m = env.enclMethod.sym;
duke@1 1336 if (m.type.getReturnType().tag == VOID) {
duke@1 1337 if (tree.expr != null)
duke@1 1338 log.error(tree.expr.pos(),
duke@1 1339 "cant.ret.val.from.meth.decl.void");
duke@1 1340 } else if (tree.expr == null) {
duke@1 1341 log.error(tree.pos(), "missing.ret.val");
duke@1 1342 } else {
duke@1 1343 attribExpr(tree.expr, env, m.type.getReturnType());
duke@1 1344 }
duke@1 1345 }
duke@1 1346 result = null;
duke@1 1347 }
duke@1 1348
duke@1 1349 public void visitThrow(JCThrow tree) {
duke@1 1350 attribExpr(tree.expr, env, syms.throwableType);
duke@1 1351 result = null;
duke@1 1352 }
duke@1 1353
duke@1 1354 public void visitAssert(JCAssert tree) {
duke@1 1355 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1356 if (tree.detail != null) {
duke@1 1357 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
duke@1 1358 }
duke@1 1359 result = null;
duke@1 1360 }
duke@1 1361
duke@1 1362 /** Visitor method for method invocations.
duke@1 1363 * NOTE: The method part of an application will have in its type field
duke@1 1364 * the return type of the method, not the method's type itself!
duke@1 1365 */
duke@1 1366 public void visitApply(JCMethodInvocation tree) {
duke@1 1367 // The local environment of a method application is
duke@1 1368 // a new environment nested in the current one.
duke@1 1369 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
duke@1 1370
duke@1 1371 // The types of the actual method arguments.
duke@1 1372 List<Type> argtypes;
duke@1 1373
duke@1 1374 // The types of the actual method type arguments.
duke@1 1375 List<Type> typeargtypes = null;
duke@1 1376
duke@1 1377 Name methName = TreeInfo.name(tree.meth);
duke@1 1378
duke@1 1379 boolean isConstructorCall =
duke@1 1380 methName == names._this || methName == names._super;
duke@1 1381
duke@1 1382 if (isConstructorCall) {
duke@1 1383 // We are seeing a ...this(...) or ...super(...) call.
duke@1 1384 // Check that this is the first statement in a constructor.
duke@1 1385 if (checkFirstConstructorStat(tree, env)) {
duke@1 1386
duke@1 1387 // Record the fact
duke@1 1388 // that this is a constructor call (using isSelfCall).
duke@1 1389 localEnv.info.isSelfCall = true;
duke@1 1390
duke@1 1391 // Attribute arguments, yielding list of argument types.
duke@1 1392 argtypes = attribArgs(tree.args, localEnv);
duke@1 1393 typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1394
duke@1 1395 // Variable `site' points to the class in which the called
duke@1 1396 // constructor is defined.
duke@1 1397 Type site = env.enclClass.sym.type;
duke@1 1398 if (methName == names._super) {
duke@1 1399 if (site == syms.objectType) {
duke@1 1400 log.error(tree.meth.pos(), "no.superclass", site);
jjg@110 1401 site = types.createErrorType(syms.objectType);
duke@1 1402 } else {
duke@1 1403 site = types.supertype(site);
duke@1 1404 }
duke@1 1405 }
duke@1 1406
duke@1 1407 if (site.tag == CLASS) {
mcimadamore@361 1408 Type encl = site.getEnclosingType();
mcimadamore@361 1409 while (encl != null && encl.tag == TYPEVAR)
mcimadamore@361 1410 encl = encl.getUpperBound();
mcimadamore@361 1411 if (encl.tag == CLASS) {
duke@1 1412 // we are calling a nested class
duke@1 1413
duke@1 1414 if (tree.meth.getTag() == JCTree.SELECT) {
duke@1 1415 JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
duke@1 1416
duke@1 1417 // We are seeing a prefixed call, of the form
duke@1 1418 // <expr>.super(...).
duke@1 1419 // Check that the prefix expression conforms
duke@1 1420 // to the outer instance type of the class.
duke@1 1421 chk.checkRefType(qualifier.pos(),
duke@1 1422 attribExpr(qualifier, localEnv,
mcimadamore@361 1423 encl));
duke@1 1424 } else if (methName == names._super) {
duke@1 1425 // qualifier omitted; check for existence
duke@1 1426 // of an appropriate implicit qualifier.
duke@1 1427 rs.resolveImplicitThis(tree.meth.pos(),
mcimadamore@901 1428 localEnv, site, true);
duke@1 1429 }
duke@1 1430 } else if (tree.meth.getTag() == JCTree.SELECT) {
duke@1 1431 log.error(tree.meth.pos(), "illegal.qual.not.icls",
duke@1 1432 site.tsym);
duke@1 1433 }
duke@1 1434
duke@1 1435 // if we're calling a java.lang.Enum constructor,
duke@1 1436 // prefix the implicit String and int parameters
duke@1 1437 if (site.tsym == syms.enumSym && allowEnums)
duke@1 1438 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
duke@1 1439
duke@1 1440 // Resolve the called constructor under the assumption
duke@1 1441 // that we are referring to a superclass instance of the
duke@1 1442 // current instance (JLS ???).
duke@1 1443 boolean selectSuperPrev = localEnv.info.selectSuper;
duke@1 1444 localEnv.info.selectSuper = true;
duke@1 1445 localEnv.info.varArgs = false;
duke@1 1446 Symbol sym = rs.resolveConstructor(
duke@1 1447 tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
duke@1 1448 localEnv.info.selectSuper = selectSuperPrev;
duke@1 1449
duke@1 1450 // Set method symbol to resolved constructor...
duke@1 1451 TreeInfo.setSymbol(tree.meth, sym);
duke@1 1452
duke@1 1453 // ...and check that it is legal in the current context.
duke@1 1454 // (this will also set the tree's type)
duke@1 1455 Type mpt = newMethTemplate(argtypes, typeargtypes);
duke@1 1456 checkId(tree.meth, site, sym, localEnv, MTH,
duke@1 1457 mpt, tree.varargsElement != null);
duke@1 1458 }
duke@1 1459 // Otherwise, `site' is an error type and we do nothing
duke@1 1460 }
duke@1 1461 result = tree.type = syms.voidType;
duke@1 1462 } else {
duke@1 1463 // Otherwise, we are seeing a regular method call.
duke@1 1464 // Attribute the arguments, yielding list of argument types, ...
duke@1 1465 argtypes = attribArgs(tree.args, localEnv);
jrose@267 1466 typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
duke@1 1467
duke@1 1468 // ... and attribute the method using as a prototype a methodtype
duke@1 1469 // whose formal argument types is exactly the list of actual
duke@1 1470 // arguments (this will also set the method symbol).
duke@1 1471 Type mpt = newMethTemplate(argtypes, typeargtypes);
duke@1 1472 localEnv.info.varArgs = false;
duke@1 1473 Type mtype = attribExpr(tree.meth, localEnv, mpt);
duke@1 1474 if (localEnv.info.varArgs)
jjg@816 1475 Assert.check(mtype.isErroneous() || tree.varargsElement != null);
duke@1 1476
duke@1 1477 // Compute the result type.
duke@1 1478 Type restype = mtype.getReturnType();
mcimadamore@689 1479 if (restype.tag == WILDCARD)
mcimadamore@689 1480 throw new AssertionError(mtype);
duke@1 1481
duke@1 1482 // as a special case, array.clone() has a result that is
duke@1 1483 // the same as static type of the array being cloned
duke@1 1484 if (tree.meth.getTag() == JCTree.SELECT &&
duke@1 1485 allowCovariantReturns &&
duke@1 1486 methName == names.clone &&
duke@1 1487 types.isArray(((JCFieldAccess) tree.meth).selected.type))
duke@1 1488 restype = ((JCFieldAccess) tree.meth).selected.type;
duke@1 1489
duke@1 1490 // as a special case, x.getClass() has type Class<? extends |X|>
duke@1 1491 if (allowGenerics &&
duke@1 1492 methName == names.getClass && tree.args.isEmpty()) {
duke@1 1493 Type qualifier = (tree.meth.getTag() == JCTree.SELECT)
duke@1 1494 ? ((JCFieldAccess) tree.meth).selected.type
duke@1 1495 : env.enclClass.sym.type;
duke@1 1496 restype = new
duke@1 1497 ClassType(restype.getEnclosingType(),
duke@1 1498 List.<Type>of(new WildcardType(types.erasure(qualifier),
duke@1 1499 BoundKind.EXTENDS,
duke@1 1500 syms.boundClass)),
duke@1 1501 restype.tsym);
duke@1 1502 }
duke@1 1503
mcimadamore@820 1504 chk.checkRefTypes(tree.typeargs, typeargtypes);
jrose@267 1505
duke@1 1506 // Check that value of resulting type is admissible in the
duke@1 1507 // current context. Also, capture the return type
mcimadamore@536 1508 result = check(tree, capture(restype), VAL, pkind, pt);
duke@1 1509 }
mcimadamore@122 1510 chk.validate(tree.typeargs, localEnv);
duke@1 1511 }
duke@1 1512 //where
duke@1 1513 /** Check that given application node appears as first statement
duke@1 1514 * in a constructor call.
duke@1 1515 * @param tree The application node
duke@1 1516 * @param env The environment current at the application.
duke@1 1517 */
duke@1 1518 boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
duke@1 1519 JCMethodDecl enclMethod = env.enclMethod;
duke@1 1520 if (enclMethod != null && enclMethod.name == names.init) {
duke@1 1521 JCBlock body = enclMethod.body;
duke@1 1522 if (body.stats.head.getTag() == JCTree.EXEC &&
duke@1 1523 ((JCExpressionStatement) body.stats.head).expr == tree)
duke@1 1524 return true;
duke@1 1525 }
duke@1 1526 log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
duke@1 1527 TreeInfo.name(tree.meth));
duke@1 1528 return false;
duke@1 1529 }
duke@1 1530
duke@1 1531 /** Obtain a method type with given argument types.
duke@1 1532 */
duke@1 1533 Type newMethTemplate(List<Type> argtypes, List<Type> typeargtypes) {
duke@1 1534 MethodType mt = new MethodType(argtypes, null, null, syms.methodClass);
duke@1 1535 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
duke@1 1536 }
duke@1 1537
duke@1 1538 public void visitNewClass(JCNewClass tree) {
jjg@110 1539 Type owntype = types.createErrorType(tree.type);
duke@1 1540
duke@1 1541 // The local environment of a class creation is
duke@1 1542 // a new environment nested in the current one.
duke@1 1543 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
duke@1 1544
duke@1 1545 // The anonymous inner class definition of the new expression,
duke@1 1546 // if one is defined by it.
duke@1 1547 JCClassDecl cdef = tree.def;
duke@1 1548
duke@1 1549 // If enclosing class is given, attribute it, and
duke@1 1550 // complete class name to be fully qualified
duke@1 1551 JCExpression clazz = tree.clazz; // Class field following new
duke@1 1552 JCExpression clazzid = // Identifier in class field
duke@1 1553 (clazz.getTag() == JCTree.TYPEAPPLY)
duke@1 1554 ? ((JCTypeApply) clazz).clazz
duke@1 1555 : clazz;
duke@1 1556
duke@1 1557 JCExpression clazzid1 = clazzid; // The same in fully qualified form
duke@1 1558
duke@1 1559 if (tree.encl != null) {
duke@1 1560 // We are seeing a qualified new, of the form
duke@1 1561 // <expr>.new C <...> (...) ...
duke@1 1562 // In this case, we let clazz stand for the name of the
duke@1 1563 // allocated class C prefixed with the type of the qualifier
duke@1 1564 // expression, so that we can
duke@1 1565 // resolve it with standard techniques later. I.e., if
duke@1 1566 // <expr> has type T, then <expr>.new C <...> (...)
duke@1 1567 // yields a clazz T.C.
duke@1 1568 Type encltype = chk.checkRefType(tree.encl.pos(),
duke@1 1569 attribExpr(tree.encl, env));
duke@1 1570 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
duke@1 1571 ((JCIdent) clazzid).name);
duke@1 1572 if (clazz.getTag() == JCTree.TYPEAPPLY)
duke@1 1573 clazz = make.at(tree.pos).
duke@1 1574 TypeApply(clazzid1,
duke@1 1575 ((JCTypeApply) clazz).arguments);
duke@1 1576 else
duke@1 1577 clazz = clazzid1;
duke@1 1578 }
duke@1 1579
duke@1 1580 // Attribute clazz expression and store
duke@1 1581 // symbol + type back into the attributed tree.
mcimadamore@537 1582 Type clazztype = attribType(clazz, env);
mcimadamore@740 1583 Pair<Scope,Scope> mapping = getSyntheticScopeMapping(clazztype, cdef != null);
mcimadamore@537 1584 if (!TreeInfo.isDiamond(tree)) {
mcimadamore@537 1585 clazztype = chk.checkClassType(
mcimadamore@537 1586 tree.clazz.pos(), clazztype, true);
mcimadamore@881 1587 } else if (!clazztype.isErroneous() &&
mcimadamore@881 1588 !clazztype.tsym.type.isParameterized()) {
mcimadamore@881 1589 log.error(tree.clazz.pos(),
mcimadamore@881 1590 "cant.apply.diamond.1",
mcimadamore@881 1591 clazztype, diags.fragment("diamond.non.generic", clazztype));
mcimadamore@537 1592 }
mcimadamore@122 1593 chk.validate(clazz, localEnv);
duke@1 1594 if (tree.encl != null) {
duke@1 1595 // We have to work in this case to store
duke@1 1596 // symbol + type back into the attributed tree.
duke@1 1597 tree.clazz.type = clazztype;
duke@1 1598 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
duke@1 1599 clazzid.type = ((JCIdent) clazzid).sym.type;
duke@1 1600 if (!clazztype.isErroneous()) {
duke@1 1601 if (cdef != null && clazztype.tsym.isInterface()) {
duke@1 1602 log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
duke@1 1603 } else if (clazztype.tsym.isStatic()) {
duke@1 1604 log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
duke@1 1605 }
duke@1 1606 }
duke@1 1607 } else if (!clazztype.tsym.isInterface() &&
duke@1 1608 clazztype.getEnclosingType().tag == CLASS) {
duke@1 1609 // Check for the existence of an apropos outer instance
duke@1 1610 rs.resolveImplicitThis(tree.pos(), env, clazztype);
duke@1 1611 }
duke@1 1612
duke@1 1613 // Attribute constructor arguments.
duke@1 1614 List<Type> argtypes = attribArgs(tree.args, localEnv);
duke@1 1615 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1616
mcimadamore@881 1617 if (TreeInfo.isDiamond(tree) && clazztype.tsym.type.isParameterized()) {
mcimadamore@631 1618 clazztype = attribDiamond(localEnv, tree, clazztype, mapping, argtypes, typeargtypes);
mcimadamore@537 1619 clazz.type = clazztype;
mcimadamore@731 1620 } else if (allowDiamondFinder &&
mcimadamore@731 1621 clazztype.getTypeArguments().nonEmpty() &&
mcimadamore@731 1622 findDiamonds) {
mcimadamore@770 1623 boolean prevDeferDiags = log.deferDiagnostics;
mcimadamore@770 1624 Queue<JCDiagnostic> prevDeferredDiags = log.deferredDiagnostics;
mcimadamore@770 1625 Type inferred = null;
mcimadamore@770 1626 try {
mcimadamore@770 1627 //disable diamond-related diagnostics
mcimadamore@770 1628 log.deferDiagnostics = true;
mcimadamore@770 1629 log.deferredDiagnostics = ListBuffer.lb();
mcimadamore@770 1630 inferred = attribDiamond(localEnv,
mcimadamore@770 1631 tree,
mcimadamore@770 1632 clazztype,
mcimadamore@770 1633 mapping,
mcimadamore@770 1634 argtypes,
mcimadamore@770 1635 typeargtypes);
mcimadamore@770 1636 }
mcimadamore@770 1637 finally {
mcimadamore@770 1638 log.deferDiagnostics = prevDeferDiags;
mcimadamore@770 1639 log.deferredDiagnostics = prevDeferredDiags;
mcimadamore@770 1640 }
mcimadamore@770 1641 if (inferred != null &&
mcimadamore@770 1642 !inferred.isErroneous() &&
mcimadamore@731 1643 inferred.tag == CLASS &&
mcimadamore@731 1644 types.isAssignable(inferred, pt.tag == NONE ? clazztype : pt, Warner.noWarnings) &&
mcimadamore@731 1645 chk.checkDiamond((ClassType)inferred).isEmpty()) {
mcimadamore@731 1646 String key = types.isSameType(clazztype, inferred) ?
mcimadamore@731 1647 "diamond.redundant.args" :
mcimadamore@731 1648 "diamond.redundant.args.1";
mcimadamore@731 1649 log.warning(tree.clazz.pos(), key, clazztype, inferred);
mcimadamore@731 1650 }
mcimadamore@537 1651 }
mcimadamore@537 1652
duke@1 1653 // If we have made no mistakes in the class type...
duke@1 1654 if (clazztype.tag == CLASS) {
duke@1 1655 // Enums may not be instantiated except implicitly
duke@1 1656 if (allowEnums &&
duke@1 1657 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
duke@1 1658 (env.tree.getTag() != JCTree.VARDEF ||
duke@1 1659 (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
duke@1 1660 ((JCVariableDecl) env.tree).init != tree))
duke@1 1661 log.error(tree.pos(), "enum.cant.be.instantiated");
duke@1 1662 // Check that class is not abstract
duke@1 1663 if (cdef == null &&
duke@1 1664 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
duke@1 1665 log.error(tree.pos(), "abstract.cant.be.instantiated",
duke@1 1666 clazztype.tsym);
duke@1 1667 } else if (cdef != null && clazztype.tsym.isInterface()) {
duke@1 1668 // Check that no constructor arguments are given to
duke@1 1669 // anonymous classes implementing an interface
duke@1 1670 if (!argtypes.isEmpty())
duke@1 1671 log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
duke@1 1672
duke@1 1673 if (!typeargtypes.isEmpty())
duke@1 1674 log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
duke@1 1675
duke@1 1676 // Error recovery: pretend no arguments were supplied.
duke@1 1677 argtypes = List.nil();
duke@1 1678 typeargtypes = List.nil();
duke@1 1679 }
duke@1 1680
duke@1 1681 // Resolve the called constructor under the assumption
duke@1 1682 // that we are referring to a superclass instance of the
duke@1 1683 // current instance (JLS ???).
duke@1 1684 else {
duke@1 1685 localEnv.info.selectSuper = cdef != null;
duke@1 1686 localEnv.info.varArgs = false;
duke@1 1687 tree.constructor = rs.resolveConstructor(
duke@1 1688 tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
mcimadamore@630 1689 tree.constructorType = tree.constructor.type.isErroneous() ?
mcimadamore@630 1690 syms.errType :
mcimadamore@630 1691 checkMethod(clazztype,
mcimadamore@630 1692 tree.constructor,
mcimadamore@630 1693 localEnv,
mcimadamore@630 1694 tree.args,
mcimadamore@630 1695 argtypes,
mcimadamore@630 1696 typeargtypes,
mcimadamore@630 1697 localEnv.info.varArgs);
duke@1 1698 if (localEnv.info.varArgs)
jjg@816 1699 Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
duke@1 1700 }
duke@1 1701
duke@1 1702 if (cdef != null) {
duke@1 1703 // We are seeing an anonymous class instance creation.
duke@1 1704 // In this case, the class instance creation
duke@1 1705 // expression
duke@1 1706 //
duke@1 1707 // E.new <typeargs1>C<typargs2>(args) { ... }
duke@1 1708 //
duke@1 1709 // is represented internally as
duke@1 1710 //
duke@1 1711 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) .
duke@1 1712 //
duke@1 1713 // This expression is then *transformed* as follows:
duke@1 1714 //
duke@1 1715 // (1) add a STATIC flag to the class definition
duke@1 1716 // if the current environment is static
duke@1 1717 // (2) add an extends or implements clause
duke@1 1718 // (3) add a constructor.
duke@1 1719 //
duke@1 1720 // For instance, if C is a class, and ET is the type of E,
duke@1 1721 // the expression
duke@1 1722 //
duke@1 1723 // E.new <typeargs1>C<typargs2>(args) { ... }
duke@1 1724 //
duke@1 1725 // is translated to (where X is a fresh name and typarams is the
duke@1 1726 // parameter list of the super constructor):
duke@1 1727 //
duke@1 1728 // new <typeargs1>X(<*nullchk*>E, args) where
duke@1 1729 // X extends C<typargs2> {
duke@1 1730 // <typarams> X(ET e, args) {
duke@1 1731 // e.<typeargs1>super(args)
duke@1 1732 // }
duke@1 1733 // ...
duke@1 1734 // }
duke@1 1735 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
mcimadamore@536 1736
duke@1 1737 if (clazztype.tsym.isInterface()) {
duke@1 1738 cdef.implementing = List.of(clazz);
duke@1 1739 } else {
duke@1 1740 cdef.extending = clazz;
duke@1 1741 }
duke@1 1742
duke@1 1743 attribStat(cdef, localEnv);
duke@1 1744
duke@1 1745 // If an outer instance is given,
duke@1 1746 // prefix it to the constructor arguments
duke@1 1747 // and delete it from the new expression
duke@1 1748 if (tree.encl != null && !clazztype.tsym.isInterface()) {
duke@1 1749 tree.args = tree.args.prepend(makeNullCheck(tree.encl));
duke@1 1750 argtypes = argtypes.prepend(tree.encl.type);
duke@1 1751 tree.encl = null;
duke@1 1752 }
duke@1 1753
duke@1 1754 // Reassign clazztype and recompute constructor.
duke@1 1755 clazztype = cdef.sym.type;
duke@1 1756 Symbol sym = rs.resolveConstructor(
duke@1 1757 tree.pos(), localEnv, clazztype, argtypes,
duke@1 1758 typeargtypes, true, tree.varargsElement != null);
jjg@816 1759 Assert.check(sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous());
duke@1 1760 tree.constructor = sym;
mcimadamore@358 1761 if (tree.constructor.kind > ERRONEOUS) {
mcimadamore@358 1762 tree.constructorType = syms.errType;
mcimadamore@358 1763 }
mcimadamore@358 1764 else {
mcimadamore@358 1765 tree.constructorType = checkMethod(clazztype,
mcimadamore@358 1766 tree.constructor,
mcimadamore@358 1767 localEnv,
mcimadamore@358 1768 tree.args,
mcimadamore@358 1769 argtypes,
mcimadamore@358 1770 typeargtypes,
mcimadamore@358 1771 localEnv.info.varArgs);
mcimadamore@358 1772 }
duke@1 1773 }
duke@1 1774
duke@1 1775 if (tree.constructor != null && tree.constructor.kind == MTH)
duke@1 1776 owntype = clazztype;
duke@1 1777 }
duke@1 1778 result = check(tree, owntype, VAL, pkind, pt);
mcimadamore@122 1779 chk.validate(tree.typeargs, localEnv);
duke@1 1780 }
duke@1 1781
mcimadamore@537 1782 Type attribDiamond(Env<AttrContext> env,
mcimadamore@537 1783 JCNewClass tree,
mcimadamore@537 1784 Type clazztype,
mcimadamore@537 1785 Pair<Scope, Scope> mapping,
mcimadamore@537 1786 List<Type> argtypes,
mcimadamore@631 1787 List<Type> typeargtypes) {
mcimadamore@562 1788 if (clazztype.isErroneous() || mapping == erroneousMapping) {
mcimadamore@562 1789 //if the type of the instance creation expression is erroneous,
mcimadamore@562 1790 //or something prevented us to form a valid mapping, return the
mcimadamore@562 1791 //(possibly erroneous) type unchanged
mcimadamore@537 1792 return clazztype;
mcimadamore@537 1793 }
mcimadamore@537 1794 else if (clazztype.isInterface()) {
mcimadamore@537 1795 //if the type of the instance creation expression is an interface
mcimadamore@537 1796 //skip the method resolution step (JLS 15.12.2.7). The type to be
mcimadamore@537 1797 //inferred is of the kind <X1,X2, ... Xn>C<X1,X2, ... Xn>
mcimadamore@615 1798 clazztype = new ForAll(clazztype.tsym.type.allparams(), clazztype.tsym.type) {
mcimadamore@615 1799 @Override
mcimadamore@615 1800 public List<Type> getConstraints(TypeVar tv, ConstraintKind ck) {
mcimadamore@615 1801 switch (ck) {
mcimadamore@615 1802 case EXTENDS: return types.getBounds(tv);
mcimadamore@615 1803 default: return List.nil();
mcimadamore@615 1804 }
mcimadamore@615 1805 }
mcimadamore@615 1806 @Override
mcimadamore@615 1807 public Type inst(List<Type> inferred, Types types) throws Infer.NoInstanceException {
mcimadamore@615 1808 // check that inferred bounds conform to their bounds
mcimadamore@615 1809 infer.checkWithinBounds(tvars,
mcimadamore@615 1810 types.subst(tvars, tvars, inferred), Warner.noWarnings);
mcimadamore@615 1811 return super.inst(inferred, types);
mcimadamore@615 1812 }
mcimadamore@615 1813 };
mcimadamore@537 1814 } else {
mcimadamore@537 1815 //if the type of the instance creation expression is a class type
mcimadamore@537 1816 //apply method resolution inference (JLS 15.12.2.7). The return type
mcimadamore@537 1817 //of the resolved constructor will be a partially instantiated type
mcimadamore@537 1818 ((ClassSymbol) clazztype.tsym).members_field = mapping.snd;
mcimadamore@537 1819 Symbol constructor;
mcimadamore@537 1820 try {
mcimadamore@537 1821 constructor = rs.resolveDiamond(tree.pos(),
mcimadamore@537 1822 env,
mcimadamore@537 1823 clazztype.tsym.type,
mcimadamore@537 1824 argtypes,
mcimadamore@631 1825 typeargtypes);
mcimadamore@537 1826 } finally {
mcimadamore@537 1827 ((ClassSymbol) clazztype.tsym).members_field = mapping.fst;
mcimadamore@537 1828 }
mcimadamore@537 1829 if (constructor.kind == MTH) {
mcimadamore@537 1830 ClassType ct = new ClassType(clazztype.getEnclosingType(),
mcimadamore@537 1831 clazztype.tsym.type.getTypeArguments(),
mcimadamore@537 1832 clazztype.tsym);
mcimadamore@537 1833 clazztype = checkMethod(ct,
mcimadamore@537 1834 constructor,
mcimadamore@537 1835 env,
mcimadamore@537 1836 tree.args,
mcimadamore@537 1837 argtypes,
mcimadamore@537 1838 typeargtypes,
mcimadamore@537 1839 env.info.varArgs).getReturnType();
mcimadamore@537 1840 } else {
mcimadamore@537 1841 clazztype = syms.errType;
mcimadamore@537 1842 }
mcimadamore@537 1843 }
mcimadamore@537 1844 if (clazztype.tag == FORALL && !pt.isErroneous()) {
mcimadamore@537 1845 //if the resolved constructor's return type has some uninferred
mcimadamore@537 1846 //type-variables, infer them using the expected type and declared
mcimadamore@537 1847 //bounds (JLS 15.12.2.8).
mcimadamore@537 1848 try {
mcimadamore@537 1849 clazztype = infer.instantiateExpr((ForAll) clazztype,
mcimadamore@537 1850 pt.tag == NONE ? syms.objectType : pt,
mcimadamore@537 1851 Warner.noWarnings);
mcimadamore@537 1852 } catch (Infer.InferenceException ex) {
mcimadamore@537 1853 //an error occurred while inferring uninstantiated type-variables
mcimadamore@631 1854 log.error(tree.clazz.pos(),
mcimadamore@631 1855 "cant.apply.diamond.1",
mcimadamore@631 1856 diags.fragment("diamond", clazztype.tsym),
mcimadamore@631 1857 ex.diagnostic);
mcimadamore@631 1858 }
mcimadamore@631 1859 }
mcimadamore@631 1860 clazztype = chk.checkClassType(tree.clazz.pos(),
mcimadamore@631 1861 clazztype,
mcimadamore@631 1862 true);
mcimadamore@631 1863 if (clazztype.tag == CLASS) {
mcimadamore@631 1864 List<Type> invalidDiamondArgs = chk.checkDiamond((ClassType)clazztype);
mcimadamore@631 1865 if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
mcimadamore@631 1866 //one or more types inferred in the previous steps is either a
mcimadamore@631 1867 //captured type or an intersection type --- we need to report an error.
mcimadamore@631 1868 String subkey = invalidDiamondArgs.size() > 1 ?
mcimadamore@631 1869 "diamond.invalid.args" :
mcimadamore@631 1870 "diamond.invalid.arg";
mcimadamore@631 1871 //The error message is of the kind:
mcimadamore@631 1872 //
mcimadamore@631 1873 //cannot infer type arguments for {clazztype}<>;
mcimadamore@631 1874 //reason: {subkey}
mcimadamore@631 1875 //
mcimadamore@631 1876 //where subkey is a fragment of the kind:
mcimadamore@631 1877 //
mcimadamore@631 1878 //type argument(s) {invalidDiamondArgs} inferred for {clazztype}<> is not allowed in this context
mcimadamore@631 1879 log.error(tree.clazz.pos(),
mcimadamore@537 1880 "cant.apply.diamond.1",
mcimadamore@537 1881 diags.fragment("diamond", clazztype.tsym),
mcimadamore@631 1882 diags.fragment(subkey,
mcimadamore@631 1883 invalidDiamondArgs,
mcimadamore@631 1884 diags.fragment("diamond", clazztype.tsym)));
mcimadamore@537 1885 }
mcimadamore@537 1886 }
mcimadamore@537 1887 return clazztype;
mcimadamore@537 1888 }
mcimadamore@537 1889
mcimadamore@537 1890 /** Creates a synthetic scope containing fake generic constructors.
mcimadamore@537 1891 * Assuming that the original scope contains a constructor of the kind:
mcimadamore@537 1892 * Foo(X x, Y y), where X,Y are class type-variables declared in Foo,
mcimadamore@537 1893 * the synthetic scope is added a generic constructor of the kind:
mcimadamore@537 1894 * <X,Y>Foo<X,Y>(X x, Y y). This is crucial in order to enable diamond
mcimadamore@537 1895 * inference. The inferred return type of the synthetic constructor IS
mcimadamore@537 1896 * the inferred type for the diamond operator.
mcimadamore@537 1897 */
mcimadamore@740 1898 private Pair<Scope, Scope> getSyntheticScopeMapping(Type ctype, boolean overrideProtectedAccess) {
mcimadamore@562 1899 if (ctype.tag != CLASS) {
mcimadamore@562 1900 return erroneousMapping;
mcimadamore@562 1901 }
mcimadamore@537 1902 Pair<Scope, Scope> mapping =
mcimadamore@537 1903 new Pair<Scope, Scope>(ctype.tsym.members(), new Scope(ctype.tsym));
mcimadamore@537 1904 List<Type> typevars = ctype.tsym.type.getTypeArguments();
mcimadamore@537 1905 for (Scope.Entry e = mapping.fst.lookup(names.init);
mcimadamore@537 1906 e.scope != null;
mcimadamore@537 1907 e = e.next()) {
mcimadamore@537 1908 MethodSymbol newConstr = (MethodSymbol) e.sym.clone(ctype.tsym);
mcimadamore@740 1909 if (overrideProtectedAccess && (newConstr.flags() & PROTECTED) != 0) {
mcimadamore@740 1910 //make protected constructor public (this is required for
mcimadamore@740 1911 //anonymous inner class creation expressions using diamond)
mcimadamore@740 1912 newConstr.flags_field |= PUBLIC;
mcimadamore@740 1913 newConstr.flags_field &= ~PROTECTED;
mcimadamore@740 1914 }
mcimadamore@537 1915 newConstr.name = names.init;
mcimadamore@537 1916 List<Type> oldTypeargs = List.nil();
mcimadamore@537 1917 if (newConstr.type.tag == FORALL) {
mcimadamore@537 1918 oldTypeargs = ((ForAll) newConstr.type).tvars;
mcimadamore@537 1919 }
mcimadamore@537 1920 newConstr.type = new MethodType(newConstr.type.getParameterTypes(),
mcimadamore@537 1921 new ClassType(ctype.getEnclosingType(), ctype.tsym.type.getTypeArguments(), ctype.tsym),
mcimadamore@537 1922 newConstr.type.getThrownTypes(),
mcimadamore@537 1923 syms.methodClass);
mcimadamore@537 1924 newConstr.type = new ForAll(typevars.prependList(oldTypeargs), newConstr.type);
mcimadamore@537 1925 mapping.snd.enter(newConstr);
mcimadamore@537 1926 }
mcimadamore@537 1927 return mapping;
mcimadamore@537 1928 }
mcimadamore@537 1929
mcimadamore@562 1930 private final Pair<Scope,Scope> erroneousMapping = new Pair<Scope,Scope>(null, null);
mcimadamore@562 1931
duke@1 1932 /** Make an attributed null check tree.
duke@1 1933 */
duke@1 1934 public JCExpression makeNullCheck(JCExpression arg) {
duke@1 1935 // optimization: X.this is never null; skip null check
duke@1 1936 Name name = TreeInfo.name(arg);
duke@1 1937 if (name == names._this || name == names._super) return arg;
duke@1 1938
duke@1 1939 int optag = JCTree.NULLCHK;
duke@1 1940 JCUnary tree = make.at(arg.pos).Unary(optag, arg);
duke@1 1941 tree.operator = syms.nullcheck;
duke@1 1942 tree.type = arg.type;
duke@1 1943 return tree;
duke@1 1944 }
duke@1 1945
duke@1 1946 public void visitNewArray(JCNewArray tree) {
jjg@110 1947 Type owntype = types.createErrorType(tree.type);
duke@1 1948 Type elemtype;
duke@1 1949 if (tree.elemtype != null) {
duke@1 1950 elemtype = attribType(tree.elemtype, env);
mcimadamore@122 1951 chk.validate(tree.elemtype, env);
duke@1 1952 owntype = elemtype;
duke@1 1953 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
duke@1 1954 attribExpr(l.head, env, syms.intType);
duke@1 1955 owntype = new ArrayType(owntype, syms.arrayClass);
duke@1 1956 }
duke@1 1957 } else {
duke@1 1958 // we are seeing an untyped aggregate { ... }
duke@1 1959 // this is allowed only if the prototype is an array
duke@1 1960 if (pt.tag == ARRAY) {
duke@1 1961 elemtype = types.elemtype(pt);
duke@1 1962 } else {
duke@1 1963 if (pt.tag != ERROR) {
duke@1 1964 log.error(tree.pos(), "illegal.initializer.for.type",
duke@1 1965 pt);
duke@1 1966 }
jjg@110 1967 elemtype = types.createErrorType(pt);
duke@1 1968 }
duke@1 1969 }
duke@1 1970 if (tree.elems != null) {
duke@1 1971 attribExprs(tree.elems, env, elemtype);
duke@1 1972 owntype = new ArrayType(elemtype, syms.arrayClass);
duke@1 1973 }
duke@1 1974 if (!types.isReifiable(elemtype))
duke@1 1975 log.error(tree.pos(), "generic.array.creation");
duke@1 1976 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1977 }
duke@1 1978
duke@1 1979 public void visitParens(JCParens tree) {
duke@1 1980 Type owntype = attribTree(tree.expr, env, pkind, pt);
duke@1 1981 result = check(tree, owntype, pkind, pkind, pt);
duke@1 1982 Symbol sym = TreeInfo.symbol(tree);
duke@1 1983 if (sym != null && (sym.kind&(TYP|PCK)) != 0)
duke@1 1984 log.error(tree.pos(), "illegal.start.of.type");
duke@1 1985 }
duke@1 1986
duke@1 1987 public void visitAssign(JCAssign tree) {
duke@1 1988 Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType);
duke@1 1989 Type capturedType = capture(owntype);
duke@1 1990 attribExpr(tree.rhs, env, owntype);
duke@1 1991 result = check(tree, capturedType, VAL, pkind, pt);
duke@1 1992 }
duke@1 1993
duke@1 1994 public void visitAssignop(JCAssignOp tree) {
duke@1 1995 // Attribute arguments.
duke@1 1996 Type owntype = attribTree(tree.lhs, env, VAR, Type.noType);
duke@1 1997 Type operand = attribExpr(tree.rhs, env);
duke@1 1998 // Find operator.
duke@1 1999 Symbol operator = tree.operator = rs.resolveBinaryOperator(
duke@1 2000 tree.pos(), tree.getTag() - JCTree.ASGOffset, env,
duke@1 2001 owntype, operand);
duke@1 2002
mcimadamore@853 2003 if (operator.kind == MTH &&
mcimadamore@853 2004 !owntype.isErroneous() &&
mcimadamore@853 2005 !operand.isErroneous()) {
duke@1 2006 chk.checkOperator(tree.pos(),
duke@1 2007 (OperatorSymbol)operator,
duke@1 2008 tree.getTag() - JCTree.ASGOffset,
duke@1 2009 owntype,
duke@1 2010 operand);
jjg@9 2011 chk.checkDivZero(tree.rhs.pos(), operator, operand);
jjg@9 2012 chk.checkCastable(tree.rhs.pos(),
jjg@9 2013 operator.type.getReturnType(),
jjg@9 2014 owntype);
duke@1 2015 }
duke@1 2016 result = check(tree, owntype, VAL, pkind, pt);
duke@1 2017 }
duke@1 2018
duke@1 2019 public void visitUnary(JCUnary tree) {
duke@1 2020 // Attribute arguments.
duke@1 2021 Type argtype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
duke@1 2022 ? attribTree(tree.arg, env, VAR, Type.noType)
duke@1 2023 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
duke@1 2024
duke@1 2025 // Find operator.
duke@1 2026 Symbol operator = tree.operator =
duke@1 2027 rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
duke@1 2028
jjg@110 2029 Type owntype = types.createErrorType(tree.type);
mcimadamore@853 2030 if (operator.kind == MTH &&
mcimadamore@853 2031 !argtype.isErroneous()) {
duke@1 2032 owntype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
duke@1 2033 ? tree.arg.type
duke@1 2034 : operator.type.getReturnType();
duke@1 2035 int opc = ((OperatorSymbol)operator).opcode;
duke@1 2036
duke@1 2037 // If the argument is constant, fold it.
duke@1 2038 if (argtype.constValue() != null) {
duke@1 2039 Type ctype = cfolder.fold1(opc, argtype);
duke@1 2040 if (ctype != null) {
duke@1 2041 owntype = cfolder.coerce(ctype, owntype);
duke@1 2042
duke@1 2043 // Remove constant types from arguments to
duke@1 2044 // conserve space. The parser will fold concatenations
duke@1 2045 // of string literals; the code here also
duke@1 2046 // gets rid of intermediate results when some of the
duke@1 2047 // operands are constant identifiers.
duke@1 2048 if (tree.arg.type.tsym == syms.stringType.tsym) {
duke@1 2049 tree.arg.type = syms.stringType;
duke@1 2050 }
duke@1 2051 }
duke@1 2052 }
duke@1 2053 }
duke@1 2054 result = check(tree, owntype, VAL, pkind, pt);
duke@1 2055 }
duke@1 2056
duke@1 2057 public void visitBinary(JCBinary tree) {
duke@1 2058 // Attribute arguments.
duke@1 2059 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
duke@1 2060 Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
duke@1 2061
duke@1 2062 // Find operator.
duke@1 2063 Symbol operator = tree.operator =
duke@1 2064 rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
duke@1 2065
jjg@110 2066 Type owntype = types.createErrorType(tree.type);
mcimadamore@853 2067 if (operator.kind == MTH &&
mcimadamore@853 2068 !left.isErroneous() &&
mcimadamore@853 2069 !right.isErroneous()) {
duke@1 2070 owntype = operator.type.getReturnType();
duke@1 2071 int opc = chk.checkOperator(tree.lhs.pos(),
duke@1 2072 (OperatorSymbol)operator,
duke@1 2073 tree.getTag(),
duke@1 2074 left,
duke@1 2075 right);
duke@1 2076
duke@1 2077 // If both arguments are constants, fold them.
duke@1 2078 if (left.constValue() != null && right.constValue() != null) {
duke@1 2079 Type ctype = cfolder.fold2(opc, left, right);
duke@1 2080 if (ctype != null) {
duke@1 2081 owntype = cfolder.coerce(ctype, owntype);
duke@1 2082
duke@1 2083 // Remove constant types from arguments to
duke@1 2084 // conserve space. The parser will fold concatenations
duke@1 2085 // of string literals; the code here also
duke@1 2086 // gets rid of intermediate results when some of the
duke@1 2087 // operands are constant identifiers.
duke@1 2088 if (tree.lhs.type.tsym == syms.stringType.tsym) {
duke@1 2089 tree.lhs.type = syms.stringType;
duke@1 2090 }
duke@1 2091 if (tree.rhs.type.tsym == syms.stringType.tsym) {
duke@1 2092 tree.rhs.type = syms.stringType;
duke@1 2093 }
duke@1 2094 }
duke@1 2095 }
duke@1 2096
duke@1 2097 // Check that argument types of a reference ==, != are
duke@1 2098 // castable to each other, (JLS???).
duke@1 2099 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
duke@1 2100 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
duke@1 2101 log.error(tree.pos(), "incomparable.types", left, right);
duke@1 2102 }
duke@1 2103 }
duke@1 2104
duke@1 2105 chk.checkDivZero(tree.rhs.pos(), operator, right);
duke@1 2106 }
duke@1 2107 result = check(tree, owntype, VAL, pkind, pt);
duke@1 2108 }
duke@1 2109
duke@1 2110 public void visitTypeCast(JCTypeCast tree) {
duke@1 2111 Type clazztype = attribType(tree.clazz, env);
mcimadamore@638 2112 chk.validate(tree.clazz, env, false);
mcimadamore@674 2113 //a fresh environment is required for 292 inference to work properly ---
mcimadamore@674 2114 //see Infer.instantiatePolymorphicSignatureInstance()
mcimadamore@674 2115 Env<AttrContext> localEnv = env.dup(tree);
mcimadamore@674 2116 Type exprtype = attribExpr(tree.expr, localEnv, Infer.anyPoly);
duke@1 2117 Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
duke@1 2118 if (exprtype.constValue() != null)
duke@1 2119 owntype = cfolder.coerce(exprtype, owntype);
duke@1 2120 result = check(tree, capture(owntype), VAL, pkind, pt);
duke@1 2121 }
duke@1 2122
duke@1 2123 public void visitTypeTest(JCInstanceOf tree) {
duke@1 2124 Type exprtype = chk.checkNullOrRefType(
duke@1 2125 tree.expr.pos(), attribExpr(tree.expr, env));
duke@1 2126 Type clazztype = chk.checkReifiableReferenceType(
duke@1 2127 tree.clazz.pos(), attribType(tree.clazz, env));
mcimadamore@638 2128 chk.validate(tree.clazz, env, false);
duke@1 2129 chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
duke@1 2130 result = check(tree, syms.booleanType, VAL, pkind, pt);
duke@1 2131 }
duke@1 2132
duke@1 2133 public void visitIndexed(JCArrayAccess tree) {
jjg@110 2134 Type owntype = types.createErrorType(tree.type);
duke@1 2135 Type atype = attribExpr(tree.indexed, env);
duke@1 2136 attribExpr(tree.index, env, syms.intType);
duke@1 2137 if (types.isArray(atype))
duke@1 2138 owntype = types.elemtype(atype);
duke@1 2139 else if (atype.tag != ERROR)
duke@1 2140 log.error(tree.pos(), "array.req.but.found", atype);
duke@1 2141 if ((pkind & VAR) == 0) owntype = capture(owntype);
duke@1 2142 result = check(tree, owntype, VAR, pkind, pt);
duke@1 2143 }
duke@1 2144
duke@1 2145 public void visitIdent(JCIdent tree) {
duke@1 2146 Symbol sym;
duke@1 2147 boolean varArgs = false;
duke@1 2148
duke@1 2149 // Find symbol
duke@1 2150 if (pt.tag == METHOD || pt.tag == FORALL) {
duke@1 2151 // If we are looking for a method, the prototype `pt' will be a
duke@1 2152 // method type with the type of the call's arguments as parameters.
duke@1 2153 env.info.varArgs = false;
duke@1 2154 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments());
duke@1 2155 varArgs = env.info.varArgs;
duke@1 2156 } else if (tree.sym != null && tree.sym.kind != VAR) {
duke@1 2157 sym = tree.sym;
duke@1 2158 } else {
duke@1 2159 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind);
duke@1 2160 }
duke@1 2161 tree.sym = sym;
duke@1 2162
duke@1 2163 // (1) Also find the environment current for the class where
duke@1 2164 // sym is defined (`symEnv').
duke@1 2165 // Only for pre-tiger versions (1.4 and earlier):
duke@1 2166 // (2) Also determine whether we access symbol out of an anonymous
duke@1 2167 // class in a this or super call. This is illegal for instance
duke@1 2168 // members since such classes don't carry a this$n link.
duke@1 2169 // (`noOuterThisPath').
duke@1 2170 Env<AttrContext> symEnv = env;
duke@1 2171 boolean noOuterThisPath = false;
duke@1 2172 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
duke@1 2173 (sym.kind & (VAR | MTH | TYP)) != 0 &&
duke@1 2174 sym.owner.kind == TYP &&
duke@1 2175 tree.name != names._this && tree.name != names._super) {
duke@1 2176
duke@1 2177 // Find environment in which identifier is defined.
duke@1 2178 while (symEnv.outer != null &&
duke@1 2179 !sym.isMemberOf(symEnv.enclClass.sym, types)) {
duke@1 2180 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
duke@1 2181 noOuterThisPath = !allowAnonOuterThis;
duke@1 2182 symEnv = symEnv.outer;
duke@1 2183 }
duke@1 2184 }
duke@1 2185
duke@1 2186 // If symbol is a variable, ...
duke@1 2187 if (sym.kind == VAR) {
duke@1 2188 VarSymbol v = (VarSymbol)sym;
duke@1 2189
duke@1 2190 // ..., evaluate its initializer, if it has one, and check for
duke@1 2191 // illegal forward reference.
duke@1 2192 checkInit(tree, env, v, false);
duke@1 2193
duke@1 2194 // If symbol is a local variable accessed from an embedded
duke@1 2195 // inner class check that it is final.
duke@1 2196 if (v.owner.kind == MTH &&
duke@1 2197 v.owner != env.info.scope.owner &&
duke@1 2198 (v.flags_field & FINAL) == 0) {
duke@1 2199 log.error(tree.pos(),
duke@1 2200 "local.var.accessed.from.icls.needs.final",
duke@1 2201 v);
duke@1 2202 }
duke@1 2203
duke@1 2204 // If we are expecting a variable (as opposed to a value), check
duke@1 2205 // that the variable is assignable in the current environment.
duke@1 2206 if (pkind == VAR)
duke@1 2207 checkAssignable(tree.pos(), v, null, env);
duke@1 2208 }
duke@1 2209
duke@1 2210 // In a constructor body,
duke@1 2211 // if symbol is a field or instance method, check that it is
duke@1 2212 // not accessed before the supertype constructor is called.
duke@1 2213 if ((symEnv.info.isSelfCall || noOuterThisPath) &&
duke@1 2214 (sym.kind & (VAR | MTH)) != 0 &&
duke@1 2215 sym.owner.kind == TYP &&
duke@1 2216 (sym.flags() & STATIC) == 0) {
duke@1 2217 chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
duke@1 2218 }
duke@1 2219 Env<AttrContext> env1 = env;
mcimadamore@28 2220 if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
duke@1 2221 // If the found symbol is inaccessible, then it is
duke@1 2222 // accessed through an enclosing instance. Locate this
duke@1 2223 // enclosing instance:
duke@1 2224 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
duke@1 2225 env1 = env1.outer;
duke@1 2226 }
duke@1 2227 result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs);
duke@1 2228 }
duke@1 2229
duke@1 2230 public void visitSelect(JCFieldAccess tree) {
duke@1 2231 // Determine the expected kind of the qualifier expression.
duke@1 2232 int skind = 0;
duke@1 2233 if (tree.name == names._this || tree.name == names._super ||
duke@1 2234 tree.name == names._class)
duke@1 2235 {
duke@1 2236 skind = TYP;
duke@1 2237 } else {
duke@1 2238 if ((pkind & PCK) != 0) skind = skind | PCK;
duke@1 2239 if ((pkind & TYP) != 0) skind = skind | TYP | PCK;
duke@1 2240 if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
duke@1 2241 }
duke@1 2242
duke@1 2243 // Attribute the qualifier expression, and determine its symbol (if any).
duke@1 2244 Type site = attribTree(tree.selected, env, skind, Infer.anyPoly);
duke@1 2245 if ((pkind & (PCK | TYP)) == 0)
duke@1 2246 site = capture(site); // Capture field access
duke@1 2247
duke@1 2248 // don't allow T.class T[].class, etc
duke@1 2249 if (skind == TYP) {
duke@1 2250 Type elt = site;
duke@1 2251 while (elt.tag == ARRAY)
duke@1 2252 elt = ((ArrayType)elt).elemtype;
duke@1 2253 if (elt.tag == TYPEVAR) {
duke@1 2254 log.error(tree.pos(), "type.var.cant.be.deref");
jjg@110 2255 result = types.createErrorType(tree.type);
duke@1 2256 return;
duke@1 2257 }
duke@1 2258 }
duke@1 2259
duke@1 2260 // If qualifier symbol is a type or `super', assert `selectSuper'
duke@1 2261 // for the selection. This is relevant for determining whether
duke@1 2262 // protected symbols are accessible.
duke@1 2263 Symbol sitesym = TreeInfo.symbol(tree.selected);
duke@1 2264 boolean selectSuperPrev = env.info.selectSuper;
duke@1 2265 env.info.selectSuper =
duke@1 2266 sitesym != null &&
duke@1 2267 sitesym.name == names._super;
duke@1 2268
duke@1 2269 // If selected expression is polymorphic, strip
duke@1 2270 // type parameters and remember in env.info.tvars, so that
duke@1 2271 // they can be added later (in Attr.checkId and Infer.instantiateMethod).
duke@1 2272 if (tree.selected.type.tag == FORALL) {
duke@1 2273 ForAll pstype = (ForAll)tree.selected.type;
duke@1 2274 env.info.tvars = pstype.tvars;
duke@1 2275 site = tree.selected.type = pstype.qtype;
duke@1 2276 }
duke@1 2277
duke@1 2278 // Determine the symbol represented by the selection.
duke@1 2279 env.info.varArgs = false;
mcimadamore@829 2280 Symbol sym = selectSym(tree, sitesym, site, env, pt, pkind);
duke@1 2281 if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) {
duke@1 2282 site = capture(site);
mcimadamore@829 2283 sym = selectSym(tree, sitesym, site, env, pt, pkind);
duke@1 2284 }
duke@1 2285 boolean varArgs = env.info.varArgs;
duke@1 2286 tree.sym = sym;
duke@1 2287
mcimadamore@27 2288 if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR) {
mcimadamore@27 2289 while (site.tag == TYPEVAR) site = site.getUpperBound();
mcimadamore@27 2290 site = capture(site);
mcimadamore@27 2291 }
duke@1 2292
duke@1 2293 // If that symbol is a variable, ...
duke@1 2294 if (sym.kind == VAR) {
duke@1 2295 VarSymbol v = (VarSymbol)sym;
duke@1 2296
duke@1 2297 // ..., evaluate its initializer, if it has one, and check for
duke@1 2298 // illegal forward reference.
duke@1 2299 checkInit(tree, env, v, true);
duke@1 2300
duke@1 2301 // If we are expecting a variable (as opposed to a value), check
duke@1 2302 // that the variable is assignable in the current environment.
duke@1 2303 if (pkind == VAR)
duke@1 2304 checkAssignable(tree.pos(), v, tree.selected, env);
duke@1 2305 }
duke@1 2306
darcy@609 2307 if (sitesym != null &&
darcy@609 2308 sitesym.kind == VAR &&
darcy@609 2309 ((VarSymbol)sitesym).isResourceVariable() &&
darcy@609 2310 sym.kind == MTH &&
darcy@609 2311 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
mcimadamore@795 2312 env.info.lint.isEnabled(LintCategory.TRY)) {
mcimadamore@795 2313 log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
darcy@609 2314 }
darcy@609 2315
duke@1 2316 // Disallow selecting a type from an expression
duke@1 2317 if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
duke@1 2318 tree.type = check(tree.selected, pt,
duke@1 2319 sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt);
duke@1 2320 }
duke@1 2321
duke@1 2322 if (isType(sitesym)) {
duke@1 2323 if (sym.name == names._this) {
duke@1 2324 // If `C' is the currently compiled class, check that
duke@1 2325 // C.this' does not appear in a call to a super(...)
duke@1 2326 if (env.info.isSelfCall &&
duke@1 2327 site.tsym == env.enclClass.sym) {
duke@1 2328 chk.earlyRefError(tree.pos(), sym);
duke@1 2329 }
duke@1 2330 } else {
duke@1 2331 // Check if type-qualified fields or methods are static (JLS)
duke@1 2332 if ((sym.flags() & STATIC) == 0 &&
duke@1 2333 sym.name != names._super &&
duke@1 2334 (sym.kind == VAR || sym.kind == MTH)) {
duke@1 2335 rs.access(rs.new StaticError(sym),
duke@1 2336 tree.pos(), site, sym.name, true);
duke@1 2337 }
duke@1 2338 }
jjg@505 2339 } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
jjg@505 2340 // If the qualified item is not a type and the selected item is static, report
jjg@505 2341 // a warning. Make allowance for the class of an array type e.g. Object[].class)
jjg@505 2342 chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
duke@1 2343 }
duke@1 2344
duke@1 2345 // If we are selecting an instance member via a `super', ...
duke@1 2346 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
duke@1 2347
duke@1 2348 // Check that super-qualified symbols are not abstract (JLS)
duke@1 2349 rs.checkNonAbstract(tree.pos(), sym);
duke@1 2350
duke@1 2351 if (site.isRaw()) {
duke@1 2352 // Determine argument types for site.
duke@1 2353 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
duke@1 2354 if (site1 != null) site = site1;
duke@1 2355 }
duke@1 2356 }
duke@1 2357
duke@1 2358 env.info.selectSuper = selectSuperPrev;
duke@1 2359 result = checkId(tree, site, sym, env, pkind, pt, varArgs);
duke@1 2360 env.info.tvars = List.nil();
duke@1 2361 }
duke@1 2362 //where
duke@1 2363 /** Determine symbol referenced by a Select expression,
duke@1 2364 *
duke@1 2365 * @param tree The select tree.
duke@1 2366 * @param site The type of the selected expression,
duke@1 2367 * @param env The current environment.
duke@1 2368 * @param pt The current prototype.
duke@1 2369 * @param pkind The expected kind(s) of the Select expression.
duke@1 2370 */
duke@1 2371 private Symbol selectSym(JCFieldAccess tree,
mcimadamore@829 2372 Type site,
mcimadamore@829 2373 Env<AttrContext> env,
mcimadamore@829 2374 Type pt,
mcimadamore@829 2375 int pkind) {
mcimadamore@829 2376 return selectSym(tree, site.tsym, site, env, pt, pkind);
mcimadamore@829 2377 }
mcimadamore@829 2378 private Symbol selectSym(JCFieldAccess tree,
mcimadamore@829 2379 Symbol location,
duke@1 2380 Type site,
duke@1 2381 Env<AttrContext> env,
duke@1 2382 Type pt,
duke@1 2383 int pkind) {
duke@1 2384 DiagnosticPosition pos = tree.pos();
duke@1 2385 Name name = tree.name;
duke@1 2386 switch (site.tag) {
duke@1 2387 case PACKAGE:
duke@1 2388 return rs.access(
duke@1 2389 rs.findIdentInPackage(env, site.tsym, name, pkind),
mcimadamore@829 2390 pos, location, site, name, true);
duke@1 2391 case ARRAY:
duke@1 2392 case CLASS:
duke@1 2393 if (pt.tag == METHOD || pt.tag == FORALL) {
duke@1 2394 return rs.resolveQualifiedMethod(
mcimadamore@829 2395 pos, env, location, site, name, pt.getParameterTypes(), pt.getTypeArguments());
duke@1 2396 } else if (name == names._this || name == names._super) {
duke@1 2397 return rs.resolveSelf(pos, env, site.tsym, name);
duke@1 2398 } else if (name == names._class) {
duke@1 2399 // In this case, we have already made sure in
duke@1 2400 // visitSelect that qualifier expression is a type.
duke@1 2401 Type t = syms.classType;
duke@1 2402 List<Type> typeargs = allowGenerics
duke@1 2403 ? List.of(types.erasure(site))
duke@1 2404 : List.<Type>nil();
duke@1 2405 t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
duke@1 2406 return new VarSymbol(
duke@1 2407 STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
duke@1 2408 } else {
duke@1 2409 // We are seeing a plain identifier as selector.
duke@1 2410 Symbol sym = rs.findIdentInType(env, site, name, pkind);
duke@1 2411 if ((pkind & ERRONEOUS) == 0)
mcimadamore@829 2412 sym = rs.access(sym, pos, location, site, name, true);
duke@1 2413 return sym;
duke@1 2414 }
duke@1 2415 case WILDCARD:
duke@1 2416 throw new AssertionError(tree);
duke@1 2417 case TYPEVAR:
duke@1 2418 // Normally, site.getUpperBound() shouldn't be null.
duke@1 2419 // It should only happen during memberEnter/attribBase
mcimadamore@829 2420 // when determining the super type which *must* beac
duke@1 2421 // done before attributing the type variables. In
duke@1 2422 // other words, we are seeing this illegal program:
duke@1 2423 // class B<T> extends A<T.foo> {}
duke@1 2424 Symbol sym = (site.getUpperBound() != null)
mcimadamore@829 2425 ? selectSym(tree, location, capture(site.getUpperBound()), env, pt, pkind)
duke@1 2426 : null;
mcimadamore@361 2427 if (sym == null) {
duke@1 2428 log.error(pos, "type.var.cant.be.deref");
duke@1 2429 return syms.errSymbol;
duke@1 2430 } else {
mcimadamore@155 2431 Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
mcimadamore@155 2432 rs.new AccessError(env, site, sym) :
mcimadamore@155 2433 sym;
mcimadamore@829 2434 rs.access(sym2, pos, location, site, name, true);
duke@1 2435 return sym;
duke@1 2436 }
duke@1 2437 case ERROR:
duke@1 2438 // preserve identifier names through errors
jjg@110 2439 return types.createErrorType(name, site.tsym, site).tsym;
duke@1 2440 default:
duke@1 2441 // The qualifier expression is of a primitive type -- only
duke@1 2442 // .class is allowed for these.
duke@1 2443 if (name == names._class) {
duke@1 2444 // In this case, we have already made sure in Select that
duke@1 2445 // qualifier expression is a type.
duke@1 2446 Type t = syms.classType;
duke@1 2447 Type arg = types.boxedClass(site).type;
duke@1 2448 t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
duke@1 2449 return new VarSymbol(
duke@1 2450 STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
duke@1 2451 } else {
duke@1 2452 log.error(pos, "cant.deref", site);
duke@1 2453 return syms.errSymbol;
duke@1 2454 }
duke@1 2455 }
duke@1 2456 }
duke@1 2457
duke@1 2458 /** Determine type of identifier or select expression and check that
duke@1 2459 * (1) the referenced symbol is not deprecated
duke@1 2460 * (2) the symbol's type is safe (@see checkSafe)
duke@1 2461 * (3) if symbol is a variable, check that its type and kind are
duke@1 2462 * compatible with the prototype and protokind.
duke@1 2463 * (4) if symbol is an instance field of a raw type,
duke@1 2464 * which is being assigned to, issue an unchecked warning if its
duke@1 2465 * type changes under erasure.
duke@1 2466 * (5) if symbol is an instance method of a raw type, issue an
duke@1 2467 * unchecked warning if its argument types change under erasure.
duke@1 2468 * If checks succeed:
duke@1 2469 * If symbol is a constant, return its constant type
duke@1 2470 * else if symbol is a method, return its result type
duke@1 2471 * otherwise return its type.
duke@1 2472 * Otherwise return errType.
duke@1 2473 *
duke@1 2474 * @param tree The syntax tree representing the identifier
duke@1 2475 * @param site If this is a select, the type of the selected
duke@1 2476 * expression, otherwise the type of the current class.
duke@1 2477 * @param sym The symbol representing the identifier.
duke@1 2478 * @param env The current environment.
duke@1 2479 * @param pkind The set of expected kinds.
duke@1 2480 * @param pt The expected type.
duke@1 2481 */
duke@1 2482 Type checkId(JCTree tree,
duke@1 2483 Type site,
duke@1 2484 Symbol sym,
duke@1 2485 Env<AttrContext> env,
duke@1 2486 int pkind,
duke@1 2487 Type pt,
duke@1 2488 boolean useVarargs) {
jjg@110 2489 if (pt.isErroneous()) return types.createErrorType(site);
duke@1 2490 Type owntype; // The computed type of this identifier occurrence.
duke@1 2491 switch (sym.kind) {
duke@1 2492 case TYP:
duke@1 2493 // For types, the computed type equals the symbol's type,
duke@1 2494 // except for two situations:
duke@1 2495 owntype = sym.type;
duke@1 2496 if (owntype.tag == CLASS) {
duke@1 2497 Type ownOuter = owntype.getEnclosingType();
duke@1 2498
duke@1 2499 // (a) If the symbol's type is parameterized, erase it
duke@1 2500 // because no type parameters were given.
duke@1 2501 // We recover generic outer type later in visitTypeApply.
duke@1 2502 if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
duke@1 2503 owntype = types.erasure(owntype);
duke@1 2504 }
duke@1 2505
duke@1 2506 // (b) If the symbol's type is an inner class, then
duke@1 2507 // we have to interpret its outer type as a superclass
duke@1 2508 // of the site type. Example:
duke@1 2509 //
duke@1 2510 // class Tree<A> { class Visitor { ... } }
duke@1 2511 // class PointTree extends Tree<Point> { ... }
duke@1 2512 // ...PointTree.Visitor...
duke@1 2513 //
duke@1 2514 // Then the type of the last expression above is
duke@1 2515 // Tree<Point>.Visitor.
duke@1 2516 else if (ownOuter.tag == CLASS && site != ownOuter) {
duke@1 2517 Type normOuter = site;
duke@1 2518 if (normOuter.tag == CLASS)
duke@1 2519 normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
duke@1 2520 if (normOuter == null) // perhaps from an import
duke@1 2521 normOuter = types.erasure(ownOuter);
duke@1 2522 if (normOuter != ownOuter)
duke@1 2523 owntype = new ClassType(
duke@1 2524 normOuter, List.<Type>nil(), owntype.tsym);
duke@1 2525 }
duke@1 2526 }
duke@1 2527 break;
duke@1 2528 case VAR:
duke@1 2529 VarSymbol v = (VarSymbol)sym;
duke@1 2530 // Test (4): if symbol is an instance field of a raw type,
duke@1 2531 // which is being assigned to, issue an unchecked warning if
duke@1 2532 // its type changes under erasure.
duke@1 2533 if (allowGenerics &&
duke@1 2534 pkind == VAR &&
duke@1 2535 v.owner.kind == TYP &&
duke@1 2536 (v.flags() & STATIC) == 0 &&
duke@1 2537 (site.tag == CLASS || site.tag == TYPEVAR)) {
duke@1 2538 Type s = types.asOuterSuper(site, v.owner);
duke@1 2539 if (s != null &&
duke@1 2540 s.isRaw() &&
duke@1 2541 !types.isSameType(v.type, v.erasure(types))) {
duke@1 2542 chk.warnUnchecked(tree.pos(),
duke@1 2543 "unchecked.assign.to.var",
duke@1 2544 v, s);
duke@1 2545 }
duke@1 2546 }
duke@1 2547 // The computed type of a variable is the type of the
duke@1 2548 // variable symbol, taken as a member of the site type.
duke@1 2549 owntype = (sym.owner.kind == TYP &&
duke@1 2550 sym.name != names._this && sym.name != names._super)
duke@1 2551 ? types.memberType(site, sym)
duke@1 2552 : sym.type;
duke@1 2553
duke@1 2554 if (env.info.tvars.nonEmpty()) {
duke@1 2555 Type owntype1 = new ForAll(env.info.tvars, owntype);
duke@1 2556 for (List<Type> l = env.info.tvars; l.nonEmpty(); l = l.tail)
duke@1 2557 if (!owntype.contains(l.head)) {
duke@1 2558 log.error(tree.pos(), "undetermined.type", owntype1);
jjg@110 2559 owntype1 = types.createErrorType(owntype1);
duke@1 2560 }
duke@1 2561 owntype = owntype1;
duke@1 2562 }
duke@1 2563
duke@1 2564 // If the variable is a constant, record constant value in
duke@1 2565 // computed type.
duke@1 2566 if (v.getConstValue() != null && isStaticReference(tree))
duke@1 2567 owntype = owntype.constType(v.getConstValue());
duke@1 2568
duke@1 2569 if (pkind == VAL) {
duke@1 2570 owntype = capture(owntype); // capture "names as expressions"
duke@1 2571 }
duke@1 2572 break;
duke@1 2573 case MTH: {
duke@1 2574 JCMethodInvocation app = (JCMethodInvocation)env.tree;
duke@1 2575 owntype = checkMethod(site, sym, env, app.args,
duke@1 2576 pt.getParameterTypes(), pt.getTypeArguments(),
duke@1 2577 env.info.varArgs);
duke@1 2578 break;
duke@1 2579 }
duke@1 2580 case PCK: case ERR:
duke@1 2581 owntype = sym.type;
duke@1 2582 break;
duke@1 2583 default:
duke@1 2584 throw new AssertionError("unexpected kind: " + sym.kind +
duke@1 2585 " in tree " + tree);
duke@1 2586 }
duke@1 2587
duke@1 2588 // Test (1): emit a `deprecation' warning if symbol is deprecated.
duke@1 2589 // (for constructors, the error was given when the constructor was
duke@1 2590 // resolved)
mcimadamore@852 2591
mcimadamore@852 2592 if (sym.name != names.init) {
mcimadamore@852 2593 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
mcimadamore@852 2594 chk.checkSunAPI(tree.pos(), sym);
jjg@377 2595 }
duke@1 2596
duke@1 2597 // Test (3): if symbol is a variable, check that its type and
duke@1 2598 // kind are compatible with the prototype and protokind.
duke@1 2599 return check(tree, owntype, sym.kind, pkind, pt);
duke@1 2600 }
duke@1 2601
duke@1 2602 /** Check that variable is initialized and evaluate the variable's
duke@1 2603 * initializer, if not yet done. Also check that variable is not
duke@1 2604 * referenced before it is defined.
duke@1 2605 * @param tree The tree making up the variable reference.
duke@1 2606 * @param env The current environment.
duke@1 2607 * @param v The variable's symbol.
duke@1 2608 */
duke@1 2609 private void checkInit(JCTree tree,
duke@1 2610 Env<AttrContext> env,
duke@1 2611 VarSymbol v,
duke@1 2612 boolean onlyWarning) {
duke@1 2613 // System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
duke@1 2614 // tree.pos + " " + v.pos + " " +
duke@1 2615 // Resolve.isStatic(env));//DEBUG
duke@1 2616
duke@1 2617 // A forward reference is diagnosed if the declaration position
duke@1 2618 // of the variable is greater than the current tree position
duke@1 2619 // and the tree and variable definition occur in the same class
duke@1 2620 // definition. Note that writes don't count as references.
duke@1 2621 // This check applies only to class and instance
duke@1 2622 // variables. Local variables follow different scope rules,
duke@1 2623 // and are subject to definite assignment checking.
mcimadamore@94 2624 if ((env.info.enclVar == v || v.pos > tree.pos) &&
duke@1 2625 v.owner.kind == TYP &&
duke@1 2626 canOwnInitializer(env.info.scope.owner) &&
duke@1 2627 v.owner == env.info.scope.owner.enclClass() &&
duke@1 2628 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
duke@1 2629 (env.tree.getTag() != JCTree.ASSIGN ||
duke@1 2630 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
mcimadamore@94 2631 String suffix = (env.info.enclVar == v) ?
mcimadamore@94 2632 "self.ref" : "forward.ref";
mcimadamore@18 2633 if (!onlyWarning || isStaticEnumField(v)) {
mcimadamore@94 2634 log.error(tree.pos(), "illegal." + suffix);
duke@1 2635 } else if (useBeforeDeclarationWarning) {
mcimadamore@94 2636 log.warning(tree.pos(), suffix, v);
duke@1 2637 }
duke@1 2638 }
duke@1 2639
duke@1 2640 v.getConstValue(); // ensure initializer is evaluated
duke@1 2641
duke@1 2642 checkEnumInitializer(tree, env, v);
duke@1 2643 }
duke@1 2644
duke@1 2645 /**
duke@1 2646 * Check for illegal references to static members of enum. In
duke@1 2647 * an enum type, constructors and initializers may not
duke@1 2648 * reference its static members unless they are constant.
duke@1 2649 *
duke@1 2650 * @param tree The tree making up the variable reference.
duke@1 2651 * @param env The current environment.
duke@1 2652 * @param v The variable's symbol.
duke@1 2653 * @see JLS 3rd Ed. (8.9 Enums)
duke@1 2654 */
duke@1 2655 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
duke@1 2656 // JLS 3rd Ed.:
duke@1 2657 //
duke@1 2658 // "It is a compile-time error to reference a static field
duke@1 2659 // of an enum type that is not a compile-time constant
duke@1 2660 // (15.28) from constructors, instance initializer blocks,
duke@1 2661 // or instance variable initializer expressions of that
duke@1 2662 // type. It is a compile-time error for the constructors,
duke@1 2663 // instance initializer blocks, or instance variable
duke@1 2664 // initializer expressions of an enum constant e to refer
duke@1 2665 // to itself or to an enum constant of the same type that
duke@1 2666 // is declared to the right of e."
mcimadamore@18 2667 if (isStaticEnumField(v)) {
duke@1 2668 ClassSymbol enclClass = env.info.scope.owner.enclClass();
duke@1 2669
duke@1 2670 if (enclClass == null || enclClass.owner == null)
duke@1 2671 return;
duke@1 2672
duke@1 2673 // See if the enclosing class is the enum (or a
duke@1 2674 // subclass thereof) declaring v. If not, this
duke@1 2675 // reference is OK.
duke@1 2676 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
duke@1 2677 return;
duke@1 2678
duke@1 2679 // If the reference isn't from an initializer, then
duke@1 2680 // the reference is OK.
duke@1 2681 if (!Resolve.isInitializer(env))
duke@1 2682 return;
duke@1 2683
duke@1 2684 log.error(tree.pos(), "illegal.enum.static.ref");
duke@1 2685 }
duke@1 2686 }
duke@1 2687
mcimadamore@18 2688 /** Is the given symbol a static, non-constant field of an Enum?
mcimadamore@18 2689 * Note: enum literals should not be regarded as such
mcimadamore@18 2690 */
mcimadamore@18 2691 private boolean isStaticEnumField(VarSymbol v) {
mcimadamore@18 2692 return Flags.isEnum(v.owner) &&
mcimadamore@18 2693 Flags.isStatic(v) &&
mcimadamore@18 2694 !Flags.isConstant(v) &&
mcimadamore@18 2695 v.name != names._class;
duke@1 2696 }
duke@1 2697
duke@1 2698 /** Can the given symbol be the owner of code which forms part
duke@1 2699 * if class initialization? This is the case if the symbol is
duke@1 2700 * a type or field, or if the symbol is the synthetic method.
duke@1 2701 * owning a block.
duke@1 2702 */
duke@1 2703 private boolean canOwnInitializer(Symbol sym) {
duke@1 2704 return
duke@1 2705 (sym.kind & (VAR | TYP)) != 0 ||
duke@1 2706 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
duke@1 2707 }
duke@1 2708
duke@1 2709 Warner noteWarner = new Warner();
duke@1 2710
duke@1 2711 /**
duke@1 2712 * Check that method arguments conform to its instantation.
duke@1 2713 **/
duke@1 2714 public Type checkMethod(Type site,
duke@1 2715 Symbol sym,
duke@1 2716 Env<AttrContext> env,
duke@1 2717 final List<JCExpression> argtrees,
duke@1 2718 List<Type> argtypes,
duke@1 2719 List<Type> typeargtypes,
duke@1 2720 boolean useVarargs) {
duke@1 2721 // Test (5): if symbol is an instance method of a raw type, issue
duke@1 2722 // an unchecked warning if its argument types change under erasure.
duke@1 2723 if (allowGenerics &&
duke@1 2724 (sym.flags() & STATIC) == 0 &&
duke@1 2725 (site.tag == CLASS || site.tag == TYPEVAR)) {
duke@1 2726 Type s = types.asOuterSuper(site, sym.owner);
duke@1 2727 if (s != null && s.isRaw() &&
duke@1 2728 !types.isSameTypes(sym.type.getParameterTypes(),
duke@1 2729 sym.erasure(types).getParameterTypes())) {
duke@1 2730 chk.warnUnchecked(env.tree.pos(),
duke@1 2731 "unchecked.call.mbr.of.raw.type",
duke@1 2732 sym, s);
duke@1 2733 }
duke@1 2734 }
duke@1 2735
duke@1 2736 // Compute the identifier's instantiated type.
duke@1 2737 // For methods, we need to compute the instance type by
duke@1 2738 // Resolve.instantiate from the symbol's type as well as
duke@1 2739 // any type arguments and value arguments.
mcimadamore@795 2740 noteWarner.clear();
duke@1 2741 Type owntype = rs.instantiate(env,
duke@1 2742 site,
duke@1 2743 sym,
duke@1 2744 argtypes,
duke@1 2745 typeargtypes,
duke@1 2746 true,
duke@1 2747 useVarargs,
duke@1 2748 noteWarner);
mcimadamore@795 2749 boolean warned = noteWarner.hasNonSilentLint(LintCategory.UNCHECKED);
duke@1 2750
duke@1 2751 // If this fails, something went wrong; we should not have
duke@1 2752 // found the identifier in the first place.
duke@1 2753 if (owntype == null) {
duke@1 2754 if (!pt.isErroneous())
duke@1 2755 log.error(env.tree.pos(),
duke@1 2756 "internal.error.cant.instantiate",
duke@1 2757 sym, site,
duke@1 2758 Type.toString(pt.getParameterTypes()));
jjg@110 2759 owntype = types.createErrorType(site);
duke@1 2760 } else {
duke@1 2761 // System.out.println("call : " + env.tree);
duke@1 2762 // System.out.println("method : " + owntype);
duke@1 2763 // System.out.println("actuals: " + argtypes);
duke@1 2764 List<Type> formals = owntype.getParameterTypes();
duke@1 2765 Type last = useVarargs ? formals.last() : null;
duke@1 2766 if (sym.name==names.init &&
duke@1 2767 sym.owner == syms.enumSym)
duke@1 2768 formals = formals.tail.tail;
duke@1 2769 List<JCExpression> args = argtrees;
duke@1 2770 while (formals.head != last) {
duke@1 2771 JCTree arg = args.head;
duke@1 2772 Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head);
duke@1 2773 assertConvertible(arg, arg.type, formals.head, warn);
mcimadamore@795 2774 warned |= warn.hasNonSilentLint(LintCategory.UNCHECKED);
duke@1 2775 args = args.tail;
duke@1 2776 formals = formals.tail;
duke@1 2777 }
duke@1 2778 if (useVarargs) {
duke@1 2779 Type varArg = types.elemtype(last);
duke@1 2780 while (args.tail != null) {
duke@1 2781 JCTree arg = args.head;
duke@1 2782 Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg);
duke@1 2783 assertConvertible(arg, arg.type, varArg, warn);
mcimadamore@795 2784 warned |= warn.hasNonSilentLint(LintCategory.UNCHECKED);
duke@1 2785 args = args.tail;
duke@1 2786 }
duke@1 2787 } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
duke@1 2788 // non-varargs call to varargs method
duke@1 2789 Type varParam = owntype.getParameterTypes().last();
duke@1 2790 Type lastArg = argtypes.last();
duke@1 2791 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
duke@1 2792 !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
duke@1 2793 log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
duke@1 2794 types.elemtype(varParam),
duke@1 2795 varParam);
duke@1 2796 }
duke@1 2797
duke@1 2798 if (warned && sym.type.tag == FORALL) {
duke@1 2799 chk.warnUnchecked(env.tree.pos(),
duke@1 2800 "unchecked.meth.invocation.applied",
mcimadamore@161 2801 kindName(sym),
mcimadamore@161 2802 sym.name,
mcimadamore@161 2803 rs.methodArguments(sym.type.getParameterTypes()),
mcimadamore@161 2804 rs.methodArguments(argtypes),
mcimadamore@161 2805 kindName(sym.location()),
mcimadamore@161 2806 sym.location());
duke@1 2807 owntype = new MethodType(owntype.getParameterTypes(),
duke@1 2808 types.erasure(owntype.getReturnType()),
mcimadamore@895 2809 types.erasure(owntype.getThrownTypes()),
duke@1 2810 syms.methodClass);
duke@1 2811 }
duke@1 2812 if (useVarargs) {
duke@1 2813 JCTree tree = env.tree;
mcimadamore@580 2814 Type argtype = owntype.getParameterTypes().last();
mcimadamore@547 2815 if (owntype.getReturnType().tag != FORALL || warned) {
mcimadamore@795 2816 chk.checkVararg(env.tree.pos(), owntype.getParameterTypes(), sym);
mcimadamore@547 2817 }
mcimadamore@580 2818 Type elemtype = types.elemtype(argtype);
duke@1 2819 switch (tree.getTag()) {
duke@1 2820 case JCTree.APPLY:
duke@1 2821 ((JCMethodInvocation) tree).varargsElement = elemtype;
duke@1 2822 break;
duke@1 2823 case JCTree.NEWCLASS:
duke@1 2824 ((JCNewClass) tree).varargsElement = elemtype;
duke@1 2825 break;
duke@1 2826 default:
duke@1 2827 throw new AssertionError(""+tree);
duke@1 2828 }
duke@1 2829 }
duke@1 2830 }
duke@1 2831 return owntype;
duke@1 2832 }
duke@1 2833
duke@1 2834 private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
duke@1 2835 if (types.isConvertible(actual, formal, warn))
duke@1 2836 return;
duke@1 2837
duke@1 2838 if (formal.isCompound()
duke@1 2839 && types.isSubtype(actual, types.supertype(formal))
duke@1 2840 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
duke@1 2841 return;
duke@1 2842
duke@1 2843 if (false) {
duke@1 2844 // TODO: make assertConvertible work
mcimadamore@89 2845 chk.typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal);
duke@1 2846 throw new AssertionError("Tree: " + tree
duke@1 2847 + " actual:" + actual
duke@1 2848 + " formal: " + formal);
duke@1 2849 }
duke@1 2850 }
duke@1 2851
duke@1 2852 public void visitLiteral(JCLiteral tree) {
duke@1 2853 result = check(
duke@1 2854 tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt);
duke@1 2855 }
duke@1 2856 //where
duke@1 2857 /** Return the type of a literal with given type tag.
duke@1 2858 */
duke@1 2859 Type litType(int tag) {
duke@1 2860 return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
duke@1 2861 }
duke@1 2862
duke@1 2863 public void visitTypeIdent(JCPrimitiveTypeTree tree) {
duke@1 2864 result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt);
duke@1 2865 }
duke@1 2866
duke@1 2867 public void visitTypeArray(JCArrayTypeTree tree) {
duke@1 2868 Type etype = attribType(tree.elemtype, env);
duke@1 2869 Type type = new ArrayType(etype, syms.arrayClass);
duke@1 2870 result = check(tree, type, TYP, pkind, pt);
duke@1 2871 }
duke@1 2872
duke@1 2873 /** Visitor method for parameterized types.
duke@1 2874 * Bound checking is left until later, since types are attributed
duke@1 2875 * before supertype structure is completely known
duke@1 2876 */
duke@1 2877 public void visitTypeApply(JCTypeApply tree) {
jjg@110 2878 Type owntype = types.createErrorType(tree.type);
duke@1 2879
duke@1 2880 // Attribute functor part of application and make sure it's a class.
duke@1 2881 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
duke@1 2882
duke@1 2883 // Attribute type parameters
duke@1 2884 List<Type> actuals = attribTypes(tree.arguments, env);
duke@1 2885
duke@1 2886 if (clazztype.tag == CLASS) {
duke@1 2887 List<Type> formals = clazztype.tsym.type.getTypeArguments();
duke@1 2888
mcimadamore@537 2889 if (actuals.length() == formals.length() || actuals.length() == 0) {
duke@1 2890 List<Type> a = actuals;
duke@1 2891 List<Type> f = formals;
duke@1 2892 while (a.nonEmpty()) {
duke@1 2893 a.head = a.head.withTypeVar(f.head);
duke@1 2894 a = a.tail;
duke@1 2895 f = f.tail;
duke@1 2896 }
duke@1 2897 // Compute the proper generic outer
duke@1 2898 Type clazzOuter = clazztype.getEnclosingType();
duke@1 2899 if (clazzOuter.tag == CLASS) {
duke@1 2900 Type site;
jjg@308 2901 JCExpression clazz = TreeInfo.typeIn(tree.clazz);
jjg@308 2902 if (clazz.getTag() == JCTree.IDENT) {
duke@1 2903 site = env.enclClass.sym.type;
jjg@308 2904 } else if (clazz.getTag() == JCTree.SELECT) {
jjg@308 2905 site = ((JCFieldAccess) clazz).selected.type;
duke@1 2906 } else throw new AssertionError(""+tree);
duke@1 2907 if (clazzOuter.tag == CLASS && site != clazzOuter) {
duke@1 2908 if (site.tag == CLASS)
duke@1 2909 site = types.asOuterSuper(site, clazzOuter.tsym);
duke@1 2910 if (site == null)
duke@1 2911 site = types.erasure(clazzOuter);
duke@1 2912 clazzOuter = site;
duke@1 2913 }
duke@1 2914 }
mcimadamore@536 2915 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
duke@1 2916 } else {
duke@1 2917 if (formals.length() != 0) {
duke@1 2918 log.error(tree.pos(), "wrong.number.type.args",
duke@1 2919 Integer.toString(formals.length()));
duke@1 2920 } else {
duke@1 2921 log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
duke@1 2922 }
jjg@110 2923 owntype = types.createErrorType(tree.type);
duke@1 2924 }
duke@1 2925 }
duke@1 2926 result = check(tree, owntype, TYP, pkind, pt);
duke@1 2927 }
duke@1 2928
jjg@724 2929 public void visitTypeDisjunction(JCTypeDisjunction tree) {
mcimadamore@774 2930 ListBuffer<Type> multicatchTypes = ListBuffer.lb();
mcimadamore@774 2931 for (JCExpression typeTree : tree.alternatives) {
mcimadamore@774 2932 Type ctype = attribType(typeTree, env);
mcimadamore@774 2933 ctype = chk.checkType(typeTree.pos(),
mcimadamore@774 2934 chk.checkClassType(typeTree.pos(), ctype),
mcimadamore@774 2935 syms.throwableType);
mcimadamore@774 2936 multicatchTypes.append(ctype);
mcimadamore@774 2937 }
mcimadamore@774 2938 tree.type = result = check(tree, types.lub(multicatchTypes.toList()), TYP, pkind, pt);
mcimadamore@550 2939 }
mcimadamore@550 2940
duke@1 2941 public void visitTypeParameter(JCTypeParameter tree) {
duke@1 2942 TypeVar a = (TypeVar)tree.type;
duke@1 2943 Set<Type> boundSet = new HashSet<Type>();
duke@1 2944 if (a.bound.isErroneous())
duke@1 2945 return;
duke@1 2946 List<Type> bs = types.getBounds(a);
duke@1 2947 if (tree.bounds.nonEmpty()) {
duke@1 2948 // accept class or interface or typevar as first bound.
duke@1 2949 Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
duke@1 2950 boundSet.add(types.erasure(b));
mcimadamore@159 2951 if (b.isErroneous()) {
mcimadamore@159 2952 a.bound = b;
mcimadamore@159 2953 }
mcimadamore@159 2954 else if (b.tag == TYPEVAR) {
duke@1 2955 // if first bound was a typevar, do not accept further bounds.
duke@1 2956 if (tree.bounds.tail.nonEmpty()) {
duke@1 2957 log.error(tree.bounds.tail.head.pos(),
duke@1 2958 "type.var.may.not.be.followed.by.other.bounds");
duke@1 2959 tree.bounds = List.of(tree.bounds.head);
mcimadamore@7 2960 a.bound = bs.head;
duke@1 2961 }
duke@1 2962 } else {
duke@1 2963 // if first bound was a class or interface, accept only interfaces
duke@1 2964 // as further bounds.
duke@1 2965 for (JCExpression bound : tree.bounds.tail) {
duke@1 2966 bs = bs.tail;
duke@1 2967 Type i = checkBase(bs.head, bound, env, false, true, false);
mcimadamore@159 2968 if (i.isErroneous())
mcimadamore@159 2969 a.bound = i;
mcimadamore@159 2970 else if (i.tag == CLASS)
duke@1 2971 chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
duke@1 2972 }
duke@1 2973 }
duke@1 2974 }
duke@1 2975 bs = types.getBounds(a);
duke@1 2976
duke@1 2977 // in case of multiple bounds ...
duke@1 2978 if (bs.length() > 1) {
duke@1 2979 // ... the variable's bound is a class type flagged COMPOUND
duke@1 2980 // (see comment for TypeVar.bound).
duke@1 2981 // In this case, generate a class tree that represents the
duke@1 2982 // bound class, ...
jjg@904 2983 JCExpression extending;
duke@1 2984 List<JCExpression> implementing;
duke@1 2985 if ((bs.head.tsym.flags() & INTERFACE) == 0) {
duke@1 2986 extending = tree.bounds.head;
duke@1 2987 implementing = tree.bounds.tail;
duke@1 2988 } else {
duke@1 2989 extending = null;
duke@1 2990 implementing = tree.bounds;
duke@1 2991 }
duke@1 2992 JCClassDecl cd = make.at(tree.pos).ClassDef(
duke@1 2993 make.Modifiers(PUBLIC | ABSTRACT),
duke@1 2994 tree.name, List.<JCTypeParameter>nil(),
duke@1 2995 extending, implementing, List.<JCTree>nil());
duke@1 2996
duke@1 2997 ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
jjg@816 2998 Assert.check((c.flags() & COMPOUND) != 0);
duke@1 2999 cd.sym = c;
duke@1 3000 c.sourcefile = env.toplevel.sourcefile;
duke@1 3001
duke@1 3002 // ... and attribute the bound class
duke@1 3003 c.flags_field |= UNATTRIBUTED;
duke@1 3004 Env<AttrContext> cenv = enter.classEnv(cd, env);
duke@1 3005 enter.typeEnvs.put(c, cenv);
duke@1 3006 }
duke@1 3007 }
duke@1 3008
duke@1 3009
duke@1 3010 public void visitWildcard(JCWildcard tree) {
duke@1 3011 //- System.err.println("visitWildcard("+tree+");");//DEBUG
duke@1 3012 Type type = (tree.kind.kind == BoundKind.UNBOUND)
duke@1 3013 ? syms.objectType
duke@1 3014 : attribType(tree.inner, env);
duke@1 3015 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
duke@1 3016 tree.kind.kind,
duke@1 3017 syms.boundClass),
duke@1 3018 TYP, pkind, pt);
duke@1 3019 }
duke@1 3020
duke@1 3021 public void visitAnnotation(JCAnnotation tree) {
duke@1 3022 log.error(tree.pos(), "annotation.not.valid.for.type", pt);
duke@1 3023 result = tree.type = syms.errType;
duke@1 3024 }
duke@1 3025
duke@1 3026 public void visitErroneous(JCErroneous tree) {
duke@1 3027 if (tree.errs != null)
duke@1 3028 for (JCTree err : tree.errs)
duke@1 3029 attribTree(err, env, ERR, pt);
duke@1 3030 result = tree.type = syms.errType;
duke@1 3031 }
duke@1 3032
duke@1 3033 /** Default visitor method for all other trees.
duke@1 3034 */
duke@1 3035 public void visitTree(JCTree tree) {
duke@1 3036 throw new AssertionError();
duke@1 3037 }
duke@1 3038
duke@1 3039 /** Main method: attribute class definition associated with given class symbol.
duke@1 3040 * reporting completion failures at the given position.
duke@1 3041 * @param pos The source position at which completion errors are to be
duke@1 3042 * reported.
duke@1 3043 * @param c The class symbol whose definition will be attributed.
duke@1 3044 */
duke@1 3045 public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
duke@1 3046 try {
duke@1 3047 annotate.flush();
duke@1 3048 attribClass(c);
duke@1 3049 } catch (CompletionFailure ex) {
duke@1 3050 chk.completionError(pos, ex);
duke@1 3051 }
duke@1 3052 }
duke@1 3053
duke@1 3054 /** Attribute class definition associated with given class symbol.
duke@1 3055 * @param c The class symbol whose definition will be attributed.
duke@1 3056 */
duke@1 3057 void attribClass(ClassSymbol c) throws CompletionFailure {
duke@1 3058 if (c.type.tag == ERROR) return;
duke@1 3059
duke@1 3060 // Check for cycles in the inheritance graph, which can arise from
duke@1 3061 // ill-formed class files.
duke@1 3062 chk.checkNonCyclic(null, c.type);
duke@1 3063
duke@1 3064 Type st = types.supertype(c.type);
duke@1 3065 if ((c.flags_field & Flags.COMPOUND) == 0) {
duke@1 3066 // First, attribute superclass.
duke@1 3067 if (st.tag == CLASS)
duke@1 3068 attribClass((ClassSymbol)st.tsym);
duke@1 3069
duke@1 3070 // Next attribute owner, if it is a class.
duke@1 3071 if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
duke@1 3072 attribClass((ClassSymbol)c.owner);
duke@1 3073 }
duke@1 3074
duke@1 3075 // The previous operations might have attributed the current class
duke@1 3076 // if there was a cycle. So we test first whether the class is still
duke@1 3077 // UNATTRIBUTED.
duke@1 3078 if ((c.flags_field & UNATTRIBUTED) != 0) {
duke@1 3079 c.flags_field &= ~UNATTRIBUTED;
duke@1 3080
duke@1 3081 // Get environment current at the point of class definition.
duke@1 3082 Env<AttrContext> env = enter.typeEnvs.get(c);
duke@1 3083
duke@1 3084 // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
duke@1 3085 // because the annotations were not available at the time the env was created. Therefore,
duke@1 3086 // we look up the environment chain for the first enclosing environment for which the
duke@1 3087 // lint value is set. Typically, this is the parent env, but might be further if there
duke@1 3088 // are any envs created as a result of TypeParameter nodes.
duke@1 3089 Env<AttrContext> lintEnv = env;
duke@1 3090 while (lintEnv.info.lint == null)
duke@1 3091 lintEnv = lintEnv.next;
duke@1 3092
duke@1 3093 // Having found the enclosing lint value, we can initialize the lint value for this class
duke@1 3094 env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags());
duke@1 3095
duke@1 3096 Lint prevLint = chk.setLint(env.info.lint);
duke@1 3097 JavaFileObject prev = log.useSource(c.sourcefile);
duke@1 3098
duke@1 3099 try {
duke@1 3100 // java.lang.Enum may not be subclassed by a non-enum
duke@1 3101 if (st.tsym == syms.enumSym &&
duke@1 3102 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
duke@1 3103 log.error(env.tree.pos(), "enum.no.subclassing");
duke@1 3104
duke@1 3105 // Enums may not be extended by source-level classes
duke@1 3106 if (st.tsym != null &&
duke@1 3107 ((st.tsym.flags_field & Flags.ENUM) != 0) &&
mcimadamore@82 3108 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
duke@1 3109 !target.compilerBootstrap(c)) {
duke@1 3110 log.error(env.tree.pos(), "enum.types.not.extensible");
duke@1 3111 }
duke@1 3112 attribClassBody(env, c);
duke@1 3113
duke@1 3114 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
duke@1 3115 } finally {
duke@1 3116 log.useSource(prev);
duke@1 3117 chk.setLint(prevLint);
duke@1 3118 }
duke@1 3119
duke@1 3120 }
duke@1 3121 }
duke@1 3122
duke@1 3123 public void visitImport(JCImport tree) {
duke@1 3124 // nothing to do
duke@1 3125 }
duke@1 3126
duke@1 3127 /** Finish the attribution of a class. */
duke@1 3128 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
duke@1 3129 JCClassDecl tree = (JCClassDecl)env.tree;
jjg@816 3130 Assert.check(c == tree.sym);
duke@1 3131
duke@1 3132 // Validate annotations
duke@1 3133 chk.validateAnnotations(tree.mods.annotations, c);
duke@1 3134
duke@1 3135 // Validate type parameters, supertype and interfaces.
mcimadamore@42 3136 attribBounds(tree.typarams);
mcimadamore@537 3137 if (!c.isAnonymous()) {
mcimadamore@537 3138 //already checked if anonymous
mcimadamore@537 3139 chk.validate(tree.typarams, env);
mcimadamore@537 3140 chk.validate(tree.extending, env);
mcimadamore@537 3141 chk.validate(tree.implementing, env);
mcimadamore@537 3142 }
duke@1 3143
duke@1 3144 // If this is a non-abstract class, check that it has no abstract
duke@1 3145 // methods or unimplemented methods of an implemented interface.
duke@1 3146 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
duke@1 3147 if (!relax)
duke@1 3148 chk.checkAllDefined(tree.pos(), c);
duke@1 3149 }
duke@1 3150
duke@1 3151 if ((c.flags() & ANNOTATION) != 0) {
duke@1 3152 if (tree.implementing.nonEmpty())
duke@1 3153 log.error(tree.implementing.head.pos(),
duke@1 3154 "cant.extend.intf.annotation");
duke@1 3155 if (tree.typarams.nonEmpty())
duke@1 3156 log.error(tree.typarams.head.pos(),
duke@1 3157 "intf.annotation.cant.have.type.params");
duke@1 3158 } else {
duke@1 3159 // Check that all extended classes and interfaces
duke@1 3160 // are compatible (i.e. no two define methods with same arguments
duke@1 3161 // yet different return types). (JLS 8.4.6.3)
duke@1 3162 chk.checkCompatibleSupertypes(tree.pos(), c.type);
duke@1 3163 }
duke@1 3164
duke@1 3165 // Check that class does not import the same parameterized interface
duke@1 3166 // with two different argument lists.
duke@1 3167 chk.checkClassBounds(tree.pos(), c.type);
duke@1 3168
duke@1 3169 tree.type = c.type;
duke@1 3170
jjg@816 3171 for (List<JCTypeParameter> l = tree.typarams;
jjg@816 3172 l.nonEmpty(); l = l.tail) {
jjg@816 3173 Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
duke@1 3174 }
duke@1 3175
duke@1 3176 // Check that a generic class doesn't extend Throwable
duke@1 3177 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
duke@1 3178 log.error(tree.extending.pos(), "generic.throwable");
duke@1 3179
duke@1 3180 // Check that all methods which implement some
duke@1 3181 // method conform to the method they implement.
duke@1 3182 chk.checkImplementations(tree);
duke@1 3183
duke@1 3184 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 3185 // Attribute declaration
duke@1 3186 attribStat(l.head, env);
duke@1 3187 // Check that declarations in inner classes are not static (JLS 8.1.2)
duke@1 3188 // Make an exception for static constants.
duke@1 3189 if (c.owner.kind != PCK &&
duke@1 3190 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
duke@1 3191 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
duke@1 3192 Symbol sym = null;
duke@1 3193 if (l.head.getTag() == JCTree.VARDEF) sym = ((JCVariableDecl) l.head).sym;
duke@1 3194 if (sym == null ||
duke@1 3195 sym.kind != VAR ||
duke@1 3196 ((VarSymbol) sym).getConstValue() == null)
mcimadamore@855 3197 log.error(l.head.pos(), "icls.cant.have.static.decl", c);
duke@1 3198 }
duke@1 3199 }
duke@1 3200
duke@1 3201 // Check for cycles among non-initial constructors.
duke@1 3202 chk.checkCyclicConstructors(tree);
duke@1 3203
duke@1 3204 // Check for cycles among annotation elements.
duke@1 3205 chk.checkNonCyclicElements(tree);
duke@1 3206
duke@1 3207 // Check for proper use of serialVersionUID
mcimadamore@795 3208 if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
duke@1 3209 isSerializable(c) &&
duke@1 3210 (c.flags() & Flags.ENUM) == 0 &&
duke@1 3211 (c.flags() & ABSTRACT) == 0) {
duke@1 3212 checkSerialVersionUID(tree, c);
duke@1 3213 }
duke@1 3214 }
duke@1 3215 // where
duke@1 3216 /** check if a class is a subtype of Serializable, if that is available. */
duke@1 3217 private boolean isSerializable(ClassSymbol c) {
duke@1 3218 try {
duke@1 3219 syms.serializableType.complete();
duke@1 3220 }
duke@1 3221 catch (CompletionFailure e) {
duke@1 3222 return false;
duke@1 3223 }
duke@1 3224 return types.isSubtype(c.type, syms.serializableType);
duke@1 3225 }
duke@1 3226
duke@1 3227 /** Check that an appropriate serialVersionUID member is defined. */
duke@1 3228 private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
duke@1 3229
duke@1 3230 // check for presence of serialVersionUID
duke@1 3231 Scope.Entry e = c.members().lookup(names.serialVersionUID);
duke@1 3232 while (e.scope != null && e.sym.kind != VAR) e = e.next();
duke@1 3233 if (e.scope == null) {
mcimadamore@795 3234 log.warning(LintCategory.SERIAL,
jjg@612 3235 tree.pos(), "missing.SVUID", c);
duke@1 3236 return;
duke@1 3237 }
duke@1 3238
duke@1 3239 // check that it is static final
duke@1 3240 VarSymbol svuid = (VarSymbol)e.sym;
duke@1 3241 if ((svuid.flags() & (STATIC | FINAL)) !=
duke@1 3242 (STATIC | FINAL))
mcimadamore@795 3243 log.warning(LintCategory.SERIAL,
jjg@612 3244 TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
duke@1 3245
duke@1 3246 // check that it is long
duke@1 3247 else if (svuid.type.tag != TypeTags.LONG)
mcimadamore@795 3248 log.warning(LintCategory.SERIAL,
jjg@612 3249 TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
duke@1 3250
duke@1 3251 // check constant
duke@1 3252 else if (svuid.getConstValue() == null)
mcimadamore@795 3253 log.warning(LintCategory.SERIAL,
jjg@612 3254 TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
duke@1 3255 }
duke@1 3256
duke@1 3257 private Type capture(Type type) {
duke@1 3258 return types.capture(type);
duke@1 3259 }
jjg@308 3260
mcimadamore@676 3261 // <editor-fold desc="post-attribution visitor">
mcimadamore@676 3262
mcimadamore@676 3263 /**
mcimadamore@676 3264 * Handle missing types/symbols in an AST. This routine is useful when
mcimadamore@676 3265 * the compiler has encountered some errors (which might have ended up
mcimadamore@676 3266 * terminating attribution abruptly); if the compiler is used in fail-over
mcimadamore@676 3267 * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
mcimadamore@676 3268 * prevents NPE to be progagated during subsequent compilation steps.
mcimadamore@676 3269 */
mcimadamore@676 3270 public void postAttr(Env<AttrContext> env) {
mcimadamore@676 3271 new PostAttrAnalyzer().scan(env.tree);
mcimadamore@676 3272 }
mcimadamore@676 3273
mcimadamore@676 3274 class PostAttrAnalyzer extends TreeScanner {
mcimadamore@676 3275
mcimadamore@676 3276 private void initTypeIfNeeded(JCTree that) {
mcimadamore@676 3277 if (that.type == null) {
mcimadamore@676 3278 that.type = syms.unknownType;
mcimadamore@676 3279 }
mcimadamore@676 3280 }
mcimadamore@676 3281
mcimadamore@676 3282 @Override
mcimadamore@676 3283 public void scan(JCTree tree) {
mcimadamore@676 3284 if (tree == null) return;
mcimadamore@676 3285 if (tree instanceof JCExpression) {
mcimadamore@676 3286 initTypeIfNeeded(tree);
mcimadamore@676 3287 }
mcimadamore@676 3288 super.scan(tree);
mcimadamore@676 3289 }
mcimadamore@676 3290
mcimadamore@676 3291 @Override
mcimadamore@676 3292 public void visitIdent(JCIdent that) {
mcimadamore@676 3293 if (that.sym == null) {
mcimadamore@676 3294 that.sym = syms.unknownSymbol;
mcimadamore@676 3295 }
mcimadamore@676 3296 }
mcimadamore@676 3297
mcimadamore@676 3298 @Override
mcimadamore@676 3299 public void visitSelect(JCFieldAccess that) {
mcimadamore@676 3300 if (that.sym == null) {
mcimadamore@676 3301 that.sym = syms.unknownSymbol;
mcimadamore@676 3302 }
mcimadamore@676 3303 super.visitSelect(that);
mcimadamore@676 3304 }
mcimadamore@676 3305
mcimadamore@676 3306 @Override
mcimadamore@676 3307 public void visitClassDef(JCClassDecl that) {
mcimadamore@676 3308 initTypeIfNeeded(that);
mcimadamore@676 3309 if (that.sym == null) {
mcimadamore@676 3310 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
mcimadamore@676 3311 }
mcimadamore@676 3312 super.visitClassDef(that);
mcimadamore@676 3313 }
mcimadamore@676 3314
mcimadamore@676 3315 @Override
mcimadamore@676 3316 public void visitMethodDef(JCMethodDecl that) {
mcimadamore@676 3317 initTypeIfNeeded(that);
mcimadamore@676 3318 if (that.sym == null) {
mcimadamore@676 3319 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
mcimadamore@676 3320 }
mcimadamore@676 3321 super.visitMethodDef(that);
mcimadamore@676 3322 }
mcimadamore@676 3323
mcimadamore@676 3324 @Override
mcimadamore@676 3325 public void visitVarDef(JCVariableDecl that) {
mcimadamore@676 3326 initTypeIfNeeded(that);
mcimadamore@676 3327 if (that.sym == null) {
mcimadamore@676 3328 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
mcimadamore@676 3329 that.sym.adr = 0;
mcimadamore@676 3330 }
mcimadamore@676 3331 super.visitVarDef(that);
mcimadamore@676 3332 }
mcimadamore@676 3333
mcimadamore@676 3334 @Override
mcimadamore@676 3335 public void visitNewClass(JCNewClass that) {
mcimadamore@676 3336 if (that.constructor == null) {
mcimadamore@676 3337 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
mcimadamore@676 3338 }
mcimadamore@676 3339 if (that.constructorType == null) {
mcimadamore@676 3340 that.constructorType = syms.unknownType;
mcimadamore@676 3341 }
mcimadamore@676 3342 super.visitNewClass(that);
mcimadamore@676 3343 }
mcimadamore@676 3344
mcimadamore@676 3345 @Override
mcimadamore@676 3346 public void visitBinary(JCBinary that) {
mcimadamore@676 3347 if (that.operator == null)
mcimadamore@676 3348 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
mcimadamore@676 3349 super.visitBinary(that);
mcimadamore@676 3350 }
mcimadamore@676 3351
mcimadamore@676 3352 @Override
mcimadamore@676 3353 public void visitUnary(JCUnary that) {
mcimadamore@676 3354 if (that.operator == null)
mcimadamore@676 3355 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
mcimadamore@676 3356 super.visitUnary(that);
mcimadamore@676 3357 }
mcimadamore@676 3358 }
mcimadamore@676 3359 // </editor-fold>
duke@1 3360 }

mercurial