src/share/vm/opto/escape.cpp

Wed, 09 Dec 2009 16:40:45 -0800

author
kvn
date
Wed, 09 Dec 2009 16:40:45 -0800
changeset 1535
f96a1a986f7b
parent 1507
7ef1d2e14917
child 1536
7fee0a6cc6d4
permissions
-rw-r--r--

6895383: JCK test throws NPE for method compiled with Escape Analysis
Summary: Add missing checks for MemBar nodes in EA.
Reviewed-by: never

     1 /*
     2  * Copyright 2005-2009 Sun Microsystems, Inc.  All Rights Reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
    21  * have any questions.
    22  *
    23  */
    25 #include "incls/_precompiled.incl"
    26 #include "incls/_escape.cpp.incl"
    28 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
    29   uint v = (targIdx << EdgeShift) + ((uint) et);
    30   if (_edges == NULL) {
    31      Arena *a = Compile::current()->comp_arena();
    32     _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
    33   }
    34   _edges->append_if_missing(v);
    35 }
    37 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
    38   uint v = (targIdx << EdgeShift) + ((uint) et);
    40   _edges->remove(v);
    41 }
    43 #ifndef PRODUCT
    44 static const char *node_type_names[] = {
    45   "UnknownType",
    46   "JavaObject",
    47   "LocalVar",
    48   "Field"
    49 };
    51 static const char *esc_names[] = {
    52   "UnknownEscape",
    53   "NoEscape",
    54   "ArgEscape",
    55   "GlobalEscape"
    56 };
    58 static const char *edge_type_suffix[] = {
    59  "?", // UnknownEdge
    60  "P", // PointsToEdge
    61  "D", // DeferredEdge
    62  "F"  // FieldEdge
    63 };
    65 void PointsToNode::dump(bool print_state) const {
    66   NodeType nt = node_type();
    67   tty->print("%s ", node_type_names[(int) nt]);
    68   if (print_state) {
    69     EscapeState es = escape_state();
    70     tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
    71   }
    72   tty->print("[[");
    73   for (uint i = 0; i < edge_count(); i++) {
    74     tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
    75   }
    76   tty->print("]]  ");
    77   if (_node == NULL)
    78     tty->print_cr("<null>");
    79   else
    80     _node->dump();
    81 }
    82 #endif
    84 ConnectionGraph::ConnectionGraph(Compile * C) :
    85   _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
    86   _processed(C->comp_arena()),
    87   _collecting(true),
    88   _compile(C),
    89   _node_map(C->comp_arena()) {
    91   _phantom_object = C->top()->_idx,
    92   add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
    94   // Add ConP(#NULL) and ConN(#NULL) nodes.
    95   PhaseGVN* igvn = C->initial_gvn();
    96   Node* oop_null = igvn->zerocon(T_OBJECT);
    97   _oop_null = oop_null->_idx;
    98   assert(_oop_null < C->unique(), "should be created already");
    99   add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
   101   if (UseCompressedOops) {
   102     Node* noop_null = igvn->zerocon(T_NARROWOOP);
   103     _noop_null = noop_null->_idx;
   104     assert(_noop_null < C->unique(), "should be created already");
   105     add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
   106   }
   107 }
   109 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
   110   PointsToNode *f = ptnode_adr(from_i);
   111   PointsToNode *t = ptnode_adr(to_i);
   113   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   114   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
   115   assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
   116   f->add_edge(to_i, PointsToNode::PointsToEdge);
   117 }
   119 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
   120   PointsToNode *f = ptnode_adr(from_i);
   121   PointsToNode *t = ptnode_adr(to_i);
   123   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   124   assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
   125   assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
   126   // don't add a self-referential edge, this can occur during removal of
   127   // deferred edges
   128   if (from_i != to_i)
   129     f->add_edge(to_i, PointsToNode::DeferredEdge);
   130 }
   132 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
   133   const Type *adr_type = phase->type(adr);
   134   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
   135       adr->in(AddPNode::Address)->is_Proj() &&
   136       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
   137     // We are computing a raw address for a store captured by an Initialize
   138     // compute an appropriate address type. AddP cases #3 and #5 (see below).
   139     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   140     assert(offs != Type::OffsetBot ||
   141            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
   142            "offset must be a constant or it is initialization of array");
   143     return offs;
   144   }
   145   const TypePtr *t_ptr = adr_type->isa_ptr();
   146   assert(t_ptr != NULL, "must be a pointer type");
   147   return t_ptr->offset();
   148 }
   150 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
   151   PointsToNode *f = ptnode_adr(from_i);
   152   PointsToNode *t = ptnode_adr(to_i);
   154   assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
   155   assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
   156   assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
   157   assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
   158   t->set_offset(offset);
   160   f->add_edge(to_i, PointsToNode::FieldEdge);
   161 }
   163 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
   164   PointsToNode *npt = ptnode_adr(ni);
   165   PointsToNode::EscapeState old_es = npt->escape_state();
   166   if (es > old_es)
   167     npt->set_escape_state(es);
   168 }
   170 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
   171                                PointsToNode::EscapeState es, bool done) {
   172   PointsToNode* ptadr = ptnode_adr(n->_idx);
   173   ptadr->_node = n;
   174   ptadr->set_node_type(nt);
   176   // inline set_escape_state(idx, es);
   177   PointsToNode::EscapeState old_es = ptadr->escape_state();
   178   if (es > old_es)
   179     ptadr->set_escape_state(es);
   181   if (done)
   182     _processed.set(n->_idx);
   183 }
   185 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
   186   uint idx = n->_idx;
   187   PointsToNode::EscapeState es;
   189   // If we are still collecting or there were no non-escaping allocations
   190   // we don't know the answer yet
   191   if (_collecting)
   192     return PointsToNode::UnknownEscape;
   194   // if the node was created after the escape computation, return
   195   // UnknownEscape
   196   if (idx >= nodes_size())
   197     return PointsToNode::UnknownEscape;
   199   es = ptnode_adr(idx)->escape_state();
   201   // if we have already computed a value, return it
   202   if (es != PointsToNode::UnknownEscape &&
   203       ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
   204     return es;
   206   // PointsTo() calls n->uncast() which can return a new ideal node.
   207   if (n->uncast()->_idx >= nodes_size())
   208     return PointsToNode::UnknownEscape;
   210   // compute max escape state of anything this node could point to
   211   VectorSet ptset(Thread::current()->resource_area());
   212   PointsTo(ptset, n, phase);
   213   for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
   214     uint pt = i.elem;
   215     PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
   216     if (pes > es)
   217       es = pes;
   218   }
   219   // cache the computed escape state
   220   assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
   221   ptnode_adr(idx)->set_escape_state(es);
   222   return es;
   223 }
   225 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
   226   VectorSet visited(Thread::current()->resource_area());
   227   GrowableArray<uint>  worklist;
   229 #ifdef ASSERT
   230   Node *orig_n = n;
   231 #endif
   233   n = n->uncast();
   234   PointsToNode* npt = ptnode_adr(n->_idx);
   236   // If we have a JavaObject, return just that object
   237   if (npt->node_type() == PointsToNode::JavaObject) {
   238     ptset.set(n->_idx);
   239     return;
   240   }
   241 #ifdef ASSERT
   242   if (npt->_node == NULL) {
   243     if (orig_n != n)
   244       orig_n->dump();
   245     n->dump();
   246     assert(npt->_node != NULL, "unregistered node");
   247   }
   248 #endif
   249   worklist.push(n->_idx);
   250   while(worklist.length() > 0) {
   251     int ni = worklist.pop();
   252     if (visited.test_set(ni))
   253       continue;
   255     PointsToNode* pn = ptnode_adr(ni);
   256     // ensure that all inputs of a Phi have been processed
   257     assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
   259     int edges_processed = 0;
   260     uint e_cnt = pn->edge_count();
   261     for (uint e = 0; e < e_cnt; e++) {
   262       uint etgt = pn->edge_target(e);
   263       PointsToNode::EdgeType et = pn->edge_type(e);
   264       if (et == PointsToNode::PointsToEdge) {
   265         ptset.set(etgt);
   266         edges_processed++;
   267       } else if (et == PointsToNode::DeferredEdge) {
   268         worklist.push(etgt);
   269         edges_processed++;
   270       } else {
   271         assert(false,"neither PointsToEdge or DeferredEdge");
   272       }
   273     }
   274     if (edges_processed == 0) {
   275       // no deferred or pointsto edges found.  Assume the value was set
   276       // outside this method.  Add the phantom object to the pointsto set.
   277       ptset.set(_phantom_object);
   278     }
   279   }
   280 }
   282 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
   283   // This method is most expensive during ConnectionGraph construction.
   284   // Reuse vectorSet and an additional growable array for deferred edges.
   285   deferred_edges->clear();
   286   visited->Clear();
   288   visited->set(ni);
   289   PointsToNode *ptn = ptnode_adr(ni);
   291   // Mark current edges as visited and move deferred edges to separate array.
   292   for (uint i = 0; i < ptn->edge_count(); ) {
   293     uint t = ptn->edge_target(i);
   294 #ifdef ASSERT
   295     assert(!visited->test_set(t), "expecting no duplications");
   296 #else
   297     visited->set(t);
   298 #endif
   299     if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
   300       ptn->remove_edge(t, PointsToNode::DeferredEdge);
   301       deferred_edges->append(t);
   302     } else {
   303       i++;
   304     }
   305   }
   306   for (int next = 0; next < deferred_edges->length(); ++next) {
   307     uint t = deferred_edges->at(next);
   308     PointsToNode *ptt = ptnode_adr(t);
   309     uint e_cnt = ptt->edge_count();
   310     for (uint e = 0; e < e_cnt; e++) {
   311       uint etgt = ptt->edge_target(e);
   312       if (visited->test_set(etgt))
   313         continue;
   315       PointsToNode::EdgeType et = ptt->edge_type(e);
   316       if (et == PointsToNode::PointsToEdge) {
   317         add_pointsto_edge(ni, etgt);
   318         if(etgt == _phantom_object) {
   319           // Special case - field set outside (globally escaping).
   320           ptn->set_escape_state(PointsToNode::GlobalEscape);
   321         }
   322       } else if (et == PointsToNode::DeferredEdge) {
   323         deferred_edges->append(etgt);
   324       } else {
   325         assert(false,"invalid connection graph");
   326       }
   327     }
   328   }
   329 }
   332 //  Add an edge to node given by "to_i" from any field of adr_i whose offset
   333 //  matches "offset"  A deferred edge is added if to_i is a LocalVar, and
   334 //  a pointsto edge is added if it is a JavaObject
   336 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
   337   PointsToNode* an = ptnode_adr(adr_i);
   338   PointsToNode* to = ptnode_adr(to_i);
   339   bool deferred = (to->node_type() == PointsToNode::LocalVar);
   341   for (uint fe = 0; fe < an->edge_count(); fe++) {
   342     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
   343     int fi = an->edge_target(fe);
   344     PointsToNode* pf = ptnode_adr(fi);
   345     int po = pf->offset();
   346     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
   347       if (deferred)
   348         add_deferred_edge(fi, to_i);
   349       else
   350         add_pointsto_edge(fi, to_i);
   351     }
   352   }
   353 }
   355 // Add a deferred  edge from node given by "from_i" to any field of adr_i
   356 // whose offset matches "offset".
   357 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
   358   PointsToNode* an = ptnode_adr(adr_i);
   359   for (uint fe = 0; fe < an->edge_count(); fe++) {
   360     assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
   361     int fi = an->edge_target(fe);
   362     PointsToNode* pf = ptnode_adr(fi);
   363     int po = pf->offset();
   364     if (pf->edge_count() == 0) {
   365       // we have not seen any stores to this field, assume it was set outside this method
   366       add_pointsto_edge(fi, _phantom_object);
   367     }
   368     if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
   369       add_deferred_edge(from_i, fi);
   370     }
   371   }
   372 }
   374 // Helper functions
   376 static Node* get_addp_base(Node *addp) {
   377   assert(addp->is_AddP(), "must be AddP");
   378   //
   379   // AddP cases for Base and Address inputs:
   380   // case #1. Direct object's field reference:
   381   //     Allocate
   382   //       |
   383   //     Proj #5 ( oop result )
   384   //       |
   385   //     CheckCastPP (cast to instance type)
   386   //      | |
   387   //     AddP  ( base == address )
   388   //
   389   // case #2. Indirect object's field reference:
   390   //      Phi
   391   //       |
   392   //     CastPP (cast to instance type)
   393   //      | |
   394   //     AddP  ( base == address )
   395   //
   396   // case #3. Raw object's field reference for Initialize node:
   397   //      Allocate
   398   //        |
   399   //      Proj #5 ( oop result )
   400   //  top   |
   401   //     \  |
   402   //     AddP  ( base == top )
   403   //
   404   // case #4. Array's element reference:
   405   //   {CheckCastPP | CastPP}
   406   //     |  | |
   407   //     |  AddP ( array's element offset )
   408   //     |  |
   409   //     AddP ( array's offset )
   410   //
   411   // case #5. Raw object's field reference for arraycopy stub call:
   412   //          The inline_native_clone() case when the arraycopy stub is called
   413   //          after the allocation before Initialize and CheckCastPP nodes.
   414   //      Allocate
   415   //        |
   416   //      Proj #5 ( oop result )
   417   //       | |
   418   //       AddP  ( base == address )
   419   //
   420   // case #6. Constant Pool, ThreadLocal, CastX2P or
   421   //          Raw object's field reference:
   422   //      {ConP, ThreadLocal, CastX2P, raw Load}
   423   //  top   |
   424   //     \  |
   425   //     AddP  ( base == top )
   426   //
   427   // case #7. Klass's field reference.
   428   //      LoadKlass
   429   //       | |
   430   //       AddP  ( base == address )
   431   //
   432   // case #8. narrow Klass's field reference.
   433   //      LoadNKlass
   434   //       |
   435   //      DecodeN
   436   //       | |
   437   //       AddP  ( base == address )
   438   //
   439   Node *base = addp->in(AddPNode::Base)->uncast();
   440   if (base->is_top()) { // The AddP case #3 and #6.
   441     base = addp->in(AddPNode::Address)->uncast();
   442     while (base->is_AddP()) {
   443       // Case #6 (unsafe access) may have several chained AddP nodes.
   444       assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
   445       base = base->in(AddPNode::Address)->uncast();
   446     }
   447     assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
   448            base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
   449            (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
   450            (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
   451   }
   452   return base;
   453 }
   455 static Node* find_second_addp(Node* addp, Node* n) {
   456   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
   458   Node* addp2 = addp->raw_out(0);
   459   if (addp->outcnt() == 1 && addp2->is_AddP() &&
   460       addp2->in(AddPNode::Base) == n &&
   461       addp2->in(AddPNode::Address) == addp) {
   463     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
   464     //
   465     // Find array's offset to push it on worklist first and
   466     // as result process an array's element offset first (pushed second)
   467     // to avoid CastPP for the array's offset.
   468     // Otherwise the inserted CastPP (LocalVar) will point to what
   469     // the AddP (Field) points to. Which would be wrong since
   470     // the algorithm expects the CastPP has the same point as
   471     // as AddP's base CheckCastPP (LocalVar).
   472     //
   473     //    ArrayAllocation
   474     //     |
   475     //    CheckCastPP
   476     //     |
   477     //    memProj (from ArrayAllocation CheckCastPP)
   478     //     |  ||
   479     //     |  ||   Int (element index)
   480     //     |  ||    |   ConI (log(element size))
   481     //     |  ||    |   /
   482     //     |  ||   LShift
   483     //     |  ||  /
   484     //     |  AddP (array's element offset)
   485     //     |  |
   486     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
   487     //     | / /
   488     //     AddP (array's offset)
   489     //      |
   490     //     Load/Store (memory operation on array's element)
   491     //
   492     return addp2;
   493   }
   494   return NULL;
   495 }
   497 //
   498 // Adjust the type and inputs of an AddP which computes the
   499 // address of a field of an instance
   500 //
   501 bool ConnectionGraph::split_AddP(Node *addp, Node *base,  PhaseGVN  *igvn) {
   502   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
   503   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
   504   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
   505   if (t == NULL) {
   506     // We are computing a raw address for a store captured by an Initialize
   507     // compute an appropriate address type (cases #3 and #5).
   508     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
   509     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
   510     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
   511     assert(offs != Type::OffsetBot, "offset must be a constant");
   512     t = base_t->add_offset(offs)->is_oopptr();
   513   }
   514   int inst_id =  base_t->instance_id();
   515   assert(!t->is_known_instance() || t->instance_id() == inst_id,
   516                              "old type must be non-instance or match new type");
   518   // The type 't' could be subclass of 'base_t'.
   519   // As result t->offset() could be large then base_t's size and it will
   520   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
   521   // constructor verifies correctness of the offset.
   522   //
   523   // It could happened on subclass's branch (from the type profiling
   524   // inlining) which was not eliminated during parsing since the exactness
   525   // of the allocation type was not propagated to the subclass type check.
   526   //
   527   // Or the type 't' could be not related to 'base_t' at all.
   528   // It could happened when CHA type is different from MDO type on a dead path
   529   // (for example, from instanceof check) which is not collapsed during parsing.
   530   //
   531   // Do nothing for such AddP node and don't process its users since
   532   // this code branch will go away.
   533   //
   534   if (!t->is_known_instance() &&
   535       !base_t->klass()->is_subtype_of(t->klass())) {
   536      return false; // bail out
   537   }
   539   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
   540   // Do NOT remove the next line: ensure a new alias index is allocated
   541   // for the instance type. Note: C++ will not remove it since the call
   542   // has side effect.
   543   int alias_idx = _compile->get_alias_index(tinst);
   544   igvn->set_type(addp, tinst);
   545   // record the allocation in the node map
   546   set_map(addp->_idx, get_map(base->_idx));
   548   // Set addp's Base and Address to 'base'.
   549   Node *abase = addp->in(AddPNode::Base);
   550   Node *adr   = addp->in(AddPNode::Address);
   551   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
   552       adr->in(0)->_idx == (uint)inst_id) {
   553     // Skip AddP cases #3 and #5.
   554   } else {
   555     assert(!abase->is_top(), "sanity"); // AddP case #3
   556     if (abase != base) {
   557       igvn->hash_delete(addp);
   558       addp->set_req(AddPNode::Base, base);
   559       if (abase == adr) {
   560         addp->set_req(AddPNode::Address, base);
   561       } else {
   562         // AddP case #4 (adr is array's element offset AddP node)
   563 #ifdef ASSERT
   564         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
   565         assert(adr->is_AddP() && atype != NULL &&
   566                atype->instance_id() == inst_id, "array's element offset should be processed first");
   567 #endif
   568       }
   569       igvn->hash_insert(addp);
   570     }
   571   }
   572   // Put on IGVN worklist since at least addp's type was changed above.
   573   record_for_optimizer(addp);
   574   return true;
   575 }
   577 //
   578 // Create a new version of orig_phi if necessary. Returns either the newly
   579 // created phi or an existing phi.  Sets create_new to indicate wheter  a new
   580 // phi was created.  Cache the last newly created phi in the node map.
   581 //
   582 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn, bool &new_created) {
   583   Compile *C = _compile;
   584   new_created = false;
   585   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
   586   // nothing to do if orig_phi is bottom memory or matches alias_idx
   587   if (phi_alias_idx == alias_idx) {
   588     return orig_phi;
   589   }
   590   // Have we recently created a Phi for this alias index?
   591   PhiNode *result = get_map_phi(orig_phi->_idx);
   592   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
   593     return result;
   594   }
   595   // Previous check may fail when the same wide memory Phi was split into Phis
   596   // for different memory slices. Search all Phis for this region.
   597   if (result != NULL) {
   598     Node* region = orig_phi->in(0);
   599     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
   600       Node* phi = region->fast_out(i);
   601       if (phi->is_Phi() &&
   602           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
   603         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
   604         return phi->as_Phi();
   605       }
   606     }
   607   }
   608   if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
   609     if (C->do_escape_analysis() == true && !C->failing()) {
   610       // Retry compilation without escape analysis.
   611       // If this is the first failure, the sentinel string will "stick"
   612       // to the Compile object, and the C2Compiler will see it and retry.
   613       C->record_failure(C2Compiler::retry_no_escape_analysis());
   614     }
   615     return NULL;
   616   }
   617   orig_phi_worklist.append_if_missing(orig_phi);
   618   const TypePtr *atype = C->get_adr_type(alias_idx);
   619   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
   620   C->copy_node_notes_to(result, orig_phi);
   621   set_map_phi(orig_phi->_idx, result);
   622   igvn->set_type(result, result->bottom_type());
   623   record_for_optimizer(result);
   624   new_created = true;
   625   return result;
   626 }
   628 //
   629 // Return a new version  of Memory Phi "orig_phi" with the inputs having the
   630 // specified alias index.
   631 //
   632 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, PhaseGVN  *igvn) {
   634   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
   635   Compile *C = _compile;
   636   bool new_phi_created;
   637   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
   638   if (!new_phi_created) {
   639     return result;
   640   }
   642   GrowableArray<PhiNode *>  phi_list;
   643   GrowableArray<uint>  cur_input;
   645   PhiNode *phi = orig_phi;
   646   uint idx = 1;
   647   bool finished = false;
   648   while(!finished) {
   649     while (idx < phi->req()) {
   650       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
   651       if (mem != NULL && mem->is_Phi()) {
   652         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
   653         if (new_phi_created) {
   654           // found an phi for which we created a new split, push current one on worklist and begin
   655           // processing new one
   656           phi_list.push(phi);
   657           cur_input.push(idx);
   658           phi = mem->as_Phi();
   659           result = newphi;
   660           idx = 1;
   661           continue;
   662         } else {
   663           mem = newphi;
   664         }
   665       }
   666       if (C->failing()) {
   667         return NULL;
   668       }
   669       result->set_req(idx++, mem);
   670     }
   671 #ifdef ASSERT
   672     // verify that the new Phi has an input for each input of the original
   673     assert( phi->req() == result->req(), "must have same number of inputs.");
   674     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
   675 #endif
   676     // Check if all new phi's inputs have specified alias index.
   677     // Otherwise use old phi.
   678     for (uint i = 1; i < phi->req(); i++) {
   679       Node* in = result->in(i);
   680       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
   681     }
   682     // we have finished processing a Phi, see if there are any more to do
   683     finished = (phi_list.length() == 0 );
   684     if (!finished) {
   685       phi = phi_list.pop();
   686       idx = cur_input.pop();
   687       PhiNode *prev_result = get_map_phi(phi->_idx);
   688       prev_result->set_req(idx++, result);
   689       result = prev_result;
   690     }
   691   }
   692   return result;
   693 }
   696 //
   697 // The next methods are derived from methods in MemNode.
   698 //
   699 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
   700   Node *mem = mmem;
   701   // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
   702   // means an array I have not precisely typed yet.  Do not do any
   703   // alias stuff with it any time soon.
   704   if( tinst->base() != Type::AnyPtr &&
   705       !(tinst->klass()->is_java_lang_Object() &&
   706         tinst->offset() == Type::OffsetBot) ) {
   707     mem = mmem->memory_at(alias_idx);
   708     // Update input if it is progress over what we have now
   709   }
   710   return mem;
   711 }
   713 //
   714 // Search memory chain of "mem" to find a MemNode whose address
   715 // is the specified alias index.
   716 //
   717 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis, PhaseGVN *phase) {
   718   if (orig_mem == NULL)
   719     return orig_mem;
   720   Compile* C = phase->C;
   721   const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
   722   bool is_instance = (tinst != NULL) && tinst->is_known_instance();
   723   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
   724   Node *prev = NULL;
   725   Node *result = orig_mem;
   726   while (prev != result) {
   727     prev = result;
   728     if (result == start_mem)
   729       break;  // hit one of our sentinels
   730     if (result->is_Mem()) {
   731       const Type *at = phase->type(result->in(MemNode::Address));
   732       if (at != Type::TOP) {
   733         assert (at->isa_ptr() != NULL, "pointer type required.");
   734         int idx = C->get_alias_index(at->is_ptr());
   735         if (idx == alias_idx)
   736           break;
   737       }
   738       result = result->in(MemNode::Memory);
   739     }
   740     if (!is_instance)
   741       continue;  // don't search further for non-instance types
   742     // skip over a call which does not affect this memory slice
   743     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
   744       Node *proj_in = result->in(0);
   745       if (proj_in->is_Allocate() && proj_in->_idx == (uint)tinst->instance_id()) {
   746         break;  // hit one of our sentinels
   747       } else if (proj_in->is_Call()) {
   748         CallNode *call = proj_in->as_Call();
   749         if (!call->may_modify(tinst, phase)) {
   750           result = call->in(TypeFunc::Memory);
   751         }
   752       } else if (proj_in->is_Initialize()) {
   753         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
   754         // Stop if this is the initialization for the object instance which
   755         // which contains this memory slice, otherwise skip over it.
   756         if (alloc == NULL || alloc->_idx != (uint)tinst->instance_id()) {
   757           result = proj_in->in(TypeFunc::Memory);
   758         }
   759       } else if (proj_in->is_MemBar()) {
   760         result = proj_in->in(TypeFunc::Memory);
   761       }
   762     } else if (result->is_MergeMem()) {
   763       MergeMemNode *mmem = result->as_MergeMem();
   764       result = step_through_mergemem(mmem, alias_idx, tinst);
   765       if (result == mmem->base_memory()) {
   766         // Didn't find instance memory, search through general slice recursively.
   767         result = mmem->memory_at(C->get_general_index(alias_idx));
   768         result = find_inst_mem(result, alias_idx, orig_phis, phase);
   769         if (C->failing()) {
   770           return NULL;
   771         }
   772         mmem->set_memory_at(alias_idx, result);
   773       }
   774     } else if (result->is_Phi() &&
   775                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
   776       Node *un = result->as_Phi()->unique_input(phase);
   777       if (un != NULL) {
   778         result = un;
   779       } else {
   780         break;
   781       }
   782     } else if (result->is_ClearArray()) {
   783       if (!ClearArrayNode::step_through(&result, (uint)tinst->instance_id(), phase)) {
   784         // Can not bypass initialization of the instance
   785         // we are looking for.
   786         break;
   787       }
   788       // Otherwise skip it (the call updated 'result' value).
   789     } else if (result->Opcode() == Op_SCMemProj) {
   790       assert(result->in(0)->is_LoadStore(), "sanity");
   791       const Type *at = phase->type(result->in(0)->in(MemNode::Address));
   792       if (at != Type::TOP) {
   793         assert (at->isa_ptr() != NULL, "pointer type required.");
   794         int idx = C->get_alias_index(at->is_ptr());
   795         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
   796         break;
   797       }
   798       result = result->in(0)->in(MemNode::Memory);
   799     }
   800   }
   801   if (result->is_Phi()) {
   802     PhiNode *mphi = result->as_Phi();
   803     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
   804     const TypePtr *t = mphi->adr_type();
   805     if (C->get_alias_index(t) != alias_idx) {
   806       // Create a new Phi with the specified alias index type.
   807       result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
   808     } else if (!is_instance) {
   809       // Push all non-instance Phis on the orig_phis worklist to update inputs
   810       // during Phase 4 if needed.
   811       orig_phis.append_if_missing(mphi);
   812     }
   813   }
   814   // the result is either MemNode, PhiNode, InitializeNode.
   815   return result;
   816 }
   818 //
   819 //  Convert the types of unescaped object to instance types where possible,
   820 //  propagate the new type information through the graph, and update memory
   821 //  edges and MergeMem inputs to reflect the new type.
   822 //
   823 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
   824 //  The processing is done in 4 phases:
   825 //
   826 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
   827 //            types for the CheckCastPP for allocations where possible.
   828 //            Propagate the the new types through users as follows:
   829 //               casts and Phi:  push users on alloc_worklist
   830 //               AddP:  cast Base and Address inputs to the instance type
   831 //                      push any AddP users on alloc_worklist and push any memnode
   832 //                      users onto memnode_worklist.
   833 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
   834 //            search the Memory chain for a store with the appropriate type
   835 //            address type.  If a Phi is found, create a new version with
   836 //            the appropriate memory slices from each of the Phi inputs.
   837 //            For stores, process the users as follows:
   838 //               MemNode:  push on memnode_worklist
   839 //               MergeMem: push on mergemem_worklist
   840 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
   841 //            moving the first node encountered of each  instance type to the
   842 //            the input corresponding to its alias index.
   843 //            appropriate memory slice.
   844 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
   845 //
   846 // In the following example, the CheckCastPP nodes are the cast of allocation
   847 // results and the allocation of node 29 is unescaped and eligible to be an
   848 // instance type.
   849 //
   850 // We start with:
   851 //
   852 //     7 Parm #memory
   853 //    10  ConI  "12"
   854 //    19  CheckCastPP   "Foo"
   855 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   856 //    29  CheckCastPP   "Foo"
   857 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
   858 //
   859 //    40  StoreP  25   7  20   ... alias_index=4
   860 //    50  StoreP  35  40  30   ... alias_index=4
   861 //    60  StoreP  45  50  20   ... alias_index=4
   862 //    70  LoadP    _  60  30   ... alias_index=4
   863 //    80  Phi     75  50  60   Memory alias_index=4
   864 //    90  LoadP    _  80  30   ... alias_index=4
   865 //   100  LoadP    _  80  20   ... alias_index=4
   866 //
   867 //
   868 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
   869 // and creating a new alias index for node 30.  This gives:
   870 //
   871 //     7 Parm #memory
   872 //    10  ConI  "12"
   873 //    19  CheckCastPP   "Foo"
   874 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   875 //    29  CheckCastPP   "Foo"  iid=24
   876 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
   877 //
   878 //    40  StoreP  25   7  20   ... alias_index=4
   879 //    50  StoreP  35  40  30   ... alias_index=6
   880 //    60  StoreP  45  50  20   ... alias_index=4
   881 //    70  LoadP    _  60  30   ... alias_index=6
   882 //    80  Phi     75  50  60   Memory alias_index=4
   883 //    90  LoadP    _  80  30   ... alias_index=6
   884 //   100  LoadP    _  80  20   ... alias_index=4
   885 //
   886 // In phase 2, new memory inputs are computed for the loads and stores,
   887 // And a new version of the phi is created.  In phase 4, the inputs to
   888 // node 80 are updated and then the memory nodes are updated with the
   889 // values computed in phase 2.  This results in:
   890 //
   891 //     7 Parm #memory
   892 //    10  ConI  "12"
   893 //    19  CheckCastPP   "Foo"
   894 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
   895 //    29  CheckCastPP   "Foo"  iid=24
   896 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
   897 //
   898 //    40  StoreP  25  7   20   ... alias_index=4
   899 //    50  StoreP  35  7   30   ... alias_index=6
   900 //    60  StoreP  45  40  20   ... alias_index=4
   901 //    70  LoadP    _  50  30   ... alias_index=6
   902 //    80  Phi     75  40  60   Memory alias_index=4
   903 //   120  Phi     75  50  50   Memory alias_index=6
   904 //    90  LoadP    _ 120  30   ... alias_index=6
   905 //   100  LoadP    _  80  20   ... alias_index=4
   906 //
   907 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
   908   GrowableArray<Node *>  memnode_worklist;
   909   GrowableArray<PhiNode *>  orig_phis;
   910   PhaseGVN  *igvn = _compile->initial_gvn();
   911   uint new_index_start = (uint) _compile->num_alias_types();
   912   VectorSet visited(Thread::current()->resource_area());
   913   VectorSet ptset(Thread::current()->resource_area());
   916   //  Phase 1:  Process possible allocations from alloc_worklist.
   917   //  Create instance types for the CheckCastPP for allocations where possible.
   918   //
   919   // (Note: don't forget to change the order of the second AddP node on
   920   //  the alloc_worklist if the order of the worklist processing is changed,
   921   //  see the comment in find_second_addp().)
   922   //
   923   while (alloc_worklist.length() != 0) {
   924     Node *n = alloc_worklist.pop();
   925     uint ni = n->_idx;
   926     const TypeOopPtr* tinst = NULL;
   927     if (n->is_Call()) {
   928       CallNode *alloc = n->as_Call();
   929       // copy escape information to call node
   930       PointsToNode* ptn = ptnode_adr(alloc->_idx);
   931       PointsToNode::EscapeState es = escape_state(alloc, igvn);
   932       // We have an allocation or call which returns a Java object,
   933       // see if it is unescaped.
   934       if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
   935         continue;
   937       // Find CheckCastPP for the allocate or for the return value of a call
   938       n = alloc->result_cast();
   939       if (n == NULL) {            // No uses except Initialize node
   940         if (alloc->is_Allocate()) {
   941           // Set the scalar_replaceable flag for allocation
   942           // so it could be eliminated if it has no uses.
   943           alloc->as_Allocate()->_is_scalar_replaceable = true;
   944         }
   945         continue;
   946       }
   947       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
   948         assert(!alloc->is_Allocate(), "allocation should have unique type");
   949         continue;
   950       }
   952       // The inline code for Object.clone() casts the allocation result to
   953       // java.lang.Object and then to the actual type of the allocated
   954       // object. Detect this case and use the second cast.
   955       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
   956       // the allocation result is cast to java.lang.Object and then
   957       // to the actual Array type.
   958       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
   959           && (alloc->is_AllocateArray() ||
   960               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
   961         Node *cast2 = NULL;
   962         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   963           Node *use = n->fast_out(i);
   964           if (use->is_CheckCastPP()) {
   965             cast2 = use;
   966             break;
   967           }
   968         }
   969         if (cast2 != NULL) {
   970           n = cast2;
   971         } else {
   972           // Non-scalar replaceable if the allocation type is unknown statically
   973           // (reflection allocation), the object can't be restored during
   974           // deoptimization without precise type.
   975           continue;
   976         }
   977       }
   978       if (alloc->is_Allocate()) {
   979         // Set the scalar_replaceable flag for allocation
   980         // so it could be eliminated.
   981         alloc->as_Allocate()->_is_scalar_replaceable = true;
   982       }
   983       set_escape_state(n->_idx, es);
   984       // in order for an object to be scalar-replaceable, it must be:
   985       //   - a direct allocation (not a call returning an object)
   986       //   - non-escaping
   987       //   - eligible to be a unique type
   988       //   - not determined to be ineligible by escape analysis
   989       set_map(alloc->_idx, n);
   990       set_map(n->_idx, alloc);
   991       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
   992       if (t == NULL)
   993         continue;  // not a TypeInstPtr
   994       tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
   995       igvn->hash_delete(n);
   996       igvn->set_type(n,  tinst);
   997       n->raise_bottom_type(tinst);
   998       igvn->hash_insert(n);
   999       record_for_optimizer(n);
  1000       if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
  1001           (t->isa_instptr() || t->isa_aryptr())) {
  1003         // First, put on the worklist all Field edges from Connection Graph
  1004         // which is more accurate then putting immediate users from Ideal Graph.
  1005         for (uint e = 0; e < ptn->edge_count(); e++) {
  1006           Node *use = ptnode_adr(ptn->edge_target(e))->_node;
  1007           assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
  1008                  "only AddP nodes are Field edges in CG");
  1009           if (use->outcnt() > 0) { // Don't process dead nodes
  1010             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
  1011             if (addp2 != NULL) {
  1012               assert(alloc->is_AllocateArray(),"array allocation was expected");
  1013               alloc_worklist.append_if_missing(addp2);
  1015             alloc_worklist.append_if_missing(use);
  1019         // An allocation may have an Initialize which has raw stores. Scan
  1020         // the users of the raw allocation result and push AddP users
  1021         // on alloc_worklist.
  1022         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
  1023         assert (raw_result != NULL, "must have an allocation result");
  1024         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
  1025           Node *use = raw_result->fast_out(i);
  1026           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
  1027             Node* addp2 = find_second_addp(use, raw_result);
  1028             if (addp2 != NULL) {
  1029               assert(alloc->is_AllocateArray(),"array allocation was expected");
  1030               alloc_worklist.append_if_missing(addp2);
  1032             alloc_worklist.append_if_missing(use);
  1033           } else if (use->is_MemBar()) {
  1034             memnode_worklist.append_if_missing(use);
  1038     } else if (n->is_AddP()) {
  1039       ptset.Clear();
  1040       PointsTo(ptset, get_addp_base(n), igvn);
  1041       assert(ptset.Size() == 1, "AddP address is unique");
  1042       uint elem = ptset.getelem(); // Allocation node's index
  1043       if (elem == _phantom_object) {
  1044         assert(false, "escaped allocation");
  1045         continue; // Assume the value was set outside this method.
  1047       Node *base = get_map(elem);  // CheckCastPP node
  1048       if (!split_AddP(n, base, igvn)) continue; // wrong type from dead path
  1049       tinst = igvn->type(base)->isa_oopptr();
  1050     } else if (n->is_Phi() ||
  1051                n->is_CheckCastPP() ||
  1052                n->is_EncodeP() ||
  1053                n->is_DecodeN() ||
  1054                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
  1055       if (visited.test_set(n->_idx)) {
  1056         assert(n->is_Phi(), "loops only through Phi's");
  1057         continue;  // already processed
  1059       ptset.Clear();
  1060       PointsTo(ptset, n, igvn);
  1061       if (ptset.Size() == 1) {
  1062         uint elem = ptset.getelem(); // Allocation node's index
  1063         if (elem == _phantom_object) {
  1064           assert(false, "escaped allocation");
  1065           continue; // Assume the value was set outside this method.
  1067         Node *val = get_map(elem);   // CheckCastPP node
  1068         TypeNode *tn = n->as_Type();
  1069         tinst = igvn->type(val)->isa_oopptr();
  1070         assert(tinst != NULL && tinst->is_known_instance() &&
  1071                (uint)tinst->instance_id() == elem , "instance type expected.");
  1073         const Type *tn_type = igvn->type(tn);
  1074         const TypeOopPtr *tn_t;
  1075         if (tn_type->isa_narrowoop()) {
  1076           tn_t = tn_type->make_ptr()->isa_oopptr();
  1077         } else {
  1078           tn_t = tn_type->isa_oopptr();
  1081         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
  1082           if (tn_type->isa_narrowoop()) {
  1083             tn_type = tinst->make_narrowoop();
  1084           } else {
  1085             tn_type = tinst;
  1087           igvn->hash_delete(tn);
  1088           igvn->set_type(tn, tn_type);
  1089           tn->set_type(tn_type);
  1090           igvn->hash_insert(tn);
  1091           record_for_optimizer(n);
  1092         } else {
  1093           assert(tn_type == TypePtr::NULL_PTR ||
  1094                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
  1095                  "unexpected type");
  1096           continue; // Skip dead path with different type
  1099     } else {
  1100       debug_only(n->dump();)
  1101       assert(false, "EA: unexpected node");
  1102       continue;
  1104     // push allocation's users on appropriate worklist
  1105     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1106       Node *use = n->fast_out(i);
  1107       if(use->is_Mem() && use->in(MemNode::Address) == n) {
  1108         // Load/store to instance's field
  1109         memnode_worklist.append_if_missing(use);
  1110       } else if (use->is_MemBar()) {
  1111         memnode_worklist.append_if_missing(use);
  1112       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
  1113         Node* addp2 = find_second_addp(use, n);
  1114         if (addp2 != NULL) {
  1115           alloc_worklist.append_if_missing(addp2);
  1117         alloc_worklist.append_if_missing(use);
  1118       } else if (use->is_Phi() ||
  1119                  use->is_CheckCastPP() ||
  1120                  use->is_EncodeP() ||
  1121                  use->is_DecodeN() ||
  1122                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
  1123         alloc_worklist.append_if_missing(use);
  1124 #ifdef ASSERT
  1125       } else if (use->is_Mem()) {
  1126         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
  1127       } else if (use->is_MergeMem()) {
  1128         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  1129       } else if (use->is_SafePoint()) {
  1130         // Look for MergeMem nodes for calls which reference unique allocation
  1131         // (through CheckCastPP nodes) even for debug info.
  1132         Node* m = use->in(TypeFunc::Memory);
  1133         if (m->is_MergeMem()) {
  1134           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  1136       } else {
  1137         uint op = use->Opcode();
  1138         if (!(op == Op_CmpP || op == Op_Conv2B ||
  1139               op == Op_CastP2X || op == Op_StoreCM ||
  1140               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
  1141               op == Op_StrEquals || op == Op_StrIndexOf)) {
  1142           n->dump();
  1143           use->dump();
  1144           assert(false, "EA: missing allocation reference path");
  1146 #endif
  1151   // New alias types were created in split_AddP().
  1152   uint new_index_end = (uint) _compile->num_alias_types();
  1154   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  1155   //            compute new values for Memory inputs  (the Memory inputs are not
  1156   //            actually updated until phase 4.)
  1157   if (memnode_worklist.length() == 0)
  1158     return;  // nothing to do
  1160   while (memnode_worklist.length() != 0) {
  1161     Node *n = memnode_worklist.pop();
  1162     if (visited.test_set(n->_idx))
  1163       continue;
  1164     if (n->is_Phi() || n->is_ClearArray()) {
  1165       // we don't need to do anything, but the users must be pushed
  1166     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
  1167       // we don't need to do anything, but the users must be pushed
  1168       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
  1169       if (n == NULL)
  1170         continue;
  1171     } else {
  1172       assert(n->is_Mem(), "memory node required.");
  1173       Node *addr = n->in(MemNode::Address);
  1174       const Type *addr_t = igvn->type(addr);
  1175       if (addr_t == Type::TOP)
  1176         continue;
  1177       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
  1178       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
  1179       assert ((uint)alias_idx < new_index_end, "wrong alias index");
  1180       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
  1181       if (_compile->failing()) {
  1182         return;
  1184       if (mem != n->in(MemNode::Memory)) {
  1185         set_map(n->_idx, mem);
  1186         ptnode_adr(n->_idx)->_node = n;
  1188       if (n->is_Load()) {
  1189         continue;  // don't push users
  1190       } else if (n->is_LoadStore()) {
  1191         // get the memory projection
  1192         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1193           Node *use = n->fast_out(i);
  1194           if (use->Opcode() == Op_SCMemProj) {
  1195             n = use;
  1196             break;
  1199         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  1202     // push user on appropriate worklist
  1203     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1204       Node *use = n->fast_out(i);
  1205       if (use->is_Phi() || use->is_ClearArray()) {
  1206         memnode_worklist.append_if_missing(use);
  1207       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
  1208         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
  1209           continue;
  1210         memnode_worklist.append_if_missing(use);
  1211       } else if (use->is_MemBar()) {
  1212         memnode_worklist.append_if_missing(use);
  1213 #ifdef ASSERT
  1214       } else if(use->is_Mem()) {
  1215         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
  1216       } else if (use->is_MergeMem()) {
  1217         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  1218       } else {
  1219         uint op = use->Opcode();
  1220         if (!(op == Op_StoreCM ||
  1221               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
  1222                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
  1223               op == Op_AryEq || op == Op_StrComp ||
  1224               op == Op_StrEquals || op == Op_StrIndexOf)) {
  1225           n->dump();
  1226           use->dump();
  1227           assert(false, "EA: missing memory path");
  1229 #endif
  1234   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
  1235   //            Walk each memory slice moving the first node encountered of each
  1236   //            instance type to the the input corresponding to its alias index.
  1237   uint length = _mergemem_worklist.length();
  1238   for( uint next = 0; next < length; ++next ) {
  1239     MergeMemNode* nmm = _mergemem_worklist.at(next);
  1240     assert(!visited.test_set(nmm->_idx), "should not be visited before");
  1241     // Note: we don't want to use MergeMemStream here because we only want to
  1242     // scan inputs which exist at the start, not ones we add during processing.
  1243     // Note 2: MergeMem may already contains instance memory slices added
  1244     // during find_inst_mem() call when memory nodes were processed above.
  1245     igvn->hash_delete(nmm);
  1246     uint nslices = nmm->req();
  1247     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
  1248       Node* mem = nmm->in(i);
  1249       Node* cur = NULL;
  1250       if (mem == NULL || mem->is_top())
  1251         continue;
  1252       while (mem->is_Mem()) {
  1253         const Type *at = igvn->type(mem->in(MemNode::Address));
  1254         if (at != Type::TOP) {
  1255           assert (at->isa_ptr() != NULL, "pointer type required.");
  1256           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
  1257           if (idx == i) {
  1258             if (cur == NULL)
  1259               cur = mem;
  1260           } else {
  1261             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
  1262               nmm->set_memory_at(idx, mem);
  1266         mem = mem->in(MemNode::Memory);
  1268       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
  1269       // Find any instance of the current type if we haven't encountered
  1270       // a value of the instance along the chain.
  1271       for (uint ni = new_index_start; ni < new_index_end; ni++) {
  1272         if((uint)_compile->get_general_index(ni) == i) {
  1273           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
  1274           if (nmm->is_empty_memory(m)) {
  1275             Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
  1276             if (_compile->failing()) {
  1277               return;
  1279             nmm->set_memory_at(ni, result);
  1284     // Find the rest of instances values
  1285     for (uint ni = new_index_start; ni < new_index_end; ni++) {
  1286       const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
  1287       Node* result = step_through_mergemem(nmm, ni, tinst);
  1288       if (result == nmm->base_memory()) {
  1289         // Didn't find instance memory, search through general slice recursively.
  1290         result = nmm->memory_at(igvn->C->get_general_index(ni));
  1291         result = find_inst_mem(result, ni, orig_phis, igvn);
  1292         if (_compile->failing()) {
  1293           return;
  1295         nmm->set_memory_at(ni, result);
  1298     igvn->hash_insert(nmm);
  1299     record_for_optimizer(nmm);
  1302   //  Phase 4:  Update the inputs of non-instance memory Phis and
  1303   //            the Memory input of memnodes
  1304   // First update the inputs of any non-instance Phi's from
  1305   // which we split out an instance Phi.  Note we don't have
  1306   // to recursively process Phi's encounted on the input memory
  1307   // chains as is done in split_memory_phi() since they  will
  1308   // also be processed here.
  1309   for (int j = 0; j < orig_phis.length(); j++) {
  1310     PhiNode *phi = orig_phis.at(j);
  1311     int alias_idx = _compile->get_alias_index(phi->adr_type());
  1312     igvn->hash_delete(phi);
  1313     for (uint i = 1; i < phi->req(); i++) {
  1314       Node *mem = phi->in(i);
  1315       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
  1316       if (_compile->failing()) {
  1317         return;
  1319       if (mem != new_mem) {
  1320         phi->set_req(i, new_mem);
  1323     igvn->hash_insert(phi);
  1324     record_for_optimizer(phi);
  1327   // Update the memory inputs of MemNodes with the value we computed
  1328   // in Phase 2.
  1329   for (uint i = 0; i < nodes_size(); i++) {
  1330     Node *nmem = get_map(i);
  1331     if (nmem != NULL) {
  1332       Node *n = ptnode_adr(i)->_node;
  1333       if (n != NULL && n->is_Mem()) {
  1334         igvn->hash_delete(n);
  1335         n->set_req(MemNode::Memory, nmem);
  1336         igvn->hash_insert(n);
  1337         record_for_optimizer(n);
  1343 bool ConnectionGraph::has_candidates(Compile *C) {
  1344   // EA brings benefits only when the code has allocations and/or locks which
  1345   // are represented by ideal Macro nodes.
  1346   int cnt = C->macro_count();
  1347   for( int i=0; i < cnt; i++ ) {
  1348     Node *n = C->macro_node(i);
  1349     if ( n->is_Allocate() )
  1350       return true;
  1351     if( n->is_Lock() ) {
  1352       Node* obj = n->as_Lock()->obj_node()->uncast();
  1353       if( !(obj->is_Parm() || obj->is_Con()) )
  1354         return true;
  1357   return false;
  1360 bool ConnectionGraph::compute_escape() {
  1361   Compile* C = _compile;
  1363   // 1. Populate Connection Graph (CG) with Ideal nodes.
  1365   Unique_Node_List worklist_init;
  1366   worklist_init.map(C->unique(), NULL);  // preallocate space
  1368   // Initialize worklist
  1369   if (C->root() != NULL) {
  1370     worklist_init.push(C->root());
  1373   GrowableArray<int> cg_worklist;
  1374   PhaseGVN* igvn = C->initial_gvn();
  1375   bool has_allocations = false;
  1377   // Push all useful nodes onto CG list and set their type.
  1378   for( uint next = 0; next < worklist_init.size(); ++next ) {
  1379     Node* n = worklist_init.at(next);
  1380     record_for_escape_analysis(n, igvn);
  1381     // Only allocations and java static calls results are checked
  1382     // for an escape status. See process_call_result() below.
  1383     if (n->is_Allocate() || n->is_CallStaticJava() &&
  1384         ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
  1385       has_allocations = true;
  1387     if(n->is_AddP()) {
  1388       // Collect address nodes which directly reference an allocation.
  1389       // Use them during stage 3 below to build initial connection graph
  1390       // field edges. Other field edges could be added after StoreP/LoadP
  1391       // nodes are processed during stage 4 below.
  1392       Node* base = get_addp_base(n);
  1393       if(base->is_Proj() && base->in(0)->is_Allocate()) {
  1394         cg_worklist.append(n->_idx);
  1396     } else if (n->is_MergeMem()) {
  1397       // Collect all MergeMem nodes to add memory slices for
  1398       // scalar replaceable objects in split_unique_types().
  1399       _mergemem_worklist.append(n->as_MergeMem());
  1401     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1402       Node* m = n->fast_out(i);   // Get user
  1403       worklist_init.push(m);
  1407   if (!has_allocations) {
  1408     _collecting = false;
  1409     return false; // Nothing to do.
  1412   // 2. First pass to create simple CG edges (doesn't require to walk CG).
  1413   uint delayed_size = _delayed_worklist.size();
  1414   for( uint next = 0; next < delayed_size; ++next ) {
  1415     Node* n = _delayed_worklist.at(next);
  1416     build_connection_graph(n, igvn);
  1419   // 3. Pass to create fields edges (Allocate -F-> AddP).
  1420   uint cg_length = cg_worklist.length();
  1421   for( uint next = 0; next < cg_length; ++next ) {
  1422     int ni = cg_worklist.at(next);
  1423     build_connection_graph(ptnode_adr(ni)->_node, igvn);
  1426   cg_worklist.clear();
  1427   cg_worklist.append(_phantom_object);
  1429   // 4. Build Connection Graph which need
  1430   //    to walk the connection graph.
  1431   for (uint ni = 0; ni < nodes_size(); ni++) {
  1432     PointsToNode* ptn = ptnode_adr(ni);
  1433     Node *n = ptn->_node;
  1434     if (n != NULL) { // Call, AddP, LoadP, StoreP
  1435       build_connection_graph(n, igvn);
  1436       if (ptn->node_type() != PointsToNode::UnknownType)
  1437         cg_worklist.append(n->_idx); // Collect CG nodes
  1441   Arena* arena = Thread::current()->resource_area();
  1442   VectorSet ptset(arena);
  1443   GrowableArray<uint>  deferred_edges;
  1444   VectorSet visited(arena);
  1446   // 5. Remove deferred edges from the graph and adjust
  1447   //    escape state of nonescaping objects.
  1448   cg_length = cg_worklist.length();
  1449   for( uint next = 0; next < cg_length; ++next ) {
  1450     int ni = cg_worklist.at(next);
  1451     PointsToNode* ptn = ptnode_adr(ni);
  1452     PointsToNode::NodeType nt = ptn->node_type();
  1453     if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
  1454       remove_deferred(ni, &deferred_edges, &visited);
  1455       Node *n = ptn->_node;
  1456       if (n->is_AddP()) {
  1457         // Search for objects which are not scalar replaceable
  1458         // and adjust their escape state.
  1459         verify_escape_state(ni, ptset, igvn);
  1464   // 6. Propagate escape states.
  1465   GrowableArray<int>  worklist;
  1466   bool has_non_escaping_obj = false;
  1468   // push all GlobalEscape nodes on the worklist
  1469   for( uint next = 0; next < cg_length; ++next ) {
  1470     int nk = cg_worklist.at(next);
  1471     if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
  1472       worklist.push(nk);
  1474   // mark all nodes reachable from GlobalEscape nodes
  1475   while(worklist.length() > 0) {
  1476     PointsToNode* ptn = ptnode_adr(worklist.pop());
  1477     uint e_cnt = ptn->edge_count();
  1478     for (uint ei = 0; ei < e_cnt; ei++) {
  1479       uint npi = ptn->edge_target(ei);
  1480       PointsToNode *np = ptnode_adr(npi);
  1481       if (np->escape_state() < PointsToNode::GlobalEscape) {
  1482         np->set_escape_state(PointsToNode::GlobalEscape);
  1483         worklist.push(npi);
  1488   // push all ArgEscape nodes on the worklist
  1489   for( uint next = 0; next < cg_length; ++next ) {
  1490     int nk = cg_worklist.at(next);
  1491     if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
  1492       worklist.push(nk);
  1494   // mark all nodes reachable from ArgEscape nodes
  1495   while(worklist.length() > 0) {
  1496     PointsToNode* ptn = ptnode_adr(worklist.pop());
  1497     if (ptn->node_type() == PointsToNode::JavaObject)
  1498       has_non_escaping_obj = true; // Non GlobalEscape
  1499     uint e_cnt = ptn->edge_count();
  1500     for (uint ei = 0; ei < e_cnt; ei++) {
  1501       uint npi = ptn->edge_target(ei);
  1502       PointsToNode *np = ptnode_adr(npi);
  1503       if (np->escape_state() < PointsToNode::ArgEscape) {
  1504         np->set_escape_state(PointsToNode::ArgEscape);
  1505         worklist.push(npi);
  1510   GrowableArray<Node*> alloc_worklist;
  1512   // push all NoEscape nodes on the worklist
  1513   for( uint next = 0; next < cg_length; ++next ) {
  1514     int nk = cg_worklist.at(next);
  1515     if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
  1516       worklist.push(nk);
  1518   // mark all nodes reachable from NoEscape nodes
  1519   while(worklist.length() > 0) {
  1520     PointsToNode* ptn = ptnode_adr(worklist.pop());
  1521     if (ptn->node_type() == PointsToNode::JavaObject)
  1522       has_non_escaping_obj = true; // Non GlobalEscape
  1523     Node* n = ptn->_node;
  1524     if (n->is_Allocate() && ptn->_scalar_replaceable ) {
  1525       // Push scalar replaceable allocations on alloc_worklist
  1526       // for processing in split_unique_types().
  1527       alloc_worklist.append(n);
  1529     uint e_cnt = ptn->edge_count();
  1530     for (uint ei = 0; ei < e_cnt; ei++) {
  1531       uint npi = ptn->edge_target(ei);
  1532       PointsToNode *np = ptnode_adr(npi);
  1533       if (np->escape_state() < PointsToNode::NoEscape) {
  1534         np->set_escape_state(PointsToNode::NoEscape);
  1535         worklist.push(npi);
  1540   _collecting = false;
  1541   assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
  1543   bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
  1544   if ( has_scalar_replaceable_candidates &&
  1545        C->AliasLevel() >= 3 && EliminateAllocations ) {
  1547     // Now use the escape information to create unique types for
  1548     // scalar replaceable objects.
  1549     split_unique_types(alloc_worklist);
  1551     if (C->failing())  return false;
  1553     // Clean up after split unique types.
  1554     ResourceMark rm;
  1555     PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
  1557     C->print_method("After Escape Analysis", 2);
  1559 #ifdef ASSERT
  1560   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
  1561     tty->print("=== No allocations eliminated for ");
  1562     C->method()->print_short_name();
  1563     if(!EliminateAllocations) {
  1564       tty->print(" since EliminateAllocations is off ===");
  1565     } else if(!has_scalar_replaceable_candidates) {
  1566       tty->print(" since there are no scalar replaceable candidates ===");
  1567     } else if(C->AliasLevel() < 3) {
  1568       tty->print(" since AliasLevel < 3 ===");
  1570     tty->cr();
  1571 #endif
  1573   return has_non_escaping_obj;
  1576 // Search for objects which are not scalar replaceable.
  1577 void ConnectionGraph::verify_escape_state(int nidx, VectorSet& ptset, PhaseTransform* phase) {
  1578   PointsToNode* ptn = ptnode_adr(nidx);
  1579   Node* n = ptn->_node;
  1580   assert(n->is_AddP(), "Should be called for AddP nodes only");
  1581   // Search for objects which are not scalar replaceable.
  1582   // Mark their escape state as ArgEscape to propagate the state
  1583   // to referenced objects.
  1584   // Note: currently there are no difference in compiler optimizations
  1585   // for ArgEscape objects and NoEscape objects which are not
  1586   // scalar replaceable.
  1588   Compile* C = _compile;
  1590   int offset = ptn->offset();
  1591   Node* base = get_addp_base(n);
  1592   ptset.Clear();
  1593   PointsTo(ptset, base, phase);
  1594   int ptset_size = ptset.Size();
  1596   // Check if a oop field's initializing value is recorded and add
  1597   // a corresponding NULL field's value if it is not recorded.
  1598   // Connection Graph does not record a default initialization by NULL
  1599   // captured by Initialize node.
  1600   //
  1601   // Note: it will disable scalar replacement in some cases:
  1602   //
  1603   //    Point p[] = new Point[1];
  1604   //    p[0] = new Point(); // Will be not scalar replaced
  1605   //
  1606   // but it will save us from incorrect optimizations in next cases:
  1607   //
  1608   //    Point p[] = new Point[1];
  1609   //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
  1610   //
  1611   // Do a simple control flow analysis to distinguish above cases.
  1612   //
  1613   if (offset != Type::OffsetBot && ptset_size == 1) {
  1614     uint elem = ptset.getelem(); // Allocation node's index
  1615     // It does not matter if it is not Allocation node since
  1616     // only non-escaping allocations are scalar replaced.
  1617     if (ptnode_adr(elem)->_node->is_Allocate() &&
  1618         ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
  1619       AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
  1620       InitializeNode* ini = alloc->initialization();
  1622       // Check only oop fields.
  1623       const Type* adr_type = n->as_AddP()->bottom_type();
  1624       BasicType basic_field_type = T_INT;
  1625       if (adr_type->isa_instptr()) {
  1626         ciField* field = C->alias_type(adr_type->isa_instptr())->field();
  1627         if (field != NULL) {
  1628           basic_field_type = field->layout_type();
  1629         } else {
  1630           // Ignore non field load (for example, klass load)
  1632       } else if (adr_type->isa_aryptr()) {
  1633         const Type* elemtype = adr_type->isa_aryptr()->elem();
  1634         basic_field_type = elemtype->array_element_basic_type();
  1635       } else {
  1636         // Raw pointers are used for initializing stores so skip it.
  1637         assert(adr_type->isa_rawptr() && base->is_Proj() &&
  1638                (base->in(0) == alloc),"unexpected pointer type");
  1640       if (basic_field_type == T_OBJECT ||
  1641           basic_field_type == T_NARROWOOP ||
  1642           basic_field_type == T_ARRAY) {
  1643         Node* value = NULL;
  1644         if (ini != NULL) {
  1645           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
  1646           Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
  1647           if (store != NULL && store->is_Store()) {
  1648             value = store->in(MemNode::ValueIn);
  1649           } else if (ptn->edge_count() > 0) { // Are there oop stores?
  1650             // Check for a store which follows allocation without branches.
  1651             // For example, a volatile field store is not collected
  1652             // by Initialize node. TODO: it would be nice to use idom() here.
  1653             for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1654               store = n->fast_out(i);
  1655               if (store->is_Store() && store->in(0) != NULL) {
  1656                 Node* ctrl = store->in(0);
  1657                 while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
  1658                         ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
  1659                         ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
  1660                    ctrl = ctrl->in(0);
  1662                 if (ctrl == ini || ctrl == alloc) {
  1663                   value = store->in(MemNode::ValueIn);
  1664                   break;
  1670         if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
  1671           // A field's initializing value was not recorded. Add NULL.
  1672           uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
  1673           add_pointsto_edge(nidx, null_idx);
  1679   // An object is not scalar replaceable if the field which may point
  1680   // to it has unknown offset (unknown element of an array of objects).
  1681   //
  1682   if (offset == Type::OffsetBot) {
  1683     uint e_cnt = ptn->edge_count();
  1684     for (uint ei = 0; ei < e_cnt; ei++) {
  1685       uint npi = ptn->edge_target(ei);
  1686       set_escape_state(npi, PointsToNode::ArgEscape);
  1687       ptnode_adr(npi)->_scalar_replaceable = false;
  1691   // Currently an object is not scalar replaceable if a LoadStore node
  1692   // access its field since the field value is unknown after it.
  1693   //
  1694   bool has_LoadStore = false;
  1695   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1696     Node *use = n->fast_out(i);
  1697     if (use->is_LoadStore()) {
  1698       has_LoadStore = true;
  1699       break;
  1702   // An object is not scalar replaceable if the address points
  1703   // to unknown field (unknown element for arrays, offset is OffsetBot).
  1704   //
  1705   // Or the address may point to more then one object. This may produce
  1706   // the false positive result (set scalar_replaceable to false)
  1707   // since the flow-insensitive escape analysis can't separate
  1708   // the case when stores overwrite the field's value from the case
  1709   // when stores happened on different control branches.
  1710   //
  1711   if (ptset_size > 1 || ptset_size != 0 &&
  1712       (has_LoadStore || offset == Type::OffsetBot)) {
  1713     for( VectorSetI j(&ptset); j.test(); ++j ) {
  1714       set_escape_state(j.elem, PointsToNode::ArgEscape);
  1715       ptnode_adr(j.elem)->_scalar_replaceable = false;
  1720 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
  1722     switch (call->Opcode()) {
  1723 #ifdef ASSERT
  1724     case Op_Allocate:
  1725     case Op_AllocateArray:
  1726     case Op_Lock:
  1727     case Op_Unlock:
  1728       assert(false, "should be done already");
  1729       break;
  1730 #endif
  1731     case Op_CallLeaf:
  1732     case Op_CallLeafNoFP:
  1734       // Stub calls, objects do not escape but they are not scale replaceable.
  1735       // Adjust escape state for outgoing arguments.
  1736       const TypeTuple * d = call->tf()->domain();
  1737       VectorSet ptset(Thread::current()->resource_area());
  1738       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1739         const Type* at = d->field_at(i);
  1740         Node *arg = call->in(i)->uncast();
  1741         const Type *aat = phase->type(arg);
  1742         if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr() &&
  1743             ptnode_adr(arg->_idx)->escape_state() < PointsToNode::ArgEscape) {
  1745           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
  1746                  aat->isa_ptr() != NULL, "expecting an Ptr");
  1747 #ifdef ASSERT
  1748           if (!(call->Opcode() == Op_CallLeafNoFP &&
  1749                 call->as_CallLeaf()->_name != NULL &&
  1750                 (strstr(call->as_CallLeaf()->_name, "arraycopy")  != 0) ||
  1751                 call->as_CallLeaf()->_name != NULL &&
  1752                 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
  1753                  strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
  1754           ) {
  1755             call->dump();
  1756             assert(false, "EA: unexpected CallLeaf");
  1758 #endif
  1759           set_escape_state(arg->_idx, PointsToNode::ArgEscape);
  1760           if (arg->is_AddP()) {
  1761             //
  1762             // The inline_native_clone() case when the arraycopy stub is called
  1763             // after the allocation before Initialize and CheckCastPP nodes.
  1764             //
  1765             // Set AddP's base (Allocate) as not scalar replaceable since
  1766             // pointer to the base (with offset) is passed as argument.
  1767             //
  1768             arg = get_addp_base(arg);
  1770           ptset.Clear();
  1771           PointsTo(ptset, arg, phase);
  1772           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1773             uint pt = j.elem;
  1774             set_escape_state(pt, PointsToNode::ArgEscape);
  1778       break;
  1781     case Op_CallStaticJava:
  1782     // For a static call, we know exactly what method is being called.
  1783     // Use bytecode estimator to record the call's escape affects
  1785       ciMethod *meth = call->as_CallJava()->method();
  1786       BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
  1787       // fall-through if not a Java method or no analyzer information
  1788       if (call_analyzer != NULL) {
  1789         const TypeTuple * d = call->tf()->domain();
  1790         VectorSet ptset(Thread::current()->resource_area());
  1791         bool copy_dependencies = false;
  1792         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1793           const Type* at = d->field_at(i);
  1794           int k = i - TypeFunc::Parms;
  1795           Node *arg = call->in(i)->uncast();
  1797           if (at->isa_oopptr() != NULL &&
  1798               ptnode_adr(arg->_idx)->escape_state() < PointsToNode::ArgEscape) {
  1800             bool global_escapes = false;
  1801             bool fields_escapes = false;
  1802             if (!call_analyzer->is_arg_stack(k)) {
  1803               // The argument global escapes, mark everything it could point to
  1804               set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
  1805               global_escapes = true;
  1806             } else {
  1807               if (!call_analyzer->is_arg_local(k)) {
  1808                 // The argument itself doesn't escape, but any fields might
  1809                 fields_escapes = true;
  1811               set_escape_state(arg->_idx, PointsToNode::ArgEscape);
  1812               copy_dependencies = true;
  1815             ptset.Clear();
  1816             PointsTo(ptset, arg, phase);
  1817             for( VectorSetI j(&ptset); j.test(); ++j ) {
  1818               uint pt = j.elem;
  1819               if (global_escapes) {
  1820                 //The argument global escapes, mark everything it could point to
  1821                 set_escape_state(pt, PointsToNode::GlobalEscape);
  1822               } else {
  1823                 if (fields_escapes) {
  1824                   // The argument itself doesn't escape, but any fields might
  1825                   add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
  1827                 set_escape_state(pt, PointsToNode::ArgEscape);
  1832         if (copy_dependencies)
  1833           call_analyzer->copy_dependencies(_compile->dependencies());
  1834         break;
  1838     default:
  1839     // Fall-through here if not a Java method or no analyzer information
  1840     // or some other type of call, assume the worst case: all arguments
  1841     // globally escape.
  1843       // adjust escape state for  outgoing arguments
  1844       const TypeTuple * d = call->tf()->domain();
  1845       VectorSet ptset(Thread::current()->resource_area());
  1846       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1847         const Type* at = d->field_at(i);
  1848         if (at->isa_oopptr() != NULL) {
  1849           Node *arg = call->in(i)->uncast();
  1850           set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
  1851           ptset.Clear();
  1852           PointsTo(ptset, arg, phase);
  1853           for( VectorSetI j(&ptset); j.test(); ++j ) {
  1854             uint pt = j.elem;
  1855             set_escape_state(pt, PointsToNode::GlobalEscape);
  1862 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
  1863   CallNode   *call = resproj->in(0)->as_Call();
  1864   uint    call_idx = call->_idx;
  1865   uint resproj_idx = resproj->_idx;
  1867   switch (call->Opcode()) {
  1868     case Op_Allocate:
  1870       Node *k = call->in(AllocateNode::KlassNode);
  1871       const TypeKlassPtr *kt;
  1872       if (k->Opcode() == Op_LoadKlass) {
  1873         kt = k->as_Load()->type()->isa_klassptr();
  1874       } else {
  1875         // Also works for DecodeN(LoadNKlass).
  1876         kt = k->as_Type()->type()->isa_klassptr();
  1878       assert(kt != NULL, "TypeKlassPtr  required.");
  1879       ciKlass* cik = kt->klass();
  1880       ciInstanceKlass* ciik = cik->as_instance_klass();
  1882       PointsToNode::EscapeState es;
  1883       uint edge_to;
  1884       if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
  1885         es = PointsToNode::GlobalEscape;
  1886         edge_to = _phantom_object; // Could not be worse
  1887       } else {
  1888         es = PointsToNode::NoEscape;
  1889         edge_to = call_idx;
  1891       set_escape_state(call_idx, es);
  1892       add_pointsto_edge(resproj_idx, edge_to);
  1893       _processed.set(resproj_idx);
  1894       break;
  1897     case Op_AllocateArray:
  1899       int length = call->in(AllocateNode::ALength)->find_int_con(-1);
  1900       if (length < 0 || length > EliminateAllocationArraySizeLimit) {
  1901         // Not scalar replaceable if the length is not constant or too big.
  1902         ptnode_adr(call_idx)->_scalar_replaceable = false;
  1904       set_escape_state(call_idx, PointsToNode::NoEscape);
  1905       add_pointsto_edge(resproj_idx, call_idx);
  1906       _processed.set(resproj_idx);
  1907       break;
  1910     case Op_CallStaticJava:
  1911     // For a static call, we know exactly what method is being called.
  1912     // Use bytecode estimator to record whether the call's return value escapes
  1914       bool done = true;
  1915       const TypeTuple *r = call->tf()->range();
  1916       const Type* ret_type = NULL;
  1918       if (r->cnt() > TypeFunc::Parms)
  1919         ret_type = r->field_at(TypeFunc::Parms);
  1921       // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
  1922       //        _multianewarray functions return a TypeRawPtr.
  1923       if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
  1924         _processed.set(resproj_idx);
  1925         break;  // doesn't return a pointer type
  1927       ciMethod *meth = call->as_CallJava()->method();
  1928       const TypeTuple * d = call->tf()->domain();
  1929       if (meth == NULL) {
  1930         // not a Java method, assume global escape
  1931         set_escape_state(call_idx, PointsToNode::GlobalEscape);
  1932         add_pointsto_edge(resproj_idx, _phantom_object);
  1933       } else {
  1934         BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
  1935         bool copy_dependencies = false;
  1937         if (call_analyzer->is_return_allocated()) {
  1938           // Returns a newly allocated unescaped object, simply
  1939           // update dependency information.
  1940           // Mark it as NoEscape so that objects referenced by
  1941           // it's fields will be marked as NoEscape at least.
  1942           set_escape_state(call_idx, PointsToNode::NoEscape);
  1943           add_pointsto_edge(resproj_idx, call_idx);
  1944           copy_dependencies = true;
  1945         } else if (call_analyzer->is_return_local()) {
  1946           // determine whether any arguments are returned
  1947           set_escape_state(call_idx, PointsToNode::NoEscape);
  1948           bool ret_arg = false;
  1949           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1950             const Type* at = d->field_at(i);
  1952             if (at->isa_oopptr() != NULL) {
  1953               Node *arg = call->in(i)->uncast();
  1955               if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
  1956                 ret_arg = true;
  1957                 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
  1958                 if (arg_esp->node_type() == PointsToNode::UnknownType)
  1959                   done = false;
  1960                 else if (arg_esp->node_type() == PointsToNode::JavaObject)
  1961                   add_pointsto_edge(resproj_idx, arg->_idx);
  1962                 else
  1963                   add_deferred_edge(resproj_idx, arg->_idx);
  1964                 arg_esp->_hidden_alias = true;
  1968           if (done && !ret_arg) {
  1969             // Returns unknown object.
  1970             set_escape_state(call_idx, PointsToNode::GlobalEscape);
  1971             add_pointsto_edge(resproj_idx, _phantom_object);
  1973           copy_dependencies = true;
  1974         } else {
  1975           set_escape_state(call_idx, PointsToNode::GlobalEscape);
  1976           add_pointsto_edge(resproj_idx, _phantom_object);
  1977           for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1978             const Type* at = d->field_at(i);
  1979             if (at->isa_oopptr() != NULL) {
  1980               Node *arg = call->in(i)->uncast();
  1981               PointsToNode *arg_esp = ptnode_adr(arg->_idx);
  1982               arg_esp->_hidden_alias = true;
  1986         if (copy_dependencies)
  1987           call_analyzer->copy_dependencies(_compile->dependencies());
  1989       if (done)
  1990         _processed.set(resproj_idx);
  1991       break;
  1994     default:
  1995     // Some other type of call, assume the worst case that the
  1996     // returned value, if any, globally escapes.
  1998       const TypeTuple *r = call->tf()->range();
  1999       if (r->cnt() > TypeFunc::Parms) {
  2000         const Type* ret_type = r->field_at(TypeFunc::Parms);
  2002         // Note:  we use isa_ptr() instead of isa_oopptr()  here because the
  2003         //        _multianewarray functions return a TypeRawPtr.
  2004         if (ret_type->isa_ptr() != NULL) {
  2005           set_escape_state(call_idx, PointsToNode::GlobalEscape);
  2006           add_pointsto_edge(resproj_idx, _phantom_object);
  2009       _processed.set(resproj_idx);
  2014 // Populate Connection Graph with Ideal nodes and create simple
  2015 // connection graph edges (do not need to check the node_type of inputs
  2016 // or to call PointsTo() to walk the connection graph).
  2017 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
  2018   if (_processed.test(n->_idx))
  2019     return; // No need to redefine node's state.
  2021   if (n->is_Call()) {
  2022     // Arguments to allocation and locking don't escape.
  2023     if (n->is_Allocate()) {
  2024       add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
  2025       record_for_optimizer(n);
  2026     } else if (n->is_Lock() || n->is_Unlock()) {
  2027       // Put Lock and Unlock nodes on IGVN worklist to process them during
  2028       // the first IGVN optimization when escape information is still available.
  2029       record_for_optimizer(n);
  2030       _processed.set(n->_idx);
  2031     } else {
  2032       // Don't mark as processed since call's arguments have to be processed.
  2033       PointsToNode::NodeType nt = PointsToNode::UnknownType;
  2034       PointsToNode::EscapeState es = PointsToNode::UnknownEscape;
  2036       // Check if a call returns an object.
  2037       const TypeTuple *r = n->as_Call()->tf()->range();
  2038       if (r->cnt() > TypeFunc::Parms &&
  2039           r->field_at(TypeFunc::Parms)->isa_ptr() &&
  2040           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
  2041         nt = PointsToNode::JavaObject;
  2042         if (!n->is_CallStaticJava()) {
  2043           // Since the called mathod is statically unknown assume
  2044           // the worst case that the returned value globally escapes.
  2045           es = PointsToNode::GlobalEscape;
  2048       add_node(n, nt, es, false);
  2050     return;
  2053   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
  2054   // ThreadLocal has RawPrt type.
  2055   switch (n->Opcode()) {
  2056     case Op_AddP:
  2058       add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
  2059       break;
  2061     case Op_CastX2P:
  2062     { // "Unsafe" memory access.
  2063       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  2064       break;
  2066     case Op_CastPP:
  2067     case Op_CheckCastPP:
  2068     case Op_EncodeP:
  2069     case Op_DecodeN:
  2071       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  2072       int ti = n->in(1)->_idx;
  2073       PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
  2074       if (nt == PointsToNode::UnknownType) {
  2075         _delayed_worklist.push(n); // Process it later.
  2076         break;
  2077       } else if (nt == PointsToNode::JavaObject) {
  2078         add_pointsto_edge(n->_idx, ti);
  2079       } else {
  2080         add_deferred_edge(n->_idx, ti);
  2082       _processed.set(n->_idx);
  2083       break;
  2085     case Op_ConP:
  2087       // assume all pointer constants globally escape except for null
  2088       PointsToNode::EscapeState es;
  2089       if (phase->type(n) == TypePtr::NULL_PTR)
  2090         es = PointsToNode::NoEscape;
  2091       else
  2092         es = PointsToNode::GlobalEscape;
  2094       add_node(n, PointsToNode::JavaObject, es, true);
  2095       break;
  2097     case Op_ConN:
  2099       // assume all narrow oop constants globally escape except for null
  2100       PointsToNode::EscapeState es;
  2101       if (phase->type(n) == TypeNarrowOop::NULL_PTR)
  2102         es = PointsToNode::NoEscape;
  2103       else
  2104         es = PointsToNode::GlobalEscape;
  2106       add_node(n, PointsToNode::JavaObject, es, true);
  2107       break;
  2109     case Op_CreateEx:
  2111       // assume that all exception objects globally escape
  2112       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  2113       break;
  2115     case Op_LoadKlass:
  2116     case Op_LoadNKlass:
  2118       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
  2119       break;
  2121     case Op_LoadP:
  2122     case Op_LoadN:
  2124       const Type *t = phase->type(n);
  2125       if (t->make_ptr() == NULL) {
  2126         _processed.set(n->_idx);
  2127         return;
  2129       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  2130       break;
  2132     case Op_Parm:
  2134       _processed.set(n->_idx); // No need to redefine it state.
  2135       uint con = n->as_Proj()->_con;
  2136       if (con < TypeFunc::Parms)
  2137         return;
  2138       const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
  2139       if (t->isa_ptr() == NULL)
  2140         return;
  2141       // We have to assume all input parameters globally escape
  2142       // (Note: passing 'false' since _processed is already set).
  2143       add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
  2144       break;
  2146     case Op_Phi:
  2148       const Type *t = n->as_Phi()->type();
  2149       if (t->make_ptr() == NULL) {
  2150         // nothing to do if not an oop or narrow oop
  2151         _processed.set(n->_idx);
  2152         return;
  2154       add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  2155       uint i;
  2156       for (i = 1; i < n->req() ; i++) {
  2157         Node* in = n->in(i);
  2158         if (in == NULL)
  2159           continue;  // ignore NULL
  2160         in = in->uncast();
  2161         if (in->is_top() || in == n)
  2162           continue;  // ignore top or inputs which go back this node
  2163         int ti = in->_idx;
  2164         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
  2165         if (nt == PointsToNode::UnknownType) {
  2166           break;
  2167         } else if (nt == PointsToNode::JavaObject) {
  2168           add_pointsto_edge(n->_idx, ti);
  2169         } else {
  2170           add_deferred_edge(n->_idx, ti);
  2173       if (i >= n->req())
  2174         _processed.set(n->_idx);
  2175       else
  2176         _delayed_worklist.push(n);
  2177       break;
  2179     case Op_Proj:
  2181       // we are only interested in the oop result projection from a call
  2182       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
  2183         const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
  2184         assert(r->cnt() > TypeFunc::Parms, "sanity");
  2185         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
  2186           add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
  2187           int ti = n->in(0)->_idx;
  2188           // The call may not be registered yet (since not all its inputs are registered)
  2189           // if this is the projection from backbranch edge of Phi.
  2190           if (ptnode_adr(ti)->node_type() != PointsToNode::UnknownType) {
  2191             process_call_result(n->as_Proj(), phase);
  2193           if (!_processed.test(n->_idx)) {
  2194             // The call's result may need to be processed later if the call
  2195             // returns it's argument and the argument is not processed yet.
  2196             _delayed_worklist.push(n);
  2198           break;
  2201       _processed.set(n->_idx);
  2202       break;
  2204     case Op_Return:
  2206       if( n->req() > TypeFunc::Parms &&
  2207           phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
  2208         // Treat Return value as LocalVar with GlobalEscape escape state.
  2209         add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
  2210         int ti = n->in(TypeFunc::Parms)->_idx;
  2211         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
  2212         if (nt == PointsToNode::UnknownType) {
  2213           _delayed_worklist.push(n); // Process it later.
  2214           break;
  2215         } else if (nt == PointsToNode::JavaObject) {
  2216           add_pointsto_edge(n->_idx, ti);
  2217         } else {
  2218           add_deferred_edge(n->_idx, ti);
  2221       _processed.set(n->_idx);
  2222       break;
  2224     case Op_StoreP:
  2225     case Op_StoreN:
  2227       const Type *adr_type = phase->type(n->in(MemNode::Address));
  2228       adr_type = adr_type->make_ptr();
  2229       if (adr_type->isa_oopptr()) {
  2230         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  2231       } else {
  2232         Node* adr = n->in(MemNode::Address);
  2233         if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
  2234             adr->in(AddPNode::Address)->is_Proj() &&
  2235             adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
  2236           add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  2237           // We are computing a raw address for a store captured
  2238           // by an Initialize compute an appropriate address type.
  2239           int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
  2240           assert(offs != Type::OffsetBot, "offset must be a constant");
  2241         } else {
  2242           _processed.set(n->_idx);
  2243           return;
  2246       break;
  2248     case Op_StorePConditional:
  2249     case Op_CompareAndSwapP:
  2250     case Op_CompareAndSwapN:
  2252       const Type *adr_type = phase->type(n->in(MemNode::Address));
  2253       adr_type = adr_type->make_ptr();
  2254       if (adr_type->isa_oopptr()) {
  2255         add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  2256       } else {
  2257         _processed.set(n->_idx);
  2258         return;
  2260       break;
  2262     case Op_AryEq:
  2263     case Op_StrComp:
  2264     case Op_StrEquals:
  2265     case Op_StrIndexOf:
  2267       // char[] arrays passed to string intrinsics are not scalar replaceable.
  2268       add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
  2269       break;
  2271     case Op_ThreadLocal:
  2273       add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
  2274       break;
  2276     default:
  2278       // nothing to do
  2280   return;
  2283 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
  2284   uint n_idx = n->_idx;
  2285   assert(ptnode_adr(n_idx)->_node != NULL, "node should be registered");
  2287   // Don't set processed bit for AddP, LoadP, StoreP since
  2288   // they may need more then one pass to process.
  2289   if (_processed.test(n_idx))
  2290     return; // No need to redefine node's state.
  2292   if (n->is_Call()) {
  2293     CallNode *call = n->as_Call();
  2294     process_call_arguments(call, phase);
  2295     _processed.set(n_idx);
  2296     return;
  2299   switch (n->Opcode()) {
  2300     case Op_AddP:
  2302       Node *base = get_addp_base(n);
  2303       // Create a field edge to this node from everything base could point to.
  2304       VectorSet ptset(Thread::current()->resource_area());
  2305       PointsTo(ptset, base, phase);
  2306       for( VectorSetI i(&ptset); i.test(); ++i ) {
  2307         uint pt = i.elem;
  2308         add_field_edge(pt, n_idx, address_offset(n, phase));
  2310       break;
  2312     case Op_CastX2P:
  2314       assert(false, "Op_CastX2P");
  2315       break;
  2317     case Op_CastPP:
  2318     case Op_CheckCastPP:
  2319     case Op_EncodeP:
  2320     case Op_DecodeN:
  2322       int ti = n->in(1)->_idx;
  2323       assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "all nodes should be registered");
  2324       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
  2325         add_pointsto_edge(n_idx, ti);
  2326       } else {
  2327         add_deferred_edge(n_idx, ti);
  2329       _processed.set(n_idx);
  2330       break;
  2332     case Op_ConP:
  2334       assert(false, "Op_ConP");
  2335       break;
  2337     case Op_ConN:
  2339       assert(false, "Op_ConN");
  2340       break;
  2342     case Op_CreateEx:
  2344       assert(false, "Op_CreateEx");
  2345       break;
  2347     case Op_LoadKlass:
  2348     case Op_LoadNKlass:
  2350       assert(false, "Op_LoadKlass");
  2351       break;
  2353     case Op_LoadP:
  2354     case Op_LoadN:
  2356       const Type *t = phase->type(n);
  2357 #ifdef ASSERT
  2358       if (t->make_ptr() == NULL)
  2359         assert(false, "Op_LoadP");
  2360 #endif
  2362       Node* adr = n->in(MemNode::Address)->uncast();
  2363       Node* adr_base;
  2364       if (adr->is_AddP()) {
  2365         adr_base = get_addp_base(adr);
  2366       } else {
  2367         adr_base = adr;
  2370       // For everything "adr_base" could point to, create a deferred edge from
  2371       // this node to each field with the same offset.
  2372       VectorSet ptset(Thread::current()->resource_area());
  2373       PointsTo(ptset, adr_base, phase);
  2374       int offset = address_offset(adr, phase);
  2375       for( VectorSetI i(&ptset); i.test(); ++i ) {
  2376         uint pt = i.elem;
  2377         add_deferred_edge_to_fields(n_idx, pt, offset);
  2379       break;
  2381     case Op_Parm:
  2383       assert(false, "Op_Parm");
  2384       break;
  2386     case Op_Phi:
  2388 #ifdef ASSERT
  2389       const Type *t = n->as_Phi()->type();
  2390       if (t->make_ptr() == NULL)
  2391         assert(false, "Op_Phi");
  2392 #endif
  2393       for (uint i = 1; i < n->req() ; i++) {
  2394         Node* in = n->in(i);
  2395         if (in == NULL)
  2396           continue;  // ignore NULL
  2397         in = in->uncast();
  2398         if (in->is_top() || in == n)
  2399           continue;  // ignore top or inputs which go back this node
  2400         int ti = in->_idx;
  2401         PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
  2402         assert(nt != PointsToNode::UnknownType, "all nodes should be known");
  2403         if (nt == PointsToNode::JavaObject) {
  2404           add_pointsto_edge(n_idx, ti);
  2405         } else {
  2406           add_deferred_edge(n_idx, ti);
  2409       _processed.set(n_idx);
  2410       break;
  2412     case Op_Proj:
  2414       // we are only interested in the oop result projection from a call
  2415       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
  2416         assert(ptnode_adr(n->in(0)->_idx)->node_type() != PointsToNode::UnknownType,
  2417                "all nodes should be registered");
  2418         const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
  2419         assert(r->cnt() > TypeFunc::Parms, "sanity");
  2420         if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
  2421           process_call_result(n->as_Proj(), phase);
  2422           assert(_processed.test(n_idx), "all call results should be processed");
  2423           break;
  2426       assert(false, "Op_Proj");
  2427       break;
  2429     case Op_Return:
  2431 #ifdef ASSERT
  2432       if( n->req() <= TypeFunc::Parms ||
  2433           !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
  2434         assert(false, "Op_Return");
  2436 #endif
  2437       int ti = n->in(TypeFunc::Parms)->_idx;
  2438       assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "node should be registered");
  2439       if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
  2440         add_pointsto_edge(n_idx, ti);
  2441       } else {
  2442         add_deferred_edge(n_idx, ti);
  2444       _processed.set(n_idx);
  2445       break;
  2447     case Op_StoreP:
  2448     case Op_StoreN:
  2449     case Op_StorePConditional:
  2450     case Op_CompareAndSwapP:
  2451     case Op_CompareAndSwapN:
  2453       Node *adr = n->in(MemNode::Address);
  2454       const Type *adr_type = phase->type(adr)->make_ptr();
  2455 #ifdef ASSERT
  2456       if (!adr_type->isa_oopptr())
  2457         assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
  2458 #endif
  2460       assert(adr->is_AddP(), "expecting an AddP");
  2461       Node *adr_base = get_addp_base(adr);
  2462       Node *val = n->in(MemNode::ValueIn)->uncast();
  2463       // For everything "adr_base" could point to, create a deferred edge
  2464       // to "val" from each field with the same offset.
  2465       VectorSet ptset(Thread::current()->resource_area());
  2466       PointsTo(ptset, adr_base, phase);
  2467       for( VectorSetI i(&ptset); i.test(); ++i ) {
  2468         uint pt = i.elem;
  2469         add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
  2471       break;
  2473     case Op_AryEq:
  2474     case Op_StrComp:
  2475     case Op_StrEquals:
  2476     case Op_StrIndexOf:
  2478       // char[] arrays passed to string intrinsic do not escape but
  2479       // they are not scalar replaceable. Adjust escape state for them.
  2480       // Start from in(2) edge since in(1) is memory edge.
  2481       for (uint i = 2; i < n->req(); i++) {
  2482         Node* adr = n->in(i)->uncast();
  2483         const Type *at = phase->type(adr);
  2484         if (!adr->is_top() && at->isa_ptr()) {
  2485           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
  2486                  at->isa_ptr() != NULL, "expecting an Ptr");
  2487           if (adr->is_AddP()) {
  2488             adr = get_addp_base(adr);
  2490           // Mark as ArgEscape everything "adr" could point to.
  2491           set_escape_state(adr->_idx, PointsToNode::ArgEscape);
  2494       _processed.set(n_idx);
  2495       break;
  2497     case Op_ThreadLocal:
  2499       assert(false, "Op_ThreadLocal");
  2500       break;
  2502     default:
  2503       // This method should be called only for EA specific nodes.
  2504       ShouldNotReachHere();
  2508 #ifndef PRODUCT
  2509 void ConnectionGraph::dump() {
  2510   PhaseGVN  *igvn = _compile->initial_gvn();
  2511   bool first = true;
  2513   uint size = nodes_size();
  2514   for (uint ni = 0; ni < size; ni++) {
  2515     PointsToNode *ptn = ptnode_adr(ni);
  2516     PointsToNode::NodeType ptn_type = ptn->node_type();
  2518     if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
  2519       continue;
  2520     PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
  2521     if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
  2522       if (first) {
  2523         tty->cr();
  2524         tty->print("======== Connection graph for ");
  2525         _compile->method()->print_short_name();
  2526         tty->cr();
  2527         first = false;
  2529       tty->print("%6d ", ni);
  2530       ptn->dump();
  2531       // Print all locals which reference this allocation
  2532       for (uint li = ni; li < size; li++) {
  2533         PointsToNode *ptn_loc = ptnode_adr(li);
  2534         PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
  2535         if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
  2536              ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
  2537           ptnode_adr(li)->dump(false);
  2540       if (Verbose) {
  2541         // Print all fields which reference this allocation
  2542         for (uint i = 0; i < ptn->edge_count(); i++) {
  2543           uint ei = ptn->edge_target(i);
  2544           ptnode_adr(ei)->dump(false);
  2547       tty->cr();
  2551 #endif

mercurial