src/share/classes/com/sun/tools/javac/comp/Attr.java

Mon, 28 Nov 2011 16:05:46 +0000

author
mcimadamore
date
Mon, 28 Nov 2011 16:05:46 +0000
changeset 1145
3343b22e2761
parent 1144
9448fe783fd2
child 1207
3ad851a7e884
permissions
-rw-r--r--

7115052: Add parser support for method references
Summary: Add support for parsing method references to JavacParser
Reviewed-by: jjg

duke@1 1 /*
jjg@815 2 * Copyright (c) 1999, 2011, Oracle and/or its affiliates. All rights reserved.
duke@1 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@1 4 *
duke@1 5 * This code is free software; you can redistribute it and/or modify it
duke@1 6 * under the terms of the GNU General Public License version 2 only, as
ohair@554 7 * published by the Free Software Foundation. Oracle designates this
duke@1 8 * particular file as subject to the "Classpath" exception as provided
ohair@554 9 * by Oracle in the LICENSE file that accompanied this code.
duke@1 10 *
duke@1 11 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@1 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@1 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@1 14 * version 2 for more details (a copy is included in the LICENSE file that
duke@1 15 * accompanied this code).
duke@1 16 *
duke@1 17 * You should have received a copy of the GNU General Public License version
duke@1 18 * 2 along with this work; if not, write to the Free Software Foundation,
duke@1 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@1 20 *
ohair@554 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
ohair@554 22 * or visit www.oracle.com if you need additional information or have any
ohair@554 23 * questions.
duke@1 24 */
duke@1 25
duke@1 26 package com.sun.tools.javac.comp;
duke@1 27
duke@1 28 import java.util.*;
duke@1 29 import java.util.Set;
duke@1 30 import javax.lang.model.element.ElementKind;
duke@1 31 import javax.tools.JavaFileObject;
duke@1 32
duke@1 33 import com.sun.tools.javac.code.*;
duke@1 34 import com.sun.tools.javac.jvm.*;
duke@1 35 import com.sun.tools.javac.tree.*;
duke@1 36 import com.sun.tools.javac.util.*;
duke@1 37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
duke@1 38 import com.sun.tools.javac.util.List;
duke@1 39
duke@1 40 import com.sun.tools.javac.jvm.Target;
mcimadamore@795 41 import com.sun.tools.javac.code.Lint.LintCategory;
duke@1 42 import com.sun.tools.javac.code.Symbol.*;
duke@1 43 import com.sun.tools.javac.tree.JCTree.*;
duke@1 44 import com.sun.tools.javac.code.Type.*;
duke@1 45
duke@1 46 import com.sun.source.tree.IdentifierTree;
duke@1 47 import com.sun.source.tree.MemberSelectTree;
duke@1 48 import com.sun.source.tree.TreeVisitor;
duke@1 49 import com.sun.source.util.SimpleTreeVisitor;
duke@1 50
duke@1 51 import static com.sun.tools.javac.code.Flags.*;
jjg@1127 52 import static com.sun.tools.javac.code.Flags.ANNOTATION;
jjg@1127 53 import static com.sun.tools.javac.code.Flags.BLOCK;
duke@1 54 import static com.sun.tools.javac.code.Kinds.*;
jjg@1127 55 import static com.sun.tools.javac.code.Kinds.ERRONEOUS;
duke@1 56 import static com.sun.tools.javac.code.TypeTags.*;
jjg@1127 57 import static com.sun.tools.javac.code.TypeTags.WILDCARD;
jjg@1127 58 import static com.sun.tools.javac.tree.JCTree.Tag.*;
duke@1 59
duke@1 60 /** This is the main context-dependent analysis phase in GJC. It
duke@1 61 * encompasses name resolution, type checking and constant folding as
duke@1 62 * subtasks. Some subtasks involve auxiliary classes.
duke@1 63 * @see Check
duke@1 64 * @see Resolve
duke@1 65 * @see ConstFold
duke@1 66 * @see Infer
duke@1 67 *
jjg@581 68 * <p><b>This is NOT part of any supported API.
jjg@581 69 * If you write code that depends on this, you do so at your own risk.
duke@1 70 * This code and its internal interfaces are subject to change or
duke@1 71 * deletion without notice.</b>
duke@1 72 */
duke@1 73 public class Attr extends JCTree.Visitor {
duke@1 74 protected static final Context.Key<Attr> attrKey =
duke@1 75 new Context.Key<Attr>();
duke@1 76
jjg@113 77 final Names names;
duke@1 78 final Log log;
duke@1 79 final Symtab syms;
duke@1 80 final Resolve rs;
mcimadamore@537 81 final Infer infer;
duke@1 82 final Check chk;
duke@1 83 final MemberEnter memberEnter;
duke@1 84 final TreeMaker make;
duke@1 85 final ConstFold cfolder;
duke@1 86 final Enter enter;
duke@1 87 final Target target;
duke@1 88 final Types types;
mcimadamore@89 89 final JCDiagnostic.Factory diags;
duke@1 90 final Annotate annotate;
mcimadamore@852 91 final DeferredLintHandler deferredLintHandler;
duke@1 92
duke@1 93 public static Attr instance(Context context) {
duke@1 94 Attr instance = context.get(attrKey);
duke@1 95 if (instance == null)
duke@1 96 instance = new Attr(context);
duke@1 97 return instance;
duke@1 98 }
duke@1 99
duke@1 100 protected Attr(Context context) {
duke@1 101 context.put(attrKey, this);
duke@1 102
jjg@113 103 names = Names.instance(context);
duke@1 104 log = Log.instance(context);
duke@1 105 syms = Symtab.instance(context);
duke@1 106 rs = Resolve.instance(context);
duke@1 107 chk = Check.instance(context);
duke@1 108 memberEnter = MemberEnter.instance(context);
duke@1 109 make = TreeMaker.instance(context);
duke@1 110 enter = Enter.instance(context);
mcimadamore@537 111 infer = Infer.instance(context);
duke@1 112 cfolder = ConstFold.instance(context);
duke@1 113 target = Target.instance(context);
duke@1 114 types = Types.instance(context);
mcimadamore@89 115 diags = JCDiagnostic.Factory.instance(context);
duke@1 116 annotate = Annotate.instance(context);
mcimadamore@852 117 deferredLintHandler = DeferredLintHandler.instance(context);
duke@1 118
duke@1 119 Options options = Options.instance(context);
duke@1 120
duke@1 121 Source source = Source.instance(context);
duke@1 122 allowGenerics = source.allowGenerics();
duke@1 123 allowVarargs = source.allowVarargs();
duke@1 124 allowEnums = source.allowEnums();
duke@1 125 allowBoxing = source.allowBoxing();
duke@1 126 allowCovariantReturns = source.allowCovariantReturns();
duke@1 127 allowAnonOuterThis = source.allowAnonOuterThis();
darcy@430 128 allowStringsInSwitch = source.allowStringsInSwitch();
darcy@430 129 sourceName = source.name;
jjg@700 130 relax = (options.isSet("-retrofit") ||
jjg@700 131 options.isSet("-relax"));
mcimadamore@731 132 findDiamonds = options.get("findDiamond") != null &&
mcimadamore@731 133 source.allowDiamond();
jjg@700 134 useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
duke@1 135 }
duke@1 136
duke@1 137 /** Switch: relax some constraints for retrofit mode.
duke@1 138 */
duke@1 139 boolean relax;
duke@1 140
duke@1 141 /** Switch: support generics?
duke@1 142 */
duke@1 143 boolean allowGenerics;
duke@1 144
duke@1 145 /** Switch: allow variable-arity methods.
duke@1 146 */
duke@1 147 boolean allowVarargs;
duke@1 148
duke@1 149 /** Switch: support enums?
duke@1 150 */
duke@1 151 boolean allowEnums;
duke@1 152
duke@1 153 /** Switch: support boxing and unboxing?
duke@1 154 */
duke@1 155 boolean allowBoxing;
duke@1 156
duke@1 157 /** Switch: support covariant result types?
duke@1 158 */
duke@1 159 boolean allowCovariantReturns;
duke@1 160
duke@1 161 /** Switch: allow references to surrounding object from anonymous
duke@1 162 * objects during constructor call?
duke@1 163 */
duke@1 164 boolean allowAnonOuterThis;
duke@1 165
mcimadamore@731 166 /** Switch: generates a warning if diamond can be safely applied
mcimadamore@731 167 * to a given new expression
mcimadamore@731 168 */
mcimadamore@731 169 boolean findDiamonds;
mcimadamore@731 170
mcimadamore@731 171 /**
mcimadamore@731 172 * Internally enables/disables diamond finder feature
mcimadamore@731 173 */
mcimadamore@731 174 static final boolean allowDiamondFinder = true;
mcimadamore@731 175
duke@1 176 /**
duke@1 177 * Switch: warn about use of variable before declaration?
duke@1 178 * RFE: 6425594
duke@1 179 */
duke@1 180 boolean useBeforeDeclarationWarning;
duke@1 181
jjg@377 182 /**
darcy@430 183 * Switch: allow strings in switch?
darcy@430 184 */
darcy@430 185 boolean allowStringsInSwitch;
darcy@430 186
darcy@430 187 /**
darcy@430 188 * Switch: name of source level; used for error reporting.
darcy@430 189 */
darcy@430 190 String sourceName;
darcy@430 191
duke@1 192 /** Check kind and type of given tree against protokind and prototype.
duke@1 193 * If check succeeds, store type in tree and return it.
duke@1 194 * If check fails, store errType in tree and return it.
duke@1 195 * No checks are performed if the prototype is a method type.
jjg@110 196 * It is not necessary in this case since we know that kind and type
duke@1 197 * are correct.
duke@1 198 *
duke@1 199 * @param tree The tree whose kind and type is checked
duke@1 200 * @param owntype The computed type of the tree
duke@1 201 * @param ownkind The computed kind of the tree
duke@1 202 * @param pkind The expected kind (or: protokind) of the tree
duke@1 203 * @param pt The expected type (or: prototype) of the tree
duke@1 204 */
duke@1 205 Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
duke@1 206 if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
duke@1 207 if ((ownkind & ~pkind) == 0) {
darcy@609 208 owntype = chk.checkType(tree.pos(), owntype, pt, errKey);
duke@1 209 } else {
duke@1 210 log.error(tree.pos(), "unexpected.type",
mcimadamore@80 211 kindNames(pkind),
mcimadamore@80 212 kindName(ownkind));
jjg@110 213 owntype = types.createErrorType(owntype);
duke@1 214 }
duke@1 215 }
duke@1 216 tree.type = owntype;
duke@1 217 return owntype;
duke@1 218 }
duke@1 219
duke@1 220 /** Is given blank final variable assignable, i.e. in a scope where it
duke@1 221 * may be assigned to even though it is final?
duke@1 222 * @param v The blank final variable.
duke@1 223 * @param env The current environment.
duke@1 224 */
duke@1 225 boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
duke@1 226 Symbol owner = env.info.scope.owner;
duke@1 227 // owner refers to the innermost variable, method or
duke@1 228 // initializer block declaration at this point.
duke@1 229 return
duke@1 230 v.owner == owner
duke@1 231 ||
duke@1 232 ((owner.name == names.init || // i.e. we are in a constructor
duke@1 233 owner.kind == VAR || // i.e. we are in a variable initializer
duke@1 234 (owner.flags() & BLOCK) != 0) // i.e. we are in an initializer block
duke@1 235 &&
duke@1 236 v.owner == owner.owner
duke@1 237 &&
duke@1 238 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
duke@1 239 }
duke@1 240
duke@1 241 /** Check that variable can be assigned to.
duke@1 242 * @param pos The current source code position.
duke@1 243 * @param v The assigned varaible
duke@1 244 * @param base If the variable is referred to in a Select, the part
duke@1 245 * to the left of the `.', null otherwise.
duke@1 246 * @param env The current environment.
duke@1 247 */
duke@1 248 void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
duke@1 249 if ((v.flags() & FINAL) != 0 &&
duke@1 250 ((v.flags() & HASINIT) != 0
duke@1 251 ||
duke@1 252 !((base == null ||
jjg@1127 253 (base.hasTag(IDENT) && TreeInfo.name(base) == names._this)) &&
duke@1 254 isAssignableAsBlankFinal(v, env)))) {
darcy@609 255 if (v.isResourceVariable()) { //TWR resource
mcimadamore@743 256 log.error(pos, "try.resource.may.not.be.assigned", v);
darcy@609 257 } else {
darcy@609 258 log.error(pos, "cant.assign.val.to.final.var", v);
darcy@609 259 }
mcimadamore@735 260 } else if ((v.flags() & EFFECTIVELY_FINAL) != 0) {
mcimadamore@735 261 v.flags_field &= ~EFFECTIVELY_FINAL;
duke@1 262 }
duke@1 263 }
duke@1 264
duke@1 265 /** Does tree represent a static reference to an identifier?
duke@1 266 * It is assumed that tree is either a SELECT or an IDENT.
duke@1 267 * We have to weed out selects from non-type names here.
duke@1 268 * @param tree The candidate tree.
duke@1 269 */
duke@1 270 boolean isStaticReference(JCTree tree) {
jjg@1127 271 if (tree.hasTag(SELECT)) {
duke@1 272 Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
duke@1 273 if (lsym == null || lsym.kind != TYP) {
duke@1 274 return false;
duke@1 275 }
duke@1 276 }
duke@1 277 return true;
duke@1 278 }
duke@1 279
duke@1 280 /** Is this symbol a type?
duke@1 281 */
duke@1 282 static boolean isType(Symbol sym) {
duke@1 283 return sym != null && sym.kind == TYP;
duke@1 284 }
duke@1 285
duke@1 286 /** The current `this' symbol.
duke@1 287 * @param env The current environment.
duke@1 288 */
duke@1 289 Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
duke@1 290 return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
duke@1 291 }
duke@1 292
duke@1 293 /** Attribute a parsed identifier.
duke@1 294 * @param tree Parsed identifier name
duke@1 295 * @param topLevel The toplevel to use
duke@1 296 */
duke@1 297 public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
duke@1 298 Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
duke@1 299 localEnv.enclClass = make.ClassDef(make.Modifiers(0),
duke@1 300 syms.errSymbol.name,
duke@1 301 null, null, null, null);
duke@1 302 localEnv.enclClass.sym = syms.errSymbol;
duke@1 303 return tree.accept(identAttributer, localEnv);
duke@1 304 }
duke@1 305 // where
duke@1 306 private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
duke@1 307 private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
duke@1 308 @Override
duke@1 309 public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
duke@1 310 Symbol site = visit(node.getExpression(), env);
duke@1 311 if (site.kind == ERR)
duke@1 312 return site;
duke@1 313 Name name = (Name)node.getIdentifier();
duke@1 314 if (site.kind == PCK) {
duke@1 315 env.toplevel.packge = (PackageSymbol)site;
duke@1 316 return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
duke@1 317 } else {
duke@1 318 env.enclClass.sym = (ClassSymbol)site;
duke@1 319 return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
duke@1 320 }
duke@1 321 }
duke@1 322
duke@1 323 @Override
duke@1 324 public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
duke@1 325 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
duke@1 326 }
duke@1 327 }
duke@1 328
duke@1 329 public Type coerce(Type etype, Type ttype) {
duke@1 330 return cfolder.coerce(etype, ttype);
duke@1 331 }
duke@1 332
duke@1 333 public Type attribType(JCTree node, TypeSymbol sym) {
duke@1 334 Env<AttrContext> env = enter.typeEnvs.get(sym);
duke@1 335 Env<AttrContext> localEnv = env.dup(node, env.info.dup());
duke@1 336 return attribTree(node, localEnv, Kinds.TYP, Type.noType);
duke@1 337 }
duke@1 338
duke@1 339 public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
duke@1 340 breakTree = tree;
mcimadamore@303 341 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
duke@1 342 try {
duke@1 343 attribExpr(expr, env);
duke@1 344 } catch (BreakAttr b) {
duke@1 345 return b.env;
sundar@669 346 } catch (AssertionError ae) {
sundar@669 347 if (ae.getCause() instanceof BreakAttr) {
sundar@669 348 return ((BreakAttr)(ae.getCause())).env;
sundar@669 349 } else {
sundar@669 350 throw ae;
sundar@669 351 }
duke@1 352 } finally {
duke@1 353 breakTree = null;
duke@1 354 log.useSource(prev);
duke@1 355 }
duke@1 356 return env;
duke@1 357 }
duke@1 358
duke@1 359 public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
duke@1 360 breakTree = tree;
mcimadamore@303 361 JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
duke@1 362 try {
duke@1 363 attribStat(stmt, env);
duke@1 364 } catch (BreakAttr b) {
duke@1 365 return b.env;
sundar@669 366 } catch (AssertionError ae) {
sundar@669 367 if (ae.getCause() instanceof BreakAttr) {
sundar@669 368 return ((BreakAttr)(ae.getCause())).env;
sundar@669 369 } else {
sundar@669 370 throw ae;
sundar@669 371 }
duke@1 372 } finally {
duke@1 373 breakTree = null;
duke@1 374 log.useSource(prev);
duke@1 375 }
duke@1 376 return env;
duke@1 377 }
duke@1 378
duke@1 379 private JCTree breakTree = null;
duke@1 380
duke@1 381 private static class BreakAttr extends RuntimeException {
duke@1 382 static final long serialVersionUID = -6924771130405446405L;
duke@1 383 private Env<AttrContext> env;
duke@1 384 private BreakAttr(Env<AttrContext> env) {
duke@1 385 this.env = env;
duke@1 386 }
duke@1 387 }
duke@1 388
duke@1 389
duke@1 390 /* ************************************************************************
duke@1 391 * Visitor methods
duke@1 392 *************************************************************************/
duke@1 393
duke@1 394 /** Visitor argument: the current environment.
duke@1 395 */
duke@1 396 Env<AttrContext> env;
duke@1 397
duke@1 398 /** Visitor argument: the currently expected proto-kind.
duke@1 399 */
duke@1 400 int pkind;
duke@1 401
duke@1 402 /** Visitor argument: the currently expected proto-type.
duke@1 403 */
duke@1 404 Type pt;
duke@1 405
darcy@609 406 /** Visitor argument: the error key to be generated when a type error occurs
darcy@609 407 */
darcy@609 408 String errKey;
darcy@609 409
duke@1 410 /** Visitor result: the computed type.
duke@1 411 */
duke@1 412 Type result;
duke@1 413
duke@1 414 /** Visitor method: attribute a tree, catching any completion failure
duke@1 415 * exceptions. Return the tree's type.
duke@1 416 *
duke@1 417 * @param tree The tree to be visited.
duke@1 418 * @param env The environment visitor argument.
duke@1 419 * @param pkind The protokind visitor argument.
duke@1 420 * @param pt The prototype visitor argument.
duke@1 421 */
duke@1 422 Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt) {
darcy@609 423 return attribTree(tree, env, pkind, pt, "incompatible.types");
darcy@609 424 }
darcy@609 425
darcy@609 426 Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt, String errKey) {
duke@1 427 Env<AttrContext> prevEnv = this.env;
duke@1 428 int prevPkind = this.pkind;
duke@1 429 Type prevPt = this.pt;
darcy@609 430 String prevErrKey = this.errKey;
duke@1 431 try {
duke@1 432 this.env = env;
duke@1 433 this.pkind = pkind;
duke@1 434 this.pt = pt;
darcy@609 435 this.errKey = errKey;
duke@1 436 tree.accept(this);
duke@1 437 if (tree == breakTree)
duke@1 438 throw new BreakAttr(env);
duke@1 439 return result;
duke@1 440 } catch (CompletionFailure ex) {
duke@1 441 tree.type = syms.errType;
duke@1 442 return chk.completionError(tree.pos(), ex);
duke@1 443 } finally {
duke@1 444 this.env = prevEnv;
duke@1 445 this.pkind = prevPkind;
duke@1 446 this.pt = prevPt;
darcy@609 447 this.errKey = prevErrKey;
duke@1 448 }
duke@1 449 }
duke@1 450
duke@1 451 /** Derived visitor method: attribute an expression tree.
duke@1 452 */
duke@1 453 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
duke@1 454 return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType);
duke@1 455 }
duke@1 456
darcy@609 457 public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt, String key) {
darcy@609 458 return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType, key);
darcy@609 459 }
darcy@609 460
duke@1 461 /** Derived visitor method: attribute an expression tree with
duke@1 462 * no constraints on the computed type.
duke@1 463 */
duke@1 464 Type attribExpr(JCTree tree, Env<AttrContext> env) {
duke@1 465 return attribTree(tree, env, VAL, Type.noType);
duke@1 466 }
duke@1 467
duke@1 468 /** Derived visitor method: attribute a type tree.
duke@1 469 */
duke@1 470 Type attribType(JCTree tree, Env<AttrContext> env) {
mcimadamore@537 471 Type result = attribType(tree, env, Type.noType);
mcimadamore@537 472 return result;
mcimadamore@537 473 }
mcimadamore@537 474
mcimadamore@537 475 /** Derived visitor method: attribute a type tree.
mcimadamore@537 476 */
mcimadamore@537 477 Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
mcimadamore@537 478 Type result = attribTree(tree, env, TYP, pt);
duke@1 479 return result;
duke@1 480 }
duke@1 481
duke@1 482 /** Derived visitor method: attribute a statement or definition tree.
duke@1 483 */
duke@1 484 public Type attribStat(JCTree tree, Env<AttrContext> env) {
duke@1 485 return attribTree(tree, env, NIL, Type.noType);
duke@1 486 }
duke@1 487
duke@1 488 /** Attribute a list of expressions, returning a list of types.
duke@1 489 */
duke@1 490 List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
duke@1 491 ListBuffer<Type> ts = new ListBuffer<Type>();
duke@1 492 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 493 ts.append(attribExpr(l.head, env, pt));
duke@1 494 return ts.toList();
duke@1 495 }
duke@1 496
duke@1 497 /** Attribute a list of statements, returning nothing.
duke@1 498 */
duke@1 499 <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
duke@1 500 for (List<T> l = trees; l.nonEmpty(); l = l.tail)
duke@1 501 attribStat(l.head, env);
duke@1 502 }
duke@1 503
duke@1 504 /** Attribute the arguments in a method call, returning a list of types.
duke@1 505 */
duke@1 506 List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
duke@1 507 ListBuffer<Type> argtypes = new ListBuffer<Type>();
duke@1 508 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
duke@1 509 argtypes.append(chk.checkNonVoid(
duke@1 510 l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly))));
duke@1 511 return argtypes.toList();
duke@1 512 }
duke@1 513
duke@1 514 /** Attribute a type argument list, returning a list of types.
jrose@267 515 * Caller is responsible for calling checkRefTypes.
duke@1 516 */
jrose@267 517 List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
duke@1 518 ListBuffer<Type> argtypes = new ListBuffer<Type>();
duke@1 519 for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
jrose@267 520 argtypes.append(attribType(l.head, env));
duke@1 521 return argtypes.toList();
duke@1 522 }
duke@1 523
jrose@267 524 /** Attribute a type argument list, returning a list of types.
jrose@267 525 * Check that all the types are references.
jrose@267 526 */
jrose@267 527 List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
jrose@267 528 List<Type> types = attribAnyTypes(trees, env);
jrose@267 529 return chk.checkRefTypes(trees, types);
jrose@267 530 }
duke@1 531
duke@1 532 /**
duke@1 533 * Attribute type variables (of generic classes or methods).
duke@1 534 * Compound types are attributed later in attribBounds.
duke@1 535 * @param typarams the type variables to enter
duke@1 536 * @param env the current environment
duke@1 537 */
duke@1 538 void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
duke@1 539 for (JCTypeParameter tvar : typarams) {
duke@1 540 TypeVar a = (TypeVar)tvar.type;
mcimadamore@42 541 a.tsym.flags_field |= UNATTRIBUTED;
mcimadamore@42 542 a.bound = Type.noType;
duke@1 543 if (!tvar.bounds.isEmpty()) {
duke@1 544 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
duke@1 545 for (JCExpression bound : tvar.bounds.tail)
duke@1 546 bounds = bounds.prepend(attribType(bound, env));
duke@1 547 types.setBounds(a, bounds.reverse());
duke@1 548 } else {
duke@1 549 // if no bounds are given, assume a single bound of
duke@1 550 // java.lang.Object.
duke@1 551 types.setBounds(a, List.of(syms.objectType));
duke@1 552 }
mcimadamore@42 553 a.tsym.flags_field &= ~UNATTRIBUTED;
duke@1 554 }
duke@1 555 for (JCTypeParameter tvar : typarams)
duke@1 556 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
duke@1 557 attribStats(typarams, env);
mcimadamore@42 558 }
mcimadamore@42 559
mcimadamore@42 560 void attribBounds(List<JCTypeParameter> typarams) {
duke@1 561 for (JCTypeParameter typaram : typarams) {
duke@1 562 Type bound = typaram.type.getUpperBound();
duke@1 563 if (bound != null && bound.tsym instanceof ClassSymbol) {
duke@1 564 ClassSymbol c = (ClassSymbol)bound.tsym;
duke@1 565 if ((c.flags_field & COMPOUND) != 0) {
jjg@816 566 Assert.check((c.flags_field & UNATTRIBUTED) != 0, c);
duke@1 567 attribClass(typaram.pos(), c);
duke@1 568 }
duke@1 569 }
duke@1 570 }
duke@1 571 }
duke@1 572
duke@1 573 /**
duke@1 574 * Attribute the type references in a list of annotations.
duke@1 575 */
duke@1 576 void attribAnnotationTypes(List<JCAnnotation> annotations,
duke@1 577 Env<AttrContext> env) {
duke@1 578 for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
duke@1 579 JCAnnotation a = al.head;
duke@1 580 attribType(a.annotationType, env);
duke@1 581 }
duke@1 582 }
duke@1 583
jjg@841 584 /**
jjg@841 585 * Attribute a "lazy constant value".
jjg@841 586 * @param env The env for the const value
jjg@841 587 * @param initializer The initializer for the const value
jjg@841 588 * @param type The expected type, or null
jjg@841 589 * @see VarSymbol#setlazyConstValue
jjg@841 590 */
jjg@841 591 public Object attribLazyConstantValue(Env<AttrContext> env,
jjg@841 592 JCTree.JCExpression initializer,
jjg@841 593 Type type) {
jjg@841 594
jjg@841 595 // in case no lint value has been set up for this env, scan up
jjg@841 596 // env stack looking for smallest enclosing env for which it is set.
jjg@841 597 Env<AttrContext> lintEnv = env;
jjg@841 598 while (lintEnv.info.lint == null)
jjg@841 599 lintEnv = lintEnv.next;
jjg@841 600
jjg@841 601 // Having found the enclosing lint value, we can initialize the lint value for this class
jjg@1078 602 // ... but ...
jjg@1078 603 // There's a problem with evaluating annotations in the right order, such that
jjg@1078 604 // env.info.enclVar.attributes_field might not yet have been evaluated, and so might be
jjg@1078 605 // null. In that case, calling augment will throw an NPE. To avoid this, for now we
jjg@1078 606 // revert to the jdk 6 behavior and ignore the (unevaluated) attributes.
jjg@1078 607 if (env.info.enclVar.attributes_field == null)
jjg@1078 608 env.info.lint = lintEnv.info.lint;
jjg@1078 609 else
jjg@1078 610 env.info.lint = lintEnv.info.lint.augment(env.info.enclVar.attributes_field, env.info.enclVar.flags());
jjg@841 611
jjg@841 612 Lint prevLint = chk.setLint(env.info.lint);
jjg@841 613 JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
jjg@841 614
jjg@841 615 try {
jjg@841 616 Type itype = attribExpr(initializer, env, type);
jjg@841 617 if (itype.constValue() != null)
jjg@841 618 return coerce(itype, type).constValue();
jjg@841 619 else
jjg@841 620 return null;
jjg@841 621 } finally {
jjg@841 622 env.info.lint = prevLint;
jjg@841 623 log.useSource(prevSource);
jjg@841 624 }
jjg@841 625 }
jjg@841 626
duke@1 627 /** Attribute type reference in an `extends' or `implements' clause.
mcimadamore@537 628 * Supertypes of anonymous inner classes are usually already attributed.
duke@1 629 *
duke@1 630 * @param tree The tree making up the type reference.
duke@1 631 * @param env The environment current at the reference.
duke@1 632 * @param classExpected true if only a class is expected here.
duke@1 633 * @param interfaceExpected true if only an interface is expected here.
duke@1 634 */
duke@1 635 Type attribBase(JCTree tree,
duke@1 636 Env<AttrContext> env,
duke@1 637 boolean classExpected,
duke@1 638 boolean interfaceExpected,
duke@1 639 boolean checkExtensible) {
mcimadamore@537 640 Type t = tree.type != null ?
mcimadamore@537 641 tree.type :
mcimadamore@537 642 attribType(tree, env);
duke@1 643 return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
duke@1 644 }
duke@1 645 Type checkBase(Type t,
duke@1 646 JCTree tree,
duke@1 647 Env<AttrContext> env,
duke@1 648 boolean classExpected,
duke@1 649 boolean interfaceExpected,
duke@1 650 boolean checkExtensible) {
jjg@664 651 if (t.isErroneous())
jjg@664 652 return t;
duke@1 653 if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
duke@1 654 // check that type variable is already visible
duke@1 655 if (t.getUpperBound() == null) {
duke@1 656 log.error(tree.pos(), "illegal.forward.ref");
jjg@110 657 return types.createErrorType(t);
duke@1 658 }
duke@1 659 } else {
duke@1 660 t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
duke@1 661 }
duke@1 662 if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
duke@1 663 log.error(tree.pos(), "intf.expected.here");
duke@1 664 // return errType is necessary since otherwise there might
duke@1 665 // be undetected cycles which cause attribution to loop
jjg@110 666 return types.createErrorType(t);
duke@1 667 } else if (checkExtensible &&
duke@1 668 classExpected &&
duke@1 669 (t.tsym.flags() & INTERFACE) != 0) {
jjg@664 670 log.error(tree.pos(), "no.intf.expected.here");
jjg@110 671 return types.createErrorType(t);
duke@1 672 }
duke@1 673 if (checkExtensible &&
duke@1 674 ((t.tsym.flags() & FINAL) != 0)) {
duke@1 675 log.error(tree.pos(),
duke@1 676 "cant.inherit.from.final", t.tsym);
duke@1 677 }
duke@1 678 chk.checkNonCyclic(tree.pos(), t);
duke@1 679 return t;
duke@1 680 }
duke@1 681
duke@1 682 public void visitClassDef(JCClassDecl tree) {
duke@1 683 // Local classes have not been entered yet, so we need to do it now:
duke@1 684 if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
duke@1 685 enter.classEnter(tree, env);
duke@1 686
duke@1 687 ClassSymbol c = tree.sym;
duke@1 688 if (c == null) {
duke@1 689 // exit in case something drastic went wrong during enter.
duke@1 690 result = null;
duke@1 691 } else {
duke@1 692 // make sure class has been completed:
duke@1 693 c.complete();
duke@1 694
duke@1 695 // If this class appears as an anonymous class
duke@1 696 // in a superclass constructor call where
duke@1 697 // no explicit outer instance is given,
duke@1 698 // disable implicit outer instance from being passed.
duke@1 699 // (This would be an illegal access to "this before super").
duke@1 700 if (env.info.isSelfCall &&
jjg@1127 701 env.tree.hasTag(NEWCLASS) &&
duke@1 702 ((JCNewClass) env.tree).encl == null)
duke@1 703 {
duke@1 704 c.flags_field |= NOOUTERTHIS;
duke@1 705 }
duke@1 706 attribClass(tree.pos(), c);
duke@1 707 result = tree.type = c.type;
duke@1 708 }
duke@1 709 }
duke@1 710
duke@1 711 public void visitMethodDef(JCMethodDecl tree) {
duke@1 712 MethodSymbol m = tree.sym;
duke@1 713
duke@1 714 Lint lint = env.info.lint.augment(m.attributes_field, m.flags());
duke@1 715 Lint prevLint = chk.setLint(lint);
mcimadamore@795 716 MethodSymbol prevMethod = chk.setMethod(m);
duke@1 717 try {
mcimadamore@852 718 deferredLintHandler.flush(tree.pos());
duke@1 719 chk.checkDeprecatedAnnotation(tree.pos(), m);
duke@1 720
mcimadamore@42 721 attribBounds(tree.typarams);
duke@1 722
duke@1 723 // If we override any other methods, check that we do so properly.
duke@1 724 // JLS ???
mcimadamore@858 725 if (m.isStatic()) {
mcimadamore@858 726 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
mcimadamore@858 727 } else {
mcimadamore@858 728 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
mcimadamore@858 729 }
duke@1 730 chk.checkOverride(tree, m);
duke@1 731
duke@1 732 // Create a new environment with local scope
duke@1 733 // for attributing the method.
duke@1 734 Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
duke@1 735
duke@1 736 localEnv.info.lint = lint;
duke@1 737
duke@1 738 // Enter all type parameters into the local method scope.
duke@1 739 for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
duke@1 740 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
duke@1 741
duke@1 742 ClassSymbol owner = env.enclClass.sym;
duke@1 743 if ((owner.flags() & ANNOTATION) != 0 &&
duke@1 744 tree.params.nonEmpty())
duke@1 745 log.error(tree.params.head.pos(),
duke@1 746 "intf.annotation.members.cant.have.params");
duke@1 747
duke@1 748 // Attribute all value parameters.
duke@1 749 for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
duke@1 750 attribStat(l.head, localEnv);
duke@1 751 }
duke@1 752
mcimadamore@795 753 chk.checkVarargsMethodDecl(localEnv, tree);
mcimadamore@580 754
duke@1 755 // Check that type parameters are well-formed.
mcimadamore@122 756 chk.validate(tree.typarams, localEnv);
duke@1 757
duke@1 758 // Check that result type is well-formed.
mcimadamore@122 759 chk.validate(tree.restype, localEnv);
mcimadamore@629 760
mcimadamore@629 761 // annotation method checks
mcimadamore@629 762 if ((owner.flags() & ANNOTATION) != 0) {
mcimadamore@629 763 // annotation method cannot have throws clause
mcimadamore@629 764 if (tree.thrown.nonEmpty()) {
mcimadamore@629 765 log.error(tree.thrown.head.pos(),
mcimadamore@629 766 "throws.not.allowed.in.intf.annotation");
mcimadamore@629 767 }
mcimadamore@629 768 // annotation method cannot declare type-parameters
mcimadamore@629 769 if (tree.typarams.nonEmpty()) {
mcimadamore@629 770 log.error(tree.typarams.head.pos(),
mcimadamore@629 771 "intf.annotation.members.cant.have.type.params");
mcimadamore@629 772 }
mcimadamore@629 773 // validate annotation method's return type (could be an annotation type)
duke@1 774 chk.validateAnnotationType(tree.restype);
mcimadamore@629 775 // ensure that annotation method does not clash with members of Object/Annotation
duke@1 776 chk.validateAnnotationMethod(tree.pos(), m);
duke@1 777
mcimadamore@634 778 if (tree.defaultValue != null) {
mcimadamore@634 779 // if default value is an annotation, check it is a well-formed
mcimadamore@634 780 // annotation value (e.g. no duplicate values, no missing values, etc.)
mcimadamore@634 781 chk.validateAnnotationTree(tree.defaultValue);
mcimadamore@634 782 }
mcimadamore@629 783 }
mcimadamore@629 784
duke@1 785 for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
duke@1 786 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
duke@1 787
duke@1 788 if (tree.body == null) {
duke@1 789 // Empty bodies are only allowed for
duke@1 790 // abstract, native, or interface methods, or for methods
duke@1 791 // in a retrofit signature class.
duke@1 792 if ((owner.flags() & INTERFACE) == 0 &&
duke@1 793 (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
duke@1 794 !relax)
duke@1 795 log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
duke@1 796 if (tree.defaultValue != null) {
duke@1 797 if ((owner.flags() & ANNOTATION) == 0)
duke@1 798 log.error(tree.pos(),
duke@1 799 "default.allowed.in.intf.annotation.member");
duke@1 800 }
duke@1 801 } else if ((owner.flags() & INTERFACE) != 0) {
duke@1 802 log.error(tree.body.pos(), "intf.meth.cant.have.body");
duke@1 803 } else if ((tree.mods.flags & ABSTRACT) != 0) {
duke@1 804 log.error(tree.pos(), "abstract.meth.cant.have.body");
duke@1 805 } else if ((tree.mods.flags & NATIVE) != 0) {
duke@1 806 log.error(tree.pos(), "native.meth.cant.have.body");
duke@1 807 } else {
duke@1 808 // Add an implicit super() call unless an explicit call to
duke@1 809 // super(...) or this(...) is given
duke@1 810 // or we are compiling class java.lang.Object.
duke@1 811 if (tree.name == names.init && owner.type != syms.objectType) {
duke@1 812 JCBlock body = tree.body;
duke@1 813 if (body.stats.isEmpty() ||
duke@1 814 !TreeInfo.isSelfCall(body.stats.head)) {
duke@1 815 body.stats = body.stats.
duke@1 816 prepend(memberEnter.SuperCall(make.at(body.pos),
duke@1 817 List.<Type>nil(),
duke@1 818 List.<JCVariableDecl>nil(),
duke@1 819 false));
duke@1 820 } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
duke@1 821 (tree.mods.flags & GENERATEDCONSTR) == 0 &&
duke@1 822 TreeInfo.isSuperCall(body.stats.head)) {
duke@1 823 // enum constructors are not allowed to call super
duke@1 824 // directly, so make sure there aren't any super calls
duke@1 825 // in enum constructors, except in the compiler
duke@1 826 // generated one.
duke@1 827 log.error(tree.body.stats.head.pos(),
duke@1 828 "call.to.super.not.allowed.in.enum.ctor",
duke@1 829 env.enclClass.sym);
duke@1 830 }
duke@1 831 }
duke@1 832
duke@1 833 // Attribute method body.
duke@1 834 attribStat(tree.body, localEnv);
duke@1 835 }
duke@1 836 localEnv.info.scope.leave();
duke@1 837 result = tree.type = m.type;
duke@1 838 chk.validateAnnotations(tree.mods.annotations, m);
duke@1 839 }
duke@1 840 finally {
duke@1 841 chk.setLint(prevLint);
mcimadamore@795 842 chk.setMethod(prevMethod);
duke@1 843 }
duke@1 844 }
duke@1 845
duke@1 846 public void visitVarDef(JCVariableDecl tree) {
duke@1 847 // Local variables have not been entered yet, so we need to do it now:
duke@1 848 if (env.info.scope.owner.kind == MTH) {
duke@1 849 if (tree.sym != null) {
duke@1 850 // parameters have already been entered
duke@1 851 env.info.scope.enter(tree.sym);
duke@1 852 } else {
duke@1 853 memberEnter.memberEnter(tree, env);
duke@1 854 annotate.flush();
duke@1 855 }
mcimadamore@735 856 tree.sym.flags_field |= EFFECTIVELY_FINAL;
duke@1 857 }
duke@1 858
duke@1 859 VarSymbol v = tree.sym;
duke@1 860 Lint lint = env.info.lint.augment(v.attributes_field, v.flags());
duke@1 861 Lint prevLint = chk.setLint(lint);
duke@1 862
mcimadamore@165 863 // Check that the variable's declared type is well-formed.
mcimadamore@165 864 chk.validate(tree.vartype, env);
mcimadamore@852 865 deferredLintHandler.flush(tree.pos());
mcimadamore@165 866
duke@1 867 try {
duke@1 868 chk.checkDeprecatedAnnotation(tree.pos(), v);
duke@1 869
duke@1 870 if (tree.init != null) {
jjg@1127 871 if ((v.flags_field & FINAL) != 0 && !tree.init.hasTag(NEWCLASS)) {
duke@1 872 // In this case, `v' is final. Ensure that it's initializer is
duke@1 873 // evaluated.
duke@1 874 v.getConstValue(); // ensure initializer is evaluated
duke@1 875 } else {
duke@1 876 // Attribute initializer in a new environment
duke@1 877 // with the declared variable as owner.
duke@1 878 // Check that initializer conforms to variable's declared type.
duke@1 879 Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
duke@1 880 initEnv.info.lint = lint;
duke@1 881 // In order to catch self-references, we set the variable's
duke@1 882 // declaration position to maximal possible value, effectively
duke@1 883 // marking the variable as undefined.
mcimadamore@94 884 initEnv.info.enclVar = v;
duke@1 885 attribExpr(tree.init, initEnv, v.type);
duke@1 886 }
duke@1 887 }
duke@1 888 result = tree.type = v.type;
duke@1 889 chk.validateAnnotations(tree.mods.annotations, v);
duke@1 890 }
duke@1 891 finally {
duke@1 892 chk.setLint(prevLint);
duke@1 893 }
duke@1 894 }
duke@1 895
duke@1 896 public void visitSkip(JCSkip tree) {
duke@1 897 result = null;
duke@1 898 }
duke@1 899
duke@1 900 public void visitBlock(JCBlock tree) {
duke@1 901 if (env.info.scope.owner.kind == TYP) {
duke@1 902 // Block is a static or instance initializer;
duke@1 903 // let the owner of the environment be a freshly
duke@1 904 // created BLOCK-method.
duke@1 905 Env<AttrContext> localEnv =
duke@1 906 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
duke@1 907 localEnv.info.scope.owner =
duke@1 908 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
duke@1 909 env.info.scope.owner);
duke@1 910 if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
duke@1 911 attribStats(tree.stats, localEnv);
duke@1 912 } else {
duke@1 913 // Create a new local environment with a local scope.
duke@1 914 Env<AttrContext> localEnv =
duke@1 915 env.dup(tree, env.info.dup(env.info.scope.dup()));
duke@1 916 attribStats(tree.stats, localEnv);
duke@1 917 localEnv.info.scope.leave();
duke@1 918 }
duke@1 919 result = null;
duke@1 920 }
duke@1 921
duke@1 922 public void visitDoLoop(JCDoWhileLoop tree) {
duke@1 923 attribStat(tree.body, env.dup(tree));
duke@1 924 attribExpr(tree.cond, env, syms.booleanType);
duke@1 925 result = null;
duke@1 926 }
duke@1 927
duke@1 928 public void visitWhileLoop(JCWhileLoop tree) {
duke@1 929 attribExpr(tree.cond, env, syms.booleanType);
duke@1 930 attribStat(tree.body, env.dup(tree));
duke@1 931 result = null;
duke@1 932 }
duke@1 933
duke@1 934 public void visitForLoop(JCForLoop tree) {
duke@1 935 Env<AttrContext> loopEnv =
duke@1 936 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
duke@1 937 attribStats(tree.init, loopEnv);
duke@1 938 if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
duke@1 939 loopEnv.tree = tree; // before, we were not in loop!
duke@1 940 attribStats(tree.step, loopEnv);
duke@1 941 attribStat(tree.body, loopEnv);
duke@1 942 loopEnv.info.scope.leave();
duke@1 943 result = null;
duke@1 944 }
duke@1 945
duke@1 946 public void visitForeachLoop(JCEnhancedForLoop tree) {
duke@1 947 Env<AttrContext> loopEnv =
duke@1 948 env.dup(env.tree, env.info.dup(env.info.scope.dup()));
duke@1 949 attribStat(tree.var, loopEnv);
duke@1 950 Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
duke@1 951 chk.checkNonVoid(tree.pos(), exprType);
duke@1 952 Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
duke@1 953 if (elemtype == null) {
duke@1 954 // or perhaps expr implements Iterable<T>?
duke@1 955 Type base = types.asSuper(exprType, syms.iterableType.tsym);
duke@1 956 if (base == null) {
mcimadamore@829 957 log.error(tree.expr.pos(),
mcimadamore@829 958 "foreach.not.applicable.to.type",
mcimadamore@829 959 exprType,
mcimadamore@829 960 diags.fragment("type.req.array.or.iterable"));
jjg@110 961 elemtype = types.createErrorType(exprType);
duke@1 962 } else {
duke@1 963 List<Type> iterableParams = base.allparams();
duke@1 964 elemtype = iterableParams.isEmpty()
duke@1 965 ? syms.objectType
duke@1 966 : types.upperBound(iterableParams.head);
duke@1 967 }
duke@1 968 }
duke@1 969 chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
duke@1 970 loopEnv.tree = tree; // before, we were not in loop!
duke@1 971 attribStat(tree.body, loopEnv);
duke@1 972 loopEnv.info.scope.leave();
duke@1 973 result = null;
duke@1 974 }
duke@1 975
duke@1 976 public void visitLabelled(JCLabeledStatement tree) {
duke@1 977 // Check that label is not used in an enclosing statement
duke@1 978 Env<AttrContext> env1 = env;
jjg@1127 979 while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
jjg@1127 980 if (env1.tree.hasTag(LABELLED) &&
duke@1 981 ((JCLabeledStatement) env1.tree).label == tree.label) {
duke@1 982 log.error(tree.pos(), "label.already.in.use",
duke@1 983 tree.label);
duke@1 984 break;
duke@1 985 }
duke@1 986 env1 = env1.next;
duke@1 987 }
duke@1 988
duke@1 989 attribStat(tree.body, env.dup(tree));
duke@1 990 result = null;
duke@1 991 }
duke@1 992
duke@1 993 public void visitSwitch(JCSwitch tree) {
duke@1 994 Type seltype = attribExpr(tree.selector, env);
duke@1 995
duke@1 996 Env<AttrContext> switchEnv =
duke@1 997 env.dup(tree, env.info.dup(env.info.scope.dup()));
duke@1 998
duke@1 999 boolean enumSwitch =
duke@1 1000 allowEnums &&
duke@1 1001 (seltype.tsym.flags() & Flags.ENUM) != 0;
darcy@430 1002 boolean stringSwitch = false;
darcy@430 1003 if (types.isSameType(seltype, syms.stringType)) {
darcy@430 1004 if (allowStringsInSwitch) {
darcy@430 1005 stringSwitch = true;
darcy@430 1006 } else {
darcy@430 1007 log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
darcy@430 1008 }
darcy@430 1009 }
darcy@430 1010 if (!enumSwitch && !stringSwitch)
duke@1 1011 seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
duke@1 1012
duke@1 1013 // Attribute all cases and
duke@1 1014 // check that there are no duplicate case labels or default clauses.
duke@1 1015 Set<Object> labels = new HashSet<Object>(); // The set of case labels.
duke@1 1016 boolean hasDefault = false; // Is there a default label?
duke@1 1017 for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
duke@1 1018 JCCase c = l.head;
duke@1 1019 Env<AttrContext> caseEnv =
duke@1 1020 switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
duke@1 1021 if (c.pat != null) {
duke@1 1022 if (enumSwitch) {
duke@1 1023 Symbol sym = enumConstant(c.pat, seltype);
duke@1 1024 if (sym == null) {
mcimadamore@829 1025 log.error(c.pat.pos(), "enum.label.must.be.unqualified.enum");
duke@1 1026 } else if (!labels.add(sym)) {
duke@1 1027 log.error(c.pos(), "duplicate.case.label");
duke@1 1028 }
duke@1 1029 } else {
duke@1 1030 Type pattype = attribExpr(c.pat, switchEnv, seltype);
duke@1 1031 if (pattype.tag != ERROR) {
duke@1 1032 if (pattype.constValue() == null) {
darcy@430 1033 log.error(c.pat.pos(),
darcy@430 1034 (stringSwitch ? "string.const.req" : "const.expr.req"));
duke@1 1035 } else if (labels.contains(pattype.constValue())) {
duke@1 1036 log.error(c.pos(), "duplicate.case.label");
duke@1 1037 } else {
duke@1 1038 labels.add(pattype.constValue());
duke@1 1039 }
duke@1 1040 }
duke@1 1041 }
duke@1 1042 } else if (hasDefault) {
duke@1 1043 log.error(c.pos(), "duplicate.default.label");
duke@1 1044 } else {
duke@1 1045 hasDefault = true;
duke@1 1046 }
duke@1 1047 attribStats(c.stats, caseEnv);
duke@1 1048 caseEnv.info.scope.leave();
duke@1 1049 addVars(c.stats, switchEnv.info.scope);
duke@1 1050 }
duke@1 1051
duke@1 1052 switchEnv.info.scope.leave();
duke@1 1053 result = null;
duke@1 1054 }
duke@1 1055 // where
duke@1 1056 /** Add any variables defined in stats to the switch scope. */
duke@1 1057 private static void addVars(List<JCStatement> stats, Scope switchScope) {
duke@1 1058 for (;stats.nonEmpty(); stats = stats.tail) {
duke@1 1059 JCTree stat = stats.head;
jjg@1127 1060 if (stat.hasTag(VARDEF))
duke@1 1061 switchScope.enter(((JCVariableDecl) stat).sym);
duke@1 1062 }
duke@1 1063 }
duke@1 1064 // where
duke@1 1065 /** Return the selected enumeration constant symbol, or null. */
duke@1 1066 private Symbol enumConstant(JCTree tree, Type enumType) {
jjg@1127 1067 if (!tree.hasTag(IDENT)) {
duke@1 1068 log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
duke@1 1069 return syms.errSymbol;
duke@1 1070 }
duke@1 1071 JCIdent ident = (JCIdent)tree;
duke@1 1072 Name name = ident.name;
duke@1 1073 for (Scope.Entry e = enumType.tsym.members().lookup(name);
duke@1 1074 e.scope != null; e = e.next()) {
duke@1 1075 if (e.sym.kind == VAR) {
duke@1 1076 Symbol s = ident.sym = e.sym;
duke@1 1077 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
duke@1 1078 ident.type = s.type;
duke@1 1079 return ((s.flags_field & Flags.ENUM) == 0)
duke@1 1080 ? null : s;
duke@1 1081 }
duke@1 1082 }
duke@1 1083 return null;
duke@1 1084 }
duke@1 1085
duke@1 1086 public void visitSynchronized(JCSynchronized tree) {
duke@1 1087 chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
duke@1 1088 attribStat(tree.body, env);
duke@1 1089 result = null;
duke@1 1090 }
duke@1 1091
duke@1 1092 public void visitTry(JCTry tree) {
darcy@609 1093 // Create a new local environment with a local
darcy@609 1094 Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
darcy@609 1095 boolean isTryWithResource = tree.resources.nonEmpty();
darcy@609 1096 // Create a nested environment for attributing the try block if needed
darcy@609 1097 Env<AttrContext> tryEnv = isTryWithResource ?
darcy@609 1098 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
darcy@609 1099 localEnv;
darcy@609 1100 // Attribute resource declarations
darcy@609 1101 for (JCTree resource : tree.resources) {
jjg@1127 1102 if (resource.hasTag(VARDEF)) {
darcy@609 1103 attribStat(resource, tryEnv);
mcimadamore@743 1104 chk.checkType(resource, resource.type, syms.autoCloseableType, "try.not.applicable.to.type");
mcimadamore@951 1105
mcimadamore@951 1106 //check that resource type cannot throw InterruptedException
mcimadamore@951 1107 checkAutoCloseable(resource.pos(), localEnv, resource.type);
mcimadamore@951 1108
darcy@609 1109 VarSymbol var = (VarSymbol)TreeInfo.symbolFor(resource);
darcy@609 1110 var.setData(ElementKind.RESOURCE_VARIABLE);
darcy@609 1111 } else {
mcimadamore@743 1112 attribExpr(resource, tryEnv, syms.autoCloseableType, "try.not.applicable.to.type");
darcy@609 1113 }
darcy@609 1114 }
duke@1 1115 // Attribute body
darcy@609 1116 attribStat(tree.body, tryEnv);
darcy@609 1117 if (isTryWithResource)
darcy@609 1118 tryEnv.info.scope.leave();
duke@1 1119
duke@1 1120 // Attribute catch clauses
duke@1 1121 for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
duke@1 1122 JCCatch c = l.head;
duke@1 1123 Env<AttrContext> catchEnv =
darcy@609 1124 localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
duke@1 1125 Type ctype = attribStat(c.param, catchEnv);
mcimadamore@550 1126 if (TreeInfo.isMultiCatch(c)) {
mcimadamore@735 1127 //multi-catch parameter is implicitly marked as final
darcy@969 1128 c.param.sym.flags_field |= FINAL | UNION;
mcimadamore@550 1129 }
jjg@723 1130 if (c.param.sym.kind == Kinds.VAR) {
duke@1 1131 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
duke@1 1132 }
duke@1 1133 chk.checkType(c.param.vartype.pos(),
duke@1 1134 chk.checkClassType(c.param.vartype.pos(), ctype),
duke@1 1135 syms.throwableType);
duke@1 1136 attribStat(c.body, catchEnv);
duke@1 1137 catchEnv.info.scope.leave();
duke@1 1138 }
duke@1 1139
duke@1 1140 // Attribute finalizer
darcy@609 1141 if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
darcy@609 1142
darcy@609 1143 localEnv.info.scope.leave();
duke@1 1144 result = null;
duke@1 1145 }
duke@1 1146
mcimadamore@951 1147 void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
mcimadamore@951 1148 if (!resource.isErroneous() &&
mcimadamore@951 1149 types.asSuper(resource, syms.autoCloseableType.tsym) != null) {
mcimadamore@951 1150 Symbol close = syms.noSymbol;
mcimadamore@951 1151 boolean prevDeferDiags = log.deferDiagnostics;
mcimadamore@951 1152 Queue<JCDiagnostic> prevDeferredDiags = log.deferredDiagnostics;
mcimadamore@951 1153 try {
mcimadamore@951 1154 log.deferDiagnostics = true;
mcimadamore@951 1155 log.deferredDiagnostics = ListBuffer.lb();
mcimadamore@951 1156 close = rs.resolveQualifiedMethod(pos,
mcimadamore@951 1157 env,
mcimadamore@951 1158 resource,
mcimadamore@951 1159 names.close,
mcimadamore@951 1160 List.<Type>nil(),
mcimadamore@951 1161 List.<Type>nil());
mcimadamore@951 1162 }
mcimadamore@951 1163 finally {
mcimadamore@951 1164 log.deferDiagnostics = prevDeferDiags;
mcimadamore@951 1165 log.deferredDiagnostics = prevDeferredDiags;
mcimadamore@951 1166 }
mcimadamore@951 1167 if (close.kind == MTH &&
mcimadamore@951 1168 close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
mcimadamore@951 1169 chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
mcimadamore@951 1170 env.info.lint.isEnabled(LintCategory.TRY)) {
mcimadamore@951 1171 log.warning(LintCategory.TRY, pos, "try.resource.throws.interrupted.exc", resource);
mcimadamore@951 1172 }
mcimadamore@951 1173 }
mcimadamore@951 1174 }
mcimadamore@951 1175
duke@1 1176 public void visitConditional(JCConditional tree) {
duke@1 1177 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1178 attribExpr(tree.truepart, env);
duke@1 1179 attribExpr(tree.falsepart, env);
duke@1 1180 result = check(tree,
duke@1 1181 capture(condType(tree.pos(), tree.cond.type,
duke@1 1182 tree.truepart.type, tree.falsepart.type)),
duke@1 1183 VAL, pkind, pt);
duke@1 1184 }
duke@1 1185 //where
duke@1 1186 /** Compute the type of a conditional expression, after
duke@1 1187 * checking that it exists. See Spec 15.25.
duke@1 1188 *
duke@1 1189 * @param pos The source position to be used for
duke@1 1190 * error diagnostics.
duke@1 1191 * @param condtype The type of the expression's condition.
duke@1 1192 * @param thentype The type of the expression's then-part.
duke@1 1193 * @param elsetype The type of the expression's else-part.
duke@1 1194 */
duke@1 1195 private Type condType(DiagnosticPosition pos,
duke@1 1196 Type condtype,
duke@1 1197 Type thentype,
duke@1 1198 Type elsetype) {
duke@1 1199 Type ctype = condType1(pos, condtype, thentype, elsetype);
duke@1 1200
duke@1 1201 // If condition and both arms are numeric constants,
duke@1 1202 // evaluate at compile-time.
duke@1 1203 return ((condtype.constValue() != null) &&
duke@1 1204 (thentype.constValue() != null) &&
duke@1 1205 (elsetype.constValue() != null))
duke@1 1206 ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype)
duke@1 1207 : ctype;
duke@1 1208 }
duke@1 1209 /** Compute the type of a conditional expression, after
duke@1 1210 * checking that it exists. Does not take into
duke@1 1211 * account the special case where condition and both arms
duke@1 1212 * are constants.
duke@1 1213 *
duke@1 1214 * @param pos The source position to be used for error
duke@1 1215 * diagnostics.
duke@1 1216 * @param condtype The type of the expression's condition.
duke@1 1217 * @param thentype The type of the expression's then-part.
duke@1 1218 * @param elsetype The type of the expression's else-part.
duke@1 1219 */
duke@1 1220 private Type condType1(DiagnosticPosition pos, Type condtype,
duke@1 1221 Type thentype, Type elsetype) {
duke@1 1222 // If same type, that is the result
duke@1 1223 if (types.isSameType(thentype, elsetype))
duke@1 1224 return thentype.baseType();
duke@1 1225
duke@1 1226 Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
duke@1 1227 ? thentype : types.unboxedType(thentype);
duke@1 1228 Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
duke@1 1229 ? elsetype : types.unboxedType(elsetype);
duke@1 1230
duke@1 1231 // Otherwise, if both arms can be converted to a numeric
duke@1 1232 // type, return the least numeric type that fits both arms
duke@1 1233 // (i.e. return larger of the two, or return int if one
duke@1 1234 // arm is short, the other is char).
duke@1 1235 if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
duke@1 1236 // If one arm has an integer subrange type (i.e., byte,
duke@1 1237 // short, or char), and the other is an integer constant
duke@1 1238 // that fits into the subrange, return the subrange type.
duke@1 1239 if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
duke@1 1240 types.isAssignable(elseUnboxed, thenUnboxed))
duke@1 1241 return thenUnboxed.baseType();
duke@1 1242 if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
duke@1 1243 types.isAssignable(thenUnboxed, elseUnboxed))
duke@1 1244 return elseUnboxed.baseType();
duke@1 1245
duke@1 1246 for (int i = BYTE; i < VOID; i++) {
duke@1 1247 Type candidate = syms.typeOfTag[i];
duke@1 1248 if (types.isSubtype(thenUnboxed, candidate) &&
duke@1 1249 types.isSubtype(elseUnboxed, candidate))
duke@1 1250 return candidate;
duke@1 1251 }
duke@1 1252 }
duke@1 1253
duke@1 1254 // Those were all the cases that could result in a primitive
duke@1 1255 if (allowBoxing) {
duke@1 1256 if (thentype.isPrimitive())
duke@1 1257 thentype = types.boxedClass(thentype).type;
duke@1 1258 if (elsetype.isPrimitive())
duke@1 1259 elsetype = types.boxedClass(elsetype).type;
duke@1 1260 }
duke@1 1261
duke@1 1262 if (types.isSubtype(thentype, elsetype))
duke@1 1263 return elsetype.baseType();
duke@1 1264 if (types.isSubtype(elsetype, thentype))
duke@1 1265 return thentype.baseType();
duke@1 1266
duke@1 1267 if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
duke@1 1268 log.error(pos, "neither.conditional.subtype",
duke@1 1269 thentype, elsetype);
duke@1 1270 return thentype.baseType();
duke@1 1271 }
duke@1 1272
duke@1 1273 // both are known to be reference types. The result is
duke@1 1274 // lub(thentype,elsetype). This cannot fail, as it will
duke@1 1275 // always be possible to infer "Object" if nothing better.
duke@1 1276 return types.lub(thentype.baseType(), elsetype.baseType());
duke@1 1277 }
duke@1 1278
duke@1 1279 public void visitIf(JCIf tree) {
duke@1 1280 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1281 attribStat(tree.thenpart, env);
duke@1 1282 if (tree.elsepart != null)
duke@1 1283 attribStat(tree.elsepart, env);
duke@1 1284 chk.checkEmptyIf(tree);
duke@1 1285 result = null;
duke@1 1286 }
duke@1 1287
duke@1 1288 public void visitExec(JCExpressionStatement tree) {
mcimadamore@674 1289 //a fresh environment is required for 292 inference to work properly ---
mcimadamore@674 1290 //see Infer.instantiatePolymorphicSignatureInstance()
mcimadamore@674 1291 Env<AttrContext> localEnv = env.dup(tree);
mcimadamore@674 1292 attribExpr(tree.expr, localEnv);
duke@1 1293 result = null;
duke@1 1294 }
duke@1 1295
duke@1 1296 public void visitBreak(JCBreak tree) {
duke@1 1297 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
duke@1 1298 result = null;
duke@1 1299 }
duke@1 1300
duke@1 1301 public void visitContinue(JCContinue tree) {
duke@1 1302 tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
duke@1 1303 result = null;
duke@1 1304 }
duke@1 1305 //where
duke@1 1306 /** Return the target of a break or continue statement, if it exists,
duke@1 1307 * report an error if not.
duke@1 1308 * Note: The target of a labelled break or continue is the
duke@1 1309 * (non-labelled) statement tree referred to by the label,
duke@1 1310 * not the tree representing the labelled statement itself.
duke@1 1311 *
duke@1 1312 * @param pos The position to be used for error diagnostics
duke@1 1313 * @param tag The tag of the jump statement. This is either
duke@1 1314 * Tree.BREAK or Tree.CONTINUE.
duke@1 1315 * @param label The label of the jump statement, or null if no
duke@1 1316 * label is given.
duke@1 1317 * @param env The environment current at the jump statement.
duke@1 1318 */
duke@1 1319 private JCTree findJumpTarget(DiagnosticPosition pos,
jjg@1127 1320 JCTree.Tag tag,
duke@1 1321 Name label,
duke@1 1322 Env<AttrContext> env) {
duke@1 1323 // Search environments outwards from the point of jump.
duke@1 1324 Env<AttrContext> env1 = env;
duke@1 1325 LOOP:
duke@1 1326 while (env1 != null) {
duke@1 1327 switch (env1.tree.getTag()) {
jjg@1127 1328 case LABELLED:
duke@1 1329 JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
duke@1 1330 if (label == labelled.label) {
duke@1 1331 // If jump is a continue, check that target is a loop.
jjg@1127 1332 if (tag == CONTINUE) {
jjg@1127 1333 if (!labelled.body.hasTag(DOLOOP) &&
jjg@1127 1334 !labelled.body.hasTag(WHILELOOP) &&
jjg@1127 1335 !labelled.body.hasTag(FORLOOP) &&
jjg@1127 1336 !labelled.body.hasTag(FOREACHLOOP))
duke@1 1337 log.error(pos, "not.loop.label", label);
duke@1 1338 // Found labelled statement target, now go inwards
duke@1 1339 // to next non-labelled tree.
duke@1 1340 return TreeInfo.referencedStatement(labelled);
duke@1 1341 } else {
duke@1 1342 return labelled;
duke@1 1343 }
duke@1 1344 }
duke@1 1345 break;
jjg@1127 1346 case DOLOOP:
jjg@1127 1347 case WHILELOOP:
jjg@1127 1348 case FORLOOP:
jjg@1127 1349 case FOREACHLOOP:
duke@1 1350 if (label == null) return env1.tree;
duke@1 1351 break;
jjg@1127 1352 case SWITCH:
jjg@1127 1353 if (label == null && tag == BREAK) return env1.tree;
duke@1 1354 break;
jjg@1127 1355 case METHODDEF:
jjg@1127 1356 case CLASSDEF:
duke@1 1357 break LOOP;
duke@1 1358 default:
duke@1 1359 }
duke@1 1360 env1 = env1.next;
duke@1 1361 }
duke@1 1362 if (label != null)
duke@1 1363 log.error(pos, "undef.label", label);
jjg@1127 1364 else if (tag == CONTINUE)
duke@1 1365 log.error(pos, "cont.outside.loop");
duke@1 1366 else
duke@1 1367 log.error(pos, "break.outside.switch.loop");
duke@1 1368 return null;
duke@1 1369 }
duke@1 1370
duke@1 1371 public void visitReturn(JCReturn tree) {
duke@1 1372 // Check that there is an enclosing method which is
duke@1 1373 // nested within than the enclosing class.
duke@1 1374 if (env.enclMethod == null ||
duke@1 1375 env.enclMethod.sym.owner != env.enclClass.sym) {
duke@1 1376 log.error(tree.pos(), "ret.outside.meth");
duke@1 1377
duke@1 1378 } else {
duke@1 1379 // Attribute return expression, if it exists, and check that
duke@1 1380 // it conforms to result type of enclosing method.
duke@1 1381 Symbol m = env.enclMethod.sym;
duke@1 1382 if (m.type.getReturnType().tag == VOID) {
duke@1 1383 if (tree.expr != null)
duke@1 1384 log.error(tree.expr.pos(),
duke@1 1385 "cant.ret.val.from.meth.decl.void");
duke@1 1386 } else if (tree.expr == null) {
duke@1 1387 log.error(tree.pos(), "missing.ret.val");
duke@1 1388 } else {
duke@1 1389 attribExpr(tree.expr, env, m.type.getReturnType());
duke@1 1390 }
duke@1 1391 }
duke@1 1392 result = null;
duke@1 1393 }
duke@1 1394
duke@1 1395 public void visitThrow(JCThrow tree) {
duke@1 1396 attribExpr(tree.expr, env, syms.throwableType);
duke@1 1397 result = null;
duke@1 1398 }
duke@1 1399
duke@1 1400 public void visitAssert(JCAssert tree) {
duke@1 1401 attribExpr(tree.cond, env, syms.booleanType);
duke@1 1402 if (tree.detail != null) {
duke@1 1403 chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
duke@1 1404 }
duke@1 1405 result = null;
duke@1 1406 }
duke@1 1407
duke@1 1408 /** Visitor method for method invocations.
duke@1 1409 * NOTE: The method part of an application will have in its type field
duke@1 1410 * the return type of the method, not the method's type itself!
duke@1 1411 */
duke@1 1412 public void visitApply(JCMethodInvocation tree) {
duke@1 1413 // The local environment of a method application is
duke@1 1414 // a new environment nested in the current one.
duke@1 1415 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
duke@1 1416
duke@1 1417 // The types of the actual method arguments.
duke@1 1418 List<Type> argtypes;
duke@1 1419
duke@1 1420 // The types of the actual method type arguments.
duke@1 1421 List<Type> typeargtypes = null;
duke@1 1422
duke@1 1423 Name methName = TreeInfo.name(tree.meth);
duke@1 1424
duke@1 1425 boolean isConstructorCall =
duke@1 1426 methName == names._this || methName == names._super;
duke@1 1427
duke@1 1428 if (isConstructorCall) {
duke@1 1429 // We are seeing a ...this(...) or ...super(...) call.
duke@1 1430 // Check that this is the first statement in a constructor.
duke@1 1431 if (checkFirstConstructorStat(tree, env)) {
duke@1 1432
duke@1 1433 // Record the fact
duke@1 1434 // that this is a constructor call (using isSelfCall).
duke@1 1435 localEnv.info.isSelfCall = true;
duke@1 1436
duke@1 1437 // Attribute arguments, yielding list of argument types.
duke@1 1438 argtypes = attribArgs(tree.args, localEnv);
duke@1 1439 typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1440
duke@1 1441 // Variable `site' points to the class in which the called
duke@1 1442 // constructor is defined.
duke@1 1443 Type site = env.enclClass.sym.type;
duke@1 1444 if (methName == names._super) {
duke@1 1445 if (site == syms.objectType) {
duke@1 1446 log.error(tree.meth.pos(), "no.superclass", site);
jjg@110 1447 site = types.createErrorType(syms.objectType);
duke@1 1448 } else {
duke@1 1449 site = types.supertype(site);
duke@1 1450 }
duke@1 1451 }
duke@1 1452
duke@1 1453 if (site.tag == CLASS) {
mcimadamore@361 1454 Type encl = site.getEnclosingType();
mcimadamore@361 1455 while (encl != null && encl.tag == TYPEVAR)
mcimadamore@361 1456 encl = encl.getUpperBound();
mcimadamore@361 1457 if (encl.tag == CLASS) {
duke@1 1458 // we are calling a nested class
duke@1 1459
jjg@1127 1460 if (tree.meth.hasTag(SELECT)) {
duke@1 1461 JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
duke@1 1462
duke@1 1463 // We are seeing a prefixed call, of the form
duke@1 1464 // <expr>.super(...).
duke@1 1465 // Check that the prefix expression conforms
duke@1 1466 // to the outer instance type of the class.
duke@1 1467 chk.checkRefType(qualifier.pos(),
duke@1 1468 attribExpr(qualifier, localEnv,
mcimadamore@361 1469 encl));
duke@1 1470 } else if (methName == names._super) {
duke@1 1471 // qualifier omitted; check for existence
duke@1 1472 // of an appropriate implicit qualifier.
duke@1 1473 rs.resolveImplicitThis(tree.meth.pos(),
mcimadamore@901 1474 localEnv, site, true);
duke@1 1475 }
jjg@1127 1476 } else if (tree.meth.hasTag(SELECT)) {
duke@1 1477 log.error(tree.meth.pos(), "illegal.qual.not.icls",
duke@1 1478 site.tsym);
duke@1 1479 }
duke@1 1480
duke@1 1481 // if we're calling a java.lang.Enum constructor,
duke@1 1482 // prefix the implicit String and int parameters
duke@1 1483 if (site.tsym == syms.enumSym && allowEnums)
duke@1 1484 argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
duke@1 1485
duke@1 1486 // Resolve the called constructor under the assumption
duke@1 1487 // that we are referring to a superclass instance of the
duke@1 1488 // current instance (JLS ???).
duke@1 1489 boolean selectSuperPrev = localEnv.info.selectSuper;
duke@1 1490 localEnv.info.selectSuper = true;
duke@1 1491 localEnv.info.varArgs = false;
duke@1 1492 Symbol sym = rs.resolveConstructor(
duke@1 1493 tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
duke@1 1494 localEnv.info.selectSuper = selectSuperPrev;
duke@1 1495
duke@1 1496 // Set method symbol to resolved constructor...
duke@1 1497 TreeInfo.setSymbol(tree.meth, sym);
duke@1 1498
duke@1 1499 // ...and check that it is legal in the current context.
duke@1 1500 // (this will also set the tree's type)
duke@1 1501 Type mpt = newMethTemplate(argtypes, typeargtypes);
duke@1 1502 checkId(tree.meth, site, sym, localEnv, MTH,
duke@1 1503 mpt, tree.varargsElement != null);
duke@1 1504 }
duke@1 1505 // Otherwise, `site' is an error type and we do nothing
duke@1 1506 }
duke@1 1507 result = tree.type = syms.voidType;
duke@1 1508 } else {
duke@1 1509 // Otherwise, we are seeing a regular method call.
duke@1 1510 // Attribute the arguments, yielding list of argument types, ...
duke@1 1511 argtypes = attribArgs(tree.args, localEnv);
jrose@267 1512 typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
duke@1 1513
duke@1 1514 // ... and attribute the method using as a prototype a methodtype
duke@1 1515 // whose formal argument types is exactly the list of actual
duke@1 1516 // arguments (this will also set the method symbol).
duke@1 1517 Type mpt = newMethTemplate(argtypes, typeargtypes);
duke@1 1518 localEnv.info.varArgs = false;
duke@1 1519 Type mtype = attribExpr(tree.meth, localEnv, mpt);
duke@1 1520 if (localEnv.info.varArgs)
jjg@816 1521 Assert.check(mtype.isErroneous() || tree.varargsElement != null);
duke@1 1522
duke@1 1523 // Compute the result type.
duke@1 1524 Type restype = mtype.getReturnType();
mcimadamore@689 1525 if (restype.tag == WILDCARD)
mcimadamore@689 1526 throw new AssertionError(mtype);
duke@1 1527
duke@1 1528 // as a special case, array.clone() has a result that is
duke@1 1529 // the same as static type of the array being cloned
jjg@1127 1530 if (tree.meth.hasTag(SELECT) &&
duke@1 1531 allowCovariantReturns &&
duke@1 1532 methName == names.clone &&
duke@1 1533 types.isArray(((JCFieldAccess) tree.meth).selected.type))
duke@1 1534 restype = ((JCFieldAccess) tree.meth).selected.type;
duke@1 1535
duke@1 1536 // as a special case, x.getClass() has type Class<? extends |X|>
duke@1 1537 if (allowGenerics &&
duke@1 1538 methName == names.getClass && tree.args.isEmpty()) {
jjg@1127 1539 Type qualifier = (tree.meth.hasTag(SELECT))
duke@1 1540 ? ((JCFieldAccess) tree.meth).selected.type
duke@1 1541 : env.enclClass.sym.type;
duke@1 1542 restype = new
duke@1 1543 ClassType(restype.getEnclosingType(),
duke@1 1544 List.<Type>of(new WildcardType(types.erasure(qualifier),
duke@1 1545 BoundKind.EXTENDS,
duke@1 1546 syms.boundClass)),
duke@1 1547 restype.tsym);
duke@1 1548 }
duke@1 1549
mcimadamore@820 1550 chk.checkRefTypes(tree.typeargs, typeargtypes);
jrose@267 1551
duke@1 1552 // Check that value of resulting type is admissible in the
duke@1 1553 // current context. Also, capture the return type
mcimadamore@536 1554 result = check(tree, capture(restype), VAL, pkind, pt);
duke@1 1555 }
mcimadamore@122 1556 chk.validate(tree.typeargs, localEnv);
duke@1 1557 }
duke@1 1558 //where
duke@1 1559 /** Check that given application node appears as first statement
duke@1 1560 * in a constructor call.
duke@1 1561 * @param tree The application node
duke@1 1562 * @param env The environment current at the application.
duke@1 1563 */
duke@1 1564 boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
duke@1 1565 JCMethodDecl enclMethod = env.enclMethod;
duke@1 1566 if (enclMethod != null && enclMethod.name == names.init) {
duke@1 1567 JCBlock body = enclMethod.body;
jjg@1127 1568 if (body.stats.head.hasTag(EXEC) &&
duke@1 1569 ((JCExpressionStatement) body.stats.head).expr == tree)
duke@1 1570 return true;
duke@1 1571 }
duke@1 1572 log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
duke@1 1573 TreeInfo.name(tree.meth));
duke@1 1574 return false;
duke@1 1575 }
duke@1 1576
duke@1 1577 /** Obtain a method type with given argument types.
duke@1 1578 */
duke@1 1579 Type newMethTemplate(List<Type> argtypes, List<Type> typeargtypes) {
duke@1 1580 MethodType mt = new MethodType(argtypes, null, null, syms.methodClass);
duke@1 1581 return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
duke@1 1582 }
duke@1 1583
duke@1 1584 public void visitNewClass(JCNewClass tree) {
jjg@110 1585 Type owntype = types.createErrorType(tree.type);
duke@1 1586
duke@1 1587 // The local environment of a class creation is
duke@1 1588 // a new environment nested in the current one.
duke@1 1589 Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
duke@1 1590
duke@1 1591 // The anonymous inner class definition of the new expression,
duke@1 1592 // if one is defined by it.
duke@1 1593 JCClassDecl cdef = tree.def;
duke@1 1594
duke@1 1595 // If enclosing class is given, attribute it, and
duke@1 1596 // complete class name to be fully qualified
duke@1 1597 JCExpression clazz = tree.clazz; // Class field following new
duke@1 1598 JCExpression clazzid = // Identifier in class field
jjg@1127 1599 (clazz.hasTag(TYPEAPPLY))
duke@1 1600 ? ((JCTypeApply) clazz).clazz
duke@1 1601 : clazz;
duke@1 1602
duke@1 1603 JCExpression clazzid1 = clazzid; // The same in fully qualified form
duke@1 1604
duke@1 1605 if (tree.encl != null) {
duke@1 1606 // We are seeing a qualified new, of the form
duke@1 1607 // <expr>.new C <...> (...) ...
duke@1 1608 // In this case, we let clazz stand for the name of the
duke@1 1609 // allocated class C prefixed with the type of the qualifier
duke@1 1610 // expression, so that we can
duke@1 1611 // resolve it with standard techniques later. I.e., if
duke@1 1612 // <expr> has type T, then <expr>.new C <...> (...)
duke@1 1613 // yields a clazz T.C.
duke@1 1614 Type encltype = chk.checkRefType(tree.encl.pos(),
duke@1 1615 attribExpr(tree.encl, env));
duke@1 1616 clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
duke@1 1617 ((JCIdent) clazzid).name);
jjg@1127 1618 if (clazz.hasTag(TYPEAPPLY))
duke@1 1619 clazz = make.at(tree.pos).
duke@1 1620 TypeApply(clazzid1,
duke@1 1621 ((JCTypeApply) clazz).arguments);
duke@1 1622 else
duke@1 1623 clazz = clazzid1;
duke@1 1624 }
duke@1 1625
duke@1 1626 // Attribute clazz expression and store
duke@1 1627 // symbol + type back into the attributed tree.
mcimadamore@537 1628 Type clazztype = attribType(clazz, env);
mcimadamore@950 1629 Pair<Scope,Scope> mapping = getSyntheticScopeMapping(clazztype);
mcimadamore@914 1630 clazztype = chk.checkDiamond(tree, clazztype);
mcimadamore@122 1631 chk.validate(clazz, localEnv);
duke@1 1632 if (tree.encl != null) {
duke@1 1633 // We have to work in this case to store
duke@1 1634 // symbol + type back into the attributed tree.
duke@1 1635 tree.clazz.type = clazztype;
duke@1 1636 TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
duke@1 1637 clazzid.type = ((JCIdent) clazzid).sym.type;
duke@1 1638 if (!clazztype.isErroneous()) {
duke@1 1639 if (cdef != null && clazztype.tsym.isInterface()) {
duke@1 1640 log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
duke@1 1641 } else if (clazztype.tsym.isStatic()) {
duke@1 1642 log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
duke@1 1643 }
duke@1 1644 }
duke@1 1645 } else if (!clazztype.tsym.isInterface() &&
duke@1 1646 clazztype.getEnclosingType().tag == CLASS) {
duke@1 1647 // Check for the existence of an apropos outer instance
duke@1 1648 rs.resolveImplicitThis(tree.pos(), env, clazztype);
duke@1 1649 }
duke@1 1650
duke@1 1651 // Attribute constructor arguments.
duke@1 1652 List<Type> argtypes = attribArgs(tree.args, localEnv);
duke@1 1653 List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
duke@1 1654
mcimadamore@914 1655 if (TreeInfo.isDiamond(tree) && !clazztype.isErroneous()) {
mcimadamore@631 1656 clazztype = attribDiamond(localEnv, tree, clazztype, mapping, argtypes, typeargtypes);
mcimadamore@537 1657 clazz.type = clazztype;
mcimadamore@731 1658 } else if (allowDiamondFinder &&
mcimadamore@914 1659 tree.def == null &&
mcimadamore@914 1660 !clazztype.isErroneous() &&
mcimadamore@731 1661 clazztype.getTypeArguments().nonEmpty() &&
mcimadamore@731 1662 findDiamonds) {
mcimadamore@770 1663 boolean prevDeferDiags = log.deferDiagnostics;
mcimadamore@770 1664 Queue<JCDiagnostic> prevDeferredDiags = log.deferredDiagnostics;
mcimadamore@770 1665 Type inferred = null;
mcimadamore@770 1666 try {
mcimadamore@770 1667 //disable diamond-related diagnostics
mcimadamore@770 1668 log.deferDiagnostics = true;
mcimadamore@770 1669 log.deferredDiagnostics = ListBuffer.lb();
mcimadamore@770 1670 inferred = attribDiamond(localEnv,
mcimadamore@770 1671 tree,
mcimadamore@770 1672 clazztype,
mcimadamore@770 1673 mapping,
mcimadamore@770 1674 argtypes,
mcimadamore@770 1675 typeargtypes);
mcimadamore@770 1676 }
mcimadamore@770 1677 finally {
mcimadamore@770 1678 log.deferDiagnostics = prevDeferDiags;
mcimadamore@770 1679 log.deferredDiagnostics = prevDeferredDiags;
mcimadamore@770 1680 }
mcimadamore@770 1681 if (inferred != null &&
mcimadamore@770 1682 !inferred.isErroneous() &&
mcimadamore@731 1683 inferred.tag == CLASS &&
mcimadamore@914 1684 types.isAssignable(inferred, pt.tag == NONE ? clazztype : pt, Warner.noWarnings)) {
mcimadamore@731 1685 String key = types.isSameType(clazztype, inferred) ?
mcimadamore@731 1686 "diamond.redundant.args" :
mcimadamore@731 1687 "diamond.redundant.args.1";
mcimadamore@731 1688 log.warning(tree.clazz.pos(), key, clazztype, inferred);
mcimadamore@731 1689 }
mcimadamore@537 1690 }
mcimadamore@537 1691
duke@1 1692 // If we have made no mistakes in the class type...
duke@1 1693 if (clazztype.tag == CLASS) {
duke@1 1694 // Enums may not be instantiated except implicitly
duke@1 1695 if (allowEnums &&
duke@1 1696 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
jjg@1127 1697 (!env.tree.hasTag(VARDEF) ||
duke@1 1698 (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
duke@1 1699 ((JCVariableDecl) env.tree).init != tree))
duke@1 1700 log.error(tree.pos(), "enum.cant.be.instantiated");
duke@1 1701 // Check that class is not abstract
duke@1 1702 if (cdef == null &&
duke@1 1703 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
duke@1 1704 log.error(tree.pos(), "abstract.cant.be.instantiated",
duke@1 1705 clazztype.tsym);
duke@1 1706 } else if (cdef != null && clazztype.tsym.isInterface()) {
duke@1 1707 // Check that no constructor arguments are given to
duke@1 1708 // anonymous classes implementing an interface
duke@1 1709 if (!argtypes.isEmpty())
duke@1 1710 log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
duke@1 1711
duke@1 1712 if (!typeargtypes.isEmpty())
duke@1 1713 log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
duke@1 1714
duke@1 1715 // Error recovery: pretend no arguments were supplied.
duke@1 1716 argtypes = List.nil();
duke@1 1717 typeargtypes = List.nil();
duke@1 1718 }
duke@1 1719
duke@1 1720 // Resolve the called constructor under the assumption
duke@1 1721 // that we are referring to a superclass instance of the
duke@1 1722 // current instance (JLS ???).
duke@1 1723 else {
mcimadamore@1010 1724 //the following code alters some of the fields in the current
mcimadamore@1010 1725 //AttrContext - hence, the current context must be dup'ed in
mcimadamore@1010 1726 //order to avoid downstream failures
mcimadamore@1010 1727 Env<AttrContext> rsEnv = localEnv.dup(tree);
mcimadamore@1010 1728 rsEnv.info.selectSuper = cdef != null;
mcimadamore@1010 1729 rsEnv.info.varArgs = false;
duke@1 1730 tree.constructor = rs.resolveConstructor(
mcimadamore@1010 1731 tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
mcimadamore@630 1732 tree.constructorType = tree.constructor.type.isErroneous() ?
mcimadamore@630 1733 syms.errType :
mcimadamore@630 1734 checkMethod(clazztype,
mcimadamore@630 1735 tree.constructor,
mcimadamore@1010 1736 rsEnv,
mcimadamore@630 1737 tree.args,
mcimadamore@630 1738 argtypes,
mcimadamore@630 1739 typeargtypes,
mcimadamore@1010 1740 rsEnv.info.varArgs);
mcimadamore@1010 1741 if (rsEnv.info.varArgs)
jjg@816 1742 Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
duke@1 1743 }
duke@1 1744
duke@1 1745 if (cdef != null) {
duke@1 1746 // We are seeing an anonymous class instance creation.
duke@1 1747 // In this case, the class instance creation
duke@1 1748 // expression
duke@1 1749 //
duke@1 1750 // E.new <typeargs1>C<typargs2>(args) { ... }
duke@1 1751 //
duke@1 1752 // is represented internally as
duke@1 1753 //
duke@1 1754 // E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } ) .
duke@1 1755 //
duke@1 1756 // This expression is then *transformed* as follows:
duke@1 1757 //
duke@1 1758 // (1) add a STATIC flag to the class definition
duke@1 1759 // if the current environment is static
duke@1 1760 // (2) add an extends or implements clause
duke@1 1761 // (3) add a constructor.
duke@1 1762 //
duke@1 1763 // For instance, if C is a class, and ET is the type of E,
duke@1 1764 // the expression
duke@1 1765 //
duke@1 1766 // E.new <typeargs1>C<typargs2>(args) { ... }
duke@1 1767 //
duke@1 1768 // is translated to (where X is a fresh name and typarams is the
duke@1 1769 // parameter list of the super constructor):
duke@1 1770 //
duke@1 1771 // new <typeargs1>X(<*nullchk*>E, args) where
duke@1 1772 // X extends C<typargs2> {
duke@1 1773 // <typarams> X(ET e, args) {
duke@1 1774 // e.<typeargs1>super(args)
duke@1 1775 // }
duke@1 1776 // ...
duke@1 1777 // }
duke@1 1778 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
mcimadamore@536 1779
duke@1 1780 if (clazztype.tsym.isInterface()) {
duke@1 1781 cdef.implementing = List.of(clazz);
duke@1 1782 } else {
duke@1 1783 cdef.extending = clazz;
duke@1 1784 }
duke@1 1785
duke@1 1786 attribStat(cdef, localEnv);
duke@1 1787
duke@1 1788 // If an outer instance is given,
duke@1 1789 // prefix it to the constructor arguments
duke@1 1790 // and delete it from the new expression
duke@1 1791 if (tree.encl != null && !clazztype.tsym.isInterface()) {
duke@1 1792 tree.args = tree.args.prepend(makeNullCheck(tree.encl));
duke@1 1793 argtypes = argtypes.prepend(tree.encl.type);
duke@1 1794 tree.encl = null;
duke@1 1795 }
duke@1 1796
duke@1 1797 // Reassign clazztype and recompute constructor.
duke@1 1798 clazztype = cdef.sym.type;
mcimadamore@1010 1799 boolean useVarargs = tree.varargsElement != null;
duke@1 1800 Symbol sym = rs.resolveConstructor(
duke@1 1801 tree.pos(), localEnv, clazztype, argtypes,
mcimadamore@1010 1802 typeargtypes, true, useVarargs);
jjg@816 1803 Assert.check(sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous());
duke@1 1804 tree.constructor = sym;
mcimadamore@358 1805 if (tree.constructor.kind > ERRONEOUS) {
mcimadamore@358 1806 tree.constructorType = syms.errType;
mcimadamore@358 1807 }
mcimadamore@358 1808 else {
mcimadamore@358 1809 tree.constructorType = checkMethod(clazztype,
mcimadamore@358 1810 tree.constructor,
mcimadamore@358 1811 localEnv,
mcimadamore@358 1812 tree.args,
mcimadamore@358 1813 argtypes,
mcimadamore@358 1814 typeargtypes,
mcimadamore@1010 1815 useVarargs);
mcimadamore@358 1816 }
duke@1 1817 }
duke@1 1818
duke@1 1819 if (tree.constructor != null && tree.constructor.kind == MTH)
duke@1 1820 owntype = clazztype;
duke@1 1821 }
duke@1 1822 result = check(tree, owntype, VAL, pkind, pt);
mcimadamore@122 1823 chk.validate(tree.typeargs, localEnv);
duke@1 1824 }
duke@1 1825
mcimadamore@537 1826 Type attribDiamond(Env<AttrContext> env,
mcimadamore@537 1827 JCNewClass tree,
mcimadamore@537 1828 Type clazztype,
mcimadamore@537 1829 Pair<Scope, Scope> mapping,
mcimadamore@537 1830 List<Type> argtypes,
mcimadamore@631 1831 List<Type> typeargtypes) {
mcimadamore@950 1832 if (clazztype.isErroneous() ||
mcimadamore@950 1833 clazztype.isInterface() ||
mcimadamore@950 1834 mapping == erroneousMapping) {
mcimadamore@562 1835 //if the type of the instance creation expression is erroneous,
mcimadamore@950 1836 //or if it's an interface, or if something prevented us to form a valid
mcimadamore@950 1837 //mapping, return the (possibly erroneous) type unchanged
mcimadamore@537 1838 return clazztype;
mcimadamore@537 1839 }
mcimadamore@950 1840
mcimadamore@950 1841 //dup attribution environment and augment the set of inference variables
mcimadamore@950 1842 Env<AttrContext> localEnv = env.dup(tree);
mcimadamore@950 1843 localEnv.info.tvars = clazztype.tsym.type.getTypeArguments();
mcimadamore@950 1844
mcimadamore@950 1845 //if the type of the instance creation expression is a class type
mcimadamore@950 1846 //apply method resolution inference (JLS 15.12.2.7). The return type
mcimadamore@950 1847 //of the resolved constructor will be a partially instantiated type
mcimadamore@950 1848 ((ClassSymbol) clazztype.tsym).members_field = mapping.snd;
mcimadamore@950 1849 Symbol constructor;
mcimadamore@950 1850 try {
mcimadamore@950 1851 constructor = rs.resolveDiamond(tree.pos(),
mcimadamore@950 1852 localEnv,
mcimadamore@1060 1853 clazztype,
mcimadamore@950 1854 argtypes,
mcimadamore@950 1855 typeargtypes);
mcimadamore@950 1856 } finally {
mcimadamore@950 1857 ((ClassSymbol) clazztype.tsym).members_field = mapping.fst;
mcimadamore@950 1858 }
mcimadamore@950 1859 if (constructor.kind == MTH) {
mcimadamore@950 1860 ClassType ct = new ClassType(clazztype.getEnclosingType(),
mcimadamore@950 1861 clazztype.tsym.type.getTypeArguments(),
mcimadamore@950 1862 clazztype.tsym);
mcimadamore@950 1863 clazztype = checkMethod(ct,
mcimadamore@950 1864 constructor,
mcimadamore@950 1865 localEnv,
mcimadamore@950 1866 tree.args,
mcimadamore@950 1867 argtypes,
mcimadamore@950 1868 typeargtypes,
mcimadamore@950 1869 localEnv.info.varArgs).getReturnType();
mcimadamore@537 1870 } else {
mcimadamore@950 1871 clazztype = syms.errType;
mcimadamore@537 1872 }
mcimadamore@950 1873
mcimadamore@537 1874 if (clazztype.tag == FORALL && !pt.isErroneous()) {
mcimadamore@537 1875 //if the resolved constructor's return type has some uninferred
mcimadamore@537 1876 //type-variables, infer them using the expected type and declared
mcimadamore@537 1877 //bounds (JLS 15.12.2.8).
mcimadamore@537 1878 try {
mcimadamore@537 1879 clazztype = infer.instantiateExpr((ForAll) clazztype,
mcimadamore@537 1880 pt.tag == NONE ? syms.objectType : pt,
mcimadamore@537 1881 Warner.noWarnings);
mcimadamore@537 1882 } catch (Infer.InferenceException ex) {
mcimadamore@537 1883 //an error occurred while inferring uninstantiated type-variables
mcimadamore@631 1884 log.error(tree.clazz.pos(),
mcimadamore@631 1885 "cant.apply.diamond.1",
mcimadamore@631 1886 diags.fragment("diamond", clazztype.tsym),
mcimadamore@631 1887 ex.diagnostic);
mcimadamore@631 1888 }
mcimadamore@631 1889 }
mcimadamore@914 1890 return chk.checkClassType(tree.clazz.pos(),
mcimadamore@631 1891 clazztype,
mcimadamore@631 1892 true);
mcimadamore@537 1893 }
mcimadamore@537 1894
mcimadamore@537 1895 /** Creates a synthetic scope containing fake generic constructors.
mcimadamore@537 1896 * Assuming that the original scope contains a constructor of the kind:
mcimadamore@537 1897 * Foo(X x, Y y), where X,Y are class type-variables declared in Foo,
mcimadamore@537 1898 * the synthetic scope is added a generic constructor of the kind:
mcimadamore@537 1899 * <X,Y>Foo<X,Y>(X x, Y y). This is crucial in order to enable diamond
mcimadamore@537 1900 * inference. The inferred return type of the synthetic constructor IS
mcimadamore@537 1901 * the inferred type for the diamond operator.
mcimadamore@537 1902 */
mcimadamore@950 1903 private Pair<Scope, Scope> getSyntheticScopeMapping(Type ctype) {
mcimadamore@562 1904 if (ctype.tag != CLASS) {
mcimadamore@562 1905 return erroneousMapping;
mcimadamore@562 1906 }
mcimadamore@950 1907
mcimadamore@537 1908 Pair<Scope, Scope> mapping =
mcimadamore@537 1909 new Pair<Scope, Scope>(ctype.tsym.members(), new Scope(ctype.tsym));
mcimadamore@950 1910
mcimadamore@950 1911 //for each constructor in the original scope, create a synthetic constructor
mcimadamore@950 1912 //whose return type is the type of the class in which the constructor is
mcimadamore@950 1913 //declared, and insert it into the new scope.
mcimadamore@537 1914 for (Scope.Entry e = mapping.fst.lookup(names.init);
mcimadamore@537 1915 e.scope != null;
mcimadamore@537 1916 e = e.next()) {
mcimadamore@950 1917 Type synthRestype = new ClassType(ctype.getEnclosingType(),
mcimadamore@950 1918 ctype.tsym.type.getTypeArguments(),
mcimadamore@950 1919 ctype.tsym);
mcimadamore@950 1920 MethodSymbol synhConstr = new MethodSymbol(e.sym.flags(),
mcimadamore@950 1921 names.init,
mcimadamore@950 1922 types.createMethodTypeWithReturn(e.sym.type, synthRestype),
mcimadamore@950 1923 e.sym.owner);
mcimadamore@950 1924 mapping.snd.enter(synhConstr);
mcimadamore@537 1925 }
mcimadamore@537 1926 return mapping;
mcimadamore@537 1927 }
mcimadamore@537 1928
mcimadamore@562 1929 private final Pair<Scope,Scope> erroneousMapping = new Pair<Scope,Scope>(null, null);
mcimadamore@562 1930
duke@1 1931 /** Make an attributed null check tree.
duke@1 1932 */
duke@1 1933 public JCExpression makeNullCheck(JCExpression arg) {
duke@1 1934 // optimization: X.this is never null; skip null check
duke@1 1935 Name name = TreeInfo.name(arg);
duke@1 1936 if (name == names._this || name == names._super) return arg;
duke@1 1937
jjg@1127 1938 JCTree.Tag optag = NULLCHK;
duke@1 1939 JCUnary tree = make.at(arg.pos).Unary(optag, arg);
duke@1 1940 tree.operator = syms.nullcheck;
duke@1 1941 tree.type = arg.type;
duke@1 1942 return tree;
duke@1 1943 }
duke@1 1944
duke@1 1945 public void visitNewArray(JCNewArray tree) {
jjg@110 1946 Type owntype = types.createErrorType(tree.type);
duke@1 1947 Type elemtype;
duke@1 1948 if (tree.elemtype != null) {
duke@1 1949 elemtype = attribType(tree.elemtype, env);
mcimadamore@122 1950 chk.validate(tree.elemtype, env);
duke@1 1951 owntype = elemtype;
duke@1 1952 for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
duke@1 1953 attribExpr(l.head, env, syms.intType);
duke@1 1954 owntype = new ArrayType(owntype, syms.arrayClass);
duke@1 1955 }
duke@1 1956 } else {
duke@1 1957 // we are seeing an untyped aggregate { ... }
duke@1 1958 // this is allowed only if the prototype is an array
duke@1 1959 if (pt.tag == ARRAY) {
duke@1 1960 elemtype = types.elemtype(pt);
duke@1 1961 } else {
duke@1 1962 if (pt.tag != ERROR) {
duke@1 1963 log.error(tree.pos(), "illegal.initializer.for.type",
duke@1 1964 pt);
duke@1 1965 }
jjg@110 1966 elemtype = types.createErrorType(pt);
duke@1 1967 }
duke@1 1968 }
duke@1 1969 if (tree.elems != null) {
duke@1 1970 attribExprs(tree.elems, env, elemtype);
duke@1 1971 owntype = new ArrayType(elemtype, syms.arrayClass);
duke@1 1972 }
duke@1 1973 if (!types.isReifiable(elemtype))
duke@1 1974 log.error(tree.pos(), "generic.array.creation");
duke@1 1975 result = check(tree, owntype, VAL, pkind, pt);
duke@1 1976 }
duke@1 1977
mcimadamore@1144 1978 @Override
mcimadamore@1144 1979 public void visitLambda(JCLambda that) {
mcimadamore@1144 1980 throw new UnsupportedOperationException("Lambda expression not supported yet");
mcimadamore@1144 1981 }
mcimadamore@1144 1982
mcimadamore@1145 1983 @Override
mcimadamore@1145 1984 public void visitReference(JCMemberReference that) {
mcimadamore@1145 1985 throw new UnsupportedOperationException("Member references not supported yet");
mcimadamore@1145 1986 }
mcimadamore@1145 1987
duke@1 1988 public void visitParens(JCParens tree) {
duke@1 1989 Type owntype = attribTree(tree.expr, env, pkind, pt);
duke@1 1990 result = check(tree, owntype, pkind, pkind, pt);
duke@1 1991 Symbol sym = TreeInfo.symbol(tree);
duke@1 1992 if (sym != null && (sym.kind&(TYP|PCK)) != 0)
duke@1 1993 log.error(tree.pos(), "illegal.start.of.type");
duke@1 1994 }
duke@1 1995
duke@1 1996 public void visitAssign(JCAssign tree) {
duke@1 1997 Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType);
duke@1 1998 Type capturedType = capture(owntype);
duke@1 1999 attribExpr(tree.rhs, env, owntype);
duke@1 2000 result = check(tree, capturedType, VAL, pkind, pt);
duke@1 2001 }
duke@1 2002
duke@1 2003 public void visitAssignop(JCAssignOp tree) {
duke@1 2004 // Attribute arguments.
duke@1 2005 Type owntype = attribTree(tree.lhs, env, VAR, Type.noType);
duke@1 2006 Type operand = attribExpr(tree.rhs, env);
duke@1 2007 // Find operator.
duke@1 2008 Symbol operator = tree.operator = rs.resolveBinaryOperator(
jjg@1127 2009 tree.pos(), tree.getTag().noAssignOp(), env,
duke@1 2010 owntype, operand);
duke@1 2011
mcimadamore@853 2012 if (operator.kind == MTH &&
mcimadamore@853 2013 !owntype.isErroneous() &&
mcimadamore@853 2014 !operand.isErroneous()) {
duke@1 2015 chk.checkOperator(tree.pos(),
duke@1 2016 (OperatorSymbol)operator,
jjg@1127 2017 tree.getTag().noAssignOp(),
duke@1 2018 owntype,
duke@1 2019 operand);
jjg@9 2020 chk.checkDivZero(tree.rhs.pos(), operator, operand);
jjg@9 2021 chk.checkCastable(tree.rhs.pos(),
jjg@9 2022 operator.type.getReturnType(),
jjg@9 2023 owntype);
duke@1 2024 }
duke@1 2025 result = check(tree, owntype, VAL, pkind, pt);
duke@1 2026 }
duke@1 2027
duke@1 2028 public void visitUnary(JCUnary tree) {
duke@1 2029 // Attribute arguments.
jjg@1127 2030 Type argtype = (tree.getTag().isIncOrDecUnaryOp())
duke@1 2031 ? attribTree(tree.arg, env, VAR, Type.noType)
duke@1 2032 : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
duke@1 2033
duke@1 2034 // Find operator.
duke@1 2035 Symbol operator = tree.operator =
duke@1 2036 rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
duke@1 2037
jjg@110 2038 Type owntype = types.createErrorType(tree.type);
mcimadamore@853 2039 if (operator.kind == MTH &&
mcimadamore@853 2040 !argtype.isErroneous()) {
jjg@1127 2041 owntype = (tree.getTag().isIncOrDecUnaryOp())
duke@1 2042 ? tree.arg.type
duke@1 2043 : operator.type.getReturnType();
duke@1 2044 int opc = ((OperatorSymbol)operator).opcode;
duke@1 2045
duke@1 2046 // If the argument is constant, fold it.
duke@1 2047 if (argtype.constValue() != null) {
duke@1 2048 Type ctype = cfolder.fold1(opc, argtype);
duke@1 2049 if (ctype != null) {
duke@1 2050 owntype = cfolder.coerce(ctype, owntype);
duke@1 2051
duke@1 2052 // Remove constant types from arguments to
duke@1 2053 // conserve space. The parser will fold concatenations
duke@1 2054 // of string literals; the code here also
duke@1 2055 // gets rid of intermediate results when some of the
duke@1 2056 // operands are constant identifiers.
duke@1 2057 if (tree.arg.type.tsym == syms.stringType.tsym) {
duke@1 2058 tree.arg.type = syms.stringType;
duke@1 2059 }
duke@1 2060 }
duke@1 2061 }
duke@1 2062 }
duke@1 2063 result = check(tree, owntype, VAL, pkind, pt);
duke@1 2064 }
duke@1 2065
duke@1 2066 public void visitBinary(JCBinary tree) {
duke@1 2067 // Attribute arguments.
duke@1 2068 Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
duke@1 2069 Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
duke@1 2070
duke@1 2071 // Find operator.
duke@1 2072 Symbol operator = tree.operator =
duke@1 2073 rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
duke@1 2074
jjg@110 2075 Type owntype = types.createErrorType(tree.type);
mcimadamore@853 2076 if (operator.kind == MTH &&
mcimadamore@853 2077 !left.isErroneous() &&
mcimadamore@853 2078 !right.isErroneous()) {
duke@1 2079 owntype = operator.type.getReturnType();
duke@1 2080 int opc = chk.checkOperator(tree.lhs.pos(),
duke@1 2081 (OperatorSymbol)operator,
duke@1 2082 tree.getTag(),
duke@1 2083 left,
duke@1 2084 right);
duke@1 2085
duke@1 2086 // If both arguments are constants, fold them.
duke@1 2087 if (left.constValue() != null && right.constValue() != null) {
duke@1 2088 Type ctype = cfolder.fold2(opc, left, right);
duke@1 2089 if (ctype != null) {
duke@1 2090 owntype = cfolder.coerce(ctype, owntype);
duke@1 2091
duke@1 2092 // Remove constant types from arguments to
duke@1 2093 // conserve space. The parser will fold concatenations
duke@1 2094 // of string literals; the code here also
duke@1 2095 // gets rid of intermediate results when some of the
duke@1 2096 // operands are constant identifiers.
duke@1 2097 if (tree.lhs.type.tsym == syms.stringType.tsym) {
duke@1 2098 tree.lhs.type = syms.stringType;
duke@1 2099 }
duke@1 2100 if (tree.rhs.type.tsym == syms.stringType.tsym) {
duke@1 2101 tree.rhs.type = syms.stringType;
duke@1 2102 }
duke@1 2103 }
duke@1 2104 }
duke@1 2105
duke@1 2106 // Check that argument types of a reference ==, != are
duke@1 2107 // castable to each other, (JLS???).
duke@1 2108 if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
duke@1 2109 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
duke@1 2110 log.error(tree.pos(), "incomparable.types", left, right);
duke@1 2111 }
duke@1 2112 }
duke@1 2113
duke@1 2114 chk.checkDivZero(tree.rhs.pos(), operator, right);
duke@1 2115 }
duke@1 2116 result = check(tree, owntype, VAL, pkind, pt);
duke@1 2117 }
duke@1 2118
duke@1 2119 public void visitTypeCast(JCTypeCast tree) {
duke@1 2120 Type clazztype = attribType(tree.clazz, env);
mcimadamore@638 2121 chk.validate(tree.clazz, env, false);
mcimadamore@674 2122 //a fresh environment is required for 292 inference to work properly ---
mcimadamore@674 2123 //see Infer.instantiatePolymorphicSignatureInstance()
mcimadamore@674 2124 Env<AttrContext> localEnv = env.dup(tree);
mcimadamore@674 2125 Type exprtype = attribExpr(tree.expr, localEnv, Infer.anyPoly);
duke@1 2126 Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
duke@1 2127 if (exprtype.constValue() != null)
duke@1 2128 owntype = cfolder.coerce(exprtype, owntype);
duke@1 2129 result = check(tree, capture(owntype), VAL, pkind, pt);
duke@1 2130 }
duke@1 2131
duke@1 2132 public void visitTypeTest(JCInstanceOf tree) {
duke@1 2133 Type exprtype = chk.checkNullOrRefType(
duke@1 2134 tree.expr.pos(), attribExpr(tree.expr, env));
duke@1 2135 Type clazztype = chk.checkReifiableReferenceType(
duke@1 2136 tree.clazz.pos(), attribType(tree.clazz, env));
mcimadamore@638 2137 chk.validate(tree.clazz, env, false);
duke@1 2138 chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
duke@1 2139 result = check(tree, syms.booleanType, VAL, pkind, pt);
duke@1 2140 }
duke@1 2141
duke@1 2142 public void visitIndexed(JCArrayAccess tree) {
jjg@110 2143 Type owntype = types.createErrorType(tree.type);
duke@1 2144 Type atype = attribExpr(tree.indexed, env);
duke@1 2145 attribExpr(tree.index, env, syms.intType);
duke@1 2146 if (types.isArray(atype))
duke@1 2147 owntype = types.elemtype(atype);
duke@1 2148 else if (atype.tag != ERROR)
duke@1 2149 log.error(tree.pos(), "array.req.but.found", atype);
duke@1 2150 if ((pkind & VAR) == 0) owntype = capture(owntype);
duke@1 2151 result = check(tree, owntype, VAR, pkind, pt);
duke@1 2152 }
duke@1 2153
duke@1 2154 public void visitIdent(JCIdent tree) {
duke@1 2155 Symbol sym;
duke@1 2156 boolean varArgs = false;
duke@1 2157
duke@1 2158 // Find symbol
duke@1 2159 if (pt.tag == METHOD || pt.tag == FORALL) {
duke@1 2160 // If we are looking for a method, the prototype `pt' will be a
duke@1 2161 // method type with the type of the call's arguments as parameters.
duke@1 2162 env.info.varArgs = false;
duke@1 2163 sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments());
duke@1 2164 varArgs = env.info.varArgs;
duke@1 2165 } else if (tree.sym != null && tree.sym.kind != VAR) {
duke@1 2166 sym = tree.sym;
duke@1 2167 } else {
duke@1 2168 sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind);
duke@1 2169 }
duke@1 2170 tree.sym = sym;
duke@1 2171
duke@1 2172 // (1) Also find the environment current for the class where
duke@1 2173 // sym is defined (`symEnv').
duke@1 2174 // Only for pre-tiger versions (1.4 and earlier):
duke@1 2175 // (2) Also determine whether we access symbol out of an anonymous
duke@1 2176 // class in a this or super call. This is illegal for instance
duke@1 2177 // members since such classes don't carry a this$n link.
duke@1 2178 // (`noOuterThisPath').
duke@1 2179 Env<AttrContext> symEnv = env;
duke@1 2180 boolean noOuterThisPath = false;
duke@1 2181 if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
duke@1 2182 (sym.kind & (VAR | MTH | TYP)) != 0 &&
duke@1 2183 sym.owner.kind == TYP &&
duke@1 2184 tree.name != names._this && tree.name != names._super) {
duke@1 2185
duke@1 2186 // Find environment in which identifier is defined.
duke@1 2187 while (symEnv.outer != null &&
duke@1 2188 !sym.isMemberOf(symEnv.enclClass.sym, types)) {
duke@1 2189 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
duke@1 2190 noOuterThisPath = !allowAnonOuterThis;
duke@1 2191 symEnv = symEnv.outer;
duke@1 2192 }
duke@1 2193 }
duke@1 2194
duke@1 2195 // If symbol is a variable, ...
duke@1 2196 if (sym.kind == VAR) {
duke@1 2197 VarSymbol v = (VarSymbol)sym;
duke@1 2198
duke@1 2199 // ..., evaluate its initializer, if it has one, and check for
duke@1 2200 // illegal forward reference.
duke@1 2201 checkInit(tree, env, v, false);
duke@1 2202
duke@1 2203 // If symbol is a local variable accessed from an embedded
duke@1 2204 // inner class check that it is final.
duke@1 2205 if (v.owner.kind == MTH &&
duke@1 2206 v.owner != env.info.scope.owner &&
duke@1 2207 (v.flags_field & FINAL) == 0) {
duke@1 2208 log.error(tree.pos(),
duke@1 2209 "local.var.accessed.from.icls.needs.final",
duke@1 2210 v);
duke@1 2211 }
duke@1 2212
duke@1 2213 // If we are expecting a variable (as opposed to a value), check
duke@1 2214 // that the variable is assignable in the current environment.
duke@1 2215 if (pkind == VAR)
duke@1 2216 checkAssignable(tree.pos(), v, null, env);
duke@1 2217 }
duke@1 2218
duke@1 2219 // In a constructor body,
duke@1 2220 // if symbol is a field or instance method, check that it is
duke@1 2221 // not accessed before the supertype constructor is called.
duke@1 2222 if ((symEnv.info.isSelfCall || noOuterThisPath) &&
duke@1 2223 (sym.kind & (VAR | MTH)) != 0 &&
duke@1 2224 sym.owner.kind == TYP &&
duke@1 2225 (sym.flags() & STATIC) == 0) {
duke@1 2226 chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
duke@1 2227 }
duke@1 2228 Env<AttrContext> env1 = env;
mcimadamore@28 2229 if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
duke@1 2230 // If the found symbol is inaccessible, then it is
duke@1 2231 // accessed through an enclosing instance. Locate this
duke@1 2232 // enclosing instance:
duke@1 2233 while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
duke@1 2234 env1 = env1.outer;
duke@1 2235 }
duke@1 2236 result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs);
duke@1 2237 }
duke@1 2238
duke@1 2239 public void visitSelect(JCFieldAccess tree) {
duke@1 2240 // Determine the expected kind of the qualifier expression.
duke@1 2241 int skind = 0;
duke@1 2242 if (tree.name == names._this || tree.name == names._super ||
duke@1 2243 tree.name == names._class)
duke@1 2244 {
duke@1 2245 skind = TYP;
duke@1 2246 } else {
duke@1 2247 if ((pkind & PCK) != 0) skind = skind | PCK;
duke@1 2248 if ((pkind & TYP) != 0) skind = skind | TYP | PCK;
duke@1 2249 if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
duke@1 2250 }
duke@1 2251
duke@1 2252 // Attribute the qualifier expression, and determine its symbol (if any).
duke@1 2253 Type site = attribTree(tree.selected, env, skind, Infer.anyPoly);
duke@1 2254 if ((pkind & (PCK | TYP)) == 0)
duke@1 2255 site = capture(site); // Capture field access
duke@1 2256
duke@1 2257 // don't allow T.class T[].class, etc
duke@1 2258 if (skind == TYP) {
duke@1 2259 Type elt = site;
duke@1 2260 while (elt.tag == ARRAY)
duke@1 2261 elt = ((ArrayType)elt).elemtype;
duke@1 2262 if (elt.tag == TYPEVAR) {
duke@1 2263 log.error(tree.pos(), "type.var.cant.be.deref");
jjg@110 2264 result = types.createErrorType(tree.type);
duke@1 2265 return;
duke@1 2266 }
duke@1 2267 }
duke@1 2268
duke@1 2269 // If qualifier symbol is a type or `super', assert `selectSuper'
duke@1 2270 // for the selection. This is relevant for determining whether
duke@1 2271 // protected symbols are accessible.
duke@1 2272 Symbol sitesym = TreeInfo.symbol(tree.selected);
duke@1 2273 boolean selectSuperPrev = env.info.selectSuper;
duke@1 2274 env.info.selectSuper =
duke@1 2275 sitesym != null &&
duke@1 2276 sitesym.name == names._super;
duke@1 2277
duke@1 2278 // If selected expression is polymorphic, strip
duke@1 2279 // type parameters and remember in env.info.tvars, so that
duke@1 2280 // they can be added later (in Attr.checkId and Infer.instantiateMethod).
duke@1 2281 if (tree.selected.type.tag == FORALL) {
duke@1 2282 ForAll pstype = (ForAll)tree.selected.type;
duke@1 2283 env.info.tvars = pstype.tvars;
duke@1 2284 site = tree.selected.type = pstype.qtype;
duke@1 2285 }
duke@1 2286
duke@1 2287 // Determine the symbol represented by the selection.
duke@1 2288 env.info.varArgs = false;
mcimadamore@829 2289 Symbol sym = selectSym(tree, sitesym, site, env, pt, pkind);
duke@1 2290 if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) {
duke@1 2291 site = capture(site);
mcimadamore@829 2292 sym = selectSym(tree, sitesym, site, env, pt, pkind);
duke@1 2293 }
duke@1 2294 boolean varArgs = env.info.varArgs;
duke@1 2295 tree.sym = sym;
duke@1 2296
mcimadamore@27 2297 if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR) {
mcimadamore@27 2298 while (site.tag == TYPEVAR) site = site.getUpperBound();
mcimadamore@27 2299 site = capture(site);
mcimadamore@27 2300 }
duke@1 2301
duke@1 2302 // If that symbol is a variable, ...
duke@1 2303 if (sym.kind == VAR) {
duke@1 2304 VarSymbol v = (VarSymbol)sym;
duke@1 2305
duke@1 2306 // ..., evaluate its initializer, if it has one, and check for
duke@1 2307 // illegal forward reference.
duke@1 2308 checkInit(tree, env, v, true);
duke@1 2309
duke@1 2310 // If we are expecting a variable (as opposed to a value), check
duke@1 2311 // that the variable is assignable in the current environment.
duke@1 2312 if (pkind == VAR)
duke@1 2313 checkAssignable(tree.pos(), v, tree.selected, env);
duke@1 2314 }
duke@1 2315
darcy@609 2316 if (sitesym != null &&
darcy@609 2317 sitesym.kind == VAR &&
darcy@609 2318 ((VarSymbol)sitesym).isResourceVariable() &&
darcy@609 2319 sym.kind == MTH &&
mcimadamore@954 2320 sym.name.equals(names.close) &&
darcy@609 2321 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
mcimadamore@795 2322 env.info.lint.isEnabled(LintCategory.TRY)) {
mcimadamore@795 2323 log.warning(LintCategory.TRY, tree, "try.explicit.close.call");
darcy@609 2324 }
darcy@609 2325
duke@1 2326 // Disallow selecting a type from an expression
duke@1 2327 if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
duke@1 2328 tree.type = check(tree.selected, pt,
duke@1 2329 sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt);
duke@1 2330 }
duke@1 2331
duke@1 2332 if (isType(sitesym)) {
duke@1 2333 if (sym.name == names._this) {
duke@1 2334 // If `C' is the currently compiled class, check that
duke@1 2335 // C.this' does not appear in a call to a super(...)
duke@1 2336 if (env.info.isSelfCall &&
duke@1 2337 site.tsym == env.enclClass.sym) {
duke@1 2338 chk.earlyRefError(tree.pos(), sym);
duke@1 2339 }
duke@1 2340 } else {
duke@1 2341 // Check if type-qualified fields or methods are static (JLS)
duke@1 2342 if ((sym.flags() & STATIC) == 0 &&
duke@1 2343 sym.name != names._super &&
duke@1 2344 (sym.kind == VAR || sym.kind == MTH)) {
duke@1 2345 rs.access(rs.new StaticError(sym),
duke@1 2346 tree.pos(), site, sym.name, true);
duke@1 2347 }
duke@1 2348 }
jjg@505 2349 } else if (sym.kind != ERR && (sym.flags() & STATIC) != 0 && sym.name != names._class) {
jjg@505 2350 // If the qualified item is not a type and the selected item is static, report
jjg@505 2351 // a warning. Make allowance for the class of an array type e.g. Object[].class)
jjg@505 2352 chk.warnStatic(tree, "static.not.qualified.by.type", Kinds.kindName(sym.kind), sym.owner);
duke@1 2353 }
duke@1 2354
duke@1 2355 // If we are selecting an instance member via a `super', ...
duke@1 2356 if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
duke@1 2357
duke@1 2358 // Check that super-qualified symbols are not abstract (JLS)
duke@1 2359 rs.checkNonAbstract(tree.pos(), sym);
duke@1 2360
duke@1 2361 if (site.isRaw()) {
duke@1 2362 // Determine argument types for site.
duke@1 2363 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
duke@1 2364 if (site1 != null) site = site1;
duke@1 2365 }
duke@1 2366 }
duke@1 2367
duke@1 2368 env.info.selectSuper = selectSuperPrev;
duke@1 2369 result = checkId(tree, site, sym, env, pkind, pt, varArgs);
duke@1 2370 env.info.tvars = List.nil();
duke@1 2371 }
duke@1 2372 //where
duke@1 2373 /** Determine symbol referenced by a Select expression,
duke@1 2374 *
duke@1 2375 * @param tree The select tree.
duke@1 2376 * @param site The type of the selected expression,
duke@1 2377 * @param env The current environment.
duke@1 2378 * @param pt The current prototype.
duke@1 2379 * @param pkind The expected kind(s) of the Select expression.
duke@1 2380 */
duke@1 2381 private Symbol selectSym(JCFieldAccess tree,
mcimadamore@829 2382 Type site,
mcimadamore@829 2383 Env<AttrContext> env,
mcimadamore@829 2384 Type pt,
mcimadamore@829 2385 int pkind) {
mcimadamore@829 2386 return selectSym(tree, site.tsym, site, env, pt, pkind);
mcimadamore@829 2387 }
mcimadamore@829 2388 private Symbol selectSym(JCFieldAccess tree,
mcimadamore@829 2389 Symbol location,
duke@1 2390 Type site,
duke@1 2391 Env<AttrContext> env,
duke@1 2392 Type pt,
duke@1 2393 int pkind) {
duke@1 2394 DiagnosticPosition pos = tree.pos();
duke@1 2395 Name name = tree.name;
duke@1 2396 switch (site.tag) {
duke@1 2397 case PACKAGE:
duke@1 2398 return rs.access(
duke@1 2399 rs.findIdentInPackage(env, site.tsym, name, pkind),
mcimadamore@829 2400 pos, location, site, name, true);
duke@1 2401 case ARRAY:
duke@1 2402 case CLASS:
duke@1 2403 if (pt.tag == METHOD || pt.tag == FORALL) {
duke@1 2404 return rs.resolveQualifiedMethod(
mcimadamore@829 2405 pos, env, location, site, name, pt.getParameterTypes(), pt.getTypeArguments());
duke@1 2406 } else if (name == names._this || name == names._super) {
duke@1 2407 return rs.resolveSelf(pos, env, site.tsym, name);
duke@1 2408 } else if (name == names._class) {
duke@1 2409 // In this case, we have already made sure in
duke@1 2410 // visitSelect that qualifier expression is a type.
duke@1 2411 Type t = syms.classType;
duke@1 2412 List<Type> typeargs = allowGenerics
duke@1 2413 ? List.of(types.erasure(site))
duke@1 2414 : List.<Type>nil();
duke@1 2415 t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
duke@1 2416 return new VarSymbol(
duke@1 2417 STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
duke@1 2418 } else {
duke@1 2419 // We are seeing a plain identifier as selector.
duke@1 2420 Symbol sym = rs.findIdentInType(env, site, name, pkind);
duke@1 2421 if ((pkind & ERRONEOUS) == 0)
mcimadamore@829 2422 sym = rs.access(sym, pos, location, site, name, true);
duke@1 2423 return sym;
duke@1 2424 }
duke@1 2425 case WILDCARD:
duke@1 2426 throw new AssertionError(tree);
duke@1 2427 case TYPEVAR:
duke@1 2428 // Normally, site.getUpperBound() shouldn't be null.
duke@1 2429 // It should only happen during memberEnter/attribBase
mcimadamore@829 2430 // when determining the super type which *must* beac
duke@1 2431 // done before attributing the type variables. In
duke@1 2432 // other words, we are seeing this illegal program:
duke@1 2433 // class B<T> extends A<T.foo> {}
duke@1 2434 Symbol sym = (site.getUpperBound() != null)
mcimadamore@829 2435 ? selectSym(tree, location, capture(site.getUpperBound()), env, pt, pkind)
duke@1 2436 : null;
mcimadamore@361 2437 if (sym == null) {
duke@1 2438 log.error(pos, "type.var.cant.be.deref");
duke@1 2439 return syms.errSymbol;
duke@1 2440 } else {
mcimadamore@155 2441 Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
mcimadamore@155 2442 rs.new AccessError(env, site, sym) :
mcimadamore@155 2443 sym;
mcimadamore@829 2444 rs.access(sym2, pos, location, site, name, true);
duke@1 2445 return sym;
duke@1 2446 }
duke@1 2447 case ERROR:
duke@1 2448 // preserve identifier names through errors
jjg@110 2449 return types.createErrorType(name, site.tsym, site).tsym;
duke@1 2450 default:
duke@1 2451 // The qualifier expression is of a primitive type -- only
duke@1 2452 // .class is allowed for these.
duke@1 2453 if (name == names._class) {
duke@1 2454 // In this case, we have already made sure in Select that
duke@1 2455 // qualifier expression is a type.
duke@1 2456 Type t = syms.classType;
duke@1 2457 Type arg = types.boxedClass(site).type;
duke@1 2458 t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
duke@1 2459 return new VarSymbol(
duke@1 2460 STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
duke@1 2461 } else {
duke@1 2462 log.error(pos, "cant.deref", site);
duke@1 2463 return syms.errSymbol;
duke@1 2464 }
duke@1 2465 }
duke@1 2466 }
duke@1 2467
duke@1 2468 /** Determine type of identifier or select expression and check that
duke@1 2469 * (1) the referenced symbol is not deprecated
duke@1 2470 * (2) the symbol's type is safe (@see checkSafe)
duke@1 2471 * (3) if symbol is a variable, check that its type and kind are
duke@1 2472 * compatible with the prototype and protokind.
duke@1 2473 * (4) if symbol is an instance field of a raw type,
duke@1 2474 * which is being assigned to, issue an unchecked warning if its
duke@1 2475 * type changes under erasure.
duke@1 2476 * (5) if symbol is an instance method of a raw type, issue an
duke@1 2477 * unchecked warning if its argument types change under erasure.
duke@1 2478 * If checks succeed:
duke@1 2479 * If symbol is a constant, return its constant type
duke@1 2480 * else if symbol is a method, return its result type
duke@1 2481 * otherwise return its type.
duke@1 2482 * Otherwise return errType.
duke@1 2483 *
duke@1 2484 * @param tree The syntax tree representing the identifier
duke@1 2485 * @param site If this is a select, the type of the selected
duke@1 2486 * expression, otherwise the type of the current class.
duke@1 2487 * @param sym The symbol representing the identifier.
duke@1 2488 * @param env The current environment.
duke@1 2489 * @param pkind The set of expected kinds.
duke@1 2490 * @param pt The expected type.
duke@1 2491 */
duke@1 2492 Type checkId(JCTree tree,
duke@1 2493 Type site,
duke@1 2494 Symbol sym,
duke@1 2495 Env<AttrContext> env,
duke@1 2496 int pkind,
duke@1 2497 Type pt,
duke@1 2498 boolean useVarargs) {
jjg@110 2499 if (pt.isErroneous()) return types.createErrorType(site);
duke@1 2500 Type owntype; // The computed type of this identifier occurrence.
duke@1 2501 switch (sym.kind) {
duke@1 2502 case TYP:
duke@1 2503 // For types, the computed type equals the symbol's type,
duke@1 2504 // except for two situations:
duke@1 2505 owntype = sym.type;
duke@1 2506 if (owntype.tag == CLASS) {
duke@1 2507 Type ownOuter = owntype.getEnclosingType();
duke@1 2508
duke@1 2509 // (a) If the symbol's type is parameterized, erase it
duke@1 2510 // because no type parameters were given.
duke@1 2511 // We recover generic outer type later in visitTypeApply.
duke@1 2512 if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
duke@1 2513 owntype = types.erasure(owntype);
duke@1 2514 }
duke@1 2515
duke@1 2516 // (b) If the symbol's type is an inner class, then
duke@1 2517 // we have to interpret its outer type as a superclass
duke@1 2518 // of the site type. Example:
duke@1 2519 //
duke@1 2520 // class Tree<A> { class Visitor { ... } }
duke@1 2521 // class PointTree extends Tree<Point> { ... }
duke@1 2522 // ...PointTree.Visitor...
duke@1 2523 //
duke@1 2524 // Then the type of the last expression above is
duke@1 2525 // Tree<Point>.Visitor.
duke@1 2526 else if (ownOuter.tag == CLASS && site != ownOuter) {
duke@1 2527 Type normOuter = site;
duke@1 2528 if (normOuter.tag == CLASS)
duke@1 2529 normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
duke@1 2530 if (normOuter == null) // perhaps from an import
duke@1 2531 normOuter = types.erasure(ownOuter);
duke@1 2532 if (normOuter != ownOuter)
duke@1 2533 owntype = new ClassType(
duke@1 2534 normOuter, List.<Type>nil(), owntype.tsym);
duke@1 2535 }
duke@1 2536 }
duke@1 2537 break;
duke@1 2538 case VAR:
duke@1 2539 VarSymbol v = (VarSymbol)sym;
duke@1 2540 // Test (4): if symbol is an instance field of a raw type,
duke@1 2541 // which is being assigned to, issue an unchecked warning if
duke@1 2542 // its type changes under erasure.
duke@1 2543 if (allowGenerics &&
duke@1 2544 pkind == VAR &&
duke@1 2545 v.owner.kind == TYP &&
duke@1 2546 (v.flags() & STATIC) == 0 &&
duke@1 2547 (site.tag == CLASS || site.tag == TYPEVAR)) {
duke@1 2548 Type s = types.asOuterSuper(site, v.owner);
duke@1 2549 if (s != null &&
duke@1 2550 s.isRaw() &&
duke@1 2551 !types.isSameType(v.type, v.erasure(types))) {
duke@1 2552 chk.warnUnchecked(tree.pos(),
duke@1 2553 "unchecked.assign.to.var",
duke@1 2554 v, s);
duke@1 2555 }
duke@1 2556 }
duke@1 2557 // The computed type of a variable is the type of the
duke@1 2558 // variable symbol, taken as a member of the site type.
duke@1 2559 owntype = (sym.owner.kind == TYP &&
duke@1 2560 sym.name != names._this && sym.name != names._super)
duke@1 2561 ? types.memberType(site, sym)
duke@1 2562 : sym.type;
duke@1 2563
duke@1 2564 if (env.info.tvars.nonEmpty()) {
duke@1 2565 Type owntype1 = new ForAll(env.info.tvars, owntype);
duke@1 2566 for (List<Type> l = env.info.tvars; l.nonEmpty(); l = l.tail)
duke@1 2567 if (!owntype.contains(l.head)) {
duke@1 2568 log.error(tree.pos(), "undetermined.type", owntype1);
jjg@110 2569 owntype1 = types.createErrorType(owntype1);
duke@1 2570 }
duke@1 2571 owntype = owntype1;
duke@1 2572 }
duke@1 2573
duke@1 2574 // If the variable is a constant, record constant value in
duke@1 2575 // computed type.
duke@1 2576 if (v.getConstValue() != null && isStaticReference(tree))
duke@1 2577 owntype = owntype.constType(v.getConstValue());
duke@1 2578
duke@1 2579 if (pkind == VAL) {
duke@1 2580 owntype = capture(owntype); // capture "names as expressions"
duke@1 2581 }
duke@1 2582 break;
duke@1 2583 case MTH: {
duke@1 2584 JCMethodInvocation app = (JCMethodInvocation)env.tree;
duke@1 2585 owntype = checkMethod(site, sym, env, app.args,
duke@1 2586 pt.getParameterTypes(), pt.getTypeArguments(),
duke@1 2587 env.info.varArgs);
duke@1 2588 break;
duke@1 2589 }
duke@1 2590 case PCK: case ERR:
duke@1 2591 owntype = sym.type;
duke@1 2592 break;
duke@1 2593 default:
duke@1 2594 throw new AssertionError("unexpected kind: " + sym.kind +
duke@1 2595 " in tree " + tree);
duke@1 2596 }
duke@1 2597
duke@1 2598 // Test (1): emit a `deprecation' warning if symbol is deprecated.
duke@1 2599 // (for constructors, the error was given when the constructor was
duke@1 2600 // resolved)
mcimadamore@852 2601
mcimadamore@852 2602 if (sym.name != names.init) {
mcimadamore@852 2603 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
mcimadamore@852 2604 chk.checkSunAPI(tree.pos(), sym);
jjg@377 2605 }
duke@1 2606
duke@1 2607 // Test (3): if symbol is a variable, check that its type and
duke@1 2608 // kind are compatible with the prototype and protokind.
duke@1 2609 return check(tree, owntype, sym.kind, pkind, pt);
duke@1 2610 }
duke@1 2611
duke@1 2612 /** Check that variable is initialized and evaluate the variable's
duke@1 2613 * initializer, if not yet done. Also check that variable is not
duke@1 2614 * referenced before it is defined.
duke@1 2615 * @param tree The tree making up the variable reference.
duke@1 2616 * @param env The current environment.
duke@1 2617 * @param v The variable's symbol.
duke@1 2618 */
duke@1 2619 private void checkInit(JCTree tree,
duke@1 2620 Env<AttrContext> env,
duke@1 2621 VarSymbol v,
duke@1 2622 boolean onlyWarning) {
duke@1 2623 // System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
duke@1 2624 // tree.pos + " " + v.pos + " " +
duke@1 2625 // Resolve.isStatic(env));//DEBUG
duke@1 2626
duke@1 2627 // A forward reference is diagnosed if the declaration position
duke@1 2628 // of the variable is greater than the current tree position
duke@1 2629 // and the tree and variable definition occur in the same class
duke@1 2630 // definition. Note that writes don't count as references.
duke@1 2631 // This check applies only to class and instance
duke@1 2632 // variables. Local variables follow different scope rules,
duke@1 2633 // and are subject to definite assignment checking.
mcimadamore@94 2634 if ((env.info.enclVar == v || v.pos > tree.pos) &&
duke@1 2635 v.owner.kind == TYP &&
duke@1 2636 canOwnInitializer(env.info.scope.owner) &&
duke@1 2637 v.owner == env.info.scope.owner.enclClass() &&
duke@1 2638 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
jjg@1127 2639 (!env.tree.hasTag(ASSIGN) ||
duke@1 2640 TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
mcimadamore@94 2641 String suffix = (env.info.enclVar == v) ?
mcimadamore@94 2642 "self.ref" : "forward.ref";
mcimadamore@18 2643 if (!onlyWarning || isStaticEnumField(v)) {
mcimadamore@94 2644 log.error(tree.pos(), "illegal." + suffix);
duke@1 2645 } else if (useBeforeDeclarationWarning) {
mcimadamore@94 2646 log.warning(tree.pos(), suffix, v);
duke@1 2647 }
duke@1 2648 }
duke@1 2649
duke@1 2650 v.getConstValue(); // ensure initializer is evaluated
duke@1 2651
duke@1 2652 checkEnumInitializer(tree, env, v);
duke@1 2653 }
duke@1 2654
duke@1 2655 /**
duke@1 2656 * Check for illegal references to static members of enum. In
duke@1 2657 * an enum type, constructors and initializers may not
duke@1 2658 * reference its static members unless they are constant.
duke@1 2659 *
duke@1 2660 * @param tree The tree making up the variable reference.
duke@1 2661 * @param env The current environment.
duke@1 2662 * @param v The variable's symbol.
jjh@972 2663 * @jls section 8.9 Enums
duke@1 2664 */
duke@1 2665 private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
jjh@972 2666 // JLS:
duke@1 2667 //
duke@1 2668 // "It is a compile-time error to reference a static field
duke@1 2669 // of an enum type that is not a compile-time constant
duke@1 2670 // (15.28) from constructors, instance initializer blocks,
duke@1 2671 // or instance variable initializer expressions of that
duke@1 2672 // type. It is a compile-time error for the constructors,
duke@1 2673 // instance initializer blocks, or instance variable
duke@1 2674 // initializer expressions of an enum constant e to refer
duke@1 2675 // to itself or to an enum constant of the same type that
duke@1 2676 // is declared to the right of e."
mcimadamore@18 2677 if (isStaticEnumField(v)) {
duke@1 2678 ClassSymbol enclClass = env.info.scope.owner.enclClass();
duke@1 2679
duke@1 2680 if (enclClass == null || enclClass.owner == null)
duke@1 2681 return;
duke@1 2682
duke@1 2683 // See if the enclosing class is the enum (or a
duke@1 2684 // subclass thereof) declaring v. If not, this
duke@1 2685 // reference is OK.
duke@1 2686 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
duke@1 2687 return;
duke@1 2688
duke@1 2689 // If the reference isn't from an initializer, then
duke@1 2690 // the reference is OK.
duke@1 2691 if (!Resolve.isInitializer(env))
duke@1 2692 return;
duke@1 2693
duke@1 2694 log.error(tree.pos(), "illegal.enum.static.ref");
duke@1 2695 }
duke@1 2696 }
duke@1 2697
mcimadamore@18 2698 /** Is the given symbol a static, non-constant field of an Enum?
mcimadamore@18 2699 * Note: enum literals should not be regarded as such
mcimadamore@18 2700 */
mcimadamore@18 2701 private boolean isStaticEnumField(VarSymbol v) {
mcimadamore@18 2702 return Flags.isEnum(v.owner) &&
mcimadamore@18 2703 Flags.isStatic(v) &&
mcimadamore@18 2704 !Flags.isConstant(v) &&
mcimadamore@18 2705 v.name != names._class;
duke@1 2706 }
duke@1 2707
duke@1 2708 /** Can the given symbol be the owner of code which forms part
duke@1 2709 * if class initialization? This is the case if the symbol is
duke@1 2710 * a type or field, or if the symbol is the synthetic method.
duke@1 2711 * owning a block.
duke@1 2712 */
duke@1 2713 private boolean canOwnInitializer(Symbol sym) {
duke@1 2714 return
duke@1 2715 (sym.kind & (VAR | TYP)) != 0 ||
duke@1 2716 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
duke@1 2717 }
duke@1 2718
duke@1 2719 Warner noteWarner = new Warner();
duke@1 2720
duke@1 2721 /**
duke@1 2722 * Check that method arguments conform to its instantation.
duke@1 2723 **/
duke@1 2724 public Type checkMethod(Type site,
duke@1 2725 Symbol sym,
duke@1 2726 Env<AttrContext> env,
duke@1 2727 final List<JCExpression> argtrees,
duke@1 2728 List<Type> argtypes,
duke@1 2729 List<Type> typeargtypes,
duke@1 2730 boolean useVarargs) {
duke@1 2731 // Test (5): if symbol is an instance method of a raw type, issue
duke@1 2732 // an unchecked warning if its argument types change under erasure.
duke@1 2733 if (allowGenerics &&
duke@1 2734 (sym.flags() & STATIC) == 0 &&
duke@1 2735 (site.tag == CLASS || site.tag == TYPEVAR)) {
duke@1 2736 Type s = types.asOuterSuper(site, sym.owner);
duke@1 2737 if (s != null && s.isRaw() &&
duke@1 2738 !types.isSameTypes(sym.type.getParameterTypes(),
duke@1 2739 sym.erasure(types).getParameterTypes())) {
duke@1 2740 chk.warnUnchecked(env.tree.pos(),
duke@1 2741 "unchecked.call.mbr.of.raw.type",
duke@1 2742 sym, s);
duke@1 2743 }
duke@1 2744 }
duke@1 2745
duke@1 2746 // Compute the identifier's instantiated type.
duke@1 2747 // For methods, we need to compute the instance type by
duke@1 2748 // Resolve.instantiate from the symbol's type as well as
duke@1 2749 // any type arguments and value arguments.
mcimadamore@795 2750 noteWarner.clear();
duke@1 2751 Type owntype = rs.instantiate(env,
duke@1 2752 site,
duke@1 2753 sym,
duke@1 2754 argtypes,
duke@1 2755 typeargtypes,
duke@1 2756 true,
duke@1 2757 useVarargs,
duke@1 2758 noteWarner);
mcimadamore@795 2759 boolean warned = noteWarner.hasNonSilentLint(LintCategory.UNCHECKED);
duke@1 2760
duke@1 2761 // If this fails, something went wrong; we should not have
duke@1 2762 // found the identifier in the first place.
duke@1 2763 if (owntype == null) {
duke@1 2764 if (!pt.isErroneous())
duke@1 2765 log.error(env.tree.pos(),
duke@1 2766 "internal.error.cant.instantiate",
duke@1 2767 sym, site,
duke@1 2768 Type.toString(pt.getParameterTypes()));
jjg@110 2769 owntype = types.createErrorType(site);
duke@1 2770 } else {
duke@1 2771 // System.out.println("call : " + env.tree);
duke@1 2772 // System.out.println("method : " + owntype);
duke@1 2773 // System.out.println("actuals: " + argtypes);
duke@1 2774 List<Type> formals = owntype.getParameterTypes();
duke@1 2775 Type last = useVarargs ? formals.last() : null;
duke@1 2776 if (sym.name==names.init &&
duke@1 2777 sym.owner == syms.enumSym)
duke@1 2778 formals = formals.tail.tail;
duke@1 2779 List<JCExpression> args = argtrees;
duke@1 2780 while (formals.head != last) {
duke@1 2781 JCTree arg = args.head;
duke@1 2782 Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head);
duke@1 2783 assertConvertible(arg, arg.type, formals.head, warn);
mcimadamore@795 2784 warned |= warn.hasNonSilentLint(LintCategory.UNCHECKED);
duke@1 2785 args = args.tail;
duke@1 2786 formals = formals.tail;
duke@1 2787 }
duke@1 2788 if (useVarargs) {
duke@1 2789 Type varArg = types.elemtype(last);
duke@1 2790 while (args.tail != null) {
duke@1 2791 JCTree arg = args.head;
duke@1 2792 Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg);
duke@1 2793 assertConvertible(arg, arg.type, varArg, warn);
mcimadamore@795 2794 warned |= warn.hasNonSilentLint(LintCategory.UNCHECKED);
duke@1 2795 args = args.tail;
duke@1 2796 }
duke@1 2797 } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
duke@1 2798 // non-varargs call to varargs method
duke@1 2799 Type varParam = owntype.getParameterTypes().last();
duke@1 2800 Type lastArg = argtypes.last();
duke@1 2801 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
duke@1 2802 !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
duke@1 2803 log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
duke@1 2804 types.elemtype(varParam),
duke@1 2805 varParam);
duke@1 2806 }
duke@1 2807
duke@1 2808 if (warned && sym.type.tag == FORALL) {
duke@1 2809 chk.warnUnchecked(env.tree.pos(),
duke@1 2810 "unchecked.meth.invocation.applied",
mcimadamore@161 2811 kindName(sym),
mcimadamore@161 2812 sym.name,
mcimadamore@161 2813 rs.methodArguments(sym.type.getParameterTypes()),
mcimadamore@161 2814 rs.methodArguments(argtypes),
mcimadamore@161 2815 kindName(sym.location()),
mcimadamore@161 2816 sym.location());
duke@1 2817 owntype = new MethodType(owntype.getParameterTypes(),
duke@1 2818 types.erasure(owntype.getReturnType()),
mcimadamore@895 2819 types.erasure(owntype.getThrownTypes()),
duke@1 2820 syms.methodClass);
duke@1 2821 }
duke@1 2822 if (useVarargs) {
duke@1 2823 JCTree tree = env.tree;
mcimadamore@580 2824 Type argtype = owntype.getParameterTypes().last();
mcimadamore@547 2825 if (owntype.getReturnType().tag != FORALL || warned) {
mcimadamore@795 2826 chk.checkVararg(env.tree.pos(), owntype.getParameterTypes(), sym);
mcimadamore@547 2827 }
mcimadamore@580 2828 Type elemtype = types.elemtype(argtype);
duke@1 2829 switch (tree.getTag()) {
jjg@1127 2830 case APPLY:
duke@1 2831 ((JCMethodInvocation) tree).varargsElement = elemtype;
duke@1 2832 break;
jjg@1127 2833 case NEWCLASS:
duke@1 2834 ((JCNewClass) tree).varargsElement = elemtype;
duke@1 2835 break;
duke@1 2836 default:
duke@1 2837 throw new AssertionError(""+tree);
duke@1 2838 }
duke@1 2839 }
duke@1 2840 }
duke@1 2841 return owntype;
duke@1 2842 }
duke@1 2843
duke@1 2844 private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
duke@1 2845 if (types.isConvertible(actual, formal, warn))
duke@1 2846 return;
duke@1 2847
duke@1 2848 if (formal.isCompound()
duke@1 2849 && types.isSubtype(actual, types.supertype(formal))
duke@1 2850 && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
duke@1 2851 return;
duke@1 2852
duke@1 2853 if (false) {
duke@1 2854 // TODO: make assertConvertible work
mcimadamore@89 2855 chk.typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal);
duke@1 2856 throw new AssertionError("Tree: " + tree
duke@1 2857 + " actual:" + actual
duke@1 2858 + " formal: " + formal);
duke@1 2859 }
duke@1 2860 }
duke@1 2861
duke@1 2862 public void visitLiteral(JCLiteral tree) {
duke@1 2863 result = check(
duke@1 2864 tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt);
duke@1 2865 }
duke@1 2866 //where
duke@1 2867 /** Return the type of a literal with given type tag.
duke@1 2868 */
duke@1 2869 Type litType(int tag) {
duke@1 2870 return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
duke@1 2871 }
duke@1 2872
duke@1 2873 public void visitTypeIdent(JCPrimitiveTypeTree tree) {
duke@1 2874 result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt);
duke@1 2875 }
duke@1 2876
duke@1 2877 public void visitTypeArray(JCArrayTypeTree tree) {
duke@1 2878 Type etype = attribType(tree.elemtype, env);
duke@1 2879 Type type = new ArrayType(etype, syms.arrayClass);
duke@1 2880 result = check(tree, type, TYP, pkind, pt);
duke@1 2881 }
duke@1 2882
duke@1 2883 /** Visitor method for parameterized types.
duke@1 2884 * Bound checking is left until later, since types are attributed
duke@1 2885 * before supertype structure is completely known
duke@1 2886 */
duke@1 2887 public void visitTypeApply(JCTypeApply tree) {
jjg@110 2888 Type owntype = types.createErrorType(tree.type);
duke@1 2889
duke@1 2890 // Attribute functor part of application and make sure it's a class.
duke@1 2891 Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
duke@1 2892
duke@1 2893 // Attribute type parameters
duke@1 2894 List<Type> actuals = attribTypes(tree.arguments, env);
duke@1 2895
duke@1 2896 if (clazztype.tag == CLASS) {
duke@1 2897 List<Type> formals = clazztype.tsym.type.getTypeArguments();
mcimadamore@1060 2898 if (actuals.isEmpty()) //diamond
mcimadamore@1060 2899 actuals = formals;
mcimadamore@1060 2900
mcimadamore@1060 2901 if (actuals.length() == formals.length()) {
duke@1 2902 List<Type> a = actuals;
duke@1 2903 List<Type> f = formals;
duke@1 2904 while (a.nonEmpty()) {
duke@1 2905 a.head = a.head.withTypeVar(f.head);
duke@1 2906 a = a.tail;
duke@1 2907 f = f.tail;
duke@1 2908 }
duke@1 2909 // Compute the proper generic outer
duke@1 2910 Type clazzOuter = clazztype.getEnclosingType();
duke@1 2911 if (clazzOuter.tag == CLASS) {
duke@1 2912 Type site;
jjg@308 2913 JCExpression clazz = TreeInfo.typeIn(tree.clazz);
jjg@1127 2914 if (clazz.hasTag(IDENT)) {
duke@1 2915 site = env.enclClass.sym.type;
jjg@1127 2916 } else if (clazz.hasTag(SELECT)) {
jjg@308 2917 site = ((JCFieldAccess) clazz).selected.type;
duke@1 2918 } else throw new AssertionError(""+tree);
duke@1 2919 if (clazzOuter.tag == CLASS && site != clazzOuter) {
duke@1 2920 if (site.tag == CLASS)
duke@1 2921 site = types.asOuterSuper(site, clazzOuter.tsym);
duke@1 2922 if (site == null)
duke@1 2923 site = types.erasure(clazzOuter);
duke@1 2924 clazzOuter = site;
duke@1 2925 }
duke@1 2926 }
mcimadamore@536 2927 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
duke@1 2928 } else {
duke@1 2929 if (formals.length() != 0) {
duke@1 2930 log.error(tree.pos(), "wrong.number.type.args",
duke@1 2931 Integer.toString(formals.length()));
duke@1 2932 } else {
duke@1 2933 log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
duke@1 2934 }
jjg@110 2935 owntype = types.createErrorType(tree.type);
duke@1 2936 }
duke@1 2937 }
duke@1 2938 result = check(tree, owntype, TYP, pkind, pt);
duke@1 2939 }
duke@1 2940
darcy@969 2941 public void visitTypeUnion(JCTypeUnion tree) {
mcimadamore@774 2942 ListBuffer<Type> multicatchTypes = ListBuffer.lb();
jjg@988 2943 ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
mcimadamore@774 2944 for (JCExpression typeTree : tree.alternatives) {
mcimadamore@774 2945 Type ctype = attribType(typeTree, env);
mcimadamore@774 2946 ctype = chk.checkType(typeTree.pos(),
mcimadamore@774 2947 chk.checkClassType(typeTree.pos(), ctype),
mcimadamore@774 2948 syms.throwableType);
mcimadamore@949 2949 if (!ctype.isErroneous()) {
darcy@969 2950 //check that alternatives of a union type are pairwise
mcimadamore@949 2951 //unrelated w.r.t. subtyping
mcimadamore@949 2952 if (chk.intersects(ctype, multicatchTypes.toList())) {
mcimadamore@949 2953 for (Type t : multicatchTypes) {
mcimadamore@949 2954 boolean sub = types.isSubtype(ctype, t);
mcimadamore@949 2955 boolean sup = types.isSubtype(t, ctype);
mcimadamore@949 2956 if (sub || sup) {
mcimadamore@949 2957 //assume 'a' <: 'b'
mcimadamore@949 2958 Type a = sub ? ctype : t;
mcimadamore@949 2959 Type b = sub ? t : ctype;
mcimadamore@949 2960 log.error(typeTree.pos(), "multicatch.types.must.be.disjoint", a, b);
mcimadamore@949 2961 }
mcimadamore@949 2962 }
mcimadamore@949 2963 }
mcimadamore@949 2964 multicatchTypes.append(ctype);
jjg@988 2965 if (all_multicatchTypes != null)
jjg@988 2966 all_multicatchTypes.append(ctype);
jjg@988 2967 } else {
jjg@988 2968 if (all_multicatchTypes == null) {
jjg@988 2969 all_multicatchTypes = ListBuffer.lb();
jjg@988 2970 all_multicatchTypes.appendList(multicatchTypes);
jjg@988 2971 }
jjg@988 2972 all_multicatchTypes.append(ctype);
mcimadamore@949 2973 }
mcimadamore@774 2974 }
jjg@988 2975 Type t = check(tree, types.lub(multicatchTypes.toList()), TYP, pkind, pt);
jjg@988 2976 if (t.tag == CLASS) {
jjg@988 2977 List<Type> alternatives =
jjg@988 2978 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
jjg@988 2979 t = new UnionClassType((ClassType) t, alternatives);
jjg@988 2980 }
jjg@988 2981 tree.type = result = t;
mcimadamore@550 2982 }
mcimadamore@550 2983
duke@1 2984 public void visitTypeParameter(JCTypeParameter tree) {
duke@1 2985 TypeVar a = (TypeVar)tree.type;
duke@1 2986 Set<Type> boundSet = new HashSet<Type>();
duke@1 2987 if (a.bound.isErroneous())
duke@1 2988 return;
duke@1 2989 List<Type> bs = types.getBounds(a);
duke@1 2990 if (tree.bounds.nonEmpty()) {
duke@1 2991 // accept class or interface or typevar as first bound.
duke@1 2992 Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
duke@1 2993 boundSet.add(types.erasure(b));
mcimadamore@159 2994 if (b.isErroneous()) {
mcimadamore@159 2995 a.bound = b;
mcimadamore@159 2996 }
mcimadamore@159 2997 else if (b.tag == TYPEVAR) {
duke@1 2998 // if first bound was a typevar, do not accept further bounds.
duke@1 2999 if (tree.bounds.tail.nonEmpty()) {
duke@1 3000 log.error(tree.bounds.tail.head.pos(),
duke@1 3001 "type.var.may.not.be.followed.by.other.bounds");
duke@1 3002 tree.bounds = List.of(tree.bounds.head);
mcimadamore@7 3003 a.bound = bs.head;
duke@1 3004 }
duke@1 3005 } else {
duke@1 3006 // if first bound was a class or interface, accept only interfaces
duke@1 3007 // as further bounds.
duke@1 3008 for (JCExpression bound : tree.bounds.tail) {
duke@1 3009 bs = bs.tail;
duke@1 3010 Type i = checkBase(bs.head, bound, env, false, true, false);
mcimadamore@159 3011 if (i.isErroneous())
mcimadamore@159 3012 a.bound = i;
mcimadamore@159 3013 else if (i.tag == CLASS)
duke@1 3014 chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
duke@1 3015 }
duke@1 3016 }
duke@1 3017 }
duke@1 3018 bs = types.getBounds(a);
duke@1 3019
duke@1 3020 // in case of multiple bounds ...
duke@1 3021 if (bs.length() > 1) {
duke@1 3022 // ... the variable's bound is a class type flagged COMPOUND
duke@1 3023 // (see comment for TypeVar.bound).
duke@1 3024 // In this case, generate a class tree that represents the
duke@1 3025 // bound class, ...
jjg@904 3026 JCExpression extending;
duke@1 3027 List<JCExpression> implementing;
duke@1 3028 if ((bs.head.tsym.flags() & INTERFACE) == 0) {
duke@1 3029 extending = tree.bounds.head;
duke@1 3030 implementing = tree.bounds.tail;
duke@1 3031 } else {
duke@1 3032 extending = null;
duke@1 3033 implementing = tree.bounds;
duke@1 3034 }
duke@1 3035 JCClassDecl cd = make.at(tree.pos).ClassDef(
duke@1 3036 make.Modifiers(PUBLIC | ABSTRACT),
duke@1 3037 tree.name, List.<JCTypeParameter>nil(),
duke@1 3038 extending, implementing, List.<JCTree>nil());
duke@1 3039
duke@1 3040 ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
jjg@816 3041 Assert.check((c.flags() & COMPOUND) != 0);
duke@1 3042 cd.sym = c;
duke@1 3043 c.sourcefile = env.toplevel.sourcefile;
duke@1 3044
duke@1 3045 // ... and attribute the bound class
duke@1 3046 c.flags_field |= UNATTRIBUTED;
duke@1 3047 Env<AttrContext> cenv = enter.classEnv(cd, env);
duke@1 3048 enter.typeEnvs.put(c, cenv);
duke@1 3049 }
duke@1 3050 }
duke@1 3051
duke@1 3052
duke@1 3053 public void visitWildcard(JCWildcard tree) {
duke@1 3054 //- System.err.println("visitWildcard("+tree+");");//DEBUG
duke@1 3055 Type type = (tree.kind.kind == BoundKind.UNBOUND)
duke@1 3056 ? syms.objectType
duke@1 3057 : attribType(tree.inner, env);
duke@1 3058 result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
duke@1 3059 tree.kind.kind,
duke@1 3060 syms.boundClass),
duke@1 3061 TYP, pkind, pt);
duke@1 3062 }
duke@1 3063
duke@1 3064 public void visitAnnotation(JCAnnotation tree) {
duke@1 3065 log.error(tree.pos(), "annotation.not.valid.for.type", pt);
duke@1 3066 result = tree.type = syms.errType;
duke@1 3067 }
duke@1 3068
duke@1 3069 public void visitErroneous(JCErroneous tree) {
duke@1 3070 if (tree.errs != null)
duke@1 3071 for (JCTree err : tree.errs)
duke@1 3072 attribTree(err, env, ERR, pt);
duke@1 3073 result = tree.type = syms.errType;
duke@1 3074 }
duke@1 3075
duke@1 3076 /** Default visitor method for all other trees.
duke@1 3077 */
duke@1 3078 public void visitTree(JCTree tree) {
duke@1 3079 throw new AssertionError();
duke@1 3080 }
duke@1 3081
jjg@931 3082 /**
jjg@931 3083 * Attribute an env for either a top level tree or class declaration.
jjg@931 3084 */
jjg@931 3085 public void attrib(Env<AttrContext> env) {
jjg@1127 3086 if (env.tree.hasTag(TOPLEVEL))
jjg@931 3087 attribTopLevel(env);
jjg@931 3088 else
jjg@931 3089 attribClass(env.tree.pos(), env.enclClass.sym);
jjg@931 3090 }
jjg@931 3091
jjg@931 3092 /**
jjg@931 3093 * Attribute a top level tree. These trees are encountered when the
jjg@931 3094 * package declaration has annotations.
jjg@931 3095 */
jjg@931 3096 public void attribTopLevel(Env<AttrContext> env) {
jjg@931 3097 JCCompilationUnit toplevel = env.toplevel;
jjg@931 3098 try {
jjg@931 3099 annotate.flush();
jjg@931 3100 chk.validateAnnotations(toplevel.packageAnnotations, toplevel.packge);
jjg@931 3101 } catch (CompletionFailure ex) {
jjg@931 3102 chk.completionError(toplevel.pos(), ex);
jjg@931 3103 }
jjg@931 3104 }
jjg@931 3105
duke@1 3106 /** Main method: attribute class definition associated with given class symbol.
duke@1 3107 * reporting completion failures at the given position.
duke@1 3108 * @param pos The source position at which completion errors are to be
duke@1 3109 * reported.
duke@1 3110 * @param c The class symbol whose definition will be attributed.
duke@1 3111 */
duke@1 3112 public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
duke@1 3113 try {
duke@1 3114 annotate.flush();
duke@1 3115 attribClass(c);
duke@1 3116 } catch (CompletionFailure ex) {
duke@1 3117 chk.completionError(pos, ex);
duke@1 3118 }
duke@1 3119 }
duke@1 3120
duke@1 3121 /** Attribute class definition associated with given class symbol.
duke@1 3122 * @param c The class symbol whose definition will be attributed.
duke@1 3123 */
duke@1 3124 void attribClass(ClassSymbol c) throws CompletionFailure {
duke@1 3125 if (c.type.tag == ERROR) return;
duke@1 3126
duke@1 3127 // Check for cycles in the inheritance graph, which can arise from
duke@1 3128 // ill-formed class files.
duke@1 3129 chk.checkNonCyclic(null, c.type);
duke@1 3130
duke@1 3131 Type st = types.supertype(c.type);
duke@1 3132 if ((c.flags_field & Flags.COMPOUND) == 0) {
duke@1 3133 // First, attribute superclass.
duke@1 3134 if (st.tag == CLASS)
duke@1 3135 attribClass((ClassSymbol)st.tsym);
duke@1 3136
duke@1 3137 // Next attribute owner, if it is a class.
duke@1 3138 if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
duke@1 3139 attribClass((ClassSymbol)c.owner);
duke@1 3140 }
duke@1 3141
duke@1 3142 // The previous operations might have attributed the current class
duke@1 3143 // if there was a cycle. So we test first whether the class is still
duke@1 3144 // UNATTRIBUTED.
duke@1 3145 if ((c.flags_field & UNATTRIBUTED) != 0) {
duke@1 3146 c.flags_field &= ~UNATTRIBUTED;
duke@1 3147
duke@1 3148 // Get environment current at the point of class definition.
duke@1 3149 Env<AttrContext> env = enter.typeEnvs.get(c);
duke@1 3150
duke@1 3151 // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
duke@1 3152 // because the annotations were not available at the time the env was created. Therefore,
duke@1 3153 // we look up the environment chain for the first enclosing environment for which the
duke@1 3154 // lint value is set. Typically, this is the parent env, but might be further if there
duke@1 3155 // are any envs created as a result of TypeParameter nodes.
duke@1 3156 Env<AttrContext> lintEnv = env;
duke@1 3157 while (lintEnv.info.lint == null)
duke@1 3158 lintEnv = lintEnv.next;
duke@1 3159
duke@1 3160 // Having found the enclosing lint value, we can initialize the lint value for this class
duke@1 3161 env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags());
duke@1 3162
duke@1 3163 Lint prevLint = chk.setLint(env.info.lint);
duke@1 3164 JavaFileObject prev = log.useSource(c.sourcefile);
duke@1 3165
duke@1 3166 try {
duke@1 3167 // java.lang.Enum may not be subclassed by a non-enum
duke@1 3168 if (st.tsym == syms.enumSym &&
duke@1 3169 ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
duke@1 3170 log.error(env.tree.pos(), "enum.no.subclassing");
duke@1 3171
duke@1 3172 // Enums may not be extended by source-level classes
duke@1 3173 if (st.tsym != null &&
duke@1 3174 ((st.tsym.flags_field & Flags.ENUM) != 0) &&
mcimadamore@82 3175 ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
duke@1 3176 !target.compilerBootstrap(c)) {
duke@1 3177 log.error(env.tree.pos(), "enum.types.not.extensible");
duke@1 3178 }
duke@1 3179 attribClassBody(env, c);
duke@1 3180
duke@1 3181 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
duke@1 3182 } finally {
duke@1 3183 log.useSource(prev);
duke@1 3184 chk.setLint(prevLint);
duke@1 3185 }
duke@1 3186
duke@1 3187 }
duke@1 3188 }
duke@1 3189
duke@1 3190 public void visitImport(JCImport tree) {
duke@1 3191 // nothing to do
duke@1 3192 }
duke@1 3193
duke@1 3194 /** Finish the attribution of a class. */
duke@1 3195 private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
duke@1 3196 JCClassDecl tree = (JCClassDecl)env.tree;
jjg@816 3197 Assert.check(c == tree.sym);
duke@1 3198
duke@1 3199 // Validate annotations
duke@1 3200 chk.validateAnnotations(tree.mods.annotations, c);
duke@1 3201
duke@1 3202 // Validate type parameters, supertype and interfaces.
mcimadamore@42 3203 attribBounds(tree.typarams);
mcimadamore@537 3204 if (!c.isAnonymous()) {
mcimadamore@537 3205 //already checked if anonymous
mcimadamore@537 3206 chk.validate(tree.typarams, env);
mcimadamore@537 3207 chk.validate(tree.extending, env);
mcimadamore@537 3208 chk.validate(tree.implementing, env);
mcimadamore@537 3209 }
duke@1 3210
duke@1 3211 // If this is a non-abstract class, check that it has no abstract
duke@1 3212 // methods or unimplemented methods of an implemented interface.
duke@1 3213 if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
duke@1 3214 if (!relax)
duke@1 3215 chk.checkAllDefined(tree.pos(), c);
duke@1 3216 }
duke@1 3217
duke@1 3218 if ((c.flags() & ANNOTATION) != 0) {
duke@1 3219 if (tree.implementing.nonEmpty())
duke@1 3220 log.error(tree.implementing.head.pos(),
duke@1 3221 "cant.extend.intf.annotation");
duke@1 3222 if (tree.typarams.nonEmpty())
duke@1 3223 log.error(tree.typarams.head.pos(),
duke@1 3224 "intf.annotation.cant.have.type.params");
duke@1 3225 } else {
duke@1 3226 // Check that all extended classes and interfaces
duke@1 3227 // are compatible (i.e. no two define methods with same arguments
duke@1 3228 // yet different return types). (JLS 8.4.6.3)
duke@1 3229 chk.checkCompatibleSupertypes(tree.pos(), c.type);
duke@1 3230 }
duke@1 3231
duke@1 3232 // Check that class does not import the same parameterized interface
duke@1 3233 // with two different argument lists.
duke@1 3234 chk.checkClassBounds(tree.pos(), c.type);
duke@1 3235
duke@1 3236 tree.type = c.type;
duke@1 3237
jjg@816 3238 for (List<JCTypeParameter> l = tree.typarams;
jjg@816 3239 l.nonEmpty(); l = l.tail) {
jjg@816 3240 Assert.checkNonNull(env.info.scope.lookup(l.head.name).scope);
duke@1 3241 }
duke@1 3242
duke@1 3243 // Check that a generic class doesn't extend Throwable
duke@1 3244 if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
duke@1 3245 log.error(tree.extending.pos(), "generic.throwable");
duke@1 3246
duke@1 3247 // Check that all methods which implement some
duke@1 3248 // method conform to the method they implement.
duke@1 3249 chk.checkImplementations(tree);
duke@1 3250
mcimadamore@951 3251 //check that a resource implementing AutoCloseable cannot throw InterruptedException
mcimadamore@951 3252 checkAutoCloseable(tree.pos(), env, c.type);
mcimadamore@951 3253
duke@1 3254 for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
duke@1 3255 // Attribute declaration
duke@1 3256 attribStat(l.head, env);
duke@1 3257 // Check that declarations in inner classes are not static (JLS 8.1.2)
duke@1 3258 // Make an exception for static constants.
duke@1 3259 if (c.owner.kind != PCK &&
duke@1 3260 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
duke@1 3261 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
duke@1 3262 Symbol sym = null;
jjg@1127 3263 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
duke@1 3264 if (sym == null ||
duke@1 3265 sym.kind != VAR ||
duke@1 3266 ((VarSymbol) sym).getConstValue() == null)
mcimadamore@855 3267 log.error(l.head.pos(), "icls.cant.have.static.decl", c);
duke@1 3268 }
duke@1 3269 }
duke@1 3270
duke@1 3271 // Check for cycles among non-initial constructors.
duke@1 3272 chk.checkCyclicConstructors(tree);
duke@1 3273
duke@1 3274 // Check for cycles among annotation elements.
duke@1 3275 chk.checkNonCyclicElements(tree);
duke@1 3276
duke@1 3277 // Check for proper use of serialVersionUID
mcimadamore@795 3278 if (env.info.lint.isEnabled(LintCategory.SERIAL) &&
duke@1 3279 isSerializable(c) &&
duke@1 3280 (c.flags() & Flags.ENUM) == 0 &&
duke@1 3281 (c.flags() & ABSTRACT) == 0) {
duke@1 3282 checkSerialVersionUID(tree, c);
duke@1 3283 }
duke@1 3284 }
duke@1 3285 // where
duke@1 3286 /** check if a class is a subtype of Serializable, if that is available. */
duke@1 3287 private boolean isSerializable(ClassSymbol c) {
duke@1 3288 try {
duke@1 3289 syms.serializableType.complete();
duke@1 3290 }
duke@1 3291 catch (CompletionFailure e) {
duke@1 3292 return false;
duke@1 3293 }
duke@1 3294 return types.isSubtype(c.type, syms.serializableType);
duke@1 3295 }
duke@1 3296
duke@1 3297 /** Check that an appropriate serialVersionUID member is defined. */
duke@1 3298 private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
duke@1 3299
duke@1 3300 // check for presence of serialVersionUID
duke@1 3301 Scope.Entry e = c.members().lookup(names.serialVersionUID);
duke@1 3302 while (e.scope != null && e.sym.kind != VAR) e = e.next();
duke@1 3303 if (e.scope == null) {
mcimadamore@795 3304 log.warning(LintCategory.SERIAL,
jjg@612 3305 tree.pos(), "missing.SVUID", c);
duke@1 3306 return;
duke@1 3307 }
duke@1 3308
duke@1 3309 // check that it is static final
duke@1 3310 VarSymbol svuid = (VarSymbol)e.sym;
duke@1 3311 if ((svuid.flags() & (STATIC | FINAL)) !=
duke@1 3312 (STATIC | FINAL))
mcimadamore@795 3313 log.warning(LintCategory.SERIAL,
jjg@612 3314 TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
duke@1 3315
duke@1 3316 // check that it is long
duke@1 3317 else if (svuid.type.tag != TypeTags.LONG)
mcimadamore@795 3318 log.warning(LintCategory.SERIAL,
jjg@612 3319 TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
duke@1 3320
duke@1 3321 // check constant
duke@1 3322 else if (svuid.getConstValue() == null)
mcimadamore@795 3323 log.warning(LintCategory.SERIAL,
jjg@612 3324 TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
duke@1 3325 }
duke@1 3326
duke@1 3327 private Type capture(Type type) {
duke@1 3328 return types.capture(type);
duke@1 3329 }
jjg@308 3330
mcimadamore@676 3331 // <editor-fold desc="post-attribution visitor">
mcimadamore@676 3332
mcimadamore@676 3333 /**
mcimadamore@676 3334 * Handle missing types/symbols in an AST. This routine is useful when
mcimadamore@676 3335 * the compiler has encountered some errors (which might have ended up
mcimadamore@676 3336 * terminating attribution abruptly); if the compiler is used in fail-over
mcimadamore@676 3337 * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
mcimadamore@676 3338 * prevents NPE to be progagated during subsequent compilation steps.
mcimadamore@676 3339 */
mcimadamore@676 3340 public void postAttr(Env<AttrContext> env) {
mcimadamore@676 3341 new PostAttrAnalyzer().scan(env.tree);
mcimadamore@676 3342 }
mcimadamore@676 3343
mcimadamore@676 3344 class PostAttrAnalyzer extends TreeScanner {
mcimadamore@676 3345
mcimadamore@676 3346 private void initTypeIfNeeded(JCTree that) {
mcimadamore@676 3347 if (that.type == null) {
mcimadamore@676 3348 that.type = syms.unknownType;
mcimadamore@676 3349 }
mcimadamore@676 3350 }
mcimadamore@676 3351
mcimadamore@676 3352 @Override
mcimadamore@676 3353 public void scan(JCTree tree) {
mcimadamore@676 3354 if (tree == null) return;
mcimadamore@676 3355 if (tree instanceof JCExpression) {
mcimadamore@676 3356 initTypeIfNeeded(tree);
mcimadamore@676 3357 }
mcimadamore@676 3358 super.scan(tree);
mcimadamore@676 3359 }
mcimadamore@676 3360
mcimadamore@676 3361 @Override
mcimadamore@676 3362 public void visitIdent(JCIdent that) {
mcimadamore@676 3363 if (that.sym == null) {
mcimadamore@676 3364 that.sym = syms.unknownSymbol;
mcimadamore@676 3365 }
mcimadamore@676 3366 }
mcimadamore@676 3367
mcimadamore@676 3368 @Override
mcimadamore@676 3369 public void visitSelect(JCFieldAccess that) {
mcimadamore@676 3370 if (that.sym == null) {
mcimadamore@676 3371 that.sym = syms.unknownSymbol;
mcimadamore@676 3372 }
mcimadamore@676 3373 super.visitSelect(that);
mcimadamore@676 3374 }
mcimadamore@676 3375
mcimadamore@676 3376 @Override
mcimadamore@676 3377 public void visitClassDef(JCClassDecl that) {
mcimadamore@676 3378 initTypeIfNeeded(that);
mcimadamore@676 3379 if (that.sym == null) {
mcimadamore@676 3380 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
mcimadamore@676 3381 }
mcimadamore@676 3382 super.visitClassDef(that);
mcimadamore@676 3383 }
mcimadamore@676 3384
mcimadamore@676 3385 @Override
mcimadamore@676 3386 public void visitMethodDef(JCMethodDecl that) {
mcimadamore@676 3387 initTypeIfNeeded(that);
mcimadamore@676 3388 if (that.sym == null) {
mcimadamore@676 3389 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
mcimadamore@676 3390 }
mcimadamore@676 3391 super.visitMethodDef(that);
mcimadamore@676 3392 }
mcimadamore@676 3393
mcimadamore@676 3394 @Override
mcimadamore@676 3395 public void visitVarDef(JCVariableDecl that) {
mcimadamore@676 3396 initTypeIfNeeded(that);
mcimadamore@676 3397 if (that.sym == null) {
mcimadamore@676 3398 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
mcimadamore@676 3399 that.sym.adr = 0;
mcimadamore@676 3400 }
mcimadamore@676 3401 super.visitVarDef(that);
mcimadamore@676 3402 }
mcimadamore@676 3403
mcimadamore@676 3404 @Override
mcimadamore@676 3405 public void visitNewClass(JCNewClass that) {
mcimadamore@676 3406 if (that.constructor == null) {
mcimadamore@676 3407 that.constructor = new MethodSymbol(0, names.init, syms.unknownType, syms.noSymbol);
mcimadamore@676 3408 }
mcimadamore@676 3409 if (that.constructorType == null) {
mcimadamore@676 3410 that.constructorType = syms.unknownType;
mcimadamore@676 3411 }
mcimadamore@676 3412 super.visitNewClass(that);
mcimadamore@676 3413 }
mcimadamore@676 3414
mcimadamore@676 3415 @Override
jjg@1049 3416 public void visitAssignop(JCAssignOp that) {
jjg@1049 3417 if (that.operator == null)
jjg@1049 3418 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
jjg@1049 3419 super.visitAssignop(that);
jjg@1049 3420 }
jjg@1049 3421
jjg@1049 3422 @Override
mcimadamore@676 3423 public void visitBinary(JCBinary that) {
mcimadamore@676 3424 if (that.operator == null)
mcimadamore@676 3425 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
mcimadamore@676 3426 super.visitBinary(that);
mcimadamore@676 3427 }
mcimadamore@676 3428
mcimadamore@676 3429 @Override
mcimadamore@676 3430 public void visitUnary(JCUnary that) {
mcimadamore@676 3431 if (that.operator == null)
mcimadamore@676 3432 that.operator = new OperatorSymbol(names.empty, syms.unknownType, -1, syms.noSymbol);
mcimadamore@676 3433 super.visitUnary(that);
mcimadamore@676 3434 }
mcimadamore@676 3435 }
mcimadamore@676 3436 // </editor-fold>
duke@1 3437 }

mercurial